WO2019117132A1 - Biomarker for prognostic prediction of cancer immunotherapy - Google Patents

Biomarker for prognostic prediction of cancer immunotherapy Download PDF

Info

Publication number
WO2019117132A1
WO2019117132A1 PCT/JP2018/045465 JP2018045465W WO2019117132A1 WO 2019117132 A1 WO2019117132 A1 WO 2019117132A1 JP 2018045465 W JP2018045465 W JP 2018045465W WO 2019117132 A1 WO2019117132 A1 WO 2019117132A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
administration
cxcl2
biological sample
immune checkpoint
Prior art date
Application number
PCT/JP2018/045465
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 笹田
規和 松尾
公一 東
星野 友昭
Original Assignee
地方独立行政法人神奈川県立病院機構
学校法人 久留米大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人神奈川県立病院機構, 学校法人 久留米大学 filed Critical 地方独立行政法人神奈川県立病院機構
Priority to JP2019559651A priority Critical patent/JP7304558B2/en
Publication of WO2019117132A1 publication Critical patent/WO2019117132A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to biomarkers for prognosis of cancer immunotherapy with immune checkpoint inhibitors.
  • Cancer immunotherapy with immune checkpoint inhibitors is only effective in certain patients and is expensive to treat.
  • an anti-PD-1 antibody or an anti-PD-L1 antibody is used as an immune checkpoint inhibitor.
  • PD-1 immunocheckpoint inhibitor therapy targets the immune system, the clinical outcome and features associated with treatment-related adverse events (AEs) appear to be very different from conventional therapies (NPL 1) -7).
  • AEs treatment-related adverse events
  • NPL 1 non-small cell lung cancer
  • PD-L1 expression is not always a reliable marker, as it can be quite heterogeneous even within the same tumor, and can change dynamically and dramatically depending on the situation (non-patented) Literatures 8 and 9).
  • biopsy of the tumor to assess IHC-based PD-L1 expression requires invasive procedures such as bronchoscopy or video-assisted thoracoscopy, which may be difficult depending on the size and location of the tumor being investigated There is.
  • Other characteristics, such as treatment-related AE and neutrophil-lymphocyte ratio have also been suggested as potential predictors of response to anti-PD-1 treatment (10-12).
  • the problem to be solved by the present invention is to provide a biomarker for prognostic prediction of cancer immunotherapy with an immune checkpoint inhibitor. Also, by providing a kit for predicting the occurrence of prognosis or treatment-related adverse event based on the level of the biomarker, and using the biomarker for predicting prognosis or the occurrence of treatment-related adverse event. is there.
  • the present inventors have found biomarkers for prognostic prediction of cancer immunotherapy with an immune checkpoint inhibitor and completed the present invention.
  • the present invention relates to granulocyte / monocyte colony stimulating factor (GM-CSF), chitinase 3-like 1 (CHI 3 L 1), C—X-C motif chemokine 2 for prognosis prediction of cancer immunotherapy with an immune checkpoint inhibitor.
  • CXCL2 granulocyte / monocyte colony stimulating factor
  • CXCL2 C—X-C motif chemokine 2
  • CXCL2 one or more biomarkers selected from the group consisting of vascular endothelial growth factor (VEGF), interferon (IFN) ⁇ 2 and matrix metalloproteinase 2 (MMP2).
  • VEGF vascular endothelial growth factor
  • IFN interferon
  • MMP2 matrix metalloproteinase 2
  • the invention is a method of prognosticating cancer immunotherapy with an immune checkpoint inhibitor, a) comparing the level of GM-CSF in the collected biological sample with a preset GM-CSF cutoff value, b) comparing the level of CHI3L1 in the collected biological sample with a preset cutoff value of CHI3L1; c) the levels of CXCL2, VEGF, IFN ⁇ 2 and / or MMP2 in the biological sample collected after administration of said immune checkpoint inhibitor are the same as in the biological sample collected prior to said administration of said immune checkpoint inhibitor Comparing with the level of CXCL2, VEGF, IFN ⁇ 2 and / or MMP2, or d) monitoring the level of CXCL2 in a biological sample taken after administration of said immune checkpoint inhibitor, Provide a way that includes
  • the present invention provides one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFN ⁇ 2, GM-CSF and MMP2, which are biomarkers for evaluating efficacy for the method. .
  • the invention consists of a group consisting of CXCL2, VEGF, CHI3L1, IFN ⁇ 2, GM-CSF and MMP2 for the prognosis of cancer immunotherapy with an immune checkpoint inhibitor or prediction of the occurrence of treatment related adverse events.
  • one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFN ⁇ 2, GM-CSF, and MMP2 enable prognosis prediction of cancer immunotherapy with an immune checkpoint inhibitor.
  • FIG. 1A shows the association between clinical outcome and treatment related AE.
  • the vertical axis is the largest percent change in target lesion tumor volume from baseline.
  • FIG. 1B shows a Kaplan-Meier plot of progression free survival.
  • FIG. 1C shows overall survival for patients who did and did not develop treatment-related AE. Differences were assessed by log rank test.
  • FIG. 2A shows a representative flow cytometry plot of NSCLC patients.
  • FIG. 2B shows the relative proportions of PD-1 + CD4 +, PD-1 + CD8 +, and FoxP3 + CD4 + lymphocytes in peripheral blood samples before and after administration from 20 nivolumab-treated patients. The differences were analyzed statistically by Wilcoxon signed rank test.
  • FIG. 3A shows a schedule of dosing and peripheral blood sampling.
  • FIG. 4A shows CXCL2, VEGF, IFN ⁇ 2 and MMP2 titers in plasma samples before and after dosing from 20 nivolumab-treated patients.
  • FIG. 4B shows the percent of objective tumor response (PR, SD, and PD) in nivolumab-treated patients with or without a decrease in plasma CXCL2, VEGF, IFN ⁇ 2 and MMP2 levels after administration.
  • FIG. 4C shows CXCL2 titers in plasma samples before and after dosing from 20 nivolumab-treated patients. Patients were classified according to treatment related AE.
  • FIG. 4D shows the percentage of treatment-related AEs in nivolumab-treated patients with or without a decrease in plasma CXCL2 levels after administration.
  • FIG. 4E shows a summary of changes in plasma CXCL2, VEGF, IFN ⁇ 2 and MMP2 levels and the association of objective tumor response and treatment-related AE after administration in each patient.
  • FIG. 5A shows time dependent changes in plasma CXCL2 levels from baseline.
  • FIG. 5B shows time dependent changes in plasma VEGF levels from baseline.
  • FIG. 5C shows time dependent changes in plasma IFN ⁇ 2 levels from baseline.
  • FIG. 5D shows time-dependent changes in plasma MMP2 levels from baseline.
  • the invention relates to one or more selected from the group consisting of CXCL2, VEGF, CHI3L1, IFN ⁇ 2, GM-CSF and MMP2 for prognosis of cancer immunotherapy with an immune checkpoint inhibitor. It relates to a biomarker.
  • the invention is a method of prognosticating cancer immunotherapy with an immune checkpoint inhibitor, a) comparing the level of GM-CSF in the collected biological sample with a preset GM-CSF cutoff value, b) comparing the level of CHI3L1 in the collected biological sample with a preset cutoff value of CHI3L1; c) the levels of CXCL2, VEGF, IFN ⁇ 2 and / or MMP2 in the biological sample collected after administration of said immune checkpoint inhibitor are the same as in the biological sample collected prior to said administration of said immune checkpoint inhibitor Comparing with the level of CXCL2, VEGF, IFN ⁇ 2 and / or MMP2, or d) monitoring the level of CXCL2 in a biological sample taken after administration of said immune checkpoint inhibitor, On the way, including.
  • the invention relates to a method of treating cancer, comprising a) comparing the level of GM-CSF in the collected biological sample with a preset GM-CSF cutoff value, b) comparing the level of CHI3L1 in the collected biological sample with a preset cutoff value of CHI3L1; c) the level of CXCL2, VEGF, IFN ⁇ 2 and / or MMP2 in the biological sample collected after administration of the immune checkpoint inhibitor, and the corresponding CXCL2 in the biological sample collected prior to the administration of the immune checkpoint inhibitor , Comparing with the levels of VEGF, IFN ⁇ 2 and / or MMP2, or d) monitoring the level of CXCL2 in a biological sample taken after administration of the immune checkpoint inhibitor, and e) step a) B), c) or d), and administering an immune checkpoint inhibitor to a subject predicted to have a good prognosis based on the results obtained in b), c) or d).
  • an anti-PD-1 antibody or an anti-PD-L1 antibody may be used as an immune checkpoint inhibitor.
  • Immune checkpoint inhibitors do not act directly on cancer cells, but by enhancing the ability of the patient to respond to the immune response.
  • the immune checkpoint inhibitor, anti-PD-1 antibody or anti-PD-L1 antibody is said to inhibit the PD-1 / PD-L1 pathway.
  • the anti-PD-1 antibody may be, but not limited to, nivolumab and pembrolizumab.
  • Anti-PD-L1 antibodies may be, but are not limited to, averumab, atezolizumab and durvalumab.
  • treatment-related adverse events or adverse events are any undesirable and unintended signs (including abnormal laboratory test values), symptoms and diseases observed during treatment or treatment. There is no relationship between adverse events and treatment or treatment. Adverse events are evaluated, for example, according to the “Adverse event common term criteria” prepared by the National Cancer Institute.
  • prognosis means the medical prospect of the patient's progress or the patient's life expectancy after some treatment for a certain disease.
  • prognosis includes prediction of progression free survival, overall survival or objective tumor response.
  • Favorable prognosis means, for example, that the clinical stage of the disease does not deteriorate or deteriorate slowly after treatment of the disease, and in the case of cancer, no or few tumor metastasis to lymph nodes is observed. , Infiltration of tumor cells into surrounding tissues does not occur or the level thereof is low, or recurrence does not occur or the time until recurrence is long.
  • the patient has a good prognosis or if the patient's prognosis is predicted to be good, then the patient will develop a treatment related adverse event or the patient will be expected to develop a treatment related adverse event. possible.
  • the comparing step may include a detecting or measuring step and the like.
  • the term "comparison” may mean comparing information obtained by measuring numerical values, or comparing information obtained from different conditions.
  • the information obtained from the biological sample can be compared, for example, by mobility, color tone, fluorescence intensity, emission intensity or gradation.
  • the method of acquiring information is not particularly limited, but various commonly used methods can be used.
  • immunological assays such as ELISA or radioimmunoassay (RIA), multiplex assay may be used.
  • the cutoff value can be appropriately selected and determined from methods available to those skilled in the art.
  • the cutoff value may be a median level of corresponding biomarkers in a biological sample in a cancer patient population where no immune checkpoint inhibitor has been administered.
  • the GM-CSF cutoff value may be the median level of GM-CSF in a biological sample in a cancer patient population where no immune checkpoint inhibitor has been administered.
  • the cutoff value of CHI3L1 may be the median level of CHI3L1 in a biological sample in a cancer patient population not receiving an immune checkpoint inhibitor.
  • the cut-off value range of GM-CSF is, for example, about 10-30 pg / ml, about 15-25 pg / ml, about 17.5-22.5 pg / ml when the level of GM-CSF is measured by multiplex assay. It is ml.
  • the range of GM-CSF cut-off values is about 15-25 pg / ml, as GM-CSF levels are measured in a multiplex assay.
  • the range of cutoff values of CHI3L1 is, for example, about 60 to 120 ng / ml, about 70 to 110 ng / ml, about 80 to 100 ng / ml, about 85 to 95 ng / ml when CHI3L1 levels are measured in a multiplex assay It is.
  • the range of CHI3L1 cutoff values is about 70-110 ng / ml when the level of CHI3L1 is measured in a multiplex assay.
  • the administration mode, site of administration, and dosage of the immune checkpoint inhibitor are not particularly limited, and can be appropriately determined by those skilled in the art according to the condition of the subject.
  • An example of a preferred mode of administration is intravenous administration.
  • An example of a preferred site of administration is intravascular.
  • An example of a preferred dose is 2-10 mg / kg body weight 2-3 weeks apart.
  • the level of the biomarker is compared to a preset cutoff value.
  • the biomarker of the present invention may be one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFN ⁇ 2, GM-CSF and MMP2.
  • the level of one or more biomarkers selected from the group consisting of GM-CSF and CHI3L1 is compared to a preset cutoff value.
  • the level of the biomarker in the biological sample collected prior to the start of administration of the immune checkpoint inhibitor is compared to a preset cutoff value.
  • the prognosis predicts that the level of GM-CSF is equal to or higher than a preset GM-CSF cut-off value, or the level is previously determined It is characterized that it predicts that a prognosis is bad that it is less than the cut-off value of GM-CSF set. In another embodiment of the present invention, the prognosis predicts that the level of CHI3L1 is less than or equal to a preset CHI3L1 cut-off value, or the level is preset. It is characterized that it predicts that prognosis is bad that it is more than the cutoff value of CHI3L1.
  • the levels of biomarkers before and after administration of the immune checkpoint inhibitor are compared.
  • the biomarker of the present invention may be one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFN ⁇ 2, GM-CSF and MMP2.
  • the levels of one or more biomarkers preferably selected from the group consisting of CXCL2, VEGF, IFN ⁇ 2 and MMP2, are compared.
  • the prognosis is that the level of CXCL2, VEGF or IFN ⁇ 2 after administration of the immune checkpoint inhibitor is the same as the level of the corresponding CXCL2, VEGF or IFN ⁇ 2 prior to the administration of said immune checkpoint inhibitor
  • the relative decrease is predicted to have a good prognosis, or the level of CXCL2, VEGF or IFN ⁇ 2 after administration of the immune checkpoint inhibitor is corresponding before the administration of the immune checkpoint inhibitor
  • the absence of a decrease compared to the levels of CXCL2, VEGF or IFN ⁇ 2 is characterized as predicting a poor prognosis.
  • the prognosis is that the level of MMP2 after administration of the immune checkpoint inhibitor is increased compared to the level of MMP2 before administration of said immune checkpoint inhibitor.
  • the prognosis is that the prognosis is predicted to be good or that the level of MMP2 after administration of the immune checkpoint inhibitor is not increased compared to the level of MMP2 in the biological sample collected before administration It is characterized in that it is predicted to be defective.
  • the level of biomarker after administration of the immune checkpoint inhibitor is monitored.
  • monitoring means observing change over time, and in this embodiment, before starting administration of the immune checkpoint inhibitor and at one or more time points after starting administration of the immune checkpoint inhibitor.
  • the levels of the biomarkers in the biological sample collected at are compared.
  • the biomarker of the present invention may be one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFN ⁇ 2, GM-CSF and MMP2. In this embodiment, preferably the level of biomarkers of CXCL2 is monitored.
  • the prognosis is good that the level of CXCL2 after administration of the immune checkpoint inhibitor is reduced compared to the level of CXCL2 before administration of the immune checkpoint inhibitor Predicting that there is a prognosis or that the level of CXCL2 after administration of the immune checkpoint inhibitor is increased relative to the level of CXCL2 before administration of the immune checkpoint inhibitor is predicted to be poor It features.
  • the occurrence of treatment related adverse events is predicted based on the level of the biomarker.
  • the biomarker of the present invention may be one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFN ⁇ 2, GM-CSF and MMP2.
  • the levels of one or more biomarkers, preferably selected from the group consisting of CXCL2 and GM-CSF, are compared.
  • the prediction of the occurrence of a treatment-related adverse event is that the level of CXCL2 after administration of the immune checkpoint inhibitor is decreased compared to CXCL2 before administration of the immune checkpoint inhibitor , And are expected to develop treatment-related adverse events.
  • predicting that the level of GM-CSF before administration of the immune checkpoint inhibitor is less than a preset GM-CSF cut-off value is predicted to cause a treatment related adverse event It features.
  • the biomarker is derived from a biological sample.
  • the biological sample may, for example, be a blood sample. Collection of biological samples may be performed either invasively or non-invasively.
  • the blood sample may be peripheral blood, peripheral blood mononuclear cells, plasma or serum.
  • the time to collect the biological sample is taken prior to the start of administration of the immune checkpoint inhibitor. In this case, the step of administering the immune checkpoint inhibitor is not necessarily involved. When the process is not included, “before the start of administration” is not limited to a specific time.
  • the biological sample is from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, from the start of administration of the immune checkpoint inhibitor. Collected after 15, 16, 17, 18, 19 and / or 20 weeks.
  • the biological sample may preferably be collected 6 weeks or more, more preferably 6-8 weeks or more, or 12-20 weeks or more from the start of administration of the immune checkpoint inhibitor.
  • the cancer includes, for example, leukemia, myelodysplastic syndrome, multiple myeloma, malignant lymphoma, esophagus cancer, gastric cancer, small intestine cancer, small intestine cancer, colon cancer, pancreatic cancer, lung cancer, breast cancer, germ cell cancer, liver cancer, gallbladder Cancer, head and neck cancer, skin cancer, sarcoma, kidney cancer, bladder cancer, prostate cancer, testicular cancer, testicular cancer, uterine cancer, cervical cancer, ovarian cancer, thyroid cancer, carcinoid, lung blastoma, brain tumor, or thymus cancer .
  • the cancer may be non-small cell lung cancer, renal cell carcinoma, malignant melanoma, head and neck cancer, Hodgkin's disease or gastric cancer.
  • the cancer may be advanced / recurrent non-small cell lung cancer.
  • a kit for predicting the occurrence of a prognosis or treatment related adverse event based on the level of the biomarker is included.
  • the biomarker of the present invention may be one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFN ⁇ 2, GM-CSF and MMP2.
  • the kit can include various configurations to compare the levels of biomarkers.
  • the composition of the kit may be any one that can detect and / or visualize the level of the biomarker in the biological sample.
  • the kit further comprises a computer model or algorithm for analyzing the level of biomarkers in the sample.
  • the kit can be, for example, a kit for an immunological assay such as ELISA or RIA, multiplex assay.
  • One embodiment of the present invention includes the use of a biomarker for prognostication or prediction of the occurrence of treatment-related adverse events.
  • the biomarker of the present invention may be one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFN ⁇ 2, GM-CSF and MMP2.
  • Use of a biomarker for predicting prognosis or the occurrence of treatment-related adverse events for example, directly or indirectly detecting the level of the biomarker for prognosis or predicting the occurrence of treatment-related adverse events, Means to measure or compare.
  • the present invention provides: (1) One or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFN ⁇ 2, GM-CSF and MMP2 for prognosis prediction of cancer immunotherapy with an immune checkpoint inhibitor. (2) The biomarker according to (1), wherein the biomarker is GM-CSF or CHI3L1 and the level of the biomarker is compared to a preset cutoff value. (3) The biomarker according to (1), wherein the biomarker is CXCL2, VEGF, IFN ⁇ 2 or MMP2, and the levels of the biomarker are compared before and after administration of the immune checkpoint inhibitor.
  • the biomarker according to (1) wherein the biomarker is CXCL2 and the level of the biomarker after administration of the immune checkpoint inhibitor is monitored.
  • the prognosis predicts that the level of GM-CSF is higher than or equal to the preset GM-CSF cut-off value, or the level is a preset GM-CSF cut.
  • the biomarker according to (2) which is predicted to have a poor prognosis if it is less than the off value.
  • the prognosis predicts that the level of CHI3L1 is better than or equal to a preset CHI3L1 cutoff value, or that the level is greater than a preset CHI3L1 cutoff value
  • Prognostic value is that the level of CXCL2, VEGF or IFN ⁇ 2 after administration of the immune checkpoint inhibitor is reduced compared to the level of the corresponding CXCL2, VEGF or IFN ⁇ 2 before administration of the immune checkpoint inhibitor Predict that the prognosis is good or that the level of CXCL2, VEGF or IFN ⁇ 2 after administration of the immune checkpoint inhibitor is that of the corresponding CXCL2, VEGF or IFN ⁇ 2 prior to administration of the immune checkpoint inhibitor
  • the biomarker according to (3) which is characterized in that it does not decrease compared to the level and predicts that the prognosis is poor.
  • Prognosis predicts that the prognosis is good that the level of MMP2 after administration of the immune checkpoint inhibitor is increased compared to the level of MMP2 before administration of the immune checkpoint inhibitor Or that the level of MMP2 after administration of the immune checkpoint inhibitor is not increased as compared to the level of MMP2 in the biological sample collected prior to administration, which predicts a poor prognosis
  • the biomarker according to (3) characterized in that (9) Prognostic predicts that the prognosis is good that the level of CXCL2 after administration of the immune checkpoint inhibitor is reduced compared to the level of CXCL2 before administration of the immune checkpoint inhibitor, or An increase in the level of CXCL2 after administration of the immune checkpoint inhibitor as compared to the level of CXCL2 before administration of the immune checkpoint inhibitor is characterized by predicting that the prognosis is poor (4 The biomarker as described in).
  • the biological sample is a blood sample.
  • the biomarker according to (11), wherein the blood sample is peripheral blood, peripheral blood mononuclear cells, plasma or serum.
  • the immune checkpoint inhibitor is an anti-PD-1 antibody or an anti-PD-L1 antibody.
  • Cancer includes leukemia, myelodysplastic syndrome, multiple myeloma, malignant lymphoma, esophagus cancer, gastric cancer, small intestine cancer, colon cancer, pancreatic cancer, lung cancer, breast cancer, germ cell cancer, liver cancer, gallbladder cancer, head and neck cancer, Skin cancer, sarcoma, kidney cancer, bladder cancer, prostate cancer, testicular cancer, testicular cancer, uterine cancer, cervical cancer, ovarian cancer, thyroid cancer, carcinoid, lung carcinoma, lung cancer, or thymus cancer, (1)-(13) The biomarker according to any one of the above.
  • the biomarker according to (14), wherein the cancer is non-small cell lung cancer, renal cell carcinoma, malignant melanoma, head and neck cancer, Hodgkin's disease, bladder cancer or gastric cancer.
  • the cancer is advanced / recurrent non-small cell lung cancer.
  • the biological sample collected after administration of the immune checkpoint inhibitor is a biological sample collected after 6-8 weeks from the start of administration of the immune checkpoint inhibitor The biomarker as described in.
  • biomarker is CXCL2 and that the level of CXCL2 after administration of the immune checkpoint inhibitor is reduced compared to CXCL2 before administration of the immune checkpoint inhibitor, thereby causing a treatment related adverse event
  • the biomarker according to any of (3), (4), (7) or (9)-(18), which is further predicted to be expressed.
  • the biomarker is GM-CSF, which further predicts that a treatment-related adverse event will occur based on the level of GM-CSF, (1), (2), (5) or (10)-(18) The biomarker according to any one of the above.
  • (21) (1)-a kit for predicting the occurrence of prognosis or treatment-related adverse event based on the level of the biomarker according to any of (20).
  • step a) it is predicted that the level is equal to or higher than a preset GM-CSF cut-off value, or the level is a preset GM-CSF cut-off value.
  • step b) it is predicted that the level is lower than or equal to a preset CHI3L1 cutoff value, or the level is greater than a preset CHI3L1 cutoff value.
  • step c) the levels of CXCL2, VEGF and / or IFN ⁇ 2 in the biological sample taken after administration are compared to the levels of corresponding CXCL2, VEGF and / or IFN ⁇ 2 in the biological sample taken prior to administration
  • the decrease is predicted to be of good prognosis, or the level of CXCL2, VEGF and / or IFN ⁇ 2 in the biological sample collected after administration is the same as the corresponding CXCL2 in the biological sample collected before administration
  • the method according to (23) which is characterized by not having decreased in comparison with the level of VEGF and / or IFN ⁇ 2, and predicting that the prognosis is poor.
  • step c) it is predicted that the prognosis is good that the level of MMP2 in the biological sample collected after administration is increased compared to the level of MMP2 in the biological sample collected before administration That the level of MMP2 in the biological sample collected after or after administration is not increased as compared to the level of MMP2 in the biological sample collected prior to
  • step d) the level of CXCL2 in the biological sample collected after administration of the immune checkpoint inhibitor is decreased compared to the level of CXCL2 before administration of the immune checkpoint inhibitor, and the prognosis is good
  • the level of CXCL2 in a biological sample predicted to be present or taken after administration of the immune checkpoint inhibitor is increased compared to the level of CXCL2 before administration of the immune checkpoint inhibitor
  • Cancer includes leukemia, myelodysplastic syndrome, multiple myeloma, malignant lymphoma, esophagus cancer, gastric cancer, small intestine cancer, colon cancer, pancreatic cancer, lung cancer, breast cancer, germ cell cancer, liver cancer, gallbladder cancer, head and neck cancer, Skin cancer, sarcoma, kidney cancer, bladder cancer, prostate cancer, testicular cancer, testicular cancer, uterine cancer, cervical cancer, ovarian cancer, thyroid cancer, carcinoid, lung carcinoma, lung cancer, or thymus cancer, (23)-(31) The method according to any one of the above.
  • the present invention also provides: (1) A method for treating cancer, a) comparing the level of GM-CSF in the collected biological sample with a preset GM-CSF cutoff value, b) comparing the level of CHI3L1 in the collected biological sample with a preset cutoff value of CHI3L1; c) the levels of CXCL2, VEGF, IFN ⁇ 2 and / or MMP2 in the biological sample collected after administration of said immune checkpoint inhibitor are the same as in the biological sample collected prior to said administration of said immune checkpoint inhibitor Comparing with the level of CXCL2, VEGF, IFN ⁇ 2 and / or MMP2, or d) monitoring the level of CXCL2 in a biological sample taken after administration of said immune checkpoint inhibitor, and e) administering an immune checkpoint inhibitor to a subject predicted on the basis of the result obtained in a), b), c) or d) and predicted to have a good prognosis.
  • step a it is predicted that the level is equal to or higher than a preset GM-CSF cut-off value, or the level is a preset GM-CSF cut-off value.
  • step b it is predicted that the level is lower than or equal to a preset CHI3L1 cutoff value, or the level is greater than a preset CHI3L1 cutoff value.
  • step b it is predicted that the level is lower than or equal to a preset CHI3L1 cutoff value, or the level is greater than a preset CHI3L1 cutoff value.
  • the prognosis is predicted to be poor.
  • step c) the levels of CXCL2, VEGF and / or IFN ⁇ 2 in the biological sample taken after administration are compared to the levels of corresponding CXCL2, VEGF and / or IFN ⁇ 2 in the biological sample taken prior to administration
  • the decrease is predicted to be of good prognosis, or the level of CXCL2, VEGF and / or IFN ⁇ 2 in the biological sample collected after administration is the same as the corresponding CXCL2 in the biological sample collected before administration
  • the method according to (1) which is characterized by not having decreased in comparison with the level of VEGF and / or IFN ⁇ 2, and predicting that the prognosis is poor.
  • step c) it is predicted that the prognosis is good that the level of MMP2 in the biological sample collected after administration is increased compared to the level of MMP2 in the biological sample collected before administration That the level of MMP2 in the biological sample collected after or after administration is not increased as compared to the level of MMP2 in the biological sample collected prior to
  • the method according to (1) characterized in that (6)
  • step d) the level of CXCL2 in the biological sample collected after administration of the immune checkpoint inhibitor is decreased compared to the level of CXCL2 before administration of the immune checkpoint inhibitor, and the prognosis is good
  • the level of CXCL2 in a biological sample predicted to be present or taken after administration of the immune checkpoint inhibitor is increased compared to the level of CXCL2 before administration of the immune checkpoint inhibitor
  • the method according to (1) wherein the method is predicted.
  • the biological sample is a blood sample.
  • the biological sample is a blood sample.
  • the blood sample is peripheral blood, peripheral blood mononuclear cells, plasma or serum.
  • the immune checkpoint inhibitor is an anti-PD-1 antibody or an anti-PD-L1 antibody.
  • Cancer includes leukemia, myelodysplastic syndrome, multiple myeloma, malignant lymphoma, esophagus cancer, gastric cancer, small intestine cancer, colon cancer, pancreatic cancer, lung cancer, breast cancer, germ cell cancer, liver cancer, gallbladder cancer, head and neck cancer, Skin cancer, sarcoma, kidney cancer, bladder cancer, prostate cancer, testicular cancer, testicular cancer, uterine cancer, cervical cancer, ovarian cancer, thyroid cancer, carcinoid, lung blastoma, brain tumor, or thymus cancer, (1)-(9) The method according to any one of the above.
  • the level of CXCL2 after administration of the immune checkpoint inhibitor is reduced as compared to CXCL2 before administration of the immune checkpoint inhibitor, further predicting that it will cause treatment related adverse events, (1) -The method in any one of-(14).
  • the method according to any of (1)-(15) which further predicts that a treatment-related adverse event will occur based on the level of GM-CSF.
  • nivolumab Progressive / recurrent NSCLC patients receiving nivolumab (nivolumab) at a single center (Kurume University Hospital, Kurume City, Japan) were included in the study in February-September 2016. Nivolumab (3 mg / kg) was administered every two weeks to eligible patients with progressive / recurrent NSCLC who had at least one regimen of chemotherapy history. Peripheral blood samples were collected from 27 cases prior to nivolumab administration. In addition, peripheral blood samples were collected from 20 cases showing progression-free survival (PFS) over 6 weeks after nivolumab administration (6-8 weeks after the first administration day). In addition, peripheral blood samples were collected every 6-12 weeks from patients continuing to receive nivolumab (FIG.
  • PFS progression-free survival
  • PBMC Peripheral blood mononuclear cells
  • IRB Clinical Trials Review Board
  • Immunohistochemistry (IHC) Analysis Paraffin-embedded tissue samples were sliced into 4 ⁇ m thick sections and mounted on coated glass slides. Thereafter, anti-PD-L1 antibody ( ⁇ 100, clone E1L3N, Cell Signaling Technology, Danvers, Mass., USA) using a BOND-III autostainer (Leica Microsystems, Newcastle upon Tyne, UK) I did the processing by. Briefly, tissue sections were heat treated for 30 minutes with epitope retrieval solution 2 (pH 9.0), anti-PD-L1 antibody was added and incubated for 30 minutes.
  • HRP horseradish peroxidase
  • Leica Microsystems a refine polymer detection system
  • DAB 3,3'-diaminobenzidine
  • PBMCs peripheral blood was collected before and after administration of nivolumab, and PBMCs were separated by density gradient centrifugation using Ficoll-Paque Plus (GE Healthcare, Uppsala, Sweden). PBMCs were suspended in PBS containing 20% human AB serum, appropriately diluted antibodies were added and incubated on ice for 30 minutes.
  • the antibodies used in this study were anti-CD3-PE (clone OKT3) from BioLegend (San Diego, CA, USA) and anti-CD4-FITC (clone RPA-T4) from BD Biosciences (Franklin Lakes, NJ, USA).
  • Anti-CD8-PerCP-Cy5.5 (clone RPA-T8), anti-CD279-APC (clone MIH4), anti-CD25-APC (clone M-A251), anti-FoxP3-PE (clone 259D / C7), and mice It was IgG1 ( ⁇ ) -PE (clone MOPC-21, for negative control).
  • Anti-human FoxP3 staining kit (BD Biosciences) was used according to the manufacturer's instructions. Stained cells were analyzed on BD FACS Canto II using FACS Diva software (BD Biosciences).
  • soluble factors in clots Bead-based multiplex assays are used to comprehensively detect the levels of 88 different soluble factors (cytokines, chemokines, growth factors, etc.) in clots before and after nivolumab administration It was.
  • soluble factors in 100- ⁇ l of 2-fold diluted blood clots were measured using the Bio-Plex 200 system (Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer's instructions.
  • IL-1R ⁇ , IL-1 ⁇ , IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9 using a Bio-Rad Laboratories analysis kit IL-10, IL-11, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-16, IL-17A, IL-19, IL-20, IL-22, IL-26, IL-27, IL-28A, IL-29, IL-32, IL-34, IL-35, IFN- ⁇ 2, IFN- ⁇ , IFN- ⁇ , TNF- ⁇ , GM-CSF, 6Ckine, BCA-1, CTACK, ENA-78, Eotaxin, Eotaxin-2, Eotaxin-3, Fractalkine, GCP-2, Gro- ⁇ , CXCL2 (Gro- ⁇ ), IP-10, I-TAC, MIP-1 ⁇ MIP-1 ⁇ , MIP-3 ⁇ , MIP
  • AEs adverse events
  • RECIST new guidelines
  • OS overall survival
  • Cox regression and univariate logistic regression were performed on all patients to investigate whether these factors were associated with PFS and treatment-related AE, respectively. Furthermore, it was investigated whether changes in the expression of PD-1 and FoxP3 on PBMC and soluble factor levels in blood clot at 6-8 weeks after the first administration day of nivolumab were associated with safety and efficacy. Cox regression and univariate logistic regression were performed on 20 patients with PFS> 6 weeks to investigate whether the changes were associated with PFS and treatment-related AE, respectively. Hazard ratios and odds ratios are shown with 95% confidence intervals (CI). Statistical significance was considered at P ⁇ 0.05. All statistical analysis can be performed using JMP version 11 (SAS Institute Inc., Cary, NC, USA) or GraphPad Prism version 6.07 for Windows (GraphPad Software, La Jolla, CA, USA, www.graphpad.com) It carried out using.
  • the objective response rate (ORR) and disease control rate (DCR) were 33.3% and 51.9%, respectively.
  • the median follow-up was 198 days (64-330 days).
  • Median PFS was 57 days (27-288 days) and median OS was not reached.
  • PFS progression-free survival
  • AE adverse events
  • HR hazard ratio
  • CI confidence interval
  • PS general status
  • Sq squamous epithelium
  • lymphocyte subsets were analyzed, including PD-1 + CD4 +, PD-1 + CD8 +, FoxP3 + CD4 + lymphocytes before and after nivolumab administration (FIG. 2A).
  • FIG. 3C The Kaplan-Meier plot of PFS in stratified groups is shown in FIG. 3C.
  • the groups stratified according to the level of IFN ⁇ 2 and MMP2 in the blood showed no significant difference in PFS.
  • FIG. 4A shows levels of CXCL2, VEGF, IFN ⁇ 2, MMP2 before and after administration in selected groups according to objective tumor response.
  • FIG. 4C shows CXCL2 levels before and after administration in the group that expressed and not expressed treatment-related AE.
  • FIG. I Longitudinal analysis of soluble factor levels in blood clots To further clarify how dynamic changes in levels of selected soluble factors can affect clinical outcome, as shown in FIG. I analyzed the time course. Of the 20 patients receiving nivolumab, 11 (55%) had discontinued due to exacerbation, and 9 (45%) had continued dosing at the time of analysis. In particular, in 9 of 11 patients with exacerbation (82%), relapses were closely matched with elevated levels of CXCL2 in blood clots above baseline. In addition, all six patients who maintained reduced levels of clotted CXCL2 during treatment showed sustained disease control and were able to continue nivolumab therapy. In contrast, VEGF, IFN ⁇ 2, and MMP2 did not show a clear association of their time course of titer with clinical outcome.
  • biomarker for prognosis of cancer immunotherapy with an immune checkpoint inhibitor there is provided a biomarker for prognosis of cancer immunotherapy with an immune checkpoint inhibitor. Provision of the novel biomarker of the present invention makes it possible to predict the prognosis of cancer immunotherapy with an immune checkpoint inhibitor.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present disclosure provides a biomarker for prognostic prediction of cancer immunotherapy by an immune checkpoint inhibitory drug, the biomarker being one or more selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF, and MMP2.

Description

がん免疫療法の予後予測のためのバイオマーカーBiomarkers for prognosis prediction of cancer immunotherapy
 本出願は、日本国特許出願第2017-237807号について優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、免疫チェックポイント阻害薬によるがん免疫療法の予後予測のためのバイオマーカーに関する。
This application claims priority to Japanese Patent Application No. 2017-237807, which is hereby incorporated by reference in its entirety.
The present invention relates to biomarkers for prognosis of cancer immunotherapy with immune checkpoint inhibitors.
 免疫チェックポイント阻害薬によるがん免疫療法は、特定の患者のみに効果が認められ、その治療費は高額である。現在、免疫チェックポイント阻害薬は、例えば抗PD-1抗体または抗PD-L1抗体が用いられている。PD-1免疫チェックポイント阻害薬治療は、免疫系を標的としているので、臨床転帰および治療関連有害事象(AE)に関連する特徴は、従来の治療とは大きく異なると思われる(非特許文献1-7)。例えば、免疫組織化学(IHC)により評価される腫瘍細胞または免疫細胞上のPD-L1発現は、抗PD-1治療を受けている非小細胞肺癌(non-small cell lung cancer:NSCLC)患者において改善された奏効率と関連していることが報告されている(非特許文献3、8および9)。しかしながら、PD-L1の発現は、同じ腫瘍内であっても全く異質であり得、かつ状況に応じて動的かつ劇的に変化する可能性があるため、必ずしも信頼できるマーカーではない(非特許文献8および9)。さらに、IHCベースのPD-L1発現を評価するための腫瘍の生検は、気管支鏡またはビデオ補助胸腔鏡などの侵襲的処置を必要とし、調査される腫瘍の大きさおよび場所によっては困難な場合がある。治療関連AEおよび好中球-リンパ球比などの他の特徴もまた、抗PD-1治療に対する応答の潜在的な予測因子として示唆されている(非特許文献10-12)。しかしながら、現在、抗PD-1治療への応答の予測のための臨床的に信頼でき、かつ有用なバイオマーカーはまだ存在していない。 Cancer immunotherapy with immune checkpoint inhibitors is only effective in certain patients and is expensive to treat. At present, for example, an anti-PD-1 antibody or an anti-PD-L1 antibody is used as an immune checkpoint inhibitor. Because PD-1 immunocheckpoint inhibitor therapy targets the immune system, the clinical outcome and features associated with treatment-related adverse events (AEs) appear to be very different from conventional therapies (NPL 1) -7). For example, PD-L1 expression on tumor cells or immune cells assessed by immunohistochemistry (IHC) has been shown in anti-PD-1 treated non-small cell lung cancer (NSCLC) patients It is reported that it is associated with the improved response rate (Non-patent Documents 3, 8 and 9). However, PD-L1 expression is not always a reliable marker, as it can be quite heterogeneous even within the same tumor, and can change dynamically and dramatically depending on the situation (non-patented) Literatures 8 and 9). In addition, biopsy of the tumor to assess IHC-based PD-L1 expression requires invasive procedures such as bronchoscopy or video-assisted thoracoscopy, which may be difficult depending on the size and location of the tumor being investigated There is. Other characteristics, such as treatment-related AE and neutrophil-lymphocyte ratio, have also been suggested as potential predictors of response to anti-PD-1 treatment (10-12). However, at the present time there are no clinically reliable and useful biomarkers for predicting response to anti-PD-1 treatment.
 本発明の解決課題は、免疫チェックポイント阻害薬によるがん免疫療法の予後予測のためのバイオマーカーを提供することである。また、当該バイオマーカーのレベルに基づいて予後予測もしくは治療関連有害事象の発現を予測するためのキットならびに当該バイオマーカーの予後予測もしくは治療関連有害事象の発現の予測のための使用を提供することである。 The problem to be solved by the present invention is to provide a biomarker for prognostic prediction of cancer immunotherapy with an immune checkpoint inhibitor. Also, by providing a kit for predicting the occurrence of prognosis or treatment-related adverse event based on the level of the biomarker, and using the biomarker for predicting prognosis or the occurrence of treatment-related adverse event. is there.
 本発明者は、免疫チェックポイント阻害薬によるがん免疫療法の予後予測のためのバイオマーカーを見出し、本発明を完成させた。本発明は特に、免疫チェックポイント阻害薬によるがん免疫療法の予後予測のための顆粒球単球コロニー刺激因子(GM-CSF)、キチナーゼ3様1(CHI3L1)、C-X-Cモチーフケモカイン2(CXCL2)、血管内皮細胞増殖因子(VEGF)、インターフェロン(IFN)α2およびマトリックスメタロプロテアーゼ2(MMP2)からなる群から選択される1つ以上のバイオマーカーに関する。 The present inventors have found biomarkers for prognostic prediction of cancer immunotherapy with an immune checkpoint inhibitor and completed the present invention. In particular, the present invention relates to granulocyte / monocyte colony stimulating factor (GM-CSF), chitinase 3-like 1 (CHI 3 L 1), C—X-C motif chemokine 2 for prognosis prediction of cancer immunotherapy with an immune checkpoint inhibitor. (CXCL2), one or more biomarkers selected from the group consisting of vascular endothelial growth factor (VEGF), interferon (IFN) α2 and matrix metalloproteinase 2 (MMP2).
 ある態様において、本発明は、免疫チェックポイント阻害薬によるがん免疫療法の予後予測方法であって、
a)採取された生体試料中のGM-CSFのレベルを、予め設定されたGM-CSFのカットオフ値と比較する工程、
b)採取された生体試料中のCHI3L1のレベルを、予め設定されたCHI3L1のカットオフ値と比較する工程、
c)前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2、VEGF、IFNα2および/またはMMP2のレベルを、前記免疫チェックポイント阻害薬の投与前に採取された生体試料中の対応するCXCL2、VEGF、IFNα2および/またはMMP2のレベルと比較する工程、または
d)前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2のレベルをモニターする工程、
を含む方法を提供する。
In one aspect, the invention is a method of prognosticating cancer immunotherapy with an immune checkpoint inhibitor,
a) comparing the level of GM-CSF in the collected biological sample with a preset GM-CSF cutoff value,
b) comparing the level of CHI3L1 in the collected biological sample with a preset cutoff value of CHI3L1;
c) the levels of CXCL2, VEGF, IFNα2 and / or MMP2 in the biological sample collected after administration of said immune checkpoint inhibitor are the same as in the biological sample collected prior to said administration of said immune checkpoint inhibitor Comparing with the level of CXCL2, VEGF, IFNα2 and / or MMP2, or d) monitoring the level of CXCL2 in a biological sample taken after administration of said immune checkpoint inhibitor,
Provide a way that includes
 さらなる態様において、本発明は、CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1以上のバイオマーカーであって、前記方法のための薬効評価用バイオマーカーを提供する。 In a further aspect, the present invention provides one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2, which are biomarkers for evaluating efficacy for the method. .
 さらなる態様において、本発明は、免疫チェックポイント阻害薬によるがん免疫療法の予後予測または治療関連有害事象の発現の予測のための、CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1つ以上のバイオマーカーの使用を提供する。 In a further aspect, the invention consists of a group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2 for the prognosis of cancer immunotherapy with an immune checkpoint inhibitor or prediction of the occurrence of treatment related adverse events. Providing the use of one or more biomarkers selected from
 本発明によれば、CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1以上のバイオマーカーにより、免疫チェックポイント阻害薬によるがん免疫療法の予後予測が可能となる。 According to the present invention, one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF, and MMP2 enable prognosis prediction of cancer immunotherapy with an immune checkpoint inhibitor. .
図1Aは、臨床転帰と治療関連AEとの関連を示す。縦軸はベースラインからの標的病変腫瘍量における最大パーセント変化である。FIG. 1A shows the association between clinical outcome and treatment related AE. The vertical axis is the largest percent change in target lesion tumor volume from baseline. 図1Bは、無増悪生存期間のカプラン・マイヤープロットを示す。FIG. 1B shows a Kaplan-Meier plot of progression free survival. 図1Cは、治療関連AEを発現した患者および発現しなかった患者について全生存期間を示す。差異はログランク検定により評価した。FIG. 1C shows overall survival for patients who did and did not develop treatment-related AE. Differences were assessed by log rank test. 図2Aは、NSCLC患者の代表的なフローサイトメトリープロットを示す。FIG. 2A shows a representative flow cytometry plot of NSCLC patients. 図2Bは、20例のニボルマブ投与患者からの投与前後の末梢血試料におけるPD-1+CD4+、PD-1+CD8+、およびFoxP3+CD4+リンパ球の相対的な割合を示す。その差異は、ウィルコクソンの符号付順位検定により統計的に分析した。FIG. 2B shows the relative proportions of PD-1 + CD4 +, PD-1 + CD8 +, and FoxP3 + CD4 + lymphocytes in peripheral blood samples before and after administration from 20 nivolumab-treated patients. The differences were analyzed statistically by Wilcoxon signed rank test. 図3Aは、投与および末梢血サンプリングのスケジュールを示す。Figure 3A shows a schedule of dosing and peripheral blood sampling. 図3Bは、投与前の血漿GM-CSFおよびCHI3L1の中央値で割けた2つのグループにおける無増悪生存期間のカプラン・マイヤープロット(n=27)を示す。差異はログランク検定により評価した。FIG. 3B shows Kaplan-Meier plots (n = 27) of progression free survival in the two groups divided by median plasma GM-CSF and CHI3L1 before dosing. Differences were assessed by log rank test. 図3Cは、投与後の血漿中CXCL2、VEGF、IFNα2およびMMP2レベルにおける変化で割けた2つのグループ(減少vs減少なし)における無増悪生存期間のカプラン・マイヤープロット(n=20)を示す。差異はログランク検定により評価した。FIG. 3C shows a Kaplan-Meier plot (n = 20) of progression free survival in the two groups (decreased vs no decreased) divided by changes in plasma CXCL2, VEGF, IFNα2 and MMP2 levels after administration. Differences were assessed by log rank test. 図4Aは、20例のニボルマブ投与患者からの投与前後の血漿試料におけるCXCL2、VEGF、IFNα2およびMMP2力価を示す。患者は、客観的腫瘍反応(PR、SD、およびPD)に従って分類した。FIG. 4A shows CXCL2, VEGF, IFNα2 and MMP2 titers in plasma samples before and after dosing from 20 nivolumab-treated patients. Patients were classified according to objective tumor response (PR, SD, and PD). 図4Bは、投与後の血漿中CXCL2、VEGF、IFNα2およびMMP2レベルにおける減少を有するまたは有しないニボルマブ投与患者における客観的腫瘍反応(PR、SD、およびPD)の割合を示す。FIG. 4B shows the percent of objective tumor response (PR, SD, and PD) in nivolumab-treated patients with or without a decrease in plasma CXCL2, VEGF, IFNα2 and MMP2 levels after administration. 図4Cは、20例のニボルマブ投与患者からの投与前後の血漿試料におけるCXCL2力価を示す。患者は、治療関連AEに従って分類した。FIG. 4C shows CXCL2 titers in plasma samples before and after dosing from 20 nivolumab-treated patients. Patients were classified according to treatment related AE. 図4Dは、図4Dは、投与後の血漿中CXCL2レベルにおける、減少を有するまたは有しないニボルマブ投与患者における治療関連AEの割合を示す。FIG. 4D shows the percentage of treatment-related AEs in nivolumab-treated patients with or without a decrease in plasma CXCL2 levels after administration. 図4Eは、各患者における投与後の、血漿中CXCL2、VEGF、IFNα2およびMMP2レベルにおける変化と客観的腫瘍反応および治療関連AEの関連のまとめを示す。FIG. 4E shows a summary of changes in plasma CXCL2, VEGF, IFNα2 and MMP2 levels and the association of objective tumor response and treatment-related AE after administration in each patient. 図5Aは、ベースラインからの血漿中CXCL2レベルにおける時間依存変化を示す。FIG. 5A shows time dependent changes in plasma CXCL2 levels from baseline. 図5Bは、ベースラインからの血漿中VEGFレベルにおける時間依存変化を示す。FIG. 5B shows time dependent changes in plasma VEGF levels from baseline. 図5Cは、ベースラインからの血漿中IFNα2レベルにおける時間依存変化を示す。FIG. 5C shows time dependent changes in plasma IFNα2 levels from baseline. 図5Dは、ベースラインからの血漿中MMP2レベルにおける時間依存変化を示す。FIG. 5D shows time-dependent changes in plasma MMP2 levels from baseline.
 1つの態様において、本発明は、免疫チェックポイント阻害薬によるがん免疫療法の予後予測のための、CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1つ以上のバイオマーカーに関する。 In one embodiment, the invention relates to one or more selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2 for prognosis of cancer immunotherapy with an immune checkpoint inhibitor. It relates to a biomarker.
 さらなる態様において、本発明は、免疫チェックポイント阻害薬によるがん免疫療法の予後予測方法であって、
a)採取された生体試料中のGM-CSFのレベルを、予め設定されたGM-CSFのカットオフ値と比較する工程、
b)採取された生体試料中のCHI3L1のレベルを、予め設定されたCHI3L1のカットオフ値と比較する工程、
c)前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2、VEGF、IFNα2および/またはMMP2のレベルを、前記免疫チェックポイント阻害薬の投与前に採取された生体試料中の対応するCXCL2、VEGF、IFNα2および/またはMMP2のレベルと比較する工程、または
d)前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2のレベルをモニターする工程、
を含む、方法に関する。
In a further aspect, the invention is a method of prognosticating cancer immunotherapy with an immune checkpoint inhibitor,
a) comparing the level of GM-CSF in the collected biological sample with a preset GM-CSF cutoff value,
b) comparing the level of CHI3L1 in the collected biological sample with a preset cutoff value of CHI3L1;
c) the levels of CXCL2, VEGF, IFNα2 and / or MMP2 in the biological sample collected after administration of said immune checkpoint inhibitor are the same as in the biological sample collected prior to said administration of said immune checkpoint inhibitor Comparing with the level of CXCL2, VEGF, IFNα2 and / or MMP2, or d) monitoring the level of CXCL2 in a biological sample taken after administration of said immune checkpoint inhibitor,
On the way, including.
 さらなる別の態様において、本発明は、がんの治療方法であって、
a)採取された生体試料中のGM-CSFのレベルを、予め設定されたGM-CSFのカットオフ値と比較する工程、
b)採取された生体試料中のCHI3L1のレベルを、予め設定されたCHI3L1のカットオフ値と比較する工程、
c)免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2、VEGF、IFNα2および/またはMMP2のレベルを、前記免疫チェックポイント阻害薬の投与前に採取された生体試料中の対応するCXCL2、VEGF、IFNα2および/またはMMP2のレベルと比較する工程、または
d)免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2のレベルをモニターする工程、を含み、かつ
e)工程a)、b)、c)またはd)で得られた結果に基づいて予後予測し、予後が良好であると予測された対象に免疫チェックポイント阻害薬を投与する工程
を含む、方法に関する。
In yet another aspect, the invention relates to a method of treating cancer, comprising
a) comparing the level of GM-CSF in the collected biological sample with a preset GM-CSF cutoff value,
b) comparing the level of CHI3L1 in the collected biological sample with a preset cutoff value of CHI3L1;
c) the level of CXCL2, VEGF, IFNα2 and / or MMP2 in the biological sample collected after administration of the immune checkpoint inhibitor, and the corresponding CXCL2 in the biological sample collected prior to the administration of the immune checkpoint inhibitor , Comparing with the levels of VEGF, IFNα2 and / or MMP2, or d) monitoring the level of CXCL2 in a biological sample taken after administration of the immune checkpoint inhibitor, and e) step a) B), c) or d), and administering an immune checkpoint inhibitor to a subject predicted to have a good prognosis based on the results obtained in b), c) or d).
 本開示において、免疫チェックポイント阻害薬は、抗PD-1抗体、抗PD-L1抗体が使用されてもよい。免疫チェックポイント阻害薬はがん細胞に直接作用するのではなく、患者の免疫応答能を増強させることにより作用する。免疫チェックポイント阻害薬である抗PD-1抗体または抗PD-L1抗体は、PD-1/PD-L1経路を阻害するとされている。抗PD-1抗体は、特に限定されないが、ニボルマブおよびペムブロリズマブであり得る。抗PD-L1抗体は、特に限定されないが、アベルマブ、アテゾリズマブおよびデュルバルマブであり得る。 In the present disclosure, as an immune checkpoint inhibitor, an anti-PD-1 antibody or an anti-PD-L1 antibody may be used. Immune checkpoint inhibitors do not act directly on cancer cells, but by enhancing the ability of the patient to respond to the immune response. The immune checkpoint inhibitor, anti-PD-1 antibody or anti-PD-L1 antibody, is said to inhibit the PD-1 / PD-L1 pathway. The anti-PD-1 antibody may be, but not limited to, nivolumab and pembrolizumab. Anti-PD-L1 antibodies may be, but are not limited to, averumab, atezolizumab and durvalumab.
 本開示において、治療関連有害事象または有害事象とは、治療または処置に際して観察される、あらゆる好ましくない意図しない徴候(臨床検査値の異常も含む)、症状、疾患である。有害事象と治療や処置との因果関係は問わない。有害事象は、例えば米国立がん研究所が作成した『有害事象共通用語規準』により評価される。 In the present disclosure, treatment-related adverse events or adverse events are any undesirable and unintended signs (including abnormal laboratory test values), symptoms and diseases observed during treatment or treatment. There is no relationship between adverse events and treatment or treatment. Adverse events are evaluated, for example, according to the “Adverse event common term criteria” prepared by the National Cancer Institute.
 本開示において、予後とは、ある疾患について何らかの治療を施した後の患者の経過についての医学的見通しまたは患者の余命を意味する。例えば予後予測は、無増悪生存期間、全生存期間または客観的腫瘍反応の予測が挙げられる。予後が良好であるとは、例えば、疾患の治療後のその疾患の臨床段階が悪化しないかまたは悪化するのが遅いこと、癌の場合はリンパ節への腫瘍転移が見られないかまたは少ないこと、周辺組織への腫瘍細胞の浸潤が起こらないかまたはそのレベルが低いこと、または再発が起こらないかもしくは再発までの期間が長いこと、などを意味する。従って、患者の予後が良好である場合または患者の予後が良好であると予測される場合に、患者が治療関連有害事象を発現することまたは患者が治療関連有害事象を発現すると予測されることはあり得る。 In the present disclosure, prognosis means the medical prospect of the patient's progress or the patient's life expectancy after some treatment for a certain disease. For example, prognosis includes prediction of progression free survival, overall survival or objective tumor response. Favorable prognosis means, for example, that the clinical stage of the disease does not deteriorate or deteriorate slowly after treatment of the disease, and in the case of cancer, no or few tumor metastasis to lymph nodes is observed. , Infiltration of tumor cells into surrounding tissues does not occur or the level thereof is low, or recurrence does not occur or the time until recurrence is long. Thus, if the patient has a good prognosis or if the patient's prognosis is predicted to be good, then the patient will develop a treatment related adverse event or the patient will be expected to develop a treatment related adverse event. possible.
 本開示において、比較する工程には、検出または測定する工程等を含み得る。「比較」という用語は、数値を測定することにより得られる情報を比べること、または異なる条件から得られる情報を比べることを意味し得る。生体試料から得られる情報は、例えば、移動度、色調、蛍光強度、発光強度または濃淡などで比べることができる。情報を取得する方法は、特に限定されないが、一般に使用されている様々な方法を用いることができる。当該方法は、例えばELISAまたはラジオイムノアッセイ(RIA)、マルチプレックスアッセイなどの免疫学的測定法が使用されてもよい。 In the present disclosure, the comparing step may include a detecting or measuring step and the like. The term "comparison" may mean comparing information obtained by measuring numerical values, or comparing information obtained from different conditions. The information obtained from the biological sample can be compared, for example, by mobility, color tone, fluorescence intensity, emission intensity or gradation. The method of acquiring information is not particularly limited, but various commonly used methods can be used. As the method, immunological assays such as ELISA or radioimmunoassay (RIA), multiplex assay may be used.
 本開示において、カットオフ値は、当業者が利用可能な手法の中から適宜選択し決定することができる。例えばカットオフ値は、免疫チェックポイント阻害薬が投与されていないがん患者集団中の生体試料における対応するバイオマーカーのレベルの中央値であり得る。GM-CSFのカットオフ値は、免疫チェックポイント阻害薬が投与されていないがん患者集団中の生体試料におけるGM-CSFのレベルの中央値であり得る。CHI3L1のカットオフ値は、免疫チェックポイント阻害薬が投与されていないがん患者集団中の生体試料におけるCHI3L1のレベルの中央値であり得る。GM-CSFのカットオフ値の範囲は、GM-CSFのレベルがマルチプレックスアッセイで測定される場合、例えば約10~30pg/ml、約15~25pg/ml、約17.5~22.5pg/mlである。好ましくは、GM-CSFのカットオフ値の範囲は、GM-CSFのレベルがマルチプレックスアッセイで測定される場合、約15~25pg/mlである。CHI3L1のカットオフ値の範囲は、CHI3L1のレベルがマルチプレックスアッセイで測定される場合、例えば約60~120ng/ml、約70~110ng/ml、約80~100ng/ml、約85~95ng/mlである。好ましくは、CHI3L1のカットオフ値の範囲は、CHI3L1のレベルがマルチプレックスアッセイで測定される場合、約70~110ng/mlである。 In the present disclosure, the cutoff value can be appropriately selected and determined from methods available to those skilled in the art. For example, the cutoff value may be a median level of corresponding biomarkers in a biological sample in a cancer patient population where no immune checkpoint inhibitor has been administered. The GM-CSF cutoff value may be the median level of GM-CSF in a biological sample in a cancer patient population where no immune checkpoint inhibitor has been administered. The cutoff value of CHI3L1 may be the median level of CHI3L1 in a biological sample in a cancer patient population not receiving an immune checkpoint inhibitor. The cut-off value range of GM-CSF is, for example, about 10-30 pg / ml, about 15-25 pg / ml, about 17.5-22.5 pg / ml when the level of GM-CSF is measured by multiplex assay. It is ml. Preferably, the range of GM-CSF cut-off values is about 15-25 pg / ml, as GM-CSF levels are measured in a multiplex assay. The range of cutoff values of CHI3L1 is, for example, about 60 to 120 ng / ml, about 70 to 110 ng / ml, about 80 to 100 ng / ml, about 85 to 95 ng / ml when CHI3L1 levels are measured in a multiplex assay It is. Preferably, the range of CHI3L1 cutoff values is about 70-110 ng / ml when the level of CHI3L1 is measured in a multiplex assay.
 本明細書では、数値が「約」の用語を伴う場合、その値の±10%の範囲を含むことを意図する。数値の範囲は、両端点の間の全ての数値および両端点の数値を含む。範囲に関する「約」は、その範囲の両端点に適用される。従って、例えば、「約20~30」は、「20±10%~30±10%」を含むものとする。 As used herein, when a numerical value is accompanied by the term "about," it is intended to include the range of ± 10% of that value. The numerical range includes all numerical values between the end points and numerical values of the end points. "About" with respect to a range applies to the endpoints of the range. Thus, for example, “about 20 to 30” includes “20 ± 10% to 30 ± 10%”.
 本開示において、免疫チェックポイント阻害薬の投与形態、投与部位、投与量は特に制限されず、対象の状態に応じて当業者が適宜決定できる。好ましい投与形態の例は静脈内投与である。好ましい投与部位の例は血管内である。好ましい投与量の例は2-10mg/kg(体重)を2-3週間間隔である。 In the present disclosure, the administration mode, site of administration, and dosage of the immune checkpoint inhibitor are not particularly limited, and can be appropriately determined by those skilled in the art according to the condition of the subject. An example of a preferred mode of administration is intravenous administration. An example of a preferred site of administration is intravascular. An example of a preferred dose is 2-10 mg / kg body weight 2-3 weeks apart.
 本発明の一実施形態では、バイオマーカーのレベルが予め設定されたカットオフ値と比較される。本発明のバイオマーカーは、CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1以上のバイオマーカーであり得る。本実施形態では、好ましくは、GM-CSFおよびCHI3L1からなる群から選択される1以上のバイオマーカーのレベルが予め設定されたカットオフ値と比較される。本発明の一実施形態において、免疫チェックポイント阻害薬の投与開始前に採取された生体試料中のバイオマーカーのレベルが、予め設定されたカットオフ値と比較される。 In one embodiment of the invention, the level of the biomarker is compared to a preset cutoff value. The biomarker of the present invention may be one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2. In this embodiment, preferably, the level of one or more biomarkers selected from the group consisting of GM-CSF and CHI3L1 is compared to a preset cutoff value. In one embodiment of the invention, the level of the biomarker in the biological sample collected prior to the start of administration of the immune checkpoint inhibitor is compared to a preset cutoff value.
 本発明のさらなる実施形態では、予後予測が、GM-CSFのレベルが、予め設定されたGM-CSFのカットオフ値以上であることが予後が良好であると予測し、または前記レベルが、予め設定されたGM-CSFのカットオフ値未満であることが予後が不良であると予測することを特徴とする。本発明の別の実施形態では、予後予測が、CHI3L1のレベルが、予め設定されたCHI3L1のカットオフ値以下であることが予後が良好であると予測し、または前記レベルが、予め設定されたCHI3L1のカットオフ値超であることが予後が不良であると予測することを特徴とする。 In a further embodiment of the present invention, the prognosis predicts that the level of GM-CSF is equal to or higher than a preset GM-CSF cut-off value, or the level is previously determined It is characterized that it predicts that a prognosis is bad that it is less than the cut-off value of GM-CSF set. In another embodiment of the present invention, the prognosis predicts that the level of CHI3L1 is less than or equal to a preset CHI3L1 cut-off value, or the level is preset. It is characterized that it predicts that prognosis is bad that it is more than the cutoff value of CHI3L1.
 本発明の一実施形態では、免疫チェックポイント阻害薬の投与前および投与後のバイオマーカーのレベルが比較される。本発明のバイオマーカーは、CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1以上のバイオマーカーであり得る。本実施形態では、好ましくはCXCL2、VEGF、IFNα2およびMMP2からなる群から選択される1以上のバイオマーカーのレベルが比較される。 In one embodiment of the invention, the levels of biomarkers before and after administration of the immune checkpoint inhibitor are compared. The biomarker of the present invention may be one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2. In this embodiment, the levels of one or more biomarkers, preferably selected from the group consisting of CXCL2, VEGF, IFNα2 and MMP2, are compared.
 本発明のさらなる実施形態では、予後予測が、免疫チェックポイント阻害薬の投与後のCXCL2、VEGFまたはIFNα2のレベルが、前記免疫チェックポイント阻害薬の投与前の対応するCXCL2、VEGFまたはIFNα2のレベルと比較して減少していることが、予後が良好であると予測し、または免疫チェックポイント阻害薬の投与後のCXCL2、VEGFまたはIFNα2のレベルが、前記免疫チェックポイント阻害薬の投与前の対応するCXCL2、VEGFまたはIFNα2のレベルと比較して減少していないことが、予後が不良であると予測することを特徴とする。 In a further embodiment of the invention, the prognosis is that the level of CXCL2, VEGF or IFNα2 after administration of the immune checkpoint inhibitor is the same as the level of the corresponding CXCL2, VEGF or IFNα2 prior to the administration of said immune checkpoint inhibitor The relative decrease is predicted to have a good prognosis, or the level of CXCL2, VEGF or IFNα2 after administration of the immune checkpoint inhibitor is corresponding before the administration of the immune checkpoint inhibitor The absence of a decrease compared to the levels of CXCL2, VEGF or IFNα2 is characterized as predicting a poor prognosis.
 本発明のさらなる実施形態では、予後予測が、免疫チェックポイント阻害薬の投与後のMMP2のレベルが、前記免疫チェックポイント阻害薬の投与前のMMP2のレベルと比較して増加していることが、予後が良好であると予測し、または免疫チェックポイント阻害薬の投与後のMMP2のレベルが、投与前に採取された生体試料中のMMP2のレベルと比較して増加していないことが、予後が不良であると予測することを特徴とする。 In a further embodiment of the invention, the prognosis is that the level of MMP2 after administration of the immune checkpoint inhibitor is increased compared to the level of MMP2 before administration of said immune checkpoint inhibitor. The prognosis is that the prognosis is predicted to be good or that the level of MMP2 after administration of the immune checkpoint inhibitor is not increased compared to the level of MMP2 in the biological sample collected before administration It is characterized in that it is predicted to be defective.
 本発明の一実施形態では、免疫チェックポイント阻害薬の投与後のバイオマーカーのレベルがモニターされる。本開示において、モニターするとは、経時的変化を観察することを意味し、本実施形態では、免疫チェックポイント阻害薬の投与開始前と、免疫チェックポイント阻害薬の投与開始後の1または複数の時点で採取された生体試料中のバイオマーカーのレベルが比較される。本発明のバイオマーカーは、CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1以上のバイオマーカーであり得る。本実施形態では、好ましくはCXCL2のバイオマーカーのレベルがモニターされる。 In one embodiment of the invention, the level of biomarker after administration of the immune checkpoint inhibitor is monitored. In the present disclosure, monitoring means observing change over time, and in this embodiment, before starting administration of the immune checkpoint inhibitor and at one or more time points after starting administration of the immune checkpoint inhibitor. The levels of the biomarkers in the biological sample collected at are compared. The biomarker of the present invention may be one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2. In this embodiment, preferably the level of biomarkers of CXCL2 is monitored.
 本発明のさらなる実施形態では、予後予測が、免疫チェックポイント阻害薬の投与後のCXCL2のレベルが免疫チェックポイント阻害薬の投与前のCXCL2のレベルと比較して減少することが、予後が良好であると予測し、または免疫チェックポイント阻害薬の投与後のCXCL2のレベルが免疫チェックポイント阻害薬の投与前のCXCL2のレベルと比較して増加することが、予後が不良であると予測することを特徴とする。 In a further embodiment of the invention, the prognosis is good that the level of CXCL2 after administration of the immune checkpoint inhibitor is reduced compared to the level of CXCL2 before administration of the immune checkpoint inhibitor Predicting that there is a prognosis or that the level of CXCL2 after administration of the immune checkpoint inhibitor is increased relative to the level of CXCL2 before administration of the immune checkpoint inhibitor is predicted to be poor It features.
 本発明の一実施形態では、バイオマーカーのレベルに基づいて治療関連有害事象の発現を予測する。本発明のバイオマーカーは、CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1以上のバイオマーカーであり得る。本実施形態では、好ましくはCXCL2およびGM-CSFからなる群から選択される1以上のバイオマーカーのレベルが比較される。ある実施形態では、治療関連有害事象の発現の予測が、免疫チェックポイント阻害薬の投与後のCXCL2のレベルが、前記免疫チェックポイント阻害薬の投与前のCXCL2と比較して減少していることが、治療関連有害事象を発現すると予測することを特徴とする。別の実施形態では、免疫チェックポイント阻害薬の投与前のGM-CSFのレベルが、予め設定されたGM-CSFのカットオフ値未満であることが、治療関連有害事象を発現すると予測することを特徴とする。 In one embodiment of the invention, the occurrence of treatment related adverse events is predicted based on the level of the biomarker. The biomarker of the present invention may be one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2. In this embodiment, the levels of one or more biomarkers, preferably selected from the group consisting of CXCL2 and GM-CSF, are compared. In one embodiment, the prediction of the occurrence of a treatment-related adverse event is that the level of CXCL2 after administration of the immune checkpoint inhibitor is decreased compared to CXCL2 before administration of the immune checkpoint inhibitor , And are expected to develop treatment-related adverse events. In another embodiment, predicting that the level of GM-CSF before administration of the immune checkpoint inhibitor is less than a preset GM-CSF cut-off value is predicted to cause a treatment related adverse event It features.
 本開示において、バイオマーカーは生体試料に由来する。生体試料は、例えば血液試料が挙げられる。生体試料の採取は侵襲的処置または非侵襲的処置が行われ得る。血液試料は、末梢血、末梢血単核細胞、血漿または血清であり得る。生体試料を採取する時期は特に制限されない。本発明の一態様では、生体試料は、免疫チェックポイント阻害薬の投与開始前に採取される。この場合において、必ずしも免疫チェックポイント阻害薬を投与する工程を伴うとは限らない。当該工程を含まない場合は、投与開始前とは、特定の時期に限られない。本発明の特定の実施形態では、生体試料は、免疫チェックポイント阻害薬の投与開始から1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19および/または20週間以降に採取される。生体試料は、好ましくは、免疫チェックポイント阻害薬の投与開始から6週間以降、さらに好ましくは、6-8週間以降または12-20週間以降に採取されてもよい。 In the present disclosure, the biomarker is derived from a biological sample. The biological sample may, for example, be a blood sample. Collection of biological samples may be performed either invasively or non-invasively. The blood sample may be peripheral blood, peripheral blood mononuclear cells, plasma or serum. There is no particular limitation on the time to collect the biological sample. In one aspect of the invention, the biological sample is taken prior to the start of administration of the immune checkpoint inhibitor. In this case, the step of administering the immune checkpoint inhibitor is not necessarily involved. When the process is not included, “before the start of administration” is not limited to a specific time. In certain embodiments of the invention, the biological sample is from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, from the start of administration of the immune checkpoint inhibitor. Collected after 15, 16, 17, 18, 19 and / or 20 weeks. The biological sample may preferably be collected 6 weeks or more, more preferably 6-8 weeks or more, or 12-20 weeks or more from the start of administration of the immune checkpoint inhibitor.
 本開示において、がんは、例えば、白血病、骨髄異形成症候群、多発性骨髄腫、悪性リンパ腫、食道癌、胃癌、小腸癌、大腸癌、膵臓癌、肺癌、乳癌、胚細胞癌、肝癌、胆嚢癌、頭頸部癌、皮膚癌、肉腫、腎臓癌、膀胱癌、前立腺癌、精巣癌、子宮癌、子宮頸癌、卵巣癌、甲状腺癌、カルチノイド、肺芽腫、脳腫瘍、または胸腺癌が挙げられる。がんは、非小細胞肺癌、腎細胞癌、悪性黒色腫、頭頸部癌、ホジキン病または胃癌であってもよい。がんは、進行性/再発性非小細胞肺癌であり得る。 In the present disclosure, the cancer includes, for example, leukemia, myelodysplastic syndrome, multiple myeloma, malignant lymphoma, esophagus cancer, gastric cancer, small intestine cancer, small intestine cancer, colon cancer, pancreatic cancer, lung cancer, breast cancer, germ cell cancer, liver cancer, gallbladder Cancer, head and neck cancer, skin cancer, sarcoma, kidney cancer, bladder cancer, prostate cancer, testicular cancer, testicular cancer, uterine cancer, cervical cancer, ovarian cancer, thyroid cancer, carcinoid, lung blastoma, brain tumor, or thymus cancer . The cancer may be non-small cell lung cancer, renal cell carcinoma, malignant melanoma, head and neck cancer, Hodgkin's disease or gastric cancer. The cancer may be advanced / recurrent non-small cell lung cancer.
 本発明の一実施形態では、バイオマーカーのレベルに基づいて予後予測または治療関連有害事象の発現を予測するためのキットが含まれる。本発明のバイオマーカーは、CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1以上のバイオマーカーであり得る。キットには、バイオマーカーのレベルを比較するための様々な構成が含まれ得る。キットの構成は、生体試料中のバイオマーカーのレベルを検出および/または可視化できるものであればよい。キットは、試料中のバイオマーカーのレベルを分析するためのコンピュータモデルまたはアルゴリズムをさらに含む。キットは、例えば、ELISAまたはRIA、マルチプレックスアッセイなどの免疫学的測定法のためのキットでありうる。 In one embodiment of the invention, a kit for predicting the occurrence of a prognosis or treatment related adverse event based on the level of the biomarker is included. The biomarker of the present invention may be one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2. The kit can include various configurations to compare the levels of biomarkers. The composition of the kit may be any one that can detect and / or visualize the level of the biomarker in the biological sample. The kit further comprises a computer model or algorithm for analyzing the level of biomarkers in the sample. The kit can be, for example, a kit for an immunological assay such as ELISA or RIA, multiplex assay.
 本発明の一実施形態では、バイオマーカーの予後予測または治療関連有害事象の発現の予測のための使用が含まれる。本発明のバイオマーカーは、CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1以上のバイオマーカーであり得る。バイオマーカーの予後予測または治療関連有害事象の発現の予測のための使用は、例えば、直接的にまたは間接的にバイオマーカーのレベルを予後予測または治療関連有害事象の発現の予測のために検出、測定または比較することを意味する。 One embodiment of the present invention includes the use of a biomarker for prognostication or prediction of the occurrence of treatment-related adverse events. The biomarker of the present invention may be one or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2. Use of a biomarker for predicting prognosis or the occurrence of treatment-related adverse events, for example, directly or indirectly detecting the level of the biomarker for prognosis or predicting the occurrence of treatment-related adverse events, Means to measure or compare.
 例示的な実施形態において、本発明は、以下を提供する:
(1)
 免疫チェックポイント阻害薬によるがん免疫療法の予後予測のための、CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1つ以上のバイオマーカー。
(2)
 前記バイオマーカーがGM-CSFまたはCHI3L1であって、前記バイオマーカーのレベルが予め設定されたカットオフ値と比較される、(1)に記載のバイオマーカー。
(3)
 前記バイオマーカーがCXCL2、VEGF、IFNα2またはMMP2であって、前記免疫チェックポイント阻害薬の投与前および投与後の前記バイオマーカーのレベルが比較される、(1)に記載のバイオマーカー。
(4)
 前記バイオマーカーがCXCL2であって、前記免疫チェックポイント阻害薬の投与後の前記バイオマーカーのレベルがモニターされる、(1)に記載のバイオマーカー。
(5)
 予後予測が、GM-CSFのレベルが、予め設定されたGM-CSFのカットオフ値以上であることが予後が良好であると予測し、または前記レベルが、予め設定されたGM-CSFのカットオフ値未満であることが予後が不良であると予測することを特徴とする、(2)に記載のバイオマーカー。
(6)
 予後予測が、CHI3L1のレベルが、予め設定されたCHI3L1のカットオフ値以下であることが予後が良好であると予測し、または前記レベルが、予め設定されたCHI3L1のカットオフ値超であることが予後が不良であると予測することを特徴とする、(2)に記載のバイオマーカー。
(7)
 予後予測が、前記免疫チェックポイント阻害薬の投与後のCXCL2、VEGFまたはIFNα2のレベルが、前記免疫チェックポイント阻害薬の投与前の対応するCXCL2、VEGFまたはIFNα2のレベルと比較して減少していることが、予後が良好であると予測し、または前記免疫チェックポイント阻害薬の投与後のCXCL2、VEGFまたはIFNα2のレベルが、前記免疫チェックポイント阻害薬の投与前の対応するCXCL2、VEGFまたはIFNα2のレベルと比較して減少していないことが、予後が不良であると予測することを特徴とする、(3)に記載のバイオマーカー。
(8)
 予後予測が、前記免疫チェックポイント阻害薬の投与後のMMP2のレベルが、前記免疫チェックポイント阻害薬の投与前のMMP2のレベルと比較して増加していることが、予後が良好であると予測し、または前記免疫チェックポイント阻害薬の投与後のMMP2のレベルが、投与前に採取された生体試料中のMMP2のレベルと比較して増加していないことが、予後が不良であると予測することを特徴とする、(3)に記載のバイオマーカー。
(9)
 予後予測が、前記免疫チェックポイント阻害薬の投与後のCXCL2のレベルが免疫チェックポイント阻害薬の投与前のCXCL2のレベルと比較して減少することが、予後が良好であると予測し、または前記免疫チェックポイント阻害薬の投与後のCXCL2のレベルが免疫チェックポイント阻害薬の投与前のCXCL2のレベルと比較して増加することが、予後が不良であると予測することを特徴とする、(4)に記載のバイオマーカー。
(10)
 前記バイオマーカーが、生体試料に由来する、(1)-(9)のいずれかに記載のバイオマーカー。
(11)
 生体試料が、血液試料である、(10)に記載のバイオマーカー。
(12)
 血液試料が、末梢血、末梢血単核細胞、血漿または血清である、(11)に記載のバイオマーカー。
(13)
 免疫チェックポイント阻害薬が、抗PD-1抗体または抗PD-L1抗体である、(1)-(12)のいずれかに記載のバイオマーカー。
(14)
 がんが、白血病、骨髄異形成症候群、多発性骨髄腫、悪性リンパ腫、食道癌、胃癌、小腸癌、大腸癌、膵臓癌、肺癌、乳癌、胚細胞癌、肝癌、胆嚢癌、頭頸部癌、皮膚癌、肉腫、腎臓癌、膀胱癌、前立腺癌、精巣癌、子宮癌、子宮頸癌、卵巣癌、甲状腺癌、カルチノイド、肺芽腫、脳腫瘍、または胸腺癌である、(1)-(13)のいずれかに記載のバイオマーカー。
(15)
 がんが、非小細胞肺癌、腎細胞癌、悪性黒色腫、頭頸部癌、ホジキン病、膀胱癌または胃癌である、(14)に記載のバイオマーカー。
(16)
 がんが、進行性/再発性非小細胞肺癌である、(15)に記載のバイオマーカー。
(17)
 前記免疫チェックポイント阻害薬の投与後に採取された生体試料が、前記免疫チェックポイント阻害薬の投与開始から6-8週間以降に採取された生体試料である、(1)-(16)のいずれかに記載のバイオマーカー。
(18)
 予後予測が、無増悪生存期間、全生存期間または客観的腫瘍反応の予測である、(1)-(17)のいずれかに記載のバイオマーカー。
(19)
 前記バイオマーカーがCXCL2であって、免疫チェックポイント阻害薬の投与後のCXCL2のレベルが、前記免疫チェックポイント阻害薬の投与前のCXCL2と比較して減少していることが、治療関連有害事象を発現するとさらに予測する、(3)、(4)、(7)または(9)-(18)のいずれかに記載のバイオマーカー。
(20)
 前記バイオマーカーがGM-CSFであって、GM-CSFのレベルに基づいて、治療関連有害事象を発現するとさらに予測する、(1)、(2)、(5)または(10)-(18)のいずれかに記載のバイオマーカー。
(21)
 (1)-(20)のいずれかに記載のバイオマーカーのレベルに基づいて予後予測または治療関連有害事象の発現を予測するためのキット。
(22)
 (1)-(20)のいずれかに記載のバイオマーカーの、予後予測または治療関連有害事象の発現の予測のための使用。
(23)
 免疫チェックポイント阻害薬によるがん免疫療法の予後予測方法であって、
a)採取された生体試料中のGM-CSFのレベルを、予め設定されたGM-CSFのカットオフ値と比較する工程、
b)採取された生体試料中のCHI3L1のレベルを、予め設定されたCHI3L1のカットオフ値と比較する工程、
c)前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2、VEGF、IFNα2および/またはMMP2のレベルを、前記免疫チェックポイント阻害薬の投与前に採取された生体試料中の対応するCXCL2、VEGF、IFNα2および/またはMMP2のレベルと比較する工程、または
d)前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2のレベルをモニターする工程、
を含む、方法。
(24)
 工程a)において、前記レベルが、予め設定されたGM-CSFのカットオフ値以上であることが予後が良好であると予測し、または前記レベルが、予め設定されたGM-CSFのカットオフ値未満であることが予後が不良であると予測することを特徴とする、(23)に記載の方法。
(25)
 工程b)において、前記レベルが、予め設定されたCHI3L1のカットオフ値以下であることが予後が良好であると予測し、または前記レベルが、予め設定されたCHI3L1のカットオフ値超であることが予後が不良であると予測することを特徴とする、(23)に記載の方法。
(26)
 工程c)において、投与後に採取された生体試料中のCXCL2、VEGFおよび/またはIFNα2のレベルが、投与前に採取された生体試料中の対応するCXCL2、VEGFおよび/またはIFNα2のレベルと比較して減少していることが、予後が良好であると予測し、または投与後に採取された生体試料中のCXCL2、VEGFおよび/またはIFNα2のレベルが、投与前に採取された生体試料中の対応するCXCL2、VEGFおよび/またはIFNα2のレベルと比較して減少していないことが、予後が不良であると予測することを特徴とする、(23)に記載の方法。
(27)
 工程c)において、投与後に採取された生体試料中のMMP2のレベルが、投与前に採取された生体試料中のMMP2のレベルと比較して増加していることが、予後が良好であると予測し、または投与後に採取された生体試料中のMMP2のレベルが、投与前に採取された生体試料中のMMP2のレベルと比較して増加していないことが、予後が不良であると予測することを特徴とする、(23)に記載の方法。
(28)
 工程d)において、前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2のレベルが免疫チェックポイント阻害薬の投与前のCXCL2のレベルと比較して減少することが、予後が良好であると予測し、または前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2のレベルが免疫チェックポイント阻害薬の投与前のCXCL2のレベルと比較して増加することが、予後が不良であると予測することを特徴とする、(23)に記載の方法。
(29)
 生体試料が、血液試料である、(23)-(28)のいずれかに記載の方法。
(30)
 血液試料が、末梢血、末梢血単核細胞、血漿または血清である、(29)に記載の方法。
(31)
 免疫チェックポイント阻害薬が、抗PD-1抗体または抗PD-L1抗体である、(23)-(30)のいずれかに記載の方法。
(32)
 がんが、白血病、骨髄異形成症候群、多発性骨髄腫、悪性リンパ腫、食道癌、胃癌、小腸癌、大腸癌、膵臓癌、肺癌、乳癌、胚細胞癌、肝癌、胆嚢癌、頭頸部癌、皮膚癌、肉腫、腎臓癌、膀胱癌、前立腺癌、精巣癌、子宮癌、子宮頸癌、卵巣癌、甲状腺癌、カルチノイド、肺芽腫、脳腫瘍、または胸腺癌である、(23)-(31)のいずれかに記載の方法。
(33)
 がんが、非小細胞肺癌、腎細胞癌、悪性黒色腫、頭頸部癌、ホジキン病、膀胱癌または胃癌である、(32)に記載の方法。
(34)
 がんが、進行性/再発性非小細胞肺癌である、(33)に記載の方法。
(35)
 前記免疫チェックポイント阻害薬の投与後に採取された生体試料が、前記免疫チェックポイント阻害薬の投与開始から6-8週間以降に採取された生体試料である、(23)-(34)のいずれかに記載の方法。
(36)
 予後予測が、無増悪生存期間、全生存期間または客観的腫瘍反応の予測である、(23)-(35)のいずれかに記載の方法。
(37)
 免疫チェックポイント阻害薬の投与後のCXCL2のレベルが、前記免疫チェックポイント阻害薬の投与前のCXCL2と比較して減少していることが、治療関連有害事象を発現するとさらに予測する、(23)-(36)のいずれかに記載の方法。
(38)
 GM-CSFのレベルに基づいて、治療関連有害事象を発現するとさらに予測する、(23)-(37)のいずれかに記載の方法。
(39)
 (23)-(38)のいずれかに記載の方法に用いるためのキット。
(40)
 CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1以上のバイオマーカーであって、(23)-(38)のいずれかに記載の方法のための薬効評価用バイオマーカー。
In an exemplary embodiment, the present invention provides:
(1)
One or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2 for prognosis prediction of cancer immunotherapy with an immune checkpoint inhibitor.
(2)
The biomarker according to (1), wherein the biomarker is GM-CSF or CHI3L1 and the level of the biomarker is compared to a preset cutoff value.
(3)
The biomarker according to (1), wherein the biomarker is CXCL2, VEGF, IFNα2 or MMP2, and the levels of the biomarker are compared before and after administration of the immune checkpoint inhibitor.
(4)
The biomarker according to (1), wherein the biomarker is CXCL2 and the level of the biomarker after administration of the immune checkpoint inhibitor is monitored.
(5)
The prognosis predicts that the level of GM-CSF is higher than or equal to the preset GM-CSF cut-off value, or the level is a preset GM-CSF cut. The biomarker according to (2), which is predicted to have a poor prognosis if it is less than the off value.
(6)
The prognosis predicts that the level of CHI3L1 is better than or equal to a preset CHI3L1 cutoff value, or that the level is greater than a preset CHI3L1 cutoff value The biomarker according to (2), wherein the biomarker is predicted to have a poor prognosis.
(7)
Prognostic value is that the level of CXCL2, VEGF or IFNα2 after administration of the immune checkpoint inhibitor is reduced compared to the level of the corresponding CXCL2, VEGF or IFNα2 before administration of the immune checkpoint inhibitor Predict that the prognosis is good or that the level of CXCL2, VEGF or IFNα2 after administration of the immune checkpoint inhibitor is that of the corresponding CXCL2, VEGF or IFNα2 prior to administration of the immune checkpoint inhibitor The biomarker according to (3), which is characterized in that it does not decrease compared to the level and predicts that the prognosis is poor.
(8)
Prognosis predicts that the prognosis is good that the level of MMP2 after administration of the immune checkpoint inhibitor is increased compared to the level of MMP2 before administration of the immune checkpoint inhibitor Or that the level of MMP2 after administration of the immune checkpoint inhibitor is not increased as compared to the level of MMP2 in the biological sample collected prior to administration, which predicts a poor prognosis The biomarker according to (3), characterized in that
(9)
Prognostic predicts that the prognosis is good that the level of CXCL2 after administration of the immune checkpoint inhibitor is reduced compared to the level of CXCL2 before administration of the immune checkpoint inhibitor, or An increase in the level of CXCL2 after administration of the immune checkpoint inhibitor as compared to the level of CXCL2 before administration of the immune checkpoint inhibitor is characterized by predicting that the prognosis is poor (4 The biomarker as described in).
(10)
The biomarker according to any one of (1) to (9), wherein the biomarker is derived from a biological sample.
(11)
The biomarker according to (10), wherein the biological sample is a blood sample.
(12)
The biomarker according to (11), wherein the blood sample is peripheral blood, peripheral blood mononuclear cells, plasma or serum.
(13)
The biomarker according to any one of (1) to (12), wherein the immune checkpoint inhibitor is an anti-PD-1 antibody or an anti-PD-L1 antibody.
(14)
Cancer includes leukemia, myelodysplastic syndrome, multiple myeloma, malignant lymphoma, esophagus cancer, gastric cancer, small intestine cancer, colon cancer, pancreatic cancer, lung cancer, breast cancer, germ cell cancer, liver cancer, gallbladder cancer, head and neck cancer, Skin cancer, sarcoma, kidney cancer, bladder cancer, prostate cancer, testicular cancer, testicular cancer, uterine cancer, cervical cancer, ovarian cancer, thyroid cancer, carcinoid, lung carcinoma, lung cancer, or thymus cancer, (1)-(13) The biomarker according to any one of the above.
(15)
The biomarker according to (14), wherein the cancer is non-small cell lung cancer, renal cell carcinoma, malignant melanoma, head and neck cancer, Hodgkin's disease, bladder cancer or gastric cancer.
(16)
The biomarker according to (15), wherein the cancer is advanced / recurrent non-small cell lung cancer.
(17)
Any of (1) to (16), wherein the biological sample collected after administration of the immune checkpoint inhibitor is a biological sample collected after 6-8 weeks from the start of administration of the immune checkpoint inhibitor The biomarker as described in.
(18)
The biomarker according to any of (1)-(17), wherein the prognosis is prediction of progression free survival, overall survival or objective tumor response.
(19)
That the biomarker is CXCL2 and that the level of CXCL2 after administration of the immune checkpoint inhibitor is reduced compared to CXCL2 before administration of the immune checkpoint inhibitor, thereby causing a treatment related adverse event The biomarker according to any of (3), (4), (7) or (9)-(18), which is further predicted to be expressed.
(20)
The biomarker is GM-CSF, which further predicts that a treatment-related adverse event will occur based on the level of GM-CSF, (1), (2), (5) or (10)-(18) The biomarker according to any one of the above.
(21)
(1)-a kit for predicting the occurrence of prognosis or treatment-related adverse event based on the level of the biomarker according to any of (20).
(22)
(1) Use of the biomarker according to any of (20) for prognostication or prediction of occurrence of treatment-related adverse event.
(23)
It is a prognosis prediction method of cancer immunotherapy with an immune checkpoint inhibitor,
a) comparing the level of GM-CSF in the collected biological sample with a preset GM-CSF cutoff value,
b) comparing the level of CHI3L1 in the collected biological sample with a preset cutoff value of CHI3L1;
c) the levels of CXCL2, VEGF, IFNα2 and / or MMP2 in the biological sample collected after administration of said immune checkpoint inhibitor are the same as in the biological sample collected prior to said administration of said immune checkpoint inhibitor Comparing with the level of CXCL2, VEGF, IFNα2 and / or MMP2, or d) monitoring the level of CXCL2 in a biological sample taken after administration of said immune checkpoint inhibitor,
Method, including.
(24)
In step a), it is predicted that the level is equal to or higher than a preset GM-CSF cut-off value, or the level is a preset GM-CSF cut-off value. The method according to (23), which is predicted to have a poor prognosis if less than.
(25)
In step b), it is predicted that the level is lower than or equal to a preset CHI3L1 cutoff value, or the level is greater than a preset CHI3L1 cutoff value. The method according to (23), wherein the prognosis is poor.
(26)
In step c), the levels of CXCL2, VEGF and / or IFNα2 in the biological sample taken after administration are compared to the levels of corresponding CXCL2, VEGF and / or IFNα2 in the biological sample taken prior to administration The decrease is predicted to be of good prognosis, or the level of CXCL2, VEGF and / or IFNα2 in the biological sample collected after administration is the same as the corresponding CXCL2 in the biological sample collected before administration The method according to (23), which is characterized by not having decreased in comparison with the level of VEGF and / or IFNα2, and predicting that the prognosis is poor.
(27)
In step c), it is predicted that the prognosis is good that the level of MMP2 in the biological sample collected after administration is increased compared to the level of MMP2 in the biological sample collected before administration That the level of MMP2 in the biological sample collected after or after administration is not increased as compared to the level of MMP2 in the biological sample collected prior to The method according to (23), characterized in that
(28)
In step d), the level of CXCL2 in the biological sample collected after administration of the immune checkpoint inhibitor is decreased compared to the level of CXCL2 before administration of the immune checkpoint inhibitor, and the prognosis is good There is a poor prognosis that the level of CXCL2 in a biological sample predicted to be present or taken after administration of the immune checkpoint inhibitor is increased compared to the level of CXCL2 before administration of the immune checkpoint inhibitor The method according to (23), wherein the method is predicted.
(29)
The method according to any of (23)-(28), wherein the biological sample is a blood sample.
(30)
The method according to (29), wherein the blood sample is peripheral blood, peripheral blood mononuclear cells, plasma or serum.
(31)
The method according to any of (23)-(30), wherein the immune checkpoint inhibitor is an anti-PD-1 antibody or an anti-PD-L1 antibody.
(32)
Cancer includes leukemia, myelodysplastic syndrome, multiple myeloma, malignant lymphoma, esophagus cancer, gastric cancer, small intestine cancer, colon cancer, pancreatic cancer, lung cancer, breast cancer, germ cell cancer, liver cancer, gallbladder cancer, head and neck cancer, Skin cancer, sarcoma, kidney cancer, bladder cancer, prostate cancer, testicular cancer, testicular cancer, uterine cancer, cervical cancer, ovarian cancer, thyroid cancer, carcinoid, lung carcinoma, lung cancer, or thymus cancer, (23)-(31) The method according to any one of the above.
(33)
The method according to (32), wherein the cancer is non-small cell lung cancer, renal cell carcinoma, malignant melanoma, head and neck cancer, Hodgkin's disease, bladder cancer or gastric cancer.
(34)
The method according to (33), wherein the cancer is advanced / recurrent non-small cell lung cancer.
(35)
Any of (23)-(34), wherein the biological sample collected after administration of the immune checkpoint inhibitor is a biological sample collected after 6-8 weeks from the start of administration of the immune checkpoint inhibitor The method described in.
(36)
The method according to any of (23)-(35), wherein the prognosis is prediction of progression free survival, overall survival or objective tumor response.
(37)
The level of CXCL2 after administration of the immune checkpoint inhibitor is reduced as compared to CXCL2 prior to administration of the immune checkpoint inhibitor, further predicting that treatment-related adverse events occur (23) -The method in any one of-(36).
(38)
The method according to any of (23)-(37), further predicting that a treatment related adverse event will occur based on the level of GM-CSF.
(39)
(23) A kit for use in the method according to any of (38).
(40)
One or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2, which is a bio for evaluating efficacy for any of the methods according to (23)-(38) marker.
 また、他の例示的な実施形態において、本発明は、以下を提供する:
(1)
 がんの治療方法であって、
a)採取された生体試料中のGM-CSFのレベルを、予め設定されたGM-CSFのカットオフ値と比較する工程、
b)採取された生体試料中のCHI3L1のレベルを、予め設定されたCHI3L1のカットオフ値と比較する工程、
c)前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2、VEGF、IFNα2および/またはMMP2のレベルを、前記免疫チェックポイント阻害薬の投与前に採取された生体試料中の対応するCXCL2、VEGF、IFNα2および/またはMMP2のレベルと比較する工程、または
d)前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2のレベルをモニターする工程、を含み、かつ
e)工程a)、b)、c)またはd)で得られた結果に基づいて予後予測し、予後が良好であると予測された対象に免疫チェックポイント阻害薬を投与する工程
を含む、方法。
(2)
 工程a)において、前記レベルが、予め設定されたGM-CSFのカットオフ値以上であることが予後が良好であると予測し、または前記レベルが、予め設定されたGM-CSFのカットオフ値未満であることが予後が不良であると予測することを特徴とする、(1)に記載の方法。
(3)
 工程b)において、前記レベルが、予め設定されたCHI3L1のカットオフ値以下であることが予後が良好であると予測し、または前記レベルが、予め設定されたCHI3L1のカットオフ値超であることが予後が不良であると予測することを特徴とする、(1)に記載の方法。
(4)
 工程c)において、投与後に採取された生体試料中のCXCL2、VEGFおよび/またはIFNα2のレベルが、投与前に採取された生体試料中の対応するCXCL2、VEGFおよび/またはIFNα2のレベルと比較して減少していることが、予後が良好であると予測し、または投与後に採取された生体試料中のCXCL2、VEGFおよび/またはIFNα2のレベルが、投与前に採取された生体試料中の対応するCXCL2、VEGFおよび/またはIFNα2のレベルと比較して減少していないことが、予後が不良であると予測することを特徴とする、(1)に記載の方法。
(5)
 工程c)において、投与後に採取された生体試料中のMMP2のレベルが、投与前に採取された生体試料中のMMP2のレベルと比較して増加していることが、予後が良好であると予測し、または投与後に採取された生体試料中のMMP2のレベルが、投与前に採取された生体試料中のMMP2のレベルと比較して増加していないことが、予後が不良であると予測することを特徴とする、(1)に記載の方法。
(6)
 工程d)において、前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2のレベルが免疫チェックポイント阻害薬の投与前のCXCL2のレベルと比較して減少することが、予後が良好であると予測し、または前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2のレベルが免疫チェックポイント阻害薬の投与前のCXCL2のレベルと比較して増加することが、予後が不良であると予測することを特徴とする、(1)に記載の方法。
(7)
 生体試料が、血液試料である、(1)-(6)のいずれかに記載の方法。
(8)
 血液試料が、末梢血、末梢血単核細胞、血漿または血清である、(7)に記載の方法。
(9)
 免疫チェックポイント阻害薬が、抗PD-1抗体または抗PD-L1抗体である、(1)-(8)のいずれかに記載の方法。
(10)
 がんが、白血病、骨髄異形成症候群、多発性骨髄腫、悪性リンパ腫、食道癌、胃癌、小腸癌、大腸癌、膵臓癌、肺癌、乳癌、胚細胞癌、肝癌、胆嚢癌、頭頸部癌、皮膚癌、肉腫、腎臓癌、膀胱癌、前立腺癌、精巣癌、子宮癌、子宮頸癌、卵巣癌、甲状腺癌、カルチノイド、肺芽腫、脳腫瘍、または胸腺癌である、(1)-(9)のいずれかに記載の方法。
(11)
 がんが、非小細胞肺癌、腎細胞癌、悪性黒色腫、頭頸部癌、ホジキン病、膀胱癌または胃癌である、(10)に記載の方法。
(12)
 がんが、進行性/再発性非小細胞肺癌である、(11)に記載の方法。
(13)
 前記免疫チェックポイント阻害薬の投与後に採取された生体試料が、前記免疫チェックポイント阻害薬の投与開始から6-8週間以降に採取された生体試料である、(1)-(12)のいずれかに記載の方法。
(14)
 予後予測が、無増悪生存期間、全生存期間または客観的腫瘍反応の予測である、(1)-(13)のいずれかに記載の方法。
(15)
 免疫チェックポイント阻害薬の投与後のCXCL2のレベルが、前記免疫チェックポイント阻害薬の投与前のCXCL2と比較して減少していることが、治療関連有害事象を発現するとさらに予測する、(1)-(14)のいずれかに記載の方法。
(16)
 GM-CSFのレベルに基づいて、治療関連有害事象を発現するとさらに予測する、(1)-(15)のいずれかに記載の方法。
(17)
 (1)-(16)のいずれかに記載の方法に用いるためのキット。
(18)
 CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1以上のバイオマーカーであって、(1)-(16)のいずれかに記載の方法のための薬効評価用バイオマーカー。
In another exemplary embodiment, the present invention also provides:
(1)
A method for treating cancer,
a) comparing the level of GM-CSF in the collected biological sample with a preset GM-CSF cutoff value,
b) comparing the level of CHI3L1 in the collected biological sample with a preset cutoff value of CHI3L1;
c) the levels of CXCL2, VEGF, IFNα2 and / or MMP2 in the biological sample collected after administration of said immune checkpoint inhibitor are the same as in the biological sample collected prior to said administration of said immune checkpoint inhibitor Comparing with the level of CXCL2, VEGF, IFNα2 and / or MMP2, or d) monitoring the level of CXCL2 in a biological sample taken after administration of said immune checkpoint inhibitor, and e) administering an immune checkpoint inhibitor to a subject predicted on the basis of the result obtained in a), b), c) or d) and predicted to have a good prognosis.
(2)
In step a), it is predicted that the level is equal to or higher than a preset GM-CSF cut-off value, or the level is a preset GM-CSF cut-off value. The method according to (1), wherein predicting the prognosis is poor is less than.
(3)
In step b), it is predicted that the level is lower than or equal to a preset CHI3L1 cutoff value, or the level is greater than a preset CHI3L1 cutoff value. The method according to (1), wherein the prognosis is predicted to be poor.
(4)
In step c), the levels of CXCL2, VEGF and / or IFNα2 in the biological sample taken after administration are compared to the levels of corresponding CXCL2, VEGF and / or IFNα2 in the biological sample taken prior to administration The decrease is predicted to be of good prognosis, or the level of CXCL2, VEGF and / or IFNα2 in the biological sample collected after administration is the same as the corresponding CXCL2 in the biological sample collected before administration The method according to (1), which is characterized by not having decreased in comparison with the level of VEGF and / or IFNα2, and predicting that the prognosis is poor.
(5)
In step c), it is predicted that the prognosis is good that the level of MMP2 in the biological sample collected after administration is increased compared to the level of MMP2 in the biological sample collected before administration That the level of MMP2 in the biological sample collected after or after administration is not increased as compared to the level of MMP2 in the biological sample collected prior to The method according to (1), characterized in that
(6)
In step d), the level of CXCL2 in the biological sample collected after administration of the immune checkpoint inhibitor is decreased compared to the level of CXCL2 before administration of the immune checkpoint inhibitor, and the prognosis is good There is a poor prognosis that the level of CXCL2 in a biological sample predicted to be present or taken after administration of the immune checkpoint inhibitor is increased compared to the level of CXCL2 before administration of the immune checkpoint inhibitor The method according to (1), wherein the method is predicted.
(7)
The method according to any one of (1) to (6), wherein the biological sample is a blood sample.
(8)
The method according to (7), wherein the blood sample is peripheral blood, peripheral blood mononuclear cells, plasma or serum.
(9)
The method according to any one of (1) to (8), wherein the immune checkpoint inhibitor is an anti-PD-1 antibody or an anti-PD-L1 antibody.
(10)
Cancer includes leukemia, myelodysplastic syndrome, multiple myeloma, malignant lymphoma, esophagus cancer, gastric cancer, small intestine cancer, colon cancer, pancreatic cancer, lung cancer, breast cancer, germ cell cancer, liver cancer, gallbladder cancer, head and neck cancer, Skin cancer, sarcoma, kidney cancer, bladder cancer, prostate cancer, testicular cancer, testicular cancer, uterine cancer, cervical cancer, ovarian cancer, thyroid cancer, carcinoid, lung blastoma, brain tumor, or thymus cancer, (1)-(9) The method according to any one of the above.
(11)
The method according to (10), wherein the cancer is non-small cell lung cancer, renal cell carcinoma, malignant melanoma, head and neck cancer, Hodgkin's disease, bladder cancer or gastric cancer.
(12)
The method according to (11), wherein the cancer is advanced / recurrent non-small cell lung cancer.
(13)
Any of (1) to (12), wherein the biological sample collected after administration of the immune checkpoint inhibitor is a biological sample collected after 6-8 weeks from the start of administration of the immune checkpoint inhibitor The method described in.
(14)
The method according to any of (1)-(13), wherein the prognosis is prediction of progression free survival, overall survival or objective tumor response.
(15)
The level of CXCL2 after administration of the immune checkpoint inhibitor is reduced as compared to CXCL2 before administration of the immune checkpoint inhibitor, further predicting that it will cause treatment related adverse events, (1) -The method in any one of-(14).
(16)
The method according to any of (1)-(15), which further predicts that a treatment-related adverse event will occur based on the level of GM-CSF.
(17)
A kit for use in the method according to any one of (1) to (16).
(18)
One or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2, which is a biologic for evaluating efficacy according to any one of (1)-(16) marker.
 以下に本発明の実施例を示すが、本発明は実施例にのみ限定されるものではない。 Examples of the present invention will be shown below, but the present invention is not limited to the examples.
材料および方法
患者
 単一施設(久留米大学病院、久留米市、日本)においてニボルマブ(nivolumab)を投与されている進行性/再発性NSCLC患者を2016年2月-9月に本試験に組み入れた。少なくとも1レジメンの化学療法歴を有する進行性/再発性NSCLCの適格患者にニボルマブ(3mg/kg)を2週間ごとに投与した。ニボルマブ投与前に27例から末梢血試料を採取した。また、ニボルマブ投与後(初回投与日から6-8週間後)に、6週間を超える無増悪生存期間(PFS)を示していた20例から末梢血試料を採取した。さらに、ニボルマブの投与を継続している患者から6-12週間ごとに末梢血試料を採取した(図3A)。末梢血単核細胞(PBMC)および血奬はバイオマーカー解析に用いた。本試験はヘルシンキ宣言の規定に従って実施され、久留米大学病院の臨床試験審査委員会(IRB)によって承認された。本試験に参加した患者全員から、本試験の性質および起こり得る結果を説明した後にインフォームドコンセントを取得した。
Materials and Methods Patients Progressive / recurrent NSCLC patients receiving nivolumab (nivolumab) at a single center (Kurume University Hospital, Kurume City, Japan) were included in the study in February-September 2016. Nivolumab (3 mg / kg) was administered every two weeks to eligible patients with progressive / recurrent NSCLC who had at least one regimen of chemotherapy history. Peripheral blood samples were collected from 27 cases prior to nivolumab administration. In addition, peripheral blood samples were collected from 20 cases showing progression-free survival (PFS) over 6 weeks after nivolumab administration (6-8 weeks after the first administration day). In addition, peripheral blood samples were collected every 6-12 weeks from patients continuing to receive nivolumab (FIG. 3A). Peripheral blood mononuclear cells (PBMC) and clots were used for biomarker analysis. This study was conducted in accordance with the provisions of the Helsinki Declaration and was approved by the Clinical Trials Review Board (IRB) of Kurume University Hospital. Informed consent was obtained from all patients who participated in the study after describing the nature of the study and the possible outcomes.
免疫組織化学(IHC)解析
 パラフィン包埋組織試料を4μm厚さの切片に薄切し、コーティングされたガラス製スライドに載せた。その後、BOND-III自動染色装置(ライカマイクロシステムズ社、ニューカッスル・アポン・タイン、英国)を用いて、抗PD-L1抗体(×100、クローンE1L3N、Cell Signaling Technology社、ダンバーズ、マサチューセッツ州、米国)による処理を行った。簡潔に言えば、組織切片を、エピトープ賦活化溶液2(pH 9.0)を用いて30分間加熱処理し、抗PD-L1抗体を加えて30分間インキュベートした。この自動システムでは、HRP(西洋わさびペルオキシダーゼ)ポリマーを二次抗体として、refineポリマー検出システム(ライカマイクロシステムズ社)を用いた。スライドは、色素原として3,3’-ジアミノベンジジン(DAB)を用いて可視化した。
Immunohistochemistry (IHC) Analysis Paraffin-embedded tissue samples were sliced into 4 μm thick sections and mounted on coated glass slides. Thereafter, anti-PD-L1 antibody (× 100, clone E1L3N, Cell Signaling Technology, Danvers, Mass., USA) using a BOND-III autostainer (Leica Microsystems, Newcastle upon Tyne, UK) I did the processing by. Briefly, tissue sections were heat treated for 30 minutes with epitope retrieval solution 2 (pH 9.0), anti-PD-L1 antibody was added and incubated for 30 minutes. In this automated system, HRP (horseradish peroxidase) polymer was used as a secondary antibody, and a refine polymer detection system (Leica Microsystems) was used. The slides were visualized using 3,3'-diaminobenzidine (DAB) as chromogen.
フローサイトメトリー解析
 ニボルマブ投与前後に14ミリリットルの末梢血を採取し、Ficoll-Paque Plus(GEヘルスケア社、ウプサラ、スウェーデン)を用いた密度勾配遠心法によりPBMCを分離した。PBMCを、20%ヒトAB型血清を含むPBS中に懸濁し、適切に希釈した抗体を加えて、氷上で30分間インキュベートした。本試験で用いた抗体は、BioLegend社(サンディエゴ、カリフォルニア州、米国)の抗CD3-PE(クローンOKT3)、BDバイオサイエンス(フランクリンレイクス、ニュージャージー州、米国)の抗CD4-FITC(クローンRPA-T4)、抗CD8-PerCP-Cy5.5(クローンRPA-T8)、抗CD279-APC(クローンMIH4)、抗CD25-APC(クローンM-A251)、抗FoxP3-PE(クローン259D/C7)、およびマウスIgG1(κ)-PE(クローンMOPC-21、陰性対照用)であった。抗ヒトFoxP3染色キット(BDバイオサイエンス)は、製造者の指示に従って用いた。染色した細胞は、BD FACS Canto IIでFACS Divaソフトウェア(BDバイオサイエンス)を用いて解析した。
Flow cytometric analysis 14 ml peripheral blood was collected before and after administration of nivolumab, and PBMCs were separated by density gradient centrifugation using Ficoll-Paque Plus (GE Healthcare, Uppsala, Sweden). PBMCs were suspended in PBS containing 20% human AB serum, appropriately diluted antibodies were added and incubated on ice for 30 minutes. The antibodies used in this study were anti-CD3-PE (clone OKT3) from BioLegend (San Diego, CA, USA) and anti-CD4-FITC (clone RPA-T4) from BD Biosciences (Franklin Lakes, NJ, USA). ), Anti-CD8-PerCP-Cy5.5 (clone RPA-T8), anti-CD279-APC (clone MIH4), anti-CD25-APC (clone M-A251), anti-FoxP3-PE (clone 259D / C7), and mice It was IgG1 (κ) -PE (clone MOPC-21, for negative control). Anti-human FoxP3 staining kit (BD Biosciences) was used according to the manufacturer's instructions. Stained cells were analyzed on BD FACS Canto II using FACS Diva software (BD Biosciences).
血奬中の可溶性因子の測定
 ニボルマブ投与前後の血奬中の88の異なる可溶性因子(サイトカイン、ケモカイン、増殖因子、その他)のレベルを包括的に検出するために、ビーズベースのマルチプレックスアッセイを用いた。本アッセイでは、Bio-Plex 200システム(バイオラッド・ラボラトリーズ、ハーキュリーズ、カリフォルニア州、米国)を用いて、製造者の指示に従い、2倍希釈した血奬の100-μl中の可溶性因子を測定した。バイオラッド・ラボラトリーズの解析キットを用いて、可溶性因子としてIL-1Rα、IL-1β、IL-2、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11、IL-12(p40)、IL-12(p70)、IL-13、IL-15、IL-16、IL-17A、IL-19、IL-20、IL-22、IL-26、IL-27、IL-28A、IL-29、IL-32、IL-34、IL-35、IFN-α2、IFN-β、IFN-γ、TNF-α、GM-CSF、6Ckine、BCA-1、CTACK、ENA-78、エオタキシン、エオタキシン-2、エオタキシン-3、フラクタルカイン、GCP-2、Gro-α、CXCL2(Gro-β)、IP-10、I-TAC、MIP-1α、MIP-1δ、MIP-3α、MIP-3β、MPIF-1、SCYB16、SDF-1 α+β、TARC、TECK、MCP-1、MCP-2、MCP-3、MCP-4、MDC、MIF、MIG、VEGF、APRIL、BAFF、sCD30、sCD163、CHI3L1、gp130、sIL-6Rα、LIGHT、MMP-1、MMP-2、MMP-3、オステオカルシン、オステオポンチン、ペントラキシン3、sTNF-R1、sTNF-R2、TSLP、TWEAK、VEGF、IgG1、IgG2、IgG3、IgG4、IgM、およびIgAを測定した。
Measurement of soluble factors in clots Bead-based multiplex assays are used to comprehensively detect the levels of 88 different soluble factors (cytokines, chemokines, growth factors, etc.) in clots before and after nivolumab administration It was. In this assay, soluble factors in 100-μl of 2-fold diluted blood clots were measured using the Bio-Plex 200 system (Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer's instructions. As a soluble factor, IL-1Rα, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, using a Bio-Rad Laboratories analysis kit IL-10, IL-11, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-16, IL-17A, IL-19, IL-20, IL-22, IL-26, IL-27, IL-28A, IL-29, IL-32, IL-34, IL-35, IFN-α2, IFN-β, IFN-γ, TNF-α, GM-CSF, 6Ckine, BCA-1, CTACK, ENA-78, Eotaxin, Eotaxin-2, Eotaxin-3, Fractalkine, GCP-2, Gro-α, CXCL2 (Gro-β), IP-10, I-TAC, MIP-1 α MIP-1δ, MIP-3α, MIP-3β, MPIF-1, SCYB16, SDF-1 α + β, TARC, TECK, MCP-1, MCP-2, MCP-3, MCP-4, MDC, MIF, MIG, VEGF , APRIL, BAFF, sCD30, sCD163, CHI3L1, gp130, sIL-6Rα, LIGHT, MMP-1, MMP-2, MMP-3, osteocalcin, osteopontin, pentraxin 3, sTNF-R1, sTNF-R2, TSLP, TWEAK, VEGF, IgG1, IgG2, IgG3, IgG4, IgM and IgA were measured.
統計解析
 有害事象(AE)の重症度を米国立がん研究所の有害事象共通用語規準第4版を用いて等級分けし、それらとニボルマブ治療との因果関係を治験責任医師が判定した。最良総合効果は、ニボルマブの初回投与日から、固形がんの治療効果判定のための新ガイドライン(RECIST)1.1の基準(非特許文献13)で明記された増悪が最初に客観的に確認された日までに記録された最良反応の認定と定義した。PFSは、初回投与日から、増悪またはあらゆる原因による死亡の日までの期間と定義した。全生存期間(OS)は、初回投与日から、あらゆる原因による死亡の日までの期間と定義した。生存曲線はカプラン・マイヤー法を用いて導出し、ログランク検定によって比較した。
Statistical Analysis The severity of adverse events (AEs) was graded using the American National Cancer Institute Adverse Event Common Terminology Criteria Fourth Edition and the investigators determined the causal relationship between them and nivolumab treatment. The best overall effect is, from the day of initial administration of nivolumab, first objectively confirmed the exacerbation specified by the new guidelines (RECIST) 1.1 criteria (Non-patent document 13) for determining treatment effect on solid cancer It was defined as the qualification of the best response recorded by the day it was PFS was defined as the time from the first dose to the date of progression or death from any cause. Overall survival (OS) was defined as the time from the first dose to the date of death from any cause. Survival curves were derived using the Kaplan-Meier method and compared by log-rank test.
 治療関連AEの発生と最良総合効果との関連をフィッシャーの直接確率検定で解析した。投与後の可溶性因子のレベルの変化と客観的腫瘍反応または治療関連AEの割合との関連も、フィッシャーの直接確率検定で推定した。投与前後のPBMCのリンパ球サブセットの割合の差を、ウィルコクソンの符号付順位検定により解析した。どのバイオマーカーがニボルマブ治療の有効性および安全性と関連するかを評価するために、臨床的特徴、腫瘍細胞上のPD-L1の発現、投与前のPBMC上のPD-1とFoxP3の発現、および投与前の血奬中の可溶性因子が、PFSおよび治療関連AEと関連するかどうかを調査した。患者全員について、コックス回帰および一変量ロジスティック回帰を実施し、これらの因子がそれぞれPFSおよび治療関連AEと関連するかどうかを調査した。さらに、ニボルマブの初回投与日から6-8週間後におけるPBMC上のPD-1とFoxP3の発現および血奬中可溶性因子レベルの変化が、安全性および有効性と関連するかどうかを調査した。PFSが6週間を超える患者20例について、コックス回帰および一変量ロジスティック回帰を実施し、変化がそれぞれPFSおよび治療関連AEと関連するかどうかを調査した。ハザード比およびオッズ比を95%信頼区間(CI)と共に示した。P<0.05で統計的に有意と見なした。すべての統計解析は、JMPバージョン11(SAS Institute Inc.、キャリー、ノースカロライナ州、米国)またはWindows版Graph Pad Prismバージョン6.07(GraphPadソフトウェア、ラ・ホーヤ、カリフォルニア州、米国、www.graphpad.com)を用いて実行した。 The association between the occurrence of treatment-related AEs and the best overall effect was analyzed by Fisher's exact test. The association between changes in soluble factor levels after administration and the objective tumor response or percentage of treatment related AE was also estimated by Fisher's exact test. The difference in percentage of lymphocyte subsets of PBMC before and after administration was analyzed by Wilcoxon signed rank test. Clinical characteristics, expression of PD-L1 on tumor cells, expression of PD-1 and FoxP3 on PBMC before administration, to evaluate which biomarkers are associated with the efficacy and safety of nivolumab treatment It was investigated whether soluble factors in blood clots before and after administration were associated with PFS and treatment related AE. Cox regression and univariate logistic regression were performed on all patients to investigate whether these factors were associated with PFS and treatment-related AE, respectively. Furthermore, it was investigated whether changes in the expression of PD-1 and FoxP3 on PBMC and soluble factor levels in blood clot at 6-8 weeks after the first administration day of nivolumab were associated with safety and efficacy. Cox regression and univariate logistic regression were performed on 20 patients with PFS> 6 weeks to investigate whether the changes were associated with PFS and treatment-related AE, respectively. Hazard ratios and odds ratios are shown with 95% confidence intervals (CI). Statistical significance was considered at P <0.05. All statistical analysis can be performed using JMP version 11 (SAS Institute Inc., Cary, NC, USA) or GraphPad Prism version 6.07 for Windows (GraphPad Software, La Jolla, CA, USA, www.graphpad.com) It carried out using.
結果
患者背景
 ニボルマブ療法を受けている進行性/再発性NSCLC患者の合計27例を本試験に組み入れた。患者全体の年齢の中央値は69歳(53-82歳)で、20例(74%)は男性であった。17例(63%)は一般状態(PS)が良好で、米国東部がん治療共同研究グループ(ECOG)の分類が0または1であった。18例(67%)と7例(26%)はそれぞれ腺癌と扁平上皮癌であり、7例(26%)と1例(4%)はそれぞれEGFR変異とALK変異を有した。7例(26%)は喫煙未経験者で、22例(81%)はステージIVまたは再発癌であった(表1)。すべての患者は、少なくとも1レジメンの化学療法歴を有していた。解析の時点で、客観的奏効率(ORR)と疾患コントロール率(DCR)はそれぞれ33.3%と51.9%であった。経過観察期間の中央値は198日(64-330日)であった。PFSの中央値は57日(27-288日)であり、OSの中央値は未到達であった。
Figure JPOXMLDOC01-appb-T000001
Results Patient Background A total of 27 patients with progressive / recurrent NSCLC who received nivolumab therapy were included in this study. The median age of all patients was 69 years (53-82), and 20 cases (74%) were male. Seventeen patients (63%) had good general condition (PS) and the US Eastern Cooperative Oncology Group (ECOG) was classified 0 or 1. Eighteen cases (67%) and seven cases (26%) were adenocarcinoma and squamous cell carcinoma respectively, and seven cases (26%) and one case (4%) had EGFR mutation and ALK mutation respectively. Seven cases (26%) were smoke-free and 22 cases (81%) were stage IV or recurrent cancer (Table 1). All patients had at least one regimen of chemotherapy history. At the time of analysis, the objective response rate (ORR) and disease control rate (DCR) were 33.3% and 51.9%, respectively. The median follow-up was 198 days (64-330 days). Median PFS was 57 days (27-288 days) and median OS was not reached.
Figure JPOXMLDOC01-appb-T000001
奏効率およびPFSに対する治療関連AEの影響
 ニボルマブを投与されたNSCLC患者において、過去に免疫関連AEと臨床転帰の潜在的な相関が報告されているため(非特許文献10および11)、本コホートにおける治療関連AEとニボルマブの有効性との関係を調査した。表2に示す通り、全グレードの治療関連AEが患者の44%において発生した。投与中止に至る治療関連AEは6例(22%)において発生し、ASTおよびALTの上昇[2例(7%)]、クレアチニンの上昇[1例(4%)]、副腎機能不全[1例(4%)]、甲状腺機能低下[1例(4%)]、肺炎[1例(4%)]が含まれた。図1Aは、ベースラインから治療後までの腫瘍量の変化を示す。腫瘍量は13例(48%)において減少し、そのうち10例は治療関連AEを発現した。全グレードの治療関連AEを発現したグループにおけるORRおよびDCRは、発現しなかったグループに比べて有意に高かった(それぞれORR:57% vs 7%、P=0.003;DCR:83% vs 26%、P=0.006)。さらに、図1Bおよび図1Cに示す通り、ニボルマブ療法によるPFSおよびOSはどちらも、治療関連AEを発現した患者において有意に長かった(それぞれHR、0.173;95% CI、0.066-0.453;P<0.001:HR、0.218;95% CI、0.049-0.967;P=0.045)。これらの結果は、ニボルマブを投与されたNSCLC患者において治療関連AEの発生率が高いことが良好な臨床転帰とよく相関することを示唆した。
Figure JPOXMLDOC01-appb-T000002
Impact of treatment-related AEs on response rates and PFS In NSCLC patients who received nivolumab, a potential correlation between immune-related AEs and clinical outcomes has been reported in the past (non-patent documents 10 and 11). The relationship between treatment-related AE and the efficacy of nivolumab was investigated. As shown in Table 2, all grades of treatment related AE occurred in 44% of patients. Treatment-related AEs leading to discontinuation occurred in 6 cases (22%), elevation of AST and ALT [2 cases (7%)], elevation of creatinine [1 case (4%)], adrenal insufficiency [1 case (4%)], hypothyroidism [1 case (4%)], pneumonia [1 case (4%)] were included. FIG. 1A shows the change in tumor volume from baseline to post treatment. Tumor burden decreased in 13 cases (48%), of which 10 developed treatment-related AEs. ORR and DCR in the group that expressed all grades of treatment related AE were significantly higher than the group that did not express (respectively ORR: 57% vs 7%, P = 0.003; DCR: 83% vs 26 %, P = 0.006). Furthermore, as shown in FIGS. 1B and 1C, both PFS and OS with nivolumab therapy were significantly longer in patients who developed treatment-related AEs (HR, 0.173; 95% CI, 0.066-0, respectively). P <0.001: HR, 0.218; 95% CI, 0.049-0.967; P = 0.045). These results suggested that a high incidence of treatment-related AEs in NSCLC patients receiving nivolumab correlates well with good clinical outcomes.
Figure JPOXMLDOC01-appb-T000002
臨床病理学的特性とPFSまたは治療関連AEとの関連
 ニボルマブ治療の有効性および安全性を予測できるバイオマーカーを調査するために、投与前の臨床病理学的特性がPFSまたは治療関連AEと相関するかどうかを解析した(表3)。ニボルマブ治療前の良好なPSおよび低い体温がPFSの改善と関連したのに対し(それぞれHR、2.29;95% CI、1.339-3.915;P=0.003:HR、2.395;95% CI、1.271-4.514;P=0.007)、年齢、性別、組織像、喫煙状況、病期、過去の全身療法の回数など、その他の因子は関連しなかった。また、好中球・リンパ球比がPFSまたはAEと関連するかどうかも調査したが、そのような有意な関係は認められなかった。PD-L1の発現は27例中19例(70%)の腫瘍試料において評価可能であり、そのうち10例(53%)は新鮮な生検標本として、9例(47%)は保管された標本として入手した。ベースラインのPD-L1の発現は、4例(21%)が弱陽性(腫瘍細胞の1-49%)、4例(21%)が強陽性(腫瘍細胞の>50%)であった(表1)。表3に示す通り、PD-L1の発現はPFSまたは治療関連AEと相関しなかった(それぞれP=0.331とP=0.845)。
Figure JPOXMLDOC01-appb-T000003
略語:PFS、無増悪生存期間;AE、有害事象;HR、ハザード比;CI、信頼区間;PS、一般状態;Sq、扁平上皮
Clinicopathologic Characteristics Associated with PFS or Treatment-Related AE To investigate biomarkers that can predict the efficacy and safety of nivolumab treatment, pre-dose clinicopathologic characteristics correlate with PFS or treatment-related AE It was analyzed whether or not (Table 3). Whereas good PS and low body temperature before nivolumab treatment were associated with improvement in PFS (HR, 2.29; 95% CI, 1.339-3.915, respectively; P = 0.003: HR, 2. 395; 95% CI, 1.271-4.514; P = 0.007), other factors such as age, gender, histology, smoking status, stage, number of previous systemic treatments were not relevant . We also investigated whether the neutrophil-lymphocyte ratio was associated with PFS or AE, but such a significant relationship was not found. PD-L1 expression can be assessed in 19 of 27 (70%) tumor samples, of which 10 (53%) are fresh biopsy specimens and 9 (47%) specimens stored. Obtained as. Baseline PD-L1 expression was weakly positive (1-49% of tumor cells) in 4 cases (21%) and strongly positive (> 50% of tumor cells) in 4 cases (21%) Table 1). As shown in Table 3, PD-L1 expression did not correlate with PFS or treatment related AE (P = 0.331 and P = 0.845, respectively).
Figure JPOXMLDOC01-appb-T000003
Abbreviations: PFS, progression-free survival; AE, adverse events; HR, hazard ratio; CI, confidence interval; PS, general status; Sq, squamous epithelium
リンパ球サブセットの分布頻度に対する影響
 次に、ニボルマブ投与前後のPD-1+CD4+、PD-1+CD8+、FoxP3+CD4+リンパ球を含む、リンパ球サブセットの分布頻度を解析した(図2A)。投与前の血液試料におけるCD4+およびCD8+リンパ球中のPD-1+細胞の割合は、投与後の試料に比べて有意に高かった(それぞれ12.9±7.6% vs 6.6±4.6%、P=0.004;12.1±6.5% vs 5.9±3.9%、P<0.001)。対照的に、投与前の血液試料におけるCD4+リンパ球中のFoxP3+細胞の割合は、投与後の試料に比べて有意に低かった(7.1±3.8% vs 11.4±8.5%、P=0.024)(図2B)。ニボルマブ投与前のPD-1+CD4+、PD-1+CD8+、およびFoxP3+CD4+リンパ球のベースラインの割合も、投与後のそれらの割合の変化も、PFSまたは治療関連AEと有意に関連しなかった(表3および表4)。
Figure JPOXMLDOC01-appb-T000004
略語:PFS、無増悪生存期間;AE、有害事象;HR、ハザード比;CI、信頼区間
Effect on Distribution Frequency of Lymphocyte Subsets Next, the distribution frequency of lymphocyte subsets was analyzed, including PD-1 + CD4 +, PD-1 + CD8 +, FoxP3 + CD4 + lymphocytes before and after nivolumab administration (FIG. 2A). The percentage of PD-1 + cells in CD4 + and CD8 + lymphocytes in blood samples before administration was significantly higher than in samples after administration (12.9 ± 7.6% vs 6.6 ± 4.6 respectively) %, P = 0.004; 12.1 ± 6.5% vs 5.9 ± 3.9%, P <0.001). In contrast, the percentage of FoxP3 + cells in CD4 + lymphocytes in blood samples before dosing was significantly lower than in samples after dosing (7.1 ± 3.8% vs 11.4 ± 8.5% , P = 0.024) (Figure 2B). Neither baseline rates of PD-1 + CD4 +, PD-1 + CD8 +, and FoxP3 + CD4 + lymphocytes before nivolumab administration nor changes in their rates after administration were significantly associated with PFS or treatment related AE (Table 3 and Table) 4).
Figure JPOXMLDOC01-appb-T000004
Abbreviations: PFS, progression free survival; AE, adverse event; HR, hazard ratio; CI, confidence interval
投与前の血奬中の可溶性因子とPFSまたは治療関連AEとの関連
 免疫反応を介在するどの可溶性因子がPFSまたは治療関連AEと関連するかを明らかにするために、投与前の血奬試料中の88の異なる可溶性因子のレベルを調査した。コックス回帰はGM-CSFおよびCHI3L1の血奬中レベルがPFSと有意に相関することを示した(それぞれP=0.005およびP=0.007)。これらの因子の影響を説明するために、GM-CSFおよびCHI3L1の中央値で割けた2つのグループにおけるPFSのカプラン・マイヤープロットを図3Bに示す。投与前のGM-CSFの高レベルはPFSの改善と有意に関連した(生存期間の中央値186日vs 47日、P=0.013)。さらに、CHI3L1の低レベルはPFSの改善と関連している傾向はあったが(生存期間の中央値126日vs 55日)、統計学的有意に達しなかった(P=0.238)。
Relationship between soluble factors in blood clot before administration and PFS or treatment related AE To clarify which soluble factors that mediate immune response are related to PFS or treatment related AE, in clot samples before administration The levels of 88 different soluble factors were investigated. Cox regression showed that blood clot levels of GM-CSF and CHI3L1 were significantly correlated with PFS (P = 0.005 and P = 0.007, respectively). To illustrate the effect of these factors, Kaplan-Meier plots of PFS in the two groups divided by median GM-CSF and CHI3L1 are shown in FIG. 3B. High pre-dose GM-CSF levels were significantly associated with improvement in PFS (median survival 186 days vs. 47 days, P = 0.013). Furthermore, low levels of CHI3L1 tended to be associated with improved PFS (median survival 126 days vs 55 days) but did not reach statistical significance (P = 0.238).
血奬中可溶性因子レベルの変化とPFSまたは治療関連AEとの関連
 血奬中の88の異なる可溶性因子のレベルの変化がPFSまたは治療関連AEと関連するかどうかも解析した。コックス回帰は、CXCL2、VEGF、IFNα2、およびMMP2のレベルの変化がPFSと有意に相関することを示した(それぞれP<0.001、P=0.019、P=0.014、およびP=0.010)。さらに、CXCL2のレベルの変化も治療関連AEと有意に関連した(P=0.017)(表4)。これらの結果を踏まえて、選択された可溶性因子の変化に従って患者を2つのグループに層別化した(すなわち、「減少あり」または「減少なし」)。層別化したグループにおけるPFSのカプラン・マイヤープロットを図3Cに示す。血奬中CXCL2レベルの減少を示した患者は、PFSの中央値が有意に長かった(生存期間の中央値252日vs 57日、P=0.003)。また、血奬中VEGFレベルの減少を示した患者も、減少しなかった患者に比べてPFSが有意に長かった(生存期間の中央値243日vs 57日、P=0.015)。一方、血奬中IFNα2およびMMP2レベルに従って層別化されたグループは、PFSの有意差を示さなかった。図4Aは、客観的腫瘍反応に従って選択されたグループにおける投与前後のCXCL2、VEGF、IFNα2、MMP2のレベルを示す。CXCL2およびMMP2のレベルの変化が臨床反応と有意に関連したのに対し(それぞれP=0.001およびP=0.044)、VEGFやIFNα2など、その他の因子は有意に関連しなかった(図4B)。さらに、図4Cは、治療関連AEを発現したグループと発現しなかったグループにおける投与前後のCXCL2レベルを示す。図4Dに示す通り、CXCL2レベルの減少を示した患者は、そうでない患者に比べ、治療関連AEの発現率が相対的に高かった(86% vs 38%、P=0.07)。血奬中CXCL2が減少した患者の大部分(86%、7例中6例)がPRと治療関連AEの両方を同時に示す傾向があったことは注目に値した(図4E)。
Changes in soluble factor levels in clots associated with PFS or treatment related AEs We also analyzed whether changes in levels of 88 different soluble factors in clots were associated with PFS or treatment related AEs. Cox regression showed that changes in levels of CXCL2, VEGF, IFNα2, and MMP2 significantly correlated with PFS (P <0.001, P = 0.019, P = 0.014, and P = respectively). 0.010). In addition, changes in levels of CXCL2 were also significantly associated with treatment related AE (P = 0.017) (Table 4). Based on these results, the patients were stratified into two groups according to the change of the selected soluble factor (ie "with reduction" or "without reduction"). The Kaplan-Meier plot of PFS in stratified groups is shown in FIG. 3C. Patients who showed a reduction in clotted CXCL2 levels had a significantly longer median PFS (median survival 252 days vs. 57 days, P = 0.003). Also, patients who showed decreased levels of clotted VEGF also had significantly longer PFS than those who did not (median survival 243 days vs. 57 days, P = 0.015). On the other hand, the groups stratified according to the level of IFNα2 and MMP2 in the blood showed no significant difference in PFS. FIG. 4A shows levels of CXCL2, VEGF, IFNα2, MMP2 before and after administration in selected groups according to objective tumor response. While changes in levels of CXCL2 and MMP2 were significantly associated with clinical response (P = 0.001 and P = 0.044 respectively), other factors such as VEGF and IFNα2 were not significantly associated (Figure 4B). Furthermore, FIG. 4C shows CXCL2 levels before and after administration in the group that expressed and not expressed treatment-related AE. As shown in FIG. 4D, patients who showed a decrease in CXCL2 levels had a relatively higher incidence of treatment-related AEs than those who did not (86% vs 38%, P = 0.07). It was noteworthy that the majority of patients (86%, 6 out of 7) who had decreased CXCL2 in the clot tended to simultaneously exhibit both PR and treatment-related AE (Figure 4E).
血奬中可溶性因子レベルの縦断的解析
 選択された可溶性因子のレベルの動的変化が臨床転帰にいかに影響を与え得るかをさらに明らかにするために、図5に示す通り、それらの力価のタイムコースを解析した。ニボルマブを投与された患者20例のうち、11例(55%)は増悪のために投与を中止し、9例(45%)は解析時点で投与を継続していた。特に、増悪を認めた患者11例中9例(82%)において、再発はベースラインを超える血奬中CXCL2レベルの上昇と密接に一致した。さらに、投与中に血奬中CXCL2レベルの低下を維持した患者6例の全員が持続的な疾患コントロールを示し、ニボルマブ療法を継続することができた。対照的に、VEGF、IFNα2、およびMMP2は、それらの力価のタイムコースと臨床転帰との明らかな関連を示さなかった。
Longitudinal analysis of soluble factor levels in blood clots To further clarify how dynamic changes in levels of selected soluble factors can affect clinical outcome, as shown in FIG. I analyzed the time course. Of the 20 patients receiving nivolumab, 11 (55%) had discontinued due to exacerbation, and 9 (45%) had continued dosing at the time of analysis. In particular, in 9 of 11 patients with exacerbation (82%), relapses were closely matched with elevated levels of CXCL2 in blood clots above baseline. In addition, all six patients who maintained reduced levels of clotted CXCL2 during treatment showed sustained disease control and were able to continue nivolumab therapy. In contrast, VEGF, IFNα2, and MMP2 did not show a clear association of their time course of titer with clinical outcome.
 本発明によれば、免疫チェックポイント阻害薬によるがん免疫療法の予後予測のためのバイオマーカーを提供する。本発明の新規バイオマーカーの提供により、免疫チェックポイント阻害薬によるがん免疫療法の予後予測が可能となる。 According to the present invention, there is provided a biomarker for prognosis of cancer immunotherapy with an immune checkpoint inhibitor. Provision of the novel biomarker of the present invention makes it possible to predict the prognosis of cancer immunotherapy with an immune checkpoint inhibitor.

Claims (15)

  1.  免疫チェックポイント阻害薬によるがん免疫療法の予後予測方法であって、
    a)採取された生体試料中のGM-CSFのレベルを、予め設定されたGM-CSFのカットオフ値と比較する工程、
    b)採取された生体試料中のCHI3L1のレベルを、予め設定されたCHI3L1のカットオフ値と比較する工程、
    c)前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2、VEGF、IFNα2および/またはMMP2のレベルを、前記免疫チェックポイント阻害薬の投与前に採取された生体試料中の対応するCXCL2、VEGF、IFNα2および/またはMMP2のレベルと比較する工程、または
    d)前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2のレベルをモニターする工程、
    を含む、方法。
    It is a prognosis prediction method of cancer immunotherapy with an immune checkpoint inhibitor,
    a) comparing the level of GM-CSF in the collected biological sample with a preset GM-CSF cutoff value,
    b) comparing the level of CHI3L1 in the collected biological sample with a preset cutoff value of CHI3L1;
    c) the levels of CXCL2, VEGF, IFNα2 and / or MMP2 in the biological sample collected after administration of said immune checkpoint inhibitor are the same as in the biological sample collected prior to said administration of said immune checkpoint inhibitor Comparing with the level of CXCL2, VEGF, IFNα2 and / or MMP2, or d) monitoring the level of CXCL2 in a biological sample taken after administration of said immune checkpoint inhibitor,
    Method, including.
  2.  工程a)において、前記レベルが、予め設定されたGM-CSFのカットオフ値以上であることが予後が良好であると予測し、または前記レベルが、予め設定されたGM-CSFのカットオフ値未満であることが予後が不良であると予測することを特徴とする、請求項1に記載の方法。 In step a), it is predicted that the level is equal to or higher than a preset GM-CSF cut-off value, or the level is a preset GM-CSF cut-off value. The method according to claim 1, wherein the prediction is that the prognosis is poor.
  3.  工程b)において、前記レベルが、予め設定されたCHI3L1のカットオフ値以下であることが予後が良好であると予測し、または前記レベルが、予め設定されたCHI3L1のカットオフ値超であることが予後が不良であると予測することを特徴とする、請求項1に記載の方法。 In step b), it is predicted that the level is lower than or equal to a preset CHI3L1 cutoff value, or the level is greater than a preset CHI3L1 cutoff value. The method according to claim 1, wherein the prognosis is predicted to be poor.
  4.  工程c)において、投与後に採取された生体試料中のCXCL2、VEGFおよび/またはIFNα2のレベルが、投与前に採取された生体試料中の対応するCXCL2、VEGFおよび/またはIFNα2のレベルと比較して減少していることが、予後が良好であると予測し、または投与後に採取された生体試料中のCXCL2、VEGFおよび/またはIFNα2のレベルが、投与前に採取された生体試料中の対応するCXCL2、VEGFおよび/またはIFNα2のレベルと比較して減少していないことが、予後が不良であると予測することを特徴とする、請求項1に記載の方法。 In step c), the levels of CXCL2, VEGF and / or IFNα2 in the biological sample taken after administration are compared to the levels of corresponding CXCL2, VEGF and / or IFNα2 in the biological sample taken prior to administration The decrease is predicted to be of good prognosis, or the level of CXCL2, VEGF and / or IFNα2 in the biological sample collected after administration is the same as the corresponding CXCL2 in the biological sample collected before administration The method according to claim 1, characterized in that the decrease in level compared to the level of VEGF and / or IFNα2 predicts that the prognosis is poor.
  5.  工程c)において、投与後に採取された生体試料中のMMP2のレベルが、投与前に採取された生体試料中のMMP2のレベルと比較して増加していることが、予後が良好であると予測し、または投与後に採取された生体試料中のMMP2のレベルが、投与前に採取された生体試料中のMMP2のレベルと比較して増加していないことが、予後が不良であると予測することを特徴とする、請求項1に記載の方法。 In step c), it is predicted that the prognosis is good that the level of MMP2 in the biological sample collected after administration is increased compared to the level of MMP2 in the biological sample collected before administration That the level of MMP2 in the biological sample collected after or after administration is not increased as compared to the level of MMP2 in the biological sample collected prior to The method according to claim 1, characterized in that
  6.  工程d)において、前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2のレベルが免疫チェックポイント阻害薬の投与前のCXCL2のレベルと比較して減少することが、予後が良好であると予測し、または前記免疫チェックポイント阻害薬の投与後に採取された生体試料中のCXCL2のレベルが免疫チェックポイント阻害薬の投与前のCXCL2のレベルと比較して増加することが、予後が不良であると予測することを特徴とする、請求項1に記載の方法。 In step d), the level of CXCL2 in the biological sample collected after administration of the immune checkpoint inhibitor is decreased compared to the level of CXCL2 before administration of the immune checkpoint inhibitor, and the prognosis is good There is a poor prognosis that the level of CXCL2 in a biological sample predicted to be present or taken after administration of the immune checkpoint inhibitor is increased compared to the level of CXCL2 before administration of the immune checkpoint inhibitor The method according to claim 1, wherein the method is predicted.
  7.  生体試料が、血液試料である、請求項1-6のいずれか一項に記載の方法。 The method according to any one of claims 1-6, wherein the biological sample is a blood sample.
  8.  免疫チェックポイント阻害薬が、抗PD-1抗体または抗PD-L1抗体である、請求項1-7のいずれか一項に記載の方法。 The method according to any one of claims 1-7, wherein the immune checkpoint inhibitor is an anti-PD-1 antibody or an anti-PD-L1 antibody.
  9.  がんが、非小細胞肺癌、腎細胞癌、悪性黒色腫、頭頸部癌、ホジキン病、膀胱癌または胃癌である、請求項1-8のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8, wherein the cancer is non-small cell lung cancer, renal cell carcinoma, malignant melanoma, head and neck cancer, Hodgkin's disease, bladder cancer or gastric cancer.
  10.  前記免疫チェックポイント阻害薬の投与後に採取された生体試料が、前記免疫チェックポイント阻害薬の投与開始から6-8週間以降に採取された生体試料である、請求項1-9のいずれか一項に記載の方法。 The biological sample collected after administration of the immune checkpoint inhibitor is any biological sample collected after 6-8 weeks from the start of administration of the immune checkpoint inhibitor. The method described in.
  11.  免疫チェックポイント阻害薬の投与後のCXCL2のレベルが、前記免疫チェックポイント阻害薬の投与前のCXCL2と比較して減少していることが、治療関連有害事象を発現するとさらに予測する、請求項1-10のいずれか一項に記載の方法。 3. The method of claim 1, wherein the level of CXCL2 after administration of the immune checkpoint inhibitor is reduced as compared to CXCL2 prior to administration of said immune checkpoint inhibitor, further predicting to develop a treatment related adverse event. The method according to any one of -10.
  12.  GM-CSFのレベルに基づいて、治療関連有害事象を発現するとさらに予測する、請求項1-11のいずれか一項に記載の方法。 12. The method according to any one of the preceding claims, wherein the method further predicts that a treatment related adverse event will occur based on the level of GM-CSF.
  13.  請求項1-12のいずれか一項に記載の方法に用いるためのキット。 A kit for use in the method of any one of claims 1-12.
  14.  CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1以上のバイオマーカーであって、請求項1-13のいずれか一項に記載の方法のための薬効評価用バイオマーカー。 One or more biomarkers selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2, which is a biologic for evaluating efficacy according to any one of claims 1-13. marker.
  15.  免疫チェックポイント阻害薬によるがん免疫療法の予後予測または治療関連有害事象の発現の予測のための、CXCL2、VEGF、CHI3L1、IFNα2、GM-CSFおよびMMP2からなる群から選択される1つ以上のバイオマーカーの使用。 One or more selected from the group consisting of CXCL2, VEGF, CHI3L1, IFNα2, GM-CSF and MMP2 for prognosis of cancer immunotherapy with immune checkpoint inhibitors or prediction of the occurrence of treatment related adverse events Use of biomarkers.
PCT/JP2018/045465 2017-12-12 2018-12-11 Biomarker for prognostic prediction of cancer immunotherapy WO2019117132A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019559651A JP7304558B2 (en) 2017-12-12 2018-12-11 Biomarkers for prognostic prediction of cancer immunotherapy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017237807 2017-12-12
JP2017-237807 2017-12-12

Publications (1)

Publication Number Publication Date
WO2019117132A1 true WO2019117132A1 (en) 2019-06-20

Family

ID=66820826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045465 WO2019117132A1 (en) 2017-12-12 2018-12-11 Biomarker for prognostic prediction of cancer immunotherapy

Country Status (2)

Country Link
JP (1) JP7304558B2 (en)
WO (1) WO2019117132A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110687281A (en) * 2019-08-26 2020-01-14 中国医学科学院肿瘤医院 Application of PD-L1 autoantibody in tumor prognosis evaluation
CN111733253A (en) * 2020-08-21 2020-10-02 北京信诺卫康科技有限公司 Marker for immune-related adverse reaction and application thereof
WO2021090941A1 (en) * 2019-11-08 2021-05-14 味の素株式会社 Evaluation method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, evaluation system, and terminal device for pharmacological action of immune check point inhibitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016109546A2 (en) * 2014-12-30 2016-07-07 Genentech, Inc. Methods and compositions for prognosis and treatment of cancers
JP2017106915A (en) * 2015-12-07 2017-06-15 株式会社ビー・エム・エル Method of monitoring t-cell activation from bodily fluid
JP2017523244A (en) * 2014-08-01 2017-08-17 スリーエム イノベイティブ プロパティズ カンパニー Methods and combination therapeutics for treating tumors
WO2017140826A1 (en) * 2016-02-18 2017-08-24 Institut Gustave Roussy Methods and kits for predicting the sensitivity of a subject to immunotherapy
JP2017524693A (en) * 2014-07-16 2017-08-31 トランジェーヌ、ソシエテ、アノニムTransgene S.A. Combination of oncolytic virus and immune checkpoint modulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017524693A (en) * 2014-07-16 2017-08-31 トランジェーヌ、ソシエテ、アノニムTransgene S.A. Combination of oncolytic virus and immune checkpoint modulator
JP2017523244A (en) * 2014-08-01 2017-08-17 スリーエム イノベイティブ プロパティズ カンパニー Methods and combination therapeutics for treating tumors
WO2016109546A2 (en) * 2014-12-30 2016-07-07 Genentech, Inc. Methods and compositions for prognosis and treatment of cancers
JP2017106915A (en) * 2015-12-07 2017-06-15 株式会社ビー・エム・エル Method of monitoring t-cell activation from bodily fluid
WO2017140826A1 (en) * 2016-02-18 2017-08-24 Institut Gustave Roussy Methods and kits for predicting the sensitivity of a subject to immunotherapy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110687281A (en) * 2019-08-26 2020-01-14 中国医学科学院肿瘤医院 Application of PD-L1 autoantibody in tumor prognosis evaluation
CN110687281B (en) * 2019-08-26 2023-05-23 中国医学科学院肿瘤医院 Application of PD-L1 autoantibody in tumor prognosis evaluation
WO2021090941A1 (en) * 2019-11-08 2021-05-14 味の素株式会社 Evaluation method, calculation method, evaluation device, calculation device, evaluation program, calculation program, recording medium, evaluation system, and terminal device for pharmacological action of immune check point inhibitor
CN111733253A (en) * 2020-08-21 2020-10-02 北京信诺卫康科技有限公司 Marker for immune-related adverse reaction and application thereof

Also Published As

Publication number Publication date
JP7304558B2 (en) 2023-07-07
JPWO2019117132A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US20160069898A1 (en) Methods for Determining Responsiveness to an Anti-CD47 Agent
JP7304558B2 (en) Biomarkers for prognostic prediction of cancer immunotherapy
Matsuo et al. Association between soluble immune mediators and tumor responses in patients with nonsmall cell lung cancer treated with anti‐PD‐1 inhibitor
WO2013172926A1 (en) Immune biomarkers and assays predictive of clinical response to immunotherapy for cancer
EP4239077A2 (en) Triaging method using cell free nucleosome levels
Singh et al. Tertiary lymphoid structure signatures are associated with immune checkpoint inhibitor related acute interstitial nephritis
TWI655433B (en) Diagnosis and treatment of Kawasaki disease
WO2018156448A1 (en) Prediction and treatment of immunotherapeutic toxicity
Sun et al. JNK pathway‐associated phosphatase associates with rheumatoid arthritis risk, disease activity, and its longitudinal elevation relates to etanercept treatment response
AU2016273230B2 (en) Biomarkers for a combination therapy comprising lenvatinib and everolimus
EP3861347B1 (en) Biomarkers for a combination therapy comprising lenvatinib and everolimus
JP2019518970A (en) Methods and kits for predicting sensitivity to cancer treatment of subjects suffering from kidney cancer
US20220011313A1 (en) Biomarker panels for on-treatment prediction of response to immuno-oncology drugs
Ferrero et al. Dynamics of circulating follicular helper T cell subsets and follicular regulatory T cells in rheumatoid arthritis patients according to HLA-DRB1 locus
JP2022512590A (en) Biomarkers for therapy containing sorafenib compounds
松尾規和 et al. Association between soluble immune mediators and tumor responses in patients with non-small cell lung cancer treated with anti-PD-1 inhibitor
WO2023022200A1 (en) Biomarker for predicting response to immune checkpoint inhibitor
US20210231664A1 (en) Eosinophil Cationic Protein (ECP) as a Tumor Marker for Malignant Tumors
WO2024123983A1 (en) Methods of predicting and treating immunotherapy adverse events based on immune cell populations
CN115877017A (en) Product and system for predicting immune reconstitution in HIV/AIDS patients
JP2021056045A (en) Novel colorectal cancer marker and novel colorectal cancer curative medicine targetted at soluble ox40
WO2010062705A1 (en) Cancer diagnosis using ki-67

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888919

Country of ref document: EP

Kind code of ref document: A1