WO2019117182A1 - Crusher - Google Patents

Crusher Download PDF

Info

Publication number
WO2019117182A1
WO2019117182A1 PCT/JP2018/045614 JP2018045614W WO2019117182A1 WO 2019117182 A1 WO2019117182 A1 WO 2019117182A1 JP 2018045614 W JP2018045614 W JP 2018045614W WO 2019117182 A1 WO2019117182 A1 WO 2019117182A1
Authority
WO
WIPO (PCT)
Prior art keywords
mantle
concave
crusher
vertical direction
core
Prior art date
Application number
PCT/JP2018/045614
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 塚田
拓也 羽金
Original Assignee
古河産機システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河産機システムズ株式会社 filed Critical 古河産機システムズ株式会社
Priority to JP2019559682A priority Critical patent/JP7253497B2/en
Publication of WO2019117182A1 publication Critical patent/WO2019117182A1/en
Priority to JP2023004360A priority patent/JP2023029650A/en
Priority to JP2023004361A priority patent/JP7438416B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers
    • B02C2/02Crushing or disintegrating by gyratory or cone crushers eccentrically moved
    • B02C2/04Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis

Definitions

  • the present invention relates to a crusher.
  • Crushers are sometimes used to break up raw materials, such as rocks.
  • the crusher includes a mantle core, a mantle and a concave.
  • the mantle is attached to the mantle core.
  • the raw material input to the crusher is crushed in the space (crushing chamber) between the mantle and the concave.
  • Concaves and mantles wear with the use of crushers.
  • the concave and the mantle are worn, the concave and the mantle are brought close to each other, for example, by moving the concave downward to maintain the space between the concave and the mantle.
  • the inventors have found that bringing the concave and mantle closer together may reduce the maximum size of the material (eg, rock) that can be fractured by the concave and mantle.
  • the object of the first aspect of the present invention is to maintain the largest size of the material that can be crushed by concave and mantle at a large size over the long term use of the crusher.
  • An object of the second aspect of the present invention is to firmly fix the mantle to the mantle core.
  • the concave may be held by lifting the projection provided on the concave by a lift (for example, a U-bolt).
  • a lift for example, a U-bolt.
  • An object of the third aspect of the present invention is to simplify the structure of a crusher.
  • Concave having a first crushing surface
  • a mantle having a second crush surface, the second crush surface being positioned to face the first crush surface of the concave; Equipped with One of the concave and the mantle is movable along the vertical direction with respect to the concave and the other of the mantle, The upper end of the first crushing surface of the concave is located higher than the upper end of the second crushing surface of the mantle; In the vertical direction, the distance from the upper end of the second crushing surface of the mantle to the upper end of the first crushing surface of the concave is 40% or more of the distance from the lower end to the upper end of the first crushing surface of the concave A crusher is provided.
  • a mantle core having a first inclined surface inclined with respect to the vertical direction;
  • a mantle having a second inclined surface inclined with respect to the vertical direction, the second inclined surface being positioned to face the first inclined surface of the mantle core; Equipped with The mantle core intersects the upper end of the first inclined surface and intersects the first surface of the mantle core and a first surface having a gentler inclination than the first inclined surface with respect to the vertical direction.
  • the mantle intersects the upper end of the second inclined surface and has a first surface having a gentler inclination than the second inclined surface with respect to the vertical direction, and intersects the first surface of the mantle and the vertical And a second surface having a steeper inclination than the first surface of the mantle with respect to a direction,
  • the first surface of the mantle core and the first surface of the mantle being opposite each other;
  • the crusher in which the second surface of the mantle core and the second surface of the mantle face each other is provided.
  • the spindle With the spindle A concave located around the spindle; A protrusion protruding from the concave; A lift which is movable along the vertical direction and which can lift the first part of the protrusions upward; Equipped with In the cross section along the vertical direction, the concave is at a first end in one direction orthogonal to the vertical direction and on the opposite side of the first end in the one direction from the first end And a second end located high, In the one direction, the center of the first portion of the protrusion is offset from the center between the first end and the second end toward the second end, There is provided a crusher in which the first portion of the protrusion in the vertical direction is higher than the upper end of the main shaft.
  • the maximum size of the material that can be crushed by the concave and the mantle can be maintained at a large size over the long-term use of the crusher.
  • the mantle can be firmly fixed to the mantle core.
  • the structure of the crusher can be simplified.
  • FIG. 3 It is a sectional view showing a crusher concerning an embodiment. It is a figure for demonstrating the detail of the crusher shown in FIG. It is the figure which expanded a part of FIG. It is the figure which looked at the lift part and accommodating part which were shown in FIG. 3 from the inner side of a crusher. It is the figure which looked at the accommodating part and holding part which were shown in FIG. 3 from upper direction. It is a figure for demonstrating the detail of the crusher shown in FIG. It is a figure for demonstrating an example in which the 1st crushing surface of a concave and the 2nd crushing surface of a mantle were worn away. It is a figure for demonstrating the largest size of the raw material which can be crushed by a concave and a mantle.
  • FIG. 1-8 It is a front view of the concave shown in FIG. It is a side view of the concave shown in FIG. It is a bottom view of the concave shown in FIG. It is AA sectional drawing of FIG.
  • FIG. 1 is a cross-sectional view showing a crusher 10 according to the embodiment.
  • the crusher 10 includes a concave 100, a moving unit 200, a frame 300, a mantle core 400, a mantle 500, a main shaft 600, an eccentric shaft 700, and a hopper 800.
  • the concave 100 and the mantle 500 are opposed to each other, and define a space (crushing chamber) between the concave 100 and the mantle 500.
  • a space crushing chamber between the concave 100 and the mantle 500, the raw material (for example, rock) input from the hopper 800 is crushed by the concave 100 and the mantle 500.
  • the concave 100 is attached to the moving unit 200.
  • the moving unit 200 is movable along the vertical direction (the Z direction in FIG. 1) with respect to the frame 300. Therefore, as the moving unit 200 moves, the concave 100 can move along the vertical direction (the Z direction in FIG. 1).
  • the mantle 500 is attached to the mantle core 400.
  • the mantle core 400 is attached to the main shaft 600.
  • the main shaft 600 is supported by an eccentric shaft 700 so as to be inclined from the vertical direction (the Z direction in FIG. 1).
  • the mantle 500 and the mantle core 400 can be precessed by the rotation of the main shaft 600 and the drive of the eccentric shaft 700.
  • FIG. 2 is a view for explaining the details of the crusher 10 shown in FIG.
  • the crusher 10 will be described with reference to FIG.
  • the crusher 10 includes a concave 100, a protrusion 110, a lift 120 and a main shaft 600.
  • the concave 100 is located around the main shaft 600.
  • the protrusion 110 protrudes from the concave 100.
  • the lift unit 120 is movable along the vertical direction (the Z direction in FIG. 2).
  • the lift portion 120 can lift the first portion 112 of the protrusion 110 upward.
  • the concave 100 has a first end SE1 and a second end SE2.
  • the first end SE1 is an end in one direction (X direction in FIG. 2) orthogonal to the vertical direction.
  • the second end SE2 is on the opposite side of the first end SE1 in the one direction (X direction in FIG. 2) and is higher than the first end SE1.
  • the center of the first portion 112 of the protrusion 110 is from the center C between the first end SE1 and the second end SE2 toward the second end SE2. It deviates by a distance ⁇ ( ⁇ > 0).
  • the first portion 112 of the protrusion 110 is at a position higher than the upper end of the main shaft 600.
  • the structure of the crusher 10 can be simplified.
  • the center of the first portion 112 of the protrusion 110 is the center C between the first end SE1 and the second end SE2 in one direction (the X direction in FIG. 2).
  • the first portion 112 of the protrusion 110 is positioned higher than the upper end of the main shaft 600 in the vertical direction (the Z direction in FIG. 2).
  • a space for moving the protrusion 110 toward the second end SE2 of the concave 100 in one direction (the X direction in FIG. 2) described above. can be secured.
  • the region between the lift portion 120 and the concave 100 is narrowed in the lateral direction (the X direction in FIG. 2).
  • the structure of the crusher 10 can be simplified.
  • the crusher 10 will be further described with reference to FIG.
  • the concave 100 is inclined at a large angle from the horizontal direction (X direction in FIG. 2) in the vicinity of the second end SE2, and stands substantially vertically. Therefore, in the vicinity of the second end SE2, the protrusion 110 and the lift 120 are easily brought close to the second end SE2 of the concave 100.
  • the concave 100 has a contact surface 104a (in FIG. 2, the area where the contact surface 104a is located is indicated by hatching).
  • the contact surface 104 a is in contact with the moving unit 200.
  • the contact surface 104a in one direction (X direction in FIG. 2), is directed from the center C of the first end SE1 and the second end SE2 of the concave 100 to the first end SE1. It is off.
  • the area in which the contact surface 104a is located is not limited to the example shown in FIG.
  • the concave 100 does not have a contact surface (a surface in contact with the moving unit 200) above the protrusion 110.
  • the protrusion 110 can be close to the second end SE2 of the concave 100. That is, the protrusion 110 can be provided at a high position of the concave 100. Therefore, the concave 100 can be held without providing the contact surface above the protrusion 110.
  • the first end SE1 and the second end SE2 of the concave 100 are separated by a first distance W in one direction (X direction in FIG. 2).
  • the distance ⁇ can be equal to or less than 0.25 times the first distance W ( ⁇ ⁇ 0.25 W). According to this example, the concave 100 can be stably held. If the distance ⁇ is large to some extent (for example, if the distance ⁇ is more than 0.25 times the first distance W), the resistance (downward force) the contact surface 104a receives from the moving portion 200 and the first portion 112 The torque due to the force received by the lift portion 120 (force directed upward) makes it easier for the concave 100 to rotate. On the other hand, when the distance ⁇ is suppressed to a certain extent, the rotation of the concave 100 due to the torque can be suppressed, and the concave 100 can be stably held.
  • the distance ⁇ may be equal to or less than 0.10 times the first distance W.
  • the concave 100 can be held more stably, and a sufficiently large space for providing the protrusion 110 and the lift 120 can be secured.
  • FIG. 3 is an enlarged view of a part of FIG.
  • FIG. 4 is a view of the lift portion 120 and the storage portion 210 shown in FIG. 3 as viewed from the inside of the crusher 10.
  • FIG. 5 is a top view of the housing portion 210 and the holding portion 220 shown in FIG.
  • the housing portion 210 defines a space 210a. At least a portion of the protrusion 110 can be inserted into the space 210a. As shown in FIG. 4, the housing portion 210 has a first upper surface 211, a first side surface 212, a second upper surface 213 and a second side surface 214. The first side surface 212 intersects the first upper surface 211. The second side surface 214 intersects the second upper surface 213. The first side surface 212 and the second side surface 214 face each other across the space 210a.
  • the lift portion 120 is a U-bolt.
  • the lift portion 120 includes a first portion 122, a second portion 124 and a third portion 126.
  • the first portion 122 passes below the first portion 112 of the protrusion 110.
  • the second portion 124 passes from the first portion 122 to one side of the protrusion 110.
  • the third portion 126 passes from the first portion 122 to the opposite side of the protrusion 110.
  • the lift portion 120 may be a member different from the U-bolt.
  • the holding portion 220 has a first member 222.
  • the first member 222 is located above the protrusion 110. As shown in FIG. 4, the first member 222 spans the space 210 a from the first upper surface 211 to the second upper surface 213 of the housing portion 210. Therefore, the first member 222 of the holding portion 220 can be stably installed in the housing portion 210.
  • the second portion 124 and the third portion 126 of the lift portion 120 are attached to the first member 222 of the holding portion 220 so as to be movable along the vertical direction (the Z direction in FIGS. 3 and 4). Therefore, the protrusion 110 can be lifted upward by the lift portion 120.
  • the lift portion 120 can be moved by a nut provided above the first member 222 of the holding portion 220.
  • the holder 220 has a second member 224.
  • the second member 224 protrudes from the first member 222. As shown in FIG. 5, the second member 224 is located between the first side surface 212 and the second side surface 214 of the housing portion 210.
  • the holding unit 220 moves toward the first side surface 212 or the second side surface 214 by the movement of the concave 100, in particular, rotation, the second member 224 of the holding unit 220 contacts the first side surface 212 or the second side surface 214. Therefore, movement, in particular rotation, of the concave 100 can be prevented.
  • the protrusion 110 can be accommodated in the space 210 a of the accommodation unit 210 and the protrusion 110 can be accommodated by the holding unit 220 with a simple structure. It can be stably fixed to 210.
  • FIG. 6 is a view for explaining the details of the crusher 10 shown in FIG.
  • the crusher 10 will be described with reference to FIG.
  • the crusher 10 includes a concave 100 and a mantle 500.
  • the concave 100 has a first crushing surface 102.
  • the mantle 500 has a second fracture surface 502.
  • the mantle 500 is positioned such that the second fracture surface 502 faces the first fracture surface 102 of the concave 100.
  • One of the concave 100 and the mantle 500 is movable along the vertical direction (the Z direction in FIG. 6) with respect to the concave 100 and the other of the mantle 500.
  • the upper end UE1 of the first fracture surface 102 of the concave 100 is located higher than the upper end UE2 of the second fracture surface 502 of the mantle 500.
  • the distance ⁇ H from the upper end UE2 of the second fracture surface 502 of the mantle 500 to the upper end UE1 of the first fracture surface 102 of the concave 100 in the vertical direction (the Z direction in FIG. 6) is the same as that of the first fracture surface 102 of the concave 100.
  • the distance H is 40% or more of the distance H from the lower end LE1 to the upper end UE1 ( ⁇ H / H00.40).
  • the maximum size of the material that can be crushed by the concave 100 and the mantle 500 can be maintained at a large size over the long-term use of the crusher 10.
  • the maximum size of the raw material that can be crushed by the concave 100 and the mantle 500 is approximately as long as the upper end UE1 of the first crushing surface 102 is higher than the upper end UE2 of the second crushing surface 502. It can be kept constant.
  • the upper end UE1 of the first crushing surface 102 is at a position considerably higher than the upper end UE2 of the second crushing surface 502 ( ⁇ H / H ⁇ 0.40).
  • the first crushing surface 102 can be positioned higher than the upper end UE2 of the second crushing surface 502 for a long period of time. Accordingly, the maximum size of the material that can be crushed by the concave 100 and the mantle 500 can be maintained at a large size over the long-term use of the crusher 10.
  • the crusher 10 will be further described using FIG.
  • the first fracture surface 102 of the concave 100 has a lower end LE1
  • the second fracture surface 502 of the mantle 500 has a lower end LE2.
  • the lower end LE1 of the first crushing surface 102 and the lower end LE2 of the second crushing surface 502 are separated by a distance ⁇ .
  • the first fractured surface 102 of the concave 100 has an upper end UE1
  • the second fractured surface 502 of the mantle 500 has an upper end UE2.
  • the inclination at the upper end UE1 of the first crushing surface 102 is larger than the inclination at the upper end UE2 of the second crushing surface 502 by the angle ⁇ .
  • the distance between the concave 100 and the mantle 500 can be adjusted by moving the concave 100 in the vertical direction (the Z direction in FIG. 6).
  • the concave 100 is attached to the moving unit 200, and the moving unit 200 can move along the vertical direction (the Z direction in FIG. 6) with respect to the frame 300. Therefore, by moving the moving unit 200 with respect to the frame 300, the concave 100 can be moved in the vertical direction (the Z direction in FIG. 6).
  • the protruding portion 110 of the concave 100 is lifted by the lift portion 120 upward in the vertical direction (the Z direction in FIG. 6).
  • the concave 100 is attached to the moving unit 200 by the lift unit 120.
  • FIG. 7 is a view for explaining an example in which the first fracture surface 102 of the concave 100 and the second fracture surface 502 of the mantle 500 are worn.
  • the concave 100 is moved downward by the downward movement of the frame 200 with respect to the frame 300.
  • the upper end UE ⁇ b> 1 of the first crushing surface 102 is located higher than the upper end UE ⁇ b> 2 of the second crushing surface 502.
  • the maximum size of the raw material for example, the raw material O shown in FIG. 7 that can be crushed by the concave 100 and the mantle 500 is the first crushing surface 102 moved downward. , Can be maintained almost constant.
  • FIG. 8 is a view for explaining the maximum size of the raw material that can be crushed by the concave 100 and the mantle 500.
  • the upper end UE ⁇ b> 1 of the first crushing surface 102 is located higher than the upper end UE ⁇ b> 2 of the second crushing surface 502.
  • the upper end UE ⁇ b> 1 of the first crushing surface 102 is located lower than the upper end UE ⁇ b> 2 of the second crushing surface 502.
  • the distance ⁇ between the concave 100 and the mantle 500, in particular, the distance ⁇ between the lower end LE1 of the first fracture surface 102 and the lower end LE2 of the second fracture surface 502 is the same in the left view in FIG. 8 and the right view in FIG. It has become.
  • the raw material O can be bitten by the upper end UE 1 of the first crushing surface 102 and the upper end UE 2 of the second crushing surface 502. Therefore, the maximum size of the material that can be crushed by the concave 100 and the mantle 500 is large.
  • the material O can be bitten by a portion of the first crushing surface 102 which is at a position lower than the upper end UE 1 and the second crushing surface 502. . Therefore, the maximum size of the raw material that can be crushed by the concave 100 and the mantle 500 is smaller than that in the left view in FIG.
  • the maximum size of the raw material that can be crushed by the concave 100 and the mantle 500 is the second crushing surface 502 at the upper end UE1 of the first crushing surface 102. As long as it is higher than the upper end UE2, it can be maintained substantially constant.
  • FIG. 9 is a view for explaining the details of the crusher 10 shown in FIG.
  • FIG. 10 is an enlarged view of the mantle core 400, the mantle 500 and the principal axis 600 shown in FIG.
  • the crusher 10 will be described with reference to FIG.
  • the crusher 10 includes a mantle core 400 and a mantle 500.
  • the mantle core 400 has a first inclined surface 404.
  • the first inclined surface 404 is inclined with respect to the vertical direction (the Z direction in FIG. 10).
  • the mantle 500 has a second inclined surface 504.
  • the second inclined surface 504 is inclined with respect to the vertical direction (the Z direction in FIG. 10).
  • the mantle 500 is positioned such that the second sloped surface 504 faces the first sloped surface 404 of the mantle core 400.
  • the mantle core 400 has a first surface 404a and a second surface 404b.
  • the first surface 404 a intersects the upper end of the first inclined surface 404 and has a gentler inclination than the first inclined surface 404 with respect to the vertical direction (the Z direction in FIG. 10).
  • the second surface 404b intersects the first surface 404a and has a steeper inclination than the first surface 404a with respect to the vertical direction (the Z direction in FIG. 10).
  • the mantle 500 has a first surface 504a and a second surface 504b.
  • the first surface 504 a intersects the upper end of the second inclined surface 504 and has a gentler inclination than the second inclined surface 504 with respect to the vertical direction (the Z direction in FIG. 10).
  • the second surface 504b intersects the first surface 504a and has a steeper inclination than the first surface 504a with respect to the vertical direction (the Z direction in FIG. 10).
  • the first surface 404 a of the mantle core 400 and the first surface 504 a of the mantle 500 face each other.
  • the second surface 404 b of the mantle core 400 and the second surface 504 b of the mantle 500 face each other.
  • the mantle 500 can be firmly fixed to the mantle core 400.
  • a concave corner is formed by the first surface 404 a and the second surface 404 b of the mantle core 400, and the first surface 504 a and the second surface 504 b of the mantle 500. Form a convex corner. Accordingly, when a force is applied to the mantle 500, for example, by crushing the raw material, the convex corner of the mantle 500 enters the concave corner of the mantle core 400. Therefore, the mantle 500 can be firmly fixed to the mantle core 400.
  • the mantle core 400 has a third surface 404c
  • the mantle 500 has a third surface 504c.
  • the third surface 404c of the mantle core 400 intersects the second surface 404b and has a gentler inclination than the second surface 404b with respect to the vertical direction (the Z direction in FIG. 10).
  • the third surface 504c of the mantle 500 intersects the second surface 504b and has a gentler inclination than the second surface 504b with respect to the vertical direction (the Z direction in FIG. 10).
  • the third surface 404 c of the mantle core 400 and the third surface 504 c of the mantle 500 face each other.
  • the upper part of the mantle 500 can be firmly fixed to the mantle core 400 even if a large force is applied to the upper part of the mantle 500, particularly the first component 500a described later .
  • a convex corner is formed by the second surface 404b and the third surface 404c of the mantle core 400, and the second surface 504b and the third surface of the mantle 500 are formed.
  • a concave corner is formed by 504c. Accordingly, when a force is applied to the top of the mantle 500, the convex corner of the mantle core 400 enters the concave corner of the mantle 500. Therefore, even if a large force is applied to the upper part of the mantle 500, the upper part of the mantle 500 can be firmly fixed to the mantle core 400.
  • the crusher 10 is further described with reference to FIGS. 9 and 10.
  • the crusher 10 includes a main shaft 600 and a head 610.
  • the main shaft 600 has an outer surface 602.
  • the head 610 has an inner side 612 and an outer side 614. The head 610 can clamp the main shaft 600 so that the inner side surface 612 faces the outer side surface 602 of the main shaft 600.
  • the mantle 500 is fixed by a head 610.
  • the mantle 500 has a fourth surface 504 d and a fifth surface 504 e.
  • the fourth surface 504d is on the opposite side of the third surface 504c.
  • the fifth surface 504e is between the third surface 504c and the fourth surface 504d.
  • the head 610 has a surface 616. Face 616 points downward. In the example shown in FIG. 10, in the head 610, the surface 616 (first surface) of the head 610 faces the fourth surface 504d of the mantle 500, and the outer surface 614 of the head 610 faces the fifth surface 504e of the mantle 500.
  • the main shaft 600 can be tightened as shown in FIG. Therefore, a force generated by tightening the head 610 on the main shaft 600 acts from the surface 616 of the head 610 toward the fourth surface 504 d of the mantle 500, so that the mantle 500 can be fixed.
  • the portion of the mantle 500 between the third surface 504 c and the fourth surface 504 d can be introduced into the space between the outer surface 614 and the surface 616 of the head 610.
  • the mantle 500 and the head 610 can be arranged in a small space.
  • the method of fixing the mantle 500 by the head 610 is not limited to the example shown in FIG.
  • the head 610 is configured such that the surface 618 of the head 610 (first surface: a surface facing the lower end of the inner surface 612 of the head 610 and the lower end of the outer surface 614 of the head 610 and facing downward)
  • the main shaft 600 may be tightenable so as to face the surface 504 d and to cause the outer surface 614 of the head 610 to face the fifth surface 504 e of the mantle 500.
  • the force generated by tightening the head 610 on the main shaft 600 acts from the surface 618 of the head 610 toward the fourth surface 504 d of the mantle 500 so that the mantle 500 can be fixed.
  • the mantle 500 has a first part 500a and a second part 500b.
  • the first component 500a has a first surface 504a, a second surface 504b, a third surface 504c, a fourth surface 504d, and a fifth surface 504e.
  • the second surface 504 b is located below the first surface 504 a along the first inclined surface 404 of the mantle core 400.
  • the first part 500a and the second part 500b are separable from each other.
  • the portion (the second part 500b) of the mantle 500 that is highly worn can be efficiently replaced.
  • the wear of the mantle 500 is so severe that it goes downward of the mantle 500, and not so strong at the upper end of the mantle 500 and its vicinity (eg, the first part 500a).
  • the second part 500 b can be removed from the mantle core 400 while the first part 500 a is attached to the mantle core 400. Therefore, the portion (the second part 500b) of the mantle 500 which is highly worn can be efficiently replaced.
  • the mantle 500 is formed by the first surface 404a, the second surface 404b and the third surface 404c of the mantle core 400 and the first surface 504a, the second surface 504b and the third surface 504c of the mantle 500. It is possible to firmly fix the first part 500a of the first embodiment to the mantle core 400. Therefore, even if a large force is applied to the first component 500a by crushing the raw material, detachment of the first component 500a from the mantle core 400 can be suppressed.
  • FIG. 11 is a top view of the concave 100 shown in FIGS. 1 to 8.
  • FIG. 12 is a front view of the concave 100 shown in FIG.
  • FIG. 13 is a side view of the concave 100 shown in FIG.
  • FIG. 14 is a bottom view of the concave 100 shown in FIG.
  • FIG. 15 is a cross-sectional view taken along line AA of FIG.
  • the shape of the concave 100 seen from the opposite side to FIG. 12 is the same as the shape of the concave 100 shown in FIG. 12, and the shape of the concave 100 seen from the opposite side to FIG. 13 is shown in FIG.
  • the shape of the concave 100 is the same.
  • the concave 100 has a tubular shape. As shown in FIG. 15, the concave 100 has a first crushing surface 102 and an outer surface 104. The first crushing surface 102 defines the interior space of the concave 100. The outer surface 104 is opposite to the first crush surface 102.
  • Concave 100 has a plurality of protrusions 110.
  • Each protrusion 110 protrudes from the outer side surface 104 of the concave 100.
  • the plurality of protrusions 110 are substantially equally spaced along the outer surface 104.
  • the six protrusions 110 are substantially equally spaced at 60 ° intervals.
  • the number of projecting portions 110 of the concave 100 is not limited to the example shown in FIG. 11 and may be other than six.

Abstract

One among a concave (100) and a mantle (500) is movable along a vertical direction (Z direction) relative to the other among the concave (100) and the mantle (500). The upper end (UE1) of a first crushing surface (102) on the concave (100) is at a higher position than the upper end (UE2) of a second crushing surface (502) on the mantle (500). The distance (ΔH), in the vertical direction (Z direction), from the upper end (UE2) of the second crushing surface (502) on the mantle (500) to the upper end (UE1) of the first crushing surface (102) on the concave (100) is at least 40% (ΔH/H ≥ 0.40) of the distance (H) from the lower end (LE1) to the upper end (UE1) of the first crushing surface (102) on the concave (100).

Description

破砕機Crushing machine
 本発明は、破砕機に関する。 The present invention relates to a crusher.
 原料、例えば岩石を破砕するため、破砕機が用いられることがある。特許文献1に記載されているように、破砕機は、マントルコア、マントル及びコンケーブを備えている。マントルは、マントルコアに取り付けられている。破砕機に投入された原料は、マントルとコンケーブ間の空間(破砕室)において破砕される。 Crushers are sometimes used to break up raw materials, such as rocks. As described in Patent Document 1, the crusher includes a mantle core, a mantle and a concave. The mantle is attached to the mantle core. The raw material input to the crusher is crushed in the space (crushing chamber) between the mantle and the concave.
特開2012-240014号公報JP 2012-240014 A
(第1態様)
 コンケーブ及びマントルは、破砕機の使用にともなって摩耗する。コンケーブ及びマントルが摩耗した場合、コンケーブとマントルの間隔を維持するため、例えばコンケーブを下方に向けて移動させることで、コンケーブ及びマントルを互いに近づける。しかしながら、コンケーブ及びマントルを互いに近づけると、コンケーブ及びマントルによって破砕可能な原料(例えば、岩石)の最大サイズが小さくなる場合があることを本発明者は見出した。
(First aspect)
Concaves and mantles wear with the use of crushers. When the concave and the mantle are worn, the concave and the mantle are brought close to each other, for example, by moving the concave downward to maintain the space between the concave and the mantle. However, the inventors have found that bringing the concave and mantle closer together may reduce the maximum size of the material (eg, rock) that can be fractured by the concave and mantle.
 本発明の第1態様の目的は、コンケーブ及びマントルによって破砕可能な原料の最大サイズを破砕機の長期間の使用に亘って大きなサイズに維持することにある。 The object of the first aspect of the present invention is to maintain the largest size of the material that can be crushed by concave and mantle at a large size over the long term use of the crusher.
(第2態様)
 原料の破砕によってマントルには大きな力が加わる。この力によってマントルがマントルコアから外れるおそれがある。
(Second aspect)
The crushing of the raw material exerts a great force on the mantle. This force may cause the mantle to come off the mantle core.
 本発明の第2態様の目的は、マントルをマントルコアに強固に固定することにある。 An object of the second aspect of the present invention is to firmly fix the mantle to the mantle core.
(第3態様)
 コンケーブに設けられた突出部をリフト部(例えば、Uボルト)によって持ち上げることによってコンケーブを保持することがある。本発明者は、このようなリフト部を有する破砕機の構造を簡素化することを検討した。
(Third aspect)
The concave may be held by lifting the projection provided on the concave by a lift (for example, a U-bolt). The inventor studied to simplify the structure of the crusher having such a lift portion.
 本発明の第3態様の目的は、破砕機の構造を簡素化することにある。 An object of the third aspect of the present invention is to simplify the structure of a crusher.
 本発明のさらなる目的は、実施形態の以下の開示から明らかになるであろう。 Further objects of the present invention will become apparent from the following disclosure of the embodiments.
 本発明の第1態様によれば、
 第1破砕面を有するコンケーブと、
 第2破砕面を有し、前記第2破砕面が前記コンケーブの前記第1破砕面に対向するように位置するマントルと、
を備え、
 前記コンケーブ及び前記マントルの一方は、前記コンケーブ及び前記マントルのもう一方に対して鉛直方向に沿って移動可能であり、
 前記コンケーブの前記第1破砕面の上端は、前記マントルの前記第2破砕面の上端より高い位置にあり、
 前記鉛直方向において、前記マントルの前記第2破砕面の上端から前記コンケーブの前記第1破砕面の上端までの距離は、前記コンケーブの前記第1破砕面の下端から上端までの距離の40%以上である破砕機が提供される。
According to a first aspect of the invention,
Concave having a first crushing surface,
A mantle having a second crush surface, the second crush surface being positioned to face the first crush surface of the concave;
Equipped with
One of the concave and the mantle is movable along the vertical direction with respect to the concave and the other of the mantle,
The upper end of the first crushing surface of the concave is located higher than the upper end of the second crushing surface of the mantle;
In the vertical direction, the distance from the upper end of the second crushing surface of the mantle to the upper end of the first crushing surface of the concave is 40% or more of the distance from the lower end to the upper end of the first crushing surface of the concave A crusher is provided.
 本発明の第2態様によれば、
 鉛直方向に対して傾いた第1傾斜面を有するマントルコアと、
 前記鉛直方向に対して傾いた第2傾斜面を有し、前記第2傾斜面が前記マントルコアの前記第1傾斜面に対向するように位置するマントルと、
を備え、
 前記マントルコアは、前記第1傾斜面の上端に交わっていて前記鉛直方向に対して前記第1傾斜面より緩やかな傾きを有する第1面と、前記マントルコアの前記第1面に交わっていて前記鉛直方向に対して前記マントルコアの前記第1面より急な傾きを有する第2面と、を有し、
 前記マントルは、前記第2傾斜面の上端に交わっていて前記鉛直方向に対して前記第2傾斜面より緩やかな傾きを有する第1面と、前記マントルの前記第1面に交わっていて前記鉛直方向に対して前記マントルの前記第1面より急な傾きを有する第2面と、を有し、
 前記マントルコアの前記第1面と前記マントルの前記第1面は、互いに対向しており、
 前記マントルコアの前記第2面と前記マントルの前記第2面は、互いに対向している破砕機が提供される。
According to a second aspect of the invention,
A mantle core having a first inclined surface inclined with respect to the vertical direction;
A mantle having a second inclined surface inclined with respect to the vertical direction, the second inclined surface being positioned to face the first inclined surface of the mantle core;
Equipped with
The mantle core intersects the upper end of the first inclined surface and intersects the first surface of the mantle core and a first surface having a gentler inclination than the first inclined surface with respect to the vertical direction. And a second surface having a steeper inclination than the first surface of the mantle core with respect to the vertical direction,
The mantle intersects the upper end of the second inclined surface and has a first surface having a gentler inclination than the second inclined surface with respect to the vertical direction, and intersects the first surface of the mantle and the vertical And a second surface having a steeper inclination than the first surface of the mantle with respect to a direction,
The first surface of the mantle core and the first surface of the mantle being opposite each other;
The crusher in which the second surface of the mantle core and the second surface of the mantle face each other is provided.
 本発明の第3態様によれば、
 主軸と、
 前記主軸の周囲に位置するコンケーブと、
 前記コンケーブから突出した突出部と、
 鉛直方向に沿って移動可能であり、前記突出部のうちの第1部分を上方に持ち上げ可能なリフト部と、
を備え、
 前記鉛直方向に沿った一断面において、前記コンケーブは、前記鉛直方向に直交する一方向における第1端部と、前記一方向において前記第1端部の反対側にあって前記第1端部よりも高い位置にある第2端部と、を有し、
 前記一方向において、前記突出部の前記第1部分の中心は、前記第1端部と前記第2端部の間の中心から前記第2端部に向けてずれており、
 前記鉛直方向において、前記突出部の前記第1部分は、前記主軸の上端より高い位置にある破砕機が提供される。
According to a third aspect of the invention,
With the spindle
A concave located around the spindle;
A protrusion protruding from the concave;
A lift which is movable along the vertical direction and which can lift the first part of the protrusions upward;
Equipped with
In the cross section along the vertical direction, the concave is at a first end in one direction orthogonal to the vertical direction and on the opposite side of the first end in the one direction from the first end And a second end located high,
In the one direction, the center of the first portion of the protrusion is offset from the center between the first end and the second end toward the second end,
There is provided a crusher in which the first portion of the protrusion in the vertical direction is higher than the upper end of the main shaft.
 本発明の第1態様によれば、コンケーブ及びマントルによって破砕可能な原料の最大サイズを破砕機の長期間の使用に亘って大きなサイズに維持することができる。 According to the first aspect of the present invention, the maximum size of the material that can be crushed by the concave and the mantle can be maintained at a large size over the long-term use of the crusher.
 本発明の第2態様によれば、マントルをマントルコアに強固に固定することができる。 According to the second aspect of the present invention, the mantle can be firmly fixed to the mantle core.
 本発明の第3態様によれば、破砕機の構造を簡素化することができる。 According to the third aspect of the present invention, the structure of the crusher can be simplified.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The objects described above, and other objects, features and advantages will become more apparent from the preferred embodiments described below and the following drawings associated therewith.
実施形態に係る破砕機を示す断面図である。It is a sectional view showing a crusher concerning an embodiment. 図1に示した破砕機の詳細を説明するための図である。It is a figure for demonstrating the detail of the crusher shown in FIG. 図2の一部を拡大した図である。It is the figure which expanded a part of FIG. 図3に示したリフト部及び収容部を破砕機の内側から見た図である。It is the figure which looked at the lift part and accommodating part which were shown in FIG. 3 from the inner side of a crusher. 図3に示した収容部及び保持部を上方から見た図である。It is the figure which looked at the accommodating part and holding part which were shown in FIG. 3 from upper direction. 図1に示した破砕機の詳細を説明するための図である。It is a figure for demonstrating the detail of the crusher shown in FIG. コンケーブの第1破砕面及びマントルの第2破砕面が摩耗した一例を説明するための図である。It is a figure for demonstrating an example in which the 1st crushing surface of a concave and the 2nd crushing surface of a mantle were worn away. コンケーブ及びマントルによって破砕可能な原料の最大サイズを説明するための図である。It is a figure for demonstrating the largest size of the raw material which can be crushed by a concave and a mantle. 図1に示した破砕機の詳細を説明するための図である。It is a figure for demonstrating the detail of the crusher shown in FIG. 図9に示したマントルコア、マントル及び主軸を拡大した図である。It is the figure which expanded the mantle core, mantle, and main axis | shaft shown in FIG. 図1から図8に示したコンケーブの上面図である。It is a top view of the concave shown to FIGS. 1-8. 図11に示したコンケーブの正面図である。It is a front view of the concave shown in FIG. 図11に示したコンケーブの側面図である。It is a side view of the concave shown in FIG. 図11に示したコンケーブの底面図である。It is a bottom view of the concave shown in FIG. 図11のA-A断面図である。It is AA sectional drawing of FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and the description thereof will be appropriately omitted.
 図1は、実施形態に係る破砕機10を示す断面図である。 FIG. 1 is a cross-sectional view showing a crusher 10 according to the embodiment.
 破砕機10は、コンケーブ100、移動部200、フレーム300、マントルコア400、マントル500、主軸600、偏心軸700及びホッパ800を備えている。 The crusher 10 includes a concave 100, a moving unit 200, a frame 300, a mantle core 400, a mantle 500, a main shaft 600, an eccentric shaft 700, and a hopper 800.
 コンケーブ100とマントル500は、互いに対向しており、コンケーブ100とマントル500の間の空間(破砕室)を画定している。コンケーブ100とマントル500の間の破砕室では、ホッパ800から投入された原料(例えば、岩石)がコンケーブ100及びマントル500によって破砕される。 The concave 100 and the mantle 500 are opposed to each other, and define a space (crushing chamber) between the concave 100 and the mantle 500. In the crushing chamber between the concave 100 and the mantle 500, the raw material (for example, rock) input from the hopper 800 is crushed by the concave 100 and the mantle 500.
 コンケーブ100は、移動部200に取り付けられている。移動部200は、フレーム300に対して鉛直方向(図1内のZ方向)に沿って移動可能になっている。したがって、移動部200が移動することで、コンケーブ100は、鉛直方向(図1内のZ方向)に沿って移動可能になっている。 The concave 100 is attached to the moving unit 200. The moving unit 200 is movable along the vertical direction (the Z direction in FIG. 1) with respect to the frame 300. Therefore, as the moving unit 200 moves, the concave 100 can move along the vertical direction (the Z direction in FIG. 1).
 マントル500は、マントルコア400に取り付けられている。マントルコア400は、主軸600に取り付けられている。主軸600は、偏心軸700によって鉛直方向(図1内のZ方向)から傾いて支持されている。マントル500及びマントルコア400は、主軸600の回転及び偏心軸700の駆動によって歳差運動することができる。 The mantle 500 is attached to the mantle core 400. The mantle core 400 is attached to the main shaft 600. The main shaft 600 is supported by an eccentric shaft 700 so as to be inclined from the vertical direction (the Z direction in FIG. 1). The mantle 500 and the mantle core 400 can be precessed by the rotation of the main shaft 600 and the drive of the eccentric shaft 700.
 図2は、図1に示した破砕機10の詳細を説明するための図である。 FIG. 2 is a view for explaining the details of the crusher 10 shown in FIG.
 図2を用いて、破砕機10について説明する。破砕機10は、コンケーブ100、突出部110、リフト部120及び主軸600を備えている。コンケーブ100は、主軸600の周囲に位置している。突出部110は、コンケーブ100から突出している。リフト部120は、鉛直方向(図2内のZ方向)に沿って移動可能になっている。リフト部120は、突出部110のうちの第1部分112を上方に持ち上げ可能となっている。鉛直方向に沿った一断面(例えば、図2に示す断面)において、コンケーブ100は、第1端部SE1及び第2端部SE2を有している。第1端部SE1は、鉛直方向に直交する一方向(図2内のX方向)における一端部である。第2端部SE2は、当該一方向(図2内のX方向)において第1端部SE1の反対側にあって第1端部SE1よりも高い位置にある。当該一方向(図2内のX方向)において、突出部110の第1部分112の中心は、第1端部SE1と第2端部SE2の間の中心Cから第2端部SE2に向けて距離Δ(Δ>0)だけずれている。鉛直方向(図2内のZ方向)において、突出部110の第1部分112は、主軸600の上端より高い位置にある。 The crusher 10 will be described with reference to FIG. The crusher 10 includes a concave 100, a protrusion 110, a lift 120 and a main shaft 600. The concave 100 is located around the main shaft 600. The protrusion 110 protrudes from the concave 100. The lift unit 120 is movable along the vertical direction (the Z direction in FIG. 2). The lift portion 120 can lift the first portion 112 of the protrusion 110 upward. In a cross section along the vertical direction (for example, the cross section shown in FIG. 2), the concave 100 has a first end SE1 and a second end SE2. The first end SE1 is an end in one direction (X direction in FIG. 2) orthogonal to the vertical direction. The second end SE2 is on the opposite side of the first end SE1 in the one direction (X direction in FIG. 2) and is higher than the first end SE1. In the one direction (the X direction in FIG. 2), the center of the first portion 112 of the protrusion 110 is from the center C between the first end SE1 and the second end SE2 toward the second end SE2. It deviates by a distance Δ (Δ> 0). In the vertical direction (the Z direction in FIG. 2), the first portion 112 of the protrusion 110 is at a position higher than the upper end of the main shaft 600.
 上述した構成によれば、破砕機10の構造を簡素化することができる。具体的には、上述した構成では、一方向(図2内のX方向)において、突出部110の第1部分112の中心は、第1端部SE1と第2端部SE2の間の中心Cから第2端部SE2に向けてずれており、鉛直方向(図2内のZ方向)において、突出部110の第1部分112は、主軸600の上端より高い位置にある。このような構造においては、突出部110を高い位置に設けることで、上述した一方向(図2内のX方向)において突出部110をコンケーブ100の第2端部SE2に向けて寄せるためのスペースを確保することができる。突出部110をコンケーブ100の第2端部SE2に向けて寄せることで、横方向(図2内のX方向)において、リフト部120とコンケーブ100の間の領域が狭くなっており、当該領域に複雑な構造(例えば、コンケーブ100と移動部200が互いに接触する領域)を設ける必要がない。したがって、破砕機10の構造を簡素化することができる。 According to the configuration described above, the structure of the crusher 10 can be simplified. Specifically, in the configuration described above, the center of the first portion 112 of the protrusion 110 is the center C between the first end SE1 and the second end SE2 in one direction (the X direction in FIG. 2). The first portion 112 of the protrusion 110 is positioned higher than the upper end of the main shaft 600 in the vertical direction (the Z direction in FIG. 2). In such a structure, by providing the protrusion 110 at a high position, a space for moving the protrusion 110 toward the second end SE2 of the concave 100 in one direction (the X direction in FIG. 2) described above. Can be secured. By moving the protrusion 110 toward the second end SE2 of the concave 100, the region between the lift portion 120 and the concave 100 is narrowed in the lateral direction (the X direction in FIG. 2). There is no need to provide a complicated structure (for example, an area where the concave 100 and the moving unit 200 contact each other). Therefore, the structure of the crusher 10 can be simplified.
 図2を用いて、破砕機10についてさらに説明する。 The crusher 10 will be further described with reference to FIG.
 コンケーブ100は、第2端部SE2の近傍において、水平方向(図2内のX方向)から大きな角度で傾いており、ほぼ垂直に立っている。したがって、第2端部SE2の近傍においては、突出部110及びリフト部120をコンケーブ100の第2端部SE2に近接させやすくなっている。 The concave 100 is inclined at a large angle from the horizontal direction (X direction in FIG. 2) in the vicinity of the second end SE2, and stands substantially vertically. Therefore, in the vicinity of the second end SE2, the protrusion 110 and the lift 120 are easily brought close to the second end SE2 of the concave 100.
 コンケーブ100は、接触面104a(図2において、接触面104aが位置する領域はハッチングで示されている。)を有している。接触面104aは、移動部200に接触している。図2に示す例では、一方向(図2内のX方向)において、接触面104aは、コンケーブ100の第1端部SE1と第2端部SE2の中心Cから第1端部SE1に向けてずれている。本実施形態の説明から明らかなように、接触面104aが位置する領域は、図2に示す例に限定されるものではない。 The concave 100 has a contact surface 104a (in FIG. 2, the area where the contact surface 104a is located is indicated by hatching). The contact surface 104 a is in contact with the moving unit 200. In the example shown in FIG. 2, in one direction (X direction in FIG. 2), the contact surface 104a is directed from the center C of the first end SE1 and the second end SE2 of the concave 100 to the first end SE1. It is off. As is clear from the description of the present embodiment, the area in which the contact surface 104a is located is not limited to the example shown in FIG.
 コンケーブ100は、突出部110よりも上方には、接触面(移動部200と接触する面)を有していない。図2に示す例によれば、突出部110をコンケーブ100の第2端部SE2に近接させることができる。つまり、突出部110をコンケーブ100のうちの高い位置に設けることができる。したがって、突出部110よりも上方に接触面を設けなくても、コンケーブ100を保持することができる。 The concave 100 does not have a contact surface (a surface in contact with the moving unit 200) above the protrusion 110. According to the example shown in FIG. 2, the protrusion 110 can be close to the second end SE2 of the concave 100. That is, the protrusion 110 can be provided at a high position of the concave 100. Therefore, the concave 100 can be held without providing the contact surface above the protrusion 110.
 コンケーブ100の第1端部SE1と第2端部SE2は、一方向(図2内のX方向)において第1距離Wだけ離れている。 The first end SE1 and the second end SE2 of the concave 100 are separated by a first distance W in one direction (X direction in FIG. 2).
 一例において、距離Δは、第1距離Wの0.25倍以下(Δ≦0.25W)にすることができる。この例によれば、コンケーブ100を安定的に保持することができる。仮に、距離Δがある程度大きいと(例えば、距離Δが第1距離Wの0.25倍超であると)、接触面104aが移動部200から受ける抗力(下方に向かう力)及び第1部分112がリフト部120から受ける力(上方に向かう力)によるトルクによってコンケーブ100が回転しやすくなる。これに対して、距離Δをある程度抑えると、トルクによるコンケーブ100の回転を抑えることができ、コンケーブ100を安定的に保持することができる。 In one example, the distance Δ can be equal to or less than 0.25 times the first distance W (Δ ≦ 0.25 W). According to this example, the concave 100 can be stably held. If the distance Δ is large to some extent (for example, if the distance Δ is more than 0.25 times the first distance W), the resistance (downward force) the contact surface 104a receives from the moving portion 200 and the first portion 112 The torque due to the force received by the lift portion 120 (force directed upward) makes it easier for the concave 100 to rotate. On the other hand, when the distance Δ is suppressed to a certain extent, the rotation of the concave 100 due to the torque can be suppressed, and the concave 100 can be stably held.
 距離Δは、第1距離Wの0.10倍以下にしてもよい。この場合、コンケーブ100をさらに安定的に保持することができ、かつ突出部110及びリフト部120を設けるための十分に大きなスペースを確保することができる。 The distance Δ may be equal to or less than 0.10 times the first distance W. In this case, the concave 100 can be held more stably, and a sufficiently large space for providing the protrusion 110 and the lift 120 can be secured.
 図3は、図2の一部を拡大した図である。図4は、図3に示したリフト部120及び収容部210を破砕機10の内側から見た図である。図5は、図3に示した収容部210及び保持部220を上方から見た図である。 FIG. 3 is an enlarged view of a part of FIG. FIG. 4 is a view of the lift portion 120 and the storage portion 210 shown in FIG. 3 as viewed from the inside of the crusher 10. FIG. 5 is a top view of the housing portion 210 and the holding portion 220 shown in FIG.
 収容部210は、空間210aを画定している。空間210aには、突出部110の少なくとも一部分を入り込ませることができる。図4に示すように、収容部210は、第1上面211、第1側面212、第2上面213及び第2側面214を有している。第1側面212は、第1上面211に交わっている。第2側面214は、第2上面213に交わっている。第1側面212と第2側面214は、空間210aを挟んで互いに対向している。 The housing portion 210 defines a space 210a. At least a portion of the protrusion 110 can be inserted into the space 210a. As shown in FIG. 4, the housing portion 210 has a first upper surface 211, a first side surface 212, a second upper surface 213 and a second side surface 214. The first side surface 212 intersects the first upper surface 211. The second side surface 214 intersects the second upper surface 213. The first side surface 212 and the second side surface 214 face each other across the space 210a.
 図3及び図4に示す例において、リフト部120は、Uボルトである。図4に示すように、リフト部120は、第1部分122、第2部分124及び第3部分126を含んでいる。第1部分122は、突出部110の第1部分112の下方を通過している。第2部分124は、第1部分122から突出部110の一側方を通過している。第3部分126は、第1部分122から突出部110の反対側の側方を通過している。本実施形態の説明から明らかなように、リフト部120は、Uボルトとは異なる部材であってもよい。 In the example shown in FIGS. 3 and 4, the lift portion 120 is a U-bolt. As shown in FIG. 4, the lift portion 120 includes a first portion 122, a second portion 124 and a third portion 126. The first portion 122 passes below the first portion 112 of the protrusion 110. The second portion 124 passes from the first portion 122 to one side of the protrusion 110. The third portion 126 passes from the first portion 122 to the opposite side of the protrusion 110. As apparent from the description of the present embodiment, the lift portion 120 may be a member different from the U-bolt.
 保持部220は、第1部材222を有している。第1部材222は、突出部110の上方に位置している。図4に示すように、第1部材222は、収容部210の第1上面211から第2上面213にかけて空間210aを跨いでいる。したがって、保持部220の第1部材222を安定して収容部210に設置することができる。 The holding portion 220 has a first member 222. The first member 222 is located above the protrusion 110. As shown in FIG. 4, the first member 222 spans the space 210 a from the first upper surface 211 to the second upper surface 213 of the housing portion 210. Therefore, the first member 222 of the holding portion 220 can be stably installed in the housing portion 210.
 リフト部120の第2部分124及び第3部分126は、鉛直方向(図3及び図4内のZ方向)に沿って移動可能に保持部220の第1部材222に取り付けられている。したがって、リフト部120によって突出部110を上方に向けて持ち上げることができる。図3及び図4に示す例では、保持部220の第1部材222の上方に設けられたナットによって、リフト部120を移動させることができる。 The second portion 124 and the third portion 126 of the lift portion 120 are attached to the first member 222 of the holding portion 220 so as to be movable along the vertical direction (the Z direction in FIGS. 3 and 4). Therefore, the protrusion 110 can be lifted upward by the lift portion 120. In the example shown in FIG. 3 and FIG. 4, the lift portion 120 can be moved by a nut provided above the first member 222 of the holding portion 220.
 保持部220は、第2部材224を有している。第2部材224は、第1部材222から突出している。図5に示すように、第2部材224は、収容部210の第1側面212と第2側面214の間に位置している。コンケーブ100の移動、特に回転によって保持部220が第1側面212又は第2側面214に向けて移動すると、保持部220の第2部材224は、第1側面212又は第2側面214に接触する。したがって、コンケーブ100の移動、特に回転を防止することができる。 The holder 220 has a second member 224. The second member 224 protrudes from the first member 222. As shown in FIG. 5, the second member 224 is located between the first side surface 212 and the second side surface 214 of the housing portion 210. When the holding unit 220 moves toward the first side surface 212 or the second side surface 214 by the movement of the concave 100, in particular, rotation, the second member 224 of the holding unit 220 contacts the first side surface 212 or the second side surface 214. Therefore, movement, in particular rotation, of the concave 100 can be prevented.
 図3から図5に示す例によれば、収容部210の空間210aに突出部110の少なくとも一部を収容することができ、かつ簡易な構造、すなわち、保持部220によって突出部110を収容部210に安定して固定することができる。 According to the example shown in FIGS. 3 to 5, at least a part of the protrusion 110 can be accommodated in the space 210 a of the accommodation unit 210 and the protrusion 110 can be accommodated by the holding unit 220 with a simple structure. It can be stably fixed to 210.
 図6は、図1に示した破砕機10の詳細を説明するための図である。 FIG. 6 is a view for explaining the details of the crusher 10 shown in FIG.
 図6を用いて、破砕機10について説明する。破砕機10は、コンケーブ100及びマントル500を備えている。コンケーブ100は、第1破砕面102を有している。マントル500は、第2破砕面502を有している。マントル500は、第2破砕面502がコンケーブ100の第1破砕面102に対向するように位置している。コンケーブ100及びマントル500の一方は、コンケーブ100及びマントル500のもう一方に対して鉛直方向(図6内のZ方向)に沿って移動可能になっている。コンケーブ100の第1破砕面102の上端UE1は、マントル500の第2破砕面502の上端UE2より高い位置にある。鉛直方向(図6内のZ方向)において、マントル500の第2破砕面502の上端UE2からコンケーブ100の第1破砕面102の上端UE1までの距離ΔHは、コンケーブ100の第1破砕面102の下端LE1から上端UE1までの距離Hの40%以上となっている(ΔH/H≧0.40)。 The crusher 10 will be described with reference to FIG. The crusher 10 includes a concave 100 and a mantle 500. The concave 100 has a first crushing surface 102. The mantle 500 has a second fracture surface 502. The mantle 500 is positioned such that the second fracture surface 502 faces the first fracture surface 102 of the concave 100. One of the concave 100 and the mantle 500 is movable along the vertical direction (the Z direction in FIG. 6) with respect to the concave 100 and the other of the mantle 500. The upper end UE1 of the first fracture surface 102 of the concave 100 is located higher than the upper end UE2 of the second fracture surface 502 of the mantle 500. The distance ΔH from the upper end UE2 of the second fracture surface 502 of the mantle 500 to the upper end UE1 of the first fracture surface 102 of the concave 100 in the vertical direction (the Z direction in FIG. 6) is the same as that of the first fracture surface 102 of the concave 100. The distance H is 40% or more of the distance H from the lower end LE1 to the upper end UE1 (ΔH / H00.40).
 上述した構成によれば、コンケーブ100及びマントル500によって破砕可能な原料の最大サイズを破砕機10の長期間の使用に亘って大きなサイズに維持することができる。図8を用いて後述するように、コンケーブ100及びマントル500によって破砕可能な原料の最大サイズは、第1破砕面102の上端UE1が第2破砕面502の上端UE2より高い位置にある限り、ほぼ一定に維持することができる。上述した構成においては、第1破砕面102の上端UE1は、第2破砕面502の上端UE2より相当に高い位置にある(ΔH/H≧0.40)。したがって、第1破砕面102及び第2破砕面502が摩耗した場合にコンケーブ100及びマントル500を互いに近づけても(例えば、コンケーブ100を下方に向けて移動させても)、第1破砕面102の上端UE1を長期間に亘って第2破砕面502の上端UE2より高い位置にいさせることができる。したがって、コンケーブ100及びマントル500によって破砕可能な原料の最大サイズを破砕機10の長期間の使用に亘って大きなサイズに維持することができる。 According to the configuration described above, the maximum size of the material that can be crushed by the concave 100 and the mantle 500 can be maintained at a large size over the long-term use of the crusher 10. As described later with reference to FIG. 8, the maximum size of the raw material that can be crushed by the concave 100 and the mantle 500 is approximately as long as the upper end UE1 of the first crushing surface 102 is higher than the upper end UE2 of the second crushing surface 502. It can be kept constant. In the configuration described above, the upper end UE1 of the first crushing surface 102 is at a position considerably higher than the upper end UE2 of the second crushing surface 502 (ΔH / H ≧ 0.40). Therefore, even when the concave 100 and the mantle 500 are brought close to each other (for example, even when the concave 100 is moved downward) when the first crushing surface 102 and the second crushing surface 502 wear, the first crushing surface 102 The upper end UE1 can be positioned higher than the upper end UE2 of the second crushing surface 502 for a long period of time. Accordingly, the maximum size of the material that can be crushed by the concave 100 and the mantle 500 can be maintained at a large size over the long-term use of the crusher 10.
 図6を用いて、破砕機10についてさらに説明する。 The crusher 10 will be further described using FIG.
 コンケーブ100の第1破砕面102は下端LE1を有しており、マントル500の第2破砕面502は下端LE2を有している。第1破砕面102の下端LE1と第2破砕面502の下端LE2は、距離Δ離れている。 The first fracture surface 102 of the concave 100 has a lower end LE1, and the second fracture surface 502 of the mantle 500 has a lower end LE2. The lower end LE1 of the first crushing surface 102 and the lower end LE2 of the second crushing surface 502 are separated by a distance Δ.
 コンケーブ100の第1破砕面102は上端UE1を有しており、マントル500の第2破砕面502は上端UE2を有している。第1破砕面102のうちの上端UE1における傾きは、第2破砕面502のうちの上端UE2における傾きに対して角度θだけ大きい。 The first fractured surface 102 of the concave 100 has an upper end UE1, and the second fractured surface 502 of the mantle 500 has an upper end UE2. The inclination at the upper end UE1 of the first crushing surface 102 is larger than the inclination at the upper end UE2 of the second crushing surface 502 by the angle θ.
 図6に示す例では、コンケーブ100とマントル500の間隔は、コンケーブ100を鉛直方向(図6内のZ方向)に移動させることで調節することができる。具体的には、コンケーブ100は、移動部200に取り付けられており、移動部200は、フレーム300に対して鉛直方向(図6内のZ方向)に沿って移動可能になっている。したがって、移動部200をフレーム300に対して移動させることで、コンケーブ100を鉛直方向(図6内のZ方向)に移動させることができる。 In the example shown in FIG. 6, the distance between the concave 100 and the mantle 500 can be adjusted by moving the concave 100 in the vertical direction (the Z direction in FIG. 6). Specifically, the concave 100 is attached to the moving unit 200, and the moving unit 200 can move along the vertical direction (the Z direction in FIG. 6) with respect to the frame 300. Therefore, by moving the moving unit 200 with respect to the frame 300, the concave 100 can be moved in the vertical direction (the Z direction in FIG. 6).
 図6に示す例では、コンケーブ100の突出部110がリフト部120によって鉛直方向(図6内のZ方向)の上方に向けて持ち上げられている。コンケーブ100は、リフト部120によって移動部200に取り付けられている。 In the example shown in FIG. 6, the protruding portion 110 of the concave 100 is lifted by the lift portion 120 upward in the vertical direction (the Z direction in FIG. 6). The concave 100 is attached to the moving unit 200 by the lift unit 120.
 図7は、コンケーブ100の第1破砕面102及びマントル500の第2破砕面502が摩耗した一例を説明するための図である。 FIG. 7 is a view for explaining an example in which the first fracture surface 102 of the concave 100 and the second fracture surface 502 of the mantle 500 are worn.
 図7に示す例では、コンケーブ100とマントル500の間の間隔、特に、第1破砕面102の下端LE1と第2破砕面502の下端LE2の間の距離Δを一定に維持するため、移動部200がフレーム300に対して下方に移動することで、コンケーブ100が下方に移動している。一方、第1破砕面102の上端UE1は、第2破砕面502の上端UE2よりも高い位置にある。この場合、図8を用いて後述するように、コンケーブ100及びマントル500によって破砕可能な原料(例えば、図7に示す原料O)の最大サイズは、第1破砕面102を下方に移動させても、ほぼ一定に維持することができる。 In the example shown in FIG. 7, in order to maintain the distance Δ between the concave 100 and the mantle 500, in particular, the distance Δ between the lower end LE1 of the first crushing surface 102 and the lower end LE2 of the second crushing surface 502 constant, The concave 100 is moved downward by the downward movement of the frame 200 with respect to the frame 300. On the other hand, the upper end UE <b> 1 of the first crushing surface 102 is located higher than the upper end UE <b> 2 of the second crushing surface 502. In this case, as described later with reference to FIG. 8, the maximum size of the raw material (for example, the raw material O shown in FIG. 7) that can be crushed by the concave 100 and the mantle 500 is the first crushing surface 102 moved downward. , Can be maintained almost constant.
 図8は、コンケーブ100及びマントル500によって破砕可能な原料の最大サイズを説明するための図である。 FIG. 8 is a view for explaining the maximum size of the raw material that can be crushed by the concave 100 and the mantle 500.
 図8内の左側図では、第1破砕面102の上端UE1が第2破砕面502の上端UE2よりも高い位置にある。図8内の右側図では、第1破砕面102の上端UE1が第2破砕面502の上端UE2よりも低い位置にある。コンケーブ100とマントル500の間隔、特に、第1破砕面102の下端LE1と第2破砕面502の下端LE2の間の距離Δは、図8内の左側図及び図8内の右側図において同一となっている。第1破砕面102のうちの上端UE1における傾きと第2破砕面502のうちの上端UE2における傾きの差(図6及び図7における角度θ)は、図8内の左側図及び図8内の右側図において同一となっている。 In the left view in FIG. 8, the upper end UE <b> 1 of the first crushing surface 102 is located higher than the upper end UE <b> 2 of the second crushing surface 502. In the right side view in FIG. 8, the upper end UE <b> 1 of the first crushing surface 102 is located lower than the upper end UE <b> 2 of the second crushing surface 502. The distance Δ between the concave 100 and the mantle 500, in particular, the distance Δ between the lower end LE1 of the first fracture surface 102 and the lower end LE2 of the second fracture surface 502 is the same in the left view in FIG. 8 and the right view in FIG. It has become. The difference between the inclination at the upper end UE1 of the first crushing surface 102 and the inclination at the upper end UE2 of the second crushing surface 502 (the angle θ in FIGS. 6 and 7) is the left view in FIG. It is the same in the right figure.
 図8内の左側図では、第1破砕面102のうちの上端UE1及び第2破砕面502のうちの上端UE2によって原料Oを噛み込むことができる。したがって、コンケーブ100及びマントル500によって破砕可能な原料の最大サイズが大きいものになる。これに対して、図8内の右側図では、第1破砕面102のうちの上端UE1及び第2破砕面502のうちの上端UE2よりも低い位置にある部分によって原料Oを噛み込むことができる。したがって、コンケーブ100及びマントル500によって破砕可能な原料の最大サイズは、図8内の左側図におけるそれよりも小さいものになる。 In the left view in FIG. 8, the raw material O can be bitten by the upper end UE 1 of the first crushing surface 102 and the upper end UE 2 of the second crushing surface 502. Therefore, the maximum size of the material that can be crushed by the concave 100 and the mantle 500 is large. On the other hand, in the right side view in FIG. 8, the material O can be bitten by a portion of the first crushing surface 102 which is at a position lower than the upper end UE 1 and the second crushing surface 502. . Therefore, the maximum size of the raw material that can be crushed by the concave 100 and the mantle 500 is smaller than that in the left view in FIG.
 図8内の左側図と図8内の右側図の比較から明らかなように、コンケーブ100及びマントル500によって破砕可能な原料の最大サイズは、第1破砕面102の上端UE1が第2破砕面502の上端UE2より高い位置にある限り、ほぼ一定に維持することができる。 As apparent from the comparison between the left side view in FIG. 8 and the right side view in FIG. 8, the maximum size of the raw material that can be crushed by the concave 100 and the mantle 500 is the second crushing surface 502 at the upper end UE1 of the first crushing surface 102. As long as it is higher than the upper end UE2, it can be maintained substantially constant.
 図9は、図1に示した破砕機10の詳細を説明するための図である。図10は、図9に示したマントルコア400、マントル500及び主軸600を拡大した図である。 FIG. 9 is a view for explaining the details of the crusher 10 shown in FIG. FIG. 10 is an enlarged view of the mantle core 400, the mantle 500 and the principal axis 600 shown in FIG.
 図10を用いて、破砕機10について説明する。破砕機10は、マントルコア400及びマントル500を備えている。マントルコア400は、第1傾斜面404を有している。第1傾斜面404は、鉛直方向(図10内のZ方向)に対して傾いている。マントル500は、第2傾斜面504を有している。第2傾斜面504は、鉛直方向(図10内のZ方向)に対して傾いている。マントル500は、第2傾斜面504がマントルコア400の第1傾斜面404に対向するように位置している。マントルコア400は、第1面404a及び第2面404bを有している。第1面404aは、第1傾斜面404の上端に交わっていて鉛直方向(図10内のZ方向)に対して第1傾斜面404より緩やかな傾きを有している。第2面404bは、第1面404aに交わっていて鉛直方向(図10内のZ方向)に対して第1面404aより急な傾きを有している。マントル500は、第1面504a及び第2面504bを有している。第1面504aは、第2傾斜面504の上端に交わっていて鉛直方向(図10内のZ方向)に対して第2傾斜面504より緩やかな傾きを有している。第2面504bは、第1面504aに交わっていて鉛直方向(図10内のZ方向)に対して第1面504aより急な傾きを有している。マントルコア400の第1面404aとマントル500の第1面504aは、互いに対向している。マントルコア400の第2面404bとマントル500の第2面504bは、互いに対向している。 The crusher 10 will be described with reference to FIG. The crusher 10 includes a mantle core 400 and a mantle 500. The mantle core 400 has a first inclined surface 404. The first inclined surface 404 is inclined with respect to the vertical direction (the Z direction in FIG. 10). The mantle 500 has a second inclined surface 504. The second inclined surface 504 is inclined with respect to the vertical direction (the Z direction in FIG. 10). The mantle 500 is positioned such that the second sloped surface 504 faces the first sloped surface 404 of the mantle core 400. The mantle core 400 has a first surface 404a and a second surface 404b. The first surface 404 a intersects the upper end of the first inclined surface 404 and has a gentler inclination than the first inclined surface 404 with respect to the vertical direction (the Z direction in FIG. 10). The second surface 404b intersects the first surface 404a and has a steeper inclination than the first surface 404a with respect to the vertical direction (the Z direction in FIG. 10). The mantle 500 has a first surface 504a and a second surface 504b. The first surface 504 a intersects the upper end of the second inclined surface 504 and has a gentler inclination than the second inclined surface 504 with respect to the vertical direction (the Z direction in FIG. 10). The second surface 504b intersects the first surface 504a and has a steeper inclination than the first surface 504a with respect to the vertical direction (the Z direction in FIG. 10). The first surface 404 a of the mantle core 400 and the first surface 504 a of the mantle 500 face each other. The second surface 404 b of the mantle core 400 and the second surface 504 b of the mantle 500 face each other.
 上述した構成によれば、マントル500をマントルコア400に強固に固定することができる。具体的には、上述した構成においては、マントルコア400のうちの第1面404a及び第2面404bによって凹状の角が形成されており、マントル500のうちの第1面504a及び第2面504bによって凸状の角が形成されている。したがって、マントル500に、例えば原料の破砕によって力が加わると、マントル500の当該凸状の角がマントルコア400の当該凹状の角に入り込む。したがって、マントル500をマントルコア400に強固に固定することができる。 According to the configuration described above, the mantle 500 can be firmly fixed to the mantle core 400. Specifically, in the configuration described above, a concave corner is formed by the first surface 404 a and the second surface 404 b of the mantle core 400, and the first surface 504 a and the second surface 504 b of the mantle 500. Form a convex corner. Accordingly, when a force is applied to the mantle 500, for example, by crushing the raw material, the convex corner of the mantle 500 enters the concave corner of the mantle core 400. Therefore, the mantle 500 can be firmly fixed to the mantle core 400.
 さらに、図10に示す例では、マントルコア400は第3面404cを有しており、マントル500は第3面504cを有している。マントルコア400の第3面404cは、第2面404bに交わっていて鉛直方向(図10内のZ方向)に対して第2面404bより緩やかな傾きを有している。マントル500の第3面504cは、第2面504bに交わっていて鉛直方向(図10内のZ方向)に対して第2面504bより緩やかな傾きを有している。マントルコア400の第3面404cとマントル500の第3面504cは、互いに対向している。 Furthermore, in the example shown in FIG. 10, the mantle core 400 has a third surface 404c, and the mantle 500 has a third surface 504c. The third surface 404c of the mantle core 400 intersects the second surface 404b and has a gentler inclination than the second surface 404b with respect to the vertical direction (the Z direction in FIG. 10). The third surface 504c of the mantle 500 intersects the second surface 504b and has a gentler inclination than the second surface 504b with respect to the vertical direction (the Z direction in FIG. 10). The third surface 404 c of the mantle core 400 and the third surface 504 c of the mantle 500 face each other.
 上述した構成によれば、マントル500の上部、特に後述する第1部品500aに、例えば原料の粉砕によって、大きな力が加わっても、マントル500の上部をマントルコア400に強固に固定することができる。具体的には、上述した構成においては、マントルコア400のうちの第2面404b及び第3面404cによって凸状の角が形成されており、マントル500のうちの第2面504b及び第3面504cによって凹状の角が形成されている。したがって、マントル500の上部に、力が加わると、マントルコア400の当該凸状の角がマントル500の当該凹状の角に入り込む。したがって、マントル500の上部に大きな力が加わっても、マントル500の上部をマントルコア400に強固に固定することができる。 According to the above-described configuration, the upper part of the mantle 500 can be firmly fixed to the mantle core 400 even if a large force is applied to the upper part of the mantle 500, particularly the first component 500a described later . Specifically, in the configuration described above, a convex corner is formed by the second surface 404b and the third surface 404c of the mantle core 400, and the second surface 504b and the third surface of the mantle 500 are formed. A concave corner is formed by 504c. Accordingly, when a force is applied to the top of the mantle 500, the convex corner of the mantle core 400 enters the concave corner of the mantle 500. Therefore, even if a large force is applied to the upper part of the mantle 500, the upper part of the mantle 500 can be firmly fixed to the mantle core 400.
 図9及び図10を用いて、破砕機10についてさらに説明する。 The crusher 10 is further described with reference to FIGS. 9 and 10.
 破砕機10は、主軸600及びヘッド610を備えている。主軸600は、外側面602を有している。ヘッド610は、内側面612及び外側面614を有している。ヘッド610は、内側面612が主軸600の外側面602に対向するように主軸600を締め付け可能となっている。 The crusher 10 includes a main shaft 600 and a head 610. The main shaft 600 has an outer surface 602. The head 610 has an inner side 612 and an outer side 614. The head 610 can clamp the main shaft 600 so that the inner side surface 612 faces the outer side surface 602 of the main shaft 600.
 マントル500は、ヘッド610によって固定されている。具体的には、マントル500は、第4面504d及び第5面504eを有している。第4面504dは、第3面504cの反対側にある。第5面504eは、第3面504cと第4面504dの間にある。ヘッド610は、面616を有している。面616は、下方を向いている。図10に示す例では、ヘッド610は、ヘッド610の面616(第1面)がマントル500の第4面504dに対向し、かつヘッド610の外側面614がマントル500の第5面504eに対向するように、主軸600を締め付け可能となっている。したがって、ヘッド610を主軸600に締め付けることで発生する力がヘッド610の面616からマントル500の第4面504dに向かって働き、マントル500を固定することができる。 The mantle 500 is fixed by a head 610. Specifically, the mantle 500 has a fourth surface 504 d and a fifth surface 504 e. The fourth surface 504d is on the opposite side of the third surface 504c. The fifth surface 504e is between the third surface 504c and the fourth surface 504d. The head 610 has a surface 616. Face 616 points downward. In the example shown in FIG. 10, in the head 610, the surface 616 (first surface) of the head 610 faces the fourth surface 504d of the mantle 500, and the outer surface 614 of the head 610 faces the fifth surface 504e of the mantle 500. The main shaft 600 can be tightened as shown in FIG. Therefore, a force generated by tightening the head 610 on the main shaft 600 acts from the surface 616 of the head 610 toward the fourth surface 504 d of the mantle 500, so that the mantle 500 can be fixed.
 特に図10に示す例によれば、マントル500のうちの第3面504cと第4面504dの間の部分をヘッド610のうちの外側面614と面616の間の空間に入り込ませることができる。したがって、マントル500及びヘッド610を小スペースに配置することができる。 In particular, according to the example shown in FIG. 10, the portion of the mantle 500 between the third surface 504 c and the fourth surface 504 d can be introduced into the space between the outer surface 614 and the surface 616 of the head 610. . Thus, the mantle 500 and the head 610 can be arranged in a small space.
 マントル500をヘッド610によって固定する方法は、図10に示す例に限定されない。一例において、ヘッド610は、ヘッド610の面618(第1面:ヘッド610の内側面612の下端及びヘッド610の外側面614の下端に交わっていて下方を向いた面)がマントル500の第4面504dに対向し、かつヘッド610の外側面614がマントル500の第5面504eに対向するように、主軸600を締め付け可能となっていてもよい。この例においては、ヘッド610を主軸600に締め付けることで発生する力がヘッド610の面618からマントル500の第4面504dに向かって働き、マントル500を固定することができる。 The method of fixing the mantle 500 by the head 610 is not limited to the example shown in FIG. In one example, the head 610 is configured such that the surface 618 of the head 610 (first surface: a surface facing the lower end of the inner surface 612 of the head 610 and the lower end of the outer surface 614 of the head 610 and facing downward) The main shaft 600 may be tightenable so as to face the surface 504 d and to cause the outer surface 614 of the head 610 to face the fifth surface 504 e of the mantle 500. In this example, the force generated by tightening the head 610 on the main shaft 600 acts from the surface 618 of the head 610 toward the fourth surface 504 d of the mantle 500 so that the mantle 500 can be fixed.
 マントル500は、第1部品500a及び第2部品500bを有している。第1部品500aは、第1面504a、第2面504b、第3面504c、第4面504d及び第5面504eを有している。第2面504bは、マントルコア400の第1傾斜面404に沿って第1面504aより下方に位置している。第1部品500a及び第2部品500bは、互いに分離可能となっている。 The mantle 500 has a first part 500a and a second part 500b. The first component 500a has a first surface 504a, a second surface 504b, a third surface 504c, a fourth surface 504d, and a fifth surface 504e. The second surface 504 b is located below the first surface 504 a along the first inclined surface 404 of the mantle core 400. The first part 500a and the second part 500b are separable from each other.
 上述した構成によれば、マントル500のうちの摩耗の激しい部分(第2部品500b)を効率的に交換することができる。一般に、マントル500の摩耗は、マントル500の下方に向かうほど激しく、マントル500の上端及びその近傍(例えば、第1部品500a)においてはあまり激しくない。上述した構成においては、第1部品500aをマントルコア400に取り付けたまま第2部品500bをマントルコア400から取り外すことができる。したがって、マントル500のうちの摩耗の激しい部分(第2部品500b)を効率的に交換することができる。 According to the above-described configuration, the portion (the second part 500b) of the mantle 500 that is highly worn can be efficiently replaced. In general, the wear of the mantle 500 is so severe that it goes downward of the mantle 500, and not so strong at the upper end of the mantle 500 and its vicinity (eg, the first part 500a). In the configuration described above, the second part 500 b can be removed from the mantle core 400 while the first part 500 a is attached to the mantle core 400. Therefore, the portion (the second part 500b) of the mantle 500 which is highly worn can be efficiently replaced.
 さらに、上述した構成によれば、第1部品500a及び第2部品500bが分離可能になっていても、マントルコア400からの第1部品500aの脱離を抑えることができる。具体的には、上述した構成においては、マントルコア400の第1面404a、第2面404b及び第3面404c並びにマントル500の第1面504a、第2面504b及び第3面504cによってマントル500の第1部品500aをマントルコア400に強固に固定することが可能になっている。したがって、原料の破砕によって第1部品500aに大きな力が加わっても、マントルコア400からの第1部品500aの脱離を抑えることができる。 Furthermore, according to the configuration described above, even if the first component 500a and the second component 500b can be separated, detachment of the first component 500a from the mantle core 400 can be suppressed. Specifically, in the configuration described above, the mantle 500 is formed by the first surface 404a, the second surface 404b and the third surface 404c of the mantle core 400 and the first surface 504a, the second surface 504b and the third surface 504c of the mantle 500. It is possible to firmly fix the first part 500a of the first embodiment to the mantle core 400. Therefore, even if a large force is applied to the first component 500a by crushing the raw material, detachment of the first component 500a from the mantle core 400 can be suppressed.
 図11は、図1から図8に示したコンケーブ100の上面図である。図12は、図11に示したコンケーブ100の正面図である。図13は、図11に示したコンケーブ100の側面図である。図14は、図11に示したコンケーブ100の底面図である。図15は、図11のA-A断面図である。なお、図12とは反対側から見たコンケーブ100の形状は、図12に示したコンケーブ100の形状と同一であり、図13とは反対側から見たコンケーブ100の形状は、図13に示したコンケーブ100の形状と同一である。 FIG. 11 is a top view of the concave 100 shown in FIGS. 1 to 8. FIG. 12 is a front view of the concave 100 shown in FIG. FIG. 13 is a side view of the concave 100 shown in FIG. FIG. 14 is a bottom view of the concave 100 shown in FIG. FIG. 15 is a cross-sectional view taken along line AA of FIG. The shape of the concave 100 seen from the opposite side to FIG. 12 is the same as the shape of the concave 100 shown in FIG. 12, and the shape of the concave 100 seen from the opposite side to FIG. 13 is shown in FIG. The shape of the concave 100 is the same.
 コンケーブ100は、筒状の形状を有している。図15に示すように、コンケーブ100は、第1破砕面102及び外側面104を有している。第1破砕面102は、コンケーブ100の内部空間を画定している。外側面104は、第1破砕面102の反対側にある。 The concave 100 has a tubular shape. As shown in FIG. 15, the concave 100 has a first crushing surface 102 and an outer surface 104. The first crushing surface 102 defines the interior space of the concave 100. The outer surface 104 is opposite to the first crush surface 102.
 コンケーブ100は、複数の突出部110を有している。各突出部110は、コンケーブ100の外側面104から突出している。図11に示すように、複数の突出部110は、外側面104に沿って実質的に等間隔に並んでいる。特に図11に示す例では、6つの突出部110が60°間隔で実質的に等間隔に並んでいる。なお、コンケーブ100の突出部110の数は、図11に示す例に限定されるものではなく、6以外であってもよい。 Concave 100 has a plurality of protrusions 110. Each protrusion 110 protrudes from the outer side surface 104 of the concave 100. As shown in FIG. 11, the plurality of protrusions 110 are substantially equally spaced along the outer surface 104. In particular, in the example shown in FIG. 11, the six protrusions 110 are substantially equally spaced at 60 ° intervals. The number of projecting portions 110 of the concave 100 is not limited to the example shown in FIG. 11 and may be other than six.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above with reference to the drawings, these are merely examples of the present invention, and various configurations other than the above can also be adopted.
 この出願は、2017年12月15日に出願された日本出願特願2017-240296号、2017年12月15日に出願された日本出願特願2017-240297号及び2017年12月15日に出願された日本出願特願2017-240298号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application corresponds to Japanese Patent Application No. 2017-240296 filed on Dec. 15, 2017, Japanese Patent Application No. 2017-240297 filed on Dec. 15, 2017, and Dec. 15, 2017 Priority is claimed on the basis of Japanese Patent Application No. 2017-240298, which is incorporated herein by reference in its entirety.

Claims (13)

  1.  第1破砕面を有するコンケーブと、
     第2破砕面を有し、前記第2破砕面が前記コンケーブの前記第1破砕面に対向するように位置するマントルと、
    を備え、
     前記コンケーブ及び前記マントルの一方は、前記コンケーブ及び前記マントルのもう一方に対して鉛直方向に沿って移動可能であり、
     前記コンケーブの前記第1破砕面の上端は、前記マントルの前記第2破砕面の上端より高い位置にあり、
     前記鉛直方向において、前記マントルの前記第2破砕面の上端から前記コンケーブの前記第1破砕面の上端までの距離は、前記コンケーブの前記第1破砕面の下端から上端までの距離の40%以上である破砕機。
    Concave having a first crushing surface,
    A mantle having a second crush surface, the second crush surface being positioned to face the first crush surface of the concave;
    Equipped with
    One of the concave and the mantle is movable along the vertical direction with respect to the concave and the other of the mantle,
    The upper end of the first crushing surface of the concave is located higher than the upper end of the second crushing surface of the mantle;
    In the vertical direction, the distance from the upper end of the second crushing surface of the mantle to the upper end of the first crushing surface of the concave is 40% or more of the distance from the lower end to the upper end of the first crushing surface of the concave Is a crusher.
  2.  請求項1に記載の破砕機において、
     前記コンケーブから突出した突出部と、
     鉛直方向に沿って移動可能であり、前記突出部を上方に持ち上げ可能なリフト部と、
    を備える破砕機。
    In the crusher according to claim 1,
    A protrusion protruding from the concave;
    A lift which is movable along the vertical direction and which can lift the projection upward;
    Crusher equipped with.
  3.  鉛直方向に対して傾いた第1傾斜面を有するマントルコアと、
     前記鉛直方向に対して傾いた第2傾斜面を有し、前記第2傾斜面が前記マントルコアの前記第1傾斜面に対向するように位置するマントルと、
    を備え、
     前記マントルコアは、前記第1傾斜面の上端に交わっていて前記鉛直方向に対して前記第1傾斜面より緩やかな傾きを有する第1面と、前記マントルコアの前記第1面に交わっていて前記鉛直方向に対して前記マントルコアの前記第1面より急な傾きを有する第2面と、を有し、
     前記マントルは、前記第2傾斜面の上端に交わっていて前記鉛直方向に対して前記第2傾斜面より緩やかな傾きを有する第1面と、前記マントルの前記第1面に交わっていて前記鉛直方向に対して前記マントルの前記第1面より急な傾きを有する第2面と、を有し、
     前記マントルコアの前記第1面と前記マントルの前記第1面は、互いに対向しており、
     前記マントルコアの前記第2面と前記マントルの前記第2面は、互いに対向している破砕機。
    A mantle core having a first inclined surface inclined with respect to the vertical direction;
    A mantle having a second inclined surface inclined with respect to the vertical direction, the second inclined surface being positioned to face the first inclined surface of the mantle core;
    Equipped with
    The mantle core intersects the upper end of the first inclined surface and intersects the first surface of the mantle core and a first surface having a gentler inclination than the first inclined surface with respect to the vertical direction. And a second surface having a steeper inclination than the first surface of the mantle core with respect to the vertical direction,
    The mantle intersects the upper end of the second inclined surface and has a first surface having a gentler inclination than the second inclined surface with respect to the vertical direction, and intersects the first surface of the mantle and the vertical And a second surface having a steeper inclination than the first surface of the mantle with respect to a direction,
    The first surface of the mantle core and the first surface of the mantle being opposite each other;
    The crusher in which the second surface of the mantle core and the second surface of the mantle face each other.
  4.  請求項3に記載の破砕機において、
     前記マントルコアは、前記マントルコアの前記第2面に交わっていて前記鉛直方向に対して前記マントルコアの前記第2面より緩やかな傾きを有する第3面を有し、
     前記マントルは、前記マントルの前記第2面に交わっていて前記鉛直方向に対して前記マントルの前記第2面より緩やかな傾きを有する第3面を有し、
     前記マントルコアの前記第3面と前記マントルの前記第3面は、互いに対向している破砕機。
    In the crusher according to claim 3,
    The mantle core has a third surface that intersects the second surface of the mantle core and has a gentle inclination with respect to the vertical direction than the second surface of the mantle core.
    The mantle has a third surface that intersects the second surface of the mantle and has a more gentle inclination than the second surface of the mantle with respect to the vertical direction;
    The crusher in which the third surface of the mantle core and the third surface of the mantle face each other.
  5.  請求項4に記載の破砕機において、
     外側面を有する主軸と、
     内側面を有し、前記内側面が前記主軸の前記外側面に対向するように前記主軸を締め付け可能なヘッドと、を備え、
     前記マントルは、前記マントルの前記第3面の反対側の第4面を有し、
     前記ヘッドは、下方を向いた第1面を有し、
     前記ヘッドは、前記ヘッドの前記第1面が前記マントルの前記第4面に対向するように、前記主軸を締め付け可能となっている破砕機。
    In the crusher according to claim 4,
    A spindle having an outer surface,
    A head having an inner side and capable of clamping the spindle such that the inner side faces the outer side of the spindle;
    The mantle has a fourth surface opposite the third surface of the mantle;
    The head has a first surface facing downwards,
    The crusher capable of clamping the main shaft such that the head faces the fourth surface of the mantle with the first surface of the head facing the fourth surface of the mantle.
  6.  請求項5に記載の破砕機において、
     前記ヘッドは、前記ヘッドの内側面の反対側の外側面を有し、
     前記マントルは、前記第3面と前記第4面の間の第5面を有し、
     前記ヘッドは、前記ヘッドの外側面が前記マントルの前記第5面に対向するように、前記主軸を締め付け可能となっている破砕機。
    In the crusher according to claim 5,
    The head has an outer surface opposite to the inner surface of the head,
    The mantle has a fifth surface between the third surface and the fourth surface,
    The crusher capable of tightening the main shaft such that the head faces the fifth surface of the mantle with the outer surface of the head facing the fifth surface of the mantle.
  7.  請求項5又は6に記載の破砕機において、
     前記マントルは、前記マントルの前記第1面、前記第2面、前記第3面及び前記第4面を有する第1部品と、前記マントルコアの前記第1傾斜面に沿って前記第1部品より下方に位置する第2部品と、を有し、
     前記第1部品及び前記第2部品は、互いに分離可能になっている破砕機。
    In the crusher according to claim 5 or 6,
    The mantle includes a first component having the first surface, the second surface, the third surface, and the fourth surface of the mantle, and a first component along the first inclined surface of the mantle core. And a second part located below,
    A crusher in which the first part and the second part are separable from each other.
  8.  主軸と、
     前記主軸の周囲に位置するコンケーブと、
     前記コンケーブから突出した突出部と、
     鉛直方向に沿って移動可能であり、前記突出部のうちの第1部分を上方に持ち上げ可能なリフト部と、
    を備え、
     前記鉛直方向に沿った一断面において、前記コンケーブは、前記鉛直方向に直交する一方向における第1端部と、前記一方向において前記第1端部の反対側にあって前記第1端部よりも高い位置にある第2端部と、を有し、
     前記一方向において、前記突出部の前記第1部分の中心は、前記第1端部と前記第2端部の間の中心から前記第2端部に向けてずれており、
     前記鉛直方向において、前記突出部の前記第1部分は、前記主軸の上端より高い位置にある破砕機。
    With the spindle
    A concave located around the spindle;
    A protrusion protruding from the concave;
    A lift which is movable along the vertical direction and which can lift the first part of the protrusions upward;
    Equipped with
    In the cross section along the vertical direction, the concave is at a first end in one direction orthogonal to the vertical direction and on the opposite side of the first end in the one direction from the first end And a second end located high,
    In the one direction, the center of the first portion of the protrusion is offset from the center between the first end and the second end toward the second end,
    The crusher in which the first portion of the protrusion is higher than the upper end of the main shaft in the vertical direction.
  9.  請求項8に記載の破砕機において、
     前記リフト部は、前記突出部の前記第1部分の下方を通過する第1部分と、前記第1部分から前記突出部の前記第1部分の一側方を通過する第2部分と、前記第1部分から前記突出部の前記第1部分の反対側の側方を通過する第3部分と、を含む破砕機。
    In the crusher according to claim 8,
    The lift portion has a first portion passing under the first portion of the protrusion, a second portion passing from the first portion to one side of the first portion of the protrusion, and the second portion And a third portion passing from one portion through the side opposite the first portion of the projection.
  10.  請求項9に記載の破砕機において、
     保持部を備え、
     前記保持部は、前記突出部の上方に位置する第1部材を有しており、
     前記リフト部の前記第2部分及び前記第3部分は、前記鉛直方向に沿って移動可能に前記保持部の前記第1部材に取り付けられている破砕機。
    In the crusher according to claim 9,
    Equipped with a holding unit,
    The holding portion has a first member located above the projecting portion,
    The crusher in which the second portion and the third portion of the lift portion are attached to the first member of the holding portion so as to be movable along the vertical direction.
  11.  請求項10に記載の破砕機において、
     前記突出部の少なくとも一部分を入り込ませるための空間を画定する収容部を備え、
     前記収容部は、第1上面と、前記第1上面に交わる第1側面と、第2上面と、前記第2上面に交わる第2側面と、を有し、
     前記第1側面と前記第2側面は、前記空間を挟んで互いに対向しており、
     前記保持部は、前記収容部の前記第1上面から前記第2上面にかけて前記空間を跨いでいる破砕機。
    In the crusher according to claim 10,
    A housing portion defining a space for inserting at least a part of the projection;
    The housing portion has a first upper surface, a first side surface intersecting the first upper surface, a second upper surface, and a second side surface intersecting the second upper surface.
    The first side and the second side face each other across the space,
    The crusher straddling the space from the first upper surface to the second upper surface of the housing portion.
  12.  請求項11に記載の破砕機において、
     前記保持部は、前記第1部材から突出した第2部材を有しており、
     前記保持部の前記第2部材は、前記収容部の前記第1側面と前記第2側面の間に位置している破砕機。
    In the crusher according to claim 11,
    The holding portion has a second member protruding from the first member,
    The crusher, wherein the second member of the holding portion is located between the first side surface and the second side surface of the housing portion.
  13.  請求項8から12までのいずれか一項に記載の破砕機において、
     前記コンケーブの前記第1端部と前記第2端部は、前記一方向において第1距離だけ離れており、
     前記一方向において、前記突出部の前記第1部分の中心は、前記第1端部と前記第2端部の間の中心から、前記第1距離の0.25倍の距離の範囲内にある破砕機。
    The crusher according to any one of claims 8 to 12
    The first end and the second end of the concave are separated by a first distance in the one direction,
    In the one direction, the center of the first portion of the protrusion is within a distance of 0.25 times the first distance from the center between the first end and the second end. Crushing machine.
PCT/JP2018/045614 2017-12-15 2018-12-12 Crusher WO2019117182A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019559682A JP7253497B2 (en) 2017-12-15 2018-12-12 Crushing machine
JP2023004360A JP2023029650A (en) 2017-12-15 2023-01-16 Crusher
JP2023004361A JP7438416B2 (en) 2017-12-15 2023-01-16 Crushing machine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-240296 2017-12-15
JP2017-240298 2017-12-15
JP2017240296 2017-12-15
JP2017-240297 2017-12-15
JP2017240297 2017-12-15
JP2017240298 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019117182A1 true WO2019117182A1 (en) 2019-06-20

Family

ID=66819315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045614 WO2019117182A1 (en) 2017-12-15 2018-12-12 Crusher

Country Status (2)

Country Link
JP (3) JP7253497B2 (en)
WO (1) WO2019117182A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2553988A (en) * 1946-11-29 1951-05-22 Dominion Eng Works Ltd Gyratory crusher
GB1135578A (en) * 1965-12-09 1968-12-04 Nordberg Manufacturing Co Improvements in or relating to gyratory crushers
JPS5124973A (en) * 1974-07-02 1976-02-28 Svedala Arbra Ab
JPH0386042U (en) * 1989-12-20 1991-08-30
JP2001327883A (en) * 2000-05-23 2001-11-27 Komatsu Ltd Outlet gap adjusting device for gyratory crusher and its adjusting method
JP2012240014A (en) * 2011-05-23 2012-12-10 Earth Technica:Kk Mantle fixing mechanism of gyratory crusher

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565754B2 (en) 1999-12-16 2004-09-15 株式会社栗本鐵工所 Oil fence structure of the rotary crusher
WO2008139020A1 (en) 2007-05-09 2008-11-20 Metso Minerals Inc. A method for fastening the crushing blade of a crusher, a fastening element for the crushing blade of a crusher and a crusher

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2553988A (en) * 1946-11-29 1951-05-22 Dominion Eng Works Ltd Gyratory crusher
GB1135578A (en) * 1965-12-09 1968-12-04 Nordberg Manufacturing Co Improvements in or relating to gyratory crushers
JPS5124973A (en) * 1974-07-02 1976-02-28 Svedala Arbra Ab
JPH0386042U (en) * 1989-12-20 1991-08-30
JP2001327883A (en) * 2000-05-23 2001-11-27 Komatsu Ltd Outlet gap adjusting device for gyratory crusher and its adjusting method
JP2012240014A (en) * 2011-05-23 2012-12-10 Earth Technica:Kk Mantle fixing mechanism of gyratory crusher

Also Published As

Publication number Publication date
JP2023029651A (en) 2023-03-03
JP2023029650A (en) 2023-03-03
JP7253497B2 (en) 2023-04-06
JPWO2019117182A1 (en) 2020-12-03
JP7438416B2 (en) 2024-02-26

Similar Documents

Publication Publication Date Title
US20130099031A1 (en) Apparatus for fracturing and method for producing fractured fragments
CN105473297B (en) Stone cutting device
KR20170106967A (en) Grinding machine with comb system
US20130334754A1 (en) Tire holding member for tire testing machine
WO2019117182A1 (en) Crusher
JP2008265980A (en) Slide device of telescopic boom
JP5760384B2 (en) Polycrystalline silicon crushing apparatus and method for producing polycrystalline silicon crushed material
US9586210B2 (en) Apparatus and method for comminuting a polycrystalline silicon rod
MX2020002387A (en) Ultrasonic welding device.
EP2644275B1 (en) Jaw crusher
EP3453883B1 (en) Centrifugal compressor
JP2018015806A (en) Tool for sequential forming and sequential forming method using the same
JP2011177755A (en) Forming method by forging and forming mold for forging
JP3127389U (en) Bar polishing equipment
US20150108262A1 (en) Gyratory crusher crushing head
KR101181439B1 (en) Apparatus of alignment center for large lathe
KR100799506B1 (en) Top back up roll chock, bottom back up roll chock, and rolling mill
JP6617721B2 (en) Ingot cutting device
WO2020076189A1 (en) Vibratory cutter for machining railway wheelsets and cutting insert
JP2008290867A (en) Elevator guide device
KR20190107386A (en) Safety apparatus for jaw crusher
JP6281429B2 (en) Caliber Roll
JP5993780B2 (en) Backup roll fixed structure
JP2009138813A (en) Coil spring end-receiving tray and vertical bus duct supporting device using the same
JP7382062B2 (en) Support devices and vibration generators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559682

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889185

Country of ref document: EP

Kind code of ref document: A1