WO2019117142A1 - Run-flat radial tire - Google Patents

Run-flat radial tire Download PDF

Info

Publication number
WO2019117142A1
WO2019117142A1 PCT/JP2018/045502 JP2018045502W WO2019117142A1 WO 2019117142 A1 WO2019117142 A1 WO 2019117142A1 JP 2018045502 W JP2018045502 W JP 2018045502W WO 2019117142 A1 WO2019117142 A1 WO 2019117142A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
groove
equatorial plane
width
run
Prior art date
Application number
PCT/JP2018/045502
Other languages
French (fr)
Japanese (ja)
Inventor
知尚 向山
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019117142A1 publication Critical patent/WO2019117142A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers

Definitions

  • the present disclosure relates to a run-flat radial tire that enables traveling of a certain distance even in a state where the internal pressure is lowered due to a puncture or the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-58317
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-58317
  • An inner main lug groove is provided extending continuously from the groove to the ground end on the inner side of the vehicle.
  • a wide block is defined by the inner main lug groove inside the vehicle of the inner crown main groove.
  • An object of the present disclosure is to reduce the amount of longitudinal deflection of a run flat radial tire during run flat running while maintaining the ride comfort during normal running.
  • a run flat radial tire comprises a carcass straddling a pair of bead portions, A tread portion formed on the outer side in the tire radial direction of the carcass, a main groove formed on the tire equatorial plane of the tread portion and extending in the tire circumferential direction, and at least the tread portion centered on the tire equatorial plane A plurality of inclined grooves which are formed in a region of 25% or more and 75% or less of the contact width and are inclined with respect to the tire equatorial plane and separated in the tire circumferential direction when viewed from the tire radial direction; And a block portion continuously extending along the inclined groove between the pair of inclined grooves adjacent in a direction.
  • the main groove extending in the tire circumferential direction is formed on the tire equatorial plane in the tread portion of the run-flat radial tire.
  • the plurality of inclined grooves inclined with respect to the tire equatorial plane as viewed from the radial direction of the tire and separated in the circumferential direction of the tire are at least 25% to 75% of the contact width of the tread portion. It is formed. And between the pair of inclined grooves adjacent in the tire circumferential direction, a block portion continuously extending along the inclined grooves is formed.
  • the tire width direction is in the range of 25% to 75% of the contact width of the tread portion.
  • the force to compress the tread increases.
  • a plurality of inclined grooves inclined with respect to the tire equatorial plane are formed, and a block portion extends continuously along the inclined grooves between the pair of inclined grooves. In other words, no groove extending in the tire circumferential direction is formed in this region.
  • the run-flat radial tire according to the second aspect is the run-flat radial tire according to the first aspect, wherein the run-flat radial tire is 100% of the ground contact width outside 75% of the ground contact width of the tread centering on the tire equatorial plane.
  • a side main groove extending in the circumferential direction of the tire is formed in the following region.
  • the side main groove extending in the tire circumferential direction is 100% or less of the ground contact width outside 75% of the ground contact width of the tread portion (the side far from the tire equatorial plane CL) It is formed in the area of
  • the force for compressing the tread portion in the tire width direction is small.
  • the run-flat radial tire according to a third aspect is the run-flat radial tire according to the second aspect, wherein the groove width of the side main groove is wider than the groove width of the main groove. I assume.
  • the groove width of the side main groove is wider than the groove width of the main groove.
  • the run-flat radial tire according to the fourth aspect is characterized in that the inclined groove extends in a curved state from the tire equatorial plane side toward the outer side in the tire width direction when viewed from the tire radial direction.
  • the inclined groove extends in a curved state from the tire equatorial plane side toward the outer side in the tire width direction when viewed from the tire radial direction. For this reason, as compared with the case where the inclined grooves extend linearly, it is possible to suppress the occurrence of local bending deformation in the tread portion due to the force that compresses the tread portion in the tire width direction. The amount of longitudinal deflection of the flat radial tire can be reduced.
  • a run flat radial tire according to a fifth aspect is the run flat radial tire according to any one of the first to fourth aspects, wherein 25% of the contact width of the tread portion when viewed from the tire radial direction.
  • the angle between the inclined groove and the tire equatorial plane in the region of 75% or less is 60 ° to 90 °.
  • the angle formed between the inclined groove and the tire equatorial plane is 60 degrees or more and 90 degrees or less. Therefore, compared to the case where the angle formed by the inclined groove and the tire equatorial plane is 20 degrees or more and 30 degrees or less, bending deformation of the tread portion caused by the inclined grooves during run flat travel is suppressed The amount of longitudinal deflection of the run flat radial tire can be reduced.
  • a run flat radial tire according to a sixth aspect is the run flat radial tire according to any one of the first to fifth aspects, wherein the groove width of the inclined groove is an outer side in the tire width direction from the tire equatorial plane side Spread gradually towards the
  • the groove width of the inclined groove gradually widens from the tire equatorial plane side toward the outer side in the tire width direction. For this reason, compared with the case where the groove width of the inclined groove is constant, the drainage performance for draining the water between the run flat radial tire and the road surface to the outside of the contact surface is improved in traveling when the road surface is wet. It can be done.
  • a run flat radial tire according to a seventh aspect is the run flat radial tire according to any one of the first to sixth aspects, wherein the run flat radial tire is disposed outside the carcass in the tire radial direction and extends in the tire circumferential direction.
  • the plurality of cords constituting the belt layer are disposed to be inclined with respect to the tire equatorial plane as viewed from the tire radial direction, and viewed from the tire radial direction, the tire equatorial plane is provided.
  • the inclination direction of the inclined groove with respect to and the inclination direction of the cord with respect to the tire equatorial plane are different.
  • the inclination direction of the inclined groove with respect to the tire equatorial plane and the inclination direction of the cord with respect to the tire equatorial plane are different when viewed from the tire radial direction. For this reason, even when the direction of the force for compressing the tread portion generated in the tread portion during runflat running is inclined to one side with respect to the tire equatorial plane, the run during runflat running The amount of longitudinal deflection of the flat radial tire can be reduced.
  • FIG. 1 is an enlarged plan view showing a groove formed in a tread portion of a run-flat radial tire according to a first embodiment of the present disclosure.
  • 1 is a cross-sectional view of a run-flat radial tire according to a first embodiment of the present disclosure, cut along the tire width direction.
  • FIGS. 1 to 8 An example of a tire according to a first embodiment of the present disclosure will be described according to FIGS. 1 to 8.
  • arrow C shown in a figure shows a tire peripheral direction
  • arrow R shows a tire radial direction
  • arrow W shows a tire width direction.
  • a tire radial direction means the direction orthogonal to the rotating shaft of a tire.
  • symbol CL has shown the equatorial plane (tire equatorial plane) of a tire.
  • the side closer to the rotation axis of the tire along the tire radial direction is referred to as “the inner side in the tire radial direction”
  • the side farther from the rotational shaft of the tire along the tire radial direction is referred to as the “outer side in the tire radial direction”.
  • the side closer to the tire equatorial plane CL along the tire width direction will be referred to as “the inner side in the tire width direction”
  • the side farther from the tire equatorial plane CL along the tire width direction will be referred to as "the outer side in the tire width direction”.
  • the run-flat radial tire 10 As shown in FIG. 4, the run-flat radial tire 10 according to the present embodiment (hereinafter referred to as “the tire 10") has the bead portion 12, the sidewall portion 14, the tread portion 16, the carcass 18, the belt layer 20, and the belt reinforcing layer. 22 and a side reinforcing layer 26.
  • the bead portions 12 are members each having an annular bead core 28 and are provided in a pair in the tire width direction. Further, the bead portion 12 is provided with a bead filler 29 which is formed of a rubber harder than the rubber constituting the sidewall portion 14 and extends outward from the bead core 28 in the tire radial direction.
  • the sidewall portion 14 is a portion respectively connected to the bead portion 12 and constitutes a pair of side surfaces of the tire 10 together with the carcass 18 and other rubber layers.
  • the tread portion 16 is a rubber layer connected to the side wall portions 14 on both sides, is formed with a main groove 30 and the like described later, and is a portion that contacts the road surface during traveling.
  • the carcass 18 is disposed across the pair of bead portions 12 in a toroidal shape, and a plurality of (two in the present embodiment) carcass formed by coating a plurality of cords arranged in the radial direction with rubber. It consists of plies.
  • the belt layer 20 is disposed on the outer periphery of the crown portion of the carcass 18 (portion facing the tire radial direction of the carcass 18), and tightens the crown portion of the carcass 18 to increase the taga effect (tightening the tire to the rim) Effects)).
  • the belt reinforcing layer 22 is a member formed by winding along the outer periphery of the belt layer 20, and is, for example, a member obtained by winding a strip including a plurality of cords coated with rubber so as to cover the belt layer 20. is there.
  • the belt reinforcing layer 22 has a two-layer structure.
  • the side reinforcing layer 26 is made of rubber, and is disposed on the inner side in the tire width direction with respect to the portion of the carcass 18 of the sidewall portion 14.
  • the thickness of the side reinforcing layer 26 gradually decreases inward and outward in the tire radial direction, and the cross section of the side reinforcing layer 26 has a substantially crescent shape.
  • the hardness of the rubber forming the side reinforcing layer 26 is made higher than the hardness of the rubber forming the sidewall portion 14 so as to be able to support a load during run-flat travel. That is, the tire 10 is a tire that enables traveling at a predetermined speed at a predetermined speed even when the air pressure becomes zero.
  • the tread portion 16 is formed with a main groove 30 and a plurality of inclined grooves 36 and 38.
  • the main groove 30 is formed on the tire equatorial plane CL of the tread portion 16 and extends in the tire circumferential direction.
  • the groove width of the main groove 30 is 8 mm
  • the groove depth of the main groove 30 is 10 mm.
  • a plurality of inclined grooves 36 are formed outside the main groove 30 in the tire width direction (left side in the drawing).
  • the plurality of inclined grooves 36 are arranged at predetermined intervals (pitches) in the tire circumferential direction.
  • the inclined groove 36 is positioned such that the end on the outer side in the tire width direction is located on one side (the lower side in the figure) in the circumferential direction of the tire as compared to the end on the inner side in the tire width direction when viewed from the tire radial direction. It extends in a curved state from the tire equatorial plane CL side toward the outer side in the tire width direction. In other words, the inclined grooves 36 do not have a straight portion when viewed in the tire radial direction, and are curved in an arc.
  • the groove width of the inclined groove 36 gradually widens from the tire equatorial plane CL side toward the outer side in the tire width direction.
  • the groove width of the end on the inner side in the tire width direction in the inclined groove 36 is, for example, 8 mm
  • the groove width of the end on the outer side in the tire width direction is 20 mm. It is done.
  • the groove depth of the inclined groove 36 is, for example, 10 mm.
  • the angle formed between the inclined groove 36 and the tire equatorial plane CL in the region of 25% to 75% of the contact width with respect to the tire equatorial plane CL is 60 [deg.]. Above, it is made 90 degrees or less.
  • the tire 10 is mounted on a standard rim, and the “contact width” is based on the maximum load capacity in applied size and ply rating and the corresponding air pressure (maximum air pressure).
  • maximum air pressure maximum air pressure
  • TW in the figure indicates a ground width
  • T1 and T2 in the figure indicate a ground end.
  • 0.25TW in the figure indicates 25% of the ground width (area of 25% of the ground width)
  • 0.75TW in the figure is 75% of the ground width (ground (Area of 75% of width) is shown.
  • the tire equatorial plane CL passes through the center of the contact width TW in the tire width direction.
  • the angle between the inclined groove 36 in the area H1 shown in FIG. 1 and the tire equatorial plane CL is 60 degrees or more and 90 degrees or less.
  • the tire equatorial plane CL and the center line of the inclined grooves 36 An angle (R1 in the figure) formed with C1 is set to 60 degrees or more and 90 degrees or less.
  • the “angle” refers to the smaller angle (the inferior angle) of the angles formed by one line and another line.
  • a block portion 42 (so-called land portion) continuously extending along the inclined groove 36 is formed between the pair of inclined grooves 36 adjacent in the tire circumferential direction. There is. In other words, no groove or the like extending in the tire circumferential direction is formed between the pair of inclined grooves 36 adjacent in the tire circumferential direction.
  • a plurality of inclined grooves 38 are formed outside the main groove 30 in the tire width direction (right side in the drawing).
  • the inclined groove 38 is a kind of lateral groove, and a plurality of inclined grooves 38 are formed on the opposite side of the inclined groove 36 to the main groove 30.
  • the plurality of inclined grooves 38 are arranged at a predetermined interval (pitch) in the tire circumferential direction.
  • the pitch of the inclined grooves 38 and the pitch of the inclined grooves 36 have the same value, and the inclined grooves 38 are disposed at a half pitch offset from the inclined grooves 36 in the tire circumferential direction.
  • the part different from the inclined groove 36 is mainly demonstrated.
  • the inclined groove 38 has a shape in which the inclined groove 36 is inverted in the tire width direction centering on the tire equatorial plane CL and further in the tire circumferential direction.
  • the inclined groove 38 when viewed from the radial direction of the tire, is positioned on the other side (upper side in the figure) in the tire circumferential direction compared to the end in the tire width direction on the outer side in the tire width direction. Thus, it extends in a curved state from the tire equatorial plane CL side toward the outer side in the tire width direction. In other words, the inclined grooves 38 do not have a straight portion when viewed in the tire radial direction, and are curved in an arc.
  • the angle formed between the inclined groove 38 in the region (H2 in the drawing) and the tire equatorial plane CL in the region (H2 in the drawing) of the tread width 16 at 25% to 75% of the tread width is at least 60 degrees. And 90 degrees or less.
  • block portions 44 extending continuously along the inclined grooves 38 are formed between the pair of inclined grooves 38 adjacent in the tire circumferential direction.
  • no groove or the like extending in the tire circumferential direction is formed between the pair of inclined grooves 38 adjacent in the tire circumferential direction.
  • a plurality of cords 20A are disposed inclined with respect to the tire equatorial plane CL.
  • the end on the left side in the tire width direction in the cord 20A is on the other side (upper side in the figure) in the tire circumferential direction as compared to the end on the right side in the tire width direction in the cord 20A. positioned. That is, the cord 20A is inclined with respect to the tire equatorial plane CL so as to be at the upper left in the drawing.
  • the cord 20A is disposed to be inclined at 60 degrees or more and 70 degrees or less with respect to the tire equatorial plane CL.
  • the end on the left side in the tire width direction in the inclined grooves 36 and 38 is compared with the end on the right side in the tire width direction in the inclined grooves 36 and 38. It is located at one side (lower side in the figure) in the tire circumferential direction. That is, the inclined grooves 36, 38 are inclined with respect to the tire equatorial plane CL so as to be on the upper right in the drawing.
  • the inclination direction of the inclined grooves 36 and 38 with respect to the tire equatorial plane CL is different from the inclination direction of the cord 20A with respect to the tire equatorial plane CL.
  • Example 1 As shown in FIG. 1, a tire in which a main groove 30, an inclined groove 36, and an inclined groove 38 were formed in the tread portion 16 was used.
  • Example 2 As Example 2, as FIG. 9 shows, the tire in which the main groove 30, the inclined groove 36, the inclined groove 38, and a pair of side main groove 60 were formed in the tread part 16 was used.
  • the pair of side main grooves 60 is outside the contact width 75 [%] of the tread portion 16 (side far from the tire equatorial plane CL) and in a region (H3 and H4 in the figure) less than the contact width 100 [%]. It is formed and extends in the tire circumferential direction (details will be described later).
  • a tire in which a main groove 30, an inclined groove 36, an inclined groove 38, and a pair of central main grooves 46 are formed in the tread portion 16 was used.
  • the pair of central main grooves 46 are respectively formed in the region (H1 and H2 in the figure) with a contact width of 25% or more and 75% or less of the tread portion 16 and extend in the tire circumferential direction.
  • the groove width and the groove depth of the central main groove 46 are set to the same values as the groove width and the groove depth of the main groove 30.
  • the specifications other than the specifications described above are the same in the first embodiment, the second embodiment, and the comparative example.
  • ⁇ Evaluation item ⁇ Vertical deflection of tire-
  • Each tire was assembled to a standard rim of JATMA standard, and a predetermined load was applied to the rim without filling air (the internal pressure was 0 [kPa]), and the tire was pressed against the road surface. Then, the amount of longitudinal deflection in the tire radial direction was measured for each tire. About the amount of longitudinal deflection, the amount of longitudinal deflection of the tire of Example 1 and Example 2 was computed by making the amount of longitudinal deflection of the tire of a comparative example into 100.
  • the force to compress the tread portion is a force that causes the tread portion to be bent and deformed so that part of the tread portion floats from the road surface (back link deformation).
  • the force which compresses the tread part which arose in the tread part is shown with dod in FIG. 6B and FIG. 6C.
  • a force for compressing the tread portion in the tire width direction is indicated by a dod
  • a force for compressing the tread portion in the tire circumferential direction generated in the tread portion is indicated by the dod. It is shown.
  • the portion where the dod is dense has a larger force for compressing the tread portion than the portion where the dot is coarse.
  • the force for compressing the tread portion in the tire width direction is large in a region of 25% or more and 75% or less of the tread width in the tread portion, and the tread width 75 [grounding width]. %] Is smaller in the region outside the tire equatorial plane CL.
  • the direction (synthetic direction) of the synthetic force combining the force to compress the tread portion in the tire width direction and the force to compress the tread portion in the tire circumferential direction is as shown in FIG. 6D.
  • synthetic direction When viewed from the radial direction of the tire, it is 60 degrees or more and 90 degrees or less (R2, R3 in the figure, for example, 78 degrees) with respect to the tire equatorial plane CL.
  • a force (compressive load) that compresses the tread portion acts on the crown portion (tread portion) during run flat traveling, and the tread portion floats from the road surface, causing buckling deformation.
  • the force for compressing the tread portion in the tire width direction is large in the region of 25% or more and 75% or less of the contact width.
  • the central main groove 46 extending in the circumferential direction of the tire is formed in a region of 25% or more and 75% or less of the contact width in the tread portion.
  • the central main groove 46 extending in the circumferential direction of the tire is formed in the tread portion at a region of 25% or more and 75% or less of the contact width.
  • the center main groove 46 is largely deformed during run flat traveling. That is, the central main groove 46 is a starting point of bending deformation of the tread portion.
  • the deformation of the crown portion is smaller than that of the tire according to the comparative example. Become.
  • the longitudinal spring constant can be maintained and the amount of longitudinal deflection can be reduced.
  • the amount of longitudinal deflection of the tire 10 during run flat travel while maintaining the ride comfort during normal travel. That is, the run-flat durability can be improved while maintaining the ride comfort during normal driving.
  • a main groove 30 and inclined grooves 36, 38 are formed. For this reason, it is possible to suppress the decrease in tire grip performance in traveling when the road surface is wet.
  • the angle (angle R1 in FIG. 3) between the inclined grooves 36 and 38 and the tire equatorial plane CL in the region of 25% or more and 75% or less of the contact width is 60 [Degree] or more and 90 degrees or less.
  • the direction of the synthetic strain in which the force for compressing the tread portion in the tire width direction and the force for compressing the tread portion in the tire circumferential direction is the tire equator when viewed from the tire radial direction. 60 degrees or more and 90 degrees or less with respect to the surface CL (see R2 and R3 in FIG. 6D).
  • the angle formed by the inclined groove and the tire equatorial plane CL is not less than 20 degrees and not more than 30 degrees, the deformation of the tread portion 16 caused by the inclined grooves during run flat travel is suppressed Thus, the amount of longitudinal deflection of the tire 10 can be reduced.
  • the inclined grooves 36 and 38 extend in a curved state from the tire equatorial plane CL side toward the outer side in the tire width direction when viewed from the tire radial direction. Therefore, local bending deformation is suppressed in the tread portion 16 due to the force for compressing the tread portion in the tire width direction, as compared with the case where the inclined grooves extend linearly, and the longitudinal deflection of the tire 10 is obtained. The amount can be reduced.
  • the groove width of the inclined grooves 36 and 38 gradually widens from the tire equatorial plane CL side toward the outer side in the tire width direction (the side farther from the tire equatorial plane CL). For this reason, compared with the case where the groove width of the inclined grooves 36 and 38 is constant, the drainage performance for draining water between the tire 10 and the road surface to the outside of the contact surface during traveling when the road surface is wet It can be improved.
  • the inclination direction of the inclined grooves 36 and 38 with respect to the tire equatorial plane CL is different from the inclination direction of the cord 20A with respect to the tire equatorial plane CL. For this reason, even when the direction of the force for compressing the tread portion generated in the tread portion 16 during runflat running is inclined to one side with respect to the tire equatorial plane CL, the runflat running The longitudinal deflection of the tire 10 can be reduced.
  • Second Embodiment An example of a tire according to a second embodiment of the present disclosure will be described according to FIG. In addition, about the tire which concerns on 2nd Embodiment, the part different from the tire 10 of 1st Embodiment is mainly demonstrated.
  • a main groove 30, an inclined groove 36, an inclined groove 38, and a pair of side main grooves 60 are formed.
  • the pair of side main grooves 60 is formed outside the contact width 75% of the tread portion 16 and in a region (H3 and H4 in the figure) smaller than the contact width 100% and in the tire circumferential direction. It extends. That is, as described in the above analysis, the pair of side main grooves 60 is formed in a region where the force for compressing the tread portion in the tire width direction during runflat travel is small.
  • the groove width of the side main groove 60 is, for example, 10 mm, and the groove depth of the side main groove 60 is, for example, 10 mm.
  • the groove width of the side main groove 60 is wider than the groove width of the main groove 30.
  • the groove width of the side main groove 60 is an inclination of a portion (H3, H4 in the figure) outside the contact width 75% of the tread portion 16 and not more than the contact width 100%. It is narrowed relative to the width of the grooves 36, 38.
  • the tire 110 can reduce the amount of longitudinal deflection during run flat travel while maintaining the longitudinal spring constant (see the table shown in FIG. 5).
  • the groove width of the side main groove 60 is wider than the groove width of the main groove 30. For this reason, the drainage performance of the portion of the tread portion 16 on the outer side in the tire width direction is improved. As a result, it is possible to improve the grip performance of the tire in traveling when the road surface is wet while suppressing the decrease in runflat durability.
  • the present disclosure has been described in detail with respect to the specific embodiments, the present disclosure is not limited to the embodiments, and various other embodiments are possible within the scope of the present disclosure. It is clear to the trader.
  • the inclined grooves 36 and 38 are curvilinear in the above embodiment, they may be linear. However, in this case, the effect exhibited by the curvilinear shape does not occur.
  • the groove width of the inclined grooves 36 and 38 gradually changes in the above embodiment, the groove width may be constant. However, in this case, the effect exerted by the gradual change of the groove width is not exerted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

In the present invention, a plurality of slanted grooves, which are spaced away from each other in the tire circumferential direction, are formed in regions which comprise at least 25 [%] to 75 [%] inclusive of the tread width of the tread section centered on the tire equatorial plane, and are slanted with respect to the tire equatorial plane as seen from the tire radial direction. Consequently, block sections that extend and are connected along the slanted grooves are formed between pairs of slanted grooves adjacent to each other in the tire circumferential direction.

Description

ランフラットラジアルタイヤRunflat radial tire
 本開示は、パンクなどで内圧が低下した状態でも一定距離の走行を可能にするランフラットラジアルタイヤに関する。 The present disclosure relates to a run-flat radial tire that enables traveling of a certain distance even in a state where the internal pressure is lowered due to a puncture or the like.
 特許文献1(特開2014‐58317号公報)に記載のランフラットラジアルタイヤのトレッド部の内側クラウン領域には、タイヤ周方向に連続して延びる1本の内側クラウン主溝と、この内側クラウン主溝から車両内側の接地端まで連続して延びる内側主ラグ溝とが設けられている。そして、内側クラウン主溝の車両内側には、内側主ラグ溝によって幅広ブロックが区画されている。 In the inner crown area of the tread portion of the run-flat radial tire described in Patent Document 1 (Japanese Patent Laid-Open No. 2014-58317), there is one inner main crown groove continuously extending in the tire circumferential direction, and this inner crown main An inner main lug groove is provided extending continuously from the groove to the ground end on the inner side of the vehicle. A wide block is defined by the inner main lug groove inside the vehicle of the inner crown main groove.
 セクションハイトが比較的高いランフラットラジアルタイヤにおいては、ランフラット走行時における耐久性(ランフラット性能)を満たすため、サイド補強ゴムを非常に厚くしてタイヤの縦たわみ量を少なくする必要がある。結果として、タイヤの縦ばね定数が大きくなる(高くなる)ため、通常走行時の乗り心地が悪化してしまうことがある。 In the case of a run flat radial tire having a relatively high section height, in order to satisfy the run flat running durability (run flat performance), it is necessary to make the side reinforcing rubber very thick to reduce the longitudinal deflection of the tire. As a result, the vertical spring constant of the tire is increased (increased), which may deteriorate the ride comfort during normal driving.
 本開示の課題は、通常走行時の乗り心地を維持した上で、ランフラット走行時のランフラットラジアルタイヤの縦たわみ量を少なくすることである。 An object of the present disclosure is to reduce the amount of longitudinal deflection of a run flat radial tire during run flat running while maintaining the ride comfort during normal running.
 第1態様に係るランフラットラジアルタイヤは、一対のビード部間に跨るカーカスと、
 前記カーカスのタイヤ径方向の外側に形成されたトレッド部と、前記トレッド部のタイヤ赤道面上に形成され、タイヤ周方向に延びている主溝と、タイヤ赤道面を中心として少なくとも前記トレッド部の接地幅の25〔%〕以上で75〔%〕以下の領域に形成され、タイヤ径方向から見て、タイヤ赤道面に対して傾斜し、タイヤ周方向に離間する複数の傾斜溝と、タイヤ周方向に隣り合う一対の前記傾斜溝の間で、前記傾斜溝に沿って連続して延びているブロック部と、を備えることを特徴とする。
A run flat radial tire according to a first aspect comprises a carcass straddling a pair of bead portions,
A tread portion formed on the outer side in the tire radial direction of the carcass, a main groove formed on the tire equatorial plane of the tread portion and extending in the tire circumferential direction, and at least the tread portion centered on the tire equatorial plane A plurality of inclined grooves which are formed in a region of 25% or more and 75% or less of the contact width and are inclined with respect to the tire equatorial plane and separated in the tire circumferential direction when viewed from the tire radial direction; And a block portion continuously extending along the inclined groove between the pair of inclined grooves adjacent in a direction.
 上記構成によれば、ランフラットラジアルタイヤのトレッド部には、タイヤ周方向に延びている主溝が、タイヤ赤道面上に形成されている。また、タイヤ径方向から見てタイヤ赤道面に対して傾斜し、タイヤ周方向に離間する複数の傾斜溝が、少なくともトレッド部の接地幅の25〔%〕以上で75〔%〕以下の領域に形成されている。そして、タイヤ周方向に隣り合う一対の傾斜溝の間には、傾斜溝に沿って連続して延びているブロック部が形成されている。 According to the above configuration, the main groove extending in the tire circumferential direction is formed on the tire equatorial plane in the tread portion of the run-flat radial tire. In addition, the plurality of inclined grooves inclined with respect to the tire equatorial plane as viewed from the radial direction of the tire and separated in the circumferential direction of the tire are at least 25% to 75% of the contact width of the tread portion. It is formed. And between the pair of inclined grooves adjacent in the tire circumferential direction, a block portion continuously extending along the inclined grooves is formed.
 ここで、ランフラット走行時(タイヤの内圧が0〔kPa〕の状態での走行時)には、トレッド部の接地幅の25〔%〕以上で75〔%〕以下の領域では、タイヤ幅方向にトレッド部を圧縮する力が大きくなる。しかし、この領域には、タイヤ赤道面に対して傾斜した複数の傾斜溝が形成されており、一対の傾斜溝の間には、傾斜溝に沿ってブロック部が連続して延びている。換言すれば、この領域には、タイヤ周方向に延びている溝が形成されていない。 Here, during run-flat running (when running with the internal pressure of the tire at 0 [kPa]), the tire width direction is in the range of 25% to 75% of the contact width of the tread portion. The force to compress the tread increases. However, in this region, a plurality of inclined grooves inclined with respect to the tire equatorial plane are formed, and a block portion extends continuously along the inclined grooves between the pair of inclined grooves. In other words, no groove extending in the tire circumferential direction is formed in this region.
 このように、トレッド部の接地幅25〔%〕以上で75〔%〕以下の領域には、タイヤ幅方向にトレッド部を圧縮する力よってトレッド部の曲げ変形の起点となる、タイヤ周方向に延びる溝が形成されていない。このため、サイド補強層の剛性を高くすることなく、ランフラット走行時のランフラットラジアルタイヤの縦たわみ量が少なくなる。 As described above, in the region of 25% or more and 75% or less of the contact width of the tread portion, in the tire circumferential direction, which is the starting point of bending deformation of the tread portion due to the force compressing the tread portion in the tire width direction. The extending groove is not formed. For this reason, the longitudinal deflection amount of the run flat radial tire during run flat running is reduced without increasing the rigidity of the side reinforcing layer.
 換言すれば、通常走行時のランフラットタイヤの縦ばね定数を変えることなく、ランフラット走行時のランフラットラジアルタイヤの縦たわみ量を少なくすることができる。つまり、通常走行時の乗り心地を維持した上で、ランフラット走行時のランフラットラジアルタイヤの縦たわみ量を少なくすることができる。 In other words, it is possible to reduce the amount of longitudinal deflection of the run flat radial tire during run flat running without changing the longitudinal spring constant of the run flat tire during normal running. In other words, it is possible to reduce the amount of longitudinal deflection of the runflat radial tire during runflat travel while maintaining the ride comfort during normal travel.
 第2態様に係るランフラットラジアルタイヤは、第1態様に記載のランフラットラジアルタイヤにおいて、タイヤ赤道面を中心として前記トレッド部の接地幅の75〔%〕より外側で、接地幅の100〔%〕以下の領域には、タイヤ周方向に延びている側方主溝が形成されていることを特徴とする。 The run-flat radial tire according to the second aspect is the run-flat radial tire according to the first aspect, wherein the run-flat radial tire is 100% of the ground contact width outside 75% of the ground contact width of the tread centering on the tire equatorial plane. A side main groove extending in the circumferential direction of the tire is formed in the following region.
 上記構成によれば、タイヤ周方向に延びている側方主溝が、トレッド部の接地幅の75〔%〕より外側(タイヤ赤道面CLから遠い側)で、接地幅の100〔%〕以下の領域に形成されている。ここで、ランフラット走行時には、トレッド部の接地幅の75〔%〕より外側の領域では、タイヤ幅方向にトレッド部を圧縮する力が小さい。 According to the above configuration, the side main groove extending in the tire circumferential direction is 100% or less of the ground contact width outside 75% of the ground contact width of the tread portion (the side far from the tire equatorial plane CL) It is formed in the area of Here, at the time of run flat running, in the region outside 75% of the contact width of the tread portion, the force for compressing the tread portion in the tire width direction is small.
 このため、トレッド部の接地幅の75〔%〕より外側の領域に、タイヤ周方向に延びている側方主溝が形成されていても、ランフラット走行時のランフラットラジアルタイヤの縦たわみ量の増加が抑制される。一方、この領域に、タイヤ周方向に延びている側方主溝が形成されていることで、通常走行時のランフラットタイヤの縦ばね定数を小さくすることができる。 For this reason, even if the side main groove extending in the tire circumferential direction is formed in the region outside 75% of the contact width of the tread portion, the amount of longitudinal deflection of the runflat radial tire during runflat running Increase is suppressed. On the other hand, by forming the side main grooves extending in the tire circumferential direction in this region, it is possible to reduce the longitudinal spring constant of the run flat tire during normal traveling.
 このように、ランフラット走行時のランフラットラジアルタイヤの縦たわみ量の増加を抑制した上で、通常走行時のランフラットタイヤの縦ばね定数を小さくすることができる。換言すれば、ランフラット走行時のランフラットラジアルタイヤの縦たわみ量の増加を抑制した上で、通常走行時の乗り心地を向上させることができる。 As described above, it is possible to reduce the vertical spring constant of the run-flat tire during normal running, while suppressing an increase in the amount of longitudinal deflection of the run-flat radial tire during run-flat running. In other words, it is possible to improve the riding comfort during normal running while suppressing an increase in the amount of longitudinal deflection of the run flat radial tire during run flat running.
 第3態様に係るランフラットラジアルタイヤは、第2態様に記載のランフラットラジアルタイヤにおいて、前記側方主溝の溝幅は、前記主溝の溝幅と比して広くされていることを特徴とする。 The run-flat radial tire according to a third aspect is the run-flat radial tire according to the second aspect, wherein the groove width of the side main groove is wider than the groove width of the main groove. I assume.
 上記構成によれば、側方主溝の溝幅は、主溝の溝幅と比して広くされている。これにより、トレッド部においてタイヤ幅方向の外側の部分の排水性能が向上することで、路面が濡れている場合の走行において、ランフラットラジアルタイヤのグリップ性能を向上させることができる。 According to the above configuration, the groove width of the side main groove is wider than the groove width of the main groove. As a result, the drainage performance of the outer portion in the tire width direction in the tread portion is improved, whereby the grip performance of the run-flat radial tire can be improved in traveling when the road surface is wet.
 第4態様に係るランフラットラジアルタイヤは、前記傾斜溝は、タイヤ径方向から見て、タイヤ赤道面側からタイヤ幅方向の外側に向かって湾曲した状態で延びていることを特徴とする。 The run-flat radial tire according to the fourth aspect is characterized in that the inclined groove extends in a curved state from the tire equatorial plane side toward the outer side in the tire width direction when viewed from the tire radial direction.
 上記構成によれば、傾斜溝は、タイヤ径方向から見て、タイヤ赤道面側からタイヤ幅方向の外側に向かって湾曲した状態で延びている。このため、傾斜溝が、直線状に延びている場合と比して、タイヤ幅方向にトレッド部を圧縮する力によって、トレッド部に局部的な曲げ変形が生じるのが抑制されることで、ランフラットラジアルタイヤの縦たわみ量を少なくすることができる。 According to the above configuration, the inclined groove extends in a curved state from the tire equatorial plane side toward the outer side in the tire width direction when viewed from the tire radial direction. For this reason, as compared with the case where the inclined grooves extend linearly, it is possible to suppress the occurrence of local bending deformation in the tread portion due to the force that compresses the tread portion in the tire width direction. The amount of longitudinal deflection of the flat radial tire can be reduced.
 第5態様に係るランフラットラジアルタイヤは、第1態様~第4態様の何れか1態様に記載のランフラットラジアルタイヤにおいて、タイヤ径方向から見て、前記トレッド部の接地幅の25〔%〕以上で75〔%〕以下の領域における前記傾斜溝と、タイヤ赤道面との成す角度は、60〔度〕以上で90〔度〕以下とされていることを特徴とする。 A run flat radial tire according to a fifth aspect is the run flat radial tire according to any one of the first to fourth aspects, wherein 25% of the contact width of the tread portion when viewed from the tire radial direction. The angle between the inclined groove and the tire equatorial plane in the region of 75% or less is 60 ° to 90 °.
 上記構成によれば、傾斜溝と、タイヤ赤道面との成す角度は、60〔度〕以上で90〔度〕以下とされている。このため、傾斜溝とタイヤ赤道面との成す角度が20〔度〕以上で30〔度〕以下の場合と比して、ランフラット走行時に傾斜溝に起因して生じるトレッド部の曲げ変形が抑制され、ランフラットラジアルタイヤの縦たわみ量を少なくすることができる。 According to the above configuration, the angle formed between the inclined groove and the tire equatorial plane is 60 degrees or more and 90 degrees or less. Therefore, compared to the case where the angle formed by the inclined groove and the tire equatorial plane is 20 degrees or more and 30 degrees or less, bending deformation of the tread portion caused by the inclined grooves during run flat travel is suppressed The amount of longitudinal deflection of the run flat radial tire can be reduced.
 第6態様に係るランフラットラジアルタイヤは、第1態様~第5態様の何れか1態様に記載のランフラットラジアルタイヤにおいて、前記傾斜溝の溝幅は、タイヤ赤道面側からタイヤ幅方向の外側に向かって徐々に広がっていることを特徴とする。 A run flat radial tire according to a sixth aspect is the run flat radial tire according to any one of the first to fifth aspects, wherein the groove width of the inclined groove is an outer side in the tire width direction from the tire equatorial plane side Spread gradually towards the
 上記構成によれば、傾斜溝の溝幅は、タイヤ赤道面側からタイヤ幅方向の外側に向かって徐々に広がっている。このため、傾斜溝の溝幅が一定の場合と比して、路面が濡れている場合の走行において、ランフラットラジアルタイヤと路面との間の水を接地面の外側へ排水する排水性能を向上させることができる。 According to the above configuration, the groove width of the inclined groove gradually widens from the tire equatorial plane side toward the outer side in the tire width direction. For this reason, compared with the case where the groove width of the inclined groove is constant, the drainage performance for draining the water between the run flat radial tire and the road surface to the outside of the contact surface is improved in traveling when the road surface is wet. It can be done.
 第7態様に係るランフラットラジアルタイヤは、第1態様~第6態様の何れか1態様に記載のランフラットラジアルタイヤにおいて、前記カーカスのタイヤ径方向の外側に配置され、タイヤ周方向に延びている環状のベルト層を備え、前記ベルト層を構成する複数のコードは、タイヤ径方向から見て、タイヤ赤道面に対して傾斜して配置されており、タイヤ径方向から見て、タイヤ赤道面に対する前記傾斜溝の傾斜方向と、タイヤ赤道面に対する前記コードの傾斜方向とは、異なることを特徴とする。 A run flat radial tire according to a seventh aspect is the run flat radial tire according to any one of the first to sixth aspects, wherein the run flat radial tire is disposed outside the carcass in the tire radial direction and extends in the tire circumferential direction. The plurality of cords constituting the belt layer are disposed to be inclined with respect to the tire equatorial plane as viewed from the tire radial direction, and viewed from the tire radial direction, the tire equatorial plane is provided. The inclination direction of the inclined groove with respect to and the inclination direction of the cord with respect to the tire equatorial plane are different.
 上記構成によれば、タイヤ径方向から見て、タイヤ赤道面に対する傾斜溝の傾斜方向と、タイヤ赤道面に対するコードの傾斜方向とは異なっている。このため、ランフラット走行時においてトレッド部に生じているトレッド部を圧縮する力の方向が、タイヤ赤道面に対して一方に傾いた場合でも、他方に傾いて場合でも、ランフラット走行時のランフラットラジアルタイヤの縦たわみ量を少なくすることができる。 According to the above configuration, the inclination direction of the inclined groove with respect to the tire equatorial plane and the inclination direction of the cord with respect to the tire equatorial plane are different when viewed from the tire radial direction. For this reason, even when the direction of the force for compressing the tread portion generated in the tread portion during runflat running is inclined to one side with respect to the tire equatorial plane, the run during runflat running The amount of longitudinal deflection of the flat radial tire can be reduced.
 本開示によれば、通常走行時の乗り心地を維持した上で、ランフラット走行時のランフラットラジアルタイヤの縦たわみ量を少なくすることができる。 According to the present disclosure, it is possible to reduce the amount of longitudinal deflection of the run flat radial tire during run flat running while maintaining the ride comfort during normal running.
本開示の第1実施形態に係るランフラットラジアルタイヤのトレッド部に形成された溝を示した平面図である。It is the top view showing the slot formed in the tread part of the run flat radial tire concerning a 1st embodiment of this indication. 本開示の第1実施形態に係るランフラットラジアルタイヤのトレッド部に形成された溝と一部断面を示した平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the top view which showed the groove | channel and the partial cross section which were formed in the tread part of the run flat radial tire which concerns on 1st Embodiment of this indication. 本開示の第1実施形態に係るランフラットラジアルタイヤのトレッド部に形成された溝を示した拡大平面図である。1 is an enlarged plan view showing a groove formed in a tread portion of a run-flat radial tire according to a first embodiment of the present disclosure. 本開示の第1実施形態に係るランフラットラジアルタイヤを示し、ランフラットラジアルタイヤをタイヤ幅方向に沿って切断した断面図である。1 is a cross-sectional view of a run-flat radial tire according to a first embodiment of the present disclosure, cut along the tire width direction. 本開示の第1実施形態に係るランフラットラジアルタイヤの実施例、及び比較例等の評価結果を表で示した図面である。It is the drawing which showed the evaluation result of an example of a run flat radial tire concerning a 1st embodiment of this indication, a comparative example, etc. with a table. 本開示の第1実施形態に係るランフラットラジアルタイヤの解析結果を示した図面である。It is drawing which showed the analysis result of the run flat radial tire concerning a 1st embodiment of this indication. 本開示の第1実施形態に係るランフラットラジアルタイヤの解析結果を示した図面である。It is drawing which showed the analysis result of the run flat radial tire concerning a 1st embodiment of this indication. 本開示の第1実施形態に係るランフラットラジアルタイヤの解析結果を示した図面である。It is drawing which showed the analysis result of the run flat radial tire concerning a 1st embodiment of this indication. 本開示の第1実施形態に係るランフラットラジアルタイヤの解析結果を示した図面である。It is drawing which showed the analysis result of the run flat radial tire concerning a 1st embodiment of this indication. 本開示の第1実施形態に係るランフラットラジアルタイヤの実施例、及び比較例の変形モードを示した図面である。It is drawing which showed the deformation | transformation mode of the Example of the run flat radial tire which concerns on 1st Embodiment of this indication, and a comparative example. 本開示の第1実施形態に係るランフラットラジアルタイヤの実施例、及び比較例の変形モードを示した図面である。It is drawing which showed the deformation | transformation mode of the Example of the run flat radial tire which concerns on 1st Embodiment of this indication, and a comparative example. 本開示の第1実施形態に係るランフラットラジアルタイヤの比較例に係るトレッド部に形成された溝を示した平面図である。It is the top view which showed the groove formed in the tread part concerning the comparative example of the run flat radial tire concerning a 1st embodiment of this indication. 本開示の第2実施形態に係るランフラットラジアルタイヤのトレッド部に形成された溝を示した平面図である。It is the top view which showed the groove formed in the tread part of the run flat radial tire concerning a 2nd embodiment of this indication.
 <第1実施形態>
 本開示の第1実施形態に係るタイヤの一例について図1~図8に従って説明する。なお、図中に示す矢印Cは、タイヤ周方向を示し、矢印Rは、タイヤ径方向を示し、矢印Wは、タイヤ幅方向を示す。また、タイヤ径方向とは、タイヤの回転軸と直交する方向をいう。さらに、符号CLはタイヤの赤道面(タイヤ赤道面)を示している。
First Embodiment
An example of a tire according to a first embodiment of the present disclosure will be described according to FIGS. 1 to 8. In addition, arrow C shown in a figure shows a tire peripheral direction, arrow R shows a tire radial direction, and arrow W shows a tire width direction. Moreover, a tire radial direction means the direction orthogonal to the rotating shaft of a tire. Furthermore, the code | symbol CL has shown the equatorial plane (tire equatorial plane) of a tire.
 また、本実施形態では、タイヤ径方向に沿ってタイヤの回転軸に近い側を「タイヤ径方向内側」、タイヤ径方向に沿ってタイヤの回転軸から遠い側を「タイヤ径方向外側」と記載する。さらに、タイヤ幅方向に沿ってタイヤ赤道面CLに近い側を「タイヤ幅方向内側」、タイヤ幅方向に沿ってタイヤ赤道面CLから遠い側を「タイヤ幅方向外側」と記載する。 In the present embodiment, the side closer to the rotation axis of the tire along the tire radial direction is referred to as "the inner side in the tire radial direction", and the side farther from the rotational shaft of the tire along the tire radial direction is referred to as the "outer side in the tire radial direction". Do. Furthermore, the side closer to the tire equatorial plane CL along the tire width direction will be referred to as "the inner side in the tire width direction", and the side farther from the tire equatorial plane CL along the tire width direction will be referred to as "the outer side in the tire width direction".
 (全体構成)
 本実施形態に係るランフラットラジアルタイヤ10(以下「タイヤ10」)は、図4に示されるように、ビード部12、サイドウォール部14、トレッド部16、カーカス18、ベルト層20、ベルト補強層22、及びサイド補強層26を備えている。
(overall structure)
As shown in FIG. 4, the run-flat radial tire 10 according to the present embodiment (hereinafter referred to as "the tire 10") has the bead portion 12, the sidewall portion 14, the tread portion 16, the carcass 18, the belt layer 20, and the belt reinforcing layer. 22 and a side reinforcing layer 26.
 ビード部12は、環状のビードコア28を夫々有する部材であって、タイヤ幅方向に一対設けられている。また、ビード部12には、サイドウォール部14を構成するゴムよりも硬質のゴムから形成され、ビードコア28からタイヤ径方向外側へ向けて延びるビードフィラー29が設けられている。 The bead portions 12 are members each having an annular bead core 28 and are provided in a pair in the tire width direction. Further, the bead portion 12 is provided with a bead filler 29 which is formed of a rubber harder than the rubber constituting the sidewall portion 14 and extends outward from the bead core 28 in the tire radial direction.
 サイドウォール部14は、ビード部12に夫々連なる部分であって、カーカス18やその他のゴム層と共に、タイヤ10の一対の側面を構成している。トレッド部16は、両側のサイドウォール部14に連なるゴム層であって、後述する主溝30等が形成されており、走行時に路面と接触する部分である。 The sidewall portion 14 is a portion respectively connected to the bead portion 12 and constitutes a pair of side surfaces of the tire 10 together with the carcass 18 and other rubber layers. The tread portion 16 is a rubber layer connected to the side wall portions 14 on both sides, is formed with a main groove 30 and the like described later, and is a portion that contacts the road surface during traveling.
 カーカス18は、一対のビード部12間をトロイド状に跨って配置されており、ラジアル方向に配置された複数本のコードをゴムで被覆してなる複数枚(本実施形態では2枚)のカーカスプライから構成されている。 The carcass 18 is disposed across the pair of bead portions 12 in a toroidal shape, and a plurality of (two in the present embodiment) carcass formed by coating a plurality of cords arranged in the radial direction with rubber. It consists of plies.
 ベルト層20は、カーカス18のクラウン部(カーカス18のタイヤ径方向を向いた部分)の外周に配置されており、カーカス18のクラウン部を締め付けてタガ効果(タイヤをリムに締め付ける力を増大させる効果)を発揮する部材である。 The belt layer 20 is disposed on the outer periphery of the crown portion of the carcass 18 (portion facing the tire radial direction of the carcass 18), and tightens the crown portion of the carcass 18 to increase the taga effect (tightening the tire to the rim) Effects)).
 ベルト補強層22は、ベルト層20の外周に沿って巻き回してなる部材であって、例えば複数本のコードをゴム被覆してなる帯状のストリップを、ベルト層20を覆うように巻き付けた部材である。本実施形態では、ベルト補強層22は2層構造となっている。 The belt reinforcing layer 22 is a member formed by winding along the outer periphery of the belt layer 20, and is, for example, a member obtained by winding a strip including a plurality of cords coated with rubber so as to cover the belt layer 20. is there. In the present embodiment, the belt reinforcing layer 22 has a two-layer structure.
 サイド補強層26は、ゴムから構成されており、サイドウォール部14のカーカス18の部分に対して、タイヤ幅方向内側に配置されている。サイド補強層26の厚さは、タイヤ径方向内側及び外側に向けてその厚さが漸減しており、サイド補強層26の断面は、略三日月状とされている。また、サイド補強層26を構成するゴムの硬度は、ランフラット走行時に荷重を支えることができるように、サイドウォール部14を構成するゴムの硬度と比して高くされている。
 つまり、タイヤ10は、空気圧がゼロになっても、予め定められた速度で一定距離の走行を可能にするタイヤである。
The side reinforcing layer 26 is made of rubber, and is disposed on the inner side in the tire width direction with respect to the portion of the carcass 18 of the sidewall portion 14. The thickness of the side reinforcing layer 26 gradually decreases inward and outward in the tire radial direction, and the cross section of the side reinforcing layer 26 has a substantially crescent shape. Further, the hardness of the rubber forming the side reinforcing layer 26 is made higher than the hardness of the rubber forming the sidewall portion 14 so as to be able to support a load during run-flat travel.
That is, the tire 10 is a tire that enables traveling at a predetermined speed at a predetermined speed even when the air pressure becomes zero.
 (要部構成)
 次に、トレッド部16に形成されている溝について説明する。
 トレッド部16には、図1に示されるように、主溝30、及び複数の傾斜溝36、38が形成されている。
(Main part configuration)
Next, the groove formed in the tread portion 16 will be described.
As shown in FIG. 1, the tread portion 16 is formed with a main groove 30 and a plurality of inclined grooves 36 and 38.
 〔主溝30〕
 主溝30は、トレッド部16のタイヤ赤道面CL上に形成され、タイヤ周方向に延びている。そして、本実施形態では、一例として、主溝30の溝幅は8〔mm〕とされ、主溝30の溝深さは10〔mm〕とされている。
[Main groove 30]
The main groove 30 is formed on the tire equatorial plane CL of the tread portion 16 and extends in the tire circumferential direction. In the embodiment, as an example, the groove width of the main groove 30 is 8 mm, and the groove depth of the main groove 30 is 10 mm.
 〔傾斜溝36〕
 傾斜溝36は、主溝30に対して、タイヤ幅方向外側(図中左側)に複数形成されている。そして、複数の傾斜溝36は、タイヤ周方向に予め決められた間隔(ピッチ)で配置されている。
[Slanted groove 36]
A plurality of inclined grooves 36 are formed outside the main groove 30 in the tire width direction (left side in the drawing). The plurality of inclined grooves 36 are arranged at predetermined intervals (pitches) in the tire circumferential direction.
 この傾斜溝36は、タイヤ径方向から見て、タイヤ幅方向外側の端部がタイヤ幅方向内側の端部と比してタイヤ周方向の一側(図中下側)に位置するように、タイヤ赤道面CL側からタイヤ幅方向外側に向かって湾曲した状態で延びている。換言すれば、傾斜溝36は、タイヤ径方向から見て、直線状の部分を有さず、弓形に曲がっている。 The inclined groove 36 is positioned such that the end on the outer side in the tire width direction is located on one side (the lower side in the figure) in the circumferential direction of the tire as compared to the end on the inner side in the tire width direction when viewed from the tire radial direction. It extends in a curved state from the tire equatorial plane CL side toward the outer side in the tire width direction. In other words, the inclined grooves 36 do not have a straight portion when viewed in the tire radial direction, and are curved in an arc.
 さらに、傾斜溝36の溝幅は、タイヤ赤道面CL側からタイヤ幅方向の外側に向かって徐々に広がっている。本実施形態では、傾斜溝36におけるタイヤ幅方向内側の端部の溝幅は、一例として、8〔mm〕とされており、タイヤ幅方向外側の端部の溝幅は、20〔mm〕とされている。また、傾斜溝36の溝深さは、一例として、10〔mm〕とされている。 Furthermore, the groove width of the inclined groove 36 gradually widens from the tire equatorial plane CL side toward the outer side in the tire width direction. In the present embodiment, the groove width of the end on the inner side in the tire width direction in the inclined groove 36 is, for example, 8 mm, and the groove width of the end on the outer side in the tire width direction is 20 mm. It is done. Further, the groove depth of the inclined groove 36 is, for example, 10 mm.
 さらに、トレッド部16においてタイヤ赤道面CLを中心として接地幅の25〔%〕以上で75〔%〕以下の領域の部分の傾斜溝36と、タイヤ赤道面CLとの成す角度は、60〔度〕以上で90〔度〕以下とされている。 Furthermore, in the tread portion 16, the angle formed between the inclined groove 36 and the tire equatorial plane CL in the region of 25% to 75% of the contact width with respect to the tire equatorial plane CL is 60 [deg.]. Above, it is made 90 degrees or less.
 ここで、「接地幅」とは、2017年度JATMA YEAR BOOKに従い、タイヤ10を標準リムに装着し、適用サイズ・プライレーティングにおける最大負荷能力およびこれに対応する空気圧(最大空気圧)を基準としたときの路面と接地する部分のタイヤ幅方向の最大幅である。使用地又は製造地において、TRA規格、ETRTO規格が適用される場合は各々の規格に従う。 Here, according to the 2017 JATMA YEAR BOOK, the tire 10 is mounted on a standard rim, and the “contact width” is based on the maximum load capacity in applied size and ply rating and the corresponding air pressure (maximum air pressure). The maximum width of the tire in the tire width direction at the part that contacts the road surface Where the TRA standard or ETRTO standard is applied at the place of use or production site, the respective standard is followed.
 図中のTWは、接地幅を示しており、図中のT1、T2は、接地端を示す。また、図中の0.25TWは、接地幅の25〔%〕(接地幅の25〔%〕の領域)を示しており、図中の0.75TWは、接地幅の75〔%〕(接地幅の75〔%〕の領域)を示している。なお、本実施形態では、タイヤ幅方向において接地幅TWの中心に、タイヤ赤道面CLが通っている。 TW in the figure indicates a ground width, and T1 and T2 in the figure indicate a ground end. Also, 0.25TW in the figure indicates 25% of the ground width (area of 25% of the ground width), and 0.75TW in the figure is 75% of the ground width (ground (Area of 75% of width) is shown. In the present embodiment, the tire equatorial plane CL passes through the center of the contact width TW in the tire width direction.
 そして、図1に示す領域H1の部分の傾斜溝36と、タイヤ赤道面CLとの成す角度が、60〔度〕以上で90〔度〕以下とされている。具体的には、傾斜溝36と、タイヤ赤道面CLとを、タイヤ径方向でタイヤ子午線面に投影した状態で、図3に示されるように、タイヤ赤道面CLと、傾斜溝36の中心線C1との成す角度(図中R1)が、60〔度〕以上で90〔度〕以下とされている。ここで、本実施形態で「角度」とは、一の線と他の線との成す角度の中で、小さい方の角度(劣角)をいう。 The angle between the inclined groove 36 in the area H1 shown in FIG. 1 and the tire equatorial plane CL is 60 degrees or more and 90 degrees or less. Specifically, with the inclined grooves 36 and the tire equatorial plane CL projected onto the tire meridian plane in the tire radial direction, as shown in FIG. 3, the tire equatorial plane CL and the center line of the inclined grooves 36 An angle (R1 in the figure) formed with C1 is set to 60 degrees or more and 90 degrees or less. Here, in the present embodiment, the “angle” refers to the smaller angle (the inferior angle) of the angles formed by one line and another line.
 そして、タイヤ周方向に隣り合う一対の傾斜溝36の間には、図1に示されるように、傾斜溝36に沿って連続して延びているブロック部42(所謂陸部)が形成されている。換言すれば、タイヤ周方向に隣り合う一対の傾斜溝36の間には、タイヤ周方向に延びる溝等は形成されていない。 And, as shown in FIG. 1, a block portion 42 (so-called land portion) continuously extending along the inclined groove 36 is formed between the pair of inclined grooves 36 adjacent in the tire circumferential direction. There is. In other words, no groove or the like extending in the tire circumferential direction is formed between the pair of inclined grooves 36 adjacent in the tire circumferential direction.
 〔傾斜溝38〕
 傾斜溝38は、図1に示されるように、主溝30に対して、タイヤ幅方向外側(図中右側)に複数形成されている。換言すれば、傾斜溝38は、横溝の一種であり、主溝30に対して、傾斜溝36の反対側に複数形成されている。そして、複数の傾斜溝38は、タイヤ周方向に予め決められた間隔(ピッチ)で配置されている。傾斜溝38のピッチと、傾斜溝36のピッチとは同様の値とされており、傾斜溝38は、タイヤ周方向において、傾斜溝36に対して半ピッチずらして配置されている。なお、傾斜溝38については、傾斜溝36と異なる部分を主に説明する。
[Inclined groove 38]
As shown in FIG. 1, a plurality of inclined grooves 38 are formed outside the main groove 30 in the tire width direction (right side in the drawing). In other words, the inclined groove 38 is a kind of lateral groove, and a plurality of inclined grooves 38 are formed on the opposite side of the inclined groove 36 to the main groove 30. The plurality of inclined grooves 38 are arranged at a predetermined interval (pitch) in the tire circumferential direction. The pitch of the inclined grooves 38 and the pitch of the inclined grooves 36 have the same value, and the inclined grooves 38 are disposed at a half pitch offset from the inclined grooves 36 in the tire circumferential direction. In addition, about the inclined groove 38, the part different from the inclined groove 36 is mainly demonstrated.
 傾斜溝38は、タイヤ赤道面CLを中心に傾斜溝36をタイヤ幅方向に反転させ、さらに、タイヤ周方向に反転させた形状とされている。 The inclined groove 38 has a shape in which the inclined groove 36 is inverted in the tire width direction centering on the tire equatorial plane CL and further in the tire circumferential direction.
 具体的には、傾斜溝38は、タイヤ径方向から見て、タイヤ幅方向外側の端部がタイヤ幅方向内側の端部と比してタイヤ周方向の他側(図中上側)に位置するように、タイヤ赤道面CL側からタイヤ幅方向外側に向かって湾曲した状態で延びている。換言すれば、傾斜溝38は、タイヤ径方向から見て、直線状の部分を有さず、弓形に曲がっている。 Specifically, when viewed from the radial direction of the tire, the inclined groove 38 is positioned on the other side (upper side in the figure) in the tire circumferential direction compared to the end in the tire width direction on the outer side in the tire width direction. Thus, it extends in a curved state from the tire equatorial plane CL side toward the outer side in the tire width direction. In other words, the inclined grooves 38 do not have a straight portion when viewed in the tire radial direction, and are curved in an arc.
 これにより、トレッド部16における接地幅25〔%〕以上で75〔%〕以下の領域(図中H2)の部分の傾斜溝38と、タイヤ赤道面CLとの成す角度は、60〔度〕以上で90〔度〕以下とされている。 Thereby, the angle formed between the inclined groove 38 in the region (H2 in the drawing) and the tire equatorial plane CL in the region (H2 in the drawing) of the tread width 16 at 25% to 75% of the tread width is at least 60 degrees. And 90 degrees or less.
 そして、タイヤ周方向に隣り合う一対の傾斜溝38の間には、図1に示されるように、傾斜溝38に沿って連続して延びているブロック部44が形成されている。換言すれば、タイヤ周方向に隣り合う一対の傾斜溝38の間には、タイヤ周方向に延びる溝等は形成されていない。 Further, as shown in FIG. 1, block portions 44 extending continuously along the inclined grooves 38 are formed between the pair of inclined grooves 38 adjacent in the tire circumferential direction. In other words, no groove or the like extending in the tire circumferential direction is formed between the pair of inclined grooves 38 adjacent in the tire circumferential direction.
 〔その他〕
 ベルト層20には、図2に示されるように、複数のコード20Aが、タイヤ赤道面CLに対して傾斜して配置されている。本実施形態では、コード20Aにおいてタイヤ幅方向の図中左側の端部は、コード20Aにおいてタイヤ幅方向の図中右側の端部と比して、タイヤ周方向の他側(図中上側)に位置している。つまり、コード20Aは、図中左上りとなるように、タイヤ赤道面CLに対して傾斜している。具体的には、コード20Aは、タイヤ赤道面CLに対して、60度以上70度以下で傾斜して配置されている。
[Others]
In the belt layer 20, as shown in FIG. 2, a plurality of cords 20A are disposed inclined with respect to the tire equatorial plane CL. In the present embodiment, the end on the left side in the tire width direction in the cord 20A is on the other side (upper side in the figure) in the tire circumferential direction as compared to the end on the right side in the tire width direction in the cord 20A. positioned. That is, the cord 20A is inclined with respect to the tire equatorial plane CL so as to be at the upper left in the drawing. Specifically, the cord 20A is disposed to be inclined at 60 degrees or more and 70 degrees or less with respect to the tire equatorial plane CL.
 ここで、前述した傾斜溝36、38においては、傾斜溝36、38においてタイヤ幅方向の図中左側の端部は、傾斜溝36、38においてタイヤ幅方向の図中右側の端部と比して、タイヤ周方向の一側(図中下側)に位置している。つまり、傾斜溝36、38は、図中右上りとなるように、タイヤ赤道面CLに対して傾斜している。 Here, in the inclined grooves 36 and 38 described above, the end on the left side in the tire width direction in the inclined grooves 36 and 38 is compared with the end on the right side in the tire width direction in the inclined grooves 36 and 38. It is located at one side (lower side in the figure) in the tire circumferential direction. That is, the inclined grooves 36, 38 are inclined with respect to the tire equatorial plane CL so as to be on the upper right in the drawing.
 このように、タイヤ径方向から見て、タイヤ赤道面CLに対する傾斜溝36、38の傾斜方向と、タイヤ赤道面CLに対するコード20Aの傾斜方向とは異なっている。 Thus, when viewed from the tire radial direction, the inclination direction of the inclined grooves 36 and 38 with respect to the tire equatorial plane CL is different from the inclination direction of the cord 20A with respect to the tire equatorial plane CL.
 (評価)
 次に、第1実施形態の実施例1、後述する第2実施形態の実施例2、及び比較例に対して、255/65R18のタイヤを用いて評価を行ったため、この評価について説明する。
 〔評価仕様〕
 実施例1として、図1に示されるように、トレッド部16に、主溝30、傾斜溝36、及び傾斜溝38が形成されたタイヤを用いた。
(Evaluation)
Next, since evaluation was performed using Example 255 of the first embodiment, Example 2 of the second embodiment described later, and Comparative Example using the tire of 255 / 65R18, this evaluation will be described.
[Evaluation specification]
As Example 1, as shown in FIG. 1, a tire in which a main groove 30, an inclined groove 36, and an inclined groove 38 were formed in the tread portion 16 was used.
 実施例2として、図9に示されるように、トレッド部16に、主溝30、傾斜溝36、傾斜溝38、及び一対の側方主溝60が形成されたタイヤを用いた。一対の側方主溝60は、トレッド部16の接地幅75〔%〕より外側(タイヤ赤道面CLから遠い側)で、接地幅100〔%〕以下の領域(図中H3、H4)に夫々形成されており、タイヤ周方向に延びている(詳細は後述)。 As Example 2, as FIG. 9 shows, the tire in which the main groove 30, the inclined groove 36, the inclined groove 38, and a pair of side main groove 60 were formed in the tread part 16 was used. The pair of side main grooves 60 is outside the contact width 75 [%] of the tread portion 16 (side far from the tire equatorial plane CL) and in a region (H3 and H4 in the figure) less than the contact width 100 [%]. It is formed and extends in the tire circumferential direction (details will be described later).
 比較例として、図8に示されるように、トレッド部16に、主溝30、傾斜溝36、傾斜溝38、及び一対の中央主溝46が形成されたタイヤを用いた。一対の中央主溝46は、トレッド部16の接地幅25〔%〕以上で、75〔%〕以下の領域(図中H1、H2)に夫々形成されており、タイヤ周方向に延びている。また、中央主溝46の溝幅及び溝深さは、主溝30の溝幅及び溝深さと同様の値とされている。
 なお、前述した仕様以外の仕様については、実施例1、実施例2、及び比較例では、同様である。
As a comparative example, as shown in FIG. 8, a tire in which a main groove 30, an inclined groove 36, an inclined groove 38, and a pair of central main grooves 46 are formed in the tread portion 16 was used. The pair of central main grooves 46 are respectively formed in the region (H1 and H2 in the figure) with a contact width of 25% or more and 75% or less of the tread portion 16 and extend in the tire circumferential direction. The groove width and the groove depth of the central main groove 46 are set to the same values as the groove width and the groove depth of the main groove 30.
The specifications other than the specifications described above are the same in the first embodiment, the second embodiment, and the comparative example.
 〔評価項目〕
 -タイヤの縦たわみ量-
 各タイヤをJATMA規格の標準リムに組み付け、空気を充填することなく(内圧を0〔kPa〕)、予め定められた荷重をリムに負荷して、タイヤを路面に押し付けた。そして、各タイヤに対して、タイヤ径方向の縦たわみ量を測定した。縦たわみ量については、比較例のタイヤの縦たわみ量を100として、実施例1、及び実施例2のタイヤの縦たわみ量を算出した。
〔Evaluation item〕
-Vertical deflection of tire-
Each tire was assembled to a standard rim of JATMA standard, and a predetermined load was applied to the rim without filling air (the internal pressure was 0 [kPa]), and the tire was pressed against the road surface. Then, the amount of longitudinal deflection in the tire radial direction was measured for each tire. About the amount of longitudinal deflection, the amount of longitudinal deflection of the tire of Example 1 and Example 2 was computed by making the amount of longitudinal deflection of the tire of a comparative example into 100.
 -縦ばね定数-
 各タイヤをJATMA規格の標準リムに組み付け、空気を充填し予め決められた内圧(例えば、250〔kPa〕)として、予め定められた荷重をリムに負荷し、タイヤを路面に押し付けた。そして、各タイヤの縦たわみ量と、発生荷重から縦ばね定数を求めた。縦ばね定数については、比較例の縦ばね定数を100として、実施例1、及び実施例2の縦ばね定数を算出した。
-Vertical spring constant-
Each tire was attached to a standard rim of JATMA standard, air was filled, a predetermined load was applied to the rim as a predetermined internal pressure (for example, 250 [kPa]), and the tire was pressed against the road surface. Then, the longitudinal spring constant was determined from the amount of longitudinal deflection of each tire and the generated load. About the vertical spring constant, the vertical spring constant of Example 1 and Example 2 was calculated by setting the vertical spring constant of the comparative example to 100.
 〔評価結果〕
 図5の表に示されるように、実施例1、実施例2のタイヤでは、比較例のタイヤと比して、縦ばね定数を維持した上、タイヤの縦たわみ量が少なくなっている。
〔Evaluation results〕
As shown in the table of FIG. 5, in the tires of Example 1 and Example 2, the longitudinal spring constant is maintained and the amount of longitudinal deflection of the tire is smaller than that of the tire of the comparative example.
 〔解析〕
 前述した評価を考察するため、先ず、空気を充填していない(内圧を0〔kPa〕)タイヤを路面に押し付けた際にタイヤに生じたトレッド部を圧縮する力に対する解析について説明する。ここで、トレッド部を圧縮する力とは、トレッド部に曲げ変形が生じてトレッド部の一部が路面から浮く状態(バックリンク変形)となる力である。
〔analysis〕
In order to consider the evaluation described above, first, an analysis on the force for compressing the tread portion generated on the tire when the tire not filled with air (the internal pressure is 0 [kPa]) is pressed against the road will be described. Here, the force to compress the tread portion is a force that causes the tread portion to be bent and deformed so that part of the tread portion floats from the road surface (back link deformation).
 図6B、図6Cには、トレッド部に生じたトレッド部を圧縮する力がドッドで示されている。具体的には、図6Bには、タイヤ幅方向にトレッド部を圧縮する力がドッドで示されており、図6Cには、トレッド部に生じるタイヤ周方向にトレッド部を圧縮する力がドッドで示されている。ドッドが密の部分が、ドットが粗の部分に比して、トレッド部を圧縮する力が大きくなっている。 The force which compresses the tread part which arose in the tread part is shown with dod in FIG. 6B and FIG. 6C. Specifically, in FIG. 6B, a force for compressing the tread portion in the tire width direction is indicated by a dod, and in FIG. 6C, a force for compressing the tread portion in the tire circumferential direction generated in the tread portion is indicated by the dod. It is shown. The portion where the dod is dense has a larger force for compressing the tread portion than the portion where the dot is coarse.
 タイヤ幅方向にトレッド部を圧縮する力については、図6Bに示されるように、トレッド部において接地幅25〔%〕以上で、75〔%〕以下の領域で大きく、トレッド部の接地幅75〔%〕より外側(タイヤ赤道面CLから遠い側)の領域で小さい。 As shown in FIG. 6B, the force for compressing the tread portion in the tire width direction is large in a region of 25% or more and 75% or less of the tread width in the tread portion, and the tread width 75 [grounding width]. %] Is smaller in the region outside the tire equatorial plane CL.
 また、タイヤ周方向にトレッド部を圧縮する力については、図6Cに示されるように、トレッド部の全体の領域で小さい。 Moreover, about the force which compresses a tread part to a tire peripheral direction, as FIG. 6C shows, it is small in the area | region of the whole tread part.
 そして、解析結果から、タイヤ幅方向にトレッド部を圧縮する力と、タイヤ周方向にトレッド部を圧縮する力とを合成した合成力の方向(合成方向)は、図6Dに示されるように、タイヤ径方向から見て、タイヤ赤道面CLとに対して、60〔度〕以上90〔度〕以下(図中R2、R3、例えば、78〔度〕)であった。 And from the analysis result, the direction (synthetic direction) of the synthetic force combining the force to compress the tread portion in the tire width direction and the force to compress the tread portion in the tire circumferential direction is as shown in FIG. 6D. When viewed from the radial direction of the tire, it is 60 degrees or more and 90 degrees or less (R2, R3 in the figure, for example, 78 degrees) with respect to the tire equatorial plane CL.
 〔考察〕
 ランフラット走行時においては、タイヤに内圧が作用していないため、サイドウォール部14等を含むタイヤサイド部、及びトレッド部16等を含むクラウン部が変形することで、タイヤに作用する荷重を支える。ここで、ランフラット走行時における縦たわみ率(縦たわみ量/セクションハイト)と、ランフラット耐久性との相関が高いことが知られており、ランフラット耐久性を向上させるためにはタイヤの縦たわみ量を少なくしなければならない。そして、タイヤの縦たわみ量は、タイヤサイド部、及びクラウン部の変形量によって変わる。つまり、タイヤサイド部、又はクラウン部の変形量を少なくすることで、タイヤの縦たわみ量が少なくなり、ランフラット耐久性が向上する。
[Discussion]
During run flat running, the tire side portion including the sidewall portion 14 and the like, and the crown portion including the tread portion 16 and the like support the load acting on the tire because no internal pressure acts on the tire. . Here, it is known that the correlation between the longitudinal deflection ratio (longitudinal deflection amount / section height) during runflat running and the runflat durability is high, and in order to improve the runflat durability, the longitudinal dimension of the tire is increased. The amount of deflection must be reduced. And the amount of vertical deflection of a tire changes with the amount of deformation of a tire side part and a crown part. That is, by reducing the amount of deformation of the tire side portion or the crown portion, the amount of longitudinal deflection of the tire is reduced, and the run flat durability is improved.
 ここで、ランフラット走行時のクラウン部(トレッド部)には、タイヤ幅方向にトレッド部を圧縮する力(圧縮荷重)が作用して、トレッド部が路面から浮くバックリング変形が生じる。そして、前述した解析結果より、トレッド部において接地幅25〔%〕以上で、75〔%〕以下の領域でタイヤ幅方向にトレッド部を圧縮する力が大きくなっている。 Here, a force (compressive load) that compresses the tread portion acts on the crown portion (tread portion) during run flat traveling, and the tread portion floats from the road surface, causing buckling deformation. From the above analysis results, in the tread portion, the force for compressing the tread portion in the tire width direction is large in the region of 25% or more and 75% or less of the contact width.
 前述した評価の比較例のタイヤにおいては、トレッド部において接地幅25〔%〕以上で、75〔%〕以下の領域にタイヤ周方向に延びる中央主溝46は形成されている。これに対して、実施例1、及び実施例2のタイヤにおいては、トレッド部において接地幅25〔%〕以上で、75〔%〕以下の領域にタイヤ周方向に延びる中央主溝46は形成されていない。 In the tire of the comparative example of the evaluation described above, the central main groove 46 extending in the circumferential direction of the tire is formed in a region of 25% or more and 75% or less of the contact width in the tread portion. On the other hand, in the tires of Example 1 and Example 2, the central main groove 46 extending in the circumferential direction of the tire is formed in the tread portion at a region of 25% or more and 75% or less of the contact width. Not.
 このため、比較例に係るタイヤでは、図7Bに示されるように、ランフラット走行時に、中央主溝46が大きく変形する。つまり、中央主溝46が、トレッド部の曲げ変形の起点となる。これに対して、実施例1、及び実施例2のタイヤでは、図7Aに示されるように、中央主溝46がないため、クラウン部の変形が、比較例に係るタイヤと比して、小さくなる。 For this reason, in the tire according to the comparative example, as shown in FIG. 7B, the center main groove 46 is largely deformed during run flat traveling. That is, the central main groove 46 is a starting point of bending deformation of the tread portion. On the other hand, in the tires of Example 1 and Example 2, as shown in FIG. 7A, since there is no central main groove 46, the deformation of the crown portion is smaller than that of the tire according to the comparative example. Become.
 (まとめ)
 以上の評価結果、及び考察からも分かるように、タイヤ10では、縦ばね定数を維持した上、縦たわみ量を少なくすることができる。換言すれば、通常走行時の乗り心地を維持した上で、ランフラット走行時のタイヤ10の縦たわみ量を少なくすることができる。つまり、通常走行時の乗り心地を維持した上で、ランフラット耐久性を向上させることができる。
(Summary)
As can be understood from the above evaluation results and the discussion, in the tire 10, the longitudinal spring constant can be maintained and the amount of longitudinal deflection can be reduced. In other words, it is possible to reduce the amount of longitudinal deflection of the tire 10 during run flat travel while maintaining the ride comfort during normal travel. That is, the run-flat durability can be improved while maintaining the ride comfort during normal driving.
 また、タイヤ10には、主溝30、及び傾斜溝36、38が形成されている。このため、路面が濡れている場合の走行において、タイヤのグリップ性能が低下してしまうのを抑制することができる。 Further, in the tire 10, a main groove 30 and inclined grooves 36, 38 are formed. For this reason, it is possible to suppress the decrease in tire grip performance in traveling when the road surface is wet.
 また、タイヤ径方向から見て、接地幅25〔%〕以上で75〔%〕以下の領域における傾斜溝36、38と、タイヤ赤道面CLとの成す角度(図3の角度R1)は、60〔度〕以上90〔度〕以下とされている。ここで、前述した解析結果より、タイヤ幅方向にトレッド部を圧縮する力と、タイヤ周方向にトレッド部を圧縮する力とを合成した合成歪みの方向は、タイヤ径方向から見て、タイヤ赤道面CLとに対して、60〔度〕以上90〔度〕以下である(図6DのR2、R3参照)。このため、傾斜溝とタイヤ赤道面CLとの成す角度が20〔度〕以上30〔度〕以下の場合と比して、ランフラット走行時に傾斜溝に起因して生じるトレッド部16の変形が抑制され、タイヤ10の縦たわみ量を少なくすることができる。 Further, when viewed from the radial direction of the tire, the angle (angle R1 in FIG. 3) between the inclined grooves 36 and 38 and the tire equatorial plane CL in the region of 25% or more and 75% or less of the contact width is 60 [Degree] or more and 90 degrees or less. Here, from the analysis result described above, the direction of the synthetic strain in which the force for compressing the tread portion in the tire width direction and the force for compressing the tread portion in the tire circumferential direction is the tire equator when viewed from the tire radial direction. 60 degrees or more and 90 degrees or less with respect to the surface CL (see R2 and R3 in FIG. 6D). Therefore, compared to the case where the angle formed by the inclined groove and the tire equatorial plane CL is not less than 20 degrees and not more than 30 degrees, the deformation of the tread portion 16 caused by the inclined grooves during run flat travel is suppressed Thus, the amount of longitudinal deflection of the tire 10 can be reduced.
 また、傾斜溝36、38は、タイヤ径方向から見て、タイヤ赤道面CL側からタイヤ幅方向外側に向かって湾曲した状態で延びている。このため、傾斜溝が直線状に延びている場合と比して、タイヤ幅方向にトレッド部を圧縮する力によってトレッド部16に局部的な曲げ変形が生じるのが抑制され、タイヤ10の縦たわみ量を少なくすることができる。 The inclined grooves 36 and 38 extend in a curved state from the tire equatorial plane CL side toward the outer side in the tire width direction when viewed from the tire radial direction. Therefore, local bending deformation is suppressed in the tread portion 16 due to the force for compressing the tread portion in the tire width direction, as compared with the case where the inclined grooves extend linearly, and the longitudinal deflection of the tire 10 is obtained. The amount can be reduced.
 また、傾斜溝36、38の溝幅は、タイヤ赤道面CL側からタイヤ幅方向外側(タイヤ赤道面CLから遠い側)に向かって徐々に広がっている。このため、傾斜溝36、38の溝幅が一定の場合と比して、路面が濡れている場合の走行において、タイヤ10と路面との間の水を接地面の外側へ排水する排水性能を向上させることができる。 In addition, the groove width of the inclined grooves 36 and 38 gradually widens from the tire equatorial plane CL side toward the outer side in the tire width direction (the side farther from the tire equatorial plane CL). For this reason, compared with the case where the groove width of the inclined grooves 36 and 38 is constant, the drainage performance for draining water between the tire 10 and the road surface to the outside of the contact surface during traveling when the road surface is wet It can be improved.
 また、タイヤ径方向から見て、タイヤ赤道面CLに対する傾斜溝36、38の傾斜方向と、タイヤ赤道面CLに対するコード20Aの傾斜方向とが異なっている。このため、ランフラット走行時においてトレッド部16に生じているトレッド部を圧縮する力の方向が、タイヤ赤道面CLに対して一方に傾いた場合でも、他方に傾いて場合でも、ランフラット走行時のタイヤ10の縦たわみ量を少なくすることができる。 Further, as viewed from the radial direction of the tire, the inclination direction of the inclined grooves 36 and 38 with respect to the tire equatorial plane CL is different from the inclination direction of the cord 20A with respect to the tire equatorial plane CL. For this reason, even when the direction of the force for compressing the tread portion generated in the tread portion 16 during runflat running is inclined to one side with respect to the tire equatorial plane CL, the runflat running The longitudinal deflection of the tire 10 can be reduced.
 <第2実施形態>
 本開示の第2実施形態に係るタイヤの一例について図9に従って説明する。なお、第2実施形態に係るタイヤについては、第1実施形態のタイヤ10と異なる部分を主に説明する。
Second Embodiment
An example of a tire according to a second embodiment of the present disclosure will be described according to FIG. In addition, about the tire which concerns on 2nd Embodiment, the part different from the tire 10 of 1st Embodiment is mainly demonstrated.
 第2実施形態に係るタイヤ110のトレッド部16には、図9に示されるように、主溝30、傾斜溝36、傾斜溝38、及び一対の側方主溝60が形成されている。一対の側方主溝60は、トレッド部16の接地幅75〔%〕より外側で、接地幅100〔%〕以下の領域(図中H3、H4)に夫々形成されており、タイヤ周方向に延びている。つまり、前述の解析で説明したように、一対の側方主溝60は、ランフラット走行時にタイヤ幅方向にトレッド部を圧縮する力が小さい領域に形成されている。 In the tread portion 16 of the tire 110 according to the second embodiment, as shown in FIG. 9, a main groove 30, an inclined groove 36, an inclined groove 38, and a pair of side main grooves 60 are formed. The pair of side main grooves 60 is formed outside the contact width 75% of the tread portion 16 and in a region (H3 and H4 in the figure) smaller than the contact width 100% and in the tire circumferential direction. It extends. That is, as described in the above analysis, the pair of side main grooves 60 is formed in a region where the force for compressing the tread portion in the tire width direction during runflat travel is small.
 また、側方主溝60の溝幅は、一例として、10〔mm〕とされ、側方主溝60の溝深さは、一例として、10〔mm〕とされている。そして、側方主溝60の溝幅は、主溝30の溝幅と比して広くされている。また、側方主溝60の溝幅は、トレッド部16の接地幅75〔%〕より外側で、接地幅100〔%〕以下の領域(図中H3、H4)に配置されている部分の傾斜溝36、38の幅と比して狭くされている。 The groove width of the side main groove 60 is, for example, 10 mm, and the groove depth of the side main groove 60 is, for example, 10 mm. The groove width of the side main groove 60 is wider than the groove width of the main groove 30. Further, the groove width of the side main groove 60 is an inclination of a portion (H3, H4 in the figure) outside the contact width 75% of the tread portion 16 and not more than the contact width 100%. It is narrowed relative to the width of the grooves 36, 38.
 このように、ランフラット走行時にタイヤ幅方向にトレッド部を圧縮する力が小さい領域に、タイヤ周方向に延びた側方主溝60を形成させることで、ランフラット走行時の縦たわみ量の増加を抑制した上で、通常走行時の縦ばね定数を下げることができる。つまり、ランフラット走行時のタイヤ10の縦たわみ量を増加させることなく、通常走行時の乗り心地を向上させることができる。換言すれば、タイヤ110は、タイヤ10と比して、縦ばね定数を維持した上で、ランフラット走行時の縦たわみ量を少なくすることができる(図5に示す表参照)。 As described above, by forming the side main grooves 60 extending in the tire circumferential direction in a region where the force for compressing the tread in the tire width direction during run flat running is small, the amount of longitudinal deflection during run flat running is increased. Can be reduced to lower the vertical spring constant during normal driving. That is, the ride quality during normal travel can be improved without increasing the vertical deflection amount of the tire 10 during run flat travel. In other words, compared with the tire 10, the tire 110 can reduce the amount of longitudinal deflection during run flat travel while maintaining the longitudinal spring constant (see the table shown in FIG. 5).
 また、側方主溝60の溝幅は、主溝30の溝幅と比して広くされている。このため、トレッド部16においてタイヤ幅方向外側の部分の排水性能が向上する。これにより、ランフラット耐久性の低下を抑制した上で、路面が濡れている場合の走行において、タイヤのグリップ性能を向上させることができる。 Further, the groove width of the side main groove 60 is wider than the groove width of the main groove 30. For this reason, the drainage performance of the portion of the tread portion 16 on the outer side in the tire width direction is improved. As a result, it is possible to improve the grip performance of the tire in traveling when the road surface is wet while suppressing the decrease in runflat durability.
 なお、本開示を特定の実施形態について詳細に説明したが、本開示は係る実施形態に限定されるものではなく、本開示の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。例えば、上記実施形態では傾斜溝36、38は、曲線状であったが、直線状であってもよい。しかし、この場合には、曲線状であることで奏する作用は奏しない。 Although the present disclosure has been described in detail with respect to the specific embodiments, the present disclosure is not limited to the embodiments, and various other embodiments are possible within the scope of the present disclosure. It is clear to the trader. For example, although the inclined grooves 36 and 38 are curvilinear in the above embodiment, they may be linear. However, in this case, the effect exhibited by the curvilinear shape does not occur.
 また、上記実施形態では傾斜溝36、38の溝幅は、徐々に変化したが、溝幅が一定であってもよい。しかし、この場合には、溝幅が徐々に変化することで奏する作用は奏しない。 Further, although the groove width of the inclined grooves 36 and 38 gradually changes in the above embodiment, the groove width may be constant. However, in this case, the effect exerted by the gradual change of the groove width is not exerted.
 また、上記実施形態では傾斜溝36が赤道面CLに対して傾く方向と、傾斜溝38が赤道面CLに対して傾く方向とが同様であったが、異なっていてもよい。 Moreover, although the direction in which the inclined groove 36 inclines with respect to the equatorial plane CL and the direction in which the inclined groove 38 inclines with respect to the equatorial plane CL are the same in the above embodiment, they may be different.
 2017年12月12日に出願された日本国特許出願2017-238065号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 (符号の説明)
The disclosure of Japanese Patent Application 2017-238065, filed December 12, 2017, is incorporated herein by reference in its entirety.
All documents, patent applications and technical standards described herein are as specific and individually as individual documents, patent applications and technical standards are incorporated by reference. Incorporated herein by reference.
(Explanation of the code)
10・・・タイヤ(ランフラットラジアルタイヤ)、12・・・ビード部、16・・・トレッド部、18・・・カーカス、20・・・ベルト層、20A ・・・コード、
26・・・サイド補強層、30・・・主溝、36・・・傾斜溝、
38・・・傾斜溝、42・・・ブロック部、44・・・ブロック部、
60・・・側方主溝、110・・・タイヤ
DESCRIPTION OF SYMBOLS 10 ... tire (run flat radial tire), 12 ... bead part, 16 ... tread part, 18 ... carcass, 20 ... belt layer, 20A ... cord,
26 ··· Side reinforcement layer, 30 · · · Main groove, 36 · · · Inclined groove,
38 · · · inclined groove, 42 · · · block portion, 44 · · · block portion,
60 ··· Side main groove, 110 ··· Tire

Claims (7)

  1.  一対のビード部間に跨るカーカスと、
     前記カーカスのタイヤ径方向の外側に形成されたトレッド部と、
     前記トレッド部のタイヤ赤道面上に形成され、タイヤ周方向に延びている主溝と、
     タイヤ赤道面を中心として少なくとも前記トレッド部の接地幅の25〔%〕以上で75〔%〕以下の領域に形成され、タイヤ径方向から見て、タイヤ赤道面に対して傾斜し、タイヤ周方向に離間する複数の傾斜溝と、
     タイヤ周方向に隣り合う一対の前記傾斜溝の間で、前記傾斜溝に沿って連続して延びているブロック部と、
     を備えるランフラットラジアルタイヤ。
    A carcass extending between a pair of bead portions,
    A tread portion formed on the outer side in the tire radial direction of the carcass;
    A main groove formed on the tire equatorial plane of the tread portion and extending in the circumferential direction of the tire;
    It is formed in a region of at least 25% and at most 75% of the contact width of the tread portion with respect to the tire equatorial plane, and is inclined with respect to the tire equatorial plane when viewed from the tire radial direction. Multiple inclined grooves spaced apart,
    Between the pair of inclined grooves adjacent in the tire circumferential direction, a block portion continuously extending along the inclined grooves;
    Run flat radial tire with.
  2.  タイヤ赤道面を中心として前記トレッド部の接地幅の75〔%〕より外側で、接地幅の100〔%〕以下の領域には、タイヤ周方向に延びている側方主溝が形成されている請求項1に記載のランフラットラジアルタイヤ。 A side main groove extending in the tire circumferential direction is formed in a region of 100% or less of the ground contact width outside 75% of the tread width of the tread centering on the tire equatorial plane. The run flat radial tire according to claim 1.
  3.  前記側方主溝の溝幅は、前記主溝の溝幅と比して広くされている請求項2に記載のランフラットラジアルタイヤ。 The run flat radial tire according to claim 2, wherein the groove width of the side main groove is wider than the groove width of the main groove.
  4.  前記傾斜溝は、タイヤ径方向から見て、タイヤ赤道面側からタイヤ幅方向の外側に向かって湾曲した状態で延びている請求項1~3の何れか1項に記載のランフラットラジアルタイヤ。 The run-flat radial tire according to any one of claims 1 to 3, wherein the inclined groove extends in a curved state from the tire equatorial plane side toward the outer side in the tire width direction when viewed from the tire radial direction.
  5.  タイヤ径方向から見て、前記トレッド部の接地幅の25〔%〕以上で75〔%〕以下の領域における前記傾斜溝と、タイヤ赤道面との成す角度は、60〔度〕以上で90〔度〕以下とされている請求項1~4の何れか1項に記載のランフラットラジアルタイヤ。 The angle between the inclined groove and the tire equatorial plane in the region of 25% to 75% of the contact width of the tread portion, as viewed from the radial direction of the tire, is 60 ° to 90 °. The run-flat radial tire according to any one of claims 1 to 4, wherein the degree is as follows.
  6.  前記傾斜溝の溝幅は、タイヤ赤道面側からタイヤ幅方向の外側に向かって徐々に広がっている請求項1~5の何れか1項に記載のランフラットラジアルタイヤ。 The run-flat radial tire according to any one of claims 1 to 5, wherein the groove width of the inclined groove gradually widens from the tire equatorial plane side toward the outer side in the tire width direction.
  7.  前記カーカスのタイヤ径方向の外側に配置され、タイヤ周方向に延びている環状のベルト層を備え、
     前記ベルト層を構成する複数のコードは、タイヤ径方向から見て、タイヤ赤道面に対して傾斜して配置されており、
     タイヤ径方向から見て、タイヤ赤道面に対する前記傾斜溝の傾斜方向と、タイヤ赤道面に対する前記コードの傾斜方向とは、異なる請求項1~6の何れか1項に記載のランフラットラジアルタイヤ。
    It has an annular belt layer disposed on the outer side in the tire radial direction of the carcass and extending in the tire circumferential direction,
    The plurality of cords constituting the belt layer are disposed to be inclined with respect to the tire equatorial plane when viewed from the tire radial direction,
    The run-flat radial tire according to any one of claims 1 to 6, wherein the inclination direction of the inclined groove with respect to the tire equatorial plane and the inclination direction of the cord with respect to the tire equatorial plane are different when viewed from the tire radial direction.
PCT/JP2018/045502 2017-12-12 2018-12-11 Run-flat radial tire WO2019117142A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017238065A JP2019104382A (en) 2017-12-12 2017-12-12 Run-flat radial tire
JP2017-238065 2017-12-12

Publications (1)

Publication Number Publication Date
WO2019117142A1 true WO2019117142A1 (en) 2019-06-20

Family

ID=66820907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045502 WO2019117142A1 (en) 2017-12-12 2018-12-11 Run-flat radial tire

Country Status (2)

Country Link
JP (1) JP2019104382A (en)
WO (1) WO2019117142A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048406A (en) * 2001-07-13 2003-02-18 Goodyear Tire & Rubber Co:The Dual tire assembly for heavy load
JP2003237319A (en) * 2002-02-14 2003-08-27 Bridgestone Corp Pneumatic tire
JP2008024246A (en) * 2006-07-25 2008-02-07 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2008222117A (en) * 2007-03-14 2008-09-25 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2013216149A (en) * 2012-04-05 2013-10-24 Bridgestone Corp Run-flat tire
JP2014058317A (en) * 2011-11-15 2014-04-03 Sumitomo Rubber Ind Ltd Run-flat tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048406A (en) * 2001-07-13 2003-02-18 Goodyear Tire & Rubber Co:The Dual tire assembly for heavy load
JP2003237319A (en) * 2002-02-14 2003-08-27 Bridgestone Corp Pneumatic tire
JP2008024246A (en) * 2006-07-25 2008-02-07 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2008222117A (en) * 2007-03-14 2008-09-25 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2014058317A (en) * 2011-11-15 2014-04-03 Sumitomo Rubber Ind Ltd Run-flat tire
JP2013216149A (en) * 2012-04-05 2013-10-24 Bridgestone Corp Run-flat tire

Also Published As

Publication number Publication date
JP2019104382A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2016056597A1 (en) Pneumatic tire
JP6559497B2 (en) Pneumatic tire
JP5548793B1 (en) Pneumatic radial tire for passenger cars
CN105313604A (en) Pneumatic tire
JP5620537B2 (en) Pneumatic tire
JP6446979B2 (en) Pneumatic tire
JP2011005946A (en) Pneumatic tire
JP2009046058A (en) Tire for motorcycle and its manufacturing process
WO2011126077A1 (en) Pneumatic tire
JP2007076594A (en) Pneumatic tire
EP2213480B1 (en) Pneumatic tire
JP6446980B2 (en) Pneumatic tire
WO2019117142A1 (en) Run-flat radial tire
JP6294792B2 (en) Pneumatic tire
WO2017022206A1 (en) Pneumatic tire for motorcycles
US11285760B2 (en) Pneumatic tire
JP2013166397A (en) Pneumatic radial tire for heavy load
JPH0367701A (en) Pneumatic radial tire
JP5124175B2 (en) Pneumatic run flat tire
JP4572651B2 (en) Pneumatic tire
JP6294791B2 (en) Pneumatic tire
JP2006335242A (en) Pneumatic tire
JP2000238506A (en) Pneumatic tire
JP2020015401A (en) Pneumatic tire
JP5947532B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889002

Country of ref document: EP

Kind code of ref document: A1