WO2019117159A1 - Lens and planar illumination device - Google Patents

Lens and planar illumination device Download PDF

Info

Publication number
WO2019117159A1
WO2019117159A1 PCT/JP2018/045541 JP2018045541W WO2019117159A1 WO 2019117159 A1 WO2019117159 A1 WO 2019117159A1 JP 2018045541 W JP2018045541 W JP 2018045541W WO 2019117159 A1 WO2019117159 A1 WO 2019117159A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
point light
illumination device
planar illumination
light source
Prior art date
Application number
PCT/JP2018/045541
Other languages
French (fr)
Japanese (ja)
Inventor
英 椋本
銀河 伊藤
友晶 森下
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017241201A external-priority patent/JP2019109995A/en
Priority claimed from JP2017241199A external-priority patent/JP2019109993A/en
Priority claimed from JP2017241200A external-priority patent/JP2019109994A/en
Priority claimed from JP2017241198A external-priority patent/JP2019109992A/en
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2019117159A1 publication Critical patent/WO2019117159A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a lens and a surface illumination device.
  • planar illumination device that illuminates a display panel of a liquid crystal display device from the back side.
  • a planar illumination device is roughly classified into an edge light type and a direct type.
  • so-called local dimming (area light emission) -compliant planar illumination device capable of adjusting the brightness for each area of the light emitting surface by controlling the light quantity of each point light source. It has been known.
  • a direct type planar illumination device compatible with local dimming includes a lens for diffusing light emitted from a point light source, and spreads out light from the point light source to emit light, whereby the brightness of each area is obtained. It can be made uniform.
  • planar illumination device due to the recent demand for thinning the planar illumination device, it has become impossible to ensure sufficient uniformity of luminance. For example, in the case of using a planar illumination device as a backlight of an information display of a vehicle, the installation space is limited, and in order to ensure uniform brightness, it is not possible to meet the demand for thinning.
  • This invention is made in view of the above, Comprising: It aims at providing the lens and planar illumination device which can improve the uniformity of luminosity.
  • a lens according to an aspect of the present invention is a lens that covers point light sources arranged in a row from an emission direction, and a main surface that is an emission surface; The back surface facing the main surface, a plurality of recesses recessed in the thickness direction from the main surface toward the back surface at a position corresponding to a point light source, and the light reflected from the main surface toward the back surface And a reflecting portion that reflects light to the side.
  • the uniformity of luminance can be improved.
  • FIG. 1 is a top view which shows an example of the external appearance of the planar illuminating device which concerns on embodiment.
  • FIG. 2 is a top view showing an exemplary arrangement of lenses.
  • FIG. 3A is a schematic cross-sectional view (No. 1) along the line AA shown in FIG.
  • FIG. 3B is a schematic cross-sectional view (No. 2) along the line AA shown in FIG.
  • FIG. 4 is a top view of the lens according to the first embodiment.
  • FIG. 5A is a schematic cross-sectional view taken along the line BB shown in FIG.
  • FIG. 5B is a schematic cross-sectional view along the line BB shown in FIG.
  • FIG. 6 is a schematic view showing light distribution characteristics of the lens according to the first embodiment.
  • FIG. 1 is a top view which shows an example of the external appearance of the planar illuminating device which concerns on embodiment.
  • FIG. 2 is a top view showing an exemplary arrangement of lenses.
  • FIG. 3A is a
  • FIG. 7 is a diagram showing the comparison result of the luminance distribution according to the presence or absence of the transmission part.
  • FIG. 8 is a top view showing an arrangement example of lenses according to the second embodiment.
  • FIG. 9 is a schematic cross-sectional view taken along the line CC shown in FIG.
  • FIG. 10 is a schematic cross-sectional view of a lens according to a third embodiment.
  • FIG. 11 is a perspective view of the lens according to the third embodiment as viewed from the back surface side.
  • FIG. 12 is a view showing light distribution characteristics of the lens according to the third embodiment.
  • FIG. 13A is a schematic cross-sectional view (No. 1) of a lens according to a fourth embodiment.
  • FIG. 13B is a schematic cross-sectional view (No. 2) of the lens according to the fourth embodiment.
  • FIG. 14 is a perspective view of the lens according to the fourth embodiment as viewed from the back side.
  • FIG. 15 is a view showing the light distribution characteristic of the lens according to the fourth embodiment.
  • FIG. 16 is a diagram (part 1) illustrating a simulation result of the lens according to the fourth embodiment.
  • FIG. 17 is a second diagram showing a simulation result of the lens according to the fourth embodiment.
  • FIG. 18 is a diagram (part 1) showing a modification of the buttocks.
  • FIG. 19 is a second diagram showing a modification of the buttocks.
  • FIG. 20 is a top view of a reflector according to the fifth embodiment.
  • FIG. 21 is a schematic cross-sectional view taken along the line DD shown in FIG. FIG.
  • FIG. 22 is a perspective view of the lens according to the fifth embodiment as viewed from the back surface side.
  • FIG. 23 is a view showing light distribution characteristics of a reflector and a lens according to the fifth embodiment.
  • FIG. 24 is a diagram (part 1) illustrating the comparison result of the luminance distribution according to the presence or absence of the frame portion according to the fifth embodiment.
  • FIG. 25 is a second diagram showing the comparison result of the luminance distribution according to the presence or absence of the frame portion according to the fifth embodiment.
  • FIG. 26 is a third diagram showing a comparison result of luminance distribution according to the presence or absence of a frame portion according to the fifth embodiment.
  • FIG. 27 is a perspective view of the back surface side of the lens according to the sixth embodiment.
  • FIG. 28 is a bottom view of the substrate according to the sixth embodiment.
  • FIG. 29 is a schematic view (No. 1) showing a fixing aspect of the lens and the substrate according to the sixth embodiment.
  • FIG. 30 is a schematic view (No. 2) showing a fixing aspect of the lens and the substrate according to the sixth embodiment.
  • FIG. 31 is a schematic view (No. 3) showing a fixing aspect of the lens and the substrate according to the sixth embodiment.
  • FIG. 32 is a schematic cross-sectional view of the planar illumination device according to the first modification.
  • FIG. 33 is a cross-sectional schematic diagram of the planar illuminating device which concerns on a 2nd modification.
  • FIG. 1 is a front view which shows an example of the external appearance of the planar illuminating device which concerns on embodiment.
  • the planar illumination device 1 according to the present embodiment is a direct-type planar illumination device, and is used as a backlight of various liquid crystal display devices.
  • Such a liquid crystal display device is, for example, an electronic speedometer of a vehicle, but is not limited thereto.
  • the planar illumination device 1 according to the embodiment emits light from an emission area not covered by the frame 10.
  • the connector C is connected with power supply wiring, signal wiring, and the like. That is, the planar illumination device 1 according to the embodiment is supplied with power and signals via the connector C.
  • a direct type planar illumination device a plurality of point light sources are arranged in a grid, and a lens is provided for each point light source and a lens is provided for each of a plurality of point light sources arranged in a row. There is.
  • FIG. 2 is a top view showing the arrangement of lenses according to the first embodiment.
  • the point light source 30 is shown collectively.
  • the point light sources 30 are arranged in a grid.
  • Each point light source 30 is provided with a lens 50 from the emission direction. That is, in the planar illumination device 1, since the point light sources 30 are arranged in a grid, the lenses 50 are also arranged in a grid.
  • FIG. 3A and FIG. 3B are schematic cross sections along the line AA shown in FIG.
  • the planar illumination device 1 according to the embodiment includes the frame 10, the substrate 20, the point light source 30, the reflection plate 40, the lens 50, the diffusion plate 60, the spacer 70, and optics.
  • a seat 80 and an elastic member 90 are provided.
  • the frame 10 is a sheet metal frame having high rigidity, for example, stainless steel, and accommodates the respective members of the planar illumination device 1. Also, the frame 10 includes, for example, an upper frame 11 and a lower frame 12.
  • the upper frame 11 is disposed on the upper surface side of the lower frame 12.
  • the upper frame 11 has a rectangular top plate 11 a having an opening formed at its central portion, and a side wall 11 b extending from the periphery of the top plate 11 a along the outer surface of the lower frame 12.
  • the lower frame 12 has a rectangular bottom 12 a and a side wall 12 b extending from the periphery of the bottom 12 a along the inner side of the upper frame 11.
  • the substrate 20 is made of, for example, an epoxy resin or PI (polyimide), and has a main surface on which a plurality of point light sources 30 are mounted in a lattice.
  • the point light source 30 is, for example, a light emitting diode (LED).
  • the point light source 30 is disposed on the substrate 20 such that the optical axis is substantially perpendicular to the lens 50.
  • the reflection plate 40 is formed of, for example, a white resin or the like.
  • the reflecting plate 40 reflects the light reflected by the lens 50 toward the reflecting plate 40 toward the lens 50 again.
  • the emission efficiency can be improved.
  • the structure of the reflecting plate 40 it mentions later using attached drawing after FIG.
  • the lens 50 performs light distribution control of light emitted from the point light source 30.
  • the lens 50 has a rectangular or substantially rectangular outer shape in top view.
  • a material of the lens 50 for example, PMMA (polymethyl methacrylate) or polycarbonate can be used, but it is not limited thereto.
  • the light whose light distribution is controlled by the lens 50 is emitted to the diffusion plate 60.
  • the lens 50 also has a leg 55 that protrudes toward the substrate 20.
  • an adhesive member such as an adhesive is applied to the bottom of the leg 55, for example, and fixed to the substrate 20, but the fixing method is not limited thereto. The details of the lens 50 will be described later with reference to FIG. 4 and subsequent drawings.
  • the diffusion plate 60 is made of a material such as resin and has a function of diffusing the light emitted from the lens 50. That is, the light emitted from the lens 50 is diffused by the diffusion plate 60 and guided to the optical sheet 80.
  • the spacer 70 is disposed between the lens 50 and the diffusion plate 60, and keeps the distance between the lens 50 and the diffusion plate 60 constant.
  • the material of the spacer 70 is not particularly limited.
  • the spacer 70 may be formed of a white resin and have a function of reflecting light emitted from the lens 50.
  • the spacer 70 presses the diffusion plate 60 from the lower surface side along the longitudinal direction (X axis) of the planar illumination device 1, and presses the lens 50 from the upper surface side along the longitudinal direction.
  • the spacer 70 may not necessarily hold the distance between the lens 50 and the diffusion plate 60 in the lateral direction (Y axis) of the planar illumination device 1.
  • the optical sheet 80 performs optical adjustment such as equalization and light distribution control on the light emitted from the diffusion plate 60, and emits the light subjected to the optical adjustment.
  • optical adjustment such as equalization and light distribution control
  • FIG. 3A it is illustrated about the case where the optical sheet 80 is comprised by two sheets, the 1st sheet 81 and the 2nd sheet 82. As shown in FIG.
  • the first sheet 81 is, for example, BEF (Brightness Enhancement Film) manufactured by 3M
  • the second sheet 82 is, for example, DBEF (Dual Brightness Enhancement Film) manufactured by 3M. It is possible to change arbitrarily according to the light emission aspect calculated
  • the optical sheet 80 is fixed to the exit surface of the diffusion plate 60 by, for example, an adhesive or an adhesive member such as a double-sided tape.
  • the elastic member 90 is a frame-like member having elasticity, such as rubber or sponge.
  • the elastic member 90 is provided on the optical sheet 80, holds the diffusion plate 60 and the optical sheet 80 between the spacer 70 and holds the same, and presses the lens 50 through the spacer 70 by its elastic force. In addition, when vibration occurs in the planar lighting device 1, the elastic member 90 absorbs the vibration.
  • the elastic member 90 is disposed between the upper frame 11 and the diffusion plate 60, and presses the diffusion plate 60 from the top plate side of the upper frame 11.
  • the elastic member 90 is not limited to the frame shape, and for example, a plurality of rod-like elastic members having a rectangular cross-sectional shape may be used.
  • the elastic member 90 may be provided so as to avoid the upper surface of the optical sheet 80.
  • the elastic member 90 is installed on the upper surface of the diffusion plate 60, and is pressed toward the diffusion plate 60 by the top plate 11a.
  • the optical sheet 80 is installed on the side surface of the elastic member 90.
  • the optical sheet 80 is smaller than the diffusion plate 60 in top view, and the elastic member 90 is provided in a region where the optical sheet 80 does not cover the diffusion plate 60. Accordingly, it is possible to suppress the wrinkles of the optical sheet 80 when the planar illumination device 1 is manufactured or when the planar illumination device 1 vibrates.
  • FIG. 4 is a top view of the lens 50 according to the first embodiment.
  • the point light source 30 is also shown in order to clarify the positional relationship between the lens 50 and the point light source 30.
  • the exit surface 51 of the lens 50 has a flat portion 57, a transmission portion 52, and a recess 53.
  • the flat portion 57 is a flat surface provided continuously with the recess 53 and emits light to the diffusion plate 60.
  • the transmitting portion 52 has a function of promoting the emission of light to the boundary with the adjacent lens 50.
  • the transmitting portion 52 may be a transmitting portion recessed in the thickness direction of the lens 50, and the shape thereof is not particularly limited.
  • the transmitting portion 52 is formed concentrically at the outer peripheral portion of the recess 53, and is provided in contact with each side of the emission surface 51. That is, the transmitting portion 52 is provided on the outer peripheral portion of the emission surface 51.
  • the transmitting portion 52 is a linear protrusion having a straight line or a curved line in a cross section and protruding from the emission surface.
  • the transmitting unit 52 refracts and transmits a part of the emitted light, and promotes the emission of the light to the boundary with the adjacent lens 50.
  • the transmitting portion 52 is not limited to the concentric shape, and may be formed in a linear shape as long as the transmitting portion 52 is formed on the outer peripheral portion of the emission surface 51.
  • the boundary of the lens is the area above the gap with the adjacent lens 50, and it is difficult for the light from the point light source 30 to reach and the area easily darkens when the point light source 30 is lit. It is.
  • the recess 53 has a shape that is recessed in the thickness direction from the emission surface 51 immediately above the point light source 30 of the emission surface 51.
  • the concave portion 53 is provided at a position corresponding to the point light source 30 of the light emission surface 51, and the concave portion 53 is a shape recessed from the light emission surface 51 toward the back surface 54. It is formed in a conical shape (or a weir shape).
  • the concave portion 53 has a function of reflecting the light emitted from the point light source 30 to the back surface 54 side. In the recess 53, it is not necessary to reflect all the light emitted from the point light source 30 to the back surface 54 side, and there may be light transmitted from the recess 53 to the diffusion plate 60.
  • the recess 53 reflects the light emitted from the point light source 30 toward the back surface 54 side.
  • the light intensity of the incident light is strong directly above the point light source 30 of the exit surface 51, but by reflecting most of the light emitted from the point light source 30 by the recess 53 toward the back surface 54, the light intensity directly above the point light source 30 Can be reduced.
  • by reflecting the light from the point light source 30 by the concave portion 53 it is possible to suppress the increase in the luminance of the region corresponding to the portion immediately above the point light source 30 of the lens 50.
  • the light distribution of the light emitted from the point light source 30 is controlled so that the light intensity becomes uniform on the light emission surface 51.
  • the lens 50 can equalize the luminance by dispersing the light incident immediately above the light source having high light intensity over the entire emission surface 51.
  • FIGS. 5A and 5B are schematic cross sections along the line BB shown in FIG.
  • the lens 50 has a reflective portion 56 on the back surface 54 in addition to the transmissive portion 52 and the concave portion 53 formed on the output surface 51.
  • the reflective portion 56 is a dot protruding from the back surface 54 in the thickness direction of the lens 50, and is uniformly formed on the entire back surface 54, for example.
  • the reflection unit 56 reflects the light reflected to the back surface 54 side at the emission surface 51 again to the emission surface 51 side.
  • the reflection unit 56 reflects the light reflected to the back surface 54 side again to the emission surface 51 side by the concave portion 53 provided at the position corresponding to the point light source 30 of the lens 50. Thereby, the light reflected by the reflection part 56 is emitted to the diffusion plate 60 from the flat part 57 provided continuously to the concave part 53 of the lens 50.
  • the reflecting portion 56 may have a dot shape which is recessed from the back surface 54 in the thickness direction of the lens 50. Also, the reflective portion 56 is not limited to dots.
  • the present invention is not limited to this, and as shown in FIG. 5B, the transmitting portion 52
  • the cross-sectional view may have a rounded shape such as a semicircular shape or a round shape, or the reflecting portion 56 may have a triangular shape.
  • the entire surface of the output surface 51 may be roughly processed, for example, by sand blasting or embossing, or dots may be provided on the entire output surface 51.
  • FIG. 6 is a schematic view showing light distribution characteristics of the lens 50 according to the first embodiment.
  • the optical path of light is indicated by a broken line.
  • the light emitted from the point light source 30 is reflected by the recess 53 toward the back surface 54 as described above. Subsequently, the light is reflected again to the emission surface 51 side by the reflection portion 56 provided on the back surface 54. Then, the light reflected by the reflection unit 56 is emitted from the flat portion 57 of the emission surface 51. That is, the light emitted from the point light source 30 is guided within the lens 50, converted to substantially surface light emission, and emitted. Further, a part of the outgoing light is refracted and transmitted by the transmission part 52, and the outgoing light is promoted to the boundary with the adjacent lens 50.
  • the light distribution is controlled so that the light incident from the point light source 30 is uniformly emitted from the entire emission surface 51. That is, according to the lens 50 which concerns on this embodiment, equalization
  • the lens 50 according to the first embodiment by refracting and transmitting a part of light by the transmitting unit 52, it is possible to suppress the light guided to the adjacent lens 50.
  • the transmitting portion 52 can suppress the leakage of light to the adjacent lens 50. That is, the lens 50 according to the first embodiment can also improve the contrast when the point light sources 30 are individually lit by suppressing the light guided to the adjacent lens 50.
  • FIG. 7 is a view showing the comparison result of the luminance distribution according to the presence or absence of the transmission part 52.
  • the simulation result of the luminance distribution at the time of making nine point light sources 30 emit light is shown.
  • the circled area in FIG. 7 corresponds to the boundary between the lens 50 and the lens 50 adjacent to the lens 50.
  • the transmitting portion 52 on the outer peripheral portion of the emission surface 51 of the lens 50, the brightness between the adjacent lenses 50 can be improved.
  • the reflecting portion 56 is provided on the back surface 54 which is the main surface facing the point light source 30 and is a main surface facing the back surface 54 from the output surface 51 to the back surface 54 side. Is reflected to the side of the exit surface 51.
  • the recess 53 has a shape that is recessed in the thickness direction from the emission surface 51 immediately above the point light source 30.
  • the transmitting portion 52 is provided on the outer peripheral portion of the recess 53, and refracts and transmits a part of light. As a result, the transmission portion 52 promotes emission of light to the boundary with the adjacent lens 50, the luminance between the adjacent lenses 50 is improved, and the luminance becomes uniform.
  • the light leakage to the adjacent lens 50 is suppressed by the transmission part 52, and the contrast when the point light sources 30 are individually lit is improved. Therefore, according to the lens 50 according to the first embodiment, it is possible to improve the contrast when the point light sources 30 are individually lit while improving the uniformity of the luminance of the planar illumination device 1.
  • FIG. 8 the case where the lens 50B covers a plurality of point light sources 30 alone will be described.
  • FIG. 8 is a top view showing an arrangement example of the lens 50B according to the second embodiment.
  • the lens 50 ⁇ / b> B according to the second embodiment differs from the lens 50 according to the first embodiment in that it covers a plurality of point light sources 30.
  • the lens 50B according to the second embodiment covers a plurality of point light sources 30 lined in the short direction (Y axis) among the plurality of point light sources 30 lined in a grid-like manner alone, They are arranged in parallel along the direction (X axis).
  • the lens 50B is rectangular or substantially rectangular in top view.
  • the lens 50B according to the present embodiment has a rectangular shape in which the side extending in parallel to the short direction (Y axis) is a long side and the side extending in a direction parallel to the longitudinal direction (X axis) is a short side in top view is there.
  • the lens 50B can shorten the lens length as compared to the case of covering the plurality of point light sources 30 aligned in the longitudinal direction.
  • the lens 50B thermally expands (contracts) due to the heat generation of the point light source 30 and the ambient environment temperature, and the lens 50B is caused by positional deviation between the point light source 30 and the lens 50B due to the thermal expansion of the lens 50B.
  • the expansion coefficient per unit volume of the lens 50B is the same, the longer the lens length, the larger the expansion (contraction) volume, and the lens 50B expands (or shrinks) significantly.
  • the light emitting surface 51 is provided with a recess 53 provided at a position corresponding to the immediate upper part of the point light source 30 and a transmitting part 52 between adjacent point light sources 30.
  • the recess 53 and the transmission part 52 are designed based on the position of the point light source 30.
  • the lens 50B according to the second embodiment covers the point light sources 30 arranged in the short direction so that the lens length is relatively short, whereby the positional deviation between each point light source 30 and the transmission part 52 or the recess 53 is obtained. Suppress. As a result, it is possible to suppress a decrease in light distribution characteristics due to thermal expansion or thermal contraction of the lens 50B.
  • the lens 50 ⁇ / b> B covers a row of point light sources 30.
  • the width (length in the X-axis direction) of the lens 50B can be reduced, so that the lens 50B can be applied to the planar illumination device 1 having a curved exit surface.
  • FIG. 9 is a schematic cross-sectional view taken along the line CC shown in FIG.
  • a plurality of transmitting portions 52, a plurality of recessed portions 53, and a flat portion 57 are formed on the emission surface 51b.
  • the transmitting portion 52 is provided around the recess 53.
  • the transmitting portion 52 is provided in the boundary area between the corresponding point light source 30 and the point light source 30 adjacent to the point light source 30.
  • the transmitting portion 52 is a protrusion which has a straight line or a curved line in a cross section and which protrudes from the output surface 51.
  • the transmission part 52 which concerns on this embodiment is arranged in the direction substantially orthogonal to the arrangement direction of the point light source 30 which the lens 50B covers. In other words, the transmission part 52 is formed along the longitudinal direction (X axis).
  • the concave portion 53 is provided at a position corresponding to the immediate upper part of the corresponding point light source 30 and has a shape that is recessed from the emission surface 51 toward the back surface 54.
  • the back surface 54 is formed flat, and the reflecting portion 56 is uniformly formed on the entire surface.
  • the lens 50B reflects the light emitted from the plurality of point light sources 30 toward the back surface 54 by the corresponding concave portions 53, and causes the light to be reflected again by the reflecting portion 56. Then, the light is emitted from the flat portion 57 of the emission surface 51.
  • the concave portion 53 is formed at a position corresponding to each point light source 30, and the transmission portion 52 is formed in the boundary region with the point light source 30 adjacent to each other.
  • the transmitting unit 52 refracts and transmits a part of the emitted light and promotes the emission of light to the boundary with the adjacent emission surface 51, as in the transmitting unit 52 according to the first embodiment.
  • the light guided to the side of the light emitting surface 51 adjacent to the light transmission portion 52 is suppressed (for example, the light guiding to the light emitting surface 51-2 side adjacent to the light emitting surface 51-1 shown in FIG. 9 is suppressed) .
  • the transmission portion 52 suppresses the leakage of light to the adjacent emission surface 51.
  • the boundary portion of the lens is a region above the boundary region of the emission surface 51, and it is a region where light from the point light source 30 is hard to reach and is likely to be dark when the point light source 30 is lit. is there.
  • the entire surface of the emission surface 51 may be roughly processed by sandblasting or embossing, or dots may be provided on the entire emission surface 51, for example.
  • FIG. 10 is a schematic cross-sectional view of the lens 50C according to the third embodiment, which corresponds to the cross-sectional view along the line BB shown in FIG.
  • FIG. 11 is a perspective view of the lens 50C according to the third embodiment as viewed from the back surface 54 side.
  • FIG. 12 is a view showing light distribution characteristics of the lens 50C according to the third embodiment.
  • the lens 50C according to the third embodiment is a lens that covers one point light source 30 alone as in the lens 50 according to the first embodiment.
  • the lens 50C according to the third embodiment is different in that the shapes of the lens 50 according to the first embodiment shown in FIG. 4 and the back surface 54 are different.
  • the lens 50C according to the third embodiment includes a transmitting portion 52, a concave portion 53, and a flat portion 57 on the emission surface 51, and a reflecting portion 56 on the back surface 54.
  • the lens 50C according to the third embodiment protrudes from the end of the back surface 54 in the shape of a bowl toward the center, and such a bowl-shaped tip is formed in a flat shape, for example.
  • the back surface 54 has an inclined portion 59 which is inclined from the respective end sides of the ridge toward the center.
  • tip of a ridge is a substantially plane, it is not limited to this.
  • such a tip may be dome-shaped or the like.
  • the back surface 54 is formed in a pyramid shape in the lens 50C according to the third embodiment is shown, but it is not limited to this.
  • the light emitted from the point light source 30 enters the lens 50C from the back surface 54. Subsequently, the light incident on the lens 50C is reflected by the concave portion 53 to the back surface 54 side. At this time, such light enters the inclined portion 59 at a predetermined incident angle. Thereby, the light reflected to the back surface 54 side by the output surface 51 is reflected again to the output surface 51 side by the inclined portion 59.
  • the lens 50C according to the third embodiment promotes total reflection by the inclined portion 59 by providing the inclined portion 59 on the back surface 54. That is, the inclined portion 59 suppresses transmission of light from the back surface 54 to the point light source 30 side. Thereby, the lens 50C according to the third embodiment can improve the emission efficiency and the luminance. Further, the inclined portion 59 can prevent light from leaking to the adjacent lens 50C. Therefore, the lens 50C according to the third embodiment can also improve the contrast when the point light sources 30 are individually lit. It is.
  • the lens 50 ⁇ / b> C according to the third embodiment further includes the transmitting portion 52 on the emission surface 51 and the reflecting portion 56 on the back surface 54.
  • the transmitting unit 52 refracts and transmits a part of the emitted light, thereby promoting the emission of light to the boundary with the adjacent lens 50C.
  • the reflection unit 56 suppresses the emission of light from the back surface 54 and reflects the light toward the emission surface 51.
  • the lens 50C according to the third embodiment by providing the inclined portion 59 in addition to the reflective portion 56 on the back surface 54, light is reflected toward the emission surface 51 in both the reflective portion 56 and the inclined portion 59. Do.
  • the lens 50C according to the third embodiment can improve the uniformity of luminance similarly to the lenses 50 and 50B according to the first and second embodiments.
  • the lens 50C according to the third embodiment can suppress the leakage of light from the back surface 54 and the light guided to the adjacent lens 50C by the inclined portion 59. Therefore, the emission efficiency can be improved and the luminance can be made uniform. Furthermore, it becomes possible to improve the contrast when the point light sources 30 are individually turned on.
  • FIGS. 14A and 14B are schematic cross-sectional views of a lens 50D according to a fourth embodiment.
  • the schematic sectional views shown in FIGS. 14A and 14B correspond to the schematic sectional views taken along the line CC shown in FIG.
  • the shapes of the lens 50B and the back surface 54 already described in FIG. 9 are different.
  • the lens 50D has a transmitting portion 52, a concave portion 53, and a flat portion 57 on the emission surface 51, and a reflecting portion 56 on the back surface 54.
  • the transmitting portion 52 is a linear protrusion having a straight line or a curved line in cross section and protruding from the output surface 51 (the flat portion 57).
  • the transmitting unit 52 has a function of refracting and transmitting a part of the emitted light.
  • the transmitting portion 52 is in a triangular shape in a cross sectional view, but is not limited to this.
  • the transmitting portion 52 may have a rounded shape such as a semicircular or semicylindrical shape in a cross sectional view.
  • the transmitting portions 52 are arranged in a direction substantially orthogonal to the arrangement direction of the point light sources 30 covered by the lens 50D.
  • the transmission part 52 is formed along the longitudinal direction.
  • the boundary portion of the emission surface 51 is a region above the boundary region, and is a region where the light from the point light source 30 is difficult to reach and is likely to be dark when the point light source 30 is lit.
  • the recess 53 has a shape that is recessed in the thickness direction from the emission surface 51 immediately above the point light source 30 of the emission surface 51.
  • the concave portion 53 is provided at a position corresponding to the point light source 30 of the light emission surface 51, and the concave portion 53 is a shape recessed from the light emission surface 51 toward the back surface 54. It is formed in an inverted conical shape (or a weir shape).
  • the concave portion 53 has a function of reflecting the light incident from the point light source 30 to the back surface 54 side. In the recess 53, it is not necessary to reflect all the light emitted from the point light source 30 to the back surface 54 side, and there may be light transmitted from the recess 53 to the diffusion plate 60.
  • the recess 53 reflects the light emitted from the point light source 30 toward the back surface 54 side.
  • the light intensity of the incident light is strong directly above the point light source 30 of the exit surface 51, but by reflecting most of the light emitted from the point light source 30 by the recess 53 toward the back surface 54, the light intensity directly above the point light source 30 Can be reduced.
  • the concave portion 53 it is possible to suppress the increase in the luminance of the region of the emission surface 51 corresponding to the portion directly above the point light source 30.
  • the light distribution of the light emitted from the point light source 30 is controlled so that the light intensity becomes uniform on the light emission surface 51.
  • the lens 50D can equalize the luminance by dispersing the light incident immediately above the light source with high light intensity over the entire emission surface 51.
  • the flat portion 57 is a flat surface provided continuously with the concave portion 53, and emits the light reflected again by the reflection portion 56 to the diffusion plate 60.
  • the reflective portion 56 is a dot that protrudes from the back surface 54 in the thickness direction of the lens 50D, and is uniformly formed on the entire back surface 54, for example.
  • the reflection unit 56 reflects the light reflected to the back surface 54 side at the emission surface 51 again to the emission surface 51 side.
  • the shape of the reflection part 56 is not limited to a dot.
  • the light emitted from the point light source 30 is reflected toward the back surface 54 by the recess 53 as described above. Subsequently, the light is reflected again to the emission surface 51 side by the reflection portion 56 provided on the back surface 54. Then, the light reflected by the reflection portion 56 is emitted from the flat portion 57 of the emission surface 51. That is, the light emitted from the point light source 30 is guided in the lens 50D, converted to substantially surface light emission, and emitted.
  • the light distribution is controlled so that the light incident from the point light source 30 is uniformly emitted from the entire emission surface 51. That is, according to the lens 50D according to the present embodiment, it is possible to improve the uniformity of the luminance.
  • FIG. 14 is a perspective view of a lens 50D according to the fourth embodiment as viewed from the back surface 54 side.
  • the description of the reflecting portion 56 and the like shown in FIG. 13 is omitted.
  • the lens 50 ⁇ / b> D has a ridge 58 projecting like a ridge.
  • the ridge portion 58 is substantially orthogonal to the row of point light sources 30 in which the two opposing sides of the bottom face are covered by the lens 50D, and the two opposing sides of the bottom are substantially parallel to the row of the point light sources 30 covered by the lens 50D.
  • the ridge portion 58 can suppress transmission of light from the back surface 54 to the point light source 30 side, and can suppress light leakage to the adjacent lens 50D.
  • the tip of the collar portion 58 is formed in a plane along the bottom surface of the collar portion 58, but is not limited thereto. That is, the tip of the collar portion 58 may have a convex shape or a concave shape.
  • the collar part 58 is pyramid-shaped. More specifically, the collar portion 58 is constituted by an inclined portion 59a inclined along the longitudinal direction (X axis) of the lens 50D and an inclined portion 59b inclined along the lateral direction (Y axis) of the lens 50D. Be done.
  • the collar part 58 is not limited to pyramid shape, You may decide to form a side surface by one of the inclination part 59a and the inclination part 59b.
  • the collar part 58 forms the reflection part 56 mentioned above.
  • the valley of the adjacent ridge portion 58 corresponds to the above-described boundary area, and the transmission portion 52 is formed on the side of the light-exit surface 51 of the boundary area. That is, the transmissive portion 52 is formed in the region corresponding to the valley of the adjacent ridge portion 58.
  • FIG. 15 is a view showing the light distribution characteristic of the lens 50D according to the fourth embodiment.
  • the optical path of light is indicated by a broken line.
  • the light emitted from the point light source 30 is reflected by the concave portion 53 to the back surface 54 side as described above. Subsequently, the light is reflected to the emission surface 51 side again by a reflection portion 56 provided on the back surface 54 described later. Then, the light reflected by the reflection portion 56 is emitted from the flat portion 57 of the emission surface 51 to the diffusion plate 60. Furthermore, a part of the outgoing light is refracted and transmitted by the transmission part 52, and the outgoing light is promoted to the boundary part with the adjacent outgoing surface 51.
  • the light reflected to the back surface 54 side by the concave portion 53 is reflected to the emission surface 51 side by the reflecting portion 56, but a part of the light passes through the reflecting portion 56. At this time, such light enters the inclined portion 59 at a predetermined incident angle. Thereby, the light reflected to the back surface 54 side by the output surface 51 is reflected again to the output surface 51 side by the inclined portion 59.
  • the lens 50D promotes the total reflection by the collar portion 58 by providing the collar portion 58 on the back surface 54, and reflects the light to the emission surface 51 side. That is, the collar portion 58 suppresses transmission of light from the back surface 54 to the point light source 30 side. Moreover, the collar part 58 can suppress the light leakage to the adjacent output surface 51 side.
  • a reflective portion 56 is formed on the back surface 54.
  • the reflecting portion 56 has a function of reflecting the light reflected from the emission surface 51 to the back surface 54 side to the emission surface 51 as in the case of the inclined portion 59.
  • the lens 50D according to the embodiment can suppress transmission of light from the back surface 54 by having the ridge portion 58 and the reflection portion 56 on the back surface 54.
  • the lens 50D can suppress the light guiding of the light to the side of the adjacent emission surface 51 by having the ridge portion 58 and the reflection portion 56 on the back surface 54.
  • the emission efficiency and the brightness uniformity can be improved by suppressing the leakage of the light to the adjacent emission surface 51 side (adjacent point light source 30 side).
  • the lens 50D it is possible to improve the contrast and the uniformity of the luminance when the point light sources 30 are individually lit.
  • FIGS. 16 and 17 are diagrams showing simulation results of the lens 50D according to the fourth embodiment.
  • the luminance is represented by shading, and the lighter the shading, the stronger (brighter) the luminance is.
  • FIG. 17 shows that the darker the shade, the stronger the luminance.
  • the point light source 30 of the lens 50 D is better than the lens without the ridge 58 and the transmission 52. It can be seen that the light is narrowly guided.
  • the light is prevented from being guided from the back surface 54 to the adjacent point light source 30 side and the adjacent lens 50D side by the flange portion 58 and the transmission portion 52, so that the contrast is improved. It is also supported by
  • the lens 50D is a lens that covers the plurality of point light sources 30 arranged in a row from the emission direction, and the main surface which is the emission surface 51, the back surface 54 facing the main surface, and the point light source A plurality of recesses 53 recessed in the thickness direction from the main surface toward the back surface 54 at a position corresponding to 30 and a reflecting portion 56 for reflecting light reflected from the main surface toward the back surface 54 toward the main surface are provided. Therefore, according to the lens 50D, the uniformity of the emission efficiency and the brightness can be improved.
  • FIG. 18 and FIG. 19 show a modified example of the collar 58.
  • a lens 50D-1 according to a first modification will be described with reference to FIG.
  • the flange 58D-1 is constituted by an inclined portion 59D-1 inclined along the lateral direction (Y-axis direction) of the lens 50D-1. Ru.
  • FIG. 18 shows the case where the tip of the ridge 58D-1 is a flat surface along the bottom of the ridge 58D-1, it is not limited to this.
  • the inclined portion 59D-1 has a function of suppressing the emission of light in the short direction from the back surface 54D-1 of the lens 50D-1, and reflecting the light to the emission surface side of the lens 50D-1.
  • the ridge portion 58D-2 is an inclined portion 59D- inclined along the longitudinal direction (X-axis direction) of the lens 50D-2. It consists of two.
  • FIG. 19 shows the case where the tip of the ridge 58D-2 is a flat surface along the bottom of the ridge 58D-2, it is not limited to this.
  • the inclined portion 59D-2 has a function of suppressing the emission of light from the back surface 54D-2 corresponding to the above-described emission region and reflecting the light to the emission surface side of the lens 50D-2.
  • the lens 50D-1 according to the first modification and the lens 50D-2 according to the second modification can be expected to improve the uniformity of the emission efficiency and the luminance.
  • the present invention is not limited thereto.
  • the collar 58 may have five or more slopes 59. That is, the bottom surface of the collar portion 58 may be pentagonal or more.
  • FIG. 20 is a top view of the reflecting plate 40.
  • FIG. 20 a part of the reflecting plate 40 is extracted and shown, and the point light source 30 and the lens 50 are shown together.
  • the reflecting plate 40 includes a bottom surface 41 and a frame portion 42.
  • the bottom surface 41 is provided with a plurality of openings, and the point light source 30 mounted on the substrate 20 is inserted from the substrate 20 side through the openings.
  • the frame 42 encloses the side of each point light source 30. Since the point light sources 30 are arranged in a lattice, the frame portions 42 are formed in a lattice so as to surround the side surfaces of the point light sources 30 arranged in a lattice.
  • the reflecting plate 40 which concerns on embodiment is provided so that each point light source 30 may be divided. Thereby, it is possible to suppress that the light reflected to the reflection plate 40 by the lens 50 leaks to the adjacent point light source 30 and that the light is directly incident on the reflection plate 40 from the point light source 30. In other words, it is also possible to improve the contrast when the point light sources 30 are individually lit.
  • the frame portion 42 has a tapered shape that protrudes from the bottom surface 41 toward the lens 50 and narrows in width from the bottom surface 41 toward the lens 50.
  • FIG. 21 is a schematic cross-sectional view taken along the line DD shown in FIG. In FIG. 21, the lens 50 and the point light source 30 are shown together.
  • the frame portion 42 has a tapered shape that extends from the lens 50 side toward the substrate 20 (point light source 30). In other words, when viewed from each of the point light sources 30, the frame portion 42 is inclined upward.
  • the lens 50 has a recess 53 recessed in the thickness direction immediately above the point light source 30 on the exit surface 51.
  • the cross-sectional shape of the concave portion 53 is formed in a substantially inverted conical shape (or a weir shape).
  • the concave portion 53 has a function of reflecting the light emitted from the point light source 30 to the back surface 54 side. In the recess 53, it is not necessary to reflect all the light emitted from the point light source 30 to the back surface 54 side, and there may be light transmitted from the recess 53 to the diffusion plate 60.
  • a reflective portion 56 is formed on the back surface 54 of the lens 50.
  • the reflective portion 56 is, for example, a dot protruding from the back surface 54 in the thickness direction, and is uniformly formed on the entire back surface 54, for example.
  • the optical characteristics of the concave portion 53 and the reflecting portion 56 will be described later together with the optical characteristics of the reflecting plate 40 with reference to FIG. Also, the reflective portion 56 is not limited to dots.
  • the rear surface 54 of the lens 50 is disposed on the upper surface of the frame portion 42. That is, the height of the leg 55 is formed higher than that of the frame 42 with reference to the bottom surface 41.
  • the lens 50 may be provided so as to face at least a part of the point light source 30 with the opening surface 45 of the frame 42 interposed therebetween.
  • the planar illumination device 1 can exhibit the effects described later if the emission surface 51 of the lens 50 is disposed on the upper surface of the frame 42.
  • the opening surface 45 is a surface connecting the tip portions of the frame portion 42 corresponding to one point light source 30, and the opening surface 45 is indicated by a broken line in FIG.
  • the opening surface 45 does not necessarily have to be a flat surface, and may include a curved surface.
  • the lens 50 may be made larger than the opening surface 45 of the frame 42 in top view, and the lens 50 may be installed on the frame 42.
  • the frame portion 42 is not limited to the tapered shape, and may have a rectangular shape in a cross sectional view.
  • FIG. 22 is a perspective view seen from the back surface 54 side of the lens 50 according to the embodiment.
  • description of the reflection part 56 shown in FIG. 21 is abbreviate
  • four legs 55 are formed on the back surface 54 of the lens 50.
  • the four legs 55 are formed, for example, at the same height.
  • adhesive members such as an adhesive and a tape are respectively applied to the bottom surfaces of the legs 55 and fixed to the substrate 20.
  • the lens 50 can be firmly fixed to the substrate 20. In other words, positional deviation between the lens 50 and the point light source 30 can be prevented.
  • the number of the legs 55 may be three or less, or five or more. Also, the lens 50 may be fixed other than the leg 55.
  • FIG. 23 is a view showing light distribution characteristics of the lens 50 and the reflection plate 40 according to the fifth embodiment.
  • the optical path of light is indicated by a broken line.
  • the light emitted from the point light source 30 is reflected by the concave portion 53 to the back surface 54 side. Subsequently, the light is reflected again to the emission surface 51 side by the reflection portion 56 provided on the back surface 54. Then, the light reflected by the reflection unit 56 is emitted from the flat portion 57 of the emission surface 51.
  • the light reflected to the back surface 54 side by the concave portion 53 is reflected again to the emission surface 51 side by the reflecting portion 56 provided on the back surface 54, a part of the light passes through the back surface 54 as illustrated.
  • the light transmitted through the back surface 54 is guided to the reflection plate 40.
  • the light when light enters the frame portion 42, the light is reflected by the inclined surface of the frame portion 42 and is emitted from between the lenses 50. That is, by providing the frame portion 42 in an inclined manner, light passing through the back surface 54 can be emitted from between adjacent lenses 50.
  • planar illumination device 1 can emit surface light over the entire opening when one opening of the frame 42 is regarded as one output surface.
  • planar illumination device 1 which concerns on embodiment, it becomes possible to improve both the uniformity and the contrast of a brightness
  • improvement of the emission efficiency can also be expected.
  • FIGS. 24 to 26 are diagrams showing comparison results of luminance distribution according to the presence or absence of the frame portion 42 according to the fifth embodiment.
  • FIGS. 24 to 26 show simulation results of luminance distribution when nine point light sources 30 are arranged in a grid shape and the different number of point light sources 30 are lighted. Moreover, the circles shown in the following drawings indicate the positions of the point light sources 30, respectively.
  • the luminance is represented by light and shade, the higher the light and dark, the higher the luminance, and the lower light and dark in FIG.
  • FIG. 24 the comparison result when 9 lamps are lit will be described using FIG. As shown in FIG. 24, it can be seen that the luminance is generally improved in the case where the frame portion 42 is present in the reflection plate 40 as compared with the case where the frame portion 42 is not provided in the reflection plate 40.
  • the frame portion 42 improves the emission efficiency. That is, since the light emitted from the point light source 30 can be efficiently emitted from the side of the emission surface 51 without leaking to the adjacent point light source 30 side by the frame portion 42, the brightness contrast can be improved. Become.
  • the luminance on the lit point light source 30 is improved when the frame 42 is present compared to when the frame 42 is not present, and the boundary between the non-lit point light sources 30 Is clear.
  • the brightness on the lit point light source 30 is weak, and the boundary between adjacent point light sources 30 is unclear as compared with the case where the frame portion 42 is present.
  • the emission efficiency is high as compared with the case where the frame portion 42 is not present, so the luminance on the lit point light source 30 becomes strong. Further, since light is not leaked to the adjacent point light source 30 side by the frame portion 42, it is possible to improve the contrast with the point light source 30 which is not lit.
  • the luminance and the contrast are improved in the case where the frame portion 42 is provided in the reflection plate 40 as compared with the case where the frame portion 42 is not provided in the reflection plate .
  • planar illumination device 1 can improve the contrast and the uniformity of the luminance even in various lighting patterns by providing the frame portion 42 in the reflection plate 40.
  • FIG. 27 is a perspective view of the back surface 54 side of the lens 50 according to the embodiment.
  • the lens 50 according to the embodiment includes, for example, two first legs 55 a and 55 b and a second leg 55 c shorter than the first legs 55 a and 55 b.
  • the first legs 55 a and 55 b and the second legs 55 c protrude from the back surface 54 toward the substrate 20.
  • the first legs 55a and 55b are for positioning the lens 50 on the substrate 20, and the second legs 55c are for maintaining a constant distance from the lens 50 to the substrate 20. is there. Details of this point will be described later with reference to FIG.
  • the first leg 55a may have a stepped shape as shown in FIG. 27, but is not limited to this.
  • FIG. 28 is a bottom view of the substrate 20 according to the embodiment. As shown in FIG. 28, the substrate 20 has a plurality of holes 22 in the bottom surface 21.
  • the plurality of holes 22 are through holes that respectively penetrate the substrate 20, and have a plurality of holes 22 for one lens 50.
  • the example shown in FIG. 28 shows the case where one lens 50 has the first hole 22 a and the second hole 22 b.
  • the first hole 22 a is provided substantially at the center of the lens 50 in the longitudinal direction (X-axis direction).
  • the first leg 55a provided substantially at the center of the lens 50 in the longitudinal direction is inserted into the first hole 22a.
  • the second hole 22 b is provided on one end side in the longitudinal direction of the lens 50.
  • the first leg 55b provided at one end of the lens 50 in the longitudinal direction is inserted into the second hole 22b.
  • the first hole portion 22 a has a substantially circular shape
  • the second hole portion 22 b has an elliptical shape cut away in the longitudinal direction of the lens 50. Details of this point will be described later using FIG.
  • the plurality of holes 22 are through holes, the plurality of holes 22 are also formed on the mounting surface which is the main surface on which the point light source 30 is mounted.
  • the plurality of holes 22 need not be through holes, and may be recessed in the thickness direction from the mounting surface. That is, the plurality of holes 22 may be formed in the mounting surface at a depth at which the first legs 55a and 55b can be fixed.
  • FIGS. 29 to 31 are schematic views showing how the lens 50 and the substrate 20 are fixed according to the embodiment.
  • the lens 50 is positioned on the substrate 20 by inserting the first leg 55 a of the lens 50 into the first hole 22 a.
  • the first hole 22a is formed to fit with the first leg 55a. Further, as shown in FIG. 29, the second leg 55 c abuts on the substrate 20. That is, while the first leg 55 a is for positioning on the substrate 20, the second leg 55 c is for holding the distance between the substrate 20 and the lens 50 constant.
  • the lens 50B is positioned on the substrate 20 by the first leg 55a, and the distance between the lens 50B and the substrate 20 is held constant by the second leg 55c.
  • the lens 50 can also be inserted by inserting the first leg 55b (see FIG. 4) into the second hole 22b (see FIG. 5) in addition to the first leg 55a. It is fixed on the substrate 20. That is, the lens 50 is positioned on the substrate 20 at at least two points.
  • the lens 50 it is possible to prevent the lens 50 from being displaced from the substrate 20 with respect to the vibration from the side (the XY plane direction) with respect to the lens 50. If the lens 50 is positioned on the substrate 20 at one point, the lens 50 may rotate on the substrate 20 about the one point. For this reason, the lens 50 is fixed on the substrate 20 by at least two first legs 55 a and 55 b. Thereby, positional deviation between the lens 50 and the point light source 30 mounted on the substrate 20 can be suppressed.
  • the first leg 55a is inserted into the first hole 22a, and the first leg 55b is inserted into the second hole 22b.
  • the second hole 22b is formed wider than the outer periphery of the first leg 55b. That is, the first leg 55b is inserted into the second hole 22b while being separated.
  • the lens 50 thermally expands as described above. If the second hole 22b is formed to be fitted to the first leg 55b, the lens 50 is thermally expanded and concentrated on two points of the first leg 55a and the first leg 55b. Works. As a result, the lens 50 may be damaged or the shape of the lens 50 may be changed.
  • the first leg 55b moves inside the second hole 22b when the lens 50 is thermally expanded. You just have to do it. That is, it is possible to avoid that the above-described force acts on two points of the first leg 55a and the first leg 55b.
  • the second hole 22b By forming the second hole 22b wider than the outer periphery of the first leg 55b in this manner, damage or deformation of the lens 50 due to thermal expansion can be avoided. In other words, the product life of the lens 50 can be extended.
  • the thermal expansion of the lens 50 has been described as an example, the same applies to the thermal contraction that occurs when the ambient temperature decreases.
  • the lens 50B is supported by the frame portion 42 from the bottom surface side. That is, the frame portion 42 can support not only the above-described light distribution control but also the lens 50B.
  • the lens 50B is pressed by the spacer 70 from the upper surface side.
  • a predetermined pressing force is applied to the spacer 70 from the upper frame 11 (see FIG. 3A and the like), and the spacer 70 can press the lens 50B by the pressing force.
  • the lens 50B is fixed on the substrate 20 by inserting the leg 55 (first leg 55a, 55b) into the through hole provided in the substrate 20. Thereby, the lens 50B can be prevented from being displaced from the substrate 20 in the side surface (XY plane) direction. That is, the lens 50B is pressed by the spacer 70 from the upper surface, and is positioned on the substrate 20 by the leg 55B. Thereby, since the positional deviation of the lens 50B can be suppressed, it is possible to suppress the deterioration of the light distribution characteristic due to the positional deviation of the lens 50B.
  • the substrate 20 has the main surface on which the plurality of point light sources 30 are mounted in a lattice.
  • the plurality of lenses 50 individually covers the plurality of point light sources 30 aligned in the arrangement direction in the short direction, and is provided in parallel along the longitudinal direction.
  • the frame 10 accommodates the substrate 20 and the plurality of lenses 50.
  • the elastic member 90 is provided between the top plate 11a of the frame 10 and the lens 50, and presses the lens 50 from the top plate side. Therefore, positional deviation of the lens 50 can be suppressed.
  • FIG. 32 is a schematic cross-sectional view of a planar illumination device 1E according to a first modification, and corresponds to a schematic cross-sectional view along the line AA shown in FIG.
  • the planar illumination device 1E according to the first modification is different from the above-described planar illumination device 1 in that the arrangement of the elastic member 90 and the spacer 70 is different. Specifically, in the planar illumination device 1E according to the first modification, the elastic member 90 doubles as a part of the spacer 70.
  • the elastic member 90 is disposed between the lens 50 and the diffusion plate 60.
  • the lens 50 and the diffusion plate 60 need to be disposed at a predetermined interval, and the spacer 70 plays a role of keeping the interval constant.
  • the planar illumination device 1E according to the first modification substitutes a part of the spacer 70 by the elastic member 90.
  • the elastic member 90 plays the role of pressing the lens 50 from the top plate 11a side of the upper frame 11, and fills the space between the lens 50 and the diffusion plate 60. Take on the role at once.
  • the spacer 70 between the diffusion plate 60 and the top plate 11a becomes unnecessary. That is, when the elastic member 90 doubles as a part of the spacer 70, it becomes possible to reduce the thickness by the amount of the elastic member 90 disposed on the diffusion plate 60.
  • the elastic member 90 is disposed between the diffusion plate 60 and the spacer 70 here, the elastic member 90 may be disposed between the lens 50 and the spacer 70. . Alternatively, the spacer 70 may be entirely composed of the elastic member 90.
  • the elastic member 90 may double as part or all of the spacer 70.
  • the elastic member 90 defines the distance between the lens 50 and the diffusion plate 60 as an optical member
  • the present invention is not limited to the diffusion plate 60, and the elastic member 90 includes the lens 50 and other optical elements. The distance to the member may be defined.
  • the spacer 70 is disposed to abut on the bottom 12 a of the lower frame 12.
  • the spacer 70 is pressed from the top by the top plate 11 a of the upper frame 11 through the optical sheet 80, the diffusion plate 60 and the elastic member 90, and the bottom is supported by the bottom 12 a of the lower frame 12.
  • the spacer 70 is provided so as to be pressed in the vertical direction (Z-axis direction).
  • the positional deviation of the spacer 70 can be suppressed, the positional deviation of the lens 50 due to the positional deviation of the spacer 70 can be suppressed.
  • the bottom surface of the spacer 70 may not be supported by the bottom 12 a of the lower frame 12.
  • FIG. 33 is a schematic cross-sectional view of a planar illumination device 1F according to a second modification, and corresponds to a schematic cross-sectional view along the line AA shown in FIG.
  • the planar illumination device 1F according to the second modification is different in that the shapes of the planar illumination device 1 and the reflection plate 40 described above are different.
  • the reflection plate 40 is integrally formed with the above-described spacer 70 (see FIG. 3A, FIG. 3B, etc.).
  • the reflecting plate 40 is fixed on the substrate 20 and extends from the bottom to the top plate side of the upper frame 11 along the side wall 12 b of the lower frame 12, and is fixed between the lens 50 and the diffusion plate 60.
  • the protrusion 43 corresponds to the spacer 70. Further, the projecting portion 43 is pressed by the diffusion plate 60 from the upper surface, and the lower surface is supported by the substrate 20.
  • the projecting portion 43 corresponding to the spacer 70 can be fixed so as to be sandwiched from above and below. it can. Therefore, in the planar illumination device 1F according to the second modification, since the positional deviation of the protrusion 43 is not easily generated, the lens 50 can be firmly fixed.
  • the present invention is not limited to this.
  • the diffusion plate 60 may also function as at least a part of the spacer 70. In such a case, it can be realized by providing the diffusion plate 60 with a protruding portion that protrudes from the diffusion plate 60 toward the lens 50. As a result, the number of parts can be reduced by the amount of the spacer 70, so that the assembly of the planar illumination device 1 can be simplified.
  • the present invention is not limited by the above embodiment. What is configured by appropriately combining the above-described constituents is also included in the present invention. Further, further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspects of the present invention are not limited to the above embodiment, and various modifications are possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

A lens according to an embodiment covers, in the emission direction, a plurality of point light-sources that are disposed in a row. The lens comprises: a main surface which is an emission surface; a plurality of recesses which are recessed from the main surface toward the rear surface in the thickness direction, at positions corresponding to the point light-sources; and a reflection part that causes light reflected from the main surface to the rear surface side to be reflected back to the main surface side.

Description

レンズおよび面状照明装置Lens and planar lighting device
 本発明は、レンズおよび面状照明装置に関する。 The present invention relates to a lens and a surface illumination device.
 近年、液晶表示装置の表示パネルを背面側から照明する面状照明装置がある。面状照明装置は、エッジライト型と、直下型とに大別される。また、面状照明装置においては、各点光源の光量をそれぞれ制御することによって、発光面の領域毎に輝度を調整することが可能である、いわゆるローカルディミング(エリア発光)対応の面状照明装置が知られている。 In recent years, there is a planar illumination device that illuminates a display panel of a liquid crystal display device from the back side. A planar illumination device is roughly classified into an edge light type and a direct type. Further, in the planar illumination device, so-called local dimming (area light emission) -compliant planar illumination device capable of adjusting the brightness for each area of the light emitting surface by controlling the light quantity of each point light source. It has been known.
 また、ローカルディミング(エリア発光)対応の直下型の面状照明装置において、点光源から出射した光を拡散するレンズを備え、点光源からの光を広げて出射させることで、領域毎の輝度を均一化することができる。 In addition, a direct type planar illumination device compatible with local dimming (area light emission) includes a lens for diffusing light emitted from a point light source, and spreads out light from the point light source to emit light, whereby the brightness of each area is obtained. It can be made uniform.
特開2010-8837号公報JP, 2010-8837, A
 しかしながら、近年の面状照明装置に対する薄型化の要求により、輝度の均一化を十分に確保できない状況になってきている。例えば、面状照明装置を車両のインフォメーションディスプレイのバックライトに用いる場合、設置スペースに限りがあり、輝度の均一化を確保しようとすると、薄型化の要求を満たせない状況になってきている。 However, due to the recent demand for thinning the planar illumination device, it has become impossible to ensure sufficient uniformity of luminance. For example, in the case of using a planar illumination device as a backlight of an information display of a vehicle, the installation space is limited, and in order to ensure uniform brightness, it is not possible to meet the demand for thinning.
 本発明は、上記に鑑みてなされたものであって、輝度の均一性を向上させることができるレンズおよび面状照明装置を提供することを目的とする。 This invention is made in view of the above, Comprising: It aims at providing the lens and planar illumination device which can improve the uniformity of luminosity.
 上述した課題を解決し、目的を達成するために、本発明の一態様に係るレンズは、列状に配置された点光源を出射方向から覆うレンズであって、出射面である主面と、前記主面と対向する裏面と、点光源に対応する位置において前記主面から前記裏面に向かって厚み方向に窪んだ複数の凹部と、前記主面から前記裏面側に反射した光を前記主面側に反射させる反射部とを備える。 In order to solve the problems described above and to achieve the object, a lens according to an aspect of the present invention is a lens that covers point light sources arranged in a row from an emission direction, and a main surface that is an emission surface; The back surface facing the main surface, a plurality of recesses recessed in the thickness direction from the main surface toward the back surface at a position corresponding to a point light source, and the light reflected from the main surface toward the back surface And a reflecting portion that reflects light to the side.
 本発明の一態様によれば、輝度の均一性を向上させることができる。 According to one embodiment of the present invention, the uniformity of luminance can be improved.
図1は、実施形態に係る面状照明装置の外観の一例を示す上面図である。FIG. 1: is a top view which shows an example of the external appearance of the planar illuminating device which concerns on embodiment. 図2は、レンズの配置例を示す上面図である。FIG. 2 is a top view showing an exemplary arrangement of lenses. 図3Aは、図1に示すA-A線に沿った断面模式図(その1)である。FIG. 3A is a schematic cross-sectional view (No. 1) along the line AA shown in FIG. 図3Bは、図1に示すA-A線に沿った断面模式図(その2)である。FIG. 3B is a schematic cross-sectional view (No. 2) along the line AA shown in FIG. 図4は、第1の実施形態に係るレンズの上面図である。FIG. 4 is a top view of the lens according to the first embodiment. 図5Aは、図4に示すB-B線に沿った断面模式図である。FIG. 5A is a schematic cross-sectional view taken along the line BB shown in FIG. 図5Bは、図4に示すB-B線に沿った断面模式図である。FIG. 5B is a schematic cross-sectional view along the line BB shown in FIG. 図6は、第1の実施形態に係るレンズの配光特性を示す模式図である。FIG. 6 is a schematic view showing light distribution characteristics of the lens according to the first embodiment. 図7は、透過部の有無による輝度分布の比較結果を示す図である。FIG. 7 is a diagram showing the comparison result of the luminance distribution according to the presence or absence of the transmission part. 図8は、第2の実施形態に係るレンズの配置例を示す上面図である。FIG. 8 is a top view showing an arrangement example of lenses according to the second embodiment. 図9は、図8に示すC-C線に沿った断面模式図である。FIG. 9 is a schematic cross-sectional view taken along the line CC shown in FIG. 図10は、第3の実施形態に係るレンズの断面模式図である。FIG. 10 is a schematic cross-sectional view of a lens according to a third embodiment. 図11は、第3の実施形態に係るレンズの裏面側から見た斜視図である。FIG. 11 is a perspective view of the lens according to the third embodiment as viewed from the back surface side. 図12は、第3の実施形態に係るレンズの配光特性を示す図である。FIG. 12 is a view showing light distribution characteristics of the lens according to the third embodiment. 図13Aは、第4の実施形態に係るレンズの断面模式図(その1)である。FIG. 13A is a schematic cross-sectional view (No. 1) of a lens according to a fourth embodiment. 図13Bは、第4の実施形態に係るレンズの断面模式図(その2)である。FIG. 13B is a schematic cross-sectional view (No. 2) of the lens according to the fourth embodiment. 図14は、第4の実施形態に係るレンズを裏面側から見た斜視図である。FIG. 14 is a perspective view of the lens according to the fourth embodiment as viewed from the back side. 図15は、第4の実施形態に係るレンズの配光特性を示す図である。FIG. 15 is a view showing the light distribution characteristic of the lens according to the fourth embodiment. 図16は、第4の実施形態に係るレンズのシミュレーション結果を示す図(その1)である。FIG. 16 is a diagram (part 1) illustrating a simulation result of the lens according to the fourth embodiment. 図17は、第4の実施形態に係るレンズのシミュレーション結果を示す図(その2)である。FIG. 17 is a second diagram showing a simulation result of the lens according to the fourth embodiment. 図18は、楔部の変形例を示す図(その1)である。FIG. 18 is a diagram (part 1) showing a modification of the buttocks. 図19は、楔部の変形例を示す図(その2)である。FIG. 19 is a second diagram showing a modification of the buttocks. 図20は、第5の実施形態に係る反射板の上面図である。FIG. 20 is a top view of a reflector according to the fifth embodiment. 図21は、図20に示すD-D線に沿った断面模式図である。FIG. 21 is a schematic cross-sectional view taken along the line DD shown in FIG. 図22は、第5の実施形態に係るレンズの裏面側から見た斜視図である。FIG. 22 is a perspective view of the lens according to the fifth embodiment as viewed from the back surface side. 図23は、第5の実施形態に係る反射板およびレンズの配光特性を示す図である。FIG. 23 is a view showing light distribution characteristics of a reflector and a lens according to the fifth embodiment. 図24は、第5の実施形態に係る枠部の有無による輝度分布の比較結果を示す図(その1)である。FIG. 24 is a diagram (part 1) illustrating the comparison result of the luminance distribution according to the presence or absence of the frame portion according to the fifth embodiment. 図25は、第5の実施形態に係る枠部の有無による輝度分布の比較結果を示す図(その2)である。FIG. 25 is a second diagram showing the comparison result of the luminance distribution according to the presence or absence of the frame portion according to the fifth embodiment. 図26は、第5の実施形態に係る枠部の有無による輝度分布の比較結果を示す図(その3)である。FIG. 26 is a third diagram showing a comparison result of luminance distribution according to the presence or absence of a frame portion according to the fifth embodiment. 図27は、第6の実施形態に係るレンズの裏面側の斜視図である。FIG. 27 is a perspective view of the back surface side of the lens according to the sixth embodiment. 図28は、第6の実施形態に係る基板の下面図である。FIG. 28 is a bottom view of the substrate according to the sixth embodiment. 図29は、第6の実施形態に係るレンズと基板との固定態様を示す模式図(その1)である。FIG. 29 is a schematic view (No. 1) showing a fixing aspect of the lens and the substrate according to the sixth embodiment. 図30は、第6の実施形態に係るレンズと基板との固定態様を示す模式図(その2)である。FIG. 30 is a schematic view (No. 2) showing a fixing aspect of the lens and the substrate according to the sixth embodiment. 図31は、第6の実施形態に係るレンズと基板との固定態様を示す模式図(その3)である。FIG. 31 is a schematic view (No. 3) showing a fixing aspect of the lens and the substrate according to the sixth embodiment. 図32は、第1の変形例に係る面状照明装置の断面模式図である。FIG. 32 is a schematic cross-sectional view of the planar illumination device according to the first modification. 図33は、第2の変形例に係る面状照明装置の断面模式図である。FIG. 33: is a cross-sectional schematic diagram of the planar illuminating device which concerns on a 2nd modification.
 以下、実施形態に係るレンズおよび面状照明装置について図面を参照して説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。また、図面における各要素の寸法の関係、各要素の比率等は、現実と異なる場合がある。また、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Hereinafter, a lens and a planar illumination device according to an embodiment will be described with reference to the drawings. Note that the present invention is not limited by the embodiments described below. In addition, the dimensional relationships among the elements in the drawings, the proportions of the elements, and the like may differ from reality. In addition, parts having different dimensional relationships and ratios may be included among the drawings.
 まず、図1を用いて、実施形態に係る面状照明装置の概要について説明する。図1は、実施形態に係る面状照明装置の外観の一例を示す正面図である。本実施形態に係る面状照明装置1は、直下型の面状照明装置であり、各種液晶表示装置のバックライトとして用いられる。かかる液晶表示装置は、例えば、車両の電子スピードメータであるが、これに限定されない。 First, the outline of the planar illumination device according to the embodiment will be described with reference to FIG. FIG. 1: is a front view which shows an example of the external appearance of the planar illuminating device which concerns on embodiment. The planar illumination device 1 according to the present embodiment is a direct-type planar illumination device, and is used as a backlight of various liquid crystal display devices. Such a liquid crystal display device is, for example, an electronic speedometer of a vehicle, but is not limited thereto.
 図1の例に示すように、実施形態に係る面状照明装置1は、フレーム10で覆われていない出射領域から光を出射する。また、コネクタCは、電源配線や信号配線等が接続される。すなわち、実施形態に係る面状照明装置1は、コネクタCを介して電源や信号が供給される。 As shown in the example of FIG. 1, the planar illumination device 1 according to the embodiment emits light from an emission area not covered by the frame 10. The connector C is connected with power supply wiring, signal wiring, and the like. That is, the planar illumination device 1 according to the embodiment is supplied with power and signals via the connector C.
 ところで、一般的に直下型の面状照明装置では、複数の点光源を格子状に配置し、点光源毎にレンズを設ける場合と、列状に配列した複数の点光源毎にレンズを設ける場合とがある。 By the way, in general, in a direct type planar illumination device, a plurality of point light sources are arranged in a grid, and a lens is provided for each point light source and a lens is provided for each of a plurality of point light sources arranged in a row. There is.
 本実施形態に係るレンズは、双方の場合に適用可能である。まず、第1の実施形態として、レンズが点光源毎に設けられる場合について説明する。図2は、第1の実施形態に係るレンズの配置を示す上面図である。なお、図2には、レンズ50と点光源30との位置関係を明確にするため点光源30を併せて示す。 The lens according to the present embodiment is applicable to both cases. First, the case where a lens is provided for each point light source will be described as the first embodiment. FIG. 2 is a top view showing the arrangement of lenses according to the first embodiment. In addition, in order to clarify the positional relationship of the lens 50 and the point light source 30, in FIG. 2, the point light source 30 is shown collectively.
 図2に示すように、点光源30は、格子状に配置される。各点光源30には、それぞれ出射方向からレンズ50が設けられる。すなわち、面状照明装置1では、点光源30が格子状に配置されるので、レンズ50も格子状に配置されることとなる。 As shown in FIG. 2, the point light sources 30 are arranged in a grid. Each point light source 30 is provided with a lens 50 from the emission direction. That is, in the planar illumination device 1, since the point light sources 30 are arranged in a grid, the lenses 50 are also arranged in a grid.
 次に、図3Aおよび図3Bを用いて第1の実施形態に係る面状照明装置1の内部構成について説明する。図3Aおよび図3Bは、図1に示すA-A線に沿った断面模式図である。図3Aに示すように、実施形態に係る面状照明装置1は、フレーム10と、基板20と、点光源30と、反射板40と、レンズ50と、拡散板60と、スペーサ70と、光学シート80と、弾性部材90とを備える。 Next, an internal configuration of the spread illuminating apparatus 1 according to the first embodiment will be described using FIGS. 3A and 3B. FIG. 3A and FIG. 3B are schematic cross sections along the line AA shown in FIG. As shown in FIG. 3A, the planar illumination device 1 according to the embodiment includes the frame 10, the substrate 20, the point light source 30, the reflection plate 40, the lens 50, the diffusion plate 60, the spacer 70, and optics. A seat 80 and an elastic member 90 are provided.
 フレーム10は、剛性が大きい、例えば、ステンレス製の板金フレームであり、面状照明装置1の各部材を収容する。また、フレーム10は、例えば、上フレーム11と、下フレーム12とを備える。 The frame 10 is a sheet metal frame having high rigidity, for example, stainless steel, and accommodates the respective members of the planar illumination device 1. Also, the frame 10 includes, for example, an upper frame 11 and a lower frame 12.
 上フレーム11は、下フレーム12の上面側に配置される。上フレーム11は、中央部に開口部が形成された矩形状の天板11aと、天板11aの周縁から下フレーム12の外側面に沿って延伸する側壁11bとを有する。下フレーム12は、矩形状の底部12aと、底部12aの周縁から上フレーム11の内側面に沿って延伸する側壁12bとを有する。 The upper frame 11 is disposed on the upper surface side of the lower frame 12. The upper frame 11 has a rectangular top plate 11 a having an opening formed at its central portion, and a side wall 11 b extending from the periphery of the top plate 11 a along the outer surface of the lower frame 12. The lower frame 12 has a rectangular bottom 12 a and a side wall 12 b extending from the periphery of the bottom 12 a along the inner side of the upper frame 11.
 基板20は、例えばエポキシ樹脂またはPI(ポリイミド)からなり、複数の点光源30が格子状に実装される主面を有する。点光源30は、例えば、LED(Light Emitting Diode)である。点光源30は、光軸がレンズ50と略垂直となるように、基板20上に配置される。 The substrate 20 is made of, for example, an epoxy resin or PI (polyimide), and has a main surface on which a plurality of point light sources 30 are mounted in a lattice. The point light source 30 is, for example, a light emitting diode (LED). The point light source 30 is disposed on the substrate 20 such that the optical axis is substantially perpendicular to the lens 50.
 反射板40は、例えば、白色の樹脂等で形成される。反射板40は、レンズ50で反射板40側に反射した光をレンズ50に向けて再度反射させる。これにより、出射効率を向上させることが可能である。なお、反射板40の構成については、図20以降の添付図面を用いて後述する。 The reflection plate 40 is formed of, for example, a white resin or the like. The reflecting plate 40 reflects the light reflected by the lens 50 toward the reflecting plate 40 toward the lens 50 again. Thus, the emission efficiency can be improved. In addition, about the structure of the reflecting plate 40, it mentions later using attached drawing after FIG.
 レンズ50は、点光源30から出射した光の配光制御を行う。レンズ50は、上面視において、外形形状が矩形状または略矩形状である。レンズ50の材質として、例えばPMMA(ポリメチルメタクリレート)やポリカーボネートを用いることができるが、これに限定されない。レンズ50によって配光制御された光は、拡散板60に出射される。また、レンズ50は、基板20側へ突出した脚部55を有する。例えば、レンズ50は、例えば脚部55の底面に接着剤等の接着部材が塗布され、基板20に固定されるが、固定方法はこれに限定されない。なお、レンズ50の詳細については、図4以降の図面を用いて後述する。 The lens 50 performs light distribution control of light emitted from the point light source 30. The lens 50 has a rectangular or substantially rectangular outer shape in top view. As a material of the lens 50, for example, PMMA (polymethyl methacrylate) or polycarbonate can be used, but it is not limited thereto. The light whose light distribution is controlled by the lens 50 is emitted to the diffusion plate 60. The lens 50 also has a leg 55 that protrudes toward the substrate 20. For example, in the lens 50, an adhesive member such as an adhesive is applied to the bottom of the leg 55, for example, and fixed to the substrate 20, but the fixing method is not limited thereto. The details of the lens 50 will be described later with reference to FIG. 4 and subsequent drawings.
 拡散板60は、樹脂等の材料で構成され、レンズ50から出射された光を拡散する機能を有する。すなわち、レンズ50から出射した光は、拡散板60によって拡散され、光学シート80へ導かれる。 The diffusion plate 60 is made of a material such as resin and has a function of diffusing the light emitted from the lens 50. That is, the light emitted from the lens 50 is diffused by the diffusion plate 60 and guided to the optical sheet 80.
 スペーサ70は、レンズ50と拡散板60との間に配置され、レンズ50と拡散板60との間隔を一定に保持する。スペーサ70の材質は特に限定されないが、例えば白色の樹脂で成形し、レンズ50から出射する光を反射する機能を持たせてもよい。スペーサ70は、面状照明装置1の長手方向(X軸)に沿って拡散板60を下面側から押圧し、かかる長手方向に沿ってレンズ50を上面側から押圧する。なお、スペーサ70は、面状照明装置1の短手方向(Y軸)については、必ずしもレンズ50と拡散板60との間隔を保持しなくてもよい。 The spacer 70 is disposed between the lens 50 and the diffusion plate 60, and keeps the distance between the lens 50 and the diffusion plate 60 constant. The material of the spacer 70 is not particularly limited. For example, the spacer 70 may be formed of a white resin and have a function of reflecting light emitted from the lens 50. The spacer 70 presses the diffusion plate 60 from the lower surface side along the longitudinal direction (X axis) of the planar illumination device 1, and presses the lens 50 from the upper surface side along the longitudinal direction. The spacer 70 may not necessarily hold the distance between the lens 50 and the diffusion plate 60 in the lateral direction (Y axis) of the planar illumination device 1.
 光学シート80は、拡散板60から出射された光に対して均一化や配光制御などの光学的な調整を行って、光学的な調整が行われた光を出射する。図3Aに示す例では、光学シート80が、第1シート81と、第2シート82との2枚のシートで構成される場合について例示している。 The optical sheet 80 performs optical adjustment such as equalization and light distribution control on the light emitted from the diffusion plate 60, and emits the light subjected to the optical adjustment. In the example shown to FIG. 3A, it is illustrated about the case where the optical sheet 80 is comprised by two sheets, the 1st sheet 81 and the 2nd sheet 82. As shown in FIG.
 例えば、第1シート81は、例えば3M社製のBEF(Brightness Enhancement Film)であり、第2シート82は、例えば3M社製のDBEF(Dual Brightness Enhancement Film)であるが、面状照明装置1に求められる発光態様によって任意に変更することが可能である。また、光学シート80は、例えば、接着剤や両面テープ等の接着部材によって拡散板60の出射面に固定される。 For example, the first sheet 81 is, for example, BEF (Brightness Enhancement Film) manufactured by 3M, and the second sheet 82 is, for example, DBEF (Dual Brightness Enhancement Film) manufactured by 3M. It is possible to change arbitrarily according to the light emission aspect calculated | required. The optical sheet 80 is fixed to the exit surface of the diffusion plate 60 by, for example, an adhesive or an adhesive member such as a double-sided tape.
 弾性部材90は、ゴムやスポンジ等の弾性を有する枠状の部材である。弾性部材90は、光学シート80上に設けられ、拡散板60と光学シート80とをスペーサ70とで挟んで保持し、その弾性力でスペーサ70を介してレンズ50を押圧する。また、弾性部材90は、面状照明装置1に振動が生じた場合、かかる振動を吸収する。弾性部材90は、上フレーム11と拡散板60との間に配置され、上フレーム11の天板側から拡散板60を押圧する。なお、弾性部材90は枠状に限らず、例えば断面形状が矩形状である棒状の弾性部材を複数本用いるものでもよい。 The elastic member 90 is a frame-like member having elasticity, such as rubber or sponge. The elastic member 90 is provided on the optical sheet 80, holds the diffusion plate 60 and the optical sheet 80 between the spacer 70 and holds the same, and presses the lens 50 through the spacer 70 by its elastic force. In addition, when vibration occurs in the planar lighting device 1, the elastic member 90 absorbs the vibration. The elastic member 90 is disposed between the upper frame 11 and the diffusion plate 60, and presses the diffusion plate 60 from the top plate side of the upper frame 11. The elastic member 90 is not limited to the frame shape, and for example, a plurality of rod-like elastic members having a rectangular cross-sectional shape may be used.
 また、図3Bに示すように、弾性部材90は、光学シート80の上面を避けて設けられることにしてもよい。具体的には、弾性部材90は、図3Bに示すように、拡散板60の上面に設置され、天板11aによって拡散板60側に押圧される。また、弾性部材90の側面に光学シート80が設置される。かかる場合に、光学シート80は、上面視において拡散板60よりも小さく、弾性部材90は、光学シート80が拡散板60を覆っていない領域に設けられる。これにより、面状照明装置1の製造段階や、面状照明装置1に振動が生じた際に、光学シート80が皺になることを抑制することができる。 Further, as shown in FIG. 3B, the elastic member 90 may be provided so as to avoid the upper surface of the optical sheet 80. Specifically, as shown in FIG. 3B, the elastic member 90 is installed on the upper surface of the diffusion plate 60, and is pressed toward the diffusion plate 60 by the top plate 11a. Also, the optical sheet 80 is installed on the side surface of the elastic member 90. In such a case, the optical sheet 80 is smaller than the diffusion plate 60 in top view, and the elastic member 90 is provided in a region where the optical sheet 80 does not cover the diffusion plate 60. Accordingly, it is possible to suppress the wrinkles of the optical sheet 80 when the planar illumination device 1 is manufactured or when the planar illumination device 1 vibrates.
 続いて、図4を用いて第1実施形態に係るレンズ50について説明する。図4は、第1の実施形態に係るレンズ50の上面図である。なお、図4では、レンズ50と点光源30との位置関係を明確にするため点光源30を併せて示す。 Subsequently, the lens 50 according to the first embodiment will be described with reference to FIG. FIG. 4 is a top view of the lens 50 according to the first embodiment. In FIG. 4, the point light source 30 is also shown in order to clarify the positional relationship between the lens 50 and the point light source 30.
 図4に示すように、レンズ50の出射面51は、平坦部57と、透過部52と、凹部53とを有する。平坦部57は、凹部53と連続して設けられる平坦面で、光を拡散板60へと出射する。透過部52は、隣接するレンズ50との境界部へと光の出射を促進する機能を有する。なお、透過部52は、レンズ50の厚み方向に窪んだ透過部であってもよく、その形状は特に限定されない。 As shown in FIG. 4, the exit surface 51 of the lens 50 has a flat portion 57, a transmission portion 52, and a recess 53. The flat portion 57 is a flat surface provided continuously with the recess 53 and emits light to the diffusion plate 60. The transmitting portion 52 has a function of promoting the emission of light to the boundary with the adjacent lens 50. The transmitting portion 52 may be a transmitting portion recessed in the thickness direction of the lens 50, and the shape thereof is not particularly limited.
 具体的には、図4に示すように、透過部52は、凹部53の外周部に同心円状に形成され、出射面51の各辺に当接して設けられる。つまり、透過部52は出射面51の外周部に設けられる。透過部52は、断面に直線または曲線を有し、出射面から突出する筋状の突起物である。透過部52は、出射光の一部を屈折透過させ、隣接するレンズ50との境界部へと光の出射を促す。なお、透過部52は、同心円状に限られず、出射面51の外周部に形成されていれば、直線状に形成されていてもよい。なお、本実施形態では、レンズの境界部とは、隣接したレンズ50との隙間の上方の領域のことであり、点光源30からの光が届きにくく、点光源30の点灯時に暗くなりやすい領域である。 Specifically, as shown in FIG. 4, the transmitting portion 52 is formed concentrically at the outer peripheral portion of the recess 53, and is provided in contact with each side of the emission surface 51. That is, the transmitting portion 52 is provided on the outer peripheral portion of the emission surface 51. The transmitting portion 52 is a linear protrusion having a straight line or a curved line in a cross section and protruding from the emission surface. The transmitting unit 52 refracts and transmits a part of the emitted light, and promotes the emission of the light to the boundary with the adjacent lens 50. The transmitting portion 52 is not limited to the concentric shape, and may be formed in a linear shape as long as the transmitting portion 52 is formed on the outer peripheral portion of the emission surface 51. In the present embodiment, the boundary of the lens is the area above the gap with the adjacent lens 50, and it is difficult for the light from the point light source 30 to reach and the area easily darkens when the point light source 30 is lit. It is.
 凹部53は、出射面51の点光源30の直上部において、出射面51から厚み方向に窪んだ形状である。言い換えれば、凹部53は出射面51の点光源30と対応する位置に設けられ、凹部53は、出射面51から裏面54に向かって窪んだ形状であり、本実施形態ではその断面形状が略逆円錐形状(またはすりばち形状)に形成されている。凹部53は、点光源30から出射した光を裏面54側に反射させる機能を有する。なお、凹部53では、必ずしも点光源30から出射する全ての光を裏面54側に反射させる必要はなく、凹部53から拡散板60へと透過する光があってもよい。 The recess 53 has a shape that is recessed in the thickness direction from the emission surface 51 immediately above the point light source 30 of the emission surface 51. In other words, the concave portion 53 is provided at a position corresponding to the point light source 30 of the light emission surface 51, and the concave portion 53 is a shape recessed from the light emission surface 51 toward the back surface 54. It is formed in a conical shape (or a weir shape). The concave portion 53 has a function of reflecting the light emitted from the point light source 30 to the back surface 54 side. In the recess 53, it is not necessary to reflect all the light emitted from the point light source 30 to the back surface 54 side, and there may be light transmitted from the recess 53 to the diffusion plate 60.
 凹部53は、上述のよう、点光源30から出射した光を裏面54側に向かって反射させる。出射面51の点光源30直上部は入射する光の光強度が強いが、凹部53で点光源30から出射する光の多くを裏面54側に反射させることにより、点光源30直上部の光強度を抑えることができる。言い換えれば、凹部53で点光源30からの光を反射することで、レンズ50の点光源30直上部に対応する領域の輝度が高くなることを抑制できる。 As described above, the recess 53 reflects the light emitted from the point light source 30 toward the back surface 54 side. The light intensity of the incident light is strong directly above the point light source 30 of the exit surface 51, but by reflecting most of the light emitted from the point light source 30 by the recess 53 toward the back surface 54, the light intensity directly above the point light source 30 Can be reduced. In other words, by reflecting the light from the point light source 30 by the concave portion 53, it is possible to suppress the increase in the luminance of the region corresponding to the portion immediately above the point light source 30 of the lens 50.
 このように、点光源30から出射した光は、出射面51で均一の光強度となるように配光が制御される。言い換えれば、レンズ50は、光強度が強い光源直上部に入射する光を出射面51全体に分散することで、輝度を均一化することができる。 As described above, the light distribution of the light emitted from the point light source 30 is controlled so that the light intensity becomes uniform on the light emission surface 51. In other words, the lens 50 can equalize the luminance by dispersing the light incident immediately above the light source having high light intensity over the entire emission surface 51.
 続いて、図5Aおよび図5Bを用いて実施形態に係るレンズ50の断面形状について説明する。図5Aおよび図5Bは、図4に示すB-B線に沿った断面模式図である。図5Aに示すように、レンズ50は、出射面51に形成された透過部52および凹部53に加えて、裏面54に反射部56を有する。 Subsequently, the cross-sectional shape of the lens 50 according to the embodiment will be described with reference to FIGS. 5A and 5B. 5A and 5B are schematic cross sections along the line BB shown in FIG. As shown in FIG. 5A, the lens 50 has a reflective portion 56 on the back surface 54 in addition to the transmissive portion 52 and the concave portion 53 formed on the output surface 51.
 反射部56は、裏面54からレンズ50の厚み方向に突出したドットであり、例えば、裏面54全体に均一に形成される。反射部56は、出射面51で裏面54側に反射した光を再度出射面51側に反射させる。 The reflective portion 56 is a dot protruding from the back surface 54 in the thickness direction of the lens 50, and is uniformly formed on the entire back surface 54, for example. The reflection unit 56 reflects the light reflected to the back surface 54 side at the emission surface 51 again to the emission surface 51 side.
 つまり、反射部56は、レンズ50の点光源30に対応する位置に設けられた凹部53によって裏面54側に反射した光を再度出射面51側に反射させる。これにより、反射部56で反射された光は、レンズ50の凹部53に連続して設けられた平坦部57から拡散板60へと出射する。なお、反射部56は、裏面54からレンズ50の厚み方向に窪んだドット形状であってもよい。また、反射部56はドットに限らない。 That is, the reflection unit 56 reflects the light reflected to the back surface 54 side again to the emission surface 51 side by the concave portion 53 provided at the position corresponding to the point light source 30 of the lens 50. Thereby, the light reflected by the reflection part 56 is emitted to the diffusion plate 60 from the flat part 57 provided continuously to the concave part 53 of the lens 50. The reflecting portion 56 may have a dot shape which is recessed from the back surface 54 in the thickness direction of the lens 50. Also, the reflective portion 56 is not limited to dots.
 また、図5Aでは、断面視において、透過部52が三角形状であり、反射部56がドット形状である場合について示しているが、これに限定されず、図5Bに示すように、透過部52が断面視において半円状やかまぼこ形状等の丸みを帯びた形状であってもよいし、反射部56が三角形状であってもよい。 5A shows the case where the transmitting portion 52 has a triangular shape and the reflecting portion 56 has a dot shape in a cross sectional view, the present invention is not limited to this, and as shown in FIG. 5B, the transmitting portion 52 However, the cross-sectional view may have a rounded shape such as a semicircular shape or a round shape, or the reflecting portion 56 may have a triangular shape.
 また、色ムラ軽減を目的として、出射面51全体の表面を例えばサンドブラストやシボ加工で荒く加工したり、出射面51全体にドットを設けたりすることにしてもよい。 Further, for the purpose of reducing color unevenness, the entire surface of the output surface 51 may be roughly processed, for example, by sand blasting or embossing, or dots may be provided on the entire output surface 51.
 続いて、図6を用いてレンズ50の配光特性について説明する。図6は、第1の実施形態に係るレンズ50の配光特性を示す模式図である。なお、図6では、光の光路を破線で示す。 Subsequently, the light distribution characteristic of the lens 50 will be described with reference to FIG. FIG. 6 is a schematic view showing light distribution characteristics of the lens 50 according to the first embodiment. In FIG. 6, the optical path of light is indicated by a broken line.
 図6に示すように、点光源30から出射した光は、上述のよう、凹部53によって裏面54側に反射する。続いて、かかる光は、裏面54に設けられた反射部56によって再度出射面51側に反射する。そして、反射部56で反射された光は、出射面51の平坦部57から出射する。つまり、点光源30から出射した光はレンズ50内を導光し、略面発光へと変換されて出射する。また、透過部52により一部の出射光が屈折透過され、隣接するレンズ50との境界部へと光の出射が促される。 As shown in FIG. 6, the light emitted from the point light source 30 is reflected by the recess 53 toward the back surface 54 as described above. Subsequently, the light is reflected again to the emission surface 51 side by the reflection portion 56 provided on the back surface 54. Then, the light reflected by the reflection unit 56 is emitted from the flat portion 57 of the emission surface 51. That is, the light emitted from the point light source 30 is guided within the lens 50, converted to substantially surface light emission, and emitted. Further, a part of the outgoing light is refracted and transmitted by the transmission part 52, and the outgoing light is promoted to the boundary with the adjacent lens 50.
 このように、第1の実施形態に係るレンズ50では、点光源30から入射する光を出射面51全体から均一に出射するように配光を制御する。つまり、本実施形態に係るレンズ50によれば、輝度の均一化を向上させることができる。 As described above, in the lens 50 according to the first embodiment, the light distribution is controlled so that the light incident from the point light source 30 is uniformly emitted from the entire emission surface 51. That is, according to the lens 50 which concerns on this embodiment, equalization | homogenization of brightness | luminance can be improved.
 また、第1の実施形態に係るレンズ50では、透過部52により光の一部を屈折透過させることで、隣接するレンズ50へと導光する光を抑えることができる。言い換えれば、透過部52により、隣接するレンズ50への光の漏れを抑制することができる。つまり、第1の実施形態に係るレンズ50は、隣接するレンズ50へと導光する光を抑制することで、点光源30を個別点灯した際のコントラストを向上させることも可能である。 Further, in the lens 50 according to the first embodiment, by refracting and transmitting a part of light by the transmitting unit 52, it is possible to suppress the light guided to the adjacent lens 50. In other words, the transmitting portion 52 can suppress the leakage of light to the adjacent lens 50. That is, the lens 50 according to the first embodiment can also improve the contrast when the point light sources 30 are individually lit by suppressing the light guided to the adjacent lens 50.
 次に、図7を用いて実施形態に係るレンズ50の有無による比較結果について説明する。図7は、透過部52の有無による輝度分布の比較結果を示す図である。なお、図7では、9つの点光源30を発光させた場合の輝度分布のシミュレーション結果を示す。また、図7にて丸で囲った領域は、レンズ50とかかるレンズ50に隣接するレンズ50との境界部に対応する。 Next, the comparison result by the presence or absence of the lens 50 which concerns on embodiment using FIG. 7 is demonstrated. FIG. 7 is a view showing the comparison result of the luminance distribution according to the presence or absence of the transmission part 52. In addition, in FIG. 7, the simulation result of the luminance distribution at the time of making nine point light sources 30 emit light is shown. The circled area in FIG. 7 corresponds to the boundary between the lens 50 and the lens 50 adjacent to the lens 50.
 図7に示す丸で囲った領域を透過部52の有無で比較すると、透過部52を有する場合の方が、透過部52がない場合よりも輝度が向上することが分かる。 Comparing the circled area shown in FIG. 7 with the presence or absence of the transmission part 52, it can be seen that the luminance is improved more in the case of the transmission part 52 than in the case of the absence of the transmission part 52.
 つまり、実施形態に係る面状照明装置1において、レンズ50の出射面51の外周部に透過部52を設けることによって、隣接するレンズ50間の輝度を向上させることができる。 That is, in the planar illumination device 1 according to the embodiment, by providing the transmitting portion 52 on the outer peripheral portion of the emission surface 51 of the lens 50, the brightness between the adjacent lenses 50 can be improved.
 言い換えれば、隣接するレンズ50間の輝度ムラを抑制することができる。したがって、実施形態に係るレンズ50によれば、輝度の均一化を向上させることができる。 In other words, uneven brightness between adjacent lenses 50 can be suppressed. Therefore, according to the lens 50 which concerns on embodiment, equalization | homogenization of brightness | luminance can be improved.
 上述したように、実施形態に係るレンズ50において、反射部56は、点光源30と対向する主面である裏面54に設けられ、裏面54と対向する主面である出射面51から裏面54側に反射した光を出射面51側に反射させる。凹部53は、点光源30の直上部において出射面51から厚み方向に窪んだ形状である。透過部52は、凹部53の外周部に設けられ、光の一部を屈折透過させる。これにより、透過部52により、隣接するレンズ50との境界部へと光の出射が促され、隣接するレンズ50間の輝度が向上し、輝度が均一になる。さらに、透過部52により、隣接するレンズ50への光漏れが抑制され、点光源30を個別点灯した際のコントラストが向上する。したがって、第1の実施形態に係るレンズ50によれば、面状照明装置1の輝度の均一性を向上させながら、点光源30を個別点灯した際、コントラストを向上させることができる。 As described above, in the lens 50 according to the embodiment, the reflecting portion 56 is provided on the back surface 54 which is the main surface facing the point light source 30 and is a main surface facing the back surface 54 from the output surface 51 to the back surface 54 side. Is reflected to the side of the exit surface 51. The recess 53 has a shape that is recessed in the thickness direction from the emission surface 51 immediately above the point light source 30. The transmitting portion 52 is provided on the outer peripheral portion of the recess 53, and refracts and transmits a part of light. As a result, the transmission portion 52 promotes emission of light to the boundary with the adjacent lens 50, the luminance between the adjacent lenses 50 is improved, and the luminance becomes uniform. Furthermore, the light leakage to the adjacent lens 50 is suppressed by the transmission part 52, and the contrast when the point light sources 30 are individually lit is improved. Therefore, according to the lens 50 according to the first embodiment, it is possible to improve the contrast when the point light sources 30 are individually lit while improving the uniformity of the luminance of the planar illumination device 1.
<第2の実施形態>
 次に、図8~図9を用いて第2の実施形態に係るレンズ50Bについて説明する。第2の実施形態では、レンズ50Bが複数の点光源30を単体で覆う場合について説明する。
Second Embodiment
Next, a lens 50B according to a second embodiment will be described using FIGS. 8 to 9. FIG. In the second embodiment, the case where the lens 50B covers a plurality of point light sources 30 alone will be described.
 まず、図8を用いて第2の実施形態に係るレンズ50Bの概要について説明する。図8は、第2の実施形態に係るレンズ50Bの配置例を示す上面図である。図8に示すように、第2の実施形態に係るレンズ50Bは、複数の点光源30を覆う点で第1の実施形態に係るレンズ50と異なる。 First, an outline of the lens 50B according to the second embodiment will be described with reference to FIG. FIG. 8 is a top view showing an arrangement example of the lens 50B according to the second embodiment. As shown in FIG. 8, the lens 50 </ b> B according to the second embodiment differs from the lens 50 according to the first embodiment in that it covers a plurality of point light sources 30.
 具体的には、第2の実施形態に係るレンズ50Bは、格子状に並んだ複数の点光源30のうち、短手方向(Y軸)に並んだ複数の点光源30を単体で覆い、長手方向(X軸)に沿って並列して配置される。レンズ50Bは、上面視において矩形状または略矩形状である。本実施形態にかかるレンズ50Bは、上面視において、短手方向(Y軸)に平行に延びる辺が長辺で、長手方向(X軸)に平行な方向に延びる辺が短辺の長方形形状である。 Specifically, the lens 50B according to the second embodiment covers a plurality of point light sources 30 lined in the short direction (Y axis) among the plurality of point light sources 30 lined in a grid-like manner alone, They are arranged in parallel along the direction (X axis). The lens 50B is rectangular or substantially rectangular in top view. The lens 50B according to the present embodiment has a rectangular shape in which the side extending in parallel to the short direction (Y axis) is a long side and the side extending in a direction parallel to the longitudinal direction (X axis) is a short side in top view is there.
 このように、レンズ50Bは、短手方向に並ぶ複数の点光源30を覆うことで、長手方向に並ぶ複数の点光源30を覆う場合に比べて、レンズ長を短くすることができる。 Thus, by covering the plurality of point light sources 30 aligned in the short direction, the lens 50B can shorten the lens length as compared to the case of covering the plurality of point light sources 30 aligned in the longitudinal direction.
 これは、点光源30の発熱や、周囲環境温度により、レンズ50Bが熱膨張(収縮)するためであり、レンズ50Bの熱膨張により点光源30とレンズ50Bとの位置ずれが起こることによるレンズ50Bの光学特性の低下を抑制するためである。仮に、レンズ50Bの単位体積当たりの膨張率が同じであると仮定すると、レンズ長が長いほど、膨張(収縮)する体積が増えるのでレンズ50Bが大きく膨張(または収縮)する。 This is because the lens 50B thermally expands (contracts) due to the heat generation of the point light source 30 and the ambient environment temperature, and the lens 50B is caused by positional deviation between the point light source 30 and the lens 50B due to the thermal expansion of the lens 50B. In order to suppress the deterioration of the optical characteristics of Assuming that the expansion coefficient per unit volume of the lens 50B is the same, the longer the lens length, the larger the expansion (contraction) volume, and the lens 50B expands (or shrinks) significantly.
 また、図9を用いて後述するように、出射面51には、点光源30の直上部に対応する位置に設けられる凹部53や、隣接する点光源30間に透過部52が形成される。凹部53や透過部52は、点光源30の位置を基準にして設計される。 Further, as will be described later with reference to FIG. 9, the light emitting surface 51 is provided with a recess 53 provided at a position corresponding to the immediate upper part of the point light source 30 and a transmitting part 52 between adjacent point light sources 30. The recess 53 and the transmission part 52 are designed based on the position of the point light source 30.
 各点光源30と透過部52や凹部53との相対位置にズレが生じると、出射面51や凹部53の配光特性が低下する。つまり、第2の実施形態に係るレンズ50Bは、比較的レンズ長が短くて済む短手方向に配列した点光源30を覆うことで、各点光源30と透過部52や凹部53との位置ずれを抑制する。これにより、レンズ50Bの熱膨張あるいは熱収縮による配光特性の低下を抑制することが可能となる。 When the relative position between each point light source 30 and the transmitting portion 52 or the recess 53 is deviated, the light distribution characteristic of the light emitting surface 51 or the recess 53 is degraded. That is, the lens 50B according to the second embodiment covers the point light sources 30 arranged in the short direction so that the lens length is relatively short, whereby the positional deviation between each point light source 30 and the transmission part 52 or the recess 53 is obtained. Suppress. As a result, it is possible to suppress a decrease in light distribution characteristics due to thermal expansion or thermal contraction of the lens 50B.
 また、図8に示すように、レンズ50Bは、一列の点光源30を覆う。これにより、レンズ50Bの幅(X軸方向の長さ)を小さくすることができるので、出射面が湾曲した面状照明装置1に適用することができる。 Further, as shown in FIG. 8, the lens 50 </ b> B covers a row of point light sources 30. As a result, the width (length in the X-axis direction) of the lens 50B can be reduced, so that the lens 50B can be applied to the planar illumination device 1 having a curved exit surface.
 続いて、図9を用いて第2の実施形態に係るレンズ50Bの断面模式図について説明する。図9は、図8に示すC-C線に沿った断面模式図である。図9に示すように、第2の実施形態に係るレンズ50Bは、出射面51bに複数の透過部52と、複数の凹部53と、平坦部57とが形成される。 Subsequently, a schematic cross-sectional view of the lens 50B according to the second embodiment will be described with reference to FIG. FIG. 9 is a schematic cross-sectional view taken along the line CC shown in FIG. As shown in FIG. 9, in the lens 50B according to the second embodiment, a plurality of transmitting portions 52, a plurality of recessed portions 53, and a flat portion 57 are formed on the emission surface 51b.
 透過部52は、凹部53の周囲に設けられる。例えば、断面視において、透過部52は、対応する点光源30とかかる点光源30に隣接する点光源30との間である境界領域に設けられる。本実施形態に係るレンズ50Bにおいて、透過部52は、断面に直線または曲線を有し、出射面51から突出する突起物である。また、本実施形態に係る透過部52は、レンズ50Bが覆う点光源30の配列向きと略直交する向きに配列される。言い換えれば、透過部52は、長手方向(X軸)に沿って形成される。また、凹部53は、対応する点光源30の直上部に対応する位置に設けられ、出射面51から裏面54に向かって窪んだ形状である。また、第2の実施形態に係るレンズ50Bは、裏面54が平坦に形成され、その全面に反射部56が均一に形成される。 The transmitting portion 52 is provided around the recess 53. For example, in a cross sectional view, the transmitting portion 52 is provided in the boundary area between the corresponding point light source 30 and the point light source 30 adjacent to the point light source 30. In the lens 50 </ b> B according to the present embodiment, the transmitting portion 52 is a protrusion which has a straight line or a curved line in a cross section and which protrudes from the output surface 51. Moreover, the transmission part 52 which concerns on this embodiment is arranged in the direction substantially orthogonal to the arrangement direction of the point light source 30 which the lens 50B covers. In other words, the transmission part 52 is formed along the longitudinal direction (X axis). In addition, the concave portion 53 is provided at a position corresponding to the immediate upper part of the corresponding point light source 30 and has a shape that is recessed from the emission surface 51 toward the back surface 54. In the lens 50B according to the second embodiment, the back surface 54 is formed flat, and the reflecting portion 56 is uniformly formed on the entire surface.
 つまり、第2の実施形態に係るレンズ50Bは、複数の点光源30から出射した光を対応する凹部53で裏面54側に反射し、再度、反射部56によって出射面51側に反射させる。そして、かかる光を出射面51の平坦部57から出射させる。 That is, the lens 50B according to the second embodiment reflects the light emitted from the plurality of point light sources 30 toward the back surface 54 by the corresponding concave portions 53, and causes the light to be reflected again by the reflecting portion 56. Then, the light is emitted from the flat portion 57 of the emission surface 51.
 このように、第2の実施形態に係るレンズ50Bは、各点光源30に対応する位置に凹部53を形成し、互いに隣接する点光源30との境界領域に透過部52を形成する。透過部52は、第1の実施形態に係る透過部52と同様、出射光の一部を屈折透過し、隣接する出射面51との境界部に光の出射を促進する。これにより、複数の点光源を覆う場合であっても、出射面51の境界部の輝度を向上させることができる。つまり、第1の実施形態に係るレンズ50と同様に、輝度の均一性を向上させることが可能となる。さらに、透過部52によって隣接する出射面51側へと導光する光を抑制する(例えば、図9の出射面51-1から隣接する出射面51―2側へ導光する光を抑制する)。言い換えれば、透過部52により、隣接する出射面51への光の漏れを抑制する。これにより、点光源30を個別点灯した際、コントラストを向上させることが可能となる。なお、本実施形態では、レンズの境界部とは、出射面51の境界領域の上方の領域のことであり、点光源30からの光が届きにくく、点光源30の点灯時に暗くなりやすい領域である。なお、第1の実施形態と同様に、レンズ50Bにおいても、出射面51全体の表面を例えばサンドブラストやシボ加工で荒く加工したり、出射面51全体にドットを設けたりすることにしてもよい。 As described above, in the lens 50B according to the second embodiment, the concave portion 53 is formed at a position corresponding to each point light source 30, and the transmission portion 52 is formed in the boundary region with the point light source 30 adjacent to each other. The transmitting unit 52 refracts and transmits a part of the emitted light and promotes the emission of light to the boundary with the adjacent emission surface 51, as in the transmitting unit 52 according to the first embodiment. Thereby, even in the case of covering a plurality of point light sources, it is possible to improve the brightness of the boundary portion of the emission surface 51. That is, as in the lens 50 according to the first embodiment, it is possible to improve the uniformity of the luminance. Furthermore, the light guided to the side of the light emitting surface 51 adjacent to the light transmission portion 52 is suppressed (for example, the light guiding to the light emitting surface 51-2 side adjacent to the light emitting surface 51-1 shown in FIG. 9 is suppressed) . In other words, the transmission portion 52 suppresses the leakage of light to the adjacent emission surface 51. Thereby, when the point light sources 30 are individually lit, it is possible to improve the contrast. In the present embodiment, the boundary portion of the lens is a region above the boundary region of the emission surface 51, and it is a region where light from the point light source 30 is hard to reach and is likely to be dark when the point light source 30 is lit. is there. As in the first embodiment, also in the lens 50B, the entire surface of the emission surface 51 may be roughly processed by sandblasting or embossing, or dots may be provided on the entire emission surface 51, for example.
<第3の実施形態>
 次に、図11~図12を用いて第3の実施形態に係るレンズ50Cについて説明する。図10は、第3の実施形態に係るレンズ50Cの断面模式図であり、図4に示すB-B線に沿った断面図に対応する。図11は、第3の実施形態に係るレンズ50Cの裏面54側から見た斜視図である。図12は、第3の実施形態に係るレンズ50Cの配光特性を示す図である。
Third Embodiment
Next, a lens 50C according to the third embodiment will be described with reference to FIGS. FIG. 10 is a schematic cross-sectional view of the lens 50C according to the third embodiment, which corresponds to the cross-sectional view along the line BB shown in FIG. FIG. 11 is a perspective view of the lens 50C according to the third embodiment as viewed from the back surface 54 side. FIG. 12 is a view showing light distribution characteristics of the lens 50C according to the third embodiment.
 第3の実施形態に係るレンズ50Cは、第1の実施形態に係るレンズ50と同様に、単体で1つの点光源30を覆うレンズである。第3の実施形態に係るレンズ50Cは、図4に示す第1の実施形態に係るレンズ50と裏面54の形状が異なる点で相違する。 The lens 50C according to the third embodiment is a lens that covers one point light source 30 alone as in the lens 50 according to the first embodiment. The lens 50C according to the third embodiment is different in that the shapes of the lens 50 according to the first embodiment shown in FIG. 4 and the back surface 54 are different.
 第3の実施形態に係るレンズ50Cは、出射面51に、透過部52と、凹部53と、平坦部57とを備え、裏面54に反射部56を備える。また、第3の実施形態に係るレンズ50Cは、裏面54の端部から中央に向けて楔状に突出し、かかる楔状の先端が例えば、平坦状に形成される。 The lens 50C according to the third embodiment includes a transmitting portion 52, a concave portion 53, and a flat portion 57 on the emission surface 51, and a reflecting portion 56 on the back surface 54. In addition, the lens 50C according to the third embodiment protrudes from the end of the back surface 54 in the shape of a bowl toward the center, and such a bowl-shaped tip is formed in a flat shape, for example.
 より詳細には、図11に示すように、裏面54は、楔の末端側の各辺から中央に向かって傾斜した傾斜部59を有する。また、図11に示す例では、裏面54において、楔の先端が略平面であるが、これに限定されない。例えば、かかる先端は、ドーム形状等であってもよい。また、図11に示す例では、第3の実施形態に係るレンズ50Cにおいて裏面54が、ピラミッド形状に形成される場合について示しているが、これに限定されない。 More specifically, as shown in FIG. 11, the back surface 54 has an inclined portion 59 which is inclined from the respective end sides of the ridge toward the center. Moreover, in the example shown in FIG. 11, in the back surface 54, although the front-end | tip of a ridge is a substantially plane, it is not limited to this. For example, such a tip may be dome-shaped or the like. Further, in the example shown in FIG. 11, the case where the back surface 54 is formed in a pyramid shape in the lens 50C according to the third embodiment is shown, but it is not limited to this.
 続いて、図12を用いて第3の実施形態に係るレンズ50Cの配光特性について説明する。なお、図12では、説明を簡単にするため、透過部52および反射部56の記載を省略する。 Subsequently, the light distribution characteristic of the lens 50C according to the third embodiment will be described with reference to FIG. In addition, in FIG. 12, in order to simplify description, description of the transmissive part 52 and the reflection part 56 is abbreviate | omitted.
 図12に示すように、点光源30から出射した光は、裏面54からレンズ50Cに入射する。続いて、レンズ50Cに入射した光は、凹部53によって裏面54側に反射する。このとき、かかる光は、傾斜部59に対して所定の入射角を持って入射する。これにより、出射面51で裏面54側に反射した光は、傾斜部59によって再度出射面51側に反射する。 As shown in FIG. 12, the light emitted from the point light source 30 enters the lens 50C from the back surface 54. Subsequently, the light incident on the lens 50C is reflected by the concave portion 53 to the back surface 54 side. At this time, such light enters the inclined portion 59 at a predetermined incident angle. Thereby, the light reflected to the back surface 54 side by the output surface 51 is reflected again to the output surface 51 side by the inclined portion 59.
 つまり、第3の実施形態に係るレンズ50Cは、裏面54に傾斜部59を設けることで、傾斜部59による全反射を促進する。すなわち、傾斜部59は、裏面54から点光源30側に光が透過するのを抑制する。これにより、第3の実施形態に係るレンズ50Cは、出射効率および輝度を向上させることができる。また、傾斜部59により、隣接するレンズ50Cへと光が漏れることを抑制できる、したがって、第3の実施形態に係るレンズ50Cは、点光源30を個別点灯した際のコントラストを向上させることも可能である。 That is, the lens 50C according to the third embodiment promotes total reflection by the inclined portion 59 by providing the inclined portion 59 on the back surface 54. That is, the inclined portion 59 suppresses transmission of light from the back surface 54 to the point light source 30 side. Thereby, the lens 50C according to the third embodiment can improve the emission efficiency and the luminance. Further, the inclined portion 59 can prevent light from leaking to the adjacent lens 50C. Therefore, the lens 50C according to the third embodiment can also improve the contrast when the point light sources 30 are individually lit. It is.
 なお、上述のように、第3の実施形態に係るレンズ50Cは、出射面51に透過部52と、裏面54に反射部56とをさらに備える。透過部52は、出射光の一部を屈折透過させるので、隣接するレンズ50Cとの境界部へと光の出射を促進する。反射部56は、裏面54から光が出射するのを抑制し、出射面51に向けて光を反射する。 As described above, the lens 50 </ b> C according to the third embodiment further includes the transmitting portion 52 on the emission surface 51 and the reflecting portion 56 on the back surface 54. The transmitting unit 52 refracts and transmits a part of the emitted light, thereby promoting the emission of light to the boundary with the adjacent lens 50C. The reflection unit 56 suppresses the emission of light from the back surface 54 and reflects the light toward the emission surface 51.
 つまり、第3の実施形態に係るレンズ50Cでは、裏面54に反射部56に加えて、傾斜部59を設けることで、反射部56および傾斜部59の双方で出射面51に向けて光を反射する。 That is, in the lens 50C according to the third embodiment, by providing the inclined portion 59 in addition to the reflective portion 56 on the back surface 54, light is reflected toward the emission surface 51 in both the reflective portion 56 and the inclined portion 59. Do.
 これにより、第3の実施形態に係るレンズ50Cは、第1および第2の実施形態に係るレンズ50、50Bと同様に、輝度の均一化を向上させることができる。また、第3の実施形態に係るレンズ50Cは、裏面54からの光の漏れおよび隣接するレンズ50Cへ導光する光を傾斜部59によって抑制することができる。したがって、出射効率を向上させるとともに、輝度を均一化することができる。さらに点光源30を個別点灯した際のコントラストを向上させることが可能となる。 As a result, the lens 50C according to the third embodiment can improve the uniformity of luminance similarly to the lenses 50 and 50B according to the first and second embodiments. The lens 50C according to the third embodiment can suppress the leakage of light from the back surface 54 and the light guided to the adjacent lens 50C by the inclined portion 59. Therefore, the emission efficiency can be improved and the luminance can be made uniform. Furthermore, it becomes possible to improve the contrast when the point light sources 30 are individually turned on.
<第4の実施形態>
 次に、第4の実施形態に係るレンズ50Dについて説明する。図13Aおよび図13Bは、第4の実施形態に係るレンズ50Dの断面模式図である。なお、図14Aおよび図14Bに示す断面模式図は、図8に示すC-C線に沿った断面模式図に対応する。図14Aに示すように、図9で既に説明したレンズ50Bと裏面54の形状が異なる。レンズ50Dは、出射面51に透過部52と、凹部53と、平坦部57とを有し、裏面54に反射部56を有する。
Fourth Embodiment
Next, a lens 50D according to a fourth embodiment will be described. 13A and 13B are schematic cross-sectional views of a lens 50D according to a fourth embodiment. The schematic sectional views shown in FIGS. 14A and 14B correspond to the schematic sectional views taken along the line CC shown in FIG. As shown in FIG. 14A, the shapes of the lens 50B and the back surface 54 already described in FIG. 9 are different. The lens 50D has a transmitting portion 52, a concave portion 53, and a flat portion 57 on the emission surface 51, and a reflecting portion 56 on the back surface 54.
 透過部52は、断面に直線または曲線を有し、出射面51(平坦部57)から突出する筋状の突起物である。透過部52は、出射光の一部を屈折透過させる機能を有する。透過部52は、図13Aに示すように、断面視において、三角形形状であるが、これに限定されない。例えば、図13Bに示すように、透過部52が断面視において半円状またはかまぼこ形状等の丸みを帯びた形状であってもよい。また、透過部52は、レンズ50Dが覆う点光源30の配列向きと略直交する向きに配列される。 The transmitting portion 52 is a linear protrusion having a straight line or a curved line in cross section and protruding from the output surface 51 (the flat portion 57). The transmitting unit 52 has a function of refracting and transmitting a part of the emitted light. As shown in FIG. 13A, the transmitting portion 52 is in a triangular shape in a cross sectional view, but is not limited to this. For example, as shown in FIG. 13B, the transmitting portion 52 may have a rounded shape such as a semicircular or semicylindrical shape in a cross sectional view. In addition, the transmitting portions 52 are arranged in a direction substantially orthogonal to the arrangement direction of the point light sources 30 covered by the lens 50D.
 上述したように、実施形態に係るレンズ50Dは、短手方向に沿って複数の点光源30を覆うので、透過部52は、長手方向に沿って形成されることとなる。実施形態に係るレンズ50Dでは、出射面51の境界領域に透過部52を設けることで、隣接する出射面51との境界部へと光の出射を促すことができる。これにより、隣接するレンズ50D間の輝度を向上させ、輝度を均一化することが可能となる。ここで、出射面51の境界部とは、境界領域の上方の領域のことであり、点光源30からの光が届きにくく、点光源30の点灯時に暗くなりやすい領域である。 As described above, since the lens 50D according to the embodiment covers the plurality of point light sources 30 along the short direction, the transmission part 52 is formed along the longitudinal direction. In the lens 50D according to the embodiment, by providing the transmitting portion 52 in the boundary area of the output surface 51, it is possible to accelerate the emission of light to the boundary with the adjacent output surface 51. This makes it possible to improve the brightness between the adjacent lenses 50D and to make the brightness uniform. Here, the boundary portion of the emission surface 51 is a region above the boundary region, and is a region where the light from the point light source 30 is difficult to reach and is likely to be dark when the point light source 30 is lit.
 凹部53は、出射面51の点光源30の直上部において、出射面51から厚み方向に窪んだ形状である。言い換えれば、凹部53は、出射面51の点光源30と対応する位置に設けられ、凹部53は、出射面51から裏面54に向かって窪んだ形状であり、本実施形態ではその断面形状が略逆円錐形状(またはすりばち形状)に形成されている。凹部53は、点光源30から入射した光を裏面54側に反射させる機能を有する。なお、凹部53では必ずしも点光源30から出射する全ての光を裏面54側に反射させる必要はなく、凹部53から拡散板60へと透過する光があってもよい。 The recess 53 has a shape that is recessed in the thickness direction from the emission surface 51 immediately above the point light source 30 of the emission surface 51. In other words, the concave portion 53 is provided at a position corresponding to the point light source 30 of the light emission surface 51, and the concave portion 53 is a shape recessed from the light emission surface 51 toward the back surface 54. It is formed in an inverted conical shape (or a weir shape). The concave portion 53 has a function of reflecting the light incident from the point light source 30 to the back surface 54 side. In the recess 53, it is not necessary to reflect all the light emitted from the point light source 30 to the back surface 54 side, and there may be light transmitted from the recess 53 to the diffusion plate 60.
 凹部53は、上述のよう、点光源30から出射した光を裏面54側に向かって反射させる。出射面51の点光源30直上部は入射する光の光強度が強いが、凹部53で点光源30から出射する光の多くを裏面54側に反射させることにより、点光源30直上部の光強度を抑えることができる。言い換えれば、凹部53で点光源30からの光を反射することで、出射面51の点光源30の直上部に対応する領域の輝度が高くなることを抑制できる。 As described above, the recess 53 reflects the light emitted from the point light source 30 toward the back surface 54 side. The light intensity of the incident light is strong directly above the point light source 30 of the exit surface 51, but by reflecting most of the light emitted from the point light source 30 by the recess 53 toward the back surface 54, the light intensity directly above the point light source 30 Can be reduced. In other words, by reflecting the light from the point light source 30 by the concave portion 53, it is possible to suppress the increase in the luminance of the region of the emission surface 51 corresponding to the portion directly above the point light source 30.
 このように、点光源30から出射した光は、出射面51で均一の光強度となるように配光が制御される。言い換えれば、レンズ50Dは、光強度が強い光源直上部に入射する光を出射面51全体に分散することで、輝度を均一化することができる。 As described above, the light distribution of the light emitted from the point light source 30 is controlled so that the light intensity becomes uniform on the light emission surface 51. In other words, the lens 50D can equalize the luminance by dispersing the light incident immediately above the light source with high light intensity over the entire emission surface 51.
 平坦部57は、凹部53と連続して設けられる平坦面であり、反射部56で再度反射された光を拡散板60へと出射させる。 The flat portion 57 is a flat surface provided continuously with the concave portion 53, and emits the light reflected again by the reflection portion 56 to the diffusion plate 60.
 反射部56は、裏面54からレンズ50Dの厚み方向に突出したドットであり、例えば、裏面54全体に均一に形成される。反射部56は、出射面51で裏面54側に反射した光を再度出射面51側に反射させる。なお、反射部56の形状はドットに限定されない。 The reflective portion 56 is a dot that protrudes from the back surface 54 in the thickness direction of the lens 50D, and is uniformly formed on the entire back surface 54, for example. The reflection unit 56 reflects the light reflected to the back surface 54 side at the emission surface 51 again to the emission surface 51 side. In addition, the shape of the reflection part 56 is not limited to a dot.
 点光源30から出射した光は、上述のよう、凹部53によって裏面54側に反射する。続いて、かかる光は、裏面54に設けられた反射部56によって再度出射面51側に反射する。そして、反射部56に反射した光は、出射面51の平坦部57から出射する。つまり、点光源30から出射した光はレンズ50D内を導光し、略面発光へと変換されて出射する。 The light emitted from the point light source 30 is reflected toward the back surface 54 by the recess 53 as described above. Subsequently, the light is reflected again to the emission surface 51 side by the reflection portion 56 provided on the back surface 54. Then, the light reflected by the reflection portion 56 is emitted from the flat portion 57 of the emission surface 51. That is, the light emitted from the point light source 30 is guided in the lens 50D, converted to substantially surface light emission, and emitted.
 このように、第4の実施形態に係るレンズ50Dでは、点光源30から入射する光を出射面51全体から均一に出射するように配光を制御する。つまり、本実施形態に係るレンズ50Dによれば、輝度の均一化を向上させることができる。 As described above, in the lens 50D according to the fourth embodiment, the light distribution is controlled so that the light incident from the point light source 30 is uniformly emitted from the entire emission surface 51. That is, according to the lens 50D according to the present embodiment, it is possible to improve the uniformity of the luminance.
 次に、図14を用いて実施形態に係るレンズ50Dの裏面54の形状について説明する。図14は、第4の実施形態に係るレンズ50Dを裏面54側から見た斜視図である。なお、図14では、図13に示した反射部56等の記載を省略して示す。 Next, the shape of the back surface 54 of the lens 50D according to the embodiment will be described with reference to FIG. FIG. 14 is a perspective view of a lens 50D according to the fourth embodiment as viewed from the back surface 54 side. In FIG. 14, the description of the reflecting portion 56 and the like shown in FIG. 13 is omitted.
 図14に示すように、第4の実施形態に係るレンズ50Dは、楔状に突出した楔部58を有する。楔部58は、底面の対向する2つの辺がレンズ50Dで覆う点光源30の列と略直交し、底面の対向する2つの辺がレンズ50Dで覆う点光源30の列と略平行である。 As shown in FIG. 14, the lens 50 </ b> D according to the fourth embodiment has a ridge 58 projecting like a ridge. The ridge portion 58 is substantially orthogonal to the row of point light sources 30 in which the two opposing sides of the bottom face are covered by the lens 50D, and the two opposing sides of the bottom are substantially parallel to the row of the point light sources 30 covered by the lens 50D.
 すなわち、楔部58は、裏面54から点光源30側に光が透過するのを抑制し、隣接するレンズ50Dへの光漏れを抑制することができる。また、楔部58の先端は、楔部58の底面に沿った平面で形成されるが、これに限定されない。すなわち、楔部58の先端は、凸形状や凹形状であってもよい。また、図14に示す例では、楔部58は、ピラミッド形状である。より詳細には、楔部58は、レンズ50Dの長手方向(X軸)に沿って傾斜した傾斜部59aと、レンズ50Dの短手方向(Y軸)に沿って傾斜した傾斜部59bとによって構成される。なお、楔部58は、ピラミッド形状に限定されず、傾斜部59aおよび傾斜部59bのうち、一方で側面が形成されることにしてもよい。 That is, the ridge portion 58 can suppress transmission of light from the back surface 54 to the point light source 30 side, and can suppress light leakage to the adjacent lens 50D. In addition, the tip of the collar portion 58 is formed in a plane along the bottom surface of the collar portion 58, but is not limited thereto. That is, the tip of the collar portion 58 may have a convex shape or a concave shape. Moreover, in the example shown in FIG. 14, the collar part 58 is pyramid-shaped. More specifically, the collar portion 58 is constituted by an inclined portion 59a inclined along the longitudinal direction (X axis) of the lens 50D and an inclined portion 59b inclined along the lateral direction (Y axis) of the lens 50D. Be done. In addition, the collar part 58 is not limited to pyramid shape, You may decide to form a side surface by one of the inclination part 59a and the inclination part 59b.
 また、ここでは、記載を省略したが、楔部58は、上述した反射部56が形成される。また、隣接する楔部58の谷が上記の境界領域に対応し、境界領域の出射面51側に透過部52が形成される。すなわち、透過部52は、隣接する楔部58の谷に対応する領域に形成されることとなる。 Moreover, although description is abbreviate | omitted here, the collar part 58 forms the reflection part 56 mentioned above. Further, the valley of the adjacent ridge portion 58 corresponds to the above-described boundary area, and the transmission portion 52 is formed on the side of the light-exit surface 51 of the boundary area. That is, the transmissive portion 52 is formed in the region corresponding to the valley of the adjacent ridge portion 58.
 次に、図15を用いて第4の実施形態に係るレンズ50Dの配光特性について説明する。図15は、第4の実施形態に係るレンズ50Dの配光特性を示す図である。なお、図15では、光の光路を破線で示す。 Next, light distribution characteristics of the lens 50D according to the fourth embodiment will be described using FIG. FIG. 15 is a view showing the light distribution characteristic of the lens 50D according to the fourth embodiment. In FIG. 15, the optical path of light is indicated by a broken line.
 図15に示すように、点光源30から出射した光は、上述のように、凹部53によって裏面54側に反射する。続いて、かかる光は、裏面54に設けられた後述する反射部56によって再度出射面51側に反射する。そして、反射部56で反射した光は、出射面51の平坦部57から拡散板60へと出射する。さらに、透過部52により一部の出射光が屈折透過され、隣接する出射面51との境界部へと光の出射が促される。 As shown in FIG. 15, the light emitted from the point light source 30 is reflected by the concave portion 53 to the back surface 54 side as described above. Subsequently, the light is reflected to the emission surface 51 side again by a reflection portion 56 provided on the back surface 54 described later. Then, the light reflected by the reflection portion 56 is emitted from the flat portion 57 of the emission surface 51 to the diffusion plate 60. Furthermore, a part of the outgoing light is refracted and transmitted by the transmission part 52, and the outgoing light is promoted to the boundary part with the adjacent outgoing surface 51.
 また、凹部53によって裏面54側に反射した光は、反射部56によって出射面51側に反射するものの、その一部が反射部56を透過する。このとき、かかる光は、傾斜部59に対して所定の入射角を持って入射する。これにより、出射面51で裏面54側に反射した光は、傾斜部59によって再度出射面51側に反射する。 The light reflected to the back surface 54 side by the concave portion 53 is reflected to the emission surface 51 side by the reflecting portion 56, but a part of the light passes through the reflecting portion 56. At this time, such light enters the inclined portion 59 at a predetermined incident angle. Thereby, the light reflected to the back surface 54 side by the output surface 51 is reflected again to the output surface 51 side by the inclined portion 59.
 つまり、レンズ50Dは、裏面54に楔部58を設けることで、楔部58による全反射を促進し、光を出射面51側へと反射させる。すなわち、楔部58は、裏面54から点光源30側に光が透過するのを抑制する。また、楔部58は、隣接する出射面51側への光漏れを抑制することができる。 That is, the lens 50D promotes the total reflection by the collar portion 58 by providing the collar portion 58 on the back surface 54, and reflects the light to the emission surface 51 side. That is, the collar portion 58 suppresses transmission of light from the back surface 54 to the point light source 30 side. Moreover, the collar part 58 can suppress the light leakage to the adjacent output surface 51 side.
 また、裏面54には、反射部56が形成される。反射部56は、傾斜部59と同様に、出射面51から裏面54側に反射した光を出射面51側に反射させる機能を有する。このように、実施形態に係るレンズ50Dは、裏面54に楔部58と反射部56とを有することで、裏面54から光が透過するのを抑制することができる。また、レンズ50Dは、裏面54に楔部58と反射部56とを有することで、隣接する出射面51側への光の導光を抑えることができる。換言すると、隣接する出射面51側(隣接する点光源30側)への光の漏れを抑制することで、出射効率および輝度均一性を向上させることができる。また、点光源30を個別点灯した際のコントラストを向上させることも可能である。 In addition, a reflective portion 56 is formed on the back surface 54. The reflecting portion 56 has a function of reflecting the light reflected from the emission surface 51 to the back surface 54 side to the emission surface 51 as in the case of the inclined portion 59. As described above, the lens 50D according to the embodiment can suppress transmission of light from the back surface 54 by having the ridge portion 58 and the reflection portion 56 on the back surface 54. In addition, the lens 50D can suppress the light guiding of the light to the side of the adjacent emission surface 51 by having the ridge portion 58 and the reflection portion 56 on the back surface 54. In other words, the emission efficiency and the brightness uniformity can be improved by suppressing the leakage of the light to the adjacent emission surface 51 side (adjacent point light source 30 side). Moreover, it is also possible to improve the contrast when the point light sources 30 are individually turned on.
 したがって、レンズ50Dによれば、点光源30の個別点灯時においてコントラスト向上および輝度の均一性を向上させることができる。 Therefore, according to the lens 50D, it is possible to improve the contrast and the uniformity of the luminance when the point light sources 30 are individually lit.
 次に、図16および図17を用いてレンズ50Dの輝度分布を示すシミュレーション結果について説明する。図16および図17は、第4の実施形態に係るレンズ50Dのシミュレーション結果を示す図である。なお、図16では、輝度を濃淡で表し、濃淡が薄いほど、輝度が強い(明るい)ことを示す。また、図17では、濃淡が濃いほど、輝度が強いことを示す。 Next, a simulation result showing the luminance distribution of the lens 50D will be described with reference to FIGS. 16 and 17 are diagrams showing simulation results of the lens 50D according to the fourth embodiment. Note that in FIG. 16, the luminance is represented by shading, and the lighter the shading, the stronger (brighter) the luminance is. Further, FIG. 17 shows that the darker the shade, the stronger the luminance.
 まず、図16を用いて点光源30を96灯(短手方向に6灯、長手方向に16灯)点灯させた場合における輝度分布のシミュレーション結果について説明する。なお、以下では、楔部58および透過部52がないレンズのシミュレーション結果を比較のために示す。また、図16において四角で囲った領域が上記の境界領域に対応する。 First, the simulation result of the luminance distribution when the point light source 30 is lit with 96 lamps (six lamps in the short direction and 16 lamps in the longitudinal direction) will be described with reference to FIG. In addition, below, the simulation result of the lens without the collar part 58 and the permeation | transmission part 52 is shown for a comparison. Further, a region surrounded by a square in FIG. 16 corresponds to the above-described boundary region.
 図16に示すように、楔部58および透過部52がないレンズと、レンズ50Dとで、境界領域を比較すると、レンズ50Dの方が、境界領域の輝度が向上していることが分かる。 As shown in FIG. 16, when the boundary area is compared between the lens without the ridge portion 58 and the transmission portion 52 and the lens 50 D, it can be seen that the brightness of the boundary area is improved in the lens 50 D.
 また、図17に示すように、点光源30を1灯点灯させた場合、四角で囲った領域を比較すると、レンズ50Dの方が、楔部58および透過部52がないレンズよりも点光源30から狭く導光されることが分かる。 In addition, as shown in FIG. 17, when one point light source 30 is turned on, comparing the area surrounded by a square, the point light source 30 of the lens 50 D is better than the lens without the ridge 58 and the transmission 52. It can be seen that the light is narrowly guided.
 つまり、レンズ50Dでは、楔部58および透過部52によって裏面54から光が隣接する点光源30側および隣接するレンズ50D側に導光されるのを抑制するので、コントラストを向上させることがシミュレーション結果によっても支持される。 That is, in the lens 50D, the light is prevented from being guided from the back surface 54 to the adjacent point light source 30 side and the adjacent lens 50D side by the flange portion 58 and the transmission portion 52, so that the contrast is improved. It is also supported by
 上述のように、レンズ50Dは、列状に配列された複数の点光源30を出射方向から覆うレンズであって、出射面51である主面と、主面と対向する裏面54と、点光源30に対応する位置において主面から裏面54に向かって厚み方向に窪んだ複数の凹部53と、主面から裏面54側に反射した光を主面側に反射させる反射部56とを備える。したがって、レンズ50Dによれば、出射効率および輝度の均一性を向上させることができる。 As described above, the lens 50D is a lens that covers the plurality of point light sources 30 arranged in a row from the emission direction, and the main surface which is the emission surface 51, the back surface 54 facing the main surface, and the point light source A plurality of recesses 53 recessed in the thickness direction from the main surface toward the back surface 54 at a position corresponding to 30 and a reflecting portion 56 for reflecting light reflected from the main surface toward the back surface 54 toward the main surface are provided. Therefore, according to the lens 50D, the uniformity of the emission efficiency and the brightness can be improved.
 ところで、上述した実施形態では、楔部58が略ピラミッド形状である場合について説明したが、これに限定されるものではない。続いて、図18および図19を用いて変形例に係るレンズ50D-1、50D-2について説明する。 By the way, although the case where the collar part 58 is substantially pyramid shape was demonstrated in embodiment mentioned above, it is not limited to this. Subsequently, lenses 50D-1 and 50D-2 according to the modification will be described with reference to FIGS. 18 and 19. FIG.
 図18および図19は、楔部58の変形例を示す図である。まず、図18を用いて第1の変形例に係るレンズ50D-1について説明する。図18に示すように、第1の変形例に係るレンズ50Bにおいて楔部58D-1は、レンズ50D-1の短手方向(Y軸方向)に沿って傾斜した傾斜部59D-1によって構成される。また、図18に示す例では、楔部58D-1の先端が楔部58D-1の底面に沿った平面である場合について示しているが、これに限定されない。 FIG. 18 and FIG. 19 show a modified example of the collar 58. As shown in FIG. First, a lens 50D-1 according to a first modification will be described with reference to FIG. As shown in FIG. 18, in the lens 50B according to the first modification, the flange 58D-1 is constituted by an inclined portion 59D-1 inclined along the lateral direction (Y-axis direction) of the lens 50D-1. Ru. Further, although the example shown in FIG. 18 shows the case where the tip of the ridge 58D-1 is a flat surface along the bottom of the ridge 58D-1, it is not limited to this.
 傾斜部59D-1は、レンズ50D-1の裏面54D-1から短手方向に光が出射するのを抑制し、レンズ50D-1の出射面側に反射させる機能を担う。また、図19に示すように、第2の変形例に係るレンズ50D-2において、楔部58D-2は、レンズ50D-2の長手方向(X軸方向)に沿って傾斜した傾斜部59D-2によって構成される。また、図19に示す例では、楔部58D-2の先端が楔部58D-2の底面に沿った平面である場合について示しているが、これに限定されない。傾斜部59D-2は、上記の出射領域に対応する裏面54D-2から光が出射するのを抑制し、レンズ50D-2の出射面側に反射させる機能を担う。 The inclined portion 59D-1 has a function of suppressing the emission of light in the short direction from the back surface 54D-1 of the lens 50D-1, and reflecting the light to the emission surface side of the lens 50D-1. In addition, as shown in FIG. 19, in the lens 50D-2 according to the second modification, the ridge portion 58D-2 is an inclined portion 59D- inclined along the longitudinal direction (X-axis direction) of the lens 50D-2. It consists of two. Further, although the example shown in FIG. 19 shows the case where the tip of the ridge 58D-2 is a flat surface along the bottom of the ridge 58D-2, it is not limited to this. The inclined portion 59D-2 has a function of suppressing the emission of light from the back surface 54D-2 corresponding to the above-described emission region and reflecting the light to the emission surface side of the lens 50D-2.
 第1の変形例に係るレンズ50D-1および第2の変形例に係るレンズ50D-2のいずれを用いた場合であっても、出射効率および輝度の均一性を向上させることが期待できる。また、上記の楔部58、58D-1、58D-2では、いずれも傾斜部59、59D-1、59D-2が平面で構成される場合について示したが、これに限定されるものではなく、少なくとも一部が曲面で構成されることにしてもよい。また、楔部58は、5つ以上の傾斜部59を備えることにしてもよい。すなわち、楔部58の底面が5角形以上であってもよい。 Even when any of the lens 50D-1 according to the first modification and the lens 50D-2 according to the second modification is used, it can be expected to improve the uniformity of the emission efficiency and the luminance. Further, in the above-mentioned flanges 58, 58D-1 and 58D-2, although the case where the slopes 59, 59D-1 and 59D-2 are formed to be flat is described, the present invention is not limited thereto. , And at least a part of the curved surface. Also, the collar 58 may have five or more slopes 59. That is, the bottom surface of the collar portion 58 may be pentagonal or more.
<第5の実施形態>
 続いて、続いて、図20~図26を用いて第5の実施形態に係る照明装置について説明する。なお、第5の実施形態においては、主として、反射板40について説明する。図20は、反射板40の上面図である。なお、図20では、反射板40の一部を抜粋して示し、点光源30およびレンズ50を併せて示す。図20に示すように、反射板40は、底面41と、枠部42とを備える。
Fifth Embodiment
Subsequently, a lighting apparatus according to a fifth embodiment will be described with reference to FIGS. 20 to 26. In the fifth embodiment, the reflection plate 40 will be mainly described. FIG. 20 is a top view of the reflecting plate 40. FIG. In FIG. 20, a part of the reflecting plate 40 is extracted and shown, and the point light source 30 and the lens 50 are shown together. As shown in FIG. 20, the reflecting plate 40 includes a bottom surface 41 and a frame portion 42.
 底面41は、複数の開口部が設けられ、かかる開口部を介して基板20上に実装された点光源30が基板20側から挿入される。枠部42は、各点光源30のそれぞれの側面を囲う。点光源30が、格子状に配置されるので、枠部42は、格子状に配置された点光源30の側面をそれぞれ囲うように格子状に形成される。 The bottom surface 41 is provided with a plurality of openings, and the point light source 30 mounted on the substrate 20 is inserted from the substrate 20 side through the openings. The frame 42 encloses the side of each point light source 30. Since the point light sources 30 are arranged in a lattice, the frame portions 42 are formed in a lattice so as to surround the side surfaces of the point light sources 30 arranged in a lattice.
 このように、実施形態に係る反射板40は、各点光源30を仕切るように設けられる。これにより、レンズ50で反射板40へ反射した光が、隣接する点光源30へ漏れることおよび点光源30から反射板40へと直接光が入射することを抑制することができる。換言すると、点光源30を個別点灯した際のコントラストを向上させることも可能である。なお、例えば、枠部42は、底面41からレンズ50側に向かって突出し、底面41からレンズ50側に向かって幅が狭くなるテーパ状の形状を有する。 Thus, the reflecting plate 40 which concerns on embodiment is provided so that each point light source 30 may be divided. Thereby, it is possible to suppress that the light reflected to the reflection plate 40 by the lens 50 leaks to the adjacent point light source 30 and that the light is directly incident on the reflection plate 40 from the point light source 30. In other words, it is also possible to improve the contrast when the point light sources 30 are individually lit. For example, the frame portion 42 has a tapered shape that protrudes from the bottom surface 41 toward the lens 50 and narrows in width from the bottom surface 41 toward the lens 50.
 続いて、図21を用いて実施形態に係る反射板40の断面形状について説明する。図21は、図20に示すD-D線に沿った断面模式図である。なお、図21では、レンズ50および点光源30を併せて示す。 Then, the cross-sectional shape of the reflecting plate 40 which concerns on embodiment using FIG. 21 is demonstrated. FIG. 21 is a schematic cross-sectional view taken along the line DD shown in FIG. In FIG. 21, the lens 50 and the point light source 30 are shown together.
 図21に示すように、断面視において枠部42は、レンズ50側から基板20(点光源30)に向けて広がるテーパ状である。言い換えれば、各点光源30から見た場合に、枠部42は登り傾斜となる。 As shown in FIG. 21, in a cross-sectional view, the frame portion 42 has a tapered shape that extends from the lens 50 side toward the substrate 20 (point light source 30). In other words, when viewed from each of the point light sources 30, the frame portion 42 is inclined upward.
 また、レンズ50は、出射面51に点光源30の直上部において、厚み方向に窪んだ凹部53を有する。本実施形態では、凹部53の断面形状が略逆円錐形状(またはすりばち形状)に形成されている。凹部53は、点光源30から出射した光を裏面54側に反射させる機能を有する。なお、凹部53では必ずしも点光源30から出射する全ての光を裏面54側に反射させる必要はなく、凹部53から拡散板60へと透過する光があってもよい。 Further, the lens 50 has a recess 53 recessed in the thickness direction immediately above the point light source 30 on the exit surface 51. In the present embodiment, the cross-sectional shape of the concave portion 53 is formed in a substantially inverted conical shape (or a weir shape). The concave portion 53 has a function of reflecting the light emitted from the point light source 30 to the back surface 54 side. In the recess 53, it is not necessary to reflect all the light emitted from the point light source 30 to the back surface 54 side, and there may be light transmitted from the recess 53 to the diffusion plate 60.
 また、レンズ50の裏面54には、反射部56が形成される。反射部56は、例えば、裏面54から厚み方向に突出したドットであり、裏面54全体に例えば均一に形成される。なお、凹部53および反射部56の光学特性については、反射板40の光学特性とともに図23を用いて後述する。また、反射部56はドットに限らない。 In addition, on the back surface 54 of the lens 50, a reflective portion 56 is formed. The reflective portion 56 is, for example, a dot protruding from the back surface 54 in the thickness direction, and is uniformly formed on the entire back surface 54, for example. The optical characteristics of the concave portion 53 and the reflecting portion 56 will be described later together with the optical characteristics of the reflecting plate 40 with reference to FIG. Also, the reflective portion 56 is not limited to dots.
 また、図21に示すように、レンズ50は、裏面54が枠部42よりも上面に配置される。すなわち、底面41を基準として、脚部55の方が枠部42よりも高さが高く形成される。なお、レンズ50は、少なくとも一部が枠部42の開口面45を挟んで点光源30と対向して設けられることにしてもよい。言い換えれば、面状照明装置1は、レンズ50の出射面51が枠部42よりも上面に配置されていれば、後述する効果を奏することが可能である。 Further, as shown in FIG. 21, the rear surface 54 of the lens 50 is disposed on the upper surface of the frame portion 42. That is, the height of the leg 55 is formed higher than that of the frame 42 with reference to the bottom surface 41. The lens 50 may be provided so as to face at least a part of the point light source 30 with the opening surface 45 of the frame 42 interposed therebetween. In other words, the planar illumination device 1 can exhibit the effects described later if the emission surface 51 of the lens 50 is disposed on the upper surface of the frame 42.
 開口面45は、1つの点光源30に対応する枠部42の先端部分を繋いだ面であり、図21では、開口面45を破線で示す。なお、開口面45は、必ずしも平面である必要はなく、曲面を含むことにしてもよい。また、上面視においてレンズ50を枠部42の開口面45よりも大きくし、枠部42上にレンズ50を設置することにしてもよい。また、枠部42は、テーパ状に限られず、断面視において直方体状であってもよい。 The opening surface 45 is a surface connecting the tip portions of the frame portion 42 corresponding to one point light source 30, and the opening surface 45 is indicated by a broken line in FIG. The opening surface 45 does not necessarily have to be a flat surface, and may include a curved surface. In addition, the lens 50 may be made larger than the opening surface 45 of the frame 42 in top view, and the lens 50 may be installed on the frame 42. Further, the frame portion 42 is not limited to the tapered shape, and may have a rectangular shape in a cross sectional view.
 次に、図22を用いて実施形態に係るレンズ50の裏面54側の形状について説明する。図22は、実施形態に係るレンズ50の裏面54側から見た斜視図である。なお、図22では、図21に示した反射部56の記載を省略して示す。 Next, the shape on the back surface 54 side of the lens 50 according to the embodiment will be described with reference to FIG. FIG. 22 is a perspective view seen from the back surface 54 side of the lens 50 according to the embodiment. In addition, in FIG. 22, description of the reflection part 56 shown in FIG. 21 is abbreviate | omitted and shown.
 図22に示すように、レンズ50の裏面54には、例えば、4つの脚部55が形成される。4つの脚部55は、例えば、それぞれ同じ高さに形成される。また、脚部55のそれぞれの底面には、それぞれ接着剤やテープ等の接着部材を塗布され、基板20に固定される。 As shown in FIG. 22, for example, four legs 55 are formed on the back surface 54 of the lens 50. The four legs 55 are formed, for example, at the same height. Further, adhesive members such as an adhesive and a tape are respectively applied to the bottom surfaces of the legs 55 and fixed to the substrate 20.
 これにより、レンズ50を強固に基板20に固定することができる。言い換えれば、レンズ50と、点光源30との位置ズレを防止することができる。なお、ここでは、レンズ50が4つの脚部55を備える場合について示したが、脚部55は、3つ以下や5つ以上であってもよい。また、レンズ50は、脚部55以外で固定されることにしてもよい。 Thus, the lens 50 can be firmly fixed to the substrate 20. In other words, positional deviation between the lens 50 and the point light source 30 can be prevented. Here, although the case where the lens 50 includes the four legs 55 is shown, the number of the legs 55 may be three or less, or five or more. Also, the lens 50 may be fixed other than the leg 55.
 次に、図23を用いて第5の実施形態に係る反射板40およびレンズ50の配光特性について説明する。図23は、第5の実施形態に係るレンズ50および反射板40の配光特性を示す図である。なお、図23では、光の光路を破線で示す。 Next, light distribution characteristics of the reflecting plate 40 and the lens 50 according to the fifth embodiment will be described with reference to FIG. FIG. 23 is a view showing light distribution characteristics of the lens 50 and the reflection plate 40 according to the fifth embodiment. In FIG. 23, the optical path of light is indicated by a broken line.
 点光源30から出射した光は、凹部53によって裏面54側に反射する。続いて、かかる光は、裏面54に設けられた反射部56によって再度出射面51側に反射する。そして、反射部56で反射された光は、出射面51の平坦部57から出射する。 The light emitted from the point light source 30 is reflected by the concave portion 53 to the back surface 54 side. Subsequently, the light is reflected again to the emission surface 51 side by the reflection portion 56 provided on the back surface 54. Then, the light reflected by the reflection unit 56 is emitted from the flat portion 57 of the emission surface 51.
 凹部53で裏面54側に反射した光は、裏面54に設けられた反射部56によって再び出射面51側に反射されるものの、図示のように一部が裏面54を透過する。裏面54を透過した光は、反射板40に導かれる。 Although the light reflected to the back surface 54 side by the concave portion 53 is reflected again to the emission surface 51 side by the reflecting portion 56 provided on the back surface 54, a part of the light passes through the back surface 54 as illustrated. The light transmitted through the back surface 54 is guided to the reflection plate 40.
 このとき、枠部42に光が入射すると、枠部42の傾斜した面で反射し、レンズ50の間から出射する。つまり、枠部42を傾斜させて設けることで、裏面54を通過した光を隣接するレンズ50間から出射することができる。 At this time, when light enters the frame portion 42, the light is reflected by the inclined surface of the frame portion 42 and is emitted from between the lenses 50. That is, by providing the frame portion 42 in an inclined manner, light passing through the back surface 54 can be emitted from between adjacent lenses 50.
 これにより、レンズ50のみならず、レンズ50の周囲から光を出射することが可能となる。つまり、実施形態に係る面状照明装置1は、枠部42の1つの開口を1つの出射面として捉えると、開口全体で面発光することが可能となる。 Thus, light can be emitted not only from the lens 50 but also from the periphery of the lens 50. That is, the planar illumination device 1 according to the embodiment can emit surface light over the entire opening when one opening of the frame 42 is regarded as one output surface.
 これにより、隣接するレンズ50間の境界領域の輝度、すなわち、輝度の均一性を向上させることが可能となる。また、枠部42を設けることで、隣接する枠部42の開口への光の漏れを抑制することが可能となる。これにより、隣接するレンズ50間での輝度のコントラストを向上させることが可能となる。 This makes it possible to improve the brightness of the boundary area between adjacent lenses 50, that is, the uniformity of the brightness. Further, by providing the frame portion 42, it is possible to suppress the leakage of light to the opening of the adjacent frame portion 42. This makes it possible to improve the brightness contrast between the adjacent lenses 50.
 したがって、実施形態に係る面状照明装置1によれば、輝度の均一性およびコントラストの双方を向上させることが可能となる。また、枠部42によって隣接するレンズ50側への光の漏れを抑制するので、出射効率の向上も期待することができる。 Therefore, according to the planar illumination device 1 which concerns on embodiment, it becomes possible to improve both the uniformity and the contrast of a brightness | luminance. In addition, since the light leakage to the adjacent lens 50 side is suppressed by the frame portion 42, improvement of the emission efficiency can also be expected.
 次に、図24~図26を用いて枠部42の有無による比較結果について説明する。図24~図26は、第5の実施形態に係る枠部42の有無による輝度分布の比較結果を示す図である。なお、図24~図26では、点光源30を格子状に9灯配置し、それぞれ異なる数の点光源30を点灯させた場合における輝度分布のシミュレーション結果を示す。また、以下の図面に示す丸は、それぞれ点光源30の位置を示す。なお、以下においては、図24および図25では、輝度を濃淡で表し、濃淡が濃いほど、輝度が強いものとし、図26では、濃淡が薄いほど、輝度が強いものとする。 Next, the comparison result according to the presence or absence of the frame portion 42 will be described with reference to FIGS. 24 to 26. FIGS. 24 to 26 are diagrams showing comparison results of luminance distribution according to the presence or absence of the frame portion 42 according to the fifth embodiment. FIGS. 24 to 26 show simulation results of luminance distribution when nine point light sources 30 are arranged in a grid shape and the different number of point light sources 30 are lighted. Moreover, the circles shown in the following drawings indicate the positions of the point light sources 30, respectively. In the following, in FIG. 24 and FIG. 25, the luminance is represented by light and shade, the higher the light and dark, the higher the luminance, and the lower light and dark in FIG.
 まず、図24を用いて9灯点灯時の比較結果について説明する。図24に示すように、反射板40に枠部42がある場合の方が、反射板40に枠部42がない場合に比べて全体的に輝度が向上することが分かる。 First, the comparison result when 9 lamps are lit will be described using FIG. As shown in FIG. 24, it can be seen that the luminance is generally improved in the case where the frame portion 42 is present in the reflection plate 40 as compared with the case where the frame portion 42 is not provided in the reflection plate 40.
 これは、上述のように、枠部42によって出射効率が向上したためである。すなわち、枠部42によって、点光源30から出射した光を隣接する点光源30側に漏らすことなく、効率的に出射面51側から出射させることができるので、輝度コントラストを向上させることが可能となる。 This is because, as described above, the frame portion 42 improves the emission efficiency. That is, since the light emitted from the point light source 30 can be efficiently emitted from the side of the emission surface 51 without leaking to the adjacent point light source 30 side by the frame portion 42, the brightness contrast can be improved. Become.
 次に、図25を用いて4隅および中央に位置する5つの点光源30を点灯させた場合について説明する。図25に示すように、枠部42がある方が、枠部42がない場合に比べて、点灯している点光源30上の輝度が向上し、点灯していない点光源30間との境界が明確である。 Next, the case where the five point light sources 30 located at the four corners and the center are turned on will be described with reference to FIG. As shown in FIG. 25, the luminance on the lit point light source 30 is improved when the frame 42 is present compared to when the frame 42 is not present, and the boundary between the non-lit point light sources 30 Is clear.
 すなわち、枠部42がない場合、点灯している点光源30上の輝度が弱く、隣接する点光源30の境界が、枠部42がある場合に比べて不明確である。一方、枠部42がある場合、枠部42がない場合に比べて出射効率が高いので、点灯している点光源30上の輝度が強くなる。また、枠部42によって隣接する点光源30側に光を漏らさないので、点灯していない点光源30とのコントラストを向上させることが可能となる。 That is, when there is no frame portion 42, the brightness on the lit point light source 30 is weak, and the boundary between adjacent point light sources 30 is unclear as compared with the case where the frame portion 42 is present. On the other hand, when the frame portion 42 is present, the emission efficiency is high as compared with the case where the frame portion 42 is not present, so the luminance on the lit point light source 30 becomes strong. Further, since light is not leaked to the adjacent point light source 30 side by the frame portion 42, it is possible to improve the contrast with the point light source 30 which is not lit.
 次に、図26を用いて中央の位置する1つの点光源30を点灯させた場合について説明する。図26に示すように、枠部42がある方が、点光源30直上の中心の輝度が向上し、かつ、他の点光源30とのコントラストが向上する。 Next, the case where one point light source 30 located at the center is turned on will be described with reference to FIG. As shown in FIG. 26, with the frame portion 42, the luminance at the center directly above the point light source 30 is improved, and the contrast with the other point light sources 30 is improved.
 すなわち、図24~図26に示したいずれもの場合においても、反射板40に枠部42を設けた場合の方が、反射板40に枠部42がない場合に比べ、輝度およびコントラストが向上する。 That is, in any of the cases shown in FIG. 24 to FIG. 26, the luminance and the contrast are improved in the case where the frame portion 42 is provided in the reflection plate 40 as compared with the case where the frame portion 42 is not provided in the reflection plate .
 つまり、実施形態に係る面状照明装置1は、反射板40に枠部42を設けることで、多様な点灯パターンにおいても、コントラストと輝度の均一性とを向上させることができる。 That is, the planar illumination device 1 according to the embodiment can improve the contrast and the uniformity of the luminance even in various lighting patterns by providing the frame portion 42 in the reflection plate 40.
<第6の実施形態>
 続いて、第6の実施形態について説明する。なお、第6の実施形態では、図8に示したレンズ50Bの固定態様について説明する。まず、図27を用いてレンズ50Bの裏面側の形状について説明する。図27は、実施形態に係るレンズ50の裏面54側の斜視図である。図27に示すように、実施形態に係るレンズ50は、例えば、2つの第1脚部55a、55bと、第1脚部55a、55bよりも短い第2脚部55cとを備える。
Sixth Embodiment
The sixth embodiment will be described next. In the sixth embodiment, a fixing mode of the lens 50B shown in FIG. 8 will be described. First, the shape on the back surface side of the lens 50B will be described with reference to FIG. FIG. 27 is a perspective view of the back surface 54 side of the lens 50 according to the embodiment. As shown in FIG. 27, the lens 50 according to the embodiment includes, for example, two first legs 55 a and 55 b and a second leg 55 c shorter than the first legs 55 a and 55 b.
 第1脚部55a、55bおよび第2脚部55cは、裏面54から基板20に向かって突出する。また、第1脚部55a、55bは、基板20上でレンズ50を位置決めするためのものであり、第2脚部55cは、レンズ50から基板20までの間隔を一定に保持するためのものである。この点の詳細については、図29を用いて後述する。なお、第1脚部55aは、図27に示すよう、段付きの形状としてもよいが、これに限定されない。 The first legs 55 a and 55 b and the second legs 55 c protrude from the back surface 54 toward the substrate 20. The first legs 55a and 55b are for positioning the lens 50 on the substrate 20, and the second legs 55c are for maintaining a constant distance from the lens 50 to the substrate 20. is there. Details of this point will be described later with reference to FIG. The first leg 55a may have a stepped shape as shown in FIG. 27, but is not limited to this.
 続いて、図28を用いて実施形態に係る基板20の底面21について説明する。図28は、実施形態に係る基板20の下面図である。図28に示すように、基板20は、底面21に複数の孔部22を有する。 Subsequently, the bottom surface 21 of the substrate 20 according to the embodiment will be described with reference to FIG. FIG. 28 is a bottom view of the substrate 20 according to the embodiment. As shown in FIG. 28, the substrate 20 has a plurality of holes 22 in the bottom surface 21.
 複数の孔部22は、それぞれ基板20を貫通する貫通孔であり、1つのレンズ50に対して複数の孔部22を有する。図28に示す例では、1つのレンズ50に対して第1孔部22aと、第2孔部22bとを有する場合について示している。 The plurality of holes 22 are through holes that respectively penetrate the substrate 20, and have a plurality of holes 22 for one lens 50. The example shown in FIG. 28 shows the case where one lens 50 has the first hole 22 a and the second hole 22 b.
 第1孔部22aは、レンズ50の長手方向(X軸方向)の略中央に設けられる。第1孔部22aには、レンズ50の長手方向の略中央に設けられた第1脚部55aが挿入される。また、第2孔部22bは、レンズ50の長手方向における一方の端部側に設けられる。第2孔部22bには、レンズ50の長手方向の一方の端部に設けられた第1脚部55bが挿入される。 The first hole 22 a is provided substantially at the center of the lens 50 in the longitudinal direction (X-axis direction). The first leg 55a provided substantially at the center of the lens 50 in the longitudinal direction is inserted into the first hole 22a. The second hole 22 b is provided on one end side in the longitudinal direction of the lens 50. The first leg 55b provided at one end of the lens 50 in the longitudinal direction is inserted into the second hole 22b.
 図28に示すように、第1孔部22aは、略円形状であるのに対して、第2孔部22bは、レンズ50の長手方向に沿って切り欠いた楕円形状である。この点の詳細については、図30を用いて後述する。 As shown in FIG. 28, the first hole portion 22 a has a substantially circular shape, whereas the second hole portion 22 b has an elliptical shape cut away in the longitudinal direction of the lens 50. Details of this point will be described later using FIG.
 複数の孔部22は、それぞれ貫通孔であるので、点光源30が実装される主面である実装面についても複数の孔部22が形成されることなる。なお、複数の孔部22は、貫通孔である必要はなく、実装面から厚み方向に窪んでいればよい。すなわち、複数の孔部22は、第1脚部55a、55bを固定できる深さで実装面に形成されていればよい。 Since the plurality of holes 22 are through holes, the plurality of holes 22 are also formed on the mounting surface which is the main surface on which the point light source 30 is mounted. The plurality of holes 22 need not be through holes, and may be recessed in the thickness direction from the mounting surface. That is, the plurality of holes 22 may be formed in the mounting surface at a depth at which the first legs 55a and 55b can be fixed.
 続いて、図29~図31を用いて実施形態に係るレンズ50と基板20の固定態様について説明する。図29~図31は、実施形態に係るレンズ50と基板20との固定態様を示す模式図である。 Subsequently, a fixing aspect of the lens 50 and the substrate 20 according to the embodiment will be described with reference to FIGS. 29 to 31 are schematic views showing how the lens 50 and the substrate 20 are fixed according to the embodiment.
 まず、図29を用いてレンズ50の短手方向(Y軸正方向)から見たレンズ50と基板20との固定態様について説明する。図29に示すように、レンズ50の第1脚部55aは、第1孔部22aに挿入されることで、レンズ50が基板20上で位置決めされる。 First, a fixing aspect of the lens 50 and the substrate 20 as viewed from the short side direction (the Y-axis positive direction) of the lens 50 will be described with reference to FIG. As shown in FIG. 29, the lens 50 is positioned on the substrate 20 by inserting the first leg 55 a of the lens 50 into the first hole 22 a.
 また、第1孔部22aは、第1脚部55aと嵌合するように形成される。また、図29に示すように、第2脚部55cは、基板20と当接する。すなわち、第1脚部55aが基板20上で位置決めするためのものであるのに対して、第2脚部55cは、基板20とレンズ50との距離を一定に保持するためのものである。 Also, the first hole 22a is formed to fit with the first leg 55a. Further, as shown in FIG. 29, the second leg 55 c abuts on the substrate 20. That is, while the first leg 55 a is for positioning on the substrate 20, the second leg 55 c is for holding the distance between the substrate 20 and the lens 50 constant.
 このように、レンズ50Bは、第1脚部55aにより基板20上に位置決めされ、第2脚部55cにより、基板20との間隔を一定に保持される。 Thus, the lens 50B is positioned on the substrate 20 by the first leg 55a, and the distance between the lens 50B and the substrate 20 is held constant by the second leg 55c.
 また、ここでは、図示を省略したが、レンズ50は、第1脚部55aに加え、第1脚部55b(図4参照)が第2孔部22b(図5参照)に挿入することによっても基板20上に固定される。すなわち、レンズ50は、少なくとも2点で基板20上に位置決めされる。 Also, although not shown here, the lens 50 can also be inserted by inserting the first leg 55b (see FIG. 4) into the second hole 22b (see FIG. 5) in addition to the first leg 55a. It is fixed on the substrate 20. That is, the lens 50 is positioned on the substrate 20 at at least two points.
 これにより、レンズ50に対する側方(XY平面方向)からの振動に対して、レンズ50が基板20からずれることを回避することができる。仮に、レンズ50が、一点で基板20上に位置決めされると、かかる一点を軸としてレンズ50が基板20上で回転するおそれがある。このため、少なくとも2つの第1脚部55a、55bでレンズ50を基板20上に固定する。これにより、レンズ50と基板20に実装された点光源30との位置ずれを抑制することができる。 Thereby, it is possible to prevent the lens 50 from being displaced from the substrate 20 with respect to the vibration from the side (the XY plane direction) with respect to the lens 50. If the lens 50 is positioned on the substrate 20 at one point, the lens 50 may rotate on the substrate 20 about the one point. For this reason, the lens 50 is fixed on the substrate 20 by at least two first legs 55 a and 55 b. Thereby, positional deviation between the lens 50 and the point light source 30 mounted on the substrate 20 can be suppressed.
 次に、図30を用いてレンズ50の長手方向(X軸方向)から見たレンズ50と基板20との固定態様について説明する。なお、図30では、説明を簡潔にするために、第2脚部55cの記載を省略する。 Next, a fixing aspect of the lens 50 and the substrate 20 as viewed from the longitudinal direction (X-axis direction) of the lens 50 will be described with reference to FIG. In FIG. 30, the second leg 55c is omitted to simplify the description.
 図30に示すとともに、上述したように、第1脚部55aは、第1孔部22aに挿入され、第1脚部55bは、第2孔部22bに挿入される。ここで、第1孔部22aが第1脚部55aと嵌合するのに対して、第2孔部22bは、第1脚部55bの外周よりも広く形成される。すなわち、第2孔部22bに対して第1脚部55bは離間して挿入される。 As shown in FIG. 30 and as described above, the first leg 55a is inserted into the first hole 22a, and the first leg 55b is inserted into the second hole 22b. Here, while the first hole 22a is fitted to the first leg 55a, the second hole 22b is formed wider than the outer periphery of the first leg 55b. That is, the first leg 55b is inserted into the second hole 22b while being separated.
 これは、上述のように、レンズ50が熱膨張するからである。仮に、第2孔部22bを第1脚部55bと嵌合するように形成した場合、レンズ50が熱膨張した際に、第1脚部55aおよび第1脚部55bの2点に集中して作用する。これにより、レンズ50の破損や、レンズ50の形状が変化するおそれがある。 This is because the lens 50 thermally expands as described above. If the second hole 22b is formed to be fitted to the first leg 55b, the lens 50 is thermally expanded and concentrated on two points of the first leg 55a and the first leg 55b. Works. As a result, the lens 50 may be damaged or the shape of the lens 50 may be changed.
 これに対して、第2孔部22bを第1脚部55bの外周よりも広く形成することで、レンズ50が熱膨張した際に、第1脚部55bが第2孔部22bの内部を移動するだけで済む。つまり、上記の力が第1脚部55aおよび第1脚部55bの2点に集中して作用することを回避することができる。 On the other hand, by forming the second hole 22b wider than the outer periphery of the first leg 55b, the first leg 55b moves inside the second hole 22b when the lens 50 is thermally expanded. You just have to do it. That is, it is possible to avoid that the above-described force acts on two points of the first leg 55a and the first leg 55b.
 このように、第2孔部22bを第1脚部55bの外周よりも広く形成することで、熱膨張によるレンズ50の破損や変形を回避することができる。言い換えれば、レンズ50の製品寿命を長くすることができる。なお、ここでは、レンズ50の熱膨張を例に挙げて説明したが、周囲の温度が低下した際に生じる熱収縮についても同様である。 By forming the second hole 22b wider than the outer periphery of the first leg 55b in this manner, damage or deformation of the lens 50 due to thermal expansion can be avoided. In other words, the product life of the lens 50 can be extended. Here, although the thermal expansion of the lens 50 has been described as an example, the same applies to the thermal contraction that occurs when the ambient temperature decreases.
 また、図31に示すように、レンズ50Bは、底面側から枠部42により支持される。すなわち、枠部42は、上述の配光制御のみならず、レンズ50Bを支持することも可能である。 Further, as shown in FIG. 31, the lens 50B is supported by the frame portion 42 from the bottom surface side. That is, the frame portion 42 can support not only the above-described light distribution control but also the lens 50B.
 また、レンズ50Bは、上面側からスペーサ70によって押圧される。スペーサ70には、上フレーム11(図3A等参照)から所定の押圧力が加わり、スペーサ70は、かかる押圧力によってレンズ50Bを押圧することができる。 Further, the lens 50B is pressed by the spacer 70 from the upper surface side. A predetermined pressing force is applied to the spacer 70 from the upper frame 11 (see FIG. 3A and the like), and the spacer 70 can press the lens 50B by the pressing force.
 すなわち、レンズ50Bは、脚部55(第1脚部55a、55b)が基板20に設けられた貫通孔に挿入されることで、基板20上に固定される。これにより、レンズ50Bが、基板20から側面(XY平面)方向へずれるのを抑制することができる。すなわち、レンズ50Bは、上面からスペーサ70によって押圧され、かつ、脚部55Bによって基板20上に位置決めされる。これにより、レンズ50Bの位置ずれを抑制することができるので、レンズ50Bの位置ずれによる配光特性の低下を抑制することが可能となる。 That is, the lens 50B is fixed on the substrate 20 by inserting the leg 55 ( first leg 55a, 55b) into the through hole provided in the substrate 20. Thereby, the lens 50B can be prevented from being displaced from the substrate 20 in the side surface (XY plane) direction. That is, the lens 50B is pressed by the spacer 70 from the upper surface, and is positioned on the substrate 20 by the leg 55B. Thereby, since the positional deviation of the lens 50B can be suppressed, it is possible to suppress the deterioration of the light distribution characteristic due to the positional deviation of the lens 50B.
 上述したように、基板20は、複数の点光源30が格子状に実装される主面を有する。複数のレンズ50は、短手方向の配列向きに並ぶ複数の点光源30を単体で覆い、長手方向に沿って並列して設けられる。フレーム10は、基板20と複数のレンズ50とを収容する。弾性部材90は、フレーム10の天板11aとレンズ50との間に設けられ、レンズ50を天板側から押圧する。したがって、レンズ50の位置ずれを抑制することができる。 As described above, the substrate 20 has the main surface on which the plurality of point light sources 30 are mounted in a lattice. The plurality of lenses 50 individually covers the plurality of point light sources 30 aligned in the arrangement direction in the short direction, and is provided in parallel along the longitudinal direction. The frame 10 accommodates the substrate 20 and the plurality of lenses 50. The elastic member 90 is provided between the top plate 11a of the frame 10 and the lens 50, and presses the lens 50 from the top plate side. Therefore, positional deviation of the lens 50 can be suppressed.
<その他>
 次に、図32および図33を用いて変形例に係る面状照明装置1E、1Fについて説明する。図32は、第1の変形例に係る面状照明装置1Eの断面模式図であり、図1に示すA-A線に沿った断面模式図に対応する。
<Others>
Next, the planar illumination devices 1E and 1F according to the modification will be described with reference to FIGS. 32 and 33. FIG. 32 is a schematic cross-sectional view of a planar illumination device 1E according to a first modification, and corresponds to a schematic cross-sectional view along the line AA shown in FIG.
 図32に示すように、第1の変形例に係る面状照明装置1Eは、上述した面状照明装置1と弾性部材90およびスペーサ70の配置が異なる点で相違する。具体的には、第1の変形例に係る面状照明装置1Eにおいて、弾性部材90がスペーサ70の一部を兼ねる。 As shown in FIG. 32, the planar illumination device 1E according to the first modification is different from the above-described planar illumination device 1 in that the arrangement of the elastic member 90 and the spacer 70 is different. Specifically, in the planar illumination device 1E according to the first modification, the elastic member 90 doubles as a part of the spacer 70.
 図32に示す例では、弾性部材90が、レンズ50と拡散板60との間に配置される。レンズ50と拡散板60とは、所定の間隔をあけて配置する必要があり、スペーサ70は、かかる間隔を一定に保持する役割を担う。 In the example shown in FIG. 32, the elastic member 90 is disposed between the lens 50 and the diffusion plate 60. The lens 50 and the diffusion plate 60 need to be disposed at a predetermined interval, and the spacer 70 plays a role of keeping the interval constant.
 これに対して、第1の変形例に係る面状照明装置1Eは、スペーサ70の一部を弾性部材90で代用する。これにより、第1の変形例に係る面状照明装置1Bにおいて、弾性部材90は、レンズ50を上フレーム11の天板11a側から押圧する役割と、レンズ50と拡散板60とのスペースを埋める役割とを一挙に担う。 On the other hand, the planar illumination device 1E according to the first modification substitutes a part of the spacer 70 by the elastic member 90. Thereby, in the planar illumination device 1B according to the first modification, the elastic member 90 plays the role of pressing the lens 50 from the top plate 11a side of the upper frame 11, and fills the space between the lens 50 and the diffusion plate 60. Take on the role at once.
 したがって、図3Aや図3Bに示したように、拡散板60と天板11aとの間のスペーサ70は、不要となる。つまり、弾性部材90がスペーサ70の一部を兼ねることで、拡散板60上に配置された弾性部材90の分だけ薄型化することが可能となる。 Therefore, as shown in FIG. 3A and FIG. 3B, the spacer 70 between the diffusion plate 60 and the top plate 11a becomes unnecessary. That is, when the elastic member 90 doubles as a part of the spacer 70, it becomes possible to reduce the thickness by the amount of the elastic member 90 disposed on the diffusion plate 60.
 なお、ここでは、弾性部材90が、拡散板60と、スペーサ70との間に配置される場合について示したが、弾性部材90をレンズ50とスペーサ70との間に配置することにしてもよい。また、スペーサ70を全て弾性部材90で構成することにしてもよい。 Although the elastic member 90 is disposed between the diffusion plate 60 and the spacer 70 here, the elastic member 90 may be disposed between the lens 50 and the spacer 70. . Alternatively, the spacer 70 may be entirely composed of the elastic member 90.
 つまり、弾性部材90が、スペーサ70の一部または全てを兼ねるようにしてもよい。なお、ここでは、弾性部材90がレンズ50と光学部材としての拡散板60との距離を規定する場合について説明したが、拡散板60に限られず、弾性部材90は、レンズ50と、その他の光学部材との距離を規定することにしてもよい。 That is, the elastic member 90 may double as part or all of the spacer 70. Although the case where the elastic member 90 defines the distance between the lens 50 and the diffusion plate 60 as an optical member has been described here, the present invention is not limited to the diffusion plate 60, and the elastic member 90 includes the lens 50 and other optical elements. The distance to the member may be defined.
 また、図32に示すように、第1の変形例においてスペーサ70は、下フレーム12の底部12aと当接するように配置される。言い換えれば、スペーサ70は、上フレーム11の天板11aから光学シート80、拡散板60および弾性部材90を介して上面から押圧され、下フレーム12の底部12aによって底面が支持される。 Further, as shown in FIG. 32, in the first modified example, the spacer 70 is disposed to abut on the bottom 12 a of the lower frame 12. In other words, the spacer 70 is pressed from the top by the top plate 11 a of the upper frame 11 through the optical sheet 80, the diffusion plate 60 and the elastic member 90, and the bottom is supported by the bottom 12 a of the lower frame 12.
 つまり、第1の変形例において、スペーサ70は、上下方向(Z軸方向)から押圧されるように設けられる。これにより、スペーサ70の位置ずれを抑制することができるので、スペーサ70の位置ずれによるレンズ50の位置ずれを抑制することが可能となる。なお、スペーサ70の底面は、下フレーム12の底部12aによって底面が支持されていなくてもよい。 That is, in the first modified example, the spacer 70 is provided so as to be pressed in the vertical direction (Z-axis direction). As a result, since the positional deviation of the spacer 70 can be suppressed, the positional deviation of the lens 50 due to the positional deviation of the spacer 70 can be suppressed. The bottom surface of the spacer 70 may not be supported by the bottom 12 a of the lower frame 12.
 続いて、図33を用いて第2の変形例に係る面状照明装置1Fについて説明する。図33は、第2の変形例に係る面状照明装置1Fの断面模式図であり、図1に示すA-A線に沿った断面模式図に対応する。 Subsequently, a planar illumination device 1F according to a second modification will be described with reference to FIG. FIG. 33 is a schematic cross-sectional view of a planar illumination device 1F according to a second modification, and corresponds to a schematic cross-sectional view along the line AA shown in FIG.
 図33に示すように、第2の変形例に係る面状照明装置1Fは、既に説明した面状照明装置1と反射板40の形状が異なる点で相違する。具体的には、第2の変形例に係る面状照明装置1Cにおいて、反射板40は、上述のスペーサ70(図3Aおよび図3B等参照)と一体に成形される。 As shown in FIG. 33, the planar illumination device 1F according to the second modification is different in that the shapes of the planar illumination device 1 and the reflection plate 40 described above are different. Specifically, in the planar illumination device 1C according to the second modified example, the reflection plate 40 is integrally formed with the above-described spacer 70 (see FIG. 3A, FIG. 3B, etc.).
 より詳細には、反射板40は、基板20上に固定され、底面から下フレーム12の側壁12bに沿って上フレーム11の天板側に延伸し、レンズ50と拡散板60との間で所定の厚みを持って面状照明装置1Fの内側に突出する突出部43を有する。 More specifically, the reflecting plate 40 is fixed on the substrate 20 and extends from the bottom to the top plate side of the upper frame 11 along the side wall 12 b of the lower frame 12, and is fixed between the lens 50 and the diffusion plate 60. A projecting portion 43 that protrudes to the inside of the planar lighting device 1F with a thickness of
 すなわち、第2の変形例に係る面状照明装置1Fにおいて、突出部43がスペーサ70に対応する。また、突出部43は、上面から拡散板60によって押圧され、下面を基板20によって支持される。 That is, in the planar illumination device 1F according to the second modification, the protrusion 43 corresponds to the spacer 70. Further, the projecting portion 43 is pressed by the diffusion plate 60 from the upper surface, and the lower surface is supported by the substrate 20.
 すなわち、第2の変形例に係る面状照明装置1Fにおいて、反射板40とスペーサ70とを一体に成形することで、スペーサ70に対応する突出部43を上下方向から挟み込むように固定することができる。したがって、第2の変形例に係る面状照明装置1Fでは、突出部43に位置ずれが生じにくいので、レンズ50を強固に固定することができる。 That is, in the planar illumination device 1F according to the second modification, by integrally molding the reflecting plate 40 and the spacer 70, the projecting portion 43 corresponding to the spacer 70 can be fixed so as to be sandwiched from above and below. it can. Therefore, in the planar illumination device 1F according to the second modification, since the positional deviation of the protrusion 43 is not easily generated, the lens 50 can be firmly fixed.
 図32や図33に示した例では、弾性部材90や反射板40がスペーサ70の少なくとも一部の機能を兼ねる場合について説明したが、これに限定されるものではない。拡散板60がスペーサ70の少なくとも一部の機能を兼ねることにしてもよい。かかる場合に、拡散板60に、拡散板60からレンズ50に向けて突出した突出部を備えることで実現することができる。これにより、スペーサ70の分だけ部品点数を抑えることができるので、面状照明装置1の組み立てを簡略化することができる。 In the examples shown in FIGS. 32 and 33, although the case where the elastic member 90 and the reflection plate 40 also function as at least a part of the spacer 70 has been described, the present invention is not limited to this. The diffusion plate 60 may also function as at least a part of the spacer 70. In such a case, it can be realized by providing the diffusion plate 60 with a protruding portion that protrudes from the diffusion plate 60 toward the lens 50. As a result, the number of parts can be reduced by the amount of the spacer 70, so that the assembly of the planar illumination device 1 can be simplified.
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。 Further, the present invention is not limited by the above embodiment. What is configured by appropriately combining the above-described constituents is also included in the present invention. Further, further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspects of the present invention are not limited to the above embodiment, and various modifications are possible.

Claims (22)

  1.  列状に配置された点光源を出射方向から覆うレンズであって、
     出射面である主面と、
     前記主面と対向する裏面と、
     前記点光源に対応する位置において前記主面から前記裏面に向かって厚み方向に窪んだ複数の凹部と、
     前記主面から前記裏面側に反射した光を前記主面側に反射させる反射部と
     を備えるレンズ。
    A lens for covering point light sources arranged in a row from the emission direction,
    A main surface which is an exit surface;
    A back surface opposite to the main surface;
    A plurality of recesses recessed in the thickness direction from the main surface toward the back surface at positions corresponding to the point light sources;
    A lens configured to reflect light reflected from the main surface toward the back surface toward the main surface.
  2.  請求項1に記載のレンズと、
     格子状に配置された複数の前記点光源を実装する基板と、
     複数の前記レンズと前記基板とを収容するフレームと
     を備える面状照明装置。
    A lens according to claim 1;
    A substrate for mounting a plurality of the point light sources arranged in a grid pattern;
    A planar illumination device comprising: a frame accommodating a plurality of the lenses and the substrate.
  3.  前記レンズは、
     短手方向の配列向きに並ぶ複数の前記点光源を単体で覆い、長手方向に沿って並列して複数設けられる
     請求項2に記載の面状照明装置。
    The lens is
    The planar illumination device according to claim 2, wherein a plurality of the point light sources arranged in the arrangement direction in the short direction are singly covered and provided in parallel along the longitudinal direction.
  4.  前記レンズは、
     前記裏面に設けられ、前記点光源に対応する位置から前記点光源に向かって楔状に突出した楔部を備える
     請求項3に記載の面状照明装置。
    The lens is
    The planar illumination device according to claim 3, further comprising: a hook portion provided on the back surface and protruding like a hook from the position corresponding to the point light source toward the point light source.
  5.  前記楔部は、
     底面の対向する2つの辺が前記点光源の列と略直交する
     請求項4に記載の面状照明装置。
    The buttocks are
    The planar illumination device according to claim 4, wherein two opposing sides of the bottom surface are substantially orthogonal to the row of point light sources.
  6.  前記楔部は、
     底面の対向する2つの辺が前記点光源の列と略平行である
     請求項4または5に記載の面状照明装置。
    The buttocks are
    The planar illumination device according to claim 4 or 5, wherein two opposing sides of the bottom surface are substantially parallel to the row of point light sources.
  7.  前記基板は、
     前記主面に複数の孔部を有し、
     前記レンズは、
     前記基板と対向する主面から基板に向かって突出し、前記孔部に挿入する第1脚部と、前記第1脚部よりも短く前記基板に当接する第2脚部とを有する
     請求項2~6のいずれか一つに記載の面状照明装置。
    The substrate is
    The main surface has a plurality of holes,
    The lens is
    It has a first leg projecting from the main surface facing the substrate toward the substrate and having a first leg inserted into the hole, and a second leg shorter than the first leg and abutting on the substrate. The planar lighting device as described in any one of 6.
  8.  前記レンズは、
     複数の前記第1脚部を有し、
     前記基板は、
     前記複数の前記第1脚部に対応する複数の前記孔部を有し、前記複数の前記孔部のうち、少なくとも一つは対応する前記第1脚部が嵌合して挿入され、他の少なくとも一つは対応する前記第1脚部が離間して挿入される
     請求項7に記載の面状照明装置。
    The lens is
    Having a plurality of said first legs,
    The substrate is
    The plurality of holes corresponding to the plurality of first legs are provided, and the corresponding first legs are fitted and inserted in at least one of the plurality of holes. The planar illumination device according to claim 7, wherein at least one corresponding first leg is inserted at a distance.
  9.  前記レンズから出射した光を拡散する拡散板
     をさらに備え、
     前記レンズは、
     前記レンズと前記拡散板との距離を規定するスペーサを介して前記フレームの天板側から押圧される
     請求項2~8のいずれか一つに記載の面状照明装置。
    And a diffuser for diffusing the light emitted from the lens.
    The lens is
    The planar illumination device according to any one of claims 2 to 8, which is pressed from the top plate side of the frame via a spacer that defines the distance between the lens and the diffusion plate.
  10.  前記フレームの天板と前記レンズとの間に設けられ、前記レンズを前記天板側から押圧する弾性部材
     を備える請求項2~9のいずれか一つに記載の面状照明装置。
    The planar illumination device according to any one of claims 2 to 9, further comprising: an elastic member provided between a top plate of the frame and the lens and pressing the lens from the top plate side.
  11.  前記拡散板上に配置され、上面視において前記拡散板よりも小さい光学シート
     をさらに備え、
     前記弾性部材は、
     前記拡散板と前記天板との間に配置され、前記光学シートの主面を避けて配置される
     請求項10に記載の面状照明装置。
    The optical sheet further includes an optical sheet disposed on the diffusion plate and smaller than the diffusion plate in top view.
    The elastic member is
    The planar illumination device according to claim 10, wherein the planar illumination device is disposed between the diffusion plate and the top plate, and is disposed to avoid the main surface of the optical sheet.
  12.  前記弾性部材は、
     前記光学シートを介して前記拡散板を押圧する
     請求項11に記載の面状照明装置。
    The elastic member is
    The planar illumination device according to claim 11, wherein the diffusion plate is pressed via the optical sheet.
  13.  前記弾性部材は、
     前記スペーサの一部または全てを兼ねる
     請求項10に記載の面状照明装置。
    The elastic member is
    The planar illumination device according to claim 10, wherein the planar illumination device doubles as part or all of the spacer.
  14.  前記弾性部材は、
     前記レンズと前記スペーサとの間に配置される
     請求項13に記載の面状照明装置。
    The elastic member is
    The planar illumination device according to claim 13 disposed between the lens and the spacer.
  15.  前記複数の点光源のそれぞれの側面を囲う枠部を有する反射板
     を備え、
     前記レンズは、
     前記枠部によって支持される
     請求項2~14のいずれか一つに記載の面状照明装置。
    A reflecting plate having a frame portion surrounding side surfaces of the plurality of point light sources;
    The lens is
    The planar illumination device according to any one of claims 2 to 14, which is supported by the frame portion.
  16.  点光源と対向する主面である裏面に設けられ、前記裏面と対向する主面である出射面から前記裏面側に反射した光を前記出射面側に反射させる反射部と、
     前記点光源の直上部において前記出射面から厚み方向に窪んだ凹部と、
     前記凹部の外周部に設けられ、前記出射面から光を透過させる透過部と
     を備えるレンズ。
    A reflecting portion provided on a back surface that is a main surface facing a point light source, and reflecting light reflected to the back surface side from an emitting surface that is a main surface facing the back surface,
    A recessed portion recessed in the thickness direction from the light emission surface at a portion immediately above the point light source;
    A transmitting portion provided at an outer peripheral portion of the recess and transmitting light from the emission surface.
  17.  前記レンズは、
     前記点光源毎に設けられ、
     前記透過部は、
     前記出射面の各辺に当接する
     請求項16に記載のレンズ。
    The lens is
    Provided for each point light source,
    The transparent portion is
    The lens according to claim 16, wherein the lens abuts on each side of the exit surface.
  18.  前記透過部は、
     同心円状に形成される
     請求項16または17に記載のレンズ。
    The transparent portion is
    The lens according to claim 16 formed concentrically.
  19.  前記レンズは、
     前記裏面に設けられ、前記点光源に対応する位置から前記点光源に向かって楔状に突出した楔部を備える
     請求項16、17または18に記載のレンズ。
    The lens is
    The lens according to claim 16, further comprising: a ridge portion provided on the back surface and protruding like a ridge toward the point light source from a position corresponding to the point light source.
  20.  前記レンズは、
     格子状に配列された前記点光源のうち、複数の点光源を単体で覆い、
     前記透過部は、
     互いに隣接する前記点光源の境界領域に設けられる
     請求項16に記載のレンズ。
    The lens is
    Of the point light sources arranged in a grid, a plurality of point light sources are covered alone;
    The transparent portion is
    The lens according to claim 16, provided in a boundary area of the point light sources adjacent to each other.
  21.  請求項16~20のいずれか一つに記載のレンズと
     格子状に配置された複数の前記点光源を実装する基板と、
     複数の前記レンズと前記基板とを収容するフレームと
     を備える面状照明装置。
    21. A lens according to any one of claims 16 to 20, and a substrate on which a plurality of the point light sources arranged in a grid are mounted;
    A planar illumination device comprising: a frame accommodating a plurality of the lenses and the substrate.
  22.  前記複数の点光源のそれぞれの側面を囲う枠部を有する反射板
     をさらに備え、
     前記レンズは、
     少なくとも一部が前記枠部の開口面を挟んで前記点光源と対向して設けられる
     請求項21に記載の面状照明装置。
    And a reflector having a frame surrounding the side of each of the plurality of point light sources.
    The lens is
    The planar illumination device according to claim 21, wherein at least a part is provided to face the point light source across the opening surface of the frame portion.
PCT/JP2018/045541 2017-12-15 2018-12-11 Lens and planar illumination device WO2019117159A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017241201A JP2019109995A (en) 2017-12-15 2017-12-15 Planar illuminating device
JP2017-241201 2017-12-15
JP2017241199A JP2019109993A (en) 2017-12-15 2017-12-15 Planar illuminating device
JP2017241200A JP2019109994A (en) 2017-12-15 2017-12-15 Lens and planar lighting device
JP2017-241199 2017-12-15
JP2017241198A JP2019109992A (en) 2017-12-15 2017-12-15 Lens and planar lighting device
JP2017-241198 2017-12-15
JP2017-241200 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019117159A1 true WO2019117159A1 (en) 2019-06-20

Family

ID=66820871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045541 WO2019117159A1 (en) 2017-12-15 2018-12-11 Lens and planar illumination device

Country Status (1)

Country Link
WO (1) WO2019117159A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106327A (en) * 1996-10-02 1998-04-24 Kuraray Co Ltd Surface light source element and display apparatus using the element
JP2001351424A (en) * 2000-06-06 2001-12-21 Fuji Electric Ind Co Ltd Plane light-emitting device
JP2009026611A (en) * 2007-07-19 2009-02-05 Sharp Corp Backlight device and display device
JP2009192915A (en) * 2008-02-15 2009-08-27 Sony Corp Lens, light source unit, backlight apparatus and display device
WO2011001752A1 (en) * 2009-07-03 2011-01-06 シャープ株式会社 Light source unit, illumination device, display device, and television receiving device
JP2011086569A (en) * 2009-10-19 2011-04-28 Enplas Corp Light-emitting device, plane light source device, and display device
JP2011165590A (en) * 2010-02-15 2011-08-25 Enplas Corp Light emitting device, surface light source device, display device, and luminous flux control member
JP2014232712A (en) * 2013-05-30 2014-12-11 パナソニック株式会社 Led module and lighting apparatus
JP2015216104A (en) * 2014-04-21 2015-12-03 キヤノン株式会社 Light source device and image display device
WO2016013083A1 (en) * 2014-07-24 2016-01-28 堺ディスプレイプロダクト株式会社 Light source device and display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106327A (en) * 1996-10-02 1998-04-24 Kuraray Co Ltd Surface light source element and display apparatus using the element
JP2001351424A (en) * 2000-06-06 2001-12-21 Fuji Electric Ind Co Ltd Plane light-emitting device
JP2009026611A (en) * 2007-07-19 2009-02-05 Sharp Corp Backlight device and display device
JP2009192915A (en) * 2008-02-15 2009-08-27 Sony Corp Lens, light source unit, backlight apparatus and display device
WO2011001752A1 (en) * 2009-07-03 2011-01-06 シャープ株式会社 Light source unit, illumination device, display device, and television receiving device
JP2011086569A (en) * 2009-10-19 2011-04-28 Enplas Corp Light-emitting device, plane light source device, and display device
JP2011165590A (en) * 2010-02-15 2011-08-25 Enplas Corp Light emitting device, surface light source device, display device, and luminous flux control member
JP2014232712A (en) * 2013-05-30 2014-12-11 パナソニック株式会社 Led module and lighting apparatus
JP2015216104A (en) * 2014-04-21 2015-12-03 キヤノン株式会社 Light source device and image display device
WO2016013083A1 (en) * 2014-07-24 2016-01-28 堺ディスプレイプロダクト株式会社 Light source device and display device

Similar Documents

Publication Publication Date Title
JP6857297B2 (en) Light guide plate, surface light source device, display device and electronic device
CN104930399B (en) Surface light emitting device and liquid crystal display device
JP5760636B2 (en) Planar light source device and display device
KR100814559B1 (en) Backlight device and liquid crystal apparatus
JPWO2011010488A1 (en) Lens unit, light emitting module, illumination device, display device, and television receiver
KR20060038507A (en) Back light unit of liquid crystal display device
US20060249742A1 (en) Light emitting device for achieving uniform light distribution and backlight unit employing the same
WO2010016322A1 (en) Illuminating device and liquid crystal display device provided with the same
WO2010016320A1 (en) Illuminating device and liquid crystal display device provided with the same
US10473977B2 (en) Surface light source apparatus comprising a light-distribution control element having a diffusion part and liquid crystal display having the same
CN106796002B (en) Surface light source lighting device
WO2010016321A1 (en) Illuminating device and liquid crystal display device provided with the same
JP2009043738A (en) Plane light source device
JP2005228535A (en) Planar light source device and liquid crystal display
JP7306129B2 (en) lighting and display
JP2020088382A (en) Light diffusing lens for light emitting element
WO2019117159A1 (en) Lens and planar illumination device
CN110632787A (en) Planar lighting device
JP5597091B2 (en) Lighting device
JP3134270U (en) LCD module backlight module light source structure
KR102352404B1 (en) Backlight unit
JP2011198479A (en) Surface light source and liquid crystal display device
KR100939191B1 (en) Optical panel with reflective sheet having distributed minute holes for backlight
JP2019109994A (en) Lens and planar lighting device
CN217213394U (en) Supporting integrated lens unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888828

Country of ref document: EP

Kind code of ref document: A1