WO2019117219A1 - Composite pipe and production method for composite pipe - Google Patents

Composite pipe and production method for composite pipe Download PDF

Info

Publication number
WO2019117219A1
WO2019117219A1 PCT/JP2018/045766 JP2018045766W WO2019117219A1 WO 2019117219 A1 WO2019117219 A1 WO 2019117219A1 JP 2018045766 W JP2018045766 W JP 2018045766W WO 2019117219 A1 WO2019117219 A1 WO 2019117219A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous resin
layer
tube
resin sheet
covering layer
Prior art date
Application number
PCT/JP2018/045766
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 三觜
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017238865A external-priority patent/JP6965140B2/en
Priority claimed from JP2017238864A external-priority patent/JP6965139B2/en
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019117219A1 publication Critical patent/WO2019117219A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/34Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/11Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall
    • F16L11/115Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall having reinforcements not embedded in the wall

Definitions

  • the present disclosure relates to a composite pipe and a method of manufacturing the composite pipe.
  • Japanese Unexamined Patent Publication No. 2004-322583 describes a corrugated pipe in which a foam layer is provided between a tubular outer layer and an inner layer.
  • the porous resin layer is It may be formed in a tubular shape by abutting both end faces in the width direction of the strip-like porous resin sheet.
  • the porous resin sheet is wound around the tubular body with both end surfaces facing each other, and the outer periphery is inserted into the mold in a state of being covered by the resin material forming the covering layer. Then, with the mold clamping, both end surfaces of the porous resin sheets facing each other move toward each other and are abutted.
  • slack is generated in the resin material covering the outer periphery of the porous resin sheet along with the movement of both end surfaces of the porous resin sheet. Then, the slack portion is pinched by the parting surface of the mold to form a coating layer with burrs.
  • the present disclosure provides a composite pipe and a method of manufacturing the composite pipe in which the coating layer is less susceptible to burrs.
  • the composite tube of the first aspect is a tubular tube, and an annular peak which is formed into a tubular shape and covers the outer periphery of the tube and which is convex radially outward, and an annular valley which is concave radially outward.
  • an annular peak which is formed into a tubular shape and covers the outer periphery of the tube and which is convex radially outward, and an annular valley which is concave radially outward.
  • a bellows-like covering layer made of a resin material
  • a tubular porous resin sheet in a state in which both end faces in the width direction are abutted And formed between the tubular body and the covering layer, and sandwiched between the valley portion and the tubular body, and the abutting positions of the both end surfaces and the parting line of the covering layer are formed.
  • an intermediate layer disposed at different positions in the circumferential direction of the pipe body.
  • an intermediate layer formed in a tubular shape is disposed between the tube and the covering layer in a state in which both end faces in the width direction of the strip-like porous resin sheet are abutted. And the parting line of a coating layer and the contact
  • the porous resin sheet is shifted from the facing position of both end surfaces in the width direction with respect to the parting surface of the mold. Will be placed. And with clamping, the both end surfaces of a porous resin sheet are abutted in the position different from the parting surface of a metal mold
  • both end surfaces of the porous resin sheet are abutted at positions different from the parting surface of the mold. For this reason, the slack portion is pressed by the cavity surface of the mold and disappears. Moreover, since the both end surfaces of the porous resin sheet are not arrange
  • the composite pipe of the second aspect is a tubular pipe body, and an annular peak portion which is formed into a tubular shape and covers the outer periphery of the pipe body and which is convex radially outward and an annular valley portion which is concave radially outer side And a cover layer made of a resin material and alternately formed in the axial direction of the tubular body and made of a resin material, and a tubular form in which both end faces in the width direction of the strip-like porous resin sheet are fused And an intermediate layer disposed between the tubular body and the covering layer and sandwiched between the valley and the tubular body.
  • an intermediate layer is disposed between the tubular body and the covering layer in a tubular shape in which both end faces in the width direction of the strip-like porous resin sheet are fused.
  • the resin material which forms a coating layer is apply
  • a slack portion pinched by the parting surface hardly occurs in the resin material forming the covering layer covering the outer periphery of the porous resin sheet. Therefore, the coating layer is less susceptible to burrs.
  • the composite pipe of the third aspect is, in the composite pipe of the first aspect, arranged such that the abutting position is most distant from the parting line of the covering layer in the circumferential direction of the pipe body.
  • the abutting position of the porous resin sheet is disposed at the position most distant from the parting line of the covering layer in the circumferential direction of the pipe. For this reason, the slack portion formed at the time of mold clamping is formed at the position farthest from the parting surface of the mold. For this reason, it is hard to generate
  • the composite pipe of the fourth aspect is the composite pipe according to any one of the first to third aspects, wherein Melt flow rate (MFR) of the resin material forming the covering layer is 0.25 or more and 1.2 or less. is there.
  • MFR Melt flow rate
  • the resin of the cover layer can easily enter the porous structure of the intermediate layer, and the degree of adhesion between the intermediate layer and the cover layer can be enhanced. Further, by setting the MFR to 1.2 or less, burrs are less likely to occur.
  • the porous resin sheet when forming the covering layer on the outer periphery of the porous resin sheet using the mold, the porous resin sheet is in the width direction with respect to the parting surface of the mold. It arrange
  • both end surfaces of the porous resin sheet are abutted at positions different from the parting surface of the mold. For this reason, the slack portion is pressed by the cavity surface of the mold and disappears. Moreover, since the both end surfaces of the porous resin sheet are not arrange
  • a method of manufacturing a composite tube according to a sixth aspect of the present invention comprises the steps of: winding both end faces of a band-like porous resin sheet so as to face each other on the outer periphery of an annular tube; fusing the both end faces; A step of applying a resin material to the outer periphery of the sheet, placing the tubular body, the porous resin sheet and the resin material in a mold and clamping them, and pressing the both end faces to form an intermediate layer, Forming a covering layer formed of the resin material on the outer periphery of the intermediate layer.
  • the resin material forming the covering layer is applied to the outer periphery of the porous resin sheet in a state where both end surfaces of the porous resin sheet are fused. For this reason, slack is hard to be formed in the resin material which forms a coating layer at the time of mold clamping. Therefore, the coating layer is less susceptible to burrs.
  • burrs are less likely to occur in the coating layer of the composite tube.
  • FIG. 1 is a perspective view of a compound tube according to an embodiment of the present disclosure. It is a longitudinal section showing a compound tube concerning an embodiment of this indication. 1 is a partially enlarged view of a longitudinal cross section of a composite tube according to an embodiment of the present disclosure.
  • FIG. 7 is a perspective view of a composite tube according to another embodiment of the present disclosure. It is a longitudinal section showing the state where the end of the tube of a compound tube concerning an embodiment of this indication was exposed. It is a figure which shows the process in which a coating layer and a porous resin layer are shortened and deformed in the longitudinal cross-section part of FIG. In the longitudinal cross-section part of FIG.
  • FIG. 7 is a perspective view showing the end of the tubular body of the composite tube according to the embodiment of the present disclosure in an exposed state. It is a figure showing a manufacturing process of a compound tube concerning a 1st embodiment of this indication.
  • a composite tube having a tubular body, a porous resin layer, and a bellows-like coating layer when the shortened and deformed coating layer is put back, the force acting from the coating layer on the porous resin layer and the force acting from the tube It is a longitudinal cross-sectional view for demonstrating.
  • tube which concerns on embodiment of this indication WHEREIN: It is a longitudinal cross-sectional view which shows the modification which provided the low friction resin layer.
  • FIG. 7 is a cross-sectional view showing a state before clamping of the wave application mold in the manufacturing process of the composite pipe according to the first embodiment of the present disclosure.
  • the term “process” is not limited to an independent process, and even if it can not be clearly distinguished from other processes, the term “process” is also used if the purpose is achieved. include.
  • the amount of each component in the composition is the total amount of a plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition.
  • the “main component” refers to the component having the highest content by mass in the mixture, unless otherwise specified.
  • the composite tube according to the present disclosure has a tubular tube, a covering layer that is tubular and covers the outer periphery of the tube, and a porous resin layer disposed between the tube and the covering layer.
  • the tube is made of a resin material.
  • the covering layer is made of a resin material. Further, the shape thereof is a bellows-like shape in which an annular peak that is convex outward in the radial direction and an annular valley that is concave in the outer radial direction are alternately formed in the axial direction of the tube. It can be shortened in the axial direction while being guided by the outer periphery of the body.
  • the porous resin layer is disposed so as to be sandwiched between the valley and the tube.
  • the composite tube 10 according to the present embodiment shown in FIG. 1 includes a tube body 12, a porous resin layer 14, and a covering layer 20.
  • the tube body 12 is a resin tube which is tubular and made of a resin material.
  • the resin in the resin material include polyolefins such as polybutene, polyethylene, crosslinked polyethylene, and polypropylene, and vinyl chloride. Resin may be used alone or in combination of two or more. Among them, polybutene is suitably used, and it is preferable to contain polybutene as a main component, for example, it is more preferable to contain 85% by mass or more in the resin material constituting the tubular body.
  • the resin material which comprises a pipe body may contain another additive.
  • the diameter (i.e., outer diameter) of the tubular body 12 is not particularly limited, but can be, for example, in the range of 10 mm to 100 mm, and preferably in the range of 12 mm to 35 mm.
  • the thickness of the tubular body 12 is not particularly limited, but, for example, 1.0 mm or more and 5.0 mm or less can be mentioned, and preferably 1.4 mm or more and 3.2 mm or less.
  • the covering layer 20 is tubular and covers the outer periphery of the tubular body 12 and the porous resin layer 14.
  • the porous resin layer 14 is disposed between the tubular body 12 and the covering layer 20.
  • the covering layer 20 is made of a resin material.
  • the resin in the resin material constituting the coating layer 20 include polyolefins such as polybutene, polyethylene, polypropylene, and crosslinked polyethylene, and vinyl chloride, etc. Resins may be used alone or in combination of two or more. It is also good.
  • low density polyethylene is suitably used, preferably containing low density polyethylene as a main component, for example, more preferably containing 80% by mass or more, and containing 90% by mass or more in the resin material constituting the coating layer. More preferable.
  • the MFR (Melt Flaw Rate) of the resin used is preferably 0.25 or more, more preferably 0.3 or more, and still more preferably 0.35 or more and 1.2 or less.
  • the resin of the covering layer 20 can easily enter the porous structure of the porous resin layer 14. For this reason, the adhesion degree of the porous resin layer 14 mentioned later and the trough part 24 of the coating layer 20 can be raised. Further, by setting the MFR to 1.2 or less, burrs are less likely to occur. When the MFR is greater than 1.2, the molten resin can easily flow into the parting surface of the mold for forming the covering layer 20. This makes burrs more likely to occur.
  • the resin material which comprises a coating layer may contain another additive.
  • the covering layer 20 is bellows-like, and has an annular peak 22 that is convex radially outward and an annular valley 24 that is concave radially outward. They are alternately and continuously formed in the axial direction S of the tubular body 12.
  • the ridges 22 are disposed on the outer side in the radial direction R than the valleys 24.
  • the bellows-like outermost portion of the covering layer 20 is the outer wall 22A and the innermost portion in the radial direction is the inner wall 24A
  • the outer wall 22A and the inner wall 24A in the radial direction With the intermediate portion M as a boundary, the radially outer side is a peak 22, and the radially inner side is a valley 24.
  • the ridge portion 22 has an outer side wall 22A extending in the axial direction S and side walls 22B extending in the radial direction R from both ends of the outer side wall 22A.
  • An outer bend 22C is formed between the outer wall 22A and the side wall 22B.
  • the valley portion 24 has an inner side wall 24A extending in the axial direction S and side walls 24B extending in the radial direction R from both ends of the inner side wall 24A.
  • An inner bent portion 24C is formed between the inner side wall 24A and the side wall 24B.
  • a concave crest space 23 is formed radially inward on the radially inner side of the crest 22 of the covering layer 20.
  • the convex part 14B of the porous resin layer 14 mentioned later is inserted in the mountain space 23. As shown in FIG.
  • the length L1 of axial direction S of the peak part 22 is set longer than the length L2 of axial direction S of the valley part 24.
  • the length L1 is preferably 1.2 times or more of the length L2 in order to ensure the deformability of the outer wall 22A at the time of the shortening deformation described later.
  • the length L2 is preferably 0.8 mm or more. This is because if the length L2 is less than 0.8 mm, the width of the valley of the mold for producing the covering layer 20 is too small. As a result, at the time of manufacturing the covering layer 20, when the resin constituting the covering layer 20 is extruded and then the resin is made uneven by the mold, the portion corresponding to the valley of the mold of the resin becomes thin and fragile Become. This is because the formation of the covering layer 20 becomes difficult.
  • the length L1 is preferably 5 times or less of the length L2. This is because the flexibility of the composite tube 10 can be maintained by setting the length L1 to 5 times or less of the length L2. Moreover, when the length L1 is too long, when laying the composite pipe 10, the contact area with the ground becomes large and it becomes difficult to construct.
  • the length L1 is the distance between the axial direction S outside of the surface of the covering layer 20 as viewed from the outside in the radial direction R at the portion intersecting the middle portion M in the covering layer 20 ( That is, it is the distance between the surface in the axial direction S on one side of the portion convex on the outside in the radial direction R of the covering layer 20 and the surface on the other side in the axial direction S).
  • the length L2 is the distance between the axial direction S outside of the surface of the covering layer 20 seen from the inside in the radial direction R at a portion intersecting the middle portion M in the covering layer 20 (ie, the radial direction R of the covering layer 20 The distance between the surface on one side in the axial direction S of the portion to be convex inward and the surface on the other side in the axial direction S).
  • the thickness of the covering layer 20 is preferably 0.1 mm or more at the thinnest portion and 0.4 mm or less at the thickest portion in order to shorten the covering layer 20.
  • the thickness H1 of the outer side wall 22A is smaller than the thickness H2 of the inner side wall 24A.
  • the thickness H1 is preferably equal to or less than 0.9 times the thickness H2 in order to ensure the deformability of the outer side wall 22A at the time of the shortening deformation described later.
  • the difference in radius ⁇ R at the outer surfaces of the ridges 22 and the valleys 24 is preferably 800% or less of the average thickness of the covering layer 20. If the radius difference ⁇ R is large, the valleys 24 expand radially outward at the time of shortening even if the portion along the axial direction S of the ridges 22 is not deformed, or the adjacent ridges 22 do not approach each other It is hard to be distorted or distorted.
  • the radius difference ⁇ R is 800% or less of the average of the thickness of the covering layer 20
  • the length of the axial direction S of the peak 22 is set to It is preferred to be longer than the axial length. In addition, it is more preferable when it is 600% or less.
  • the diameter of the covering layer 20 (that is, the outer diameter of the outermost portion) is not particularly limited, but can be, for example, in the range of 13 mm or more and 130 mm or less.
  • the porous resin layer 14 is an example of the intermediate layer in the present disclosure, and is a layer formed of a resin material and having a porous structure.
  • the resin in the resin material constituting the porous resin layer 14 include polyurethane, polystyrene, polyethylene, polypropylene, ethylene propylene diene rubber, and a mixture of these resins. Among them, polyurethane is preferable.
  • the porous resin layer 14 is preferably a layer containing polyurethane as a main component (i.e., a porous urethane layer). For example, it is preferable to contain 80 mass% or more of polyurethane in the structural component of a porous resin layer, and it is more preferable to contain 90 mass% or more.
  • the porous resin layer may contain other additives.
  • the abundance ratio of pores in the porous resin layer 14 (for example, the foaming ratio in the case of a foam) can be measured by the method described in Annex 1 of JIS K 6400-1 (2012), 25 / It is preferable that it is 25 mm or more, and 45 pieces / 25 mm or less are more preferable.
  • the porous resin layer 14 is preferably a foam.
  • the density of the porous resin layer is preferably 12 kg / m 3 or more and 22 kg / m 3 or less.
  • a joint or the like is connected to the end of the inner pipe. At this time, it is required to shorten and shift the end of the covering layer to expose the end of the tube.
  • the porous resin layer may not follow and may be left behind on the outer surface of the tube, and the tube may not be sufficiently exposed.
  • the density of the porous resin layer is 22 kg / m 3 or less, the porous resin layer has appropriate flexibility.
  • the porous resin layer follows the movement of the covering layer well. For this reason, leaving on the outer surface of the tube is suppressed. As a result, the end of the tube can be easily exposed.
  • the porous resin layer has an appropriate strength because the density is 12 kg / m 3 or more, and the occurrence of breakage and breakage of the porous resin layer at the time of processing such as at the time of manufacturing the composite tube 10 is suppressed.
  • the density of the porous resin layer is preferably 14 kg / m 3 or more and 20 kg / m 3 or less, more preferably 16 kg / m 3 , from the viewpoint of suppression of leaving to the outer surface of the tubular body and breakage and breakage during processing. More preferably, it is at least 18 kg / m 3 .
  • the density of the porous resin layer can be measured by the method prescribed in JIS-K7222 (2005).
  • the measurement environment is a temperature of 23 ° C. and a relative humidity of 45%.
  • the method of controlling the density of the porous resin layer to the above range is not particularly limited, but, for example, the existing ratio of pores in the porous resin layer (for example, the foaming ratio in the case of a foam)
  • the method of adjusting, the method of adjusting the molecular structure of resin namely, the molecular structure of the monomer used as the raw material of resin, and those crosslinked structures) etc. are mentioned.
  • the porous resin layer 14 is disposed between the tubular body 12 and the covering layer 20.
  • the porous resin layer 14 is sandwiched between the inner side wall 24A of the valley portion 24 of the covering layer 20 and the tube 12.
  • the porous resin layer 14 is formed using a band-like porous resin sheet 14S, as shown in FIG. 12A.
  • the porous resin layer 14 winds a porous resin sheet 14S formed in a band shape so as to have a width substantially equal to the outer peripheral length of the tubular body 12, around the tubular body 12 as shown in FIG. 12B.
  • the resin composition to be the covering layer 20 is supplied to the outer periphery and molded.
  • the end surface 14SA and the end surface 14SB When winding the porous resin sheet 14S around the tubular body 12, the end surface 14SA and the end surface 14SB on both sides in the width direction of the porous resin sheet 14S (direction of arrow W shown in FIGS. 12A and 12B) Wrap around.
  • the butting position (the butting surface 14L) between the end surface 14SA and the end surface 14SB is wound so that the tubular body 12 is substantially linear along the axial direction of the tubular body 12 when viewed from the radial direction.
  • the abutting surface 14L indicates the contact surface.
  • the end surface 14SA and the end surface 14SB may not necessarily be in contact with each other.
  • the abutting surface 14L indicates a surface passing through the centers of the end surface 14SA and the end surface 14SB.
  • the thickness of the porous resin layer 14 is in the natural state (that is, in the state where a force such as compression or tension does not act, temperature 23.degree. C., relative humidity 45%), the outer periphery of the tubular body 12 and the inner wall 24A. It is preferable that the difference is greater than the difference with the radially inner surface, and it is further thicker than the difference.
  • the porous resin layer 14 is thinner than the thickness in the natural state due to the compression. Between the adjacent compression pinching portions 14A of the porous resin layer 14, convex portions 14B are formed.
  • the convex portion 14 ⁇ / b> B has a diameter larger than that of the compression holding portion 14 ⁇ / b> A and protrudes into the mountain space 23.
  • the thickness of the porous resin layer 14 in the natural state is preferably in the range of 1 mm or more and 20 mm or less from the viewpoint of easiness of formation of the compressed sandwiching portion 14A compressed by the inner side wall 24A and the tubular body 12 2 mm or more and 15 mm or less are more preferable, and 2.5 mm or more and 10 mm or less are more preferable.
  • the thickness of the porous resin layer 14 in the natural state is taken as an average value of values obtained by taking out the porous resin layer 14 from the composite tube 10 and measuring three arbitrary places.
  • the difference between the outer circumference of the tubular body 12 and the radially inner side surface of the inner side wall 24A is, for example, preferably in the range of 0.3 mm to 5 mm, more preferably 0.5 mm to 3 mm, and still more preferably 1 mm to 2 mm. .
  • the length in the axial direction S in a natural state in which the porous resin layer 14 is extracted from between the tubular body 12 and the covering layer 20 is 90% or more and 100% or less of the length in the axial direction S of the covering layer 20 preferable. This is because, when the porous resin layer 14 is held in a stretched state between the tubular body 12 and the covering layer 20, the relative displacement between the porous resin layer 14 and the covering layer 20 when the covering layer 20 is shortened and deformed. This is because movement tends to occur, and it may occur that the outer peripheral end of the tubular body 12 can not be exposed without shortening of the porous resin layer 14.
  • the length in the axial direction S of the porous resin layer 14 in the natural state is 90% to 100% of the length in the axial direction of the covering layer 20 It is preferable to set it as the following.
  • the following method can be considered. Specifically, first, the porous resin sheet 14S constituting the porous resin layer 14 is wound around the outer periphery of the tubular body 12. Then, in this state, a melt of the resin composition for forming the coating layer 20 is further applied, and the outer peripheral surface of the melt has a semicircular arc inner surface and the inner surface has a bellows shape. A pair of molds are brought close to each other from two directions and brought into contact and solidified to form a bellows-like covering layer 20.
  • porous resin layer 14 in the composite pipe 10 shown in FIGS. 1 to 3 is a single layer, the present invention is not limited to this, and the porous resin layer 14 may be a multilayer.
  • the composite tube in which the porous resin layer 14 is a multilayer include the composite tube 100 shown in FIG. 4 (a composite tube in which the porous resin layer 14 has two layers).
  • the pipe body 12 In the composite pipe 100 shown in FIG. 4, the pipe body 12, the first porous resin layer 141, the second porous resin layer 142, and the covering layer 20 are stacked in this order.
  • the inner circumferential surface of the porous resin layer 14 preferably covers the outer periphery of the tubular body 12 while being in full contact with the outer periphery of the tubular body 12.
  • “entirely in contact” does not mean that all parts need to be in intimate contact, but means that the entire surface is substantially in contact.
  • the porous resin layer 14 is formed by winding the both ends of the porous resin sheet 14S opposite to each other on the outer periphery of the tube 12. Thereafter, the covering layer 20 is formed on the outer periphery of the porous resin layer 14.
  • a manufacturing apparatus 30 shown in FIG. 9 can be used for manufacturing the composite pipe 10.
  • the manufacturing apparatus 30 includes an extruder 32, a die 34, a wave mold 36, a cooling tank 38, and a pulling device 39.
  • the right side of FIG. 9 is the upstream side, and the pipe 12 is manufactured while moving from the right side to the left side.
  • this moving direction is referred to as a manufacturing direction Y.
  • the die 34, the wave forming die 36, the cooling tank 38, and the pulling device 39 are disposed in this order with respect to the manufacturing direction Y, and the extruder 32 is disposed above the die 34.
  • a sheet-like member 15S is disposed upstream of the die 34.
  • the tubular body 12 and a porous resin sheet 14S constituting the porous resin layer 14 are wound in a roll.
  • the tubular body 12 and the porous resin sheet 14S in a roll shape are continuously pulled out.
  • the porous resin sheet 14S faces the end surface 14SA and the end surface 14SB, as shown in FIG. 12B. Wrapped around.
  • the porous resin sheet 14S is slackened before the die 34 and is inserted into the die 34 in order to prevent application of tensile force.
  • FIG. 12B Wrapped around.
  • the die 34 and the wave forming die 36 are not shown, but when the end face 14SA and the end face 14SB of the porous resin sheet 14S are inserted into the die 34 and the wave forming die 36. They are not in contact with each other and are separated from each other in the circumferential direction of the tube 12.
  • the resin material melted from the die 34 (that is, the melt of the resin composition for forming the coating layer 20) is It is extruded in a cylindrical shape and applied to form a resin material 20A.
  • the resin used here to low density polyethylene (LDPE) of MFR 0.25 or more, the resin material can easily enter the pores (bubbles) of the porous resin sheet, and the porous resin sheet 14S and the resin material 20A Adhesiveness is improved.
  • LDPE low density polyethylene
  • a wave forming process (i.e., a bellows shape) is performed by the wave forming die 36 disposed downstream of the die 34. Process) is performed.
  • the corrugating mold 36 is, for example, a pair of molds, and each mold has a semicircular inner surface, and an annular cavity 36A is formed in a portion corresponding to the ridge 22 of the covering layer 20 on the inner periphery thereof.
  • An annular inner protrusion 36B is formed in a portion corresponding to the valley portion 24 and has a bellows shape.
  • Each cavity 36A is formed with a suction hole 36C, one end of which is in communication with the cavity 36A and which penetrates the wave applying mold 36.
  • suction is performed from the outside of the wave forming die 36 through the suction holes 36C.
  • the corrugated die 36 is made to approach the resin material 20A from the left and right two directions so that the inner surfaces of the pair of dies come in contact with the resin material 20A.
  • the wave applying mold 36 covers the outer periphery of the tubular extruded body 21 and compresses the resin material 20A while compressing the resin material 20A by the inner projection 36B to form the resin material 20A, and the tubular extruded body together with the tubular body 12 and the porous resin sheet 14S. 21 is moved in the manufacturing direction Y.
  • the inside of the cavity formed by the cavity 36A of the wave application mold 36 is sucked through the suction hole 36C by a suction device (not shown) to be a negative pressure.
  • the resin material 20A is deformed outward in the radial direction R and is formed by the cavity 36A, and the bellows-like shape in which the ridges 22 and the valleys 24 are alternately arranged along the axial direction S from the resin material 20A.
  • the cover layer 20 is formed.
  • the convex portion 14B of the porous resin sheet 14S deeply penetrates into the mountain space 23 (see the partial enlarged view shown in FIG. 9) It is locked in the mountain space 23.
  • the compression sandwiching portion 14A of the porous resin sheet 14S is adhered to the inner side wall 24A of the valley portion 24 of the cover layer 20, and is compressed and sandwiched between the inner side wall 24A and the tubular body 12.
  • the both end surfaces (namely, end surface 14SA and end surface 14SB) of the porous resin sheet 14S are in the circumferential direction of the pipe body 12. It is separated from each other.
  • forces of separation from each other act on the end face 14SA and the end face 14SB.
  • the resin material 20A is clamped in a state in which it is tensioned from the porous resin sheet 14S.
  • the separated space (opposing position V) formed between the end surface 14SA and the end surface 14SB of the porous resin sheet 14S is disposed at a position different from the parting surface 36D of the wave forming die 36 in the circumferential direction of the tube 12. Be done.
  • the “position different from the parting surface 36D” refers to a position not overlapping the space sandwiched by the parting surfaces 36D of the pair of corrugated dies 36 in the circumferential direction of the tubular body 12.
  • the opposing position V at a position farthest from the parting surface 36D. That is, it is preferable to dispose the facing position V at a position corresponding to the deepest portion of the cavity 36A (that is, a portion where the tangent is parallel to the parting surface 36D in the cavity 36A made semicircular in cross section).
  • FIG. 13A the outer peripheral surface of the tubular body 12 and the inner peripheral surface of the porous resin sheet 14S are drawn in contact with each other, but in the state before clamping the wave application mold 36.
  • a gap is formed between the outer peripheral surface of the tubular body 12 and the inner peripheral surface of the porous resin sheet 14S.
  • a separation space is formed between the end surface 14SA and the end surface 14SB without the end surface 14SA contacting the end surface 14SB.
  • the corrugated die 36 is clamped to bring the parting surface 36D into contact.
  • the gap (not shown) between the outer peripheral surface of the tubular body 12 and the inner peripheral surface of the porous resin sheet 14S is reduced, the end surface 14SA and the end surface 14SB are abutted, and the abutting surface 14L is formed. Ru.
  • the abutting surface 14L is different from the parting surface 36D of the wave forming die 36. Placed in position.
  • the abutting face 14L in the axial direction of the tube 12 At least a portion is disposed at a position farthest from the parting surface 36D in the circumferential direction of the tube 12.
  • a parting line PL (see FIG. 1) is formed at a position corresponding to the parting surface 36D on the outer peripheral surface of the bellows-like covering layer 20 formed when the wave application mold 36 is clamped.
  • the parting line PL may or may not be visible depending on the accuracy of the mold, the fluidity of the resin, the presence or absence of a post-process such as polishing, but the parting line in the present disclosure may or may not be visible. Point to both.
  • the coating layer 20 is cooled in the cooling bath 38 after the wave application process is performed in the wave application mold 36.
  • the composite pipe 10 is manufactured.
  • both end faces that is, the end face 14SA and the end face 14SB
  • the porous resin layer 14 formed in a tubular shape is disposed in a state in which it is pressed.
  • the parting line PL of the covering layer 20 and the abutting position (abutment surface 14L) of the porous resin sheet 14S are disposed at different positions in the circumferential direction of the tubular body 12.
  • the parting surface 36 D of the wave applying die 36 is The porous resin sheet 14S is disposed in a state where the opposing positions V of both end surfaces in the width direction (that is, the end surface 14SA and the end surface 14SB) are shifted. Then, along with the mold clamping, as shown in FIG. 13B, the end face 14SA and the end face 14SB are abutted at a position different from the parting surface 36D of the wave forming die 36, and the abutting surface 14L is formed.
  • the end faces 14SA and the end faces 14SB opposed to each other are moved toward each other and pushed against each other. Therefore, in the resin material 20A covering the outer periphery of the porous resin sheet 14S, the slack portion 20T is formed in the vicinity of the end face 14SA and the end face 14SB.
  • the end surface 14SA and the end surface 14SB of the porous resin sheet 14S are abutted at positions different from the parting surface 36D (see FIG. 13A) of the wave application die 36. For this reason, the slack portion 20T is pressed by the cavity 36A of the corrugated die 36 and disappears.
  • the slack portion 20T is difficult to be formed. Thereby, the slack portion 20T pinched by the parting surface is less likely to occur. Therefore, burrs are less likely to occur in the covering layer 20.
  • the resin material 20A and the porous resin sheet 14S may be partially moved in the circumferential direction of the tubular body 12 by receiving an external force from the mold 36.
  • the abutting surface 14L is partially offset in the circumferential direction from the other portions. Since at least a part of the abutting surface 14L is disposed at a position farthest from the parting surface 36D in the circumferential direction of the tube 12, even if the abutting surface 14L is partially displaced and arranged, It is suppressed that the portion is arranged at the same position as the parting surface 36D. This can suppress the occurrence of burrs.
  • FIG. 15A the state before mold clamping of the composite tube which concerns on a comparative example is shown by FIG. 15A.
  • the porous resin sheet 14S is in a state in which the facing positions V of both end faces in the width direction (that is, the end face 14SA and the end face 14SB) coincide with the parting face 36D of the corrugated die 36 Will be placed.
  • the gap (facing position V2) between the parting surfaces 36D facing each other in the pair of corrugated dies 36 and the gap (facing position V) between the end face 14SA and the end face 14SB overlapping. Therefore, as shown in FIG.
  • the length L1 in the axial direction S is preferably longer than L2, and the thickness H1 is preferably thinner than H2.
  • the outer side wall 22A is more easily deformed than the inner side wall 24A, and as shown in FIG. 6, the outer side wall 22A deforms so as to bulge radially outward.
  • the outer bending portion 22C of the peak portion 22 and the inner bending portion 24C of the valley portion 24 are deformed such that the adjacent peak portions 22 approach each other. In this way, as shown in FIG. 5, the covering layer 20 at one end is more likely to move in the direction in which the tube 12 is exposed.
  • the outer wall 22A is deformed so as to expand, so that the valley portion 24 is in the radial direction even if the bending angle and thickness of the covering layer 20 have some variations. It is possible to suppress outward bulging or a distorted deformation state in which adjacent mountain portions 22 do not approach each other. Thereby, the fall of the shortened external appearance of the coating layer 20 can be suppressed.
  • the porous resin layer 14 is preferably compressed by the inner side wall 24A and the tube 12.
  • the compression pinching portion 14A is in close contact with the covering layer 20, and the convex portion 14B is adjacent to the side wall 24B of the valley portion 24. It is easier to engage and shorten with the covering layer 20. Thereby, as shown in FIG. 8, the end of the tube 12 can be exposed.
  • the thickness H1 of the outer side wall 22A is thinner than the thickness H2 of the inner side wall 24A, but the thickness H1 may be the same as the thickness H2.
  • the outer side wall 22A is made into substantially linear shape along the axial direction S, it is good also as arc shape bulging outward in the radial direction.
  • the inner side wall 24A may have an arc shape which bulges radially inward.
  • the porous resin layer 14 be compressed by the inner side wall 24A and the tubular body 12.
  • the compression sandwiching portion 14A is in close contact with the covering layer 20, and the convex portion 14B is engaged between the side walls 24B of the adjacent valleys 24. Therefore, the porous resin layer 14 can easily follow by the movement of the coating layer 20, and the porous resin layer 14 can be prevented from being left behind on the outer periphery of the tubular body 12 and can be easily shortened together with the coating layer 20. .
  • the porous resin layer 14 is in full contact with the outer peripheral surface of the tubular body 12. Therefore, after the tube 12, the porous resin layer 14 and the covering layer 20 are moved relative to each other to expose the end of the tube 12, the space between the outer periphery of the tube 12 and the inner periphery of the porous resin layer 14 As a result, the porous resin layer 14 and the covering layer 20 can be easily held in the shortened position.
  • the compression sandwiching portion 14A of the porous resin layer 14 is in close contact with the covering layer 20, and the convex portions 14B are engaged between the side walls 24B of the adjacent valley portions 24. Therefore, the porous resin layer 14 can easily follow the movement of the coating layer 20, and the porous resin layer 14 can be prevented from being left behind on the outer periphery of the tubular body 12, and can be easily shortened together with the coating layer 20. .
  • the composite pipe 10 in the said embodiment is equipped with the pipe body 12, the porous resin layer 14, and the coating layer 20, and the pipe body 12 is directly covered by the porous resin layer 14, implementation of this indication is carried out.
  • the form is not limited to this.
  • the low friction resin layer 13 may be interposed between the tubular body 12 and the porous resin layer 14.
  • the low friction resin layer 13 is made of a resin material, and is a layer whose slip resistance value on the inner circumferential surface is smaller than the slip resistance value on the inner circumferential surface of the porous resin layer 14.
  • Examples of the low friction resin layer 13 include a sheet-like resin sheet layer.
  • resin in the resin material which constitutes low friction resin layer 13 polyester, nylon, polyolefin (for example, polyethylene, polypropylene, polybutene etc.) etc. are mentioned, for example.
  • the resin material constituting the low friction resin layer 13 may contain other additives as long as the resin is contained as a main component.
  • the form of the low friction resin layer 13 is, for example, non-woven fabric (for example, melt blow, spun bond, etc.), knitted fabric (for example, russell, tricot, milanese etc.), woven fabric (eg, plain weave, twill weave, imitation twill weave, twill weave, entanglement) And the like), films and the like.
  • non-woven fabric for example, melt blow, spun bond, etc.
  • knitted fabric for example, russell, tricot, milanese etc.
  • woven fabric eg, plain weave, twill weave, imitation twill weave, twill weave, entanglement
  • the low-friction resin layer 13 is, among these, polyester non-woven fabric (that is, non-woven fabric containing polyester as a main component), polyester tricot (that is, tricot knitted fabric containing polyester as a main component), nylon non-woven fabric (that is, nylon as a main component)
  • polyester non-woven fabric that is, non-woven fabric containing polyester as a main component
  • polyester tricot that is, tricot knitted fabric containing polyester as a main component
  • nylon non-woven fabric that is, nylon as a main component
  • Nonwovens containing nylon i.e., knits containing nylon as a main component
  • polyethylene films i.e., films containing polyethylene as a main component
  • polyester non-wovens and nylon tricots are more preferred.
  • the low-friction resin layer 13 is a nonwoven fabric
  • the basis weight of the nonwoven fabric for example 10 g / m 2 or more 500 g / m 2 or less can be mentioned, 12 g / m 2 or more 200 g / m 2 or less is preferable, 15 g / m 2 or more and 25 g / m 2 or less are more preferable.
  • the sliding resistance value (unit: N) on the inner peripheral surface of the low friction resin layer 13 is not particularly limited as long as it is smaller than the sliding resistance value on the inner peripheral surface of the porous resin layer 14. And preferably 12 or more and 23 or less.
  • the sliding resistance value (unit: N) on the inner peripheral surface of the low friction resin layer 13 is, for example, 0.36 or more times the sliding resistance value (unit: N) on the inner peripheral surface of the porous resin layer 14. 90 times or less is mentioned, 0.44 or more and 0.85 times or less are preferable.
  • the inner circumferential surface of the low friction resin layer 13 preferably covers the outer periphery of the tube 12 while being in full contact with the outer periphery of the tube 12.
  • “entirely in contact” does not mean that all parts need to be in intimate contact, but means that the entire surface is substantially in contact. Therefore, for example, the porous resin layer 14 and the low friction resin layer 13 are a sheet-like first sheet (hereinafter also referred to as a “porous resin sheet”) constituting the porous resin layer 14, and the low friction resin layer 13.
  • the sheet-like second sheet (hereinafter, also referred to as “low-friction resin sheet”) is formed by winding a laminate, the joint portion is partially separated or the tube 12 and the coating are covered The case where the part which became wrinkles with the layer 20 is partially separated is included.
  • the thickness of the low friction resin layer 13 is preferably in the range of 0.05 mm or more and 7 mm or less, more preferably 0.08 mm or more and 5 mm or less, and still more preferably 0.1 mm or more and 3 mm or less, from the viewpoint of followability to the coating layer. .
  • the thickness of the low friction resin layer 13 take out the low friction resin layer 13 from the composite pipe
  • the composite tube 10 provided with the low friction resin layer 13 has the low friction resin layer 13 disposed between the tube body 12 and the porous resin layer 14, thereby shortening and deforming the end of the coating layer 20.
  • the porous resin layer 14 is prevented from being involved. Specifically, it is as follows.
  • the sliding resistance value on the inner peripheral surface of the low friction resin layer 13 is Small and slippery. Therefore, when the end of the covering layer 20 is shortened and deformed to expose the end of the tubular body 12 and then the covering layer is put back again, the porous resin layer 14 and the low friction resin layer 13 form the covering layer 20.
  • the end of the tubular body 12 exposed can be well covered by the low friction resin layer 13, the porous resin layer 14, and the covering layer 20 well following the operation of axial extension.
  • the "slip resistance value” is specifically measured as follows.
  • the covering layer is disposed on the outer peripheral side of the tube, and the porous resin layer and the sliding resistance value are set between the tube and the covering layer.
  • a low friction resin layer to be measured is inserted so that the low friction resin layer is in contact with the tube to form a composite tube having a length of 200 mm.
  • connect one end of the composite pipe to the tip of a force gauge for example, IMADA popular digital force gauge DS2
  • a force gauge for example, IMADA popular digital force gauge DS2
  • the covering layer is disposed on the outer peripheral side of the tubular body, and the porosity of the target of measuring the sliding resistance value between the tubular body and the covering layer.
  • the porous resin layer is inserted such that the porous resin layer is in contact with the tube to form a composite tube 200 mm in length. Then, the sliding resistance value of the porous resin layer is measured in the same manner as the measurement of the sliding resistance value of the low friction resin layer.
  • the thickness of the porous resin layer 14 in the natural state is preferably thicker than the thickness of the low friction resin layer 13.
  • the porous resin layer 14 preferably has a role of heat protection in the composite tube 10, and the heat protection property is improved as the porous resin layer 14 is thicker.
  • the low friction resin layer 13 is too thick, the followability to the coating layer 20 in the porous resin layer 14 and the low friction resin layer 13 is reduced. Therefore, by making the porous resin layer 14 relatively thick and making the low friction resin layer 13 relatively thin, both the heat protection property and the followability to the coating layer 20 are improved.
  • the thickness of the porous resin layer 14 in the natural state is preferably 10 times to 200 times the thickness of the low friction resin layer 13, and 20 times More than 150 times is more preferable, and 25 times or more and 100 times or less is more preferable.
  • the inner peripheral surface of the porous resin layer 14 is preferably bonded to the outer peripheral surface of the low friction resin layer 13. By adhering the porous resin layer 14 and the low friction resin layer 13, the followability to the coating layer of the porous resin layer 14 and the low friction resin layer 13 is further improved.
  • a method of bonding the porous resin layer 14 and the low friction resin layer 13 in addition to a method of applying and bonding an adhesive between the two layers, a method of bonding by a frame laminating method can be mentioned.
  • the lamination method is preferred. That is, it is preferable that the porous resin layer 14 and the low friction resin layer 13 be a frame laminate adhesive body.
  • the frame laminating method is a method in which, for example, a soluble substance contained in the porous resin layer 14 is thermally melted and exfoliated by a flame, and the exuded melt adheres to the low friction resin layer 13. Then, a laminate (hereinafter, also referred to as a "glare adhesive") in which the porous resin layer 14 and the low-friction resin layer 13 are bonded by the frame laminating method is coated with an adhesive between the two layers to form a porous resin.
  • a laminate hereinafter, also referred to as a "glare adhesive”
  • both layers between the porous resin layer 14 and the low-friction resin layer 13 are adhered Layers can be thinned. Therefore, in addition to the followability to the coating layer in the porous resin layer 14 and the low friction resin layer 13 being further improved, the composite tube 10 having the flash adhesive is less likely to generate burrs in the process of manufacturing the composite tube 10 .
  • the porous resin layer 14 in the second embodiment is formed using a band-like porous resin sheet 14S, as shown in FIG. 12A, as in the first embodiment.
  • the porous resin layer 14 winds a porous resin sheet 14S formed in a band shape so as to have a width substantially equal to the outer peripheral length of the tubular body 12, around the tubular body 12 as shown in FIG. 12B.
  • the end face 14SA and the end face 14SB are fused.
  • a melt of the resin composition for forming the coating layer 20 is further applied, and the outer peripheral surface of the melt has a semicircular arc inner surface and the inner surface has a bellows shape.
  • a pair of molds are brought close to each other from two directions and brought into contact and solidified to form a bellows-like covering layer 20.
  • both end faces of the porous resin sheet 14S are wound opposite to each other on the outer periphery of the pipe body 12, and both end faces are fused to form the porous resin layer 14 Do. Thereafter, the covering layer 20 is formed on the outer periphery of the porous resin layer 14.
  • a manufacturing apparatus 30 shown in FIG. 16 can be used to manufacture the composite pipe 10.
  • the manufacturing apparatus 30 includes an extruder 32, a die 34, a wave mold 36, a cooling tank 38, and a pulling device 39.
  • the right side of FIG. 16 is the upstream side, and the pipe 12 is manufactured while moving from the right side to the left side.
  • this moving direction is referred to as a manufacturing direction Y.
  • the die 34, the corrugated die 36, the cooling tank 38, and the pulling device 39 are disposed in this order with respect to the manufacturing direction Y, and the extruder 32 is disposed upstream of the die 34.
  • a heat gun or cartridge heater (not shown) or both the heat gun and the cartridge heater are installed, and the position shown by the arrow H in FIG. 16, ie, the end surface 14SA of the porous resin sheet 14S
  • the end face 14SA and the end face 14SB can be fused by applying hot air or the like to the abutting face 14L with the end face 14SB.
  • the fusion-bonded abutting surface 14L may be referred to as a fusion-bonded surface 14R.
  • a sheet-like member 15S is disposed upstream of the die 34.
  • the tubular body 12 and a porous resin sheet 14S constituting the porous resin layer 14 are wound in a roll.
  • the tubular body 12 and the porous resin sheet 14S in a roll shape are continuously pulled out.
  • the porous resin sheet 14S faces the end surface 14SA and the end surface 14SB, as shown in FIG. 12B. Wrapped around.
  • the porous resin sheet 14S is inserted into the die 34 in a state where the end face 14SA and the end face 14SB are fused by the heat gun.
  • a resin material melted from the die 34 ie, a resin for forming the coating layer 20
  • the molten material of the composition is cylindrically extruded and applied to form a resin material 20A.
  • the resin used here to low density polyethylene (LDPE) of MFR 0.25 or more, the resin material can easily enter the pores (bubbles) of the porous resin sheet, and the porous resin sheet 14S and the resin material 20A Adhesiveness is improved.
  • LDPE low density polyethylene
  • a wave forming process (i.e., a bellows shape) is performed by the wave forming die 36 disposed downstream of the die 34. Process) is performed.
  • the corrugation process is the same as in the first embodiment, and thus the description thereof is omitted.
  • the fusion bonding surface 14R between the end surface 14SA and the end surface 14SB of the porous resin sheet 14S is disposed at a position different from the parting surface 36D of the wave application mold 36 in the circumferential direction of the tube 12. Ru.
  • the fusion bonding surface 14R be disposed at a position farthest from the parting surface 36D. That is, it is preferable to dispose the fusion surface 14R at a position corresponding to the deepest portion of the cavity 36A (that is, a portion where the tangent is parallel to the parting surface 36D in the cavity 36A which is semicircular in cross section).
  • a parting line PL (see FIG. 1) is formed at a position corresponding to the parting surface 36D on the outer peripheral surface of the bellows-like covering layer 20 formed when the wave application mold 36 is clamped.
  • the coating layer 20 is formed into a bellows shape using the wave application mold 36, the coating layer 20 is cooled using the cooling tank 38, and the bellows-shaped coating layer 20 is completed, and the composite tube 10 is manufactured. .
  • the composite pipe 10 is continuously conveyed in the manufacturing direction Y by using the pulling device 39, and the manufacturing pipe 30 continuously manufactures the composite pipe 10.
  • both end faces in the width direction of the strip-like porous resin sheet 14S that is, the end face 14SA and the end face 14SB
  • a porous resin layer 14 formed in a tubular shape in a fused state is disposed.
  • the parting line PL of the covering layer 20 and the fusion bonding surface 14R between the end surface 14SA of the porous resin sheet 14S and the end surface 14SB are disposed at different positions in the circumferential direction of the tubular body 12.
  • a covering layer is carried out to the perimeter of porous resin layer 14 using corrugating mold 36. 20 are formed.
  • the porous resin sheet 14S is disposed with the fusion bonding surface 14R shifted with respect to the parting surface 36D of the wave application mold 36.
  • FIG. 15A the state before mold clamping of the composite pipe which concerns on a comparative example is shown by FIG. 15A.
  • both end faces in the width direction of the porous resin sheet 14S that is, the end face 14SA and the end face 14SB
  • the porous resin sheet 14S tries to return to the original shape
  • a gap is formed between both end faces.
  • the end surface 14SA and the end surface 14SB are disposed in a state where the facing position V of the end surface 14SA and the end surface 14SB coincide with the parting surface 36D of the wave forming die 36.
  • the gap (facing position V2) between the parting surfaces 36D facing each other in the pair of corrugated dies 36 and the gap (facing position V) between the end surface 14SA and the end surface 14SB overlap ing.
  • the end face 14SA and the end face 14SB move in a direction in which the end face 14SA and the end face 14SB approach each other as the mold is tightened, and a slack portion 20T is generated near the end face 14SA and the end face 14SB of the resin material 20A.
  • burrs may occur in the covering layer.
  • the end face 14SA and the end face 14SB of the porous resin sheet 14S are fused. Even if the mold is clamped, the slack portion 20T (see FIG. 15B) does not easily occur in the resin material 20A. For this reason, it is hard to generate
  • the fusion bonding surface 14R of the porous resin sheet 14S is disposed offset with respect to the parting surface 36D of the wave application mold 36.
  • the slack portion 20T generated in the resin material 20A of the part is the corrugated die 36. Is pressed by the cavity 36A and disappears. For this reason, it is hard to generate
  • FIG. 14 shows that even when there is a portion where the end face 14SA and the end face 14SB are not partially fused, the slack portion 20T generated in the resin material 20A of the part is the corrugated die 36. Is pressed by the cavity 36A and disappears. For this reason, it is hard to generate
  • the state in which both end surfaces in the width direction of the porous resin sheet 14S (that is, the end surface 14SA and the end surface 14SB) are fused” in the present disclosure means the end surface 14SA and the end surface 14SB in the axial direction of the tube 12. Shall be included if not partially fused.
  • the resin material 20A and the porous resin sheet 14S may be partially moved in the circumferential direction of the tubular body 12 by receiving an external force from the mold 36.
  • the fusion bonding surface 14R is partially offset in the circumferential direction from other portions.
  • the fusion bonding surface 14R of the porous resin sheet 14S is disposed to be shifted with respect to the parting surface 36D of the wave application mold 36, but the embodiment of the present disclosure Is not limited to this.
  • the fusion bonding surface 14R of the porous resin sheet 14S may be disposed at a position corresponding to the gap (opposing position V2) between the parting surfaces 36D facing each other in the pair of corrugated dies 36. Even when arranged in this manner, the slack portion 20T is unlikely to be generated in the resin material 20A of the portion.

Abstract

A composite pipe having: a tubular pipe body; a coating layer that is tubular, covers the outer circumference of the pipe body, comprises a resin material, and has ring-shaped mountain sections protruding towards the outside in the radial direction and ring-shaped valley sections that are recessed on the outside in the radial direction, said mountain and valley sections being formed alternately in the axial direction of the pipe body and forming a bellows shape; and intermediate layers that are formed in a tubular shape in a state in which both end surfaces thereof abut in the width direction of a band-shaped porous resin sheet, are arranged between the pipe body and the coating layer, are interposed between the valley sections and the pipe body, and have the abutted position of both end surfaces and the parting line of the coating layer arranged at different positions in the circumferential direction of the pipe body.

Description

複合管及び複合管の製造方法Composite pipe and method of manufacturing composite pipe
 本開示は、複合管及び複合管の製造方法に関する。 The present disclosure relates to a composite pipe and a method of manufacturing the composite pipe.
 従来より、管体を複数層重ねて形成する複合管が知られている。例えば特開2004-322583号公報には、管状の外側層と内側層の間に発泡層を設けたコルゲート管が記載されている。 DESCRIPTION OF RELATED ART Conventionally, the composite pipe which laminates | stacks and forms a pipe body in multiple layers is known. For example, Japanese Unexamined Patent Publication No. 2004-322583 describes a corrugated pipe in which a foam layer is provided between a tubular outer layer and an inner layer.
 特開2004-322583号公報に示されたコルゲート管のように、外側の被覆層と内側の管体との間に多孔質樹脂層を設けた複合管を形成する場合、多孔質樹脂層は、帯状の多孔質樹脂シートの幅方向における両端面を突付けることにより管状に形成することがある。この場合、多孔質樹脂シートは、両端面を対向させて管体に巻きつけられ、外周が被覆層を形成する樹脂材料によって覆われた状態で金型に挿入される。そして型締めに伴って、互いに対向する多孔質樹脂シートの両端面が、互いに近づく方向へ移動して突き付けられる。このとき、多孔質樹脂シートの外周を覆う樹脂材料には、多孔質樹脂シートの両端面の移動に伴って弛みが発生する。そして、この弛み部が金型のパーティング面に挟まれることにより、バリを備えた被覆層が形成される。 In the case of forming a composite tube provided with a porous resin layer between the outer covering layer and the inner tube as in the corrugated tube disclosed in JP-A 2004-322583, the porous resin layer is It may be formed in a tubular shape by abutting both end faces in the width direction of the strip-like porous resin sheet. In this case, the porous resin sheet is wound around the tubular body with both end surfaces facing each other, and the outer periphery is inserted into the mold in a state of being covered by the resin material forming the covering layer. Then, with the mold clamping, both end surfaces of the porous resin sheets facing each other move toward each other and are abutted. At this time, slack is generated in the resin material covering the outer periphery of the porous resin sheet along with the movement of both end surfaces of the porous resin sheet. Then, the slack portion is pinched by the parting surface of the mold to form a coating layer with burrs.
 本開示は、被覆層にバリが発生しにくい複合管及び複合管の製造方法を提供する。 The present disclosure provides a composite pipe and a method of manufacturing the composite pipe in which the coating layer is less susceptible to burrs.
 第1態様の複合管は、管状の管体と、管状とされて前記管体の外周を覆い、径方向外側へ凸となる環状の山部と径方向外側が凹となる環状の谷部とが、前記管体の軸方向に交互に形成されて蛇腹状とされた、樹脂材料で構成された被覆層と、帯状の多孔質樹脂シートの幅方向における両端面を突付けた状態で管状に形成され、前記管体と前記被覆層との間に配置され、前記谷部と前記管体との間に挟持されると共に、前記両端面の突付け位置と前記被覆層のパーティングラインとが前記管体の周方向において異なる位置に配置されている中間層と、を有する。 The composite tube of the first aspect is a tubular tube, and an annular peak which is formed into a tubular shape and covers the outer periphery of the tube and which is convex radially outward, and an annular valley which is concave radially outward. Are alternately formed in the axial direction of the tubular body to form a bellows-like covering layer made of a resin material, and a tubular porous resin sheet in a state in which both end faces in the width direction are abutted And formed between the tubular body and the covering layer, and sandwiched between the valley portion and the tubular body, and the abutting positions of the both end surfaces and the parting line of the covering layer are formed. And an intermediate layer disposed at different positions in the circumferential direction of the pipe body.
 第1態様の複合管では、管体と被覆層との間に、帯状の多孔質樹脂シートの幅方向における両端面を突付けた状態で管状に形成された、中間層が配置されている。そして、被覆層のパーティングラインと、多孔質樹脂シートの突付け位置とが、管体の周方向において異なる位置に配置されている。 In the composite tube of the first aspect, an intermediate layer formed in a tubular shape is disposed between the tube and the covering layer in a state in which both end faces in the width direction of the strip-like porous resin sheet are abutted. And the parting line of a coating layer and the contact | abutting position of a porous resin sheet are arrange | positioned in a different position in the circumferential direction of a pipe body.
 すなわち、金型を用いて多孔質樹脂シートの外周に被覆層を形成する際に、金型のパーティング面に対して、多孔質樹脂シートが、幅方向の両端面の対向位置をずらした状態で配置される。そして型締めに伴い、多孔質樹脂シートの両端面が、金型のパーティング面と異なる位置で突付けられる。 That is, when the coating layer is formed on the outer periphery of the porous resin sheet using a mold, the porous resin sheet is shifted from the facing position of both end surfaces in the width direction with respect to the parting surface of the mold. Will be placed. And with clamping, the both end surfaces of a porous resin sheet are abutted in the position different from the parting surface of a metal mold | die.
 型締めの際、互いに対向する多孔質樹脂シートの両端面は、互いに近づく方向へ移動して突き付けられる。このため、多孔質樹脂シートの外周を覆う被覆層を形成する樹脂材料には、多孔質樹脂シートの両端面付近で弛みが形成される。 At the time of mold clamping, both end surfaces of the porous resin sheets facing each other move toward each other and are pressed against each other. For this reason, in the resin material which forms the coating layer which covers the outer periphery of a porous resin sheet, slack is formed in the both end surface vicinity of a porous resin sheet.
 このとき、多孔質樹脂シートの両端面は、金型のパーティング面と異なる位置で突付けられる。このため、弛み部は金型のキャビティ面によって押圧されて消失する。また、金型のパーティング面に対応する位置には多孔質樹脂シートの両端面が配置されないので、弛み部は形成され難い。これにより、パーティング面に挟まれる弛み部が発生し難い。したがって、被覆層にはバリが発生しにくい。 At this time, both end surfaces of the porous resin sheet are abutted at positions different from the parting surface of the mold. For this reason, the slack portion is pressed by the cavity surface of the mold and disappears. Moreover, since the both end surfaces of the porous resin sheet are not arrange | positioned in the position corresponding to the parting surface of a metal mold | die, it is hard to form a slack part. As a result, it is difficult to generate a slack portion pinched by the parting surface. Therefore, the coating layer is less susceptible to burrs.
 第2態様の複合管は、管状の管体と、管状とされて前記管体の外周を覆い、径方向外側へ凸となる環状の山部と径方向外側が凹となる環状の谷部とが、前記管体の軸方向に交互に形成されて蛇腹状とされた、樹脂材料で構成された被覆層と、帯状の多孔質樹脂シートの幅方向における両端面が融着された状態で管状に形成され、前記管体と前記被覆層との間に配置され、前記谷部と前記管体との間に挟持された中間層と、を有する。 The composite pipe of the second aspect is a tubular pipe body, and an annular peak portion which is formed into a tubular shape and covers the outer periphery of the pipe body and which is convex radially outward and an annular valley portion which is concave radially outer side And a cover layer made of a resin material and alternately formed in the axial direction of the tubular body and made of a resin material, and a tubular form in which both end faces in the width direction of the strip-like porous resin sheet are fused And an intermediate layer disposed between the tubular body and the covering layer and sandwiched between the valley and the tubular body.
 第2態様の複合管では、管体と被覆層との間に、帯状の多孔質樹脂シートの幅方向における両端面が融着された状態で管状に形成された、中間層が配置されている。 In the composite tube according to the second aspect, an intermediate layer is disposed between the tubular body and the covering layer in a tubular shape in which both end faces in the width direction of the strip-like porous resin sheet are fused. .
 すなわち、多孔質樹脂シートの両端面が融着された状態で、多孔質樹脂シートの外周に、被覆層を形成する樹脂材料が塗布される。このため型締めの際、被覆層を形成する樹脂材料に弛みが形成されにくい。 That is, the resin material which forms a coating layer is apply | coated on the outer periphery of a porous resin sheet in the state by which the both-ends surface of the porous resin sheet was melt | fused. For this reason, at the time of mold clamping, slack is hard to be formed in the resin material which forms a coating layer.
 これに対して、多孔質樹脂シートの両端面が融着されていない場合、多孔質樹脂シートは元の形状に戻ろうとして、両端面の間には隙間が形成される。そして型締めの際に、両端面が、外力を受けて互いに近づく方向へ移動する。このため、多孔質樹脂シートの外周を覆う被覆層を形成する樹脂材料には、多孔質樹脂シートの両端面付近で弛みが形成される。このような弛み部が形成されると、弛み部が金型のパーティング面に挟まれることにより、バリを備えた被覆層が形成される可能性がある。 On the other hand, when the both end surfaces of the porous resin sheet are not fused, the porous resin sheet tries to return to the original shape, and a gap is formed between the both end surfaces. And at the time of mold clamping, both end faces receive external force and move in a direction approaching each other. For this reason, in the resin material which forms the coating layer which covers the outer periphery of a porous resin sheet, slack is formed in the both end surface vicinity of a porous resin sheet. When such a slack portion is formed, the slack portion may be pinched by the parting surface of the mold, whereby a coating layer provided with burrs may be formed.
 しかし、第2態様の複合管によると、多孔質樹脂シートの外周を覆う被覆層を形成する樹脂材料に、パーティング面に挟まれる弛み部が発生し難い。したがって、被覆層にはバリが発生しにくい。 However, according to the composite tube of the second aspect, a slack portion pinched by the parting surface hardly occurs in the resin material forming the covering layer covering the outer periphery of the porous resin sheet. Therefore, the coating layer is less susceptible to burrs.
 第3態様の複合管は、第1態様の複合管において、前記突付け位置が、前記管体の周方向において前記被覆層のパーティングラインから最も離れた位置に配置されている。 The composite pipe of the third aspect is, in the composite pipe of the first aspect, arranged such that the abutting position is most distant from the parting line of the covering layer in the circumferential direction of the pipe body.
 第3態様の複合管では、多孔質樹脂シートの突付け位置が、管体の周方向において被覆層のパーティングラインから最も離れた位置に配置されている。このため、型締めの際に形成される弛み部は、金型のパーティング面から最も離れた位置に形成される。このため被覆層にはバリが発生しにくい。また、多孔質樹脂シートの突付け位置が、部分的に、被覆層のパーティングラインから最も離れた位置からずれて配置されても、当該部分にバリが発生し難い。 In the composite pipe of the third aspect, the abutting position of the porous resin sheet is disposed at the position most distant from the parting line of the covering layer in the circumferential direction of the pipe. For this reason, the slack portion formed at the time of mold clamping is formed at the position farthest from the parting surface of the mold. For this reason, it is hard to generate | occur | produce a burr | flash in a coating layer. Moreover, even if the position where the porous resin sheet is abutted is partially deviated from the position farthest from the parting line of the coating layer, burrs hardly occur in the part.
 第4態様の複合管は、第1~第3態様の何れか1態様の複合管において、前記被覆層を形成する前記樹脂材料のMelt flow rate(MFR)が0.25以上1.2以下である。 The composite pipe of the fourth aspect is the composite pipe according to any one of the first to third aspects, wherein Melt flow rate (MFR) of the resin material forming the covering layer is 0.25 or more and 1.2 or less. is there.
 第4態様の複合管では、MFRを0.25以上にすることにより、中間層の多孔質構造に被覆層の樹脂が入り込みやすくなり、中間層と被覆層との接着度を高めることができる。また、MFRを1.2以下にすることにより、バリが発生しにくくなる。 In the composite tube of the fourth aspect, by setting the MFR to 0.25 or more, the resin of the cover layer can easily enter the porous structure of the intermediate layer, and the degree of adhesion between the intermediate layer and the cover layer can be enhanced. Further, by setting the MFR to 1.2 or less, burrs are less likely to occur.
 第5態様の複合管の製造方法は、環状の管体の外周に、帯状の多孔質樹脂シートの両端面を対向させて巻き付ける工程と、前記多孔質樹脂シートの外周に樹脂材料を塗布する工程と、前記両端面の対向位置を金型のパーティング面からずらした状態で、前記管体、前記多孔質樹脂シート及び前記樹脂材料を前記金型に配置して型締めし、前記両端面を突き付けて中間層を形成すると共に、前記中間層の外周に前記樹脂材料により成形された被覆層を形成する工程と、を有する。 In the method of manufacturing a composite tube according to the fifth aspect, a step of winding the both ends of the strip-like porous resin sheet so as to face each other on the outer periphery of the annular tube and applying a resin material to the outer periphery of the porous resin sheet And the tubular body, the porous resin sheet, and the resin material are disposed in the mold and clamped in a state where the opposing positions of the both end faces are shifted from the parting surface of the mold, and the both end faces are And forming an intermediate layer, and forming a covering layer formed of the resin material on the outer periphery of the intermediate layer.
 第5態様の複合管の製造方法では、金型を用いて多孔質樹脂シートの外周に被覆層を形成する際に、金型のパーティング面に対して、多孔質樹脂シートが、幅方向の両端面の対向位置をずらした状態で配置される。そして型締めに伴い、多孔質樹脂シートの両端面が、金型のパーティング面と異なる位置で突付けられる。 In the method of manufacturing a composite tube according to the fifth aspect, when forming the covering layer on the outer periphery of the porous resin sheet using the mold, the porous resin sheet is in the width direction with respect to the parting surface of the mold. It arrange | positions in the state which shifted the opposing position of both end surfaces. And with clamping, the both end surfaces of a porous resin sheet are abutted in the position different from the parting surface of a metal mold | die.
 型締めの際、互いに対向する多孔質樹脂シートの両端面は、互いに近づく方向へ移動して突き付けられる。このため、多孔質樹脂シートの外周を覆う被覆層を形成する樹脂材料には、多孔質樹脂シートの両端面付近で弛みが形成される。 At the time of mold clamping, both end surfaces of the porous resin sheets facing each other move toward each other and are pressed against each other. For this reason, in the resin material which forms the coating layer which covers the outer periphery of a porous resin sheet, slack is formed in the both end surface vicinity of a porous resin sheet.
 このとき、多孔質樹脂シートの両端面は、金型のパーティング面と異なる位置で突付けられる。このため、弛み部は金型のキャビティ面によって押圧されて消失する。また、金型のパーティング面に対応する位置には多孔質樹脂シートの両端面が配置されないので、弛み部は形成され難い。これにより、パーティング面に挟まれる弛み部が発生し難い。したがって、被覆層にはバリが発生しにくい。 At this time, both end surfaces of the porous resin sheet are abutted at positions different from the parting surface of the mold. For this reason, the slack portion is pressed by the cavity surface of the mold and disappears. Moreover, since the both end surfaces of the porous resin sheet are not arrange | positioned in the position corresponding to the parting surface of a metal mold | die, it is hard to form a slack part. As a result, it is difficult to generate a slack portion pinched by the parting surface. Therefore, the coating layer is less susceptible to burrs.
 第6態様の複合管の製造方法は、環状の管体の外周に、帯状の多孔質樹脂シートの両端面を対向させて巻き付ける工程と、前記両端面を融着する工程と、前記多孔質樹脂シートの外周に樹脂材料を塗布する工程と、前記管体、前記多孔質樹脂シート及び前記樹脂材料を金型に配置して型締めし、前記両端面を突き付けて中間層を形成すると共に、前記中間層の外周に前記樹脂材料により成形された被覆層を形成する工程と、を有する。 A method of manufacturing a composite tube according to a sixth aspect of the present invention comprises the steps of: winding both end faces of a band-like porous resin sheet so as to face each other on the outer periphery of an annular tube; fusing the both end faces; A step of applying a resin material to the outer periphery of the sheet, placing the tubular body, the porous resin sheet and the resin material in a mold and clamping them, and pressing the both end faces to form an intermediate layer, Forming a covering layer formed of the resin material on the outer periphery of the intermediate layer.
 第6態様の複合管の製造方法では、多孔質樹脂シートの両端面が融着された状態で、多孔質樹脂シートの外周に、被覆層を形成する樹脂材料が塗布される。このため、型締めの際、被覆層を形成する樹脂材料に弛みが形成されにくい。したがって、被覆層にはバリが発生しにくい。 In the method of manufacturing a composite tube according to the sixth aspect, the resin material forming the covering layer is applied to the outer periphery of the porous resin sheet in a state where both end surfaces of the porous resin sheet are fused. For this reason, slack is hard to be formed in the resin material which forms a coating layer at the time of mold clamping. Therefore, the coating layer is less susceptible to burrs.
 本開示によれば、複合管の被覆層にバリが発生しにくい。 According to the present disclosure, burrs are less likely to occur in the coating layer of the composite tube.
本開示の実施形態に係る複合管を示す斜視図である。1 is a perspective view of a compound tube according to an embodiment of the present disclosure. 本開示の実施形態に係る複合管を示す縦断面図である。It is a longitudinal section showing a compound tube concerning an embodiment of this indication. 本開示の実施形態に係る複合管の縦断面一部拡大図である。1 is a partially enlarged view of a longitudinal cross section of a composite tube according to an embodiment of the present disclosure. 本開示の他の実施形態に係る複合管を示す斜視図である。FIG. 7 is a perspective view of a composite tube according to another embodiment of the present disclosure. 本開示の実施形態に係る複合管の管体の端部が露出された状態を示す縦断面図である。It is a longitudinal section showing the state where the end of the tube of a compound tube concerning an embodiment of this indication was exposed. 図3の縦断面部分において、被覆層及び多孔質樹脂層が短縮変形される過程を示す図である。It is a figure which shows the process in which a coating layer and a porous resin layer are shortened and deformed in the longitudinal cross-section part of FIG. 図3の縦断面部分において、被覆層及び多孔質樹脂層が短縮変形された状態を示す図である。In the longitudinal cross-section part of FIG. 3, it is a figure which shows the state by which the coating layer and the porous resin layer were shortened and deformed. 本開示の実施形態に係る複合管の管体の端部が露出された状態を示す斜視図である。FIG. 7 is a perspective view showing the end of the tubular body of the composite tube according to the embodiment of the present disclosure in an exposed state. 本開示の第1実施形態に係る複合管の製造工程を示す図である。It is a figure showing a manufacturing process of a compound tube concerning a 1st embodiment of this indication. 管体、多孔質樹脂層、及び蛇腹状の被覆層を有する複合管において短縮変形させた被覆層を元に戻すときに、多孔質樹脂層に対し被覆層から働く力及び管体から働く力を説明するための縦断面図である。In the case of a composite tube having a tubular body, a porous resin layer, and a bellows-like coating layer, when the shortened and deformed coating layer is put back, the force acting from the coating layer on the porous resin layer and the force acting from the tube It is a longitudinal cross-sectional view for demonstrating. 本開示の実施形態に係る複合管において、低摩擦樹脂層を設けた変形例を示す縦断面図である。The composite pipe | tube which concerns on embodiment of this indication WHEREIN: It is a longitudinal cross-sectional view which shows the modification which provided the low friction resin layer. 本開示の実施形態に係る複合管において、管体に多孔質樹脂層を形成する多孔質樹脂シートを巻き付ける前の状態を示した斜視図である。The composite pipe which concerns on embodiment of this indication WHEREIN: It is the perspective view which showed the state before winding the porous resin sheet which forms a porous resin layer in a tubular body. 本開示の実施形態に係る複合管において、管体に多孔質樹脂シートを巻き付けている状態を示した斜視図である。In a compound tube concerning an embodiment of this indication, it is a perspective view showing a state where a porous resin sheet is wound around a tube. 本開示の第1実施形態に係る複合管の製造工程において波付け金型の型締め前の状態を示した断面図である。FIG. 7 is a cross-sectional view showing a state before clamping of the wave application mold in the manufacturing process of the composite pipe according to the first embodiment of the present disclosure. 本開示の第1実施形態に係る複合管の製造工程において波付け金型の型締め後の状態を示した断面図である。It is a sectional view showing the state after clamp of a wave application mold in a manufacturing process of a compound tube concerning a 1st embodiment of this indication. 波付け金型の型締め中における多孔質樹脂シートの両端面及び樹脂層の状態を示した部分拡大断面図である。It is the elements on larger scale sectional view showing the state of the both-ends side of a porous resin sheet, and the resin layer under clamping of a wave application mold. 比較例の複合管の製造工程において波付け金型の型締め前の状態を示した断面図である。It is sectional drawing which showed the state before clamping of a wave application mold in the manufacturing process of the composite pipe of a comparative example. 比較例の複合管の製造工程において波付け金型の型締め後の状態を示した断面図である。It is sectional drawing which showed the state after mold clamping of a wave application mold in the manufacturing process of the composite pipe of a comparative example. 本開示の第2実施形態に係る複合管の製造工程を示す図である。It is a figure showing a manufacturing process of a compound tube concerning a 2nd embodiment of this indication. 本開示の第2実施形態に係る複合管の製造工程において波付け金型の型締め前の状態を示した断面図である。It is sectional drawing which showed the state before clamp of a wave application | coating die in the manufacturing process of the composite pipe which concerns on 2nd Embodiment of this indication. 本開示の第2実施形態に係る複合管の製造工程において波付け金型の型締め後の状態を示した断面図である。It is sectional drawing which showed the state after mold clamping of a wave application mold in the manufacturing process of the composite pipe which concerns on 2nd Embodiment of this indication.
[第1実施形態]
 以下、本開示に係る複合管の一例である第1実施形態について、図面を適宜参照しながら詳細に説明する。各図面において同一の符号を用いて示される構成要素は、同一の構成要素であることを意味する。また、各構成要素は1つに限定されず、複数存在してもよい。なお、以下に説明する実施形態において重複する構成及び符号については、説明を省略する場合がある。また、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。
First Embodiment
Hereinafter, 1st Embodiment which is an example of the compound pipe concerning this indication is described in detail, referring to drawings suitably. Components indicated by the same reference numerals in the drawings mean that they are the same components. Further, each component is not limited to one, and a plurality of components may exist. In addition, description may be abbreviate | omitted about the structure and code | symbol which overlap in embodiment described below. Further, the present disclosure is not limited to the following embodiments at all, and can be implemented with appropriate modifications within the scope of the purpose of the present disclosure.
 本明細書において「工程」との語には、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その目的が達成されるものであれば、当該工程も本用語に含まれる。本明細書において、組成物中の各成分の量は、各成分に該当する物質が組成物中に複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。本明細書において、「主成分」とは、特に断りがない限り、混合物中における質量基準の含有量が最も多い成分をいう。 In the present specification, the term “process” is not limited to an independent process, and even if it can not be clearly distinguished from other processes, the term “process” is also used if the purpose is achieved. include. In the present specification, the amount of each component in the composition is the total amount of a plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition. Means In the present specification, the “main component” refers to the component having the highest content by mass in the mixture, unless otherwise specified.
<複合管>
 本開示に係る複合管は、管状の管体と、管状とされて管体の外周を覆う被覆層と、管体と被覆層との間に配置される多孔質樹脂層と、を有する。管体は、樹脂材料で構成される。被覆層は、樹脂材料で構成される。また、その形状は、径方向外側へ凸となる環状の山部と、径方向外側が凹となる環状の谷部とが、管体の軸方向に交互に形成されて蛇腹状とされ、管体の外周にガイドされつつ軸方向に短縮可能とされる。多孔質樹脂層は、谷部と管体との間に挟持されるよう配置される。
<Complex pipe>
The composite tube according to the present disclosure has a tubular tube, a covering layer that is tubular and covers the outer periphery of the tube, and a porous resin layer disposed between the tube and the covering layer. The tube is made of a resin material. The covering layer is made of a resin material. Further, the shape thereof is a bellows-like shape in which an annular peak that is convex outward in the radial direction and an annular valley that is concave in the outer radial direction are alternately formed in the axial direction of the tube. It can be shortened in the axial direction while being guided by the outer periphery of the body. The porous resin layer is disposed so as to be sandwiched between the valley and the tube.
 次いで、本開示の複合管を実施するための形態を、一例を挙げ図面に基づき説明する。図1に示される本実施形態に係る複合管10は、管体12、多孔質樹脂層14、及び被覆層20を備えている。 Next, a mode for carrying out the composite tube of the present disclosure will be described based on the drawings, taking an example. The composite tube 10 according to the present embodiment shown in FIG. 1 includes a tube body 12, a porous resin layer 14, and a covering layer 20.
 (管体)
 管体12は、管状とされ、樹脂材料で構成される樹脂管である。樹脂材料における樹脂としては、例えば、ポリブテン、ポリエチレン、架橋ポリエチレン、及びポリプロピレン等のポリオレフィン、並びに塩化ビニル等が挙げられ、樹脂は1種のみを用いても2種以上を併用してもよい。中でも、ポリブテンが好適に用いられ、ポリブテンを主成分として含むことが好ましく、例えば管体を構成する樹脂材料中において85質量%以上含むことがより好ましい。
 また、管体を構成する樹脂材料には、他の添加剤を含有してもよい。
(Tube)
The tube body 12 is a resin tube which is tubular and made of a resin material. Examples of the resin in the resin material include polyolefins such as polybutene, polyethylene, crosslinked polyethylene, and polypropylene, and vinyl chloride. Resin may be used alone or in combination of two or more. Among them, polybutene is suitably used, and it is preferable to contain polybutene as a main component, for example, it is more preferable to contain 85% by mass or more in the resin material constituting the tubular body.
Moreover, the resin material which comprises a pipe body may contain another additive.
 管体12の径(すなわち外径)としては、特に限定されるものではないが、例えば10mm以上100mm以下の範囲とすることができ、12mm以上35mm以下の範囲が好ましい。また、管体12の厚さは、特に限定されるものではないが、例えば1.0mm以上5.0mm以下が挙げられ、1.4mm以上3.2mm以下が好ましい。 The diameter (i.e., outer diameter) of the tubular body 12 is not particularly limited, but can be, for example, in the range of 10 mm to 100 mm, and preferably in the range of 12 mm to 35 mm. Moreover, the thickness of the tubular body 12 is not particularly limited, but, for example, 1.0 mm or more and 5.0 mm or less can be mentioned, and preferably 1.4 mm or more and 3.2 mm or less.
 (被覆層)
 被覆層20は、管状とされ、管体12、及び多孔質樹脂層14の外周を覆っている。多孔質樹脂層14は、管体12と被覆層20の間に配置されている。被覆層20は、樹脂材料で構成される。被覆層20を構成する樹脂材料における樹脂としては、ポリブテン、ポリエチレン、ポリプロピレン、及び架橋ポリエチレン等のポリオレフィン、並びに塩化ビニル等が挙げられ、樹脂は1種のみを用いても2種以上を併用してもよい。中でも、低密度ポリエチレンが好適に用いられ、低密度ポリエチレンを主成分として含むことが好ましく、例えば被覆層を構成する樹脂材料中において80質量%以上含むことがより好ましく、90質量%以上含むことがさらに好ましい。
(Cover layer)
The covering layer 20 is tubular and covers the outer periphery of the tubular body 12 and the porous resin layer 14. The porous resin layer 14 is disposed between the tubular body 12 and the covering layer 20. The covering layer 20 is made of a resin material. Examples of the resin in the resin material constituting the coating layer 20 include polyolefins such as polybutene, polyethylene, polypropylene, and crosslinked polyethylene, and vinyl chloride, etc. Resins may be used alone or in combination of two or more. It is also good. Among them, low density polyethylene is suitably used, preferably containing low density polyethylene as a main component, for example, more preferably containing 80% by mass or more, and containing 90% by mass or more in the resin material constituting the coating layer. More preferable.
 また、使用する樹脂のMFR(Melt Flaw Rate)は、0.25以上であることが好ましく、0.3以上であることがより好ましく、0.35以上1.2以下であることがさらに好ましい。MFRを0.25以上にすることにより、多孔質樹脂層14の多孔質構造に被覆層20の樹脂が入り込みやすくなる。このため後述する多孔質樹脂層14と被覆層20の谷部24との接着度を高めることができる。また、MFRを1.2以下にすることにより、バリが発生しにくくなる。MFRが1.2より大きい場合は、被覆層20を形成するための金型のパーティング面に溶融樹脂が流れ込み易くなる。これによりバリが発生しやすくなる。なお、被覆層を構成する樹脂材料には、他の添加剤を含有してもよい。 The MFR (Melt Flaw Rate) of the resin used is preferably 0.25 or more, more preferably 0.3 or more, and still more preferably 0.35 or more and 1.2 or less. By setting the MFR to 0.25 or more, the resin of the covering layer 20 can easily enter the porous structure of the porous resin layer 14. For this reason, the adhesion degree of the porous resin layer 14 mentioned later and the trough part 24 of the coating layer 20 can be raised. Further, by setting the MFR to 1.2 or less, burrs are less likely to occur. When the MFR is greater than 1.2, the molten resin can easily flow into the parting surface of the mold for forming the covering layer 20. This makes burrs more likely to occur. In addition, the resin material which comprises a coating layer may contain another additive.
 図2にも示されるように、被覆層20は、蛇腹状とされており、径方向外側へ凸となる環状の山部22と、径方向外側が凹となる環状の谷部24とが、管体12の軸方向Sに交互に連続して形成されている。山部22は、谷部24よりも径方向Rの外側に配置されている。図3に示されるように、被覆層20の蛇腹状の最も径方向外側の部分を外側壁22A、最も径方向内側の部分を内側壁24Aとすると、径方向における外側壁22Aと内側壁24Aの中間部Mを境界として、径方向外側を山部22とし、径方向内側を谷部24とする。 As also shown in FIG. 2, the covering layer 20 is bellows-like, and has an annular peak 22 that is convex radially outward and an annular valley 24 that is concave radially outward. They are alternately and continuously formed in the axial direction S of the tubular body 12. The ridges 22 are disposed on the outer side in the radial direction R than the valleys 24. As shown in FIG. 3, assuming that the bellows-like outermost portion of the covering layer 20 is the outer wall 22A and the innermost portion in the radial direction is the inner wall 24A, the outer wall 22A and the inner wall 24A in the radial direction With the intermediate portion M as a boundary, the radially outer side is a peak 22, and the radially inner side is a valley 24.
 山部22は、軸方向Sに延びる外側壁22Aと、外側壁22Aの両端から径方向Rに沿って延びる側壁22Bを有している。外側壁22Aと側壁22Bの間には、外屈曲部22Cが形成されている。谷部24は、軸方向Sに延びる内側壁24Aと、内側壁24Aの両端から径方向Rに延びる側壁24Bを有している。内側壁24Aと側壁24Bの間には、内屈曲部24Cが形成されている。 The ridge portion 22 has an outer side wall 22A extending in the axial direction S and side walls 22B extending in the radial direction R from both ends of the outer side wall 22A. An outer bend 22C is formed between the outer wall 22A and the side wall 22B. The valley portion 24 has an inner side wall 24A extending in the axial direction S and side walls 24B extending in the radial direction R from both ends of the inner side wall 24A. An inner bent portion 24C is formed between the inner side wall 24A and the side wall 24B.
 被覆層20の山部22の径方向内側には、径方向内側に凹の山空間23が形成されている。なお、山空間23には、後述する多孔質樹脂層14の凸部14Bが挿入されていることが好ましい。 A concave crest space 23 is formed radially inward on the radially inner side of the crest 22 of the covering layer 20. In addition, it is preferable that the convex part 14B of the porous resin layer 14 mentioned later is inserted in the mountain space 23. As shown in FIG.
 また、特に限定されるものではないが、山部22の軸方向Sの長さL1は、谷部24の軸方向Sの長さL2よりも長く設定されていることが好ましい。長さL1は、後述する短縮変形時の外側壁22Aの変形しやすさを確保するため、長さL2の1.2倍以上であることが好ましい。 Moreover, although it does not specifically limit, it is preferable that the length L1 of axial direction S of the peak part 22 is set longer than the length L2 of axial direction S of the valley part 24. As shown in FIG. The length L1 is preferably 1.2 times or more of the length L2 in order to ensure the deformability of the outer wall 22A at the time of the shortening deformation described later.
 また、長さL2は、0.8mm以上であることが好ましい。これは、長さL2が0.8mm未満では、被覆層20を製造する金型の谷部の幅が小さすぎる。この結果、被覆層20の製造時において、被覆層20を構成する樹脂を押し出した後に、金型で当該樹脂に凹凸をつける時に、当該樹脂の金型の谷部に対応する部分が細く壊れやすくなる。これにより被覆層20の成形が難しくなるからである。一方、長さL1は、長さL2の5倍以下であることが好ましい。これは、長さL1を長さL2の5倍以下にすることにより、複合管10の可撓性を保つことができるからである。また、長さL1が長すぎると、複合管10を敷設する際に、地面との接触面積が大きくなって施工しにくくなるためでもある。 The length L2 is preferably 0.8 mm or more. This is because if the length L2 is less than 0.8 mm, the width of the valley of the mold for producing the covering layer 20 is too small. As a result, at the time of manufacturing the covering layer 20, when the resin constituting the covering layer 20 is extruded and then the resin is made uneven by the mold, the portion corresponding to the valley of the mold of the resin becomes thin and fragile Become. This is because the formation of the covering layer 20 becomes difficult. On the other hand, the length L1 is preferably 5 times or less of the length L2. This is because the flexibility of the composite tube 10 can be maintained by setting the length L1 to 5 times or less of the length L2. Moreover, when the length L1 is too long, when laying the composite pipe 10, the contact area with the ground becomes large and it becomes difficult to construct.
 なお、図3に示されるように、長さL1は、被覆層20における中間部Mと交差する部分において、被覆層20の径方向Rの外側から見た表面における軸方向S外側間の距離(すなわち被覆層20の径方向Rの外側に凸となる部分の軸方向S一方側の表面と軸方向S他方側の表面との距離)である。また、長さL2は、被覆層20における中間部Mと交差する部分において、被覆層20の径方向Rの内側から見た表面における軸方向S外側間の距離(すなわち被覆層20の径方向Rの内側に凸となる部分の軸方向S一方側の表面と軸方向S他方側の表面との距離)である。 As shown in FIG. 3, the length L1 is the distance between the axial direction S outside of the surface of the covering layer 20 as viewed from the outside in the radial direction R at the portion intersecting the middle portion M in the covering layer 20 ( That is, it is the distance between the surface in the axial direction S on one side of the portion convex on the outside in the radial direction R of the covering layer 20 and the surface on the other side in the axial direction S). The length L2 is the distance between the axial direction S outside of the surface of the covering layer 20 seen from the inside in the radial direction R at a portion intersecting the middle portion M in the covering layer 20 (ie, the radial direction R of the covering layer 20 The distance between the surface on one side in the axial direction S of the portion to be convex inward and the surface on the other side in the axial direction S).
 被覆層20の厚さは、被覆層20を短縮させるために、最も薄い部分で0.1mm以上、最も厚い部分で0.4mm以下であることが好ましい。外側壁22Aの厚さH1は、内側壁24Aの厚さH2よりも薄くなっている。厚さH1は、後述する短縮変形時の外側壁22Aの変形しやすさを確保するため、厚さH2の0.9倍以下であることが好ましい。 The thickness of the covering layer 20 is preferably 0.1 mm or more at the thinnest portion and 0.4 mm or less at the thickest portion in order to shorten the covering layer 20. The thickness H1 of the outer side wall 22A is smaller than the thickness H2 of the inner side wall 24A. The thickness H1 is preferably equal to or less than 0.9 times the thickness H2 in order to ensure the deformability of the outer side wall 22A at the time of the shortening deformation described later.
 山部22と谷部24の外表面での半径差ΔRは、被覆層20の厚さの平均の800%以下であることが好ましい。半径差ΔRが大きければ、山部22の軸方向Sに沿った部分が変形しなくても、短縮のときに谷部24が径方向外側へ膨出したり、隣り合う山部22同士が近づかないで歪んだ変形状態となったりしにくい。半径差ΔRが、被覆層20の厚さの平均の800%以下となる場合に、上記の変形状態となることを抑制するために、山部22の軸方向Sの長さを谷部24の軸方向の長さよりも長くすることが、好適である。なお、600%以下である場合に、より好適である。 The difference in radius ΔR at the outer surfaces of the ridges 22 and the valleys 24 is preferably 800% or less of the average thickness of the covering layer 20. If the radius difference ΔR is large, the valleys 24 expand radially outward at the time of shortening even if the portion along the axial direction S of the ridges 22 is not deformed, or the adjacent ridges 22 do not approach each other It is hard to be distorted or distorted. When the radius difference ΔR is 800% or less of the average of the thickness of the covering layer 20, the length of the axial direction S of the peak 22 is set to It is preferred to be longer than the axial length. In addition, it is more preferable when it is 600% or less.
 被覆層20の径(すなわち最外部の外径)としては、特に限定されるものではないが、例えば13mm以上130mm以下の範囲とすることができる。 The diameter of the covering layer 20 (that is, the outer diameter of the outermost portion) is not particularly limited, but can be, for example, in the range of 13 mm or more and 130 mm or less.
 (多孔質樹脂層)
 多孔質樹脂層14は、本開示における中間層の一例であり、樹脂材料で構成され多孔質構造を有する層である。多孔質樹脂層14を構成する樹脂材料における樹脂としては、例えば、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン、及びエチレンプロピレンジエンゴム、並びにこれらの樹脂の混合物が挙げられるが、その中でもポリウレタンが好ましい。多孔質樹脂層14は、ポリウレタンを主成分として含む層(すなわち、多孔質ウレタン層)であることが好ましい。例えば、多孔質樹脂層の構成成分中においてポリウレタンを80質量%以上含むことが好ましく、90質量%以上含むことがより好ましい。なお、多孔質樹脂層には、他の添加剤を含有してもよい。
(Porous resin layer)
The porous resin layer 14 is an example of the intermediate layer in the present disclosure, and is a layer formed of a resin material and having a porous structure. Examples of the resin in the resin material constituting the porous resin layer 14 include polyurethane, polystyrene, polyethylene, polypropylene, ethylene propylene diene rubber, and a mixture of these resins. Among them, polyurethane is preferable. The porous resin layer 14 is preferably a layer containing polyurethane as a main component (i.e., a porous urethane layer). For example, it is preferable to contain 80 mass% or more of polyurethane in the structural component of a porous resin layer, and it is more preferable to contain 90 mass% or more. The porous resin layer may contain other additives.
 多孔質樹脂層14における孔の存在比率(例えば発泡体の場合であれば発泡率)は、JIS K6400-1(2012年)の付属書1に記載の方法により測定することができ、25個/25mm以上であることが好ましく、45個/25mm以下がより好ましい。
 また、多孔質樹脂層14は、発泡体であることが好ましい。
The abundance ratio of pores in the porous resin layer 14 (for example, the foaming ratio in the case of a foam) can be measured by the method described in Annex 1 of JIS K 6400-1 (2012), 25 / It is preferable that it is 25 mm or more, and 45 pieces / 25 mm or less are more preferable.
The porous resin layer 14 is preferably a foam.
 多孔質樹脂層の密度は、12kg/m以上22kg/m以下であることが好ましい。複合管では、内部の管体の端部に継手などを接続する。この際、被覆層の端部を短縮させてずらし、管体端部を露出させることが求められる。しかし、被覆層をずらすときに多孔質樹脂層が追従せず、管体の外表面に置き去りになって、管体が十分に露出できないことがある。一方、多孔質樹脂層の密度が22kg/m以下であることにより、多孔質樹脂層が適度な柔軟性を有す。これにより被覆層の端部を短縮変形させて管体の端部を露出させる際に、多孔質樹脂層が被覆層の動作に対して良好に追従する。このため、管体の外表面への置き去りが抑制される。その結果、管体の端部の露出を容易に行うことができる。 The density of the porous resin layer is preferably 12 kg / m 3 or more and 22 kg / m 3 or less. In a composite pipe, a joint or the like is connected to the end of the inner pipe. At this time, it is required to shorten and shift the end of the covering layer to expose the end of the tube. However, when the coating layer is shifted, the porous resin layer may not follow and may be left behind on the outer surface of the tube, and the tube may not be sufficiently exposed. On the other hand, when the density of the porous resin layer is 22 kg / m 3 or less, the porous resin layer has appropriate flexibility. As a result, when the end of the covering layer is shortened and deformed to expose the end of the tube, the porous resin layer follows the movement of the covering layer well. For this reason, leaving on the outer surface of the tube is suppressed. As a result, the end of the tube can be easily exposed.
 一方、多孔質樹脂層は、密度が12kg/m以上であることで適度な強度を有し、複合管10の製造時等の加工時における多孔質樹脂層の破れ及び破損の発生が抑制される。多孔質樹脂層の密度は、管体の外表面へ置き去りの抑制及び加工時における破れ、破損の抑制の観点から、14kg/m以上20kg/m以下の範囲がより好ましく、16kg/m以上18kg/m以下がさらに好ましい。 On the other hand, the porous resin layer has an appropriate strength because the density is 12 kg / m 3 or more, and the occurrence of breakage and breakage of the porous resin layer at the time of processing such as at the time of manufacturing the composite tube 10 is suppressed. Ru. The density of the porous resin layer is preferably 14 kg / m 3 or more and 20 kg / m 3 or less, more preferably 16 kg / m 3 , from the viewpoint of suppression of leaving to the outer surface of the tubular body and breakage and breakage during processing. More preferably, it is at least 18 kg / m 3 .
 ここで、多孔質樹脂層の密度は、JIS-K7222(2005年)に規定の方法により測定することができる。なお、測定環境は温度23℃、相対湿度45%の環境とする。 Here, the density of the porous resin layer can be measured by the method prescribed in JIS-K7222 (2005). The measurement environment is a temperature of 23 ° C. and a relative humidity of 45%.
 多孔質樹脂層の密度を上記の範囲に制御する方法としては、特に限定されるものではないが、例えば多孔質樹脂層における孔の存在比率(例えば発泡体である場合であれば発泡率)を調整する方法、樹脂の分子構造を調整する(つまり樹脂の原料となるモノマーの分子構造や、それらの架橋構造を調整する)方法等が挙げられる。 The method of controlling the density of the porous resin layer to the above range is not particularly limited, but, for example, the existing ratio of pores in the porous resin layer (for example, the foaming ratio in the case of a foam) The method of adjusting, the method of adjusting the molecular structure of resin (namely, the molecular structure of the monomer used as the raw material of resin, and those crosslinked structures) etc. are mentioned.
 多孔質樹脂層14は、管体12と被覆層20との間に配置されている。多孔質樹脂層14は、被覆層20の谷部24の内側壁24Aと管体12との間に挟持されている。なお、この挟持されている箇所では、さらに内側壁24Aと管体12とで圧縮されて圧縮挟持部14Aが形成されていることが好ましい。 The porous resin layer 14 is disposed between the tubular body 12 and the covering layer 20. The porous resin layer 14 is sandwiched between the inner side wall 24A of the valley portion 24 of the covering layer 20 and the tube 12. In addition, it is preferable to be further compressed by the inner side wall 24A and the pipe body 12 at the location where the sandwiching is performed, and the compression sandwiching portion 14A is formed.
 多孔質樹脂層14は、図12Aに示すように、帯状の多孔質樹脂シート14Sを用いて形成される。多孔質樹脂層14は、管体12の外周長と略等しい長さの幅を有するように帯状に形成された多孔質樹脂シート14Sを、図12Bに示すように管体12の周囲に巻き付け、後述するように被覆層20となる樹脂組成物をその外周に供給して成形することにより構成される。 The porous resin layer 14 is formed using a band-like porous resin sheet 14S, as shown in FIG. 12A. The porous resin layer 14 winds a porous resin sheet 14S formed in a band shape so as to have a width substantially equal to the outer peripheral length of the tubular body 12, around the tubular body 12 as shown in FIG. 12B. As will be described later, the resin composition to be the covering layer 20 is supplied to the outer periphery and molded.
 多孔質樹脂シート14Sを管体12の周囲に巻き付ける際には、多孔質樹脂シート14Sの幅方向(図12A、図12Bに示す矢印W方向)の両側の端面14SAと端面14SBとを対向させて巻き付ける。この際、端面14SAと端面14SBとの突き付け位置(突き付け面14L)が、管体12を径方向から見て管体12の軸方向に沿う略直線状となるように巻き付ける。なお、突き付け面14Lは、端面14SAと端面14SBとが互いに接触している場合はその接触面を指す。但し、端面14SAと端面14SBとは必ずしも接触していなくてもよい。端面14SAと端面14SBとが互いに離間している場合、突き付け面14Lは、端面14SAと端面14SBとの中心を通る面を指す。 When winding the porous resin sheet 14S around the tubular body 12, the end surface 14SA and the end surface 14SB on both sides in the width direction of the porous resin sheet 14S (direction of arrow W shown in FIGS. 12A and 12B) Wrap around. At this time, the butting position (the butting surface 14L) between the end surface 14SA and the end surface 14SB is wound so that the tubular body 12 is substantially linear along the axial direction of the tubular body 12 when viewed from the radial direction. When the end surface 14SA and the end surface 14SB are in contact with each other, the abutting surface 14L indicates the contact surface. However, the end surface 14SA and the end surface 14SB may not necessarily be in contact with each other. When the end surface 14SA and the end surface 14SB are separated from each other, the abutting surface 14L indicates a surface passing through the centers of the end surface 14SA and the end surface 14SB.
 多孔質樹脂層14の厚さは、自然状態(すなわち、圧縮や引っ張りなどの力が作用していない、温度23℃、相対湿度45%の状態)で、管体12の外周と内側壁24Aの径方向内側面との差以上となっており、さらに前記差よりも厚くなっていることが好ましい。 The thickness of the porous resin layer 14 is in the natural state (that is, in the state where a force such as compression or tension does not act, temperature 23.degree. C., relative humidity 45%), the outer periphery of the tubular body 12 and the inner wall 24A. It is preferable that the difference is greater than the difference with the radially inner surface, and it is further thicker than the difference.
 圧縮挟持部14Aでは、圧縮により、多孔質樹脂層14は、自然状態の厚さより薄くなっている。多孔質樹脂層14の隣り合う圧縮挟持部14A同士の間には、凸部14Bが形成されている。凸部14Bは、圧縮挟持部14Aよりも大径とされ、山空間23内へ突出されている。多孔質樹脂層14が内側壁24Aと管体12とで圧縮されている場合、圧縮挟持部14Aと凸部14Bとが軸方向Sに交互に連続して形成され、多孔質樹脂層14の外周面が波状となっている。 In the compression sandwiching portion 14A, the porous resin layer 14 is thinner than the thickness in the natural state due to the compression. Between the adjacent compression pinching portions 14A of the porous resin layer 14, convex portions 14B are formed. The convex portion 14 </ b> B has a diameter larger than that of the compression holding portion 14 </ b> A and protrudes into the mountain space 23. When the porous resin layer 14 is compressed by the inner side wall 24A and the tubular body 12, the compression pinching portions 14A and the convex portions 14B are alternately and continuously formed in the axial direction S, and the outer periphery of the porous resin layer 14 The surface is wavy.
 なお、多孔質樹脂層14の自然状態での厚さは、内側壁24Aと管体12とで圧縮された圧縮挟持部14Aの形成のし易さの観点から、1mm以上20mm以下の範囲が好ましく、2mm以上15mm以下がより好ましく、2.5mm以上10mm以下がさらに好ましい。なお、多孔質樹脂層14の自然状態での厚さは、複合管10から多孔質樹脂層14を取り出して、任意の箇所3箇所を測定して得られた値の平均値とする。また、管体12の外周と内側壁24Aの径方向内側面との差は、例えば0.3mm以上5mm以下の範囲が好ましく、0.5mm以上3mm以下がより好ましく、1mm以上2mm以下がさらに好ましい。 The thickness of the porous resin layer 14 in the natural state is preferably in the range of 1 mm or more and 20 mm or less from the viewpoint of easiness of formation of the compressed sandwiching portion 14A compressed by the inner side wall 24A and the tubular body 12 2 mm or more and 15 mm or less are more preferable, and 2.5 mm or more and 10 mm or less are more preferable. The thickness of the porous resin layer 14 in the natural state is taken as an average value of values obtained by taking out the porous resin layer 14 from the composite tube 10 and measuring three arbitrary places. The difference between the outer circumference of the tubular body 12 and the radially inner side surface of the inner side wall 24A is, for example, preferably in the range of 0.3 mm to 5 mm, more preferably 0.5 mm to 3 mm, and still more preferably 1 mm to 2 mm. .
 多孔質樹脂層14を管体12と被覆層20の間から抜き出した自然状態における軸方向Sの長さは、被覆層20の軸方向Sの長さの90%以上100%以下であることが好ましい。これは、多孔質樹脂層14が管体12と被覆層20の間において伸張状態で保持されていると、被覆層20を短縮変形させる際に、多孔質樹脂層14と被覆層20との相対移動が生じやすくなり、多孔質樹脂層14が短縮されずに管体12の外周端部を露出できないことが生じうるからである。多孔質樹脂層14と被覆層20との相対移動を抑制するため、自然状態における多孔質樹脂層14の軸方向Sの長さは、被覆層20の軸方向の長さの90%以上100%以下とすることが好ましい。 The length in the axial direction S in a natural state in which the porous resin layer 14 is extracted from between the tubular body 12 and the covering layer 20 is 90% or more and 100% or less of the length in the axial direction S of the covering layer 20 preferable. This is because, when the porous resin layer 14 is held in a stretched state between the tubular body 12 and the covering layer 20, the relative displacement between the porous resin layer 14 and the covering layer 20 when the covering layer 20 is shortened and deformed. This is because movement tends to occur, and it may occur that the outer peripheral end of the tubular body 12 can not be exposed without shortening of the porous resin layer 14. In order to suppress relative movement between the porous resin layer 14 and the covering layer 20, the length in the axial direction S of the porous resin layer 14 in the natural state is 90% to 100% of the length in the axial direction of the covering layer 20 It is preferable to set it as the following.
 複合管10を作製する方法としては、例えば、以下の方法が考えられる。具体的には、まず、多孔質樹脂層14を構成する多孔質樹脂シート14Sを、管体12の外周上に巻き付ける。そしてその状態で、さらに被覆層20形成用の樹脂組成物の溶融物を塗布し、この溶融物の外周面に対して、半円弧状の内面を有しかつこの内面が蛇腹の形状を有する二対の金型を二方向から接近させて接触させ、固化させることで蛇腹状の被覆層20を形成する。 As a method of producing the composite tube 10, for example, the following method can be considered. Specifically, first, the porous resin sheet 14S constituting the porous resin layer 14 is wound around the outer periphery of the tubular body 12. Then, in this state, a melt of the resin composition for forming the coating layer 20 is further applied, and the outer peripheral surface of the melt has a semicircular arc inner surface and the inner surface has a bellows shape. A pair of molds are brought close to each other from two directions and brought into contact and solidified to form a bellows-like covering layer 20.
 なお、図1~図3に示す複合管10における多孔質樹脂層14は単層であるが、これに限られず、多孔質樹脂層14が多層であってもよい。多孔質樹脂層14が多層である複合管としては、例えば、図4に示す複合管100(多孔質樹脂層14が2層である複合管)が挙げられる。 Although the porous resin layer 14 in the composite pipe 10 shown in FIGS. 1 to 3 is a single layer, the present invention is not limited to this, and the porous resin layer 14 may be a multilayer. Examples of the composite tube in which the porous resin layer 14 is a multilayer include the composite tube 100 shown in FIG. 4 (a composite tube in which the porous resin layer 14 has two layers).
 図4に示す複合管100は、管体12と、第1の多孔質樹脂層141と、第2の多孔質樹脂層142と、被覆層20と、がこの順に積層されている。 In the composite pipe 100 shown in FIG. 4, the pipe body 12, the first porous resin layer 141, the second porous resin layer 142, and the covering layer 20 are stacked in this order.
 多孔質樹脂層14の内周面は、管体12の外周に全面的に接触しつつ、管体12の外周を覆っていることが好ましい。なお、ここでの「全面的に接触」とは、全ての部分がぴったりと密着している必要はなく、実質的に全面が接触していることを意味する。 The inner circumferential surface of the porous resin layer 14 preferably covers the outer periphery of the tubular body 12 while being in full contact with the outer periphery of the tubular body 12. Here, “entirely in contact” does not mean that all parts need to be in intimate contact, but means that the entire surface is substantially in contact.
 (製造方法)
 次に、本実施形態の複合管10の製造方法について説明する。複合管10の製造方法は、例えば、管体12の外周に、多孔質樹脂シート14Sの両端面を対向させて巻き付け、多孔質樹脂層14を形成する。その後、多孔質樹脂層14の外周に被覆層20を形成する。
(Production method)
Next, a method of manufacturing the composite pipe 10 of the present embodiment will be described. In the method of manufacturing the composite tube 10, for example, the porous resin layer 14 is formed by winding the both ends of the porous resin sheet 14S opposite to each other on the outer periphery of the tube 12. Thereafter, the covering layer 20 is formed on the outer periphery of the porous resin layer 14.
 複合管10の製造には、例えば、図9に示す製造装置30を用いることができる。製造装置30は、押出機32、ダイ34、波付け金型36、冷却槽38、及び引取装置39を有している。複合管10の製造工程は、図9の右側が上流側となっており、右側から左側へ向かって管体12が移動しつつ製造される。以下、この移動方向を製造方向Yとする。ダイ34、波付け金型36、冷却槽38、引取装置39は、製造方向Yに対してこの順に配置されており、押出機32は、ダイ34の上方に配置されている。 For manufacturing the composite pipe 10, for example, a manufacturing apparatus 30 shown in FIG. 9 can be used. The manufacturing apparatus 30 includes an extruder 32, a die 34, a wave mold 36, a cooling tank 38, and a pulling device 39. In the manufacturing process of the composite pipe 10, the right side of FIG. 9 is the upstream side, and the pipe 12 is manufactured while moving from the right side to the left side. Hereinafter, this moving direction is referred to as a manufacturing direction Y. The die 34, the wave forming die 36, the cooling tank 38, and the pulling device 39 are disposed in this order with respect to the manufacturing direction Y, and the extruder 32 is disposed above the die 34.
 ダイ34の上流には、不図示であるが、管体12、及び、多孔質樹脂層14を構成する多孔質樹脂シート14Sがロール状に巻き取られたシート状部材15Sが配置されている。引取装置39により製造方向Yに引っ張られることによって、管体12及びロール状の多孔質樹脂シート14Sは、連続的に引き出される。連続的に引き出された管体12の外周面には、ダイ34の手前で、図12Bに示すように、多孔質樹脂シート14Sが、端面14SAと端面14SBとを対向させるようにして、全周にわたって巻きつけられる。なお、多孔質樹脂シート14Sは、引張力を作用させないために、ダイ34の手前では、弛みをもった状態とされ、ダイ34へ挿入される。なお、図12Bにおいてダイ34及び波付け金型36は図示が省略されているが、多孔質樹脂シート14Sの端面14SAと端面14SBとは、ダイ34及び波付け金型36へ挿入される時点では互いに接触しておらず、管体12の周方向において互いに離間している。 Although not shown, a sheet-like member 15S is disposed upstream of the die 34. The tubular body 12 and a porous resin sheet 14S constituting the porous resin layer 14 are wound in a roll. By being pulled in the manufacturing direction Y by the pulling device 39, the tubular body 12 and the porous resin sheet 14S in a roll shape are continuously pulled out. As shown in FIG. 12B on the outer peripheral surface of the tubular body 12 drawn out continuously, the porous resin sheet 14S faces the end surface 14SA and the end surface 14SB, as shown in FIG. 12B. Wrapped around. The porous resin sheet 14S is slackened before the die 34 and is inserted into the die 34 in order to prevent application of tensile force. In FIG. 12B, the die 34 and the wave forming die 36 are not shown, but when the end face 14SA and the end face 14SB of the porous resin sheet 14S are inserted into the die 34 and the wave forming die 36. They are not in contact with each other and are separated from each other in the circumferential direction of the tube 12.
 図9に示すように、管体12の外周に巻き付けられた多孔質樹脂シート14Sの外周には、ダイ34から溶融された樹脂材(すなわち被覆層20形成用の樹脂組成物の溶融物)が円筒状に押し出されて塗布され、樹脂材20Aが形成される。ここで使用する樹脂を、MFR0.25以上の低密度ポリエチレン(LDPE)とすることにより、樹脂材が多孔質樹脂シートの孔(気泡)に入り込みやすくなり、多孔質樹脂シート14Sと樹脂材20Aとの接着性が向上する。 As shown in FIG. 9, on the outer periphery of the porous resin sheet 14S wound around the outer periphery of the tubular body 12, the resin material melted from the die 34 (that is, the melt of the resin composition for forming the coating layer 20) is It is extruded in a cylindrical shape and applied to form a resin material 20A. By setting the resin used here to low density polyethylene (LDPE) of MFR 0.25 or more, the resin material can easily enter the pores (bubbles) of the porous resin sheet, and the porous resin sheet 14S and the resin material 20A Adhesiveness is improved.
 管体12、多孔質樹脂シート14S、及び樹脂材20Aで構成される管状押出体21が形成された後、ダイ34の下流側に配置された波付け金型36で波付け工程(すなわち蛇腹状に形成する工程)が行われる。波付け金型36は例えば一対の金型であり、いずれの金型も半円弧状の内面を有し、この内周には被覆層20の山部22に対応する部分に環状のキャビティ36Aが形成され、谷部24に対応する部分に環状の内側突起36Bが形成されており、蛇腹の形状を有している。各キャビティ36Aには、一端がキャビティ36Aと連通し波付け金型36を貫通した吸引孔36Cが形成されている。キャビティ36A内は、吸引孔36Cを介して、波付け金型36の外側から吸気が行われる。 After the tubular extruded body 21 composed of the tubular body 12, the porous resin sheet 14S, and the resin material 20A is formed, a wave forming process (i.e., a bellows shape) is performed by the wave forming die 36 disposed downstream of the die 34. Process) is performed. The corrugating mold 36 is, for example, a pair of molds, and each mold has a semicircular inner surface, and an annular cavity 36A is formed in a portion corresponding to the ridge 22 of the covering layer 20 on the inner periphery thereof. An annular inner protrusion 36B is formed in a portion corresponding to the valley portion 24 and has a bellows shape. Each cavity 36A is formed with a suction hole 36C, one end of which is in communication with the cavity 36A and which penetrates the wave applying mold 36. In the cavity 36A, suction is performed from the outside of the wave forming die 36 through the suction holes 36C.
 ダイ34の下流側において、波付け金型36は、樹脂材20Aに対して左右二方向から接近させて一対の金型の内面を樹脂材20Aに接触させる。そして、波付け金型36は、内側突起36Bにより樹脂材20Aを圧縮しつつ、管状押出体21の外周を覆って樹脂材20Aを成形し、管体12及び多孔質樹脂シート14Sと共に管状押出体21を製造方向Yへ移動させる。このとき、波付け金型36のキャビティ36Aにより形成されたキャビティ内部は、図示省略の吸引装置により吸引孔36Cを通して吸引されて負圧とされる。これにより、樹脂材20Aは径方向Rの外側へ向かって変形してキャビティ36Aにより成形され、樹脂材20Aから山部22と谷部24とが軸方向Sに沿って交互に配列された蛇腹状の被覆層20が成形される。 On the downstream side of the die 34, the corrugated die 36 is made to approach the resin material 20A from the left and right two directions so that the inner surfaces of the pair of dies come in contact with the resin material 20A. Then, the wave applying mold 36 covers the outer periphery of the tubular extruded body 21 and compresses the resin material 20A while compressing the resin material 20A by the inner projection 36B to form the resin material 20A, and the tubular extruded body together with the tubular body 12 and the porous resin sheet 14S. 21 is moved in the manufacturing direction Y. At this time, the inside of the cavity formed by the cavity 36A of the wave application mold 36 is sucked through the suction hole 36C by a suction device (not shown) to be a negative pressure. Thereby, the resin material 20A is deformed outward in the radial direction R and is formed by the cavity 36A, and the bellows-like shape in which the ridges 22 and the valleys 24 are alternately arranged along the axial direction S from the resin material 20A. The cover layer 20 is formed.
 ここで、多孔質樹脂シート14Sの凸部14Bは、キャビティ36Aにおいて樹脂材20Aが径方向Rの外側へ変形する際に山空間23(図9に示される部分拡大図を参照)へ深く入り込み、山空間23内に係止される。多孔質樹脂シート14Sの圧縮挟持部14Aは、被覆層20の谷部24の内側壁24Aに接着され、かつ、内側壁24Aと管体12との間において圧縮挟持される。 Here, when the resin material 20A is deformed to the outside in the radial direction R in the cavity 36A, the convex portion 14B of the porous resin sheet 14S deeply penetrates into the mountain space 23 (see the partial enlarged view shown in FIG. 9) It is locked in the mountain space 23. The compression sandwiching portion 14A of the porous resin sheet 14S is adhered to the inner side wall 24A of the valley portion 24 of the cover layer 20, and is compressed and sandwiched between the inner side wall 24A and the tubular body 12.
 また、図13Aに示すように、波付け工程における波付け金型36の型締め前の状態では、多孔質樹脂シート14Sの両端面(すなわち端面14SA及び端面14SB)が管体12の周方向において互いに離間している。多孔質樹脂シート14Sは図12Aに示す帯状の形状に戻ろうとするため、端面14SA及び端面14SBには、互いに離れる力が作用する。これにより樹脂材20Aは多孔質樹脂シート14Sから張力を受けた状態で型締めされる。 Moreover, as shown to FIG. 13A, in the state before mold clamping of the wave application mold 36 in a wave application process, the both end surfaces (namely, end surface 14SA and end surface 14SB) of the porous resin sheet 14S are in the circumferential direction of the pipe body 12. It is separated from each other. In order to return the porous resin sheet 14S to a belt-like shape shown in FIG. 12A, forces of separation from each other act on the end face 14SA and the end face 14SB. As a result, the resin material 20A is clamped in a state in which it is tensioned from the porous resin sheet 14S.
 多孔質樹脂シート14Sの端面14SAと端面14SBとの間に形成された離間空間(対向位置V)は、管体12の周方向において、波付け金型36のパーティング面36Dと異なる位置に配置される。なお、「パーティング面36Dと異なる位置」とは、一対の波付け金型36のパーティング面36Dに挟まれる空間と、管体12の周方向において重ならない位置を指す。 The separated space (opposing position V) formed between the end surface 14SA and the end surface 14SB of the porous resin sheet 14S is disposed at a position different from the parting surface 36D of the wave forming die 36 in the circumferential direction of the tube 12. Be done. The “position different from the parting surface 36D” refers to a position not overlapping the space sandwiched by the parting surfaces 36D of the pair of corrugated dies 36 in the circumferential direction of the tubular body 12.
 このとき、対向位置Vは、パーティング面36Dと最も離れた位置に配置することが好ましい。すなわち、キャビティ36Aの最深部(すなわち断面視で半円状とされたキャビティ36Aにおいて、接線がパーティング面36Dと平行である部分)に対応する位置に対向位置Vを配置することが好ましい。 At this time, it is preferable to arrange the opposing position V at a position farthest from the parting surface 36D. That is, it is preferable to dispose the facing position V at a position corresponding to the deepest portion of the cavity 36A (that is, a portion where the tangent is parallel to the parting surface 36D in the cavity 36A made semicircular in cross section).
 なお、図13Aにおいては、管体12の外周面と多孔質樹脂シート14Sの内周面とが接触しているように描かれているが、波付け金型36を型締めする前の状態においては、管体12の外周面と多孔質樹脂シート14Sの内周面との間には隙間が形成されている。これにより端面14SAと端面14SBが接触せずに、端面14SAと端面14SBとの間に離間空間が形成されている。 In FIG. 13A, the outer peripheral surface of the tubular body 12 and the inner peripheral surface of the porous resin sheet 14S are drawn in contact with each other, but in the state before clamping the wave application mold 36. A gap is formed between the outer peripheral surface of the tubular body 12 and the inner peripheral surface of the porous resin sheet 14S. As a result, a separation space is formed between the end surface 14SA and the end surface 14SB without the end surface 14SA contacting the end surface 14SB.
 そして図13Bに示すように、波付け金型36を型締めしてパーティング面36Dを接触させる。このとき、管体12の外周面と多孔質樹脂シート14Sの内周面との間の隙間(不図示)が縮小し、端面14SAと端面14SBとが突付けられ、突付け面14Lが形成される。 Then, as shown in FIG. 13B, the corrugated die 36 is clamped to bring the parting surface 36D into contact. At this time, the gap (not shown) between the outer peripheral surface of the tubular body 12 and the inner peripheral surface of the porous resin sheet 14S is reduced, the end surface 14SA and the end surface 14SB are abutted, and the abutting surface 14L is formed. Ru.
 本実施形態においては、端面14SAと端面14SBとの対向位置Vが、パーティング面36Dと異なる位置に配置されているため、突付け面14Lは、波付け金型36のパーティング面36Dと異なる位置に配置される。 In the present embodiment, since the facing position V of the end surface 14SA and the end surface 14SB is disposed at a position different from that of the parting surface 36D, the abutting surface 14L is different from the parting surface 36D of the wave forming die 36. Placed in position.
 型締め前における多孔質樹脂シート14Sの端面14SAと端面14SBとの対向位置Vを、パーティング面36Dと最も離れた位置に配置した場合は、管体12の軸方向において、突付け面14Lの少なくとも一部が、管体12の周方向においてパーティング面36Dから最も離れた位置に配置される。 When the facing position V of the end face 14SA and the end face 14SB of the porous resin sheet 14S before clamping is disposed at a position farthest from the parting face 36D, the abutting face 14L in the axial direction of the tube 12 At least a portion is disposed at a position farthest from the parting surface 36D in the circumferential direction of the tube 12.
 波付け金型36を型締めした際に形成される蛇腹状の被覆層20の外周面には、パーティング面36Dに対応する位置に、パーティングラインPL(図1参照)が形成される。パーティングラインPLは、金型の精度、樹脂の流動性、研磨等の後工程の有無等により視認できる場合と視認できない場合があるが、本開示におけるパーティングラインは、視認できるものとできないものの双方を指す。 A parting line PL (see FIG. 1) is formed at a position corresponding to the parting surface 36D on the outer peripheral surface of the bellows-like covering layer 20 formed when the wave application mold 36 is clamped. The parting line PL may or may not be visible depending on the accuracy of the mold, the fluidity of the resin, the presence or absence of a post-process such as polishing, but the parting line in the present disclosure may or may not be visible. Point to both.
 波付け金型36で波付け工程が行われた後、被覆層20は、冷却槽38で冷却される。このようにして、複合管10が製造される。 The coating layer 20 is cooled in the cooling bath 38 after the wave application process is performed in the wave application mold 36. Thus, the composite pipe 10 is manufactured.
(作用)
 上記で説明した複合管10及び複合管10の製造方法による作用について説明する。上記実施形態に係る複合管10では、図1に示すように、管体12と被覆層20との間に、帯状の多孔質樹脂シート14Sの幅方向における両端面(すなわち端面14SA及び端面14SB)を突付けた状態で管状に形成された、多孔質樹脂層14が配置されている。そして、被覆層20のパーティングラインPLと、多孔質樹脂シート14Sの突付け位置(突き付け面14L)とが、管体12の周方向において異なる位置に配置されている。
(Action)
The operation of the composite pipe 10 described above and the method of manufacturing the composite pipe 10 will be described. In the composite pipe 10 according to the above embodiment, as shown in FIG. 1, both end faces (that is, the end face 14SA and the end face 14SB) in the width direction of the band-like porous resin sheet 14S between the pipe body 12 and the covering layer 20 The porous resin layer 14 formed in a tubular shape is disposed in a state in which it is pressed. The parting line PL of the covering layer 20 and the abutting position (abutment surface 14L) of the porous resin sheet 14S are disposed at different positions in the circumferential direction of the tubular body 12.
 すなわち、図13A、図13Bに示すように、波付け金型36を用いて多孔質樹脂層14の外周に被覆層20を形成する際、波付け金型36のパーティング面36Dに対して、多孔質樹脂シート14Sが、幅方向の両端面(すなわち端面14SA及び端面14SB)の対向位置Vをずらした状態で配置される。そして型締めに伴い、図13Bに示すように、端面14SA、端面14SBが、波付け金型36のパーティング面36Dと異なる位置で突付けられ、突き付け面14Lが形成される。 That is, as shown in FIGS. 13A and 13B, when forming the coating layer 20 on the outer periphery of the porous resin layer 14 using the wave applying die 36, the parting surface 36 D of the wave applying die 36 is The porous resin sheet 14S is disposed in a state where the opposing positions V of both end surfaces in the width direction (that is, the end surface 14SA and the end surface 14SB) are shifted. Then, along with the mold clamping, as shown in FIG. 13B, the end face 14SA and the end face 14SB are abutted at a position different from the parting surface 36D of the wave forming die 36, and the abutting surface 14L is formed.
 型締めの際、図14に示すように、互いに対向する端面14SA、端面14SBは、互いに近づく方向へ移動して突き付けられる。このため、多孔質樹脂シート14Sの外周を覆う樹脂材20Aには、端面14SA、端面14SB付近で弛み部20Tが形成される。 At the time of mold clamping, as shown in FIG. 14, the end faces 14SA and the end faces 14SB opposed to each other are moved toward each other and pushed against each other. Therefore, in the resin material 20A covering the outer periphery of the porous resin sheet 14S, the slack portion 20T is formed in the vicinity of the end face 14SA and the end face 14SB.
 このとき、多孔質樹脂シート14Sの端面14SA、端面14SBは、波付け金型36のパーティング面36D(図13A参照)と異なる位置で突付けられる。このため、弛み部20Tは波付け金型36のキャビティ36Aによって押圧されて消失する。また、波付け金型36のパーティング面36Dに対応する位置には多孔質樹脂シート14Sの端面14SA、端面14SBが配置されないので、弛み部20Tは形成され難い。これにより、パーティング面に挟まれる弛み部20Tが発生し難い。したがって、被覆層20にはバリが発生しにくい。 At this time, the end surface 14SA and the end surface 14SB of the porous resin sheet 14S are abutted at positions different from the parting surface 36D (see FIG. 13A) of the wave application die 36. For this reason, the slack portion 20T is pressed by the cavity 36A of the corrugated die 36 and disappears. In addition, since the end face 14SA and the end face 14SB of the porous resin sheet 14S are not disposed at the position corresponding to the parting surface 36D of the corrugated die 36, the slack portion 20T is difficult to be formed. Thereby, the slack portion 20T pinched by the parting surface is less likely to occur. Therefore, burrs are less likely to occur in the covering layer 20.
 また、本実施形態における複合管10では、図13Bに示すように、管体12の軸方向(図13Bの紙面前後方向)において、多孔質樹脂シート14Sにおける突付け面14Lの少なくとも一部が、管体12の周方向においてパーティング面36Dから最も離れた位置に配置されている。 Further, in the composite pipe 10 according to the present embodiment, as shown in FIG. 13B, at least a part of the abutting surface 14L of the porous resin sheet 14S in the axial direction of the tubular body 12 (the front and back direction in FIG. In the circumferential direction of the pipe body 12, it is arrange | positioned most distantly from the parting surface 36D.
 波付け金型36を型締めした際に、樹脂材20A及び多孔質樹脂シート14Sが金型36から外力を受けて、部分的に管体12の周方向に移動する場合がある。このような場合、突付け面14Lは、部分的に他の部分と周方向にずれて配置される。突付け面14Lの少なくとも一部が、管体12の周方向においてパーティング面36Dから最も離れた位置に配置されていることにより、突付け面14Lが部分的にずれて配置されても、当該部分がパーティング面36Dと同じ位置に配置されることが抑制される。これにより、バリの発生を抑制できる。 When the wave application mold 36 is clamped, the resin material 20A and the porous resin sheet 14S may be partially moved in the circumferential direction of the tubular body 12 by receiving an external force from the mold 36. In such a case, the abutting surface 14L is partially offset in the circumferential direction from the other portions. Since at least a part of the abutting surface 14L is disposed at a position farthest from the parting surface 36D in the circumferential direction of the tube 12, even if the abutting surface 14L is partially displaced and arranged, It is suppressed that the portion is arranged at the same position as the parting surface 36D. This can suppress the occurrence of burrs.
 なお、図15Aには、比較例に係る複合管の型締め前の状態が示されている。比較例に係る複合管では、波付け金型36のパーティング面36Dに対して、多孔質樹脂シート14Sが、幅方向の両端面(すなわち端面14SA及び端面14SB)の対向位置Vが一致した状態で配置される。換言すると、管体12の周方向において、一対の波付け金型36において互いに対向するパーティング面36Dの隙間(対向位置V2)と、端面14SAと端面14SBとの隙間(対向位置V)とが重なっている。このため、図15Bに示すように、端面14SA、端面14SB付近の樹脂材20Aに発生する弛み部20Tが、パーティング面36Dによって挟まれる。これにより、比較例に係る複合管の被覆層には、バリが発生する可能性がある。 In addition, the state before mold clamping of the composite tube which concerns on a comparative example is shown by FIG. 15A. In the composite pipe according to the comparative example, the porous resin sheet 14S is in a state in which the facing positions V of both end faces in the width direction (that is, the end face 14SA and the end face 14SB) coincide with the parting face 36D of the corrugated die 36 Will be placed. In other words, in the circumferential direction of the tube 12, the gap (facing position V2) between the parting surfaces 36D facing each other in the pair of corrugated dies 36 and the gap (facing position V) between the end face 14SA and the end face 14SB overlapping. Therefore, as shown in FIG. 15B, the end face 14SA and the slack portion 20T generated in the resin material 20A near the end face 14SB are sandwiched by the parting surface 36D. Thereby, a burr may occur in the coating layer of the composite tube according to the comparative example.
 本実施形態に係る複合管10と継手とを接続する際には、図2に示す状態の被覆層20に対し、被覆層20を軸方向Sに短縮させて管体12を露出させる方向の力を作用させる。これにより、図5に示されるように、一端部の被覆層20は、管体12が露出される方向へ移動する。 When connecting the composite pipe 10 according to this embodiment and the joint, the force in the direction in which the covering layer 20 is shortened in the axial direction S to expose the pipe body 12 with respect to the covering layer 20 in the state shown in FIG. To work. Thereby, as shown in FIG. 5, the covering layer 20 at one end moves in the direction in which the tubular body 12 is exposed.
 なお、山部22の外側壁22Aと谷部24の内側壁24Aにおいて、軸方向Sの長さL1はL2よりも長く、厚さH1はH2よりも薄いことが好ましい。これにより、外側壁22Aは内側壁24Aよりも変形しやすく、図6に示されるように、径方向外側へ膨出するように変形する。続いて、図7に示されるように、隣り合う山部22同士が近づくように、山部22の外屈曲部22Cと谷部24の内屈曲部24Cが変形する。このようにして、図5に示されるように、一端部の被覆層20は、管体12が露出される方向へより移動し易くなる。このように、被覆層20を短縮させる際に、外側壁22Aが膨出するように変形するため、被覆層20の屈曲角度や厚さに多少のバラツキがあっても、谷部24が径方向外側へ膨出したり、隣り合う山部22同士が近づかないで歪んだ変形状態となったりすることを抑制できる。これにより、短縮させた被覆層20の外観の低下を抑制することができる。 In the outer wall 22A of the ridge 22 and the inner wall 24A of the valley 24, the length L1 in the axial direction S is preferably longer than L2, and the thickness H1 is preferably thinner than H2. As a result, the outer side wall 22A is more easily deformed than the inner side wall 24A, and as shown in FIG. 6, the outer side wall 22A deforms so as to bulge radially outward. Subsequently, as shown in FIG. 7, the outer bending portion 22C of the peak portion 22 and the inner bending portion 24C of the valley portion 24 are deformed such that the adjacent peak portions 22 approach each other. In this way, as shown in FIG. 5, the covering layer 20 at one end is more likely to move in the direction in which the tube 12 is exposed. As described above, when the covering layer 20 is shortened, the outer wall 22A is deformed so as to expand, so that the valley portion 24 is in the radial direction even if the bending angle and thickness of the covering layer 20 have some variations. It is possible to suppress outward bulging or a distorted deformation state in which adjacent mountain portions 22 do not approach each other. Thereby, the fall of the shortened external appearance of the coating layer 20 can be suppressed.
 多孔質樹脂層14は内側壁24Aと管体12とで圧縮されていることが好ましく、圧縮挟持部14Aが被覆層20に密着され、凸部14Bが隣り合う谷部24の側壁24Bの間に係合し、被覆層20と共により短縮し易くなる。これにより、図8に示すように、管体12の端部を露出させることができる。 The porous resin layer 14 is preferably compressed by the inner side wall 24A and the tube 12. The compression pinching portion 14A is in close contact with the covering layer 20, and the convex portion 14B is adjacent to the side wall 24B of the valley portion 24. It is easier to engage and shorten with the covering layer 20. Thereby, as shown in FIG. 8, the end of the tube 12 can be exposed.
 なお、本実施形態では、外側壁22Aの厚さH1を内側壁24Aの厚さH2よりも薄くしたが、厚さH1は厚さH2と同じであってもよい。 In the present embodiment, the thickness H1 of the outer side wall 22A is thinner than the thickness H2 of the inner side wall 24A, but the thickness H1 may be the same as the thickness H2.
 また、本実施形態では、外側壁22Aを軸方向Sに沿った略直線状としたが、径方向外側へ膨出する弧状としてもよい。さらに、内側壁24Aについて、径方向内側へ膨出する弧状としてもよい。 Moreover, in this embodiment, although the outer side wall 22A is made into substantially linear shape along the axial direction S, it is good also as arc shape bulging outward in the radial direction. Furthermore, the inner side wall 24A may have an arc shape which bulges radially inward.
 また、本実施形態では、多孔質樹脂層14が内側壁24Aと管体12とで圧縮されていることが好ましい。これにより、圧縮挟持部14Aが被覆層20に密着され、凸部14Bが隣り合う谷部24の側壁24Bの間に係合する。したがって、多孔質樹脂層14は被覆層20の動きにより追従しやすくなり、多孔質樹脂層14が管体12の外周に置き去りになることが抑制され、容易に被覆層20と共に短縮させることができる。 Further, in the present embodiment, it is preferable that the porous resin layer 14 be compressed by the inner side wall 24A and the tubular body 12. As a result, the compression sandwiching portion 14A is in close contact with the covering layer 20, and the convex portion 14B is engaged between the side walls 24B of the adjacent valleys 24. Therefore, the porous resin layer 14 can easily follow by the movement of the coating layer 20, and the porous resin layer 14 can be prevented from being left behind on the outer periphery of the tubular body 12 and can be easily shortened together with the coating layer 20. .
 また、本実施形態では、多孔質樹脂層14は、管体12の外周面と全面的に接触している。したがって、管体12と多孔質樹脂層14及び被覆層20とを相対移動させて管体12の端部を露出させた後、管体12の外周と多孔質樹脂層14の内周との間の摩擦力により、多孔質樹脂層14及び被覆層20を、短縮された位置に容易に保持することができる。 Further, in the present embodiment, the porous resin layer 14 is in full contact with the outer peripheral surface of the tubular body 12. Therefore, after the tube 12, the porous resin layer 14 and the covering layer 20 are moved relative to each other to expose the end of the tube 12, the space between the outer periphery of the tube 12 and the inner periphery of the porous resin layer 14 As a result, the porous resin layer 14 and the covering layer 20 can be easily held in the shortened position.
 また、本実施形態では、多孔質樹脂層14の圧縮挟持部14Aが被覆層20に密着され、凸部14Bが隣り合う谷部24の側壁24Bの間に係合している。したがって、多孔質樹脂層14は被覆層20の動きに追従しやすくなり、多孔質樹脂層14が管体12の外周に置き去りになることが抑制され、容易に被覆層20と共に短縮させることができる。 Further, in the present embodiment, the compression sandwiching portion 14A of the porous resin layer 14 is in close contact with the covering layer 20, and the convex portions 14B are engaged between the side walls 24B of the adjacent valley portions 24. Therefore, the porous resin layer 14 can easily follow the movement of the coating layer 20, and the porous resin layer 14 can be prevented from being left behind on the outer periphery of the tubular body 12, and can be easily shortened together with the coating layer 20. .
(低摩擦樹脂層)
 なお、上記実施形態における複合管10は、管体12、多孔質樹脂層14及び被覆層20を備えており、管体12が多孔質樹脂層14に直接覆われているが、本開示の実施形態はこれに限らない。例えば図11に示すように、管体12と多孔質樹脂層14との間に、低摩擦樹脂層13を介在させてもよい。
(Low friction resin layer)
In addition, although the composite pipe 10 in the said embodiment is equipped with the pipe body 12, the porous resin layer 14, and the coating layer 20, and the pipe body 12 is directly covered by the porous resin layer 14, implementation of this indication is carried out. The form is not limited to this. For example, as shown in FIG. 11, the low friction resin layer 13 may be interposed between the tubular body 12 and the porous resin layer 14.
 低摩擦樹脂層13は、樹脂材料で構成され、内周面におけるすべり抵抗値が多孔質樹脂層14の内周面におけるすべり抵抗値よりも小さい層である。低摩擦樹脂層13としては、例えば、シート状の樹脂シート層が挙げられる。低摩擦樹脂層13を構成する樹脂材料における樹脂としては、例えば、ポリエステル、ナイロン、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブテン等)等が挙げられる。 The low friction resin layer 13 is made of a resin material, and is a layer whose slip resistance value on the inner circumferential surface is smaller than the slip resistance value on the inner circumferential surface of the porous resin layer 14. Examples of the low friction resin layer 13 include a sheet-like resin sheet layer. As resin in the resin material which constitutes low friction resin layer 13, polyester, nylon, polyolefin (for example, polyethylene, polypropylene, polybutene etc.) etc. are mentioned, for example.
 低摩擦樹脂層13を構成する樹脂材料は、樹脂を主成分として含むものであれば、他の添加剤を含有してもよい。 The resin material constituting the low friction resin layer 13 may contain other additives as long as the resin is contained as a main component.
 低摩擦樹脂層13の形態としては、例えば、不織布(例えば、メルトブロー、スパンボンド等)、編物(例えば、ラッセル、トリコット、ミラニーズ等)、織物(例えば、平織、綾織、模紗織、絽織、絡み織等)、フィルム等が挙げられる。 The form of the low friction resin layer 13 is, for example, non-woven fabric (for example, melt blow, spun bond, etc.), knitted fabric (for example, russell, tricot, milanese etc.), woven fabric (eg, plain weave, twill weave, imitation twill weave, twill weave, entanglement) And the like), films and the like.
 低摩擦樹脂層13は、これらの中でも、ポリエステル不織布(すなわち、ポリエステルを主成分として含む不織布)、ポリエステルトリコット(すなわち、ポリエステルを主成分として含むトリコット編物)、ナイロン不織布(すなわち、ナイロンを主成分として含む不織布)、ナイロントリコット(すなわち、ナイロンを主成分として含む編物)、ポリエチレンフィルム(すなわち、ポリエチレンを主成分として含むフィルム)等が好ましく、ポリエステル不織布及びナイロントリコットがより好ましい。 Among these, the low-friction resin layer 13 is, among these, polyester non-woven fabric (that is, non-woven fabric containing polyester as a main component), polyester tricot (that is, tricot knitted fabric containing polyester as a main component), nylon non-woven fabric (that is, nylon as a main component) Nonwovens containing nylon), nylon tricots (i.e., knits containing nylon as a main component), polyethylene films (i.e., films containing polyethylene as a main component), etc. are preferred, and polyester non-wovens and nylon tricots are more preferred.
 また、低摩擦樹脂層13が不織布である場合、不織布の目付量としては、例えば10g/m以上500g/m以下が挙げられ、12g/m以上200g/m以下が好ましく、15g/m以上25g/m以下がより好ましい。 Also, if the low-friction resin layer 13 is a nonwoven fabric, the basis weight of the nonwoven fabric, for example 10 g / m 2 or more 500 g / m 2 or less can be mentioned, 12 g / m 2 or more 200 g / m 2 or less is preferable, 15 g / m 2 or more and 25 g / m 2 or less are more preferable.
 低摩擦樹脂層13の内周面におけるすべり抵抗値(単位:N)は、多孔質樹脂層14の内周面におけるすべり抵抗値よりも小さければ特に限定されないが、例えば、10以上24以下が挙げられ、12以上23以下が好ましい。 The sliding resistance value (unit: N) on the inner peripheral surface of the low friction resin layer 13 is not particularly limited as long as it is smaller than the sliding resistance value on the inner peripheral surface of the porous resin layer 14. And preferably 12 or more and 23 or less.
 また、低摩擦樹脂層13の内周面におけるすべり抵抗値(単位:N)は、例えば、多孔質樹脂層14の内周面におけるすべり抵抗値(単位:N)の0.36倍以上0.90倍以下が挙げられ、0.44倍以上0.85倍以下が好ましい。 The sliding resistance value (unit: N) on the inner peripheral surface of the low friction resin layer 13 is, for example, 0.36 or more times the sliding resistance value (unit: N) on the inner peripheral surface of the porous resin layer 14. 90 times or less is mentioned, 0.44 or more and 0.85 times or less are preferable.
 低摩擦樹脂層13の内周面は、管体12の外周に全面的に接触しつつ、管体12の外周を覆っていることが好ましい。なお、ここでの「全面的に接触」とは、全ての部分がぴったりと密着している必要はなく、実質的に全面が接触していることを意味する。したがって、例えば多孔質樹脂層14及び低摩擦樹脂層13が、多孔質樹脂層14を構成するシート状の第1のシート(以下「多孔質樹脂シート」ともいう)と、低摩擦樹脂層13を構成するシート状の第2のシート(以下「低摩擦樹脂シート」ともいう)と、の積層体を巻き付けて形成されている場合、その継ぎ目部分が一部離間していたり、管体12と被覆層20との間でシワになった部分が一部離間していたりする場合を含んでいる。 The inner circumferential surface of the low friction resin layer 13 preferably covers the outer periphery of the tube 12 while being in full contact with the outer periphery of the tube 12. Here, “entirely in contact” does not mean that all parts need to be in intimate contact, but means that the entire surface is substantially in contact. Therefore, for example, the porous resin layer 14 and the low friction resin layer 13 are a sheet-like first sheet (hereinafter also referred to as a “porous resin sheet”) constituting the porous resin layer 14, and the low friction resin layer 13. When the sheet-like second sheet (hereinafter, also referred to as "low-friction resin sheet") is formed by winding a laminate, the joint portion is partially separated or the tube 12 and the coating are covered The case where the part which became wrinkles with the layer 20 is partially separated is included.
 低摩擦樹脂層13の厚さは、被覆層への追従性の観点から、0.05mm以上7mm以下の範囲が好ましく、0.08mm以上5mm以下がより好ましく、0.1mm以上3mm以下がさらに好ましい。なお、低摩擦樹脂層13の厚さは、複合管10から低摩擦樹脂層13を取り出して、任意の箇所3箇所を測定して得られた値の平均値とする。 The thickness of the low friction resin layer 13 is preferably in the range of 0.05 mm or more and 7 mm or less, more preferably 0.08 mm or more and 5 mm or less, and still more preferably 0.1 mm or more and 3 mm or less, from the viewpoint of followability to the coating layer. . In addition, let the thickness of the low friction resin layer 13 take out the low friction resin layer 13 from the composite pipe | tube 10, and let it be an average value of the value obtained by measuring three arbitrary places.
 低摩擦樹脂層13を備えた複合管10は、管体12と多孔質樹脂層14との間に低摩擦樹脂層13が配置されていることで、被覆層20の端部を短縮変形させて管体12の端部を露出させた後に被覆層20を戻す際に多孔質樹脂層14が巻き込まれることが抑制される。具体的には以下の通りである。 The composite tube 10 provided with the low friction resin layer 13 has the low friction resin layer 13 disposed between the tube body 12 and the porous resin layer 14, thereby shortening and deforming the end of the coating layer 20. When the coating layer 20 is returned after the end of the tubular body 12 is exposed, the porous resin layer 14 is prevented from being involved. Specifically, it is as follows.
 管体12、多孔質樹脂層14、及び蛇腹状の被覆層20を有する複合管では、内部の管体12の端部に継手などを接続するときに、図10に示すように被覆層の端部を矢印Bで示す方向に短縮させてずらして管体端部を露出させ、また管体の端部を継手などに接続した後に短縮させた被覆層を矢印Aで示す方向に伸長して元に戻し、再び管体を被覆することが求められる。 In a composite tube having the tube body 12, the porous resin layer 14, and the bellows-like covering layer 20, when connecting a joint or the like to the end of the inner tube body 12, as shown in FIG. The part is shortened in the direction indicated by arrow B and shifted to expose the end of the tube, and the end of the tube is connected to a joint etc. and then the shortened covering layer is extended in the direction indicated by arrow A to It is required to cover the tube again.
 図11に示すように、管体12と多孔質樹脂層14との間に低摩擦樹脂層13が配置された複合管10では、低摩擦樹脂層13の内周面におけるすべり抵抗値の方が小さく滑りやすい。そのため、被覆層20の端部を短縮変形させて管体12の端部を露出させた後に再び被覆層を元に戻す際に、多孔質樹脂層14及び低摩擦樹脂層13が被覆層20の軸方向への伸長の動作に対して良好に追従し、露出された管体12の端部を再び低摩擦樹脂層13、多孔質樹脂層14、及び被覆層20によって良好に覆うことができる。 As shown in FIG. 11, in the composite pipe 10 in which the low friction resin layer 13 is disposed between the tubular body 12 and the porous resin layer 14, the sliding resistance value on the inner peripheral surface of the low friction resin layer 13 is Small and slippery. Therefore, when the end of the covering layer 20 is shortened and deformed to expose the end of the tubular body 12 and then the covering layer is put back again, the porous resin layer 14 and the low friction resin layer 13 form the covering layer 20. The end of the tubular body 12 exposed can be well covered by the low friction resin layer 13, the porous resin layer 14, and the covering layer 20 well following the operation of axial extension.
 ここで、上記「すべり抵抗値」は、具体的には以下のようにして測定する。低摩擦樹脂層の内周面におけるすべり抵抗値を測定する場合は、まず、管体の外周側に被覆層を配し、管体と被覆層の間に、多孔質樹脂層とすべり抵抗値を測定する対象の低摩擦樹脂層とを、低摩擦樹脂層が管体に接するように挿入して長さ200mmの複合管を形成する。そしてフォースゲージ(例えばイマダ製普及型デジタルフォースゲージDS2)の先端部に複合管の一方の端部を接続し、複合管の他方の端部における被覆層を50mmずらした時の力(単位:N)を測定する。 Here, the "slip resistance value" is specifically measured as follows. In the case of measuring the sliding resistance value on the inner circumferential surface of the low friction resin layer, first, the covering layer is disposed on the outer peripheral side of the tube, and the porous resin layer and the sliding resistance value are set between the tube and the covering layer. A low friction resin layer to be measured is inserted so that the low friction resin layer is in contact with the tube to form a composite tube having a length of 200 mm. Then, connect one end of the composite pipe to the tip of a force gauge (for example, IMADA popular digital force gauge DS2) and shift the coating layer at the other end of the composite pipe by 50 mm (unit: N) Measure).
 また、多孔質樹脂層の内周面におけるすべり抵抗値を測定する場合は、管体の外周側に被覆層を配し、管体と被覆層の間に、すべり抵抗値を測定する対象の多孔質樹脂層を、多孔質樹脂層が管体に接するように挿入して長さ200mmの複合管を形成する。そして、低摩擦樹脂層のすべり抵抗値の測定と同様にして、多孔質樹脂層のすべり抵抗値を測定する。 In addition, in the case of measuring the sliding resistance value on the inner peripheral surface of the porous resin layer, the covering layer is disposed on the outer peripheral side of the tubular body, and the porosity of the target of measuring the sliding resistance value between the tubular body and the covering layer. The porous resin layer is inserted such that the porous resin layer is in contact with the tube to form a composite tube 200 mm in length. Then, the sliding resistance value of the porous resin layer is measured in the same manner as the measurement of the sliding resistance value of the low friction resin layer.
 なお、低摩擦樹脂層13を設ける場合、多孔質樹脂層14の自然状態での厚さは、低摩擦樹脂層13の厚さよりも厚いことが好ましい。多孔質樹脂層14は、複合管10における熱保護の役割を有することが好ましく、厚いほど前記熱保護性が向上する。一方、低摩擦樹脂層13が厚すぎると、多孔質樹脂層14及び低摩擦樹脂層13における被覆層20への追従性が低下する。そのため、多孔質樹脂層14を相対的に厚くし、低摩擦樹脂層13を相対的に薄くすることで、前記熱保護性と被覆層20への追従性との両方が向上する。 When the low friction resin layer 13 is provided, the thickness of the porous resin layer 14 in the natural state is preferably thicker than the thickness of the low friction resin layer 13. The porous resin layer 14 preferably has a role of heat protection in the composite tube 10, and the heat protection property is improved as the porous resin layer 14 is thicker. On the other hand, when the low friction resin layer 13 is too thick, the followability to the coating layer 20 in the porous resin layer 14 and the low friction resin layer 13 is reduced. Therefore, by making the porous resin layer 14 relatively thick and making the low friction resin layer 13 relatively thin, both the heat protection property and the followability to the coating layer 20 are improved.
 さらに、熱保護性及び被覆層への追従性の観点から、多孔質樹脂層14の自然状態での厚さは、低摩擦樹脂層13の厚さの10倍以上200倍以下が好ましく、20倍以上150倍以下がより好ましく、25倍以上100倍以下がさらに好ましい。 Furthermore, from the viewpoint of heat protection and coverage to the covering layer, the thickness of the porous resin layer 14 in the natural state is preferably 10 times to 200 times the thickness of the low friction resin layer 13, and 20 times More than 150 times is more preferable, and 25 times or more and 100 times or less is more preferable.
 また、多孔質樹脂層14の内周面は、低摩擦樹脂層13の外周面と接着されていることが好ましい。多孔質樹脂層14と低摩擦樹脂層13とが接着されていることにより、多孔質樹脂層14及び低摩擦樹脂層13における被覆層への追従性がより向上する。 The inner peripheral surface of the porous resin layer 14 is preferably bonded to the outer peripheral surface of the low friction resin layer 13. By adhering the porous resin layer 14 and the low friction resin layer 13, the followability to the coating layer of the porous resin layer 14 and the low friction resin layer 13 is further improved.
 多孔質樹脂層14と低摩擦樹脂層13とを接着する方法としては、接着剤を両層の間に塗布して接着する方法のほか、フレームラミネート法により接着する方法が挙げられ、この中でもフレームラミネート法が好ましい。つまり、多孔質樹脂層14と低摩擦樹脂層13とがフレームラミネート接着体であることが好ましい。 As a method of bonding the porous resin layer 14 and the low friction resin layer 13, in addition to a method of applying and bonding an adhesive between the two layers, a method of bonding by a frame laminating method can be mentioned. The lamination method is preferred. That is, it is preferable that the porous resin layer 14 and the low friction resin layer 13 be a frame laminate adhesive body.
 フレームラミネート法は、例えば、多孔質樹脂層14中に含まれる可溶性物質を火炎により熱溶融させて染み出させ、この染み出した溶融物により低摩擦樹脂層13と接着する方法である。そして、フレームラミネート法によって多孔質樹脂層14と低摩擦樹脂層13とが接着された積層体(以下「フレラミ接着体」ともいう)は、接着剤を両層の間に塗布して多孔質樹脂層14と低摩擦樹脂層13とが接着された積層体(以下「接着剤による接着体」ともいう)と異なり、多孔質樹脂層14と低摩擦樹脂層13との間の両層を接着している層を薄層化できる。そのため、フレラミ接着体を有する複合管10は、多孔質樹脂層14及び低摩擦樹脂層13における被覆層への追従性がより向上することに加え、複合管10の製造過程においてバリが発生しにくい。 The frame laminating method is a method in which, for example, a soluble substance contained in the porous resin layer 14 is thermally melted and exfoliated by a flame, and the exuded melt adheres to the low friction resin layer 13. Then, a laminate (hereinafter, also referred to as a "glare adhesive") in which the porous resin layer 14 and the low-friction resin layer 13 are bonded by the frame laminating method is coated with an adhesive between the two layers to form a porous resin. Unlike a laminate in which the layer 14 and the low-friction resin layer 13 are adhered (hereinafter also referred to as “adhesive by an adhesive”), both layers between the porous resin layer 14 and the low-friction resin layer 13 are adhered Layers can be thinned. Therefore, in addition to the followability to the coating layer in the porous resin layer 14 and the low friction resin layer 13 being further improved, the composite tube 10 having the flash adhesive is less likely to generate burrs in the process of manufacturing the composite tube 10 .
[第2実施形態]
 以下、本開示に係る複合管の一例である第2実施形態について、図面を適宜参照しながら詳細に説明する。なお、第1実施形態と同様の構成については同一の符合で示し、適宜説明を省略する。また、製造方法に関して、第1実施形態と同様の内容についても適宜説明を省略する。
Second Embodiment
Hereinafter, a second embodiment which is an example of a composite pipe according to the present disclosure will be described in detail with reference to the drawings as appropriate. In addition, about the structure similar to 1st Embodiment, it shows with the same code | symbol, and abbreviate | omits description suitably. Further, regarding the manufacturing method, the description of the same contents as those of the first embodiment will be appropriately omitted.
(多孔質樹脂層)
 第2実施形態における多孔質樹脂層14は、第1実施形態と同様に、図12Aに示すように、帯状の多孔質樹脂シート14Sを用いて形成される。多孔質樹脂層14は、管体12の外周長と略等しい長さの幅を有するように帯状に形成された多孔質樹脂シート14Sを、図12Bに示すように管体12の周囲に巻き付け、端面14SAと端面14SBとを融着する。そしてその状態で、さらに被覆層20形成用の樹脂組成物の溶融物を塗布し、この溶融物の外周面に対して、半円弧状の内面を有しかつこの内面が蛇腹の形状を有する二対の金型を二方向から接近させて接触させ、固化させることで蛇腹状の被覆層20を形成する。
(Porous resin layer)
The porous resin layer 14 in the second embodiment is formed using a band-like porous resin sheet 14S, as shown in FIG. 12A, as in the first embodiment. The porous resin layer 14 winds a porous resin sheet 14S formed in a band shape so as to have a width substantially equal to the outer peripheral length of the tubular body 12, around the tubular body 12 as shown in FIG. 12B. The end face 14SA and the end face 14SB are fused. Then, in this state, a melt of the resin composition for forming the coating layer 20 is further applied, and the outer peripheral surface of the melt has a semicircular arc inner surface and the inner surface has a bellows shape. A pair of molds are brought close to each other from two directions and brought into contact and solidified to form a bellows-like covering layer 20.
 (製造方法)
 第2実施形態における複合管10の製造方法は、例えば、管体12の外周に、多孔質樹脂シート14Sの両端面を対向させて巻き付け、両端面を融着し、多孔質樹脂層14を形成する。その後、多孔質樹脂層14の外周に被覆層20を形成する。
(Production method)
In the method of manufacturing the composite pipe 10 according to the second embodiment, for example, both end faces of the porous resin sheet 14S are wound opposite to each other on the outer periphery of the pipe body 12, and both end faces are fused to form the porous resin layer 14 Do. Thereafter, the covering layer 20 is formed on the outer periphery of the porous resin layer 14.
 複合管10の製造には、例えば、図16に示す製造装置30を用いることができる。製造装置30は、押出機32、ダイ34、波付け金型36、冷却槽38、及び引取装置39を有している。複合管10の製造工程は、図16の右側が上流側となっており、右側から左側へ向かって管体12が移動しつつ製造される。以下、この移動方向を製造方向Yとする。ダイ34、波付け金型36、冷却槽38、引取装置39は、製造方向Yに対してこの順に配置されており、押出機32は、ダイ34の上流に配置されている。また、押出機32の上流側には、図示しないヒートガン又はカートリッジヒーター若しくヒートガンとカートリッジヒーターの双方が設置されており、図16に矢印Hで示す位置、すなわち多孔質樹脂シート14Sの端面14SAと端面14SBとの突付け面14Lに熱風等を当てて、端面14SAと端面14SBとを融着できる。なお、以下の説明においては、融着された突付け面14Lを融着面14Rと称す場合がある。 For example, a manufacturing apparatus 30 shown in FIG. 16 can be used to manufacture the composite pipe 10. The manufacturing apparatus 30 includes an extruder 32, a die 34, a wave mold 36, a cooling tank 38, and a pulling device 39. In the manufacturing process of the composite pipe 10, the right side of FIG. 16 is the upstream side, and the pipe 12 is manufactured while moving from the right side to the left side. Hereinafter, this moving direction is referred to as a manufacturing direction Y. The die 34, the corrugated die 36, the cooling tank 38, and the pulling device 39 are disposed in this order with respect to the manufacturing direction Y, and the extruder 32 is disposed upstream of the die 34. Further, on the upstream side of the extruder 32, a heat gun or cartridge heater (not shown) or both the heat gun and the cartridge heater are installed, and the position shown by the arrow H in FIG. 16, ie, the end surface 14SA of the porous resin sheet 14S The end face 14SA and the end face 14SB can be fused by applying hot air or the like to the abutting face 14L with the end face 14SB. In the following description, the fusion-bonded abutting surface 14L may be referred to as a fusion-bonded surface 14R.
 ダイ34の上流には、不図示であるが、管体12、及び、多孔質樹脂層14を構成する多孔質樹脂シート14Sがロール状に巻き取られたシート状部材15Sが配置されている。引取装置39により製造方向Yに引っ張られることによって、管体12及びロール状の多孔質樹脂シート14Sは、連続的に引き出される。連続的に引き出された管体12の外周面には、ダイ34の手前で、図12Bに示すように、多孔質樹脂シート14Sが、端面14SAと端面14SBとを対向させるようにして、全周にわたって巻きつけられる。多孔質樹脂シート14Sは、ヒートガンによって端面14SAと端面14SBとが融着された状態で、ダイ34へ挿入される。 Although not shown, a sheet-like member 15S is disposed upstream of the die 34. The tubular body 12 and a porous resin sheet 14S constituting the porous resin layer 14 are wound in a roll. By being pulled in the manufacturing direction Y by the pulling device 39, the tubular body 12 and the porous resin sheet 14S in a roll shape are continuously pulled out. As shown in FIG. 12B on the outer peripheral surface of the tubular body 12 drawn out continuously, the porous resin sheet 14S faces the end surface 14SA and the end surface 14SB, as shown in FIG. 12B. Wrapped around. The porous resin sheet 14S is inserted into the die 34 in a state where the end face 14SA and the end face 14SB are fused by the heat gun.
 図16に示すように、管体12の外周に巻き付けられ、両端部が融着された多孔質樹脂シート14Sの外周には、ダイ34から溶融された樹脂材(すなわち被覆層20形成用の樹脂組成物の溶融物)が円筒状に押し出されて塗布され、樹脂材20Aが形成される。ここで使用する樹脂を、MFR0.25以上の低密度ポリエチレン(LDPE)とすることにより、樹脂材が多孔質樹脂シートの孔(気泡)に入り込みやすくなり、多孔質樹脂シート14Sと樹脂材20Aとの接着性が向上する。 As shown in FIG. 16, on the outer periphery of the porous resin sheet 14S wound around the outer periphery of the tubular body 12 and fused at both ends, a resin material melted from the die 34 (ie, a resin for forming the coating layer 20) The molten material of the composition is cylindrically extruded and applied to form a resin material 20A. By setting the resin used here to low density polyethylene (LDPE) of MFR 0.25 or more, the resin material can easily enter the pores (bubbles) of the porous resin sheet, and the porous resin sheet 14S and the resin material 20A Adhesiveness is improved.
 管体12、多孔質樹脂シート14S、及び樹脂材20Aで構成される管状押出体21が形成された後、ダイ34の下流側に配置された波付け金型36で波付け工程(すなわち蛇腹状に形成する工程)が行われる。この波付け工程については第1実施形態と同様であるため説明を省略する。 After the tubular extruded body 21 composed of the tubular body 12, the porous resin sheet 14S, and the resin material 20A is formed, a wave forming process (i.e., a bellows shape) is performed by the wave forming die 36 disposed downstream of the die 34. Process) is performed. The corrugation process is the same as in the first embodiment, and thus the description thereof is omitted.
 図17Aに示すように、多孔質樹脂シート14Sの端面14SAと端面14SBとの融着面14Rは、管体12の周方向において、波付け金型36のパーティング面36Dと異なる位置に配置される。 As shown in FIG. 17A, the fusion bonding surface 14R between the end surface 14SA and the end surface 14SB of the porous resin sheet 14S is disposed at a position different from the parting surface 36D of the wave application mold 36 in the circumferential direction of the tube 12. Ru.
 このとき、融着面14Rは、パーティング面36Dと最も離れた位置に配置することが好ましい。すなわち、キャビティ36Aの最深部(すなわち断面視で半円状とされたキャビティ36Aにおいて、接線がパーティング面36Dと平行である部分)に対応する位置に融着面14Rを配置することが好ましい。 At this time, it is preferable that the fusion bonding surface 14R be disposed at a position farthest from the parting surface 36D. That is, it is preferable to dispose the fusion surface 14R at a position corresponding to the deepest portion of the cavity 36A (that is, a portion where the tangent is parallel to the parting surface 36D in the cavity 36A which is semicircular in cross section).
 波付け金型36を型締めした際に形成される蛇腹状の被覆層20の外周面には、パーティング面36Dに対応する位置に、パーティングラインPL(図1参照)が形成される。 A parting line PL (see FIG. 1) is formed at a position corresponding to the parting surface 36D on the outer peripheral surface of the bellows-like covering layer 20 formed when the wave application mold 36 is clamped.
 波付け金型36を用いて被覆層20が蛇腹状に成形されると、被覆層20は冷却槽38を用いて冷却され、蛇腹形状の被覆層20が完成し、複合管10が製造される。この複合管10は引取装置39を用いて製造方向Yへ連続的に搬送され、製造装置30では複合管10が連続的に製造される。 When the coating layer 20 is formed into a bellows shape using the wave application mold 36, the coating layer 20 is cooled using the cooling tank 38, and the bellows-shaped coating layer 20 is completed, and the composite tube 10 is manufactured. . The composite pipe 10 is continuously conveyed in the manufacturing direction Y by using the pulling device 39, and the manufacturing pipe 30 continuously manufactures the composite pipe 10.
(作用)
 上記で説明した複合管10及び複合管10の製造方法による作用について説明する。上記実施形態に係る複合管10では、図1に示すように、管体12と被覆層20との間に、帯状の多孔質樹脂シート14Sの幅方向における両端面(すなわち端面14SA及び端面14SB)が融着された状態で管状に形成された、多孔質樹脂層14が配置されている。そして、被覆層20のパーティングラインPLと、多孔質樹脂シート14Sの端面14SAと端面14SBとの融着面14Rとが、管体12の周方向において異なる位置に配置されている。
(Action)
The operation of the composite pipe 10 described above and the method of manufacturing the composite pipe 10 will be described. In the composite pipe 10 according to the above embodiment, as shown in FIG. 1, both end faces in the width direction of the strip-like porous resin sheet 14S (that is, the end face 14SA and the end face 14SB) A porous resin layer 14 formed in a tubular shape in a fused state is disposed. The parting line PL of the covering layer 20 and the fusion bonding surface 14R between the end surface 14SA of the porous resin sheet 14S and the end surface 14SB are disposed at different positions in the circumferential direction of the tubular body 12.
 すなわち、図16に示すように、多孔質樹脂シート14Sの端面14SAと端面14SBとが融着された状態で、多孔質樹脂シート14Sの外周に、被覆層20を形成する樹脂材料(樹脂材20A)が塗布される。そして、図17A、図17Bに示すように、多孔質樹脂シート14Sの端面14SAと端面14SBとが融着された状態で、波付け金型36を用いて多孔質樹脂層14の外周に被覆層20が形成される。また、波付け金型36のパーティング面36Dに対して、多孔質樹脂シート14Sが、融着面14Rをずらした状態で配置される。 That is, as shown in FIG. 16, a resin material (resin material 20A) for forming the covering layer 20 on the outer periphery of the porous resin sheet 14S in a state where the end surface 14SA and the end surface 14SB of the porous resin sheet 14S are fused. Is applied. And as shown to FIG. 17A and FIG. 17B, in the state by which end surface 14SA and end surface 14SB of porous resin sheet 14S were fused, a covering layer is carried out to the perimeter of porous resin layer 14 using corrugating mold 36. 20 are formed. In addition, the porous resin sheet 14S is disposed with the fusion bonding surface 14R shifted with respect to the parting surface 36D of the wave application mold 36.
 ところで、図15Aには、比較例に係る複合管の型締め前の状態が示されている。比較例に係る複合管では、多孔質樹脂シート14Sの幅方向の両端面(すなわち端面14SA及び端面14SB)が融着されていない。このため、多孔質樹脂シート14Sは元の形状に戻ろうとして、両端面の間には隙間が形成される。また、波付け金型36のパーティング面36Dに対して、端面14SA、端面14SBの対向位置Vが一致した状態で配置される。換言すると、管体12の周方向において、一対の波付け金型36において互いに対向するパーティング面36Dの隙間(対向位置V2)と、端面14SA、端面14SBの隙間(対向位置V)とが重なっている。 By the way, the state before mold clamping of the composite pipe which concerns on a comparative example is shown by FIG. 15A. In the composite pipe according to the comparative example, both end faces in the width direction of the porous resin sheet 14S (that is, the end face 14SA and the end face 14SB) are not fused. For this reason, when the porous resin sheet 14S tries to return to the original shape, a gap is formed between both end faces. Further, the end surface 14SA and the end surface 14SB are disposed in a state where the facing position V of the end surface 14SA and the end surface 14SB coincide with the parting surface 36D of the wave forming die 36. In other words, in the circumferential direction of the tube 12, the gap (facing position V2) between the parting surfaces 36D facing each other in the pair of corrugated dies 36 and the gap (facing position V) between the end surface 14SA and the end surface 14SB overlap ing.
 これにより、図15Bに示すように、型締めに伴って、端面14SA、端面14SBが互いに近づく方向へ移動して、樹脂材20Aの端面14SA、端面14SB付近に弛み部20Tが発生する。この弛み部20Tがパーティング面36Dによって挟まれると、被覆層にバリが発生する可能性がある。 As a result, as shown in FIG. 15B, the end face 14SA and the end face 14SB move in a direction in which the end face 14SA and the end face 14SB approach each other as the mold is tightened, and a slack portion 20T is generated near the end face 14SA and the end face 14SB of the resin material 20A. When the slack portion 20T is sandwiched by the parting surface 36D, burrs may occur in the covering layer.
 これに対して、本開示の実施形態に係る複合管10においては、図17Aに示すように、多孔質樹脂シート14Sの端面14SAと端面14SBとが融着されているため、波付け金型36を型締めしても、樹脂材20Aには弛み部20T(図15B参照)が発生し難い。このため、被覆層20にはバリが発生し難い。 On the other hand, in the composite pipe 10 according to the embodiment of the present disclosure, as shown in FIG. 17A, the end face 14SA and the end face 14SB of the porous resin sheet 14S are fused. Even if the mold is clamped, the slack portion 20T (see FIG. 15B) does not easily occur in the resin material 20A. For this reason, it is hard to generate | occur | produce a burr | flash in the coating layer 20. As shown in FIG.
 さらに、複合管10においては、多孔質樹脂シート14Sの融着面14Rが、波付け金型36のパーティング面36Dに対してずらして配置されている。このため、図14に示すように、端面14SAと端面14SBが部分的に融着していない部分があった場合でも、当該部分の樹脂材20Aに発生する弛み部20Tは、波付け金型36のキャビティ36Aによって押圧されて消失する。このため、被覆層20にはバリが発生し難い。 Furthermore, in the composite pipe 10, the fusion bonding surface 14R of the porous resin sheet 14S is disposed offset with respect to the parting surface 36D of the wave application mold 36. For this reason, as shown in FIG. 14, even when there is a portion where the end face 14SA and the end face 14SB are not partially fused, the slack portion 20T generated in the resin material 20A of the part is the corrugated die 36. Is pressed by the cavity 36A and disappears. For this reason, it is hard to generate | occur | produce a burr | flash in the coating layer 20. As shown in FIG.
 このように、本開示における「多孔質樹脂シート14Sの幅方向における両端面(すなわち端面14SA及び端面14SB)が融着された状態」とは、管体12の軸方向において、端面14SAと端面14SBが部分的に融着されていない場合を含むものとする。 Thus, “the state in which both end surfaces in the width direction of the porous resin sheet 14S (that is, the end surface 14SA and the end surface 14SB) are fused” in the present disclosure means the end surface 14SA and the end surface 14SB in the axial direction of the tube 12. Shall be included if not partially fused.
 また、本実施形態における複合管10では、図17Bに示すように、管体12の軸方向(図17Bの紙面前後方向)において、多孔質樹脂シート14Sにおける融着面14Rの少なくとも一部が、管体12の周方向においてパーティング面36Dから最も離れた位置に配置されている。 Further, in the composite pipe 10 according to the present embodiment, as shown in FIG. 17B, at least a part of the fusion surface 14R of the porous resin sheet 14S in the axial direction of the tubular body 12 (the front and back direction of FIG. 17B) In the circumferential direction of the pipe body 12, it is arrange | positioned most distantly from the parting surface 36D.
 波付け金型36を型締めした際に、樹脂材20A及び多孔質樹脂シート14Sが金型36から外力を受けて、部分的に管体12の周方向に移動する場合がある。このような場合、融着面14Rは、部分的に他の部分と周方向にずれて配置される。融着面14Rの少なくとも一部が、管体12の周方向においてパーティング面36Dから最も離れた位置に配置されていることにより、融着面14Rが部分的にずれて配置されても、当該部分がパーティング面36Dと同じ位置に配置されることが抑制される。これにより、バリの発生を抑制できる。 When the wave application mold 36 is clamped, the resin material 20A and the porous resin sheet 14S may be partially moved in the circumferential direction of the tubular body 12 by receiving an external force from the mold 36. In such a case, the fusion bonding surface 14R is partially offset in the circumferential direction from other portions. By arranging at least a part of the fusion bonding surface 14R at a position farthest from the parting surface 36D in the circumferential direction of the tube 12, even if the fusion bonding surface 14R is partially displaced and arranged, It is suppressed that the portion is arranged at the same position as the parting surface 36D. This can suppress the occurrence of burrs.
 なお、本実施形態における複合管10においては、多孔質樹脂シート14Sの融着面14Rが、波付け金型36のパーティング面36Dに対してずらして配置されているが、本開示の実施形態はこれに限らない。例えば多孔質樹脂シート14Sの融着面14Rを、一対の波付け金型36において互いに対向するパーティング面36Dの隙間(対向位置V2)に対応する位置に配置してもよい。このように配置しても、当該部分の樹脂材20Aに弛み部20Tは発生し難い。 In the composite pipe 10 in the present embodiment, the fusion bonding surface 14R of the porous resin sheet 14S is disposed to be shifted with respect to the parting surface 36D of the wave application mold 36, but the embodiment of the present disclosure Is not limited to this. For example, the fusion bonding surface 14R of the porous resin sheet 14S may be disposed at a position corresponding to the gap (opposing position V2) between the parting surfaces 36D facing each other in the pair of corrugated dies 36. Even when arranged in this manner, the slack portion 20T is unlikely to be generated in the resin material 20A of the portion.
 2017年12月13日に出願された日本国特許出願2017-238864号及び2017年12月13日に出願された日本国特許出願2017-238865号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosures of Japanese patent application 2017-238864 filed on Dec. 13, 2017 and Japanese patent application 2017-238865 filed on Dec. 13, 2017 are hereby incorporated by reference in their entirety. It is captured. All documents, patent applications and technical standards described herein are as specific and individually as individual documents, patent applications and technical standards are incorporated by reference. Incorporated herein by reference.

Claims (6)

  1.  管状の管体と、
     管状とされて前記管体の外周を覆い、径方向外側へ凸となる環状の山部と径方向外側が凹となる環状の谷部とが、前記管体の軸方向に交互に形成されて蛇腹状とされた、樹脂材料で構成された被覆層と、
     帯状の多孔質樹脂シートの幅方向における両端面を突付けた状態で管状に形成され、前記管体と前記被覆層との間に配置され、前記谷部と前記管体との間に挟持されると共に、前記両端面の突付け位置と前記被覆層のパーティングラインとが、前記管体の周方向において異なる位置に配置されている中間層と、
     を有する複合管。
    With a tubular tube,
    An annular ridge which is tubular and covers the outer periphery of the tube and which is convex radially outward and an annular valley which is concave outward in the radial direction are alternately formed in the axial direction of the tube. A bellows-like covering layer made of a resin material,
    It is formed in a tubular shape in a state in which both end faces in the width direction of the strip-like porous resin sheet are abutted, and it is disposed between the tubular body and the covering layer, and sandwiched between the valley portion and the tubular body An intermediate layer in which the abutting positions of the both end surfaces and the parting line of the covering layer are disposed at different positions in the circumferential direction of the tube;
    Composite tube with.
  2.  管状の管体と、
     管状とされて前記管体の外周を覆い、径方向外側へ凸となる環状の山部と径方向外側が凹となる環状の谷部とが、前記管体の軸方向に交互に形成されて蛇腹状とされた、樹脂材料で構成された被覆層と、
     帯状の多孔質樹脂シートの幅方向における両端面が融着された状態で管状に形成され、前記管体と前記被覆層との間に配置され、前記谷部と前記管体との間に挟持された中間層と、
     を有する複合管。
    With a tubular tube,
    An annular ridge which is tubular and covers the outer periphery of the tube and which is convex radially outward and an annular valley which is concave outward in the radial direction are alternately formed in the axial direction of the tube. A bellows-like covering layer made of a resin material,
    Both end faces in the width direction of the strip-like porous resin sheet are formed into a tubular shape in a fused state, and are disposed between the tubular body and the covering layer, and sandwiched between the valley portion and the tubular body The middle layer,
    Composite tube with.
  3.  前記突付け位置が、前記管体の周方向において前記被覆層のパーティングラインから最も離れた位置に配置されている、請求項1に記載の複合管。 The composite pipe according to claim 1, wherein the abutting position is disposed at a position farthest from the parting line of the covering layer in the circumferential direction of the pipe body.
  4.  前記被覆層を形成する前記樹脂材料のMelt flow rate(MFR)が0.25以上1.2以下である、請求項1~3のいずれか一項に記載の複合管。 The composite pipe according to any one of claims 1 to 3, wherein Melt flow rate (MFR) of the resin material forming the covering layer is 0.25 or more and 1.2 or less.
  5.  環状の管体の外周に、帯状の多孔質樹脂シートの両端面を対向させて巻き付ける工程と、
     前記多孔質樹脂シートの外周に樹脂材料を塗布する工程と、
     前記両端面の対向位置を金型のパーティング面からずらした状態で、前記管体、前記多孔質樹脂シート及び前記樹脂材料を前記金型に配置して型締めし、前記両端面を突き付けて中間層を形成すると共に、前記中間層の外周に前記樹脂材料により成形された被覆層を形成する工程と、
     を有する複合管の製造方法。
    A step of facing and winding the both end faces of the strip-like porous resin sheet around the outer periphery of the annular tube;
    Applying a resin material to the outer periphery of the porous resin sheet;
    The tubular body, the porous resin sheet and the resin material are disposed in the mold and clamped in a state where the opposing positions of the both end faces are offset from the parting surface of the mold, and the both end faces are pressed Forming an intermediate layer, and forming a coating layer formed of the resin material on the outer periphery of the intermediate layer;
    A method of manufacturing a composite pipe having:
  6.  環状の管体の外周に、帯状の多孔質樹脂シートの両端面を対向させて巻き付ける工程と、
     前記両端面を融着する工程と、
     前記多孔質樹脂シートの外周に樹脂材料を塗布する工程と、
     前記管体、前記多孔質樹脂シート及び前記樹脂材料を金型に配置して型締めし、前記両端面を突き付けて中間層を形成すると共に、前記中間層の外周に前記樹脂材料により成形された被覆層を形成する工程と、
     を有する複合管の製造方法。
    A step of facing and winding the both end faces of the strip-like porous resin sheet around the outer periphery of the annular tube;
    Fusing the two end faces;
    Applying a resin material to the outer periphery of the porous resin sheet;
    The tubular body, the porous resin sheet and the resin material are placed in a mold and clamped, and both end faces are pressed to form an intermediate layer, and the resin material is molded on the outer periphery of the intermediate layer Forming a covering layer;
    A method of manufacturing a composite pipe having:
PCT/JP2018/045766 2017-12-13 2018-12-12 Composite pipe and production method for composite pipe WO2019117219A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-238864 2017-12-13
JP2017238865A JP6965140B2 (en) 2017-12-13 2017-12-13 Composite pipe
JP2017-238865 2017-12-13
JP2017238864A JP6965139B2 (en) 2017-12-13 2017-12-13 Composite pipe

Publications (1)

Publication Number Publication Date
WO2019117219A1 true WO2019117219A1 (en) 2019-06-20

Family

ID=66820385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045766 WO2019117219A1 (en) 2017-12-13 2018-12-12 Composite pipe and production method for composite pipe

Country Status (2)

Country Link
TW (1) TW201932289A (en)
WO (1) WO2019117219A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246079A (en) * 1985-08-21 1987-02-27 住友電気工業株式会社 Composite pipe and manufacture thereof
DE4128654A1 (en) * 1991-08-29 1993-03-04 Wolfgang Mayer Laminar plastic pipe - comprises intermediate pipe of different characteristics to corrugated outer one also joined to inner one
JPH06143527A (en) * 1992-11-05 1994-05-24 Sekisui Chem Co Ltd Method and apparatus for manufacturing tubular coating material
JPH08156088A (en) * 1994-11-30 1996-06-18 Furukawa Electric Co Ltd:The Manufacture of cylindrical cover
JPH08300467A (en) * 1995-04-28 1996-11-19 Mitsui Toatsu Chem Inc Composite pipe and continuous production thereof
JPH11503217A (en) * 1995-04-03 1999-03-23 ウポノール・ベー・ブイ Method of manufacturing corrugated tube and corrugated tube manufactured by this method
JP2002039446A (en) * 2000-07-18 2002-02-06 Inaba Denki Sangyo Co Ltd Fluid transport pipe with protective pipe and method of manufacturing the same
WO2004039574A2 (en) * 2002-10-31 2004-05-13 Plastiflex Belgium Tubular body having isolation layer of foamed plastic and method for producing same
JP2004322583A (en) * 2003-04-28 2004-11-18 Sanyo Kasei:Kk Corrugated tube production method and the corrugated tube produced thereby
JP2013231490A (en) * 2012-05-01 2013-11-14 Bridgestone Corp Composite pipe, and method for manufacturing the same
JP2017013498A (en) * 2015-06-26 2017-01-19 株式会社ブリヂストン Method for producing corrugated composite tube
WO2017213007A1 (en) * 2016-06-09 2017-12-14 株式会社ブリヂストン Compound tube

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246079A (en) * 1985-08-21 1987-02-27 住友電気工業株式会社 Composite pipe and manufacture thereof
DE4128654A1 (en) * 1991-08-29 1993-03-04 Wolfgang Mayer Laminar plastic pipe - comprises intermediate pipe of different characteristics to corrugated outer one also joined to inner one
JPH06143527A (en) * 1992-11-05 1994-05-24 Sekisui Chem Co Ltd Method and apparatus for manufacturing tubular coating material
JPH08156088A (en) * 1994-11-30 1996-06-18 Furukawa Electric Co Ltd:The Manufacture of cylindrical cover
JPH11503217A (en) * 1995-04-03 1999-03-23 ウポノール・ベー・ブイ Method of manufacturing corrugated tube and corrugated tube manufactured by this method
JPH08300467A (en) * 1995-04-28 1996-11-19 Mitsui Toatsu Chem Inc Composite pipe and continuous production thereof
JP2002039446A (en) * 2000-07-18 2002-02-06 Inaba Denki Sangyo Co Ltd Fluid transport pipe with protective pipe and method of manufacturing the same
WO2004039574A2 (en) * 2002-10-31 2004-05-13 Plastiflex Belgium Tubular body having isolation layer of foamed plastic and method for producing same
JP2004322583A (en) * 2003-04-28 2004-11-18 Sanyo Kasei:Kk Corrugated tube production method and the corrugated tube produced thereby
JP2013231490A (en) * 2012-05-01 2013-11-14 Bridgestone Corp Composite pipe, and method for manufacturing the same
JP2017013498A (en) * 2015-06-26 2017-01-19 株式会社ブリヂストン Method for producing corrugated composite tube
WO2017213007A1 (en) * 2016-06-09 2017-12-14 株式会社ブリヂストン Compound tube

Also Published As

Publication number Publication date
TW201932289A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
JP7197356B2 (en) Composite pipe
CN110114603B (en) Composite pipe and method for manufacturing composite pipe
JP6871448B2 (en) Manufacturing method of corrugated composite pipe
JP2017219150A (en) Duplex tube
JP2019105322A (en) Composite tube and manufacturing method of the same
WO2018123780A1 (en) Composite tube
WO2019117219A1 (en) Composite pipe and production method for composite pipe
JP7063821B2 (en) Composite pipe
JP2019105321A (en) Composite tube and manufacturing method of the same
JP2019105327A (en) Composite tube
JP2017219149A (en) Duplex tube
JP7006217B2 (en) Composite pipe
JP2019215060A (en) Composite tube
JP7148047B2 (en) Composite pipe
JP4978948B2 (en) Manufacturing method of pipe lining material
JP2019105326A (en) Composite tube
JP6820196B2 (en) Composite pipe
JP2020094637A (en) Composite tube and manufacturing method of composite tube
JP2020190257A (en) Composite pipe
JP2019215059A (en) Composite tube
JP2019105320A (en) Composite tube
JP2016098911A (en) Heat insulation pipe and manufacturing method thereof
JP2016026284A (en) Multiple-unit tube and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889826

Country of ref document: EP

Kind code of ref document: A1