WO2019117205A1 - Light-emitting diode drive device - Google Patents

Light-emitting diode drive device Download PDF

Info

Publication number
WO2019117205A1
WO2019117205A1 PCT/JP2018/045711 JP2018045711W WO2019117205A1 WO 2019117205 A1 WO2019117205 A1 WO 2019117205A1 JP 2018045711 W JP2018045711 W JP 2018045711W WO 2019117205 A1 WO2019117205 A1 WO 2019117205A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
emitting diode
light emitting
switch element
circuit
Prior art date
Application number
PCT/JP2018/045711
Other languages
French (fr)
Japanese (ja)
Inventor
信道 高場
義博 萩原
福井 康人
Original Assignee
パーソルAvcテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パーソルAvcテクノロジー株式会社 filed Critical パーソルAvcテクノロジー株式会社
Publication of WO2019117205A1 publication Critical patent/WO2019117205A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present invention relates to a light emitting diode drive device for driving a light emitting diode.
  • LEDs Light-Emitting Diodes
  • LEDs are increasingly used for lighting bulbs used in homes, backlights for TVs, outdoor street lights, and LED displays, and are expected to be used for many electric devices in the future.
  • An LED drive device is used to light an LED (see, for example, Patent Document 1).
  • a high frequency drive method such as PWM (Pulse-Width Modulation) drive is often employed. This is because AC (Alternating Current) input voltage varies, and various voltages exist from 100v to 240v depending on the country. In order to obtain a constant brightness even if the voltage changes, switching is performed on the AC input, and once replaced with a square wave of high frequency (about several tens to several hundreds KHz). This enables the LED to be driven at a stable voltage that does not depend on the voltage of the AC input.
  • PWM Pulse-Width Modulation
  • LEDs are in demand worldwide. There is a need for a system that stably drives LEDs even if AC voltages vary in size or vary from country to country.
  • the AC input is replaced with a high frequency rectangular wave.
  • a transmitting circuit and a transformer for switching are required, and there is a problem that the scale of the circuit is increased and the cost is increased.
  • high frequency noise is generated by the switching operation, so that radiation noise to the AC input is generated, and there is a problem that it is necessary to provide a component for preventing radiation in the AC input line.
  • the present invention provides a light emitting diode drive device capable of stably driving a light emitting diode, which does not require switching operation at a frequency higher than the frequency of the AC input.
  • a light emitting diode drive apparatus is a light emitting diode drive apparatus for driving a light emitting diode, the rectification circuit rectifying an AC input signal, the smoothing capacitor smoothing the rectified signal, and A switching element for switching between connection and disconnection of a rectifier circuit and the smoothing capacitor; a voltage setting circuit for setting a target value of the voltage of the smoothing capacitor; and a threshold setting circuit for setting a threshold of the voltage of the rectified signal.
  • a control circuit which controls switching between on and off of the switch element in accordance with an output signal of the threshold setting circuit, and when the voltage of the rectified signal is equal to or higher than the threshold, the control circuit controls the switch The element is turned off and the output from the smoothing capacitor is supplied to the light emitting diode.
  • the rectifier circuit and the smoothing capacitor are not connected. That is, while the voltage of the output signal of the rectifier circuit is high, no voltage is supplied from the rectifier circuit to the smoothing capacitor. As a result, the voltage of the smoothing capacitor is suppressed to be higher than a predetermined voltage, and a DC voltage can be generated stably. Even when the AC voltage input to the light emitting diode drive device is high, the light emitting diode can be stably driven.
  • the threshold setting circuit outputs a signal according to the voltage of the rectified signal
  • the control circuit turns on the switch element according to the magnitude of the output signal of the threshold setting circuit. It may control switching between and off.
  • the threshold and the target value of the voltage of the smoothing capacitor may have the same magnitude.
  • the switch element may be a field effect transistor
  • the rectifier circuit may be connected to a drain of the switch element
  • the smoothing capacitor may be connected to a source of the switch element
  • the voltage setting circuit may supply a voltage of the same magnitude as a target value of the voltage of the smoothing capacitor to the gate of the switch element.
  • the drain and the source of the switch element may conduct.
  • control circuit may make the gate voltage of the switch element smaller than the target value when the voltage of the rectified signal is equal to or higher than the threshold.
  • the switch element may be an n-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • the voltage setting circuit may include a smoothing capacitor for smoothing the rectified signal, and a Zener diode connected to the smoothing capacitor of the voltage setting circuit.
  • the Zener voltage of the Zener diode may be set according to a target value of the voltage of the smoothing capacitor.
  • the light emitting diode driver may further include a diode provided between the rectifier circuit and the switch element.
  • an anode of the diode may be connected to the rectifier circuit, and a cathode of the diode may be connected to the switch element.
  • the threshold setting circuit may be connected to a node between the rectifier circuit and an anode of the diode.
  • the voltage setting circuit may be connected to a node between the rectifier circuit and an anode of the diode.
  • the light emitting diode drive device is provided between the rectifier circuit and the switch element, and the harmonic wave suppression that reduces harmonic components generated according to the current flowing from the rectifier circuit to the smoothing capacitor. It may further comprise a circuit.
  • the harmonic suppression circuit may include a coil that reduces the harmonic component, and a capacitor that holds a charge when the switch element is off.
  • the light emitting diode drive device may further include a constant current source device that sets the magnitude of the current flowing through the light emitting diode to a constant value.
  • a voltage may be supplied from the voltage setting circuit to the constant current source device.
  • the light emitting diode drive device may further include a light control device that changes the magnitude of the current set by the constant current source device.
  • the light control device further includes an insulated communication device that receives a control signal from a control device driven by a power supply independent of the AC input signal, and the constant current source according to the control signal.
  • the magnitude of the current set by the device may be changed.
  • a switch element is provided between the rectifying diode and the smoothing capacitor.
  • the switch element can cut off the voltage set by the constant voltage setting circuit as a threshold.
  • the switch element is cut off.
  • the maximum charging voltage of the smoothing capacitor is determined, and this voltage becomes the voltage supplied to the light emitting diode.
  • the control circuit cuts off the switch element while the AC input voltage is higher than the maximum charging voltage of the smoothing capacitor. Thereby, the power consumption of the switch element can be suppressed.
  • the switching operation at a frequency higher than the frequency of the AC input is unnecessary.
  • the light emitting diode drive device according to the embodiment can drive the light emitting diode with a constant voltage regardless of the magnitude of the AC input voltage.
  • the light emitting diode drive device suppresses the flow of harmonic components generated at the time of inrush current generation to the smoothing capacitor as radiation noise to the AC input side.
  • a coil is connected in series between the rectifier circuit and the switch element, and a harmonic capacitor is disposed in the subsequent stage. With the switch element cut off, the harmonic capacitors are charged through the coil at the instant when the AC input reaches the maximum voltage. Also, at the moment when the switch element is turned on, the charge of the harmonic capacitor moves to the smoothing capacitor, and the smoothing capacitor is charged. Thereby, harmonics can be suppressed.
  • the light emitting diode drive device can generate a constant voltage without flowing out the harmonic generated by the charging current of the smoothing capacitor.
  • the primary charging capacitor may be a capacitor with a small capacity to compensate for the discharge of the smoothing capacitor, and the small capacity capacitor can significantly reduce harmonic components.
  • the rectifier circuit, the switch element and the smoothing capacitor become a power supply device that generates a high voltage for driving the light emitting diode.
  • the light emitting diode drive device includes a constant current source device that determines the amount of current of the light emitting diode on the basis of a low voltage separately generated from the AC input. Thus, even when the AC input voltage fluctuates, the light emitting diode can be stably driven.
  • the switching operation at a frequency higher than the frequency of the AC input is unnecessary.
  • the coil for a switching and the components for preventing radiation become unnecessary, and a light emitting diode drive device can be implement
  • the rectifier circuit and the smoothing capacitor are not connected. That is, while the voltage of the output signal of the rectifier circuit is high, no voltage is supplied from the rectifier circuit to the smoothing capacitor. As a result, the voltage of the smoothing capacitor is suppressed to be higher than a predetermined voltage, and a DC voltage can be generated stably. Even when the AC voltage input to the light emitting diode drive device is high, the light emitting diode can be stably driven.
  • (A) to (h) is a figure which shows the voltage waveform in each component of the light emitting diode drive device based on embodiment of this invention. It is a figure which shows the dynamic range of LED drive voltage which concerns on embodiment of this invention.
  • (A) to (h) is a figure which shows the voltage waveform and electric current waveform in each component of the light emitting diode drive device based on embodiment of this invention. It is a block diagram of the light emitting diode drive device concerning the embodiment of the present invention. It is a figure showing an example of the circuit of the light emitting diode drive concerning an embodiment of the present invention. It is a figure which shows the relationship between the base voltage of the transistor which concerns on embodiment of this invention, and the brightness
  • FIG. 1 is a view showing a light emitting diode drive device 100 according to an embodiment of the present invention.
  • the light emitting diode drive device 100 includes a power supply device 110, a light emitting diode (LED) device 120, and a constant current source device 130.
  • the LED device 120 includes a plurality of light emitting diodes A09.
  • the light emitting diode drive device 100 drives a plurality of light emitting diodes A09 to emit light.
  • the power supply device 110 converts alternating current voltage into direct current voltage.
  • the power supply device 110 receives, for example, an AC wave (AC input) transmitted from a power plant to a house or the like, and supplies a constant voltage to the LED device 120.
  • the power supply device 110 can stably output a constant voltage regardless of the magnitude of the AC input voltage.
  • the power supply device 110 shown in FIG. 1 includes a rectifier circuit A02, a smoothing capacitor A03, a diode A04, a constant voltage setting circuit A05, a threshold setting circuit A06, a control circuit A07, and a switch element A08.
  • the rectifier circuit A02 is, for example, a full-wave rectifier circuit having a diode bridge, and rectifies an AC input signal.
  • the AC input device A01 outputs an AC voltage transmitted from a power plant from two cores, and the output is input to the rectifier circuit A02.
  • the rectifier circuit A02 rectifies the input voltage (input signal).
  • the signal output from the rectifier circuit A02 is rectified in the positive direction around 0 V, and is input to the smoothing capacitor A03 via the diode A04 and the switch element A08.
  • the smoothing capacitor A03 smoothes the signal rectified by the rectifying circuit A02 to generate a constant voltage.
  • the output (constant voltage) of the smoothing capacitor A03 is supplied to the LED device 120, and the plurality of light emitting diodes A09 emit light.
  • the constant voltage setting circuit A05 sets a target value of the voltage of the smoothing capacitor A03.
  • the target value of the voltage of the smoothing capacitor A03 is, for example, the maximum value of the charging voltage of the smoothing capacitor.
  • the threshold setting circuit A06 sets the threshold of the voltage of the signal rectified by the rectification circuit A02.
  • the switch element A08 switches between connection and disconnection of the rectifier circuit A02 and the smoothing capacitor A03.
  • the control circuit A07 controls switching between on and off of the switch element A08 according to the output signal of the threshold setting circuit A06.
  • the control circuit A07 performs control to turn off the switch element A08 when the voltage of the signal rectified by the rectification circuit A02 is equal to or higher than the threshold.
  • the control circuit A07 performs control to turn on the switch element A08 when the voltage of the signal rectified by the rectification circuit A02 is less than the threshold.
  • a target constant voltage is set by the constant voltage setting circuit A05.
  • the switch element A08 is cut off.
  • the voltage stored in the smoothing capacitor A03 becomes the voltage set by the constant voltage setting circuit A05.
  • the threshold value set by the threshold value setting circuit A06 is used, and the switch element A08 is completely cut off by the control circuit A07 while the AC input voltage is high.
  • the switch element A08 is always in the cutoff state except at the moment of charging the smoothing capacitor A03, and the power supply device 110 with reduced power consumption can be realized.
  • the threshold setting circuit A06 detects the output voltage of the rectifier circuit A02, and sends information corresponding to the magnitude relation between the output voltage and the threshold to the control circuit A07.
  • a diode A04 is provided between the rectifier circuit A02 and the switch element A08 so that the threshold setting circuit A06 accurately detects the output voltage of the rectifier circuit A02.
  • the anode of the diode A04 is connected to the rectifier circuit A02, and the cathode is connected to the switch element A08.
  • the constant voltage setting circuit A05 and the threshold setting circuit A06 are connected to a node between the rectifier circuit A02 and the anode of the diode A04.
  • the diode A04 enables the threshold setting circuit A06 to accurately detect the output voltage of the rectifier circuit A02 without being affected by the switch element A08.
  • the power supply device 110 can stably supply the voltage set by the constant voltage setting circuit A05 to the LED device 120 even if the AC input voltage fluctuates. For example, even if the AC input voltage fluctuates significantly, such as 100 V to 240 V, the voltage can be stably supplied by setting the setting voltage of the constant voltage setting circuit A05 to a voltage lower than the peak voltage of the AC input. .
  • a Zener diode may be adopted, a circuit having a transistor may be adopted, or an IC including a complex circuit may be adopted. This enables more accurate detection.
  • a Zener diode, a transistor, or an IC may be employed as the threshold setting circuit A06. This can increase the accuracy of the set value.
  • the constant current source device 130 sets the magnitude of the current flowing to the light emitting diode device 120 constant.
  • the constant current source device 130 includes a constant current setting circuit A11 and a constant current source circuit A12.
  • a voltage is supplied from the constant voltage setting circuit A05 to the constant current setting circuit A11.
  • the constant current setting circuit A11 supplies a reference voltage to the constant current source circuit A12.
  • the constant current source circuit A12 sets the magnitude of the constant current flowing through the light emitting diode device 120 according to the reference voltage.
  • the constant current source device 130 is used to drive the light emitting diode device 120 using the output of the power supply device 110 as a power supply.
  • the light emitting diode device 120 can be driven with a constant current based on a stable voltage.
  • FIG. 2 is a diagram showing an example of a circuit of the light emitting diode drive device 100 according to the embodiment.
  • the switch element A08 is a field effect transistor.
  • the drain of the switch element A08 is connected to the rectifier circuit A02 via a diode A04.
  • the source of the switch element A08 is connected to one end of the smoothing capacitor A03.
  • the other end of the smoothing capacitor A03 is connected to the ground (GND).
  • the switch element A08 is an n-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), but another switch element may be used.
  • the constant voltage setting circuit A05 includes a diode B10, a resistor B11, a smoothing capacitor B12, and Zener diodes B13 and B19.
  • the resistor B14 is a connection resistor.
  • One end of the smoothing capacitor B12 is connected to a node between the rectifier circuit A02 and the anode of the diode A04 via the diode B10.
  • the other end of the smoothing capacitor B12 is connected to GND.
  • the smoothing capacitor B12 smoothes the signal rectified by the rectification circuit A02.
  • One end of the smoothing capacitor B12 is connected to the cathode of the Zener diode B13 via the resistor B11.
  • the Zener diode B13 and the Zener diode B19 are connected in series, and the anode of the Zener diode B19 is connected to GND.
  • the cathode of the Zener diode B13 is connected to the gate of the switch element A08.
  • Zener voltages of the Zener diodes B13 and B19 are set in accordance with a target value of the voltage of the smoothing capacitor A03.
  • the Zener voltage obtained from the pair of Zener diodes B13 and B19 connected in series is set to the same magnitude as the target value of the voltage of the smoothing capacitor A03.
  • the constant voltage setting circuit A05 supplies a voltage of the same magnitude as the target value of the voltage of the smoothing capacitor A03 to the gate of the switch element A08.
  • the threshold setting circuit A06 is a voltage dividing circuit including the resistors B15 and B16. One end of the voltage dividing circuit is connected to a node between the rectifier circuit A02 and the anode of the diode A04. The other end of the voltage dividing circuit is connected to GND.
  • the control circuit A07 includes a switch element B18.
  • the resistor B17 is a connection resistor.
  • the switch element B18 is a field effect transistor.
  • the drain of the switch element B18 is connected to the gate of the switch element A08.
  • the source of the switch element B18 is connected to GND.
  • the gate of the switch element B18 is connected to the node between the resistor B15 and the resistor B16.
  • a voltage corresponding to the voltage division ratio of the threshold setting circuit A06 is supplied to the gate of the switch element B18.
  • the threshold setting circuit A06 outputs a signal according to the voltage and voltage division ratio of the rectified signal, and the output signal is supplied to the gate of the switch element B18.
  • the control circuit A07 controls switching between on and off of the switch element A08 in accordance with the magnitude of the output signal of the threshold value setting circuit A06.
  • FIG. 3A to FIG. 3H are diagrams showing voltage waveforms in respective components of the light emitting diode drive device 100.
  • FIG. 3A to FIG. 3H are diagrams showing voltage waveforms in respective components of the light emitting diode drive device 100.
  • FIG. 3A shows the waveform of the output voltage C01 of the AC input device A01.
  • the output voltage C01 is a two-phase alternating current.
  • the output voltage C01 is input to the rectifier circuit A02.
  • FIG. 3B shows the waveform of the output voltage C02 of the rectifier circuit A02.
  • a voltage C02 of a waveform obtained by full-wave rectifying the output voltage C01 is output from the rectifier circuit A02.
  • the solid line in FIG. 3D indicates the waveform of the output voltage C04 of the smoothing capacitor A03.
  • the output voltage C02 (full-wave rectified wave) is input to a diode A04, a constant voltage setting circuit A05, and a threshold setting circuit A06.
  • a voltage C05 having a waveform shown by a solid line in FIG. 3E is generated by the diode B10 and the smoothing capacitor B12.
  • a constant voltage C06 having a waveform shown by a solid line in FIG. 3F is generated by the resistor B11 and the Zener diodes B13 and B19.
  • the Zener voltage of the series-connected Zener diodes B13 and B19 is set to the same magnitude as the target value of the voltage of the smoothing capacitor A03.
  • a constant voltage C06 having the same magnitude as the target value of the voltage of the smoothing capacitor A03 is supplied to the gate of the switch element A08. When the voltage of the smoothing capacitor A03 is lower than the target value, the drain and source of the switch element A08 conduct.
  • the constant voltage setting circuit A05 of the present embodiment is a circuit used to set a voltage. Since the operation can be performed with a small current, it is possible to realize the constant voltage setting circuit A05 with components having low withstand voltage, withstand current, and the like.
  • the threshold setting circuit A06 can arbitrarily set the threshold for the AC input by changing the voltage dividing ratio of the voltage dividing circuit. For example, the threshold is set to the same magnitude as the target value of the voltage of the smoothing capacitor A03.
  • the voltage dividing ratio of the voltage dividing circuit is set such that the gate voltage of the switch element B18 becomes the gate threshold voltage.
  • the switch element B18 is turned on.
  • the switch element B18 is substantially turned off.
  • the gate voltage of the switch element A08 becomes smaller than the target value. In the example shown in FIG. 2, when the switch element B18 is on, the gate of the switch element A08 is connected to GND. Thereby, the switch element A08 is cut off.
  • the output voltage of the rectifier circuit A02 is output as it is from the diode A04, but no current flows.
  • the voltage generated by the rectifier circuit A02 is output as it is.
  • the diode A04 is cut off and a voltage applied to the smoothing capacitor A03 is output.
  • the voltage C03 of the diode A04 has a waveform as shown in FIG. 3 (c).
  • a voltage C07 having a waveform shown by a solid line in FIG. 3G which is generated from the output C06 of the constant voltage setting circuit A05 and the output of the control circuit A07, is applied.
  • the switch element A08 is cut off and no current flows.
  • the output C02 of the rectifier circuit A02 is lower than the output C06 of the constant voltage setting circuit A05, the source and the drain of the switch element A08 conduct, and the smoothing capacitor A03 is charged.
  • the constant current setting circuit A11 includes a switch element F04 and resistors F01, F02 and F06.
  • the switch element F04 is an NPN bipolar transistor, but another switch element may be used.
  • the resistors F01 and F02 connected in series constitute a voltage dividing circuit. One end of this voltage dividing circuit is connected to a node between the Zener diode B13 and the Zener diode B19. The other end of this voltage dividing circuit is connected to GND.
  • the collector of the switch element F04 is connected to a node between the Zener diode B13 and the Zener diode B19.
  • the emitter of the switch element F04 is connected to GND via a resistor F06.
  • the base of the switch element F04 is connected to the node between the resistor F01 and the resistor F02. That is, a voltage corresponding to the voltage dividing ratio of the voltage dividing circuit is supplied to the base of the switch element F04.
  • the constant current source circuit A12 includes a switch element F05 and a resistor F07.
  • the switch element F05 is an NPN bipolar transistor, but another switch element may be used.
  • the collector of the switch element F05 is connected to the LED device 120.
  • the emitter of the switch element F05 is connected to GND via a resistor F07.
  • a reference voltage is generated with a voltage division ratio of the resistors F01 and F02 using a voltage set by voltage division of the Zener diodes B13 and B19 as a power supply.
  • This reference voltage is the base voltage of the switch element F04.
  • the emitter output of the switch element F04 is a reference voltage supplied to the base of the switch element F05.
  • the solid line in FIG. 3H indicates the waveform of the reference voltage C08 supplied to the base of the switch element F05. Since the emitter voltage to the base of the switch element F05 is fixed, the collector current (Ic) of the switch element F05 is uniquely determined, and the current flowing to the LED device 120 is determined.
  • FIG. 4 shows the dynamic range of the voltage for driving the LED device 120.
  • FIG. 4 shows the waveform of the output voltage C02 of the rectifier circuit A02, the waveform of the output voltage C04 of the smoothing capacitor A03, and the waveform of the emitter voltage C09 of the switch element F05.
  • the output voltage C04 of the smoothing capacitor A03 is the upper limit voltage of the dynamic range.
  • the emitter voltage C09 of the switch element F05 is the lower limit voltage of the dynamic range.
  • the LED device 120 can connect the light emitting diodes until the number of forward voltages Vf falls between the two voltages.
  • the rectifier circuit A02 and the smoothing capacitor A03 are not connected. That is, while the voltage of the output signal of the rectifier circuit A02 is high, no voltage is supplied from the rectifier circuit A02 to the smoothing capacitor A03. As a result, the voltage of the smoothing capacitor A03 is suppressed from becoming higher than a predetermined voltage, and a DC voltage can be generated stably. Even when the AC voltage input to the light emitting diode drive device 100 is high, the light emitting diode A09 can be stably driven.
  • FIG. 5 is a diagram showing a light emitting diode drive device 100 including the harmonic suppression circuit A10.
  • the harmonic suppression circuit A10 is provided between the rectifier circuit A02 and the switch element A08.
  • the harmonic suppression circuit A10 reduces harmonic components generated in accordance with the current flowing from the rectifier circuit A02 to the smoothing capacitor A03.
  • the harmonic suppression circuit A10 includes, for example, a coil and a capacitor, and reduces a harmonic by configuring a filter for inrush current.
  • the configuration other than the harmonic suppression circuit A10 of the light emitting diode drive device 100 shown in FIG. 5 is the same as that of the light emitting diode drive device 100 shown in FIG.
  • an inrush current occurs at the top of the AC input.
  • the current flows into the smoothing capacitor A03 via the switch element A08.
  • a current flows at the moment when the switch element A 08 is turned on, and harmonic measures for obtaining a high effect are performed using this feature.
  • the harmonic suppression circuit A10 can be configured by a single coil or a single capacitor depending on the circuit configuration.
  • FIG. 6 is a view showing an example of a circuit of the light emitting diode drive device 100 according to the embodiment.
  • the harmonic suppression circuit A10 includes a coil D01 that reduces harmonic components, and a capacitor D02 that holds a charge when the switch element A08 is off.
  • One end of the coil D01 is connected to the rectifier circuit A02 via a diode A04.
  • the other end of the coil D01 is connected to one end of the capacitor D02 and the drain of the switch element A08.
  • the other end of the capacitor D02 is connected to GND.
  • FIGS. 7A to 7H are diagrams showing voltage waveforms and current waveforms in each component of the light emitting diode drive device 100.
  • FIG. 7A to 7H are diagrams showing voltage waveforms and current waveforms in each component of the light emitting diode drive device 100.
  • the output voltage E02 of the diode A04 has a waveform shown in FIG. 7 (b) with respect to the output voltage E01 of the rectifier circuit A02 shown in FIG. 7 (a).
  • the smoothing capacitor A03 is charged at the timing when the current waveform E03 of the smoothing capacitor A03 shown by the solid line in FIG. 7C becomes a pulse shape.
  • the current waveform E03 generated at the time of charging the smoothing capacitor A03 is a basic waveform of harmonics.
  • a smoothing capacitor is connected immediately after the rectification circuit. Therefore, the charging current is generated at the top of the waveform of the output voltage E01.
  • measures against harmonics are taken by utilizing the fact that the timing at which the smoothing capacitor is charged is shifted.
  • the output voltage E01 of the rectifier circuit A02 reaches its maximum value (peak) in a state where the switch element A08 is cut off.
  • the capacitor D02 is charged at the timing when the output voltage E01 reaches the maximum value. Because of the filtering effect of the coil D01 and the capacitor D02, the charging waveform E05 of the capacitor D02 is a waveform with a low frequency as shown by the solid line in FIG. 7 (e). Since the charging operation of the capacitor D02 is performed in a state where the switch element A08 is cut off, no harmonic component flows out to the AC input side.
  • the output voltage E04 of the diode A04 has a waveform shown by a solid line in FIG. 7 (d). As shown in FIG. 7D, the top of the output of the rectifier circuit A02 is smoothed (voltage is kept) by the capacitor D02. Then, the smoothing capacitor A03 is charged at the moment when the switch element A08 conducts.
  • the deviation of this timing is shown in FIG. 7 (h).
  • the solid line in FIG. 7F indicates the discharge current waveform E06 of the capacitor D02.
  • the solid line in FIG. 7G indicates the charging current waveform E07 of the smoothing capacitor A03.
  • the solid line in FIG. 7 (h) indicates a waveform E08 obtained by combining the waveforms in FIG. 7 (e) to FIG. 7 (g).
  • the low rise portion of the waveform is the waveform E05 charged to the capacitor D02.
  • the waveform which is sharp at the top and bottom becomes a waveform in which the charge moves from the capacitor D02 to the smoothing capacitor A03.
  • the waveform rising sharply in the upward direction is the charging current waveform E07 to the smoothing capacitor A03.
  • the waveform that falls sharply downward is the discharge current waveform E06 of the capacitor D02.
  • the diode A04 is in a cut-off state. Since harmonics can not be seen from the AC input direction on the front stage of the rectifier circuit A02, it is possible to implement harmonic countermeasures.
  • the brightness can be adjusted by changing the reference voltage of the constant current source circuit A12.
  • FIG. 8 is a view showing the light emitting diode drive device 100 to which the light control device 140 is connected.
  • the dimmer 140 changes the magnitude of the current set by the constant current source circuit A12.
  • the light emitting diode drive device 100 may include the light control device 140.
  • the configuration other than the light control device 140 of the light emitting diode drive device 100 shown in FIG. 8 is the same as that of the light emitting diode drive device 100 shown in FIG.
  • the light control device 140 includes an LED current control device F08, an isolated communication device F13, and a current control circuit F14.
  • the LED current controller F08 is driven by a power supply independent of the AC input signal from the AC input device A01.
  • the control signal output from the LED current control device F08 is transmitted from the data transmission circuit E15 of the isolated communication device F13 to the data reception circuit E16.
  • the control signal transmitted to the data reception circuit E16 is transmitted to the current control circuit F14.
  • the current control circuit F14 changes the magnitude of the current set by the constant current source device 130 according to the control signal.
  • the light emitting diode drive device 100 may be configured to be directly connected to an AC input transmitted from a power plant.
  • An insulation band F19 is provided on the assumption that insulation is necessary for control from the outside.
  • the control data generated by the LED current control device F18 present outside is transferred from the data transmission circuit E15 to the data reception circuit E16 via the insulating part by the isolated communication device F13, and data is set in the current control circuit F14.
  • the reference voltage of the constant current source circuit A12 is controlled, and the amount of current of the LED device 120 is arbitrarily changed to change the luminance of the LED device 120.
  • FIG. 9 is a diagram showing an example of a circuit of the light emitting diode drive device 100 according to the embodiment.
  • the insulated communication device F13 includes resistors F09, F10, and F12, a switch element F11, and a photocoupler F17.
  • the switch element F11 is an NPN-type bipolar transistor, but another switch element may be used.
  • the resistor F09 and the resistor F10 connected in series constitute a voltage dividing circuit.
  • One end of the voltage dividing circuit is connected to the LED current controller F08, and the other end is connected to GND.
  • the base of the switch element F11 is connected to the node between the resistor F09 and the resistor F10.
  • One end of the resistor F12 is connected to the LED current control device F08, and the other end is connected to the photocoupler F17.
  • the collector of the switch element F11 is connected to the photocoupler F17, and the emitter is connected to GND.
  • the current control circuit F14 is a resistor. One end of the resistor F14 is connected to the photocoupler F17. One end of the resistor F14 is connected to GND via a photocoupler F17. The other end of the resistor F14 is connected to a node between the resistor F01 and the resistor F02. That is, the other end of the resistor F14 is connected to the base of the switch element F04.
  • the LED current control device F08 includes a microcomputer and the like.
  • the control signal output from the LED current control device F08 controls the current flowing through the switch element F11.
  • the control signal is transmitted to the resistor F14 via the photocoupler F17 across the insulating portion F19.
  • the control signal is transmitted to the base of switch element F04 that constitutes the emitter follower. When the base voltage of the switch element F04 changes, the base voltage of the switch element F05 changes. Thereby, the magnitude of the current flowing to the LED device 120 is changed.
  • FIG. 10 is a diagram showing the relationship between the base voltage of the switch element F05 and the luminance of the LED.
  • the vertical axis indicates the brightness of the LED
  • the horizontal axis indicates the base voltage of the switch element F05.
  • LED drive control is performed from the exterior of an insulation part via photocoupler F17
  • the present invention is not limited to this.
  • similar LED drive control can be realized by performing control using another insulating portion, such as using a transformer.
  • the light emitting diode drive device 100 is a device for driving the light emitting diode A09.
  • the light emitting diode drive device 100 includes a rectifier circuit A02 that rectifies an AC input signal, a smoothing capacitor A03 that smoothes the rectified signal, and a switch element A08 that switches connection and disconnection between the rectifier circuit A02 and the smoothing capacitor A03.
  • a constant voltage setting circuit A05 for setting a target value of the voltage of the smoothing capacitor A03; a threshold setting circuit A06 for setting a threshold of the voltage of the rectified signal; and a switch element A08 according to an output signal of the threshold setting circuit A06.
  • a control circuit A07 that controls switching between on and off. When the voltage of the rectified signal is equal to or higher than the threshold, the control circuit A07 turns off the switch element A08.
  • the output from the smoothing capacitor A03 is supplied to the light emitting diode A09.
  • the rectifier circuit A02 and the smoothing capacitor A03 are not connected. That is, while the voltage of the output signal of the rectifier circuit A02 is high, no voltage is supplied from the rectifier circuit A02 to the smoothing capacitor A03. As a result, the voltage of the smoothing capacitor A03 is suppressed from becoming higher than a predetermined voltage, and a DC voltage can be generated stably. Even when the AC voltage input to the light emitting diode drive device 100 is high, the light emitting diode A09 can be stably driven.
  • the threshold setting circuit A06 outputs a signal according to the voltage of the rectified signal, and the control circuit A07 turns on the switch element A08 according to the magnitude of the output signal of the threshold setting circuit A06. You may control the switching off.
  • the threshold and the target value of the voltage of the smoothing capacitor A03 may have the same magnitude.
  • the switch element A08 may be a field effect transistor
  • the rectifier circuit A02 may be connected to the drain of the switch element A08
  • the smoothing capacitor A03 may be connected to the source of the switch element A08.
  • the constant voltage setting circuit A05 may supply a voltage of the same magnitude as the target value of the voltage of the smoothing capacitor A03 to the gate of the switch element A08.
  • the drain and source of the switch element A08 may conduct.
  • control circuit A07 may make the gate voltage of the switch element A08 smaller than a target value when the voltage of the rectified signal is equal to or higher than a threshold.
  • the switch element A08 may be an n-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • the constant voltage setting circuit A05 may include a smoothing capacitor B12 for smoothing a rectified signal, and Zener diodes B13 and B19 connected to the smoothing capacitor B12 of the constant voltage setting circuit A05.
  • the Zener voltages of the Zener diodes B13 and B19 may be set according to the target value of the voltage of the smoothing capacitor A03.
  • the light emitting diode drive device 100 may further include a diode A04 provided between the rectifier circuit A02 and the switch element A08.
  • the anode of the diode A04 may be connected to the rectifier circuit A02, and the cathode of the diode A04 may be connected to the switch element A08.
  • the threshold setting circuit A06 may be connected to a node between the rectifier circuit A02 and the anode of the diode A04.
  • the constant voltage setting circuit A05 may be connected to a node between the rectifier circuit A02 and the anode of the diode A04.
  • the light emitting diode drive device 100 is provided between the rectifier circuit A02 and the switch element A08 to reduce harmonics that reduces harmonic components generated in accordance with the current flowing from the rectifier circuit A02 to the smoothing capacitor A03. It may further include a circuit A10.
  • the harmonic suppression circuit A10 may include a coil D01 that reduces harmonic components, and a capacitor D02 that holds a charge when the switch element A08 is off.
  • the light emitting diode drive device 100 may further include a constant current source device 130 that sets the magnitude of the current flowing through the light emitting diode A09 constant.
  • a voltage may be supplied to the constant current source device 130 from the constant voltage setting circuit A05.
  • the light emitting diode drive device 100 may further include a light control device 140 that changes the magnitude of the current set by the constant current source device 130.
  • the light control device 140 further includes an insulated communication device F13 that receives a control signal from the LED current control device F08 driven by a power supply independent of an alternating current input signal, and the constant current according to the control signal The magnitude of the current set by the source device 130 may be changed.
  • the switch element A08 is disposed between the rectifier circuit A02 and the smoothing capacitor A03.
  • the smoothing capacitor A03 is charged with a voltage lower than that of the AC input, and a predetermined voltage is output.
  • the switch element A08 is turned on when the voltage of the smoothing capacitor A03 becomes lower than the control terminal voltage (gate voltage).
  • the switch element A08 is forcibly turned off, whereby the power consumption of the switch element A08 can be suppressed.
  • the light emitting diode drive device 100 can stably generate a constant voltage under conditions that the AC input is unstable or change, for example, the output of the power plant is unstable. It can be output. Further, for example, by adopting the light emitting diode drive device 100 provided with the harmonic suppression circuit A10 according to the embodiment of the present invention, it is not necessary to take measures against harmonics in the other parts, and the electric product can be manufactured inexpensively. it can.
  • the present invention is particularly useful in the field of light emitting diode driving devices for driving light emitting diodes.

Abstract

This light-emitting diode drive device drives a light-emitting diode. The light-emitting diode drive device comprises: a rectification circuit that rectifies AC input signals; a smoothing capacitor that smooths rectified signals; a switch element that switches the rectification circuit and the smoothing capacitor between connection and disconnection; a voltage setting circuit that sets a target value for the smoothing capacitor voltage; a threshold value setting circuit that sets the threshold value for the voltage of rectified signals; and a control circuit that controls the switching on and off of the switch element in accordance with an output signal from the threshold value setting circuit. If the voltage of the rectified signal is at least a threshold value, the control circuit switches off the switch element. Output from the smoothing capacitor is supplied to the light-emitting diode.

Description

発光ダイオード駆動装置Light emitting diode drive
 本発明は、発光ダイオードを駆動させる発光ダイオード駆動装置に関する。 The present invention relates to a light emitting diode drive device for driving a light emitting diode.
 近年、発光ダイオード(LED:Light-Emitting Diode)は、様々な光源として利用されている。LEDは、例えば、家庭で使用する照明電球、テレビのバックライト、屋外の街頭照明、LEDディスプレイへの利用が進み、今後も多くの電気機器への利用が期待されている。 In recent years, light emitting diodes (LEDs: Light-Emitting Diodes) have been used as various light sources. For example, LEDs are increasingly used for lighting bulbs used in homes, backlights for TVs, outdoor street lights, and LED displays, and are expected to be used for many electric devices in the future.
 LEDを点灯させるためにLED駆動装置が用いられる(例えば、特許文献1参照)。LED駆動装置では、PWM(Pulse-Width Modulation)駆動などの高周波駆動方式を採用する場合が多い。これは、AC(Alternating Current)入力電圧にバラツキがあったり、国により100vから240vまでの間で様々な電圧が存在したりするためである。電圧が変化しても一定の明るさを得るために、AC入力に対してスイッチングを行い、一旦、高い周波数(数十~数百KHz程度)の矩形波に置き換える。これにより、AC入力の電圧に寄らない安定した電圧で、LEDを駆動することができる。 An LED drive device is used to light an LED (see, for example, Patent Document 1). In the LED drive device, a high frequency drive method such as PWM (Pulse-Width Modulation) drive is often employed. This is because AC (Alternating Current) input voltage varies, and various voltages exist from 100v to 240v depending on the country. In order to obtain a constant brightness even if the voltage changes, switching is performed on the AC input, and once replaced with a square wave of high frequency (about several tens to several hundreds KHz). This enables the LED to be driven at a stable voltage that does not depend on the voltage of the AC input.
 LEDは世界各国で需要がある。国によってAC電圧の大きさが異なったり、AC電圧がばらついたりしたとしても、安定してLEDを駆動するシステムが求められている。 LEDs are in demand worldwide. There is a need for a system that stably drives LEDs even if AC voltages vary in size or vary from country to country.
特開2012-226917号公報JP 2012-226917 A
 しかしながら、上記のLED駆動装置では、AC入力を高周波の矩形波に置き換えている。このため、スイッチング用の発信回路およびトランスが必要となり、回路規模が大きくなるとともに、コストアップするという課題がある。また、スイッチング動作により高周波ノイズが発生することで、AC入力への輻射ノイズが発生し、AC入力ラインに輻射を防止するための部品を設ける必要があるという課題がある。 However, in the above LED driving device, the AC input is replaced with a high frequency rectangular wave. For this reason, a transmitting circuit and a transformer for switching are required, and there is a problem that the scale of the circuit is increased and the cost is increased. Further, high frequency noise is generated by the switching operation, so that radiation noise to the AC input is generated, and there is a problem that it is necessary to provide a component for preventing radiation in the AC input line.
 本発明は、AC入力の周波数よりも高い周波数でのスイッチング動作を不要とした、安定して発光ダイオードを駆動することができる発光ダイオード駆動装置を提供する。 The present invention provides a light emitting diode drive device capable of stably driving a light emitting diode, which does not require switching operation at a frequency higher than the frequency of the AC input.
 本発明の実施形態に係る発光ダイオード駆動装置は、発光ダイオードを駆動する発光ダイオード駆動装置であって、交流の入力信号を整流する整流回路と、前記整流された信号を平滑する平滑コンデンサと、前記整流回路と前記平滑コンデンサとの接続および非接続を切り替えるスイッチ素子と、前記平滑コンデンサの電圧の目標値を設定する電圧設定回路と、前記整流された信号の電圧の閾値を設定する閾値設定回路と、前記閾値設定回路の出力信号に応じて前記スイッチ素子のオンおよびオフの切り替えを制御する制御回路と、を備え、前記整流された信号の電圧が前記閾値以上の場合、前記制御回路は前記スイッチ素子をオフし、前記平滑コンデンサからの出力を前記発光ダイオードに供給する。 A light emitting diode drive apparatus according to an embodiment of the present invention is a light emitting diode drive apparatus for driving a light emitting diode, the rectification circuit rectifying an AC input signal, the smoothing capacitor smoothing the rectified signal, and A switching element for switching between connection and disconnection of a rectifier circuit and the smoothing capacitor; a voltage setting circuit for setting a target value of the voltage of the smoothing capacitor; and a threshold setting circuit for setting a threshold of the voltage of the rectified signal. A control circuit which controls switching between on and off of the switch element in accordance with an output signal of the threshold setting circuit, and when the voltage of the rectified signal is equal to or higher than the threshold, the control circuit controls the switch The element is turned off and the output from the smoothing capacitor is supplied to the light emitting diode.
 本発明の実施形態によれば、整流回路の出力信号が閾値以上である場合、整流回路と平滑コンデンサとは非接続になる。すなわち、整流回路の出力信号の電圧が高い期間は、整流回路から平滑コンデンサに電圧は供給されない。これにより、平滑コンデンサの電圧が所定の電圧よりも高くなることが抑制され、安定して直流電圧を生成することができる。発光ダイオード駆動装置に入力される交流電圧が高い場合でも、安定して発光ダイオードを駆動することができる。 According to the embodiment of the present invention, when the output signal of the rectifier circuit is equal to or higher than the threshold value, the rectifier circuit and the smoothing capacitor are not connected. That is, while the voltage of the output signal of the rectifier circuit is high, no voltage is supplied from the rectifier circuit to the smoothing capacitor. As a result, the voltage of the smoothing capacitor is suppressed to be higher than a predetermined voltage, and a DC voltage can be generated stably. Even when the AC voltage input to the light emitting diode drive device is high, the light emitting diode can be stably driven.
 ある実施形態において、前記閾値設定回路は、前記整流された信号の電圧に応じた信号を出力し、前記制御回路は、前記閾値設定回路の出力信号の大きさに応じて、前記スイッチ素子のオンおよびオフの切り替えを制御してもよい。 In one embodiment, the threshold setting circuit outputs a signal according to the voltage of the rectified signal, and the control circuit turns on the switch element according to the magnitude of the output signal of the threshold setting circuit. It may control switching between and off.
 ある実施形態において、前記閾値と前記平滑コンデンサの電圧の目標値とは同じ大きさであってもよい。 In one embodiment, the threshold and the target value of the voltage of the smoothing capacitor may have the same magnitude.
 ある実施形態において、前記スイッチ素子は、電界効果トランジスタであり、前記整流回路は、前記スイッチ素子のドレインに接続され、前記平滑コンデンサは、前記スイッチ素子のソースに接続されていてもよい。 In one embodiment, the switch element may be a field effect transistor, the rectifier circuit may be connected to a drain of the switch element, and the smoothing capacitor may be connected to a source of the switch element.
 ある実施形態において、前記電圧設定回路は、前記平滑コンデンサの電圧の目標値と同じ大きさの電圧を前記スイッチ素子のゲートに供給してもよい。 In one embodiment, the voltage setting circuit may supply a voltage of the same magnitude as a target value of the voltage of the smoothing capacitor to the gate of the switch element.
 ある実施形態において、前記平滑コンデンサの電圧が前記目標値よりも低い場合、前記スイッチ素子のドレインとソースの間は導通してもよい。 In one embodiment, when the voltage of the smoothing capacitor is lower than the target value, the drain and the source of the switch element may conduct.
 ある実施形態において、前記制御回路は、前記整流された信号の電圧が前記閾値以上の場合、前記スイッチ素子のゲート電圧を前記目標値よりも小さくしてもよい。 In one embodiment, the control circuit may make the gate voltage of the switch element smaller than the target value when the voltage of the rectified signal is equal to or higher than the threshold.
 ある実施形態において、前記スイッチ素子は、nチャネルMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であってもよい。 In one embodiment, the switch element may be an n-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
 ある実施形態において、前記電圧設定回路は、前記整流された信号を平滑する平滑コンデンサと、前記電圧設定回路の前記平滑コンデンサに接続されたツェナーダイオードと、を備えてもよい。 In one embodiment, the voltage setting circuit may include a smoothing capacitor for smoothing the rectified signal, and a Zener diode connected to the smoothing capacitor of the voltage setting circuit.
 ある実施形態において、前記ツェナーダイオードのツェナー電圧は、前記平滑コンデンサの電圧の目標値に応じて設定されてもよい。 In one embodiment, the Zener voltage of the Zener diode may be set according to a target value of the voltage of the smoothing capacitor.
 ある実施形態において、前記発光ダイオード駆動装置は、前記整流回路と前記スイッチ素子との間に設けられたダイオードをさらに備えてもよい。 In one embodiment, the light emitting diode driver may further include a diode provided between the rectifier circuit and the switch element.
 ある実施形態において、前記ダイオードのアノードは前記整流回路に接続され、前記ダイオードのカソードは前記スイッチ素子に接続されていてもよい。 In one embodiment, an anode of the diode may be connected to the rectifier circuit, and a cathode of the diode may be connected to the switch element.
 ある実施形態において、前記閾値設定回路は、前記整流回路と前記ダイオードのアノードとの間のノードに接続されていてもよい。 In one embodiment, the threshold setting circuit may be connected to a node between the rectifier circuit and an anode of the diode.
 ある実施形態において、前記電圧設定回路は、前記整流回路と前記ダイオードのアノードとの間のノードに接続されていてもよい。 In one embodiment, the voltage setting circuit may be connected to a node between the rectifier circuit and an anode of the diode.
 ある実施形態において、前記発光ダイオード駆動装置は、前記整流回路と前記スイッチ素子との間に設けられ、前記整流回路から前記平滑コンデンサに流れる電流に応じて発生する高調波成分を低減する高調波抑制回路をさらに備えてもよい。 In one embodiment, the light emitting diode drive device is provided between the rectifier circuit and the switch element, and the harmonic wave suppression that reduces harmonic components generated according to the current flowing from the rectifier circuit to the smoothing capacitor. It may further comprise a circuit.
 ある実施形態において、前記高調波抑制回路は、前記高調波成分を低減するコイルと、前記スイッチ素子がオフのときに電荷を保持するコンデンサと、を備えてもよい。 In one embodiment, the harmonic suppression circuit may include a coil that reduces the harmonic component, and a capacitor that holds a charge when the switch element is off.
 ある実施形態において、前記発光ダイオード駆動装置は、前記発光ダイオードに流れる電流の大きさを一定に設定する定電流源装置をさらに備えてもよい。 In one embodiment, the light emitting diode drive device may further include a constant current source device that sets the magnitude of the current flowing through the light emitting diode to a constant value.
 ある実施形態において、前記電圧設定回路から前記定電流源装置に電圧が供給されてもよい。 In one embodiment, a voltage may be supplied from the voltage setting circuit to the constant current source device.
 ある実施形態において、前記発光ダイオード駆動装置は、前記定電流源装置が設定する電流の大きさを変更する調光装置をさらに備えてもよい。 In one embodiment, the light emitting diode drive device may further include a light control device that changes the magnitude of the current set by the constant current source device.
 ある実施形態において、前記調光装置は、前記交流の入力信号とは独立した電源で駆動する制御装置からの制御信号を受け取る絶縁通信装置をさらに備え、前記制御信号に応じて、前記定電流源装置が設定する電流の大きさを変更してもよい。 In one embodiment, the light control device further includes an insulated communication device that receives a control signal from a control device driven by a power supply independent of the AC input signal, and the constant current source according to the control signal. The magnitude of the current set by the device may be changed.
 本発明の実施形態に係る発光ダイオード駆動装置では、整流ダイオードと平滑コンデンサの間に、スイッチ素子が設けられる。スイッチ素子は、定電圧設定回路で設定された電圧を閾値としてカットオフすることができる。平滑コンデンサに充電される電圧が、定電圧設定回路により設定された電圧になると、スイッチ素子はカットオフする。これにより、平滑コンデンサの最大充電電圧が決定され、この電圧が発光ダイオードに供給する電圧となる。AC入力電圧が平滑コンデンサの最大充電電圧よりも高い期間は、制御回路はスイッチ素子をカットオフする。これにより、スイッチ素子の消費電力を抑えることができる。 In the light emitting diode drive device according to the embodiment of the present invention, a switch element is provided between the rectifying diode and the smoothing capacitor. The switch element can cut off the voltage set by the constant voltage setting circuit as a threshold. When the voltage charged to the smoothing capacitor becomes the voltage set by the constant voltage setting circuit, the switch element is cut off. Thereby, the maximum charging voltage of the smoothing capacitor is determined, and this voltage becomes the voltage supplied to the light emitting diode. The control circuit cuts off the switch element while the AC input voltage is higher than the maximum charging voltage of the smoothing capacitor. Thereby, the power consumption of the switch element can be suppressed.
 本発明の実施形態に係る発光ダイオード駆動装置では、AC入力の周波数よりも高い周波数でのスイッチング動作は不要である。実施形態に係る発光ダイオード駆動装置は、AC入力電圧の大きさに関わらず、定電圧で発光ダイオードを駆動することができる。 In the light emitting diode drive device according to the embodiment of the present invention, the switching operation at a frequency higher than the frequency of the AC input is unnecessary. The light emitting diode drive device according to the embodiment can drive the light emitting diode with a constant voltage regardless of the magnitude of the AC input voltage.
 また、本発明の実施形態に係る発光ダイオード駆動装置は、平滑コンデンサへの突入電流発生時に発生する高調波成分を、AC入力側へ輻射ノイズとして流出することを抑制する。実施形態に係る発光ダイオード駆動装置では、整流回路とスイッチ素子の間に直列にコイルが接続され、その後段に高調波用コンデンサが配置される。スイッチ素子がカットオフした状態で、AC入力が最大電圧となった瞬間に、コイルを介して高調波用コンデンサに電荷が充電される。また、スイッチ素子がオンした瞬間に高調波用コンデンサの電荷が平滑コンデンサに移動し、平滑コンデンサが充電される。これにより、高調波を抑制することができる。 The light emitting diode drive device according to the embodiment of the present invention suppresses the flow of harmonic components generated at the time of inrush current generation to the smoothing capacitor as radiation noise to the AC input side. In the light emitting diode drive device according to the embodiment, a coil is connected in series between the rectifier circuit and the switch element, and a harmonic capacitor is disposed in the subsequent stage. With the switch element cut off, the harmonic capacitors are charged through the coil at the instant when the AC input reaches the maximum voltage. Also, at the moment when the switch element is turned on, the charge of the harmonic capacitor moves to the smoothing capacitor, and the smoothing capacitor is charged. Thereby, harmonics can be suppressed.
 実施形態に係る発光ダイオード駆動装置は、平滑コンデンサの充電電流により発生した高調波を流出させることなく、定電圧を生成することができる。一次充電用コンデンサとしては、平滑コンデンサが放電した分の電荷を補うための小さな容量のコンデンサでよく、この小さな容量のコンデンサにより、高調波成分を大幅に削減することができる。 The light emitting diode drive device according to the embodiment can generate a constant voltage without flowing out the harmonic generated by the charging current of the smoothing capacitor. The primary charging capacitor may be a capacitor with a small capacity to compensate for the discharge of the smoothing capacitor, and the small capacity capacitor can significantly reduce harmonic components.
 本発明の実施形態に係る発光ダイオード駆動装置では、整流回路、スイッチ素子および平滑コンデンサは発光ダイオードを駆動するための高電圧を生成する電源装置となる。また、発光ダイオード駆動装置は、AC入力から別途生成された低い電圧を基準として、発光ダイオードの電流量を決定する定電流源装置を備える。これにより、AC入力電圧が変動した場合でも、安定して発光ダイオードを駆動することができる。 In the light emitting diode drive device according to the embodiment of the present invention, the rectifier circuit, the switch element and the smoothing capacitor become a power supply device that generates a high voltage for driving the light emitting diode. In addition, the light emitting diode drive device includes a constant current source device that determines the amount of current of the light emitting diode on the basis of a low voltage separately generated from the AC input. Thus, even when the AC input voltage fluctuates, the light emitting diode can be stably driven.
 本発明の実施形態に係る発光ダイオード駆動装置では、AC入力の周波数よりも高い周波数でのスイッチング動作が不要である。このため、スイッチング用コイルや輻射を防止するための部品が不要となり、安価に発光ダイオード駆動装置を実現することができる。 In the light emitting diode drive device according to the embodiment of the present invention, the switching operation at a frequency higher than the frequency of the AC input is unnecessary. For this reason, the coil for a switching and the components for preventing radiation become unnecessary, and a light emitting diode drive device can be implement | achieved inexpensively.
 本発明の実施形態によれば、整流回路の出力信号が閾値以上である場合、整流回路と平滑コンデンサとは非接続になる。すなわち、整流回路の出力信号の電圧が高い期間は、整流回路から平滑コンデンサに電圧は供給されない。これにより、平滑コンデンサの電圧が所定の電圧よりも高くなることが抑制され、安定して直流電圧を生成することができる。発光ダイオード駆動装置に入力される交流電圧が高い場合でも、安定して発光ダイオードを駆動することができる。 According to the embodiment of the present invention, when the output signal of the rectifier circuit is equal to or higher than the threshold value, the rectifier circuit and the smoothing capacitor are not connected. That is, while the voltage of the output signal of the rectifier circuit is high, no voltage is supplied from the rectifier circuit to the smoothing capacitor. As a result, the voltage of the smoothing capacitor is suppressed to be higher than a predetermined voltage, and a DC voltage can be generated stably. Even when the AC voltage input to the light emitting diode drive device is high, the light emitting diode can be stably driven.
本発明の実施形態に係る発光ダイオード駆動装置のブロック図である。It is a block diagram of the light emitting diode drive device concerning the embodiment of the present invention. 本発明の実施形態に係る発光ダイオード駆動装置の回路の一例を示す図である。It is a figure showing an example of the circuit of the light emitting diode drive concerning an embodiment of the present invention. (a)から(h)は、本発明の実施形態に係る発光ダイオード駆動装置の各構成要素における電圧波形を示す図である。(A) to (h) is a figure which shows the voltage waveform in each component of the light emitting diode drive device based on embodiment of this invention. 本発明の実施形態に係るLED駆動電圧のダイナミックレンジを示す図である。It is a figure which shows the dynamic range of LED drive voltage which concerns on embodiment of this invention. 本発明の実施形態に係る発光ダイオード駆動装置のブロック図である。It is a block diagram of the light emitting diode drive device concerning the embodiment of the present invention. 本発明の実施形態に係る発光ダイオード駆動装置の回路の一例を示す図である。It is a figure showing an example of the circuit of the light emitting diode drive concerning an embodiment of the present invention. (a)から(h)は、本発明の実施形態に係る発光ダイオード駆動装置の各構成要素における電圧波形および電流波形を示す図である。(A) to (h) is a figure which shows the voltage waveform and electric current waveform in each component of the light emitting diode drive device based on embodiment of this invention. 本発明の実施形態に係る発光ダイオード駆動装置のブロック図である。It is a block diagram of the light emitting diode drive device concerning the embodiment of the present invention. 本発明の実施形態に係る発光ダイオード駆動装置の回路の一例を示す図である。It is a figure showing an example of the circuit of the light emitting diode drive concerning an embodiment of the present invention. 本発明の実施形態に係るトランジスタのベース電圧とLEDの輝度の関係を示す図である。It is a figure which shows the relationship between the base voltage of the transistor which concerns on embodiment of this invention, and the brightness | luminance of LED.
 以下、図面を参照しながら本発明の実施形態を説明する。同様の構成要素には同様の参照符号を付し、重複する場合にはその説明を省略する。以下の実施形態は例示であり、本発明は以下の実施形態に限定されない。例えば、実施形態の説明において示す材料および構成部品は例示であり、本発明はそれに限定されない。また、各構成要素(例えば、定電圧設定回路など)の回路構成は例示であり、同等の機能を有する他の回路構成が用いられてもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same components, and in the case of duplication, the description thereof will be omitted. The following embodiments are exemplifications, and the present invention is not limited to the following embodiments. For example, the materials and components shown in the description of the embodiments are illustrative, and the present invention is not limited thereto. In addition, the circuit configuration of each component (for example, a constant voltage setting circuit and the like) is an example, and other circuit configurations having equivalent functions may be used.
 図1は、本発明の実施形態に係る発光ダイオード駆動装置100を示す図である。 FIG. 1 is a view showing a light emitting diode drive device 100 according to an embodiment of the present invention.
 発光ダイオード駆動装置100は、電源装置110と、発光ダイオード(LED)装置120と、定電流源装置130とを備える。LED装置120は、複数の発光ダイオードA09を備える。発光ダイオード駆動装置100は、複数の発光ダイオードA09を駆動し発光させる。 The light emitting diode drive device 100 includes a power supply device 110, a light emitting diode (LED) device 120, and a constant current source device 130. The LED device 120 includes a plurality of light emitting diodes A09. The light emitting diode drive device 100 drives a plurality of light emitting diodes A09 to emit light.
 電源装置110は、交流電圧を直流電圧に変換する。電源装置110は、例えば、発電所から家屋等へ送電される交流波(AC入力)を受け取り、LED装置120に定電圧を供給する。電源装置110は、AC入力電圧の大きさに関わらず、安定して定電圧を出力することができる。 The power supply device 110 converts alternating current voltage into direct current voltage. The power supply device 110 receives, for example, an AC wave (AC input) transmitted from a power plant to a house or the like, and supplies a constant voltage to the LED device 120. The power supply device 110 can stably output a constant voltage regardless of the magnitude of the AC input voltage.
 図1に示す電源装置110は、整流回路A02と、平滑コンデンサA03と、ダイオードA04と、定電圧設定回路A05と、閾値設定回路A06と、制御回路A07と、スイッチ素子A08とを備える。 The power supply device 110 shown in FIG. 1 includes a rectifier circuit A02, a smoothing capacitor A03, a diode A04, a constant voltage setting circuit A05, a threshold setting circuit A06, a control circuit A07, and a switch element A08.
 整流回路A02は、例えば、ダイオードブリッジを有する全波整流回路であり、交流の入力信号を整流する。例えば、AC入力装置A01は発電所から送電される交流電圧を2芯から出力し、その出力は整流回路A02に入力される。整流回路A02は、入力された電圧(入力信号)を整流する。 The rectifier circuit A02 is, for example, a full-wave rectifier circuit having a diode bridge, and rectifies an AC input signal. For example, the AC input device A01 outputs an AC voltage transmitted from a power plant from two cores, and the output is input to the rectifier circuit A02. The rectifier circuit A02 rectifies the input voltage (input signal).
 整流回路A02から出力された信号は0Vを中心に正方向に整流されており、ダイオードA04およびスイッチ素子A08を介して、平滑コンデンサA03に入力される。平滑コンデンサA03は、整流回路A02により整流された信号を平滑し、定電圧を生成する。平滑コンデンサA03の出力(定電圧)は、LED装置120に供給され、複数の発光ダイオードA09は発光する。 The signal output from the rectifier circuit A02 is rectified in the positive direction around 0 V, and is input to the smoothing capacitor A03 via the diode A04 and the switch element A08. The smoothing capacitor A03 smoothes the signal rectified by the rectifying circuit A02 to generate a constant voltage. The output (constant voltage) of the smoothing capacitor A03 is supplied to the LED device 120, and the plurality of light emitting diodes A09 emit light.
 定電圧設定回路A05は、平滑コンデンサA03の電圧の目標値を設定する。平滑コンデンサA03の電圧の目標値は、例えば、平滑コンデンサの充電電圧の最大値である。閾値設定回路A06は、整流回路A02により整流された信号の電圧の閾値を設定する。スイッチ素子A08は、整流回路A02と平滑コンデンサA03との接続および非接続を切り替える。制御回路A07は、閾値設定回路A06の出力信号に応じてスイッチ素子A08のオンおよびオフの切り替えを制御する。制御回路A07は、整流回路A02により整流された信号の電圧が閾値以上の場合、スイッチ素子A08をオフするための制御を行う。制御回路A07は、整流回路A02により整流された信号の電圧が閾値未満の場合、スイッチ素子A08をオンするための制御を行う。 The constant voltage setting circuit A05 sets a target value of the voltage of the smoothing capacitor A03. The target value of the voltage of the smoothing capacitor A03 is, for example, the maximum value of the charging voltage of the smoothing capacitor. The threshold setting circuit A06 sets the threshold of the voltage of the signal rectified by the rectification circuit A02. The switch element A08 switches between connection and disconnection of the rectifier circuit A02 and the smoothing capacitor A03. The control circuit A07 controls switching between on and off of the switch element A08 according to the output signal of the threshold setting circuit A06. The control circuit A07 performs control to turn off the switch element A08 when the voltage of the signal rectified by the rectification circuit A02 is equal to or higher than the threshold. The control circuit A07 performs control to turn on the switch element A08 when the voltage of the signal rectified by the rectification circuit A02 is less than the threshold.
 電源装置110では、目標とする定電圧を定電圧設定回路A05で設定する。平滑コンデンサA03に充電された電圧が、定電圧設定回路A05が設定する電圧以上になると、スイッチ素子A08がカットオフする。これにより、平滑コンデンサA03に蓄えられた電圧は、定電圧設定回路A05で設定された電圧になる。 In the power supply device 110, a target constant voltage is set by the constant voltage setting circuit A05. When the voltage charged in the smoothing capacitor A03 exceeds the voltage set by the constant voltage setting circuit A05, the switch element A08 is cut off. As a result, the voltage stored in the smoothing capacitor A03 becomes the voltage set by the constant voltage setting circuit A05.
 ここで、定電圧設定回路A05で設定された電圧に従って、スイッチ素子A08がカットオフする方向に動作が推移している状態を考える。このとき、スイッチ素子A08の入力が高電圧に移行していく過程では、平滑コンデンサA03に蓄えられた電荷はLED装置120に向かって放電し続ける。このため、スイッチ素子A08は完全なカットオフ状態とはならず、高電圧がかかった状態でスイッチ素子A08に電流が流れ続ける。この状態では、スイッチ素子A08が電力を消費することで電圧をキープし続ける動作となってしまう。スイッチ素子A08の発熱量が大きくなることから、大きな放熱構造が必要となり、実現困難な構成となり得る。このため、平滑コンデンサA03から放電する期間は、スイッチ素子A08を完全にカットオフさせることが考えられる。 Here, it is assumed that the operation is shifted in the direction in which the switch element A08 is cut off in accordance with the voltage set by the constant voltage setting circuit A05. At this time, in the process of shifting the input of the switch element A08 to a high voltage, the charge stored in the smoothing capacitor A03 continues to be discharged toward the LED device 120. Therefore, the switch element A08 is not completely cut off, and the current continues to flow through the switch element A08 in the state where the high voltage is applied. In this state, the switch element A 08 consumes power, resulting in an operation of keeping the voltage. Since the amount of heat generation of the switch element A08 becomes large, a large heat dissipation structure is required, which may make it difficult to realize. For this reason, it is conceivable to completely cut off the switch element A08 during a period in which the smoothing capacitor A03 is discharged.
 そこで、本実施形態では、閾値設定回路A06で設定された閾値を用い、AC入力電圧が高い期間は制御回路A07にスイッチ素子A08を完全にカットオフさせる。これにより、スイッチ素子A08は、平滑コンデンサA03に充電する瞬間以外は常にカットオフ状態となり、消費電力が抑えられた電源装置110を実現することができる。 Therefore, in the present embodiment, the threshold value set by the threshold value setting circuit A06 is used, and the switch element A08 is completely cut off by the control circuit A07 while the AC input voltage is high. Thus, the switch element A08 is always in the cutoff state except at the moment of charging the smoothing capacitor A03, and the power supply device 110 with reduced power consumption can be realized.
 閾値設定回路A06は、整流回路A02の出力電圧を検出して、その出力電圧と閾値との大小関係に応じた情報を制御回路A07に送る。閾値設定回路A06が整流回路A02の出力電圧を精度良く検出するために、整流回路A02とスイッチ素子A08との間には、ダイオードA04が設けられている。ダイオードA04のアノードは整流回路A02に接続され、カソードはスイッチ素子A08に接続されている。定電圧設定回路A05および閾値設定回路A06は、整流回路A02とダイオードA04のアノードとの間のノードに接続されている。ダイオードA04により、閾値設定回路A06は、スイッチ素子A08の影響を受けずに、整流回路A02の出力電圧を精度良く検出することができる。 The threshold setting circuit A06 detects the output voltage of the rectifier circuit A02, and sends information corresponding to the magnitude relation between the output voltage and the threshold to the control circuit A07. A diode A04 is provided between the rectifier circuit A02 and the switch element A08 so that the threshold setting circuit A06 accurately detects the output voltage of the rectifier circuit A02. The anode of the diode A04 is connected to the rectifier circuit A02, and the cathode is connected to the switch element A08. The constant voltage setting circuit A05 and the threshold setting circuit A06 are connected to a node between the rectifier circuit A02 and the anode of the diode A04. The diode A04 enables the threshold setting circuit A06 to accurately detect the output voltage of the rectifier circuit A02 without being affected by the switch element A08.
 この一連の動作により、電源装置110は、AC入力電圧が変動しても、定電圧設定回路A05で設定した電圧をLED装置120に安定して供給することができる。例えば、100Vから240VなどAC入力電圧が大幅に変動したとしても、定電圧設定回路A05の設定電圧をAC入力のピーク電圧よりも低い電圧にすることで、安定して電圧を供給することができる。 With this series of operations, the power supply device 110 can stably supply the voltage set by the constant voltage setting circuit A05 to the LED device 120 even if the AC input voltage fluctuates. For example, even if the AC input voltage fluctuates significantly, such as 100 V to 240 V, the voltage can be stably supplied by setting the setting voltage of the constant voltage setting circuit A05 to a voltage lower than the peak voltage of the AC input. .
 定電圧設定回路A05としては、例えば、ツェナーダイオードを採用したり、トランジスタを有する回路を採用したり、あるいは複合的な回路を含んだICを採用してもよい。これにより、より精度の高い検出ができる。同様に、閾値設定回路A06として、例えば、ツェナーダイオード、トランジスタ、ICを採用してもよい。これにより、設定値の精度を高めることができる。 As the constant voltage setting circuit A05, for example, a Zener diode may be adopted, a circuit having a transistor may be adopted, or an IC including a complex circuit may be adopted. This enables more accurate detection. Similarly, for example, a Zener diode, a transistor, or an IC may be employed as the threshold setting circuit A06. This can increase the accuracy of the set value.
 定電流源装置130は、発光ダイオード装置120に流れる電流の大きさを一定に設定する。定電流源装置130は、定電流設定回路A11と、定電流源回路A12とを備える。この例では、定電圧設定回路A05から定電流設定回路A11に電圧が供給される。定電流設定回路A11は、定電流源回路A12に基準電圧を供給する。定電流源回路A12は、基準電圧に応じて、発光ダイオード装置120に流れる定電流の大きさを設定する。 The constant current source device 130 sets the magnitude of the current flowing to the light emitting diode device 120 constant. The constant current source device 130 includes a constant current setting circuit A11 and a constant current source circuit A12. In this example, a voltage is supplied from the constant voltage setting circuit A05 to the constant current setting circuit A11. The constant current setting circuit A11 supplies a reference voltage to the constant current source circuit A12. The constant current source circuit A12 sets the magnitude of the constant current flowing through the light emitting diode device 120 according to the reference voltage.
 電源装置110の出力を電源として、定電流源装置130を用いて発光ダイオード装置120を駆動する。これにより、安定した電圧を基準にして、発光ダイオード装置120を定電流で駆動することができる。 The constant current source device 130 is used to drive the light emitting diode device 120 using the output of the power supply device 110 as a power supply. Thus, the light emitting diode device 120 can be driven with a constant current based on a stable voltage.
 次に、発光ダイオード駆動装置100の回路構成の一例を説明する。図2は、実施形態に係る発光ダイオード駆動装置100の回路の一例を示す図である。 Next, an example of the circuit configuration of the light emitting diode drive device 100 will be described. FIG. 2 is a diagram showing an example of a circuit of the light emitting diode drive device 100 according to the embodiment.
 図2に示す例では、スイッチ素子A08は電界効果トランジスタである。スイッチ素子A08のドレインは、ダイオードA04を介して、整流回路A02に接続されている。スイッチ素子A08のソースは、平滑コンデンサA03の一端に接続されている。平滑コンデンサA03の他端はグランド(GND)に接続されている。この例では、スイッチ素子A08は、nチャネルMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であるが、別のスイッチ素子が用いられてもよい。 In the example shown in FIG. 2, the switch element A08 is a field effect transistor. The drain of the switch element A08 is connected to the rectifier circuit A02 via a diode A04. The source of the switch element A08 is connected to one end of the smoothing capacitor A03. The other end of the smoothing capacitor A03 is connected to the ground (GND). In this example, the switch element A08 is an n-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), but another switch element may be used.
 図2に示す例では、定電圧設定回路A05は、ダイオードB10、抵抗器B11、平滑コンデンサB12、ツェナーダイオードB13およびB19を備える。抵抗B14は接続抵抗である。平滑コンデンサB12の一端は、ダイオードB10を介して、整流回路A02とダイオードA04のアノードとの間のノードに接続されている。平滑コンデンサB12の他端はGNDに接続されている。平滑コンデンサB12は、整流回路A02により整流された信号を平滑する。平滑コンデンサB12の一端は、抵抗器B11を介して、ツェナーダイオードB13のカソードに接続されている。ツェナーダイオードB13とツェナーダイオードB19とは直列接続され、ツェナーダイオードB19のアノードはGNDに接続されている。ツェナーダイオードB13のカソードは、スイッチ素子A08のゲートに接続されている。 In the example shown in FIG. 2, the constant voltage setting circuit A05 includes a diode B10, a resistor B11, a smoothing capacitor B12, and Zener diodes B13 and B19. The resistor B14 is a connection resistor. One end of the smoothing capacitor B12 is connected to a node between the rectifier circuit A02 and the anode of the diode A04 via the diode B10. The other end of the smoothing capacitor B12 is connected to GND. The smoothing capacitor B12 smoothes the signal rectified by the rectification circuit A02. One end of the smoothing capacitor B12 is connected to the cathode of the Zener diode B13 via the resistor B11. The Zener diode B13 and the Zener diode B19 are connected in series, and the anode of the Zener diode B19 is connected to GND. The cathode of the Zener diode B13 is connected to the gate of the switch element A08.
 ツェナーダイオードB13およびB19のツェナー電圧は、平滑コンデンサA03の電圧の目標値に応じて設定される。例えば、直列接続されたツェナーダイオードB13およびB19のペアから得られるツェナー電圧は、平滑コンデンサA03の電圧の目標値と同じ大きさに設定される。定電圧設定回路A05は、平滑コンデンサA03の電圧の目標値と同じ大きさの電圧をスイッチ素子A08のゲートに供給する。 Zener voltages of the Zener diodes B13 and B19 are set in accordance with a target value of the voltage of the smoothing capacitor A03. For example, the Zener voltage obtained from the pair of Zener diodes B13 and B19 connected in series is set to the same magnitude as the target value of the voltage of the smoothing capacitor A03. The constant voltage setting circuit A05 supplies a voltage of the same magnitude as the target value of the voltage of the smoothing capacitor A03 to the gate of the switch element A08.
 図2に示す例では、閾値設定回路A06は、抵抗器B15およびB16を備える分圧回路である。分圧回路の一端は、整流回路A02とダイオードA04のアノードとの間のノードに接続されている。分圧回路の他端はGNDに接続されている。また、図2に示す例では、制御回路A07は、スイッチ素子B18を備える。抵抗B17は接続抵抗である。この例では、スイッチ素子B18は電界効果トランジスタである。スイッチ素子B18のドレインは、スイッチ素子A08のゲートに接続されている。スイッチ素子B18のソースは、GNDに接続されている。スイッチ素子B18のゲートは、抵抗器B15と抵抗器B16との間のノードに接続されている。すなわち、スイッチ素子B18のゲートには、閾値設定回路A06の分圧比に応じた電圧が供給される。閾値設定回路A06は、整流された信号の電圧と分圧比に応じた信号を出力し、その出力信号はスイッチ素子B18のゲートに供給される。制御回路A07は、閾値設定回路A06の出力信号の大きさに応じて、スイッチ素子A08のオンおよびオフの切り替えを制御する。 In the example shown in FIG. 2, the threshold setting circuit A06 is a voltage dividing circuit including the resistors B15 and B16. One end of the voltage dividing circuit is connected to a node between the rectifier circuit A02 and the anode of the diode A04. The other end of the voltage dividing circuit is connected to GND. Further, in the example shown in FIG. 2, the control circuit A07 includes a switch element B18. The resistor B17 is a connection resistor. In this example, the switch element B18 is a field effect transistor. The drain of the switch element B18 is connected to the gate of the switch element A08. The source of the switch element B18 is connected to GND. The gate of the switch element B18 is connected to the node between the resistor B15 and the resistor B16. That is, a voltage corresponding to the voltage division ratio of the threshold setting circuit A06 is supplied to the gate of the switch element B18. The threshold setting circuit A06 outputs a signal according to the voltage and voltage division ratio of the rectified signal, and the output signal is supplied to the gate of the switch element B18. The control circuit A07 controls switching between on and off of the switch element A08 in accordance with the magnitude of the output signal of the threshold value setting circuit A06.
 図3(a)から図3(h)は、発光ダイオード駆動装置100の各構成要素における電圧波形を示す図である。 FIG. 3A to FIG. 3H are diagrams showing voltage waveforms in respective components of the light emitting diode drive device 100. FIG.
 この例では、AC入力装置A01のAC入力は、発電所から送電される交流波を想定している。図3(a)は、AC入力装置A01の出力電圧C01の波形を示している。図3(a)の実線と破線が示すように、出力電圧C01は2相交流である。出力電圧C01は、整流回路A02に入力される。図3(b)は、整流回路A02の出力電圧C02の波形を示している。出力電圧C01を全波整流した波形の電圧C02が整流回路A02から出力される。図3(d)の実線は、平滑コンデンサA03の出力電圧C04の波形を示している。 In this example, the AC input of the AC input device A01 assumes an AC wave transmitted from a power plant. FIG. 3A shows the waveform of the output voltage C01 of the AC input device A01. As indicated by the solid line and the broken line in FIG. 3A, the output voltage C01 is a two-phase alternating current. The output voltage C01 is input to the rectifier circuit A02. FIG. 3B shows the waveform of the output voltage C02 of the rectifier circuit A02. A voltage C02 of a waveform obtained by full-wave rectifying the output voltage C01 is output from the rectifier circuit A02. The solid line in FIG. 3D indicates the waveform of the output voltage C04 of the smoothing capacitor A03.
 出力電圧C02(全波整流波)は、ダイオードA04、定電圧設定回路A05、閾値設定回路A06に入力される。 The output voltage C02 (full-wave rectified wave) is input to a diode A04, a constant voltage setting circuit A05, and a threshold setting circuit A06.
 定電圧設定回路A05では、ダイオードB10および平滑コンデンサB12により、図3(e)に実線で示す波形の電圧C05が生成される。抵抗器B11およびツェナーダイオードB13およびB19により、図3(f)に実線で示す波形の定電圧C06が生成される。直列接続されたツェナーダイオードB13およびB19のペアのツェナー電圧は、平滑コンデンサA03の電圧の目標値と同じ大きさに設定される。平滑コンデンサA03の電圧の目標値と同じ大きさの定電圧C06が、スイッチ素子A08のゲートに供給される。平滑コンデンサA03の電圧が目標値よりも低い場合、スイッチ素子A08のドレインとソースの間は導通する。 In the constant voltage setting circuit A05, a voltage C05 having a waveform shown by a solid line in FIG. 3E is generated by the diode B10 and the smoothing capacitor B12. A constant voltage C06 having a waveform shown by a solid line in FIG. 3F is generated by the resistor B11 and the Zener diodes B13 and B19. The Zener voltage of the series-connected Zener diodes B13 and B19 is set to the same magnitude as the target value of the voltage of the smoothing capacitor A03. A constant voltage C06 having the same magnitude as the target value of the voltage of the smoothing capacitor A03 is supplied to the gate of the switch element A08. When the voltage of the smoothing capacitor A03 is lower than the target value, the drain and source of the switch element A08 conduct.
 本実施形態の定電圧設定回路A05は、電圧を設定するために用いられる回路である。小さな電流で動作させることができるため、耐電圧、耐電流等が低い部品で定電圧設定回路A05を実現することが可能である。 The constant voltage setting circuit A05 of the present embodiment is a circuit used to set a voltage. Since the operation can be performed with a small current, it is possible to realize the constant voltage setting circuit A05 with components having low withstand voltage, withstand current, and the like.
 閾値設定回路A06は、分圧回路の分圧比を変えることで、AC入力に対する閾値を任意に設定することができる。例えば、平滑コンデンサA03の電圧の目標値と同じ大きさに閾値を設定する。 The threshold setting circuit A06 can arbitrarily set the threshold for the AC input by changing the voltage dividing ratio of the voltage dividing circuit. For example, the threshold is set to the same magnitude as the target value of the voltage of the smoothing capacitor A03.
 例えば、整流回路A02で整流された信号の電圧が閾値のときに、スイッチ素子B18のゲート電圧がそのゲート閾値電圧となるように、分圧回路の分圧比を設定する。整流回路A02で整流された信号の電圧が閾値以上のとき、スイッチ素子B18はオンする。整流回路A02で整流された信号の電圧が閾値未満のとき、スイッチ素子B18は実質的にオフになる。スイッチ素子B18がオンのとき、スイッチ素子A08のゲート電圧は、目標値よりも小さくなる。図2に示す例では、スイッチ素子B18がオンのとき、スイッチ素子A08のゲートはGNDに接続される。これにより、スイッチ素子A08はカットオフされる。 For example, when the voltage of the signal rectified by the rectifier circuit A02 is a threshold, the voltage dividing ratio of the voltage dividing circuit is set such that the gate voltage of the switch element B18 becomes the gate threshold voltage. When the voltage of the signal rectified by the rectifier circuit A02 is equal to or higher than the threshold, the switch element B18 is turned on. When the voltage of the signal rectified by the rectifier circuit A02 is less than the threshold value, the switch element B18 is substantially turned off. When the switch element B18 is on, the gate voltage of the switch element A08 becomes smaller than the target value. In the example shown in FIG. 2, when the switch element B18 is on, the gate of the switch element A08 is connected to GND. Thereby, the switch element A08 is cut off.
 スイッチ素子A08がカットオフされている状態では、ダイオードA04からは、整流回路A02の出力電圧がそのまま出力されるが、電流は流れない状態となる。スイッチ素子A08が導通状態となった状態において、整流回路A02の出力電圧が平滑コンデンサA03に蓄えられた電荷分の電圧よりも高い場合には、整流回路A02が生成した電圧がそのまま出力される。整流回路A02の出力電圧が平滑コンデンサA03に掛かる電圧よりも低い場合には、ダイオードA04がカットオフされ平滑コンデンサA03に掛かる電圧が出力される。結果として、ダイオードA04の電圧C03は、図3(c)に示すような波形になる。 In the state where the switch element A08 is cut off, the output voltage of the rectifier circuit A02 is output as it is from the diode A04, but no current flows. When the output voltage of the rectifier circuit A02 is higher than the voltage of the charge stored in the smoothing capacitor A03 while the switch element A08 is in the conductive state, the voltage generated by the rectifier circuit A02 is output as it is. When the output voltage of the rectifier circuit A02 is lower than the voltage applied to the smoothing capacitor A03, the diode A04 is cut off and a voltage applied to the smoothing capacitor A03 is output. As a result, the voltage C03 of the diode A04 has a waveform as shown in FIG. 3 (c).
 スイッチ素子A08のゲートには、定電圧設定回路A05の出力C06と制御回路A07の出力とから生成される、図3(g)に実線で示す波形の電圧C07が印加される。整流回路A02の出力C02が定電圧設定回路A05の出力C06よりも高い場合には、スイッチ素子A08はカットオフされ電流は流れない。整流回路A02の出力C02が定電圧設定回路A05の出力C06よりも低い場合に、スイッチ素子A08はソースとドレインが導通し、平滑コンデンサA03に充電される。 To the gate of the switch element A08, a voltage C07 having a waveform shown by a solid line in FIG. 3G, which is generated from the output C06 of the constant voltage setting circuit A05 and the output of the control circuit A07, is applied. When the output C02 of the rectifier circuit A02 is higher than the output C06 of the constant voltage setting circuit A05, the switch element A08 is cut off and no current flows. When the output C02 of the rectifier circuit A02 is lower than the output C06 of the constant voltage setting circuit A05, the source and the drain of the switch element A08 conduct, and the smoothing capacitor A03 is charged.
 AC入力が大きい場合にはスイッチ素子A08の電力消費は発生しない構成とすることにより、消費電力を抑えることができる。 When the AC input is large, power consumption of the switch element A 08 can be suppressed by generating no power consumption.
 定電流設定回路A11は、スイッチ素子F04と、抵抗器F01、F02およびF06とを備える。この例では、スイッチ素子F04は、NPN型のバイポーラトランジスタであるが、別のスイッチ素子が用いられてもよい。直列接続された抵抗器F01およびF02は、分圧回路を構成する。この分圧回路の一端は、ツェナーダイオードB13とツェナーダイオードB19との間のノードに接続されている。この分圧回路の他端は、GNDに接続されている。スイッチ素子F04のコレクタは、ツェナーダイオードB13とツェナーダイオードB19との間のノードに接続されている。スイッチ素子F04のエミッタは、抵抗器F06を介してGNDに接続されている。スイッチ素子F04のベースは、抵抗器F01と抵抗器F02との間のノードに接続されている。すなわち、スイッチ素子F04のベースには、分圧回路の分圧比に応じた電圧が供給される。 The constant current setting circuit A11 includes a switch element F04 and resistors F01, F02 and F06. In this example, the switch element F04 is an NPN bipolar transistor, but another switch element may be used. The resistors F01 and F02 connected in series constitute a voltage dividing circuit. One end of this voltage dividing circuit is connected to a node between the Zener diode B13 and the Zener diode B19. The other end of this voltage dividing circuit is connected to GND. The collector of the switch element F04 is connected to a node between the Zener diode B13 and the Zener diode B19. The emitter of the switch element F04 is connected to GND via a resistor F06. The base of the switch element F04 is connected to the node between the resistor F01 and the resistor F02. That is, a voltage corresponding to the voltage dividing ratio of the voltage dividing circuit is supplied to the base of the switch element F04.
 定電流源回路A12は、スイッチ素子F05と、抵抗器F07とを備える。この例では、スイッチ素子F05は、NPN型のバイポーラトランジスタであるが、別のスイッチ素子が用いられてもよい。スイッチ素子F05のコレクタは、LED装置120に接続されている。スイッチ素子F05のエミッタは、抵抗器F07を介してGNDに接続されている。 The constant current source circuit A12 includes a switch element F05 and a resistor F07. In this example, the switch element F05 is an NPN bipolar transistor, but another switch element may be used. The collector of the switch element F05 is connected to the LED device 120. The emitter of the switch element F05 is connected to GND via a resistor F07.
 ツェナーダイオードB13およびB19の分圧により設定された電圧を電源として、抵抗器F01およびF02の分圧比で基準電圧を生成する。この基準電圧がスイッチ素子F04のベース電圧となる。スイッチ素子F04のエミッタ出力は、スイッチ素子F05のベースに供給される基準電圧となる。図3(h)の実線は、スイッチ素子F05のベースに供給される基準電圧C08の波形を示している。スイッチ素子F05のベースに対するエミッタ電圧は固定されるため、スイッチ素子F05のコレクタ電流(Ic)は一意的に決定され、LED装置120に流れる電流が決定される。 A reference voltage is generated with a voltage division ratio of the resistors F01 and F02 using a voltage set by voltage division of the Zener diodes B13 and B19 as a power supply. This reference voltage is the base voltage of the switch element F04. The emitter output of the switch element F04 is a reference voltage supplied to the base of the switch element F05. The solid line in FIG. 3H indicates the waveform of the reference voltage C08 supplied to the base of the switch element F05. Since the emitter voltage to the base of the switch element F05 is fixed, the collector current (Ic) of the switch element F05 is uniquely determined, and the current flowing to the LED device 120 is determined.
 図4は、LED装置120を駆動する電圧のダイナミックレンジを示す。図4は、整流回路A02の出力電圧C02の波形、平滑コンデンサA03の出力電圧C04の波形、スイッチ素子F05のエミッタ電圧C09の波形を示している。 FIG. 4 shows the dynamic range of the voltage for driving the LED device 120. FIG. 4 shows the waveform of the output voltage C02 of the rectifier circuit A02, the waveform of the output voltage C04 of the smoothing capacitor A03, and the waveform of the emitter voltage C09 of the switch element F05.
 平滑コンデンサA03の出力電圧C04は、ダイナミックレンジの上限電圧となる。スイッチ素子F05のエミッタ電圧C09は、ダイナミックレンジの下限電圧となる。LED装置120は、順方向電圧Vfがこの2つの電圧間に収まる個数になるまで、発光ダイオードを接続することができる。 The output voltage C04 of the smoothing capacitor A03 is the upper limit voltage of the dynamic range. The emitter voltage C09 of the switch element F05 is the lower limit voltage of the dynamic range. The LED device 120 can connect the light emitting diodes until the number of forward voltages Vf falls between the two voltages.
 本実施形態によれば、整流回路A02の出力信号が閾値以上である場合、整流回路A02と平滑コンデンサA03とは非接続になる。すなわち、整流回路A02の出力信号の電圧が高い期間は、整流回路A02から平滑コンデンサA03に電圧は供給されない。これにより、平滑コンデンサA03の電圧が所定の電圧よりも高くなることが抑制され、安定して直流電圧を生成することができる。発光ダイオード駆動装置100に入力される交流電圧が高い場合でも、安定して発光ダイオードA09を駆動することができる。 According to the present embodiment, when the output signal of the rectifier circuit A02 is equal to or higher than the threshold value, the rectifier circuit A02 and the smoothing capacitor A03 are not connected. That is, while the voltage of the output signal of the rectifier circuit A02 is high, no voltage is supplied from the rectifier circuit A02 to the smoothing capacitor A03. As a result, the voltage of the smoothing capacitor A03 is suppressed from becoming higher than a predetermined voltage, and a DC voltage can be generated stably. Even when the AC voltage input to the light emitting diode drive device 100 is high, the light emitting diode A09 can be stably driven.
 次に、発光ダイオード駆動装置100における高調波対策について説明する。図5は、高調波抑制回路A10を備える発光ダイオード駆動装置100を示す図である。 Next, measures against harmonics in the light emitting diode drive device 100 will be described. FIG. 5 is a diagram showing a light emitting diode drive device 100 including the harmonic suppression circuit A10.
 上述した発光ダイオード駆動装置100に高調波抑制回路A10を追加することで、世界各国で規制されている高調波を低減することができる。高調波抑制回路A10は、整流回路A02とスイッチ素子A08との間に設けられる。高調波抑制回路A10は、整流回路A02から平滑コンデンサA03に流れる電流に応じて発生する高調波成分を低減する。高調波抑制回路A10は、例えばコイルとコンデンサを備え、突入電流に対するフィルターを構成することで高調波を低減する。図5に示す発光ダイオード駆動装置100の高調波抑制回路A10以外の構成は、図1に示す発光ダイオード駆動装置100と同様である。 By adding the harmonic suppression circuit A10 to the light emitting diode drive device 100 described above, it is possible to reduce the harmonics regulated in various countries in the world. The harmonic suppression circuit A10 is provided between the rectifier circuit A02 and the switch element A08. The harmonic suppression circuit A10 reduces harmonic components generated in accordance with the current flowing from the rectifier circuit A02 to the smoothing capacitor A03. The harmonic suppression circuit A10 includes, for example, a coil and a capacitor, and reduces a harmonic by configuring a filter for inrush current. The configuration other than the harmonic suppression circuit A10 of the light emitting diode drive device 100 shown in FIG. 5 is the same as that of the light emitting diode drive device 100 shown in FIG.
 一般的な電源装置では、AC入力の頂点部分で突入電流が発生する。しかし、実施形態に係る発光ダイオード駆動装置100では、スイッチ素子A08を介して平滑コンデンサA03に電流が流入する。実施形態に係る発光ダイオード駆動装置100では、スイッチ素子A08がオンになる瞬間に電流が流れる仕組みとなっており、この特徴を利用して高い効果を得る高調波対策を行う。なお、高調波抑制回路A10は、回路構成に応じて、コイル単独またはコンデンサ単独で構成できることは言うまでもない。 In a general power supply, an inrush current occurs at the top of the AC input. However, in the light emitting diode drive device 100 according to the embodiment, the current flows into the smoothing capacitor A03 via the switch element A08. In the light emitting diode drive device 100 according to the embodiment, a current flows at the moment when the switch element A 08 is turned on, and harmonic measures for obtaining a high effect are performed using this feature. Needless to say, the harmonic suppression circuit A10 can be configured by a single coil or a single capacitor depending on the circuit configuration.
 図6は、実施形態に係る発光ダイオード駆動装置100の回路の一例を示す図である。高調波抑制回路A10は、高調波成分を低減するコイルD01と、スイッチ素子A08がオフのときに電荷を保持するコンデンサD02とを備える。コイルD01の一端は、ダイオードA04を介して、整流回路A02に接続されている。コイルD01の他端は、コンデンサD02の一端およびスイッチ素子A08のドレインに接続されている。コンデンサD02の他端はGNDに接続されている。 FIG. 6 is a view showing an example of a circuit of the light emitting diode drive device 100 according to the embodiment. The harmonic suppression circuit A10 includes a coil D01 that reduces harmonic components, and a capacitor D02 that holds a charge when the switch element A08 is off. One end of the coil D01 is connected to the rectifier circuit A02 via a diode A04. The other end of the coil D01 is connected to one end of the capacitor D02 and the drain of the switch element A08. The other end of the capacitor D02 is connected to GND.
 図7(a)から図7(h)は、発光ダイオード駆動装置100の各構成要素における電圧波形および電流波形を示す図である。 FIGS. 7A to 7H are diagrams showing voltage waveforms and current waveforms in each component of the light emitting diode drive device 100. FIG.
 図2に示す回路構成では、図7(a)に示す整流回路A02の出力電圧E01に対して、ダイオードA04の出力電圧E02は図7(b)に示す波形になる。図7(c)に実線で示す平滑コンデンサA03の電流波形E03がパルス形状になるタイミングで、平滑コンデンサA03は充電される。平滑コンデンサA03の充電時に発生する電流波形E03が高調波の基本波形となる。 In the circuit configuration shown in FIG. 2, the output voltage E02 of the diode A04 has a waveform shown in FIG. 7 (b) with respect to the output voltage E01 of the rectifier circuit A02 shown in FIG. 7 (a). The smoothing capacitor A03 is charged at the timing when the current waveform E03 of the smoothing capacitor A03 shown by the solid line in FIG. 7C becomes a pulse shape. The current waveform E03 generated at the time of charging the smoothing capacitor A03 is a basic waveform of harmonics.
 一般的な電源装置では、整流回路の直後に平滑コンデンサが接続される。このため、出力電圧E01の波形の頂点部分で充電電流が発生する。本実施形態では、この平滑コンデンサが充電されるタイミングがずれることを利用して、高調波対策を行う。 In a general power supply device, a smoothing capacitor is connected immediately after the rectification circuit. Therefore, the charging current is generated at the top of the waveform of the output voltage E01. In the present embodiment, measures against harmonics are taken by utilizing the fact that the timing at which the smoothing capacitor is charged is shifted.
 本実施形態の発光ダイオード駆動装置100では、スイッチ素子A08がカットオフした状態で、整流回路A02の出力電圧E01が最大値(ピーク)を迎える。発光ダイオード駆動装置100にコイルD01およびコンデンサD02を配置すると、出力電圧E01が最大値を迎えるタイミングでコンデンサD02に充電される。コイルD01とコンデンサD02によるフィルター効果のため、コンデンサD02の充電波形E05は、図7(e)に実線で示すように周波数の低い波形になる。スイッチ素子A08がカットオフした状態で、コンデンサD02の充電動作が行われるため、AC入力側には高調波成分が流出しない。 In the light emitting diode drive device 100 of the present embodiment, the output voltage E01 of the rectifier circuit A02 reaches its maximum value (peak) in a state where the switch element A08 is cut off. When the coil D01 and the capacitor D02 are disposed in the light emitting diode drive device 100, the capacitor D02 is charged at the timing when the output voltage E01 reaches the maximum value. Because of the filtering effect of the coil D01 and the capacitor D02, the charging waveform E05 of the capacitor D02 is a waveform with a low frequency as shown by the solid line in FIG. 7 (e). Since the charging operation of the capacitor D02 is performed in a state where the switch element A08 is cut off, no harmonic component flows out to the AC input side.
 高調波抑制回路A10を備える発光ダイオード駆動装置100では、ダイオードA04の出力電圧E04は図7(d)に実線で示す波形になる。図7(d)に示すように、整流回路A02の出力の頂点をコンデンサD02で平滑(電圧をキープ)する。そして、スイッチ素子A08が導通する瞬間に平滑コンデンサA03に充電する。 In the light emitting diode drive device 100 provided with the harmonic suppression circuit A10, the output voltage E04 of the diode A04 has a waveform shown by a solid line in FIG. 7 (d). As shown in FIG. 7D, the top of the output of the rectifier circuit A02 is smoothed (voltage is kept) by the capacitor D02. Then, the smoothing capacitor A03 is charged at the moment when the switch element A08 conducts.
 このタイミングのずれを図7(h)に示している。図7(f)の実線はコンデンサD02の放電電流波形E06を示している。図7(g)の実線は平滑コンデンサA03の充電電流波形E07を示している。 The deviation of this timing is shown in FIG. 7 (h). The solid line in FIG. 7F indicates the discharge current waveform E06 of the capacitor D02. The solid line in FIG. 7G indicates the charging current waveform E07 of the smoothing capacitor A03.
 図7(h)の実線は、図7(e)から図7(g)の波形を複合した波形E08を示している。波形の低い盛り上がり部分はコンデンサD02に充電される波形E05である。上下に鋭い波形は、コンデンサD02から平滑コンデンサA03に電荷が移動する波形となる。上方向に鋭く立ち上がる波形は、平滑コンデンサA03への充電電流波形E07である。下方向に鋭く立ち下がる波形は、コンデンサD02の放電電流波形E06である。このコンデンサD02から平滑コンデンサA03に電流が流れる瞬間は、ダイオードA04がカットオフ状態となっている。整流回路A02より前段のAC入力方向からは高調波が見えない状態となるため、高調波対策を実現することができる。 The solid line in FIG. 7 (h) indicates a waveform E08 obtained by combining the waveforms in FIG. 7 (e) to FIG. 7 (g). The low rise portion of the waveform is the waveform E05 charged to the capacitor D02. The waveform which is sharp at the top and bottom becomes a waveform in which the charge moves from the capacitor D02 to the smoothing capacitor A03. The waveform rising sharply in the upward direction is the charging current waveform E07 to the smoothing capacitor A03. The waveform that falls sharply downward is the discharge current waveform E06 of the capacitor D02. At the moment when current flows from the capacitor D02 to the smoothing capacitor A03, the diode A04 is in a cut-off state. Since harmonics can not be seen from the AC input direction on the front stage of the rectifier circuit A02, it is possible to implement harmonic countermeasures.
 次に、発光ダイオードの輝度を調整する実施形態を説明する。発光ダイオード駆動装置100では、定電流源回路A12の基準電圧を変更することで輝度の調整が可能である。 Next, an embodiment for adjusting the brightness of the light emitting diode will be described. In the light emitting diode drive device 100, the brightness can be adjusted by changing the reference voltage of the constant current source circuit A12.
 図8は、調光装置140が接続された発光ダイオード駆動装置100を示す図である。調光装置140は、定電流源回路A12が設定する電流の大きさを変更する。発光ダイオード駆動装置100が調光装置140を備えていてもよい。図8に示す発光ダイオード駆動装置100の調光装置140以外の構成は、図5に示す発光ダイオード駆動装置100と同様である。 FIG. 8 is a view showing the light emitting diode drive device 100 to which the light control device 140 is connected. The dimmer 140 changes the magnitude of the current set by the constant current source circuit A12. The light emitting diode drive device 100 may include the light control device 140. The configuration other than the light control device 140 of the light emitting diode drive device 100 shown in FIG. 8 is the same as that of the light emitting diode drive device 100 shown in FIG.
 調光装置140は、LED電流制御装置F08と、絶縁通信装置F13と、電流制御回路F14とを備える。 The light control device 140 includes an LED current control device F08, an isolated communication device F13, and a current control circuit F14.
 LED電流制御装置F08は、AC入力装置A01からの交流の入力信号とは独立した電源で駆動する。LED電流制御装置F08が出力した制御信号は、絶縁通信装置F13のデータ送信回路E15からデータ受信回路E16に伝えられる。データ受信回路E16に伝えられた制御信号は、電流制御回路F14に伝えられる。電流制御回路F14は、制御信号に応じて、定電流源装置130が設定する電流の大きさを変更する。 The LED current controller F08 is driven by a power supply independent of the AC input signal from the AC input device A01. The control signal output from the LED current control device F08 is transmitted from the data transmission circuit E15 of the isolated communication device F13 to the data reception circuit E16. The control signal transmitted to the data reception circuit E16 is transmitted to the current control circuit F14. The current control circuit F14 changes the magnitude of the current set by the constant current source device 130 according to the control signal.
 発光ダイオード駆動装置100は、発電所から送電されるAC入力と直結した構成となる場合がある。外部からの制御には絶縁が必要な場合を想定して、絶縁帯F19が設けられている。絶縁通信装置F13により、外部に存在するLED電流制御装置F18で生成された制御データをデータ送信回路E15から絶縁部を超えてデータ受信回路E16に受け渡し、電流制御回路F14にデータを設定する。これにより、定電流源回路A12の基準電圧を制御し、LED装置120の電流量を任意に変更することにより、LED装置120の輝度を変更する。 The light emitting diode drive device 100 may be configured to be directly connected to an AC input transmitted from a power plant. An insulation band F19 is provided on the assumption that insulation is necessary for control from the outside. The control data generated by the LED current control device F18 present outside is transferred from the data transmission circuit E15 to the data reception circuit E16 via the insulating part by the isolated communication device F13, and data is set in the current control circuit F14. As a result, the reference voltage of the constant current source circuit A12 is controlled, and the amount of current of the LED device 120 is arbitrarily changed to change the luminance of the LED device 120.
 図9は、実施形態に係る発光ダイオード駆動装置100の回路の一例を示す図である。図9に示す例では、絶縁通信装置F13は、抵抗器F09、F10、F12と、スイッチ素子F11と、フォトカプラF17とを備える。この例では、スイッチ素子F11は、NPN型のバイポーラトランジスタであるが、別のスイッチ素子が用いられてもよい。 FIG. 9 is a diagram showing an example of a circuit of the light emitting diode drive device 100 according to the embodiment. In the example shown in FIG. 9, the insulated communication device F13 includes resistors F09, F10, and F12, a switch element F11, and a photocoupler F17. In this example, the switch element F11 is an NPN-type bipolar transistor, but another switch element may be used.
 直列接続された抵抗器F09および抵抗器F10は分圧回路を構成する。分圧回路の一端はLED電流制御装置F08に接続され、他端はGNDに接続されている。スイッチ素子F11のベースは、抵抗器F09および抵抗器F10の間のノードに接続されている。
抵抗器F12の一端はLED電流制御装置F08に接続され、他端はフォトカプラF17に接続されている。スイッチ素子F11のコレクタはフォトカプラF17に接続されており、エミッタはGNDに接続されている。
The resistor F09 and the resistor F10 connected in series constitute a voltage dividing circuit. One end of the voltage dividing circuit is connected to the LED current controller F08, and the other end is connected to GND. The base of the switch element F11 is connected to the node between the resistor F09 and the resistor F10.
One end of the resistor F12 is connected to the LED current control device F08, and the other end is connected to the photocoupler F17. The collector of the switch element F11 is connected to the photocoupler F17, and the emitter is connected to GND.
 図9に示す例では、電流制御回路F14は、抵抗器である。抵抗器F14の一端はフォトカプラF17に接続されている。抵抗器F14の一端はフォトカプラF17を介してGNDに接続されている。抵抗器F14の他端は、抵抗器F01と抵抗器F02との間のノードに接続されている。すなわち、抵抗器F14の他端は、スイッチ素子F04のベースに接続されている。 In the example shown in FIG. 9, the current control circuit F14 is a resistor. One end of the resistor F14 is connected to the photocoupler F17. One end of the resistor F14 is connected to GND via a photocoupler F17. The other end of the resistor F14 is connected to a node between the resistor F01 and the resistor F02. That is, the other end of the resistor F14 is connected to the base of the switch element F04.
 LED電流制御装置F08は、マイコンなどを備える。LED電流制御装置F08から出力される制御信号により、スイッチ素子F11に流れる電流を制御する。制御信号は、フォトカプラF17を介して、絶縁部F19を越えて抵抗器F14に伝達される。制御信号は、エミッタフォロワーを構成するスイッチ素子F04のベースに伝達される。スイッチ素子F04のベース電圧が変わると、スイッチ素子F05のベース電圧が変化する。これにより、LED装置120に流れる電流の大きさが変化する。 The LED current control device F08 includes a microcomputer and the like. The control signal output from the LED current control device F08 controls the current flowing through the switch element F11. The control signal is transmitted to the resistor F14 via the photocoupler F17 across the insulating portion F19. The control signal is transmitted to the base of switch element F04 that constitutes the emitter follower. When the base voltage of the switch element F04 changes, the base voltage of the switch element F05 changes. Thereby, the magnitude of the current flowing to the LED device 120 is changed.
 図10は、スイッチ素子F05のベース電圧とLEDの輝度との関係を示す図である。縦軸はLEDの輝度を示し、横軸はスイッチ素子F05のベース電圧を示している。LED電流制御装置F08と接続される抵抗器F14に流れる電流を徐々に増加させると、スイッチ素子F05のベース電圧が徐々に下がり、LED装置120に流れる電流が減少する。その結果、LED装置120の出射光の輝度は低下する。 FIG. 10 is a diagram showing the relationship between the base voltage of the switch element F05 and the luminance of the LED. The vertical axis indicates the brightness of the LED, and the horizontal axis indicates the base voltage of the switch element F05. As the current flowing through the resistor F14 connected to the LED current control device F08 is gradually increased, the base voltage of the switch element F05 gradually decreases, and the current flowing through the LED device 120 decreases. As a result, the luminance of the light emitted from the LED device 120 is reduced.
 上記の例では、フォトカプラF17を介して、絶縁部の外部からLED駆動制御を行っているが、本発明はこれに限定されない。例えば、トランスを使用するなど、他の絶縁部を用いた制御を行うことでも、同様のLED駆動制御を実現することができる。 In the above-mentioned example, although LED drive control is performed from the exterior of an insulation part via photocoupler F17, the present invention is not limited to this. For example, similar LED drive control can be realized by performing control using another insulating portion, such as using a transformer.
 以上説明したように、実施形態に係る発光ダイオード駆動装置100は、発光ダイオードA09を駆動する装置である。発光ダイオード駆動装置100は、交流の入力信号を整流する整流回路A02と、整流された信号を平滑する平滑コンデンサA03と、整流回路A02と平滑コンデンサA03との接続および非接続を切り替えるスイッチ素子A08と、平滑コンデンサA03の電圧の目標値を設定する定電圧設定回路A05と、整流された信号の電圧の閾値を設定する閾値設定回路A06と、閾値設定回路A06の出力信号に応じてスイッチ素子A08のオンおよびオフの切り替えを制御する制御回路A07とを備える。整流された信号の電圧が閾値以上の場合、制御回路A07はスイッチ素子A08をオフする。平滑コンデンサA03からの出力は発光ダイオードA09に供給される。 As described above, the light emitting diode drive device 100 according to the embodiment is a device for driving the light emitting diode A09. The light emitting diode drive device 100 includes a rectifier circuit A02 that rectifies an AC input signal, a smoothing capacitor A03 that smoothes the rectified signal, and a switch element A08 that switches connection and disconnection between the rectifier circuit A02 and the smoothing capacitor A03. A constant voltage setting circuit A05 for setting a target value of the voltage of the smoothing capacitor A03; a threshold setting circuit A06 for setting a threshold of the voltage of the rectified signal; and a switch element A08 according to an output signal of the threshold setting circuit A06. And a control circuit A07 that controls switching between on and off. When the voltage of the rectified signal is equal to or higher than the threshold, the control circuit A07 turns off the switch element A08. The output from the smoothing capacitor A03 is supplied to the light emitting diode A09.
 本発明の実施形態によれば、整流回路A02の出力信号が閾値以上である場合、整流回路A02と平滑コンデンサA03とは非接続になる。すなわち、整流回路A02の出力信号の電圧が高い期間は、整流回路A02から平滑コンデンサA03に電圧は供給されない。これにより、平滑コンデンサA03の電圧が所定の電圧よりも高くなることが抑制され、安定して直流電圧を生成することができる。発光ダイオード駆動装置100に入力される交流電圧が高い場合でも、安定して発光ダイオードA09を駆動することができる。 According to the embodiment of the present invention, when the output signal of the rectifier circuit A02 is equal to or higher than the threshold, the rectifier circuit A02 and the smoothing capacitor A03 are not connected. That is, while the voltage of the output signal of the rectifier circuit A02 is high, no voltage is supplied from the rectifier circuit A02 to the smoothing capacitor A03. As a result, the voltage of the smoothing capacitor A03 is suppressed from becoming higher than a predetermined voltage, and a DC voltage can be generated stably. Even when the AC voltage input to the light emitting diode drive device 100 is high, the light emitting diode A09 can be stably driven.
 ある実施形態において、閾値設定回路A06は、整流された信号の電圧に応じた信号を出力し、制御回路A07は、閾値設定回路A06の出力信号の大きさに応じて、スイッチ素子A08のオンおよびオフの切り替えを制御してもよい。 In one embodiment, the threshold setting circuit A06 outputs a signal according to the voltage of the rectified signal, and the control circuit A07 turns on the switch element A08 according to the magnitude of the output signal of the threshold setting circuit A06. You may control the switching off.
 ある実施形態において、閾値と平滑コンデンサA03の電圧の目標値とは同じ大きさであってもよい。 In one embodiment, the threshold and the target value of the voltage of the smoothing capacitor A03 may have the same magnitude.
 ある実施形態において、スイッチ素子A08は電界効果トランジスタであり、整流回路A02はスイッチ素子A08のドレインに接続され、平滑コンデンサA03はスイッチ素子A08のソースに接続されていてもよい。 In one embodiment, the switch element A08 may be a field effect transistor, the rectifier circuit A02 may be connected to the drain of the switch element A08, and the smoothing capacitor A03 may be connected to the source of the switch element A08.
 ある実施形態において、定電圧設定回路A05は、平滑コンデンサA03の電圧の目標値と同じ大きさの電圧をスイッチ素子A08のゲートに供給してもよい。 In one embodiment, the constant voltage setting circuit A05 may supply a voltage of the same magnitude as the target value of the voltage of the smoothing capacitor A03 to the gate of the switch element A08.
 ある実施形態において、平滑コンデンサA03の電圧が目標値よりも低い場合、スイッチ素子A08のドレインとソースの間は導通してもよい。 In one embodiment, when the voltage of the smoothing capacitor A03 is lower than the target value, the drain and source of the switch element A08 may conduct.
 ある実施形態において、制御回路A07は、整流された信号の電圧が閾値以上の場合、スイッチ素子A08のゲート電圧を目標値よりも小さくしてもよい。 In one embodiment, the control circuit A07 may make the gate voltage of the switch element A08 smaller than a target value when the voltage of the rectified signal is equal to or higher than a threshold.
 ある実施形態において、スイッチ素子A08は、nチャネルMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であってもよい。 In one embodiment, the switch element A08 may be an n-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
 ある実施形態において、定電圧設定回路A05は、整流された信号を平滑する平滑コンデンサB12と、定電圧設定回路A05の平滑コンデンサB12に接続されたツェナーダイオードB13およびB19とを備えてもよい。 In one embodiment, the constant voltage setting circuit A05 may include a smoothing capacitor B12 for smoothing a rectified signal, and Zener diodes B13 and B19 connected to the smoothing capacitor B12 of the constant voltage setting circuit A05.
 ある実施形態において、ツェナーダイオードB13およびB19のツェナー電圧は、平滑コンデンサA03の電圧の目標値に応じて設定されてもよい。 In one embodiment, the Zener voltages of the Zener diodes B13 and B19 may be set according to the target value of the voltage of the smoothing capacitor A03.
 ある実施形態において、発光ダイオード駆動装置100は、整流回路A02とスイッチ素子A08との間に設けられたダイオードA04をさらに備えてもよい。 In one embodiment, the light emitting diode drive device 100 may further include a diode A04 provided between the rectifier circuit A02 and the switch element A08.
 ある実施形態において、ダイオードA04のアノードは整流回路A02に接続され、ダイオードA04のカソードはスイッチ素子A08に接続されていてもよい。 In an embodiment, the anode of the diode A04 may be connected to the rectifier circuit A02, and the cathode of the diode A04 may be connected to the switch element A08.
 ある実施形態において、閾値設定回路A06は、整流回路A02とダイオードA04のアノードとの間のノードに接続されていてもよい。 In one embodiment, the threshold setting circuit A06 may be connected to a node between the rectifier circuit A02 and the anode of the diode A04.
 ある実施形態において、定電圧設定回路A05は、整流回路A02とダイオードA04のアノードとの間のノードに接続されていてもよい。 In one embodiment, the constant voltage setting circuit A05 may be connected to a node between the rectifier circuit A02 and the anode of the diode A04.
 ある実施形態において、発光ダイオード駆動装置100は、整流回路A02とスイッチ素子A08との間に設けられ、整流回路A02から平滑コンデンサA03に流れる電流に応じて発生する高調波成分を低減する高調波抑制回路A10をさらに備えてもよい。 In one embodiment, the light emitting diode drive device 100 is provided between the rectifier circuit A02 and the switch element A08 to reduce harmonics that reduces harmonic components generated in accordance with the current flowing from the rectifier circuit A02 to the smoothing capacitor A03. It may further include a circuit A10.
 ある実施形態において、高調波抑制回路A10は、高調波成分を低減するコイルD01と、スイッチ素子A08がオフのときに電荷を保持するコンデンサD02とを備えてもよい。 In one embodiment, the harmonic suppression circuit A10 may include a coil D01 that reduces harmonic components, and a capacitor D02 that holds a charge when the switch element A08 is off.
 ある実施形態において、発光ダイオード駆動装置100は、発光ダイオードA09に流れる電流の大きさを一定に設定する定電流源装置130をさらに備えてもよい。 In one embodiment, the light emitting diode drive device 100 may further include a constant current source device 130 that sets the magnitude of the current flowing through the light emitting diode A09 constant.
 ある実施形態において、定電圧設定回路A05から定電流源装置130に電圧が供給されてもよい。 In one embodiment, a voltage may be supplied to the constant current source device 130 from the constant voltage setting circuit A05.
 ある実施形態において、発光ダイオード駆動装置100は、定電流源装置130が設定する電流の大きさを変更する調光装置140をさらに備えてもよい。 In one embodiment, the light emitting diode drive device 100 may further include a light control device 140 that changes the magnitude of the current set by the constant current source device 130.
 ある実施形態において、調光装置140は、交流の入力信号とは独立した電源で駆動するLED電流制御装置F08からの制御信号を受け取る絶縁通信装置F13をさらに備え、制御信号に応じて、定電流源装置130が設定する電流の大きさを変更してもよい。 In one embodiment, the light control device 140 further includes an insulated communication device F13 that receives a control signal from the LED current control device F08 driven by a power supply independent of an alternating current input signal, and the constant current according to the control signal The magnitude of the current set by the source device 130 may be changed.
 本発明の実施形態に係る発光ダイオード駆動装置100では、整流回路A02と平滑コンデンサA03との間にスイッチ素子A08を配置する。AC入力よりも低い電圧で平滑コンデンサA03を充電し、所定の電圧を出力する。スイッチ素子A08は制御端子電圧(ゲート電圧)よりも平滑コンデンサA03の電圧が低くなったときにオンする。また、AC入力が閾値以上のときには、スイッチ素子A08は強制的にオフすることにより、スイッチ素子A08の消費電力を抑えることができる。 In the light emitting diode drive device 100 according to the embodiment of the present invention, the switch element A08 is disposed between the rectifier circuit A02 and the smoothing capacitor A03. The smoothing capacitor A03 is charged with a voltage lower than that of the AC input, and a predetermined voltage is output. The switch element A08 is turned on when the voltage of the smoothing capacitor A03 becomes lower than the control terminal voltage (gate voltage). In addition, when the AC input is equal to or higher than the threshold, the switch element A08 is forcibly turned off, whereby the power consumption of the switch element A08 can be suppressed.
 本発明の実施形態に係る発光ダイオード駆動装置100は、例えば、発電所の出力が不安定であるなど、AC入力が不安定あるいは変化することが前提となる条件下において、安定して定電圧を出力することができる。また、例えば、本発明の実施形態に係る高調波抑制回路A10を備える発光ダイオード駆動装置100を採用することにより、それ以外の部分において高調波対策が不要となり、電気製品を安価に製造することができる。 The light emitting diode drive device 100 according to the embodiment of the present invention can stably generate a constant voltage under conditions that the AC input is unstable or change, for example, the output of the power plant is unstable. It can be output. Further, for example, by adopting the light emitting diode drive device 100 provided with the harmonic suppression circuit A10 according to the embodiment of the present invention, it is not necessary to take measures against harmonics in the other parts, and the electric product can be manufactured inexpensively. it can.
 本発明は、発光ダイオードを駆動させる発光ダイオード駆動装置の分野において特に有用である。 The present invention is particularly useful in the field of light emitting diode driving devices for driving light emitting diodes.
 100:発光ダイオード駆動装置
 110:電源装置
 120:発光ダイオード装置
 130:定電流源装置
 140:調光装置
 A01:AC入力装置
 A02:整流回路
 A03:平滑コンデンサ
 A04:ダイオード
 A05:定電圧設定回路
 A06:閾値設定回路
 A07:制御回路
 A08:スイッチ素子
 A09:発光ダイオード
 A10:高調波抑制回路
 A11:定電流設定回路
 A12:定電流源回路
 B10:ダイオード
 B11:抵抗器
 B12:平滑コンデンサ
 B13:ツェナーダイオード
 B14:接続抵抗
 B15:抵抗器
 B16:抵抗器
 B17:接続抵抗
 B18:スイッチ素子
 B19:ツェナーダイオード
 D01:コイル
 D02:コンデンサ
 F01:抵抗器
 F02:抵抗器
 F04:トランジスタ
 F05:トランジスタ
 F06:抵抗器
 F07:抵抗器
 F08:LED電流制御装置
 F09:抵抗器
 F10:抵抗器
 F11:トランジスタ
 F12:抵抗器
 F13:絶縁通信装置
 F14:電流制御回路
 F15:データ送信回路
 F16:データ受信回路
 F17:フォトカプラ
 F19:絶縁部
100: light emitting diode drive device 110: power supply device 120: light emitting diode device 130: constant current source device 140: light control device A01: AC input device A02: rectification circuit A03: smoothing capacitor A04: diode A05: constant voltage setting circuit A06: Threshold setting circuit A07: Control circuit A08: Switch element A09: Light emitting diode A10: Harmonic suppression circuit A11: Constant current setting circuit A12: Constant current source circuit B10: Diode B11: Resistor B12: Smoothing capacitor B13: Zener diode B14: Connection resistance B15: Resistor B16: Resistor B17: Connection resistance B19: Switch element B19: Zener diode D01: Coil D02: Capacitor F01: Resistor F02: Resistor F04: Transistor F05: Transistor F06: Resistor Device F07: Resistor F08: LED current control device F09: Resistor F10: Resistor F11: Transistor F12: Resistor F13: Insulated communication device F14: Current control circuit F15: Data transmission circuit F16: Data reception circuit F17: Photo coupler F19: Insulated part

Claims (20)

  1.  発光ダイオードを駆動する発光ダイオード駆動装置であって、
     交流の入力信号を整流する整流回路と、
     前記整流された信号を平滑する平滑コンデンサと、
     前記整流回路と前記平滑コンデンサとの接続および非接続を切り替えるスイッチ素子と、
     前記平滑コンデンサの電圧の目標値を設定する電圧設定回路と、
     前記整流された信号の電圧の閾値を設定する閾値設定回路と、
     前記閾値設定回路の出力信号に応じて前記スイッチ素子のオンおよびオフの切り替えを制御する制御回路と、
     を備え、
     前記整流された信号の電圧が前記閾値以上の場合、前記制御回路は前記スイッチ素子をオフし、
     前記平滑コンデンサからの出力を前記発光ダイオードに供給する、発光ダイオード駆動装置。
    A light emitting diode drive device for driving a light emitting diode, comprising:
    A rectifier circuit that rectifies an AC input signal;
    A smoothing capacitor for smoothing the rectified signal;
    A switch element that switches connection and disconnection between the rectifier circuit and the smoothing capacitor;
    A voltage setting circuit for setting a target value of the voltage of the smoothing capacitor;
    A threshold setting circuit for setting a threshold of a voltage of the rectified signal;
    A control circuit that controls switching between on and off of the switch element according to an output signal of the threshold setting circuit;
    Equipped with
    If the voltage of the rectified signal is greater than or equal to the threshold, the control circuit turns off the switch element;
    A light emitting diode drive device for supplying an output from the smoothing capacitor to the light emitting diode.
  2.  前記閾値設定回路は、前記整流された信号の電圧に応じた信号を出力し、
     前記制御回路は、前記閾値設定回路の出力信号の大きさに応じて、前記スイッチ素子のオンおよびオフの切り替えを制御する、請求項1に記載の発光ダイオード駆動装置。
    The threshold setting circuit outputs a signal according to the voltage of the rectified signal,
    The light emitting diode drive device according to claim 1, wherein the control circuit controls switching between on and off of the switch element in accordance with a magnitude of an output signal of the threshold value setting circuit.
  3.  前記閾値と前記平滑コンデンサの電圧の目標値とは同じ大きさである、請求項1または2に記載の発光ダイオード駆動装置。 The light emitting diode drive device according to claim 1 or 2, wherein the threshold and the target value of the voltage of the smoothing capacitor have the same magnitude.
  4.  前記スイッチ素子は、電界効果トランジスタであり、
     前記整流回路は、前記スイッチ素子のドレインに接続され、
     前記平滑コンデンサは、前記スイッチ素子のソースに接続されている、請求項1から3のいずれかに記載の発光ダイオード駆動装置。
    The switch element is a field effect transistor,
    The rectification circuit is connected to the drain of the switch element,
    The light emitting diode drive device according to any one of claims 1 to 3, wherein the smoothing capacitor is connected to a source of the switch element.
  5.  前記電圧設定回路は、前記平滑コンデンサの電圧の目標値と同じ大きさの電圧を前記スイッチ素子のゲートに供給する、請求項4に記載の発光ダイオード駆動装置。 The light emitting diode drive device according to claim 4, wherein the voltage setting circuit supplies a voltage having the same magnitude as a target value of the voltage of the smoothing capacitor to a gate of the switch element.
  6.  前記平滑コンデンサの電圧が前記目標値よりも低い場合、前記スイッチ素子のドレインとソースの間は導通する、請求項5に記載の発光ダイオード駆動装置。 The light emitting diode drive device according to claim 5, wherein when the voltage of the smoothing capacitor is lower than the target value, the drain and the source of the switch element become conductive.
  7.  前記制御回路は、前記整流された信号の電圧が前記閾値以上の場合、前記スイッチ素子のゲート電圧を前記目標値よりも小さくする、請求項5または6に記載の発光ダイオード駆動装置。 The light emitting diode drive device according to claim 5 or 6, wherein the control circuit makes the gate voltage of the switch element smaller than the target value when the voltage of the rectified signal is equal to or higher than the threshold.
  8.  前記スイッチ素子は、nチャネルMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である、請求項1から7のいずれかに記載の発光ダイオード駆動装置。 The light emitting diode drive device according to any one of claims 1 to 7, wherein the switch element is an n-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  9.  前記電圧設定回路は、
     前記整流された信号を平滑する平滑コンデンサと、
     前記電圧設定回路の前記平滑コンデンサに接続されたツェナーダイオードと、
     を備える、請求項1から8のいずれかに記載の発光ダイオード駆動装置。
    The voltage setting circuit is
    A smoothing capacitor for smoothing the rectified signal;
    A Zener diode connected to the smoothing capacitor of the voltage setting circuit;
    The light emitting diode drive device according to any one of claims 1 to 8, comprising:
  10.  前記ツェナーダイオードのツェナー電圧は、前記平滑コンデンサの電圧の目標値に応じて設定される、請求項9に記載の発光ダイオード駆動装置。 The light emitting diode drive device according to claim 9, wherein a Zener voltage of the Zener diode is set according to a target value of a voltage of the smoothing capacitor.
  11.  前記整流回路と前記スイッチ素子との間に設けられたダイオードをさらに備える、請求項1から10のいずれかに記載の発光ダイオード駆動装置。 The light emitting diode drive device according to any one of claims 1 to 10 further provided with a diode provided between said rectifier circuit and said switch element.
  12.  前記ダイオードのアノードは前記整流回路に接続され、前記ダイオードのカソードは前記スイッチ素子に接続されている、請求項11に記載の発光ダイオード駆動装置。 The light emitting diode drive device according to claim 11, wherein an anode of the diode is connected to the rectification circuit, and a cathode of the diode is connected to the switch element.
  13.  前記閾値設定回路は、前記整流回路と前記ダイオードのアノードとの間のノードに接続されている、請求項12に記載の発光ダイオード駆動装置。 The light emitting diode drive device according to claim 12, wherein the threshold setting circuit is connected to a node between the rectifier circuit and an anode of the diode.
  14.  前記電圧設定回路は、前記整流回路と前記ダイオードのアノードとの間のノードに接続されている、請求項12または13に記載の発光ダイオード駆動装置。 The light emitting diode drive device according to claim 12, wherein the voltage setting circuit is connected to a node between the rectifier circuit and an anode of the diode.
  15.  前記整流回路と前記スイッチ素子との間に設けられ、前記整流回路から前記平滑コンデンサに流れる電流に応じて発生する高調波成分を低減する高調波抑制回路をさらに備える、請求項1から14のいずれかに記載の発光ダイオード駆動装置。 The harmonic suppression circuit which is provided between the said rectifier circuit and the said switch element, and reduces the harmonic component generate | occur | produced according to the electric current which flows into the said smoothing capacitor from the said rectifier circuit is further equipped with any one of Claim 1 to 14 A light emitting diode drive device according to any one of the above.
  16.  前記高調波抑制回路は、
     前記高調波成分を低減するコイルと、
     前記スイッチ素子がオフのときに電荷を保持するコンデンサと、
     を備える、請求項15に記載の発光ダイオード駆動装置。
    The harmonic suppression circuit is
    A coil for reducing the harmonic component;
    A capacitor for retaining charge when the switch element is off;
    The light emitting diode drive device according to claim 15, comprising:
  17.  前記発光ダイオードに流れる電流の大きさを一定に設定する定電流源装置をさらに備える、請求項1から16のいずれかに記載の発光ダイオード駆動装置。 The light emitting diode drive device according to any one of claims 1 to 16, further comprising a constant current source device which sets a magnitude of a current flowing through the light emitting diode to a constant value.
  18.  前記電圧設定回路から前記定電流源装置に電圧が供給される、請求項17に記載の発光ダイオード駆動装置。 The light emitting diode drive device according to claim 17, wherein a voltage is supplied from the voltage setting circuit to the constant current source device.
  19.  前記定電流源装置が設定する電流の大きさを変更する調光装置をさらに備える、請求項17または18に記載の発光ダイオード駆動装置。 The light emitting diode drive device according to claim 17 or 18, further comprising a dimmer for changing the magnitude of the current set by the constant current source device.
  20.  前記調光装置は、
     前記交流の入力信号とは独立した電源で駆動する制御装置からの制御信号を受け取る絶縁通信装置をさらに備え、
     前記制御信号に応じて、前記定電流源装置が設定する電流の大きさを変更する、請求項19に記載の発光ダイオード駆動装置。
    The light control device
    It further comprises an isolated communication device that receives a control signal from a control device driven by a power supply independent of the AC input signal,
    20. The light emitting diode drive device according to claim 19, wherein the magnitude of the current set by the constant current source device is changed according to the control signal.
PCT/JP2018/045711 2017-12-12 2018-12-12 Light-emitting diode drive device WO2019117205A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-237723 2017-12-12
JP2017-237724 2017-12-12
JP2017237723 2017-12-12
JP2017237724 2017-12-12

Publications (1)

Publication Number Publication Date
WO2019117205A1 true WO2019117205A1 (en) 2019-06-20

Family

ID=66819003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045711 WO2019117205A1 (en) 2017-12-12 2018-12-12 Light-emitting diode drive device

Country Status (1)

Country Link
WO (1) WO2019117205A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3245238A1 (en) * 1982-12-07 1984-06-07 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement, without a transformer, for generating small DC voltages
JPS62135274A (en) * 1985-12-05 1987-06-18 Tdk Corp Rectifying smoothing circuit
US4685046A (en) * 1985-10-03 1987-08-04 The Scott & Fetzer Company Low voltage direct current power supply
US5307257A (en) * 1991-02-22 1994-04-26 Matsushita Electric Industrial Co., Ltd. Transformerless power-supply unit for supplying a low DC voltage
JPH08115134A (en) * 1994-10-18 1996-05-07 Tokai Rika Co Ltd Power source circuit
JP2009201342A (en) * 2008-02-22 2009-09-03 Macroblock Inc Power-supply circuit of ac/dc converter
CN102185500A (en) * 2011-04-28 2011-09-14 刘家发 Practical transformer-free switching power supply
JP2015226352A (en) * 2014-05-26 2015-12-14 オムロン株式会社 Power supply device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3245238A1 (en) * 1982-12-07 1984-06-07 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement, without a transformer, for generating small DC voltages
US4685046A (en) * 1985-10-03 1987-08-04 The Scott & Fetzer Company Low voltage direct current power supply
JPS62135274A (en) * 1985-12-05 1987-06-18 Tdk Corp Rectifying smoothing circuit
US5307257A (en) * 1991-02-22 1994-04-26 Matsushita Electric Industrial Co., Ltd. Transformerless power-supply unit for supplying a low DC voltage
JPH08115134A (en) * 1994-10-18 1996-05-07 Tokai Rika Co Ltd Power source circuit
JP2009201342A (en) * 2008-02-22 2009-09-03 Macroblock Inc Power-supply circuit of ac/dc converter
CN102185500A (en) * 2011-04-28 2011-09-14 刘家发 Practical transformer-free switching power supply
JP2015226352A (en) * 2014-05-26 2015-12-14 オムロン株式会社 Power supply device

Similar Documents

Publication Publication Date Title
CN108200685B (en) LED lighting system for silicon controlled switch control
TWI580303B (en) Led driver system with dimmer detection
JP2008166192A (en) Power supply circuit for driving led
CA2892775C (en) Led driver circuit using flyback converter to reduce observable optical flicker by reducing rectified ac mains ripple
US9723666B2 (en) Lighting device and lighting fixture using same
JP2017526327A (en) Ballast circuit
TW201517472A (en) Soft-start switching power converter
JP6278314B2 (en) Lighting device and lighting apparatus using the same
US10904972B2 (en) Retrofit light emitting diode, LED, tube for reducing audible noise originating from a high frequency electronic ballast
KR20150124088A (en) LED lamp driver apparatus with frequency tracking function
JP6603763B2 (en) Lighting system
JP2011120341A (en) Power source circuit
US8873251B2 (en) Output adjustment circuit for power supply unit
WO2019117205A1 (en) Light-emitting diode drive device
KR20140070126A (en) Apparatus and method of operating the the illumination apparatus
US9426854B1 (en) Electronic driver for controlling an illumination device
JP6563648B2 (en) Insulated DC / DC converter, primary side controller, synchronous rectification controller, power supply device using the same, power supply adapter, and electronic device
US8917028B2 (en) Driving circuit
JP2017188341A (en) Lighting-controllable lighting device and illumination device
JP5293961B2 (en) LED drive circuit
JP6101744B2 (en) Switching power supply
US10390392B2 (en) Method for controlling an output of an electrical AC voltage
KR20190000093U (en) Power supply apparatus for light emitting diode
WO2019117204A1 (en) Power source device
JP5562117B2 (en) Lighting device, lighting device, and lighting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP