WO2019117031A1 - Optical waveguide - Google Patents

Optical waveguide Download PDF

Info

Publication number
WO2019117031A1
WO2019117031A1 PCT/JP2018/045069 JP2018045069W WO2019117031A1 WO 2019117031 A1 WO2019117031 A1 WO 2019117031A1 JP 2018045069 W JP2018045069 W JP 2018045069W WO 2019117031 A1 WO2019117031 A1 WO 2019117031A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
incident surface
incident
core
Prior art date
Application number
PCT/JP2018/045069
Other languages
French (fr)
Japanese (ja)
Inventor
直人 古根川
雄一 辻田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2019117031A1 publication Critical patent/WO2019117031A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Definitions

  • the present invention relates to an optical waveguide.
  • an optical waveguide in which a plurality of optical paths are bundled into one at a junction is known.
  • each of a plurality of light beams having different wavelengths is incident on each of a plurality of incident surfaces, and these are merged at a merging portion, and then one exit surface disposed downstream of the merging portion Emit from.
  • a multimode optical waveguide having branch cores different in width has been proposed (see, for example, Patent Document 1).
  • the multimode optical waveguide of Patent Document 1 by making the widths of the plurality of branch cores different, the propagation constants of the plurality of optical paths are made different, and more light is propagated to the branch core having the larger propagation constant. .
  • the light having a short wavelength has a long wavelength
  • the rate of loss in the light path is larger than that of light. Therefore, among the light emitted from the emission surface, the light having a short wavelength has a greater reduction in intensity than the light having a long wavelength. As a result, there is a problem that the intensities of the two lights after merging become uneven.
  • Patent Document 1 divides the light into selective portions by making the widths of branch cores different, but as in Patent Document 1, the width is changed for each of a plurality of branch cores to widen light having a short wavelength.
  • the decrease in the intensity of light having a short wavelength is large compared to the decrease in the intensity of light having a long wavelength It can be suppressed and the above problems can be solved.
  • each of the plurality of light emitting devices and each of the plurality of incident surfaces must be aligned in accordance with the width of the plurality of incident surfaces, and such accurate alignment can not be performed. In this case, there is a problem that the two can not be optically connected accurately.
  • the present invention allows each of the light of the first wavelength, the light of the second wavelength, and the light of the third wavelength to be simply and accurately incident on each of the three incident surfaces, and further combines the three lights to make them uniform.
  • an optical waveguide capable of emitting with intensity.
  • the present invention (1) includes a clad and a core embedded in the clad, wherein the core is disposed at an end face upstream of the light transmission direction, and a first incident light of a first wavelength is incident on the core
  • the light emitting element is disposed on the surface and on the upstream end face in the transmission direction so as to be separated from the first incident surface in the direction intersecting the transmission direction, and light of a second wavelength shorter than the first wavelength is incident on the core
  • a second incident surface and an upstream end surface in the transmission direction are disposed to be spaced apart from the first incident surface and the second incident surface in a direction intersecting the transmission direction, and a third shorter than the second wavelength
  • the light of the first wavelength is disposed downstream of the transmission direction of the third incident surface on which the light of the wavelength enters the core, the first incident surface, the second incident surface, and the third incident surface.
  • the light of the second wavelength and the light of the third wavelength merge A junction, and an exit surface disposed downstream of the junction in the transmission direction and emitting the light of the first wavelength, the light of the second wavelength, and the light of the third wavelength;
  • the first area S1 of the incident surface, the second area S2 of the second incident surface, and the third area S3 of the third incident surface are substantially the same, and are incident on the first incident surface, and the emission
  • a first attenuation ratio R1 of the light of the first wavelength emitted from the surface is incident on the second incident surface and compared to a second attenuation ratio R2 of the light of the second wavelength emitted from the emission surface
  • the optical waveguide includes an optical waveguide that is larger than the third attenuation ratio R3 of the light of the third wavelength that is incident on the third incident surface and that is emitted from the output surface.
  • each of the light of the first wavelength, the light of the second wavelength, and the light of the third wavelength is incident on the first incident surface, the second incident surface, and the third incident surface, and Combine the light and emit three lights from the exit surface.
  • the light emitting device and the three incident surfaces are provided. Can be easily aligned, and both can be optically connected easily and accurately.
  • a third attenuation ratio R1 of the light of the first wavelength is larger than a second attenuation ratio R2 of the light of the second wavelength shorter than the first wavelength, and a second attenuation ratio R2 is shorter than the second wavelength.
  • the intensities of the three lights emitted from the emission surface can be made uniform.
  • this optical waveguide it is possible to allow three lights to enter easily and accurately, and to combine them while emitting combined light having excellent optical characteristics.
  • the light of the first wavelength includes red light
  • the light of the second wavelength includes green light
  • the light of the third wavelength includes blue light
  • the light of the first wavelength contains red light
  • the light of the second wavelength contains green light
  • the light of the third wavelength contains blue light.
  • Light and red light can be emitted with uniform intensity. Therefore, combined light having a desired hue can be emitted.
  • the merging portion is a first merging portion in which any two of the light of the first wavelength, the light of the second wavelength and the light of the third wavelength are merged, and the first merging portion
  • the present invention (4) is characterized in that the merging portion includes a full merging portion where three of the light of the first wavelength, the light of the second wavelength and the light of the third wavelength merge.
  • the optical waveguide as described in.
  • the present invention (5) is characterized in that the first optical path length L1 from the first incident surface to the emission surface is longer than the second optical path length L2 from the second incident surface to the emission surface.
  • the optical waveguide according to any one of (1) to (4) is included that the optical path length L2 is longer than the third optical path length L3 from the third incident surface to the exit surface.
  • the first attenuation ratio R1 of the light of the first wavelength is the second attenuation ratio of the light of the second wavelength shorter than the first wavelength. It can be set larger reliably than R2.
  • the second optical path length L2 is longer than the third optical path length L3
  • the second attenuation ratio R2 is surely set larger than the third attenuation ratio R3 of the light of the third wavelength shorter than the second wavelength. can do.
  • the intensities of the three lights emitted from the emission surface can be made uniform uniformly.
  • the first leak ratio LR1 when the light of the first wavelength is transmitted from the first incident surface to the exit surface is the light of the second wavelength which is transmitted from the second incident surface
  • the second leak ratio LR2 is larger than the second leak ratio LR2 when the light is transmitted to the light exit surface when the light of the third wavelength is transmitted from the third light incident surface to the light exit surface
  • the optical waveguide according to any one of (1) to (5), which is larger than the third leakage ratio LR3 of
  • the first attenuation ratio R1 of the light of the first wavelength is the second attenuation ratio of the light of the second wavelength shorter than the first wavelength. It can be set larger reliably than R2.
  • the second leak ratio LR2 is larger than the third leak ratio LR3
  • the second attenuation ratio R2 is surely set larger than the third attenuation ratio R3 of the light of the third wavelength shorter than the second wavelength. can do.
  • the intensities of the three lights emitted from the emission surface can be made uniform uniformly.
  • the present invention (7) is characterized in that the core is disposed on the upstream side in the transmission direction of the merging portion, and the first core portion for transmitting the light of the first wavelength incident on the first incident surface; A second core portion for transmitting the light of the second wavelength incident on the second incident surface, and a second core portion for transmitting the light of the second wavelength; And the third core portion transmitting the light of the third wavelength incident on the first and second core portions, the opening cross-sectional area of the first core portion and the second core portion being smaller toward the downstream side in the transmission direction.
  • the third core portion has a shape in which the cross-sectional area of the opening decreases as the downstream side in the transmission direction decreases, or the cross-sectional area of the third core portion has the same shape.
  • the first leak ratio LR1 can be set larger than the second leak ratio LR2.
  • the second leak ratio LR2 can be set larger than the third leak ratio LR3.
  • the first leakage ratio LR1, the second leakage ratio LR2, and the third leakage are obtained with a simple configuration in which the first opening sectional area OS1, the second opening sectional area OS2, and the third opening sectional area OS3 are reduced in that order.
  • the ratio LR3 can be reduced in that order.
  • both of the first incident surface and the second incident surface are deviated from the exit surface when light is projected in a direction in which light is incident on the first incident surface and the second incident surface.
  • the third incident surface is disposed at the same position or at the same position as the exit surface when light is projected in a direction in which the light is incident on the third incident surface.
  • the first light path from the entrance surface to the exit surface has a first bend
  • the second light path from the second entrance surface to the exit surface in the core has a second bend
  • the core The third optical path from the third incident surface to the exit surface in the second embodiment has a straight portion or a third curved portion, and the first curved portion is greatly bent with respect to the second curved portion,
  • the bending portion is largely bent with respect to the third bending portion, in any one of (1) to (6) Re comprises or optical waveguide according to an item.
  • the first leak ratio LR1 can be set larger than the second leak ratio LR2.
  • the second leakage ratio LR2 can be set larger than the third leakage ratio LR3.
  • the first leak ratio LR1, the second leak ratio LR2, and the third leak ratio LR3 can be reduced in that order.
  • the present invention (9) is characterized in that the core comprises: a first light absorbing agent partially absorbing the light of the first wavelength; and a second light absorbing agent partially absorbing the light of the second wavelength,
  • the first attenuation ratio R1 is larger than the second attenuation ratio R2, and the second attenuation ratio R2 is larger than the third attenuation ratio R3.
  • the optical waveguide according to any one of the above.
  • the core has a first light absorbing agent and a second light absorbing agent, and the first attenuation ratio R1 is larger than the second attenuation ratio R2, and the second attenuation ratio R2 is higher than the third attenuation ratio R3. Contain to be large. Therefore, the intensities of the three lights emitted from the emission surface can be made uniform.
  • the present invention allows the light of the first wavelength to be incident on the first incident surface, and causes the light of the second wavelength having the same intensity as the light of the first wavelength to be incident on the second incident surface.
  • the first intensity I1 of the light of the first wavelength emitted from the emission surface A ratio (I1 / I2) of the light of the second wavelength to the second intensity I2 is 0.6 or more and 1.4 or less, and a third intensity I3 of the light of the third wavelength of the first intensity I1.
  • the optical waveguide according to any one of (1) to (9), which has a ratio (I1 / I3) to is not less than 0.6 and not more than 1.4.
  • the ratio (I1 / I2) of the first intensity I1 of the light of the first wavelength to the second intensity I2 of the light of the second wavelength is 0.6 or more and 1.4 or less. Since the ratio (I1 / I3) of the intensity I1 to the third intensity I3 of the light of the third wavelength is 0.6 or more and 1.4 or less, three lights can be emitted with uniform intensity.
  • optical waveguide of the present invention three lights can be incident easily and accurately, and while combining them, it is possible to emit combined light having excellent optical characteristics.
  • FIG. 1 shows a plan view of a first embodiment of the optical waveguide of the present invention.
  • 2A and 2B show a front view and a rear view of the optical waveguide shown in FIG. 1, and FIG. 2A is a front view seen from the upstream side in the light transmission direction, and FIG. 2B is seen from the downstream side in the light transmission direction Shows a rear view.
  • 3A to 3C are plan views highlighting each optical path in the optical waveguide shown in FIG. 1, where FIG. 3A is a plan view highlighting the first optical path, and FIG. 3B highlights the second optical path A plan view, FIG. 3C shows a plan view highlighting the third optical path.
  • FIG. 4 shows a plan view of a modification of the optical waveguide shown in FIG. FIG.
  • FIG. 5 shows a plan view of a modification of the optical waveguide shown in FIG.
  • FIG. 6 shows a plan view of a modification of the optical waveguide shown in FIG.
  • FIG. 7 shows a plan view of a second embodiment of the optical waveguide of the present invention.
  • FIG. 8 shows a plan view of a third embodiment of the optical waveguide of the present invention.
  • FIG. 9 shows a plane of a modification of the optical waveguide shown in FIG.
  • FIG. 10 shows a perspective view of a core forming the basic configuration of the present invention.
  • FIGS. 1 to 3C A first embodiment of the optical waveguide of the present invention will be described with reference to FIGS. 1 to 3C.
  • the over clad 4 (described later) is omitted to clearly show the arrangement of the core 2 (described later).
  • the optical waveguide 10 is an optical coupling device that receives three (three) types of light having different wavelengths, merges them, and then emits one merged light.
  • the optical waveguide 10 has a substantially rectangular shape in a plan view, and may be referred to simply as a transmission direction (hereinafter referred to simply as the transmission direction). .
  • the transmission direction In the form of a sheet (or in the form of a substantially plate).
  • the optical waveguides 10 face each other in the width direction (hereinafter simply referred to as the width direction) orthogonal to the transmission direction and the thickness direction with the upstream end face 5 and the downstream end face 6 facing each other in the transmission direction.
  • a width direction one side end surface 7 and a width direction other side end surface 8 connecting the width direction both end edges of the upstream side end surface 5 and the downstream side end surface 6 are provided.
  • the upstream end surface 5 is a side surface extending in the width direction.
  • the downstream end surface 6 is a side surface along the width direction.
  • the downstream end surface 6 is parallel to the upstream end surface 5.
  • the width direction one side end surface 7 and the width direction other side end surface 8 are side surfaces opposed in the width direction.
  • the width direction one side end surface 7 and the width direction other side end surface 8 are parallel to each other along the transmission direction.
  • the optical waveguide 10 further has a flat upper surface 55 and a lower surface 56.
  • the optical waveguide 10 is a strip type optical waveguide, and includes a clad 1 and a core 2 embedded in the clad 1.
  • the cladding 1 has the same shape as the optical waveguide 10 when projected in the thickness direction.
  • the clad 1 has a substantially sheet shape having a substantially rectangular shape in a plan view.
  • the cladding 1 includes an undercladding 3 and an overcladding 4 disposed on the undercladding 3.
  • the under cladding 3 is a lower layer in the cladding 1 and forms the lower surface 56 of the optical waveguide 10.
  • the over clad 4 is an upper layer in the clad 1 and forms the upper surface 55 of the optical waveguide 10.
  • the lower surface of the overcladding 4 is in contact with the upper surface and the side surface of the core 2 described below.
  • Examples of the material of the clad 1 include transparent resins such as epoxy resins.
  • the thickness of the cladding 1 is the same as the thickness of the optical waveguide 10 and is the total thickness of the undercladding 3 and the overcladding 4.
  • the thickness of the cladding 1 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 1000 ⁇ m or less, preferably 200 ⁇ m or less.
  • the core 2 is embedded in the cladding 1. Specifically, the core 2 is disposed on the upper surface of the undercladding 3 and covered with the overcladding 4.
  • the core 2 has three light paths (a first light path 21 (see highlight in FIG. 3A), a second light path 22 (see highlight in FIG. 3B), and a third light path 23 (see FIG. 3C).
  • a part a merging part 16 where three optical paths merge, and a combined channel 25 arranged on the downstream side in the transmission direction thereof.
  • the thickness T (vertical length) of the core 2 is the same in any part.
  • the thickness T of the core 2 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 500 ⁇ m or less, preferably 100 ⁇ m or less.
  • the three optical paths are optical paths transmitting three lights having different wavelengths, and are a first optical path 21, a second optical path 22, and a third optical path 23.
  • the first light path 21 transmits the first light
  • the second light path 22 transmits the second light
  • the third light path 23 transmits the third light.
  • the first light is light having a relatively long first wavelength, and includes, for example, light having a wavelength of 580 nm or more, preferably 600 nm or more and 700 nm or less, and specifically includes red light.
  • the second light is light of a second wavelength shorter than the first wavelength, for example, less than 580 nm, preferably less than 550 nm, and includes, for example, light of 485 nm or more, preferably 500 nm or more, In fact, it contains green light.
  • the third light is light of a third wavelength shorter than the second wavelength, and includes, for example, light less than 485 nm, preferably 470 nm or less, and for example, 400 nm or more, preferably 420 nm or more, In fact, it contains blue light.
  • the end face on the upstream side in the transmission direction of the first optical path 21 is the first incident surface 11 and is exposed from the tapered surface 9. Specifically, the first incident surface 11 is flush with the tapered surface 9. The first incident surface 11 is an incident surface on which the first light enters the first light path 21.
  • the first incident surface 11 has a substantially rectangular shape when viewed from the upstream side in the transmission direction (hereinafter referred to as a front view). Further, the first area S1 of the first incident surface 11 is a value obtained by multiplying the thickness T of the core 2 by the width W1 along the tapered surface 9.
  • the first light path 21 includes a first core portion 26 including the first incident surface 11.
  • the first core portion 26 is located at the upstream end of the first optical path 21 in the transmission direction.
  • the first core portion 26 is an optical path for transmitting only the first light incident on the first incident surface 11 in the first optical path 21.
  • the first core portion 26 has a substantially linear shape extending from the first incident surface 11 toward the downstream side in the transmission direction. Note that the transmission direction is based on the transmission direction of light in the total merging channel 30 described later.
  • the first core portion 26 extends toward one side in the transmission direction diagonal width direction, and more specifically, in the transmission direction so as to approach the width direction one side end surface 7 as proceeding to the transmission direction downstream side It is inclined against.
  • a merging portion 16 to be described next is disposed at the downstream end of the first core portion 26 in the transmission direction, and in the first optical path 21, a combined channel 25 described later on the downstream side in the transmission direction of the merging portion 16. (Described later) is arranged.
  • the transmission direction upstream end surface of the second optical path 22 is the second incident surface 12 and is exposed from the upstream end surface 5.
  • the second incident surface 12 is flush with the upstream end surface 5.
  • the second incident surface 12 is disposed on one side in the width direction of the first incident surface 11 at an interval.
  • the second incident surface 12 is an incident surface on which the second light enters the second optical path 22.
  • the second incident surface 12 has the same shape as the first incident surface 11. Therefore, the second area S2 of the second incident surface 12 is the same as the first area S1, and specifically, it is a value obtained by multiplying the thickness T of the core 2 by the width W2 along the upstream end surface 5 . Specifically, since the thickness T of the core 2 is the same in the first optical path 21 and the second optical path 22, the width W2 of the second incident surface 12 and the width W1 of the first incident surface 11 are the same. .
  • the second optical path 22 includes a second core portion 27 including the second incident surface 12.
  • the second core portion 27 is located at the upstream end of the second optical path 22 in the transmission direction.
  • the second core portion 27 is an optical path for transmitting only the second light incident on the second incident surface 12 in the second optical path 22.
  • the second core portion 27 has a substantially linear shape extending straight from the second incident surface 12 toward the downstream side in the transmission direction.
  • a merging portion 16 to be described next is disposed at the downstream end of the second core portion 27 in the transmission direction, and in the second optical path 22 downstream of the merging portion 16 in the transmission direction, the first optical path 21 is A common combined channel 25 (described later) is disposed.
  • the transmission direction upstream end surface of the third optical path 23 is the third incident surface 13 and is exposed from the upstream end surface 5.
  • the third incident surface 13 is flush with the upstream end surface 5.
  • the third incident surface 13 is disposed on one side in the width direction of the second incident surface 12 at an interval. That is, the third incident surface 13 is spaced apart from the first incident surface 11 and the second incident surface 12 on one side in the width direction.
  • the third incident surface 13 is an incident surface on which the third light enters the third optical path 23.
  • the third incident surface 13 has the same shape as the second incident surface 12. Therefore, the third area S3 of the third incident surface 13 is the same as the second area S2, and specifically, it is a value obtained by multiplying the thickness T of the core 2 by the width W3 along the upstream end surface 5 . Specifically, since the thickness T of the core 2 is the same in the second optical path 22 and the third optical path 23, the width W3 of the third incident surface 13 and the width W2 of the second incident surface 12 are the same. . That is, the first area S1 of the first incident surface 11, S2 of the second incident surface 12, and S3 of the third incident surface 13 are the same.
  • the third light path 23 includes the third core portion 28 including the third incident surface 13.
  • the third core unit 28 is located at the upstream end of the third optical path 23 in the transmission direction.
  • the third core portion 28 is an optical path for transmitting only the third light incident on the third incident surface 13 in the third optical path 23.
  • the third core portion 28 has a substantially linear shape extending straight from the third incident surface 13 toward the downstream side in the transmission direction.
  • a merging portion 16 to be described next is disposed at the downstream end of the third core portion 28 in the transmission direction, and in the third optical path 23, on the downstream side of the merging portion 16 in the transmission direction, the first optical path 21 and A combined flow passage 25 (second combined portion 18) common to the second optical path 22 is disposed.
  • the merging portion 16 independently includes a first merging portion 17 and a second merging portion 18.
  • the first joining portion 17 is a portion where the first optical path 21 and the second optical path 22 are merged for the first time, and the downstream end of the first core portion 26 in the transmission direction and the downstream side of the second core portion 27 in the transmission direction It is a part where the ends gather.
  • the first merging portion 17 is disposed at the downstream end of the first core portion 26 and the second core portion 27 in the transmission direction. That is, the first merging portion 17 is disposed downstream of the first incident surface 11 and the second incident surface 12 in the transmission direction. In the first merging portion 17, the first light and the second light merge.
  • the second merging portion 18 is disposed at an interval downstream of the first merging portion 17 in the transmission direction. Specifically, the second merging portion 18 is disposed downstream of the first merging portion 17 in the transmission direction via the intermediate combined channel 29 on the downstream side of the transmission direction where the first optical path 21 and the second optical path 22 merge. ing.
  • the second merging portion 18 is a portion where the first optical path 21, the second optical path 22 and the third optical path 23 are merged for the first time, and the downstream end of the intermediate combined channel 29 (described later) in the transmission direction and the third core
  • the downstream end of the transmission direction of the unit 28 is a part where it gathers.
  • the second merging portion 18 is disposed at the downstream end of the intermediate combined flow passage 29 and the third core portion 28 in the transmission direction. That is, the second merging portion 18 is disposed on the downstream side in the transmission direction of the first incident surface 11, the second incident surface 12, and the third incident surface 13. In the second merging portion 18, the first light, the second light and the third light merge for the first time.
  • the combined channel 25 includes an intermediate combined channel 29 and a total combined channel 30.
  • the middle combined channel 29 is disposed between the first joining portion 17 and the second joining portion 18 and optically connects (connects) them.
  • the intermediate combined channel 29 is an optical path common to the central portion in the transmission direction of the first optical path 21 and the central portion in the transmission direction of the second optical path 22.
  • the middle combined channel 29 is disposed on the extension of the first core portion 26 and has the same shape as the first core portion 26.
  • the intermediate combined flow passage 29 has an angle with respect to the second core portion 27, and the angle Y formed between the intermediate combined flow passage 29 and the second core portion 27 is, for example, 170 degrees or more, preferably 175 The degree is more than 177 degrees, more preferably, for example, less than 180 degrees.
  • the total merging channel 30 is disposed downstream of the second merging portion 18 in the transmission direction, and is optically connected (connected) to the second merging portion 18.
  • the total merging channel 30 is an optical path common to the downstream end of the first optical path 21 in the transmission direction, the downstream end of the second optical path 22 in the transmission direction, and the downstream end of the third optical path 23 in the transmission direction.
  • the entire combined flow passage 30 is disposed on an extension of the third core portion 28 and has the same shape as the third core portion 28.
  • the total joint flow channel 30 has an angle with respect to the intermediate joint flow channel 29, and the angle Z formed between the total joint flow channel 30 and the intermediate joint channel 29 is, for example, 170 degrees or more, preferably 175 degrees or more More preferably, it is 177 degrees or more, for example, less than 180 degrees.
  • the transmission direction downstream end surface of the total joint flow path 30 is the output surface 14.
  • the exit surface 14 is disposed on the downstream side in the transmission direction of the second merging portion 18 (the merging portion 16).
  • the emission surface 14 is exposed from the downstream end surface 6.
  • the exit surface 14 is flush with the downstream end surface 6.
  • the emitting surface 14 emits the totally merged light (described later) merged at the second merging portion 18 (the merging portion 16).
  • the core 2 includes the first incident surface 11, the second incident surface 12, the third incident surface 13, and the exit surface 14, and further, the first joining portion 17 and the second joining portion 18 Prepare. Therefore, light incident on each of the first incident surface 11, the second incident surface 12, and the third incident surface 13 merges at the first merging portion 17 and the second merging portion 18 (merging portion 16), and then exits. It is emitted from 14.
  • the first incident surface 11, the second incident surface 12, and the third incident surface 13 of the core 2 are all disposed on the upstream end surface 5 of the optical waveguide 10, while the output surface 14 of the core 2 is an optical waveguide. 10 is disposed at the downstream end face 6. Further, when projected in the transmission direction, the third incident surface 13 overlaps (is located at the same position) as the emission surface 14, while the first incident surface 11 and the second incident surface 12 have the above-described transmission direction. (Specifically, when projected in the direction in which the third light is transmitted), the light does not overlap with the exit surface 14 and is shifted to the other side in the width direction, and the first entrance surface 11 is further against the second entrance surface 12 , Located far away.
  • the length L1 of the first optical path 21, that is, the first optical path length L1 from the first incident surface 11 to the exit surface 14 is the length L2 of the second optical path 22. That is, the second optical path length L2 from the second incident surface 12 to the exit surface 14 is longer (L1> L2), and the second optical path length L2 is the length L3 of the third optical path 23, that is, The third optical path length L3 from the third incident surface 13 to the exit surface 14 is long (L2> L3). That is, L1> L2> L3 is satisfied.
  • the ratio (L1 / L2) of the first optical path length L1 to the second optical path length L2 is, for example, 1.001 or more, preferably 1.01 or more, more preferably 1.1 or more, and, for example, 2 or less.
  • the ratio (L2 / L3) of the second optical path length L2 to the third optical path length L3 is, for example, 1.001 or more, preferably 1.01 or more, more preferably 1.1 or more, and For example, 2 or less.
  • the ratio (L1 / L3) of the first optical path length L1 to the third optical path length L3 is, for example, 1.002 or more, preferably 1.02 or more, more preferably 1.15 or more, , For example, 3 or less.
  • Examples of the material of the core 2 include a transparent resin of the same material as that of the clad 1.
  • the refractive index of the core 2 is higher than that of the cladding 1.
  • the refractive index and the light transmittance of the core 2 are uniformly adjusted in the transmission direction. That is, the core 2 is optically homogeneous over the transmission direction.
  • the undercladding 3 is prepared, and then the core 2 is formed on the top surface of the undercladding 3 by photo processing or the like, and then the overcladding 4 is formed on the top surface of the core 2 And the upper surface of the undercladding 3 so as to cover the side surfaces.
  • each of the first light, the second light and the third light is incident from the light emitting device 65 to each of the first incident surface 11, the second incident surface 12 and the third incident surface 13.
  • the light emitting device 65 includes a first light emitting unit 61 that emits a first light, a second light emitting unit 62 that emits a second light, and a third light emitting unit 63 that emits a third light.
  • the first light emitting unit 61 generally faces the first light incident surface 11. Specifically, the first light emitting unit 61 is disposed to face the first incident surface 11 in the direction along the first light path 26 in the first core unit 26. However, the emission side surface of the first light emitting portion 61 is not parallel to the first incident surface 11 but obliquely opposed.
  • the second light emitting unit 62 is disposed to face the second incident surface 12 in the transmission direction.
  • the third light emitting unit 63 is disposed to face the third incident surface 13 in the transmission direction.
  • the light emitting device 65 is positioned with respect to the upstream end surface 5.
  • the first light, the second light, and the third light are transmitted along the first light path 21, the second light path 22, and the third light path 23, respectively, and join at the merging portion 16 along the way. , And are emitted from the emission surface 14 together.
  • the first light transmitted from the first incident surface 11 in the first core portion 26 and the second light transmitted from the second incident surface 12 in the second core portion 27 are the first merging portion At 17, merge to combine the intermediate merge light.
  • the intermediate merging light and the third light transmitted from the third incident surface 13 in the third core unit 28 merge in the second merging portion 18 to combine all merging light.
  • the optical path lengths of the first optical path 21, the second optical path 22 and the third optical path 23 satisfy L1> L2> L3, the first light incident on the first incident surface 11 and emitted from the emission surface 14
  • the first attenuation ratio R1 is larger than the second attenuation ratio R2 of the second light emitted to the second incident surface 12 and emitted from the emission surface 14, and the second attenuation ratio R2 described above is It is larger than the third attenuation ratio R3 of the third light which is incident on the third incident surface 13 and emitted from the emission surface 14.
  • the ratio (R1 / R2) of the first attenuation ratio R1 of the first light to the second attenuation ratio R2 of the second light is, for example, 1.001 or more, preferably 1.01 or more, more preferably 1. It is one or more and, for example, two or less.
  • the ratio (R2 / R3) of the second attenuation ratio R2 of the second light to the third attenuation ratio R3 of the third light is, for example, 1.001 or more, preferably 1.01 or more, more preferably 1. It is one or more and, for example, two or less.
  • the ratio (R1 / R3) of the first attenuation ratio R1 of the first light to the third attenuation ratio R3 of the third light is, for example, 1.002 or more, preferably 1.02 or more, more preferably 1. 15 or more and, for example, 3 or less.
  • the intensities of the three lights emitted from the emission surface 14 can be made uniform.
  • the first light is made incident on the first incident surface 11, the second light having the same intensity as the first light is made incident on the second incident surface 12, and the third light having the same intensity as the second light is made third
  • the ratio (I1 / I2) of the first intensity I1 of the first light emitted from the emission surface 14 to the second intensity I2 of the second light when entering the incident surface 13 is 0.6 or more, 1
  • the ratio (I1 / I3) of the first intensity I1 to the third intensity I3 of the third light is 0.6 or more and 1.4 or less.
  • the ratio (I1 / I2) of the first strength I1 to the second strength I2 and the ratio (I1 / I3) of the first strength I1 to the third strength I3 are preferably 0.8 or more, more preferably 0.9 or more, and preferably 1.2 or less, more preferably 1.1 or less.
  • the above-mentioned intensity ratio is more than the above-mentioned lower limit and below the upper limit, three lights can be emitted with uniform intensity.
  • each of the 1st light, the 2nd light, and the 3rd light enters into the 1st entrance plane 11, the 2nd entrance plane 12, and the 3rd entrance plane 13, and the 2nd junction part 18 ( In the merging section 16), the three lights are merged, and the three lights are emitted from the emission surface.
  • the light emitting device 65 and the The first incident surface 11, the second incident surface 12, and the third incident surface 13 can be easily aligned, and both can be easily optically connected.
  • the first attenuation ratio R1 of the first light is larger than the second attenuation ratio R2 of the second light whose wavelength is shorter than that of the first light, and the second attenuation ratio R2 has a wavelength shorter than that of the second light.
  • the intensities of the three lights emitted from the emission surface 14 can be made uniform.
  • the three light beams of the first light, the second light and the third light are easily and accurately incident and, while combining them, emit all the combined light with excellent optical characteristics. Can.
  • the first light contains red light
  • the second light contains green light
  • the third light contains blue light
  • red light, green light and blue light are emitted from the emission surface 14 Can be emitted with uniform intensity. Therefore, it is possible to emit all the combined light having a desired hue.
  • the first light and the second light are joined in the first joining portion 17, and the third light which is the remaining light in the second joining portion 18 and the intermediate which is joined in the first joining portion 17 Since the merging light and the merging light are merged, the number of merging can be increased to make the light uniform.
  • the first attenuation ratio R1 of the first light is surely larger than the second attenuation ratio R2 of the second light. It can be set.
  • the second optical path length L2 is longer than the third optical path length L3, the second attenuation ratio R2 can be reliably set larger than the third attenuation ratio R3 of the third light.
  • the intensities of the three lights emitted from the emission surface 14 are made uniform uniformly. be able to.
  • the ratio (I1 / I2) of the first intensity I1 of the first light to the second intensity I2 of the second light is 0.6 or more and 1.4 or less, and the first intensity I1 and Since the ratio (I1 / I3) of the third intensity I3 of the third light is not less than 0.6 and not more than 1.4, the three lights can be emitted with uniform intensity.
  • the first area S1 of the first incident surface 11, the second area S2 of the second incident surface 12, and the third area S3 of the third incident surface 13 may be substantially the same, for example, the light emitting device 65 described above There may be minute differences that do not interfere with the positioning of the first incident surface 11, the second incident surface 12, and the third incident surface 13.
  • the width W1 of the first incident surface 11, the width W2 of the second incident surface 12, and the width W3 of the third incident surface 13 may be substantially the same, and more specifically, W1 / W2 and W1 / W3 is, for example, 0.9 or more, preferably 0.95 or more, and for example, a range of 1.1 or less, preferably 1.01 or less is acceptable.
  • the first light path 21 and the second light path 22 are united in the first merging portion 17 and the first light and the second light are merged. However, the first light and the second light are combined. And any two of the third lights may be merged.
  • the first merging portion 17 for example, the first light path 21 and the third light path 23 may be united, and the first light and the third light may be merged, for example, the second light path 22 and The third light path 23 may be integrated, and the second light and the third light may be merged.
  • the core 2 has a first light absorbing agent that partially absorbs the first light and a second light absorbing agent that partially absorbs the second light, and the first attenuation ratio R1 is a second attenuation ratio R2 And the second damping ratio R2 may be larger than the third damping ratio R3.
  • Examples of the first light absorber include red light absorbers. Specifically, anthraquinone compounds, phthalocyanine compounds, cyanine compounds, polymethylene compounds, aluminum compounds, diimonium compounds, and imonium compounds And azo compounds.
  • Examples of the second light absorber include green light absorbers, and specific examples include anthraquinone compounds, phthalocyanine compounds and the like.
  • the core 2 has a third light absorber that partially absorbs the third light, and the second attenuation ratio R2 is compared to the third attenuation ratio R3. It can also be contained to be large.
  • Examples of the third light absorber include blue light absorbers, and specific examples include benzotriazole-based compounds, benzophenone-based compounds, salicylic acid-based compounds, and coumarin-based compounds.
  • the content ratio of the first light absorber and the second light absorber is appropriately adjusted so as to satisfy the relationship of first attenuation ratio R1> second attenuation ratio R2> third attenuation ratio R3.
  • the core 2 satisfies the relationship of the first light absorbing agent and the second light absorbing agent such that the first attenuation ratio R1> the second attenuation ratio R2> the third attenuation ratio R3. ,contains. Therefore, the intensities of the three lights emitted from the emission surface 14 can be made uniform.
  • the upstream end surface 5 is configured as one plane (side surface). However, as shown in FIG. 4, the tapered surface 9 can be formed on the upstream end surface 5.
  • the other end in the width direction of the upstream end surface 5 is obliquely cut, whereby the tapered surface 9 is formed.
  • An angle X between the tapered surface 9 and the widthwise central portion and the widthwise one end portion at the upstream end surface 5 is an obtuse angle, and is set such that the tapered surface 9 is parallel to a third incident surface 13 described later. Specifically, for example, it is 170 degrees or more, preferably 175 degrees or more, more preferably 177 degrees or more, and for example, less than 180 degrees.
  • the first area S1 of the first incident surface 11 is the same as the second area S2 of the second incident surface 12 and the third area S3 of the third incident surface 13, and the width W1 of the first incident surface 11 is , And the length in the direction along the tapered surface 9.
  • the first light emitting portion 61 is disposed to face the tapered surface 9 including the first incident surface 11.
  • the merging portion 16 includes two of the first merging portion 17 and the second merging portion 18.
  • the number of merging portions 16 may be one.
  • the merging portion 16 has only the total merging portion 19 where three of the first light, the second light and the third light merge.
  • the full merging portion 19 is a portion where the downstream end of the first core portion 26 in the transmission direction, the downstream end of the second core portion 27 in the transmission direction, and the downstream end of the third core portion 28 in the transmission direction gather It is. In the total merging section 19, three of the first light, the second light, and the third light merge to combine all merged light.
  • the combined channel 25 does not include the intermediate combined channel 29 (see FIG. 1), and includes only the entire combined channel 30.
  • the total merging channel 30 transmits the total combined light combined in the total merging section 19 toward the exit surface 14.
  • the second core portion 27 has a shape that extends from the second incident surface 12 toward the overall combined flow channel 30. Further, the second core portion 27 is inclined in the same manner as the first core portion 26. However, the degree of inclination of the second core portion 27 is smaller than the degree of inclination of the first core portion 26.
  • the inclination degree of the second core portion 27 (specifically, the second core portion 27)
  • the ratio (the angle ⁇ 1 between the first core portion 26 and the first core portion 26) (specifically, the ratio ⁇ of the angle ⁇ 2) between the portion 27 and the first core portion 26 (specifically, the angle ⁇ 1 between the first core portion 26 and the first core portion 26) ⁇ 2 / ⁇ 1) is, for example, 0.9 or less, preferably 0.8 or less, more preferably 0.7 or less, and for example, 0.1 or more.
  • the upstream end surface 5 can also be formed in a substantially step shape in plan view.
  • the upstream end surface 5 is independently provided with a first surface 51 including the first incident surface 11, a second surface 52 including the second incident surface 12, and a third surface 53 including the third incident surface 13.
  • the first surface 51, the second surface 52, and the third surface 53 are arranged at an interval in the transmission direction, and are arranged downstream in the transmission direction in this order . Therefore, in the upstream end surface 5, the first surface 51 is disposed farthest from the downstream end surface 6, and the third surface 53 is disposed closest to the downstream end surface 6.
  • the second surface 52 is located between the first surface 51 and the third surface 53.
  • the first surface 51, the second surface 52, and the third surface 53 are all parallel to the downstream end surface 6 along the width direction.
  • the first surface 51 includes a first incident surface 11.
  • the second surface 52 includes a second incident surface 12.
  • the third surface 53 includes the third incident surface 13.
  • L1> L2> L3 can be satisfied more reliably.
  • (L1 / L2) is, for example, 1.01 or more, preferably 1.1 or more, more preferably 1.2 or more, and for example, 5 or less.
  • the ratio (L2 / L3) of the second optical path length L2 to the third optical path length L3 is, for example, 1.01 or more, preferably 1.1 or more, more preferably 1.2 or more, and For example, 5 or less.
  • the ratio (L1 / L3) of the first optical path length L1 to the third optical path length L3 is, for example, 1.02 or more, preferably 1.2 or more, more preferably 1.3 or more, and For example, it is 10 or less.
  • Second Embodiment In the following second embodiment, the same members as those in the first embodiment and the modification thereof are denoted by the same reference numerals, and the detailed description thereof will be omitted. In addition, the second embodiment can exhibit the same effects as those of the first embodiment and the modified example thereof, unless otherwise specified.
  • the first optical path length L1 of the first optical path 21, the second optical path length L2 of the second optical path 22, and the third optical path length L3 of the third optical path 23 are L1> L2>. It is set to satisfy L3. Thereby, the equation (1) [first attenuation ratio R1> second attenuation ratio R2> third attenuation ratio R3] is satisfied.
  • the first leak ratio LR1 of the first light, the second leak ratio LR2 of the second light, and the third leak ratio LR3 of the third light LR1> LR2> It is also possible to set so as to satisfy LR3 and to satisfy the above-mentioned equation (1).
  • the first core portion 26 and the second core portion 27 both have a shape in which the cross-sectional area of the opening decreases as going downstream in the transmission direction. More specifically, the first core portion 26 and the second core portion 27 have a substantially tapered shape in plan view, in which the respective widthwise side surfaces approach each other toward the downstream side in the transmission direction.
  • the ratio ( ⁇ 1 / ⁇ 2) thereof is, for example, 1.001 or more, with respect to the inclination with respect to the direction (the angle ⁇ 2 between the virtual plane along the side surface and the axis along the transmission direction).
  • it is 1.01 or more, more preferably 1.1 or more, and for example, 2 or less.
  • the third core portion 28 has the same shape in the opening cross-sectional area as it goes downstream in the transmission direction. Specifically, the third core portion 28 has a substantially linear shape in plan view along the transmission direction.
  • the first opening cross-sectional area OS1 at the downstream end (first downstream end 31) of the first core portion 26 in the transmission direction facing the first joining portion 17 (joining portion 16) is This is smaller than the second opening cross-sectional area OS2 at the downstream end of the transmission direction facing the first joining portion 17 (the joining portion 16).
  • the width W4 of the first downstream side edge 31 is narrower than the width W5 of the second downstream side edge 32.
  • each of the first light and the second light in each of the first core portion 26 and the second core portion 27 easily leaks Further, since the width W4 of the first downstream side edge 31 is narrower than the width W5 of the second downstream side edge 32, the leakage ratio of the first light in the first core portion 26 is equal to that in the second core portion 27. It is large with respect to the leak rate of the second light.
  • the leakage ratio of the first light and the leakage ratio of the second light in the intermediate combined flow passage 29 and the total combined flow passage 30 are that the first light and the second light are transmitted along the common combined flow passage 25. From the same. Then, the first leak ratio LR1 when the first light is transmitted from the first incident surface 11 to the output surface 14 is the second leak ratio when the second light is transmitted from the second incident surface 12 to the output surface Larger than LR2.
  • the second opening cross-sectional area OS2 is smaller than the third opening cross-sectional area OS3 at the downstream end (third downstream end 33) of the third core portion 28 in the transmission direction facing the junction.
  • the width W5 of the second downstream side edge 32 is narrower than the width W6 of the third downstream side edge 33. Therefore, the leakage rate of the second light in the second core portion 27 is larger than the leakage rate of the third light in the third core portion 28.
  • the leakage ratio of the second light and the leakage ratio of the third light in the total combined flow channel 30 are the same because the second light and the third light are transmitted through the common combined flow channel 30 in common. Then, the second leakage ratio LR2 when the second light is transmitted from the second incident surface 12 to the outgoing surface outgoing surface 14 is the second leakage ratio LR2 when the third light is transmitted from the third incident surface 13 to the outgoing surface 14 3 Large for leak rate LR3.
  • the first attenuation ratio R1 of the first light is set to the second attenuation of the second light having a wavelength shorter than the first light.
  • the ratio can be set larger than the ratio R2 with certainty.
  • the second leak ratio LR2 is larger than the third leak ratio LR3
  • the second attenuation ratio R2 is surely set larger than the third attenuation ratio R3 of the third light having a wavelength shorter than that of the second light. can do.
  • the intensities of the three lights emitted from the emission surface 14 can be made uniform uniformly. .
  • the first leak ratio LR1 can be set larger than the second leak ratio LR2.
  • the second leak ratio LR2 can be set larger than the third leak ratio LR3.
  • the third core portion 28 has a substantially linear shape in plan view, but for example, although not shown, the width of the third downstream side edge 33 in the third core portion 28 If W6 is wider than the width W5 of the second downstream side edge 32 of the second core portion 27, the third core portion 28 may have a substantially tapered shape in plan view.
  • first attenuation ratio R1> second attenuation ratio R2> third attenuation ratio R3] is satisfied.
  • each of at least the first optical path 21 and the second optical path 22 includes the first bending portion 36 and the second bending portion 37 which bends smaller than the first bending portion 36.
  • the third optical path 23 has only the third straight portion 50.
  • the first core portion 26 has a first straight portion 48 and a first curved portion 36.
  • the first linear portion 48 has a substantially linear shape in plan view extending along the direction in which the first light is incident from the first incident surface 11. At the downstream end of the first linear portion 48 in the transmission direction, a first curved portion 36 is continuous.
  • the first bending portion 36 curves relatively small in plan view.
  • the first bent portion 36 has a first central portion 38 and a first downstream portion 39.
  • the first central portion 38 has a curvature center on one side in the width direction.
  • the first downstream portion 39 is disposed on the downstream side of the first central portion 38 in the transmission direction, and has a center of curvature on the other side in the width direction.
  • the first downstream side portion 39 is disposed downstream of the first central portion 38 in the transmission direction, and is continuous with the entire combined flow passage 30.
  • the second core portion 27 has a second straight portion 49 and a second curved portion 37.
  • the second linear portion 49 has a substantially linear shape in plan view extending along the direction in which the second light is incident from the second incident surface 12. At the downstream end of the second linear portion 49 in the transmission direction, the second bending portion 37 is continuous.
  • the second bending portion 37 curves more than the first bending portion 36 in a plan view.
  • the second bending portion 37 has a second central portion 40 and a second downstream portion 41.
  • the second central portion 40 has a curvature center on one side in the width direction, and curves more than the first central portion 38.
  • the second downstream side portion 41 is disposed on the downstream side of the second central portion 40 in the transmission direction, and curves more largely than the first downstream side portion 39.
  • the second downstream side portion 41 has a curvature center on the other side in the width direction.
  • the second downstream side portion 41 is continuous with the entire combined flow passage 30.
  • the third straight portion 50 includes the third incident surface 13 and is parallel to the one end surface 7 in the width direction.
  • the first leakage ratio LR1 should be set larger than the second leakage ratio LR2. it can.
  • the second leak ratio LR2 can be set larger than the third leak ratio LR3.
  • the first leakage ratio LR1, the second leakage ratio LR2, and the third leakage are obtained with a simple configuration in which the first opening sectional area OS1, the second opening sectional area OS2, and the third opening sectional area OS3 are reduced in that order.
  • the ratio LR3 can be reduced in that order.
  • the third core portion 28 includes the third straight portion 50.
  • the third core portion 28 may have a third curved portion bent smaller than the second curved portion 37.
  • the third incident surface 13 is disposed so as to be offset from the exit surface 14 when projected in the transmission direction.
  • each of the first curved portion 36 and the second curved portion 37 can be formed in a bent shape.
  • the first core portion 26 includes a first straight portion 48, a first curved portion 36, and a first downstream straight portion 35.
  • the first bent portion 36 has a substantially bent shape in plan view.
  • the first downstream linear portion 35 extends from the first curved portion 36 toward one side in the transmission direction diagonal width direction, and has a substantially linear shape having the same width as the first linear portion 48.
  • the downstream end of the first downstream straight portion 35 is continuous with the entire combined flow passage 30.
  • the second optical path 22 includes a second straight portion 49, a second curved portion 37, and a second downstream straight portion 44.
  • the second bent portion 37 has a substantially bent shape bent smaller than the first bent portion 36 in a plan view.
  • the second downstream linear portion 44 extends from the second curved portion 37 toward one side in the transmission direction diagonal width direction, and has a substantially linear shape having the same width as the second linear portion 49.
  • the downstream end of the second downstream straight section 44 is continuous with the entire combined channel 30.
  • the degree of bending in the first curved portion 36 is larger than the degree of bending in the second curved portion 37.
  • the angle ⁇ 1 formed between the first straight portion 48 and the first downstream side straight portion 35 Is smaller than an angle ⁇ 2 formed by the second straight portion 49 and the second downstream straight portion 44.
  • the first damping ratio R1, the second damping ratio R2, and the third damping ratio R3 can also be reduced in that order by the following means.
  • the first core portion 26, the second core portion 27, and the third core portion 28 are connected to the all joining portion 19, and the lengths thereof are the same. Further, in the core 2 shown in FIG.
  • the first incident surface 11, the second incident surface 12 and the third incident surface 13 is disposed offset with respect to the output surface 14.
  • the first incident surface 11, the second incident surface 12, and the third incident surface 13 are disposed on an imaginary circle centered on an imaginary line along the axis of the combined channel 30.
  • Means (1) The length of the first core portion 26, the length of the second core portion 27, and the length of the third core portion 28 are shortened in that order.
  • Means (2) The first leakage ratio LR1, the second leakage ratio LR2, and the third leakage ratio by decreasing the first opening sectional area OS1, the second opening sectional area OS2, and the third opening sectional area OS3 in that order. Make LR3 smaller in that order.
  • the first leak ratio LR1, the second leak ratio LR2, and the third leak ratio LR3 are reduced in that order.
  • the core 2 is made to contain the first light absorber, the second light absorber, and, if necessary, the third light absorber.
  • Optical waveguides are used in optical applications.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Glass Compositions (AREA)
  • Laser Surgery Devices (AREA)

Abstract

An optical waveguide includes cladding and a core embedded in the cladding. The core comprises: a first incidence surface that is arranged at the end face upstream in the light transmission direction and allows light with a first wavelength to enter the core; a second incidence surface that is arranged at the end face upstream in the transmission direction separate from the first incidence surface by a gap in a direction intersecting with the transmission direction and allows light with a second wavelength shorter than the first wavelength to enter the core; a third incidence surface that is arranged at the end face upstream in the transmission direction separate from the first incidence surface and the second incidence surface by a gap in a direction intersecting with the transmission direction and allows light with a third wavelength shorter than the second wavelength to enter the core; a joint that is arranged downstream of the first incidence surface, the second incidence surface, and the third incidence surface in the transmission direction and where the light with the first wavelength, the light with the second wavelength, and the light with the third wavelength join together; and an emission surface that is arranged downstream from the joint in the transmission direction and wherefrom the light with the first wavelength, the light with the second wavelength, and the light with the third wavelength are emitted. A first area S1 of the first incidence surface, a second area S2 of the second incidence surface, a third area S3 of the third incidence surface are substantially identical. A first attenuation ratio R1 for the light with the first wavelength which is incident on the first incidence surface and emitted from the emission surface is greater than a second attenuation ratio R2 for the light with the second wavelength which is incident on the second incidence surface and emitted from the emission surface. The second attenuation ratio R2 is greater than a third attenuation ratio R3 for the light with the third wavelength which is incident on the third incidence surface and emitted from the emission surface.

Description

光導波路Optical waveguide
 本発明は、光導波路に関する。 The present invention relates to an optical waveguide.
 従来、複数の光路を合流部で1つに束ねた光導波路が知られている。この光導波路では、複数の入射面のそれぞれに、異なる波長を有する複数の光のそれぞれを入射して、これらを合流部で合流させ、その後、合流部の下流側に配置される1つの出射面から出射する。 Conventionally, an optical waveguide in which a plurality of optical paths are bundled into one at a junction is known. In this optical waveguide, each of a plurality of light beams having different wavelengths is incident on each of a plurality of incident surfaces, and these are merged at a merging portion, and then one exit surface disposed downstream of the merging portion Emit from.
 例えば、幅が異なる分岐コアを備える多モード光導波路が提案されている(例えば、特許文献1参照。)。特許文献1の多モード光導波路では、複数の分岐コアの幅を異ならせることによって、複数の光路の伝搬定数を相違させ、伝搬定数が大きい方の分岐コアに、多くの光を伝搬させている。 For example, a multimode optical waveguide having branch cores different in width has been proposed (see, for example, Patent Document 1). In the multimode optical waveguide of Patent Document 1, by making the widths of the plurality of branch cores different, the propagation constants of the plurality of optical paths are made different, and more light is propagated to the branch core having the larger propagation constant. .
特開2007-225920号公報JP 2007-225920 A
 しかるに、異なる波長を有する複数の光のうち、波長の比較的短い光と、波長の比較的長い光とを、同一構成を有する2つの入射面に入射すると、波長の短い光は、波長の長い光に比べて、光路中における損失する割合が大きい。そのため、出射面から出射される光のうち、波長の短い光が、波長の長い光に比べて、強度がより大きく低下する。その結果、合流後の2つの光の強度が不均一になるという不具合がある。 However, when light having a relatively short wavelength and light having a relatively long wavelength among a plurality of light having different wavelengths are incident on two incident planes having the same configuration, the light having a short wavelength has a long wavelength The rate of loss in the light path is larger than that of light. Therefore, among the light emitted from the emission surface, the light having a short wavelength has a greater reduction in intensity than the light having a long wavelength. As a result, there is a problem that the intensities of the two lights after merging become uneven.
 一方、特許文献1は、分岐コアの幅を異ならせて、光を選択に分けているが、特許文献1のように、複数の分岐コア毎に幅を変更して、波長の短い光を幅広の分岐コアの入射面に入射し、波長の長い光を幅狭の分岐コアの入射面に入射すれば、波長の短い光の強度の低下を、波長の長い光の強度の低下に比べて大きく抑制でき、上記の不具合を解決し得る。 On the other hand, Patent Document 1 divides the light into selective portions by making the widths of branch cores different, but as in Patent Document 1, the width is changed for each of a plurality of branch cores to widen light having a short wavelength. When light is incident on the incident surface of the branch core and light having a long wavelength is incident on the light incident surface of the narrow branch core, the decrease in the intensity of light having a short wavelength is large compared to the decrease in the intensity of light having a long wavelength It can be suppressed and the above problems can be solved.
 しかし、複数の光を幅の異なる入射面に入射すれば、位置ずれし易い。具体的には、複数の発光装置のそれぞれと、複数の入射面のそれぞれとを、複数の入射面の幅に応じて、それらを位置合わせしなければならず、かかる精度の高い位置合わせができない場合には、両者を精度よく光学的に接続できないという不具合がある。 However, if a plurality of light beams are incident on incident surfaces with different widths, misalignment easily occurs. Specifically, each of the plurality of light emitting devices and each of the plurality of incident surfaces must be aligned in accordance with the width of the plurality of incident surfaces, and such accurate alignment can not be performed. In this case, there is a problem that the two can not be optically connected accurately.
 本発明は、第1波長の光、第2波長の光および第3波長の光のそれぞれを、3つの入射面のそれぞれに簡単かつ精度よく入射でき、さらに、3つの光を合流して均一な強度で出射することのできる光導波路を提供する。 The present invention allows each of the light of the first wavelength, the light of the second wavelength, and the light of the third wavelength to be simply and accurately incident on each of the three incident surfaces, and further combines the three lights to make them uniform. Provided is an optical waveguide capable of emitting with intensity.
 本発明(1)は、クラッドと、前記クラッドに埋設されるコアとを備え、前記コアは、光の伝送方向上流側端面に配置され、第1波長の光が前記コアに入射する第1入射面と、前記伝送方向上流側端面に、前記伝送方向に交差する方向において前記第1入射面と間隔を隔てるように配置され、前記第1波長より短い第2波長の光が前記コアに入射する第2入射面と、前記伝送方向上流側端面に、前記伝送方向に交差する方向において前記第1入射面および前記第2入射面と間隔を隔てるように配置され、前記第2波長より短い第3波長の光が前記コアに入射する第3入射面と、前記第1入射面、前記第2入射面および前記第3入射面の前記伝送方向下流側に配置され、前記第1波長の光、前記第2波長の光および前記第3波長の光が合流する合流部と、前記合流部の前記伝送方向下流側に配置され、前記第1波長の光、前記第2波長の光および前記第3波長の光が出射する出射面とを有し、前記第1入射面の第1面積S1と、前記第2入射面の第2面積S2と、前記第3入射面の第3面積S3とが、略同一であり、前記第1入射面に入射され、前記出射面から出射される前記第1波長の光の第1減衰割合R1が、前記第2入射面に入射され、前記出射面から出射される前記第2波長の光の第2減衰割合R2に比べて、大きく、前記第2減衰割合R2が、前記第3入射面に入射され、前記出射面から出射される前記第3波長の光の第3減衰割合R3に比べて、大きい、光導波路を含む。 The present invention (1) includes a clad and a core embedded in the clad, wherein the core is disposed at an end face upstream of the light transmission direction, and a first incident light of a first wavelength is incident on the core The light emitting element is disposed on the surface and on the upstream end face in the transmission direction so as to be separated from the first incident surface in the direction intersecting the transmission direction, and light of a second wavelength shorter than the first wavelength is incident on the core A second incident surface and an upstream end surface in the transmission direction are disposed to be spaced apart from the first incident surface and the second incident surface in a direction intersecting the transmission direction, and a third shorter than the second wavelength The light of the first wavelength is disposed downstream of the transmission direction of the third incident surface on which the light of the wavelength enters the core, the first incident surface, the second incident surface, and the third incident surface. The light of the second wavelength and the light of the third wavelength merge A junction, and an exit surface disposed downstream of the junction in the transmission direction and emitting the light of the first wavelength, the light of the second wavelength, and the light of the third wavelength; The first area S1 of the incident surface, the second area S2 of the second incident surface, and the third area S3 of the third incident surface are substantially the same, and are incident on the first incident surface, and the emission A first attenuation ratio R1 of the light of the first wavelength emitted from the surface is incident on the second incident surface and compared to a second attenuation ratio R2 of the light of the second wavelength emitted from the emission surface The optical waveguide includes an optical waveguide that is larger than the third attenuation ratio R3 of the light of the third wavelength that is incident on the third incident surface and that is emitted from the output surface.
 この光導波路では、第1波長の光、第2波長の光および第3波長の光のそれぞれを、第1入射面、第2入射面および第3入射面に入射し、合流部で、3つの光を合流し、出射面から3つの光を出射する。 In this optical waveguide, each of the light of the first wavelength, the light of the second wavelength, and the light of the third wavelength is incident on the first incident surface, the second incident surface, and the third incident surface, and Combine the light and emit three lights from the exit surface.
 また、第1入射面の第1面積S1と、第2入射面の第2面積S2と、第3入射面の第3面積S3とが、略同一であるので、発光装置と、3つの入射面とを容易に位置合わせでき、両者を簡単かつ精度よく光学的に接続することができる。 In addition, since the first area S1 of the first incident surface, the second area S2 of the second incident surface, and the third area S3 of the third incident surface are substantially the same, the light emitting device and the three incident surfaces are provided. Can be easily aligned, and both can be optically connected easily and accurately.
 さらに、第1波長の光の第1減衰割合R1が、第1波長より短い第2波長の光の第2減衰割合R2に比べて大きく、第2減衰割合R2が、第2波長より短い第3波長の光の第3減衰割合R3に比べて、大きいので、出射面から出射する3つの光の強度を均一にすることができる。 Furthermore, a third attenuation ratio R1 of the light of the first wavelength is larger than a second attenuation ratio R2 of the light of the second wavelength shorter than the first wavelength, and a second attenuation ratio R2 is shorter than the second wavelength. As compared with the third attenuation ratio R3 of the light of the wavelength, the intensities of the three lights emitted from the emission surface can be made uniform.
 その結果、この光導波路では、3つの光が簡単かつ精度よく入射し、それらを合流させながら、光学特性に優れた合流光を出射することができる。 As a result, in this optical waveguide, it is possible to allow three lights to enter easily and accurately, and to combine them while emitting combined light having excellent optical characteristics.
 本発明(2)は、前記第1波長の光が、赤色光を含み、前記第2波長の光が、緑色光を含み、前記第3波長の光が、青色光を含む、(1)に記載の光導波路を含む。 In the invention (2), the light of the first wavelength includes red light, the light of the second wavelength includes green light, and the light of the third wavelength includes blue light. And the optical waveguide described above.
 この光導波路では、第1波長の光が、赤色光を含み、第2波長の光が、緑色光を含み、第3波長の光が、青色光を含むので、出射面から、赤色光、緑色光および赤色光を均一な強度で出射することができる。そのため、所望の色相を有する合流光を出射することができる。 In this optical waveguide, the light of the first wavelength contains red light, the light of the second wavelength contains green light, and the light of the third wavelength contains blue light. Light and red light can be emitted with uniform intensity. Therefore, combined light having a desired hue can be emitted.
 本発明(3)は、前記合流部は、前記第1波長の光、前記第2波長の光および前記第3波長の光のうち、いずれか2つが合流する第1合流部分と、前記第1合流部分の前記伝送方向下流側に配置され、残部の光と、前記第1合流部分で合流した光とが合流する第2合流部分とを備える、(1)または(2)に記載の光導波路を含む。 In the invention (3), the merging portion is a first merging portion in which any two of the light of the first wavelength, the light of the second wavelength and the light of the third wavelength are merged, and the first merging portion The optical waveguide according to (1) or (2), further including: a second merging portion disposed downstream of the merging portion in the transmission direction and in which the remaining light and the light merged in the first merging portion merge including.
 この光導波路では、第1合流部分で、2つの光を合流し、第2合流部分で、残部の光と、第1合流部分で合流した光とを合流するので、合流回数を増やして光の均一化を図ることができる。 In this optical waveguide, two lights are merged at the first merging section, and the remaining light and the light merged at the first merging section are merged at the second merging section. Uniformization can be achieved.
 本発明(4)は、前記合流部は、前記第1波長の光、前記第2波長の光および前記第3波長の光の3つが合流する全合流部を備える、(1)または(2)に記載の光導波路を含む。 The present invention (4) is characterized in that the merging portion includes a full merging portion where three of the light of the first wavelength, the light of the second wavelength and the light of the third wavelength merge. The optical waveguide as described in.
 この光導波路では、全合流部で、3つの光を合流するので、合流部での損失を減らしたい場合には有用となる。 In this optical waveguide, three light beams are merged at all junctions, which is useful when it is desired to reduce the loss at the junctions.
 本発明(5)は、前記第1入射面から前記出射面までの第1光路長L1が、前記第2入射面から前記出射面までの第2光路長L2に対して、長く、前記第2光路長L2が、前記第3入射面から前記出射面までの第3光路長L3に対して、長いことを、(1)~(4)のいずれか一項に記載の光導波路を含む。 The present invention (5) is characterized in that the first optical path length L1 from the first incident surface to the emission surface is longer than the second optical path length L2 from the second incident surface to the emission surface. The optical waveguide according to any one of (1) to (4) is included that the optical path length L2 is longer than the third optical path length L3 from the third incident surface to the exit surface.
 この光導波路では、第1光路長L1が第2光路長L2に対して長いので、第1波長の光の第1減衰割合R1を、第1波長より短い第2波長の光の第2減衰割合R2に比べて、確実に大きく設定することができる。 In this optical waveguide, since the first optical path length L1 is longer than the second optical path length L2, the first attenuation ratio R1 of the light of the first wavelength is the second attenuation ratio of the light of the second wavelength shorter than the first wavelength. It can be set larger reliably than R2.
 また、第2光路長L2が第3光路長L3に対して長いので、第2減衰割合R2を、第2波長より短い第3波長の光の第3減衰割合R3に比べて、確実に大きく設定することができる。 In addition, since the second optical path length L2 is longer than the third optical path length L3, the second attenuation ratio R2 is surely set larger than the third attenuation ratio R3 of the light of the third wavelength shorter than the second wavelength. can do.
 その結果、第1光路長L1、第2光路長L2、第3光路長L3を、その順で短くするという簡易な構成で、出射面から出射する3つの光の強度を確実に均一にすることができる。
本発明(6)は、前記第1波長の光が前記第1入射面から前記出射面まで伝送されるときの第1漏洩割合LR1は、前記第2波長の光が光前記第2入射面から前記出射面まで伝送されるときの第2漏洩割合LR2に対して、大きく、前記第2漏洩割合LR2は、前記第3波長の光が光前記第3入射面から前記出射面まで伝送されるときの第3漏洩割合LR3に対して、大きい、(1)~(5)のいずれか一項に記載の光導波路を含む。
As a result, with a simple configuration in which the first optical path length L1, the second optical path length L2, and the third optical path length L3 are shortened in that order, the intensities of the three lights emitted from the emission surface can be made uniform uniformly. Can.
In the invention (6), the first leak ratio LR1 when the light of the first wavelength is transmitted from the first incident surface to the exit surface is the light of the second wavelength which is transmitted from the second incident surface The second leak ratio LR2 is larger than the second leak ratio LR2 when the light is transmitted to the light exit surface when the light of the third wavelength is transmitted from the third light incident surface to the light exit surface The optical waveguide according to any one of (1) to (5), which is larger than the third leakage ratio LR3 of
 この光導波路では、第1漏洩割合LR1が第2漏洩割合LR2に対して大きいので、第1波長の光の第1減衰割合R1を、第1波長より短い第2波長の光の第2減衰割合R2に比べて、確実に大きく設定することができる。 In this optical waveguide, since the first leak ratio LR1 is larger than the second leak ratio LR2, the first attenuation ratio R1 of the light of the first wavelength is the second attenuation ratio of the light of the second wavelength shorter than the first wavelength. It can be set larger reliably than R2.
 また、第2漏洩割合LR2が第3漏洩割合LR3に対して大きいので、第2減衰割合R2を、第2波長より短い第3波長の光の第3減衰割合R3に比べて、確実に大きく設定することができる。 Further, since the second leak ratio LR2 is larger than the third leak ratio LR3, the second attenuation ratio R2 is surely set larger than the third attenuation ratio R3 of the light of the third wavelength shorter than the second wavelength. can do.
 その結果、第1漏洩割合LR1、第2漏洩割合LR2、第3漏洩割合LR3を、その順で小さくする構成で、出射面から出射する3つの光の強度を確実に均一にすることができる。 As a result, with the configuration in which the first leak ratio LR1, the second leak ratio LR2, and the third leak ratio LR3 are reduced in that order, the intensities of the three lights emitted from the emission surface can be made uniform uniformly.
 本発明(7)は、前記コアは、前記合流部の伝送方向上流側に配置され、前記第1入射面に入射された前記第1波長の光を伝送する第1コア部と、前記合流部の伝送方向上流側に配置され、前記第2入射面に入射された前記第2波長の光を伝送する第2コア部と、前記合流部の伝送方向上流側に配置され、前記第3入射面に入射された前記第3波長の光を伝送する第3コア部とを備え、前記第1コア部および前記第2コア部は、ともに、前記伝送方向下流側に向かうに従って、開口断面積が小さくなる形状を有し、前記第3コア部は、前記伝送方向下流側に向かうに従って、開口断面積が小さくなる形状または開口断面積が同一の形状を有し、前記第1コア部において前記合流部に臨む前記伝送方向下流側端縁における第1開口断面積OS1が、前記第2コア部において前記合流部に臨む前記伝送方向下流側端縁における第2開口断面積OS2に比べて、小さく、前記第2開口断面積OS2が、前記第3コア部において前記合流部に臨む前記伝送方向下流側端縁における第3開口断面積OS3に比べて、小さい、(1)~(6)のいずれか一項に記載の光導波路を含む。 The present invention (7) is characterized in that the core is disposed on the upstream side in the transmission direction of the merging portion, and the first core portion for transmitting the light of the first wavelength incident on the first incident surface; A second core portion for transmitting the light of the second wavelength incident on the second incident surface, and a second core portion for transmitting the light of the second wavelength; And the third core portion transmitting the light of the third wavelength incident on the first and second core portions, the opening cross-sectional area of the first core portion and the second core portion being smaller toward the downstream side in the transmission direction. The third core portion has a shape in which the cross-sectional area of the opening decreases as the downstream side in the transmission direction decreases, or the cross-sectional area of the third core portion has the same shape. First open cross-sectional area OS at the downstream end of the transmission direction facing the Is smaller than a second opening cross-sectional area OS2 at the downstream end edge of the transmission direction facing the junction in the second core portion, and the second opening cross-sectional area OS2 is merged at the third core portion The optical waveguide according to any one of (1) to (6), which is smaller than the third opening cross-sectional area OS3 at the downstream end in the transmission direction facing the part.
 この光導波路では、第1開口断面積OS1が第2開口断面積OS2に比べて、小さいので、第1漏洩割合LR1を第2漏洩割合LR2に対して大きく設定することできる。 In this optical waveguide, since the first opening cross-sectional area OS1 is smaller than the second opening cross-sectional area OS2, the first leak ratio LR1 can be set larger than the second leak ratio LR2.
 また、第2開口断面積OS2が第3開口断面積OS3に比べて小さいので、第2漏洩割合LR2を第3漏洩割合LR3に対して大きく設定することできる。 Further, since the second opening cross-sectional area OS2 is smaller than the third opening cross-sectional area OS3, the second leak ratio LR2 can be set larger than the third leak ratio LR3.
 その結果、第1開口断面積OS1、第2開口断面積OS2、第3開口断面積OS3をその順で小さくするという簡易な構成で、第1漏洩割合LR1、第2漏洩割合LR2、第3漏洩割合LR3を、その順で小さくすることができる。 As a result, the first leakage ratio LR1, the second leakage ratio LR2, and the third leakage are obtained with a simple configuration in which the first opening sectional area OS1, the second opening sectional area OS2, and the third opening sectional area OS3 are reduced in that order. The ratio LR3 can be reduced in that order.
 本発明(8)は、前記第1入射面および前記第2入射面は、ともに、光を前記第1入射面および前記第2入射面に入射する方向に投影したときに、前記出射面からずれて配置され、前記第3入射面は、光を前記第3入射面に入射する方向に投影したときに、前記出射面と同一位置、または、ずれて配置されており、前記コアにおける前記第1入射面から前記出射面までの第1光路は、第1曲り部を有し、前記コアにおける前記第2入射面から前記出射面までの第2光路は、第2曲り部を有し、前記コアにおける前記第3入射面から前記出射面までの第3光路は、直線部または第3曲り部を有し、前記第1曲り部は、前記第2曲り部に対して、大きく曲がり、前記第2曲り部は、前記第3曲り部に対して、大きく曲がる、(1)~(6)のいずれか一項に記載の光導波路を含む。 In the invention (8), both of the first incident surface and the second incident surface are deviated from the exit surface when light is projected in a direction in which light is incident on the first incident surface and the second incident surface. And the third incident surface is disposed at the same position or at the same position as the exit surface when light is projected in a direction in which the light is incident on the third incident surface. The first light path from the entrance surface to the exit surface has a first bend, and the second light path from the second entrance surface to the exit surface in the core has a second bend, and the core The third optical path from the third incident surface to the exit surface in the second embodiment has a straight portion or a third curved portion, and the first curved portion is greatly bent with respect to the second curved portion, The bending portion is largely bent with respect to the third bending portion, in any one of (1) to (6) Re comprises or optical waveguide according to an item.
 この光導波路では、第1曲り部が第2曲り部に対して、大きく曲がるので、第1漏洩割合LR1を第2漏洩割合LR2に対して大きく設定することできる。 In this optical waveguide, since the first bent portion is greatly bent with respect to the second bent portion, the first leak ratio LR1 can be set larger than the second leak ratio LR2.
 また、第2曲り部が第3曲り部に対して、大きく曲がるので、第2漏洩割合LR2を第3漏洩割合LR3に対して大きく設定することできる。 In addition, since the second curved portion is greatly bent with respect to the third curved portion, the second leakage ratio LR2 can be set larger than the third leakage ratio LR3.
 その結果、第1曲り部、第2曲り部をその順で大きくするという簡易な構成で、または、第1曲り部、第2曲り部、第3曲り部をその順で大きくするという簡易な構成で、第1漏洩割合LR1、第2漏洩割合LR2、第3漏洩割合LR3を、その順で小さくすることができる。 As a result, a simple configuration in which the first bending portion and the second bending portion are enlarged in that order, or a simple configuration in which the first bending portion, the second bending portion and the third bending portion are enlarged in that order Thus, the first leak ratio LR1, the second leak ratio LR2, and the third leak ratio LR3 can be reduced in that order.
 本発明(9)は、前記コアは、前記第1波長の光を部分的に吸収する第1光吸収剤と、前記第2波長の光を部分的に吸収する第2光吸収剤とを、前記第1減衰割合R1が前記第2減衰割合R2に比べて大きく、かつ、前記第2減衰割合R2が前記第3減衰割合R3に比べて大きくなるように、含有する、(1)~(8)のいずれか一項に記載の光導波路を含む。 The present invention (9) is characterized in that the core comprises: a first light absorbing agent partially absorbing the light of the first wavelength; and a second light absorbing agent partially absorbing the light of the second wavelength, The first attenuation ratio R1 is larger than the second attenuation ratio R2, and the second attenuation ratio R2 is larger than the third attenuation ratio R3. The optical waveguide according to any one of the above.
 コアは、第1光吸収剤と、第2光吸収剤とを、第1減衰割合R1が第2減衰割合R2に比べて大きく、かつ、第2減衰割合R2が第3減衰割合R3に比べて大きくなるように、含有する。そのため、出射面から出射する3つの光の強度を均一にすることができる。 The core has a first light absorbing agent and a second light absorbing agent, and the first attenuation ratio R1 is larger than the second attenuation ratio R2, and the second attenuation ratio R2 is higher than the third attenuation ratio R3. Contain to be large. Therefore, the intensities of the three lights emitted from the emission surface can be made uniform.
 本発明(10)は、前記第1波長の光を前記第1入射面に入射させ、前記第1波長の光と同じ強度を有する前記第2波長の光を前記第2入射面に入射させ、前記第2波長の光と同じ強度を有する前記第3波長の光を前記第3入射面に入射させたときに、前記出射面から出射される前記第1波長の光の第1強度I1の、前記第2波長の光の第2強度I2に対する比(I1/I2)が、0.6以上、1.4以下であり、前記第1強度I1の、前記第3波長の光の第3強度I3に対する比(I1/I3)が、0.6以上、1.4以下である、(1)~(9)のいずれか一項に記載の光導波路を含む。 The present invention (10) allows the light of the first wavelength to be incident on the first incident surface, and causes the light of the second wavelength having the same intensity as the light of the first wavelength to be incident on the second incident surface. When the light of the third wavelength having the same intensity as the light of the second wavelength is made incident on the third incident surface, the first intensity I1 of the light of the first wavelength emitted from the emission surface, A ratio (I1 / I2) of the light of the second wavelength to the second intensity I2 is 0.6 or more and 1.4 or less, and a third intensity I3 of the light of the third wavelength of the first intensity I1. The optical waveguide according to any one of (1) to (9), which has a ratio (I1 / I3) to is not less than 0.6 and not more than 1.4.
 この光導波路では、第1波長の光の第1強度I1と、第2波長の光の第2強度I2の比(I1/I2)が、0.6以上、1.4以下であり、第1強度I1と、第3波長の光の第3強度I3の比(I1/I3)が、0.6以上、1.4以下であるので、3つの光を均一な強度で出射することができる。 In this optical waveguide, the ratio (I1 / I2) of the first intensity I1 of the light of the first wavelength to the second intensity I2 of the light of the second wavelength is 0.6 or more and 1.4 or less. Since the ratio (I1 / I3) of the intensity I1 to the third intensity I3 of the light of the third wavelength is 0.6 or more and 1.4 or less, three lights can be emitted with uniform intensity.
 本発明の光導波路は、3つの光が簡単かつ精度よく入射し、それらを合流させながら、光学特性に優れた合流光を出射することができる。 According to the optical waveguide of the present invention, three lights can be incident easily and accurately, and while combining them, it is possible to emit combined light having excellent optical characteristics.
図1は、本発明の光導波路の第1実施形態の平面図を示す。FIG. 1 shows a plan view of a first embodiment of the optical waveguide of the present invention. 図2Aおよび図2Bは、図1に示す光導波路の正面図および背面図を示し、図2Aが、光の伝送方向上流側から見た正面図、図2Bが、光の伝送方向下流側から見た背面図を示す。2A and 2B show a front view and a rear view of the optical waveguide shown in FIG. 1, and FIG. 2A is a front view seen from the upstream side in the light transmission direction, and FIG. 2B is seen from the downstream side in the light transmission direction Shows a rear view. 図3A~図3Cは、図1に示す光導波路における各光路をハイライトした平面図であり、図3Aが、第1光路をハイライトした平面図、図3Bが、第2光路をハイライトした平面図、図3Cが、第3光路をハイライトした平面図を示す。3A to 3C are plan views highlighting each optical path in the optical waveguide shown in FIG. 1, where FIG. 3A is a plan view highlighting the first optical path, and FIG. 3B highlights the second optical path A plan view, FIG. 3C shows a plan view highlighting the third optical path. 図4は、図1に示す光導波路の変形例の平面図を示す。FIG. 4 shows a plan view of a modification of the optical waveguide shown in FIG. 図5は、図1に示す光導波路の変形例の平面図を示す。FIG. 5 shows a plan view of a modification of the optical waveguide shown in FIG. 図6は、図1に示す光導波路の変形例の平面図を示す。FIG. 6 shows a plan view of a modification of the optical waveguide shown in FIG. 図7は、本発明の光導波路の第2実施形態の平面図を示す。FIG. 7 shows a plan view of a second embodiment of the optical waveguide of the present invention. 図8は、本発明の光導波路の第3実施形態の平面図を示す。FIG. 8 shows a plan view of a third embodiment of the optical waveguide of the present invention. 図9は、図8に示す光導波路の変形例の平面を示す。FIG. 9 shows a plane of a modification of the optical waveguide shown in FIG. 図10は、本発明の基本構成をなすコアの斜視図を示す。FIG. 10 shows a perspective view of a core forming the basic configuration of the present invention.
 <第1実施形態>
 本発明の光導波路の第1実施形態を、図1~図3Cを参照して説明する。なお、図1および図3A、図3B、図3Cにおいて、オーバークラッド4(後述)は、コア2(後述)の配置を明確に示すために、省略している。
First Embodiment
A first embodiment of the optical waveguide of the present invention will be described with reference to FIGS. 1 to 3C. In FIGS. 1 and 3A, 3B, and 3C, the over clad 4 (described later) is omitted to clearly show the arrangement of the core 2 (described later).
 この光導波路10は、異なる波長を有する3つ(3種類)の光が入射され、それらを合流させて、その後、合流した1つの光を出射する光結合デバイスである。 The optical waveguide 10 is an optical coupling device that receives three (three) types of light having different wavelengths, merges them, and then emits one merged light.
 図1および図2A、図2Bに示すように、この光導波路10は、平面視略矩形状を有し、光の伝送方向(図1における紙面左右方向)(以下、単に伝送方向という場合がある。
)に延びる略シート形状(あるいは略板形状)を有する。具体的には、光導波路10は、伝送方向に互いに対向する上流側端面5および下流側端面6と、伝送方向および厚み方向に直交する幅方向(以下、単に幅方向という。)において互いに対向し、上流側端面5および下流側端面6の幅方向両端縁を連結する幅方向一方側端面7および幅方向他方側端面8とを有する。
As shown in FIGS. 1 and 2A and 2B, the optical waveguide 10 has a substantially rectangular shape in a plan view, and may be referred to simply as a transmission direction (hereinafter referred to simply as the transmission direction). .
In the form of a sheet (or in the form of a substantially plate). Specifically, the optical waveguides 10 face each other in the width direction (hereinafter simply referred to as the width direction) orthogonal to the transmission direction and the thickness direction with the upstream end face 5 and the downstream end face 6 facing each other in the transmission direction. A width direction one side end surface 7 and a width direction other side end surface 8 connecting the width direction both end edges of the upstream side end surface 5 and the downstream side end surface 6 are provided.
 上流側端面5は、幅方向に延びる側面である。 The upstream end surface 5 is a side surface extending in the width direction.
 下流側端面6は、幅方向に沿う側面である。下流側端面6は、上流側端面5に平行する。 The downstream end surface 6 is a side surface along the width direction. The downstream end surface 6 is parallel to the upstream end surface 5.
 幅方向一方側端面7および幅方向他方側端面8は、幅方向に対向する側面である。幅方向一方側端面7および幅方向他方側端面8は、伝送方向に沿い、互いに平行する。 The width direction one side end surface 7 and the width direction other side end surface 8 are side surfaces opposed in the width direction. The width direction one side end surface 7 and the width direction other side end surface 8 are parallel to each other along the transmission direction.
 なお、光導波路10は、さらに、平坦な上面55および下面56を有する。 The optical waveguide 10 further has a flat upper surface 55 and a lower surface 56.
 また、この光導波路10は、ストリップ型光導波路であって、クラッド1と、クラッド1に埋設されるコア2とを備える。 The optical waveguide 10 is a strip type optical waveguide, and includes a clad 1 and a core 2 embedded in the clad 1.
 クラッド1は、厚み方向に投影したときに、光導波路10と同一形状を有する。クラッド1は、平面視略矩形状の略シート形状を有する。具体的には、クラッド1は、アンダークラッド3と、アンダークラッド3の上に配置されるオーバークラッド4とを備える。 The cladding 1 has the same shape as the optical waveguide 10 when projected in the thickness direction. The clad 1 has a substantially sheet shape having a substantially rectangular shape in a plan view. Specifically, the cladding 1 includes an undercladding 3 and an overcladding 4 disposed on the undercladding 3.
 アンダークラッド3は、クラッド1における下層であり、光導波路10の下面56を形成する。 The under cladding 3 is a lower layer in the cladding 1 and forms the lower surface 56 of the optical waveguide 10.
 オーバークラッド4は、クラッド1における上層であり、光導波路10の上面55を形成する。オーバークラッド4の下面は、次に説明するコア2の上面および側面に接触している。 The over clad 4 is an upper layer in the clad 1 and forms the upper surface 55 of the optical waveguide 10. The lower surface of the overcladding 4 is in contact with the upper surface and the side surface of the core 2 described below.
 クラッド1の材料としては、例えば、エポキシ樹脂などの透明性樹脂が挙げられる。クラッド1の厚みは、光導波路10の厚みと同一であり、アンダークラッド3およびオーバークラッド4の総厚みである。クラッド1の厚みは、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、1000μm以下、好ましくは、200μm以下である。 Examples of the material of the clad 1 include transparent resins such as epoxy resins. The thickness of the cladding 1 is the same as the thickness of the optical waveguide 10 and is the total thickness of the undercladding 3 and the overcladding 4. The thickness of the cladding 1 is, for example, 10 μm or more, preferably 50 μm or more, and for example, 1000 μm or less, preferably 200 μm or less.
 コア2は、クラッド1に埋設されている。具体的には、コア2は、アンダークラッド3の上面に配置されるとともに、オーバークラッド4に被覆されている。 The core 2 is embedded in the cladding 1. Specifically, the core 2 is disposed on the upper surface of the undercladding 3 and covered with the overcladding 4.
 コア2は、3つの光路(後述する第1光路21(図3Aのハイライト部分参照)、第2光路22(図3Bのハイライト部分参照)、および、第3光路23(図3Cのハイライト部分参照))と、3つの光路が合流する合流部16と、その伝送方向下流側に配置される合流路25とを一体的に備える。 The core 2 has three light paths (a first light path 21 (see highlight in FIG. 3A), a second light path 22 (see highlight in FIG. 3B), and a third light path 23 (see FIG. 3C). A part), a merging part 16 where three optical paths merge, and a combined channel 25 arranged on the downstream side in the transmission direction thereof.
 なお、コア2の厚みT(上下方向長さ)は、いずれの部分においても、同一である。また、コア2の厚みTは、例えば、5μm以上、好ましくは、10μm以上であり、また、例えば、500μm以下、好ましくは、100μm以下である。 The thickness T (vertical length) of the core 2 is the same in any part. The thickness T of the core 2 is, for example, 5 μm or more, preferably 10 μm or more, and for example, 500 μm or less, preferably 100 μm or less.
 図3A~図3Cに示すように、3つの光路は、異なる波長を有する3つの光を伝送する光路であり、第1光路21、第2光路22および第3光路23である。第1光路21は、第1光を伝送し、第2光路22は、第2光を伝送し、第3光路23は、第3光を伝送する。 As shown in FIGS. 3A to 3C, the three optical paths are optical paths transmitting three lights having different wavelengths, and are a first optical path 21, a second optical path 22, and a third optical path 23. The first light path 21 transmits the first light, the second light path 22 transmits the second light, and the third light path 23 transmits the third light.
 第1光は、比較的長い第1波長の光であって、例えば、波長580nm以上、好ましくは、波長600nm以上、また、波長700nm以下の光を含み、具体的には、赤色光を含む。第2光は、第1波長より短い第2波長の光であって、例えば、580nm未満、好ましくは、550nm以下であり、また、例えば、485nm以上、好ましくは、500nm以上の光を含み、具体的には、緑色光を含む。第3光は、第2波長より短い第3波長の光であって、例えば、485nm未満、好ましくは、470nm以下であり、また、例えば、400nm以上、好ましくは、420nm以上の光を含み、具体的には、青色光を含む。 The first light is light having a relatively long first wavelength, and includes, for example, light having a wavelength of 580 nm or more, preferably 600 nm or more and 700 nm or less, and specifically includes red light. The second light is light of a second wavelength shorter than the first wavelength, for example, less than 580 nm, preferably less than 550 nm, and includes, for example, light of 485 nm or more, preferably 500 nm or more, In fact, it contains green light. The third light is light of a third wavelength shorter than the second wavelength, and includes, for example, light less than 485 nm, preferably 470 nm or less, and for example, 400 nm or more, preferably 420 nm or more, In fact, it contains blue light.
 第1光路21の伝送方向上流側端面は、第1入射面11であって、テーパ面9から露出している。具体的には、第1入射面11は、テーパ面9と面一である。第1入射面11は、第1光が第1光路21に入射する入射面である。 The end face on the upstream side in the transmission direction of the first optical path 21 is the first incident surface 11 and is exposed from the tapered surface 9. Specifically, the first incident surface 11 is flush with the tapered surface 9. The first incident surface 11 is an incident surface on which the first light enters the first light path 21.
 図2Aに示すように、第1入射面11は、伝送方向上流側から見たときに(以下、正面視という。)、略矩形状を有する。また、第1入射面11の第1面積S1は、コア2の厚みTに、テーパ面9に沿う幅W1を乗じた値である。 As shown in FIG. 2A, the first incident surface 11 has a substantially rectangular shape when viewed from the upstream side in the transmission direction (hereinafter referred to as a front view). Further, the first area S1 of the first incident surface 11 is a value obtained by multiplying the thickness T of the core 2 by the width W1 along the tapered surface 9.
 図3Aに示すように、第1光路21は、第1入射面11を含む第1コア部26を備える。第1コア部26は、第1光路21における伝送方向上流側端部に位置する。第1コア部26は、第1光路21において第1入射面11に入射された第1光のみを伝送する光路である。第1コア部26は、第1入射面11から伝送方向下流側に向かって延びる略直線形状を有する。なお、伝送方向は、後述する全合流路30における光の伝送方向を基準とする。詳しくは、第1コア部26は、伝送方向斜め幅方向一方側に向かって延びており、具体的には、伝送方向下流側に進むに従って幅方向一方側端面7に近づくように、伝送方向に対して傾斜している。なお、第1コア部26の伝送方向下流側端部には、次に説明する合流部16が配置され、第1光路21において、合流部16の伝送方向下流側には、後述する合流路25(後述)が配置される。 As shown in FIG. 3A, the first light path 21 includes a first core portion 26 including the first incident surface 11. The first core portion 26 is located at the upstream end of the first optical path 21 in the transmission direction. The first core portion 26 is an optical path for transmitting only the first light incident on the first incident surface 11 in the first optical path 21. The first core portion 26 has a substantially linear shape extending from the first incident surface 11 toward the downstream side in the transmission direction. Note that the transmission direction is based on the transmission direction of light in the total merging channel 30 described later. Specifically, the first core portion 26 extends toward one side in the transmission direction diagonal width direction, and more specifically, in the transmission direction so as to approach the width direction one side end surface 7 as proceeding to the transmission direction downstream side It is inclined against. A merging portion 16 to be described next is disposed at the downstream end of the first core portion 26 in the transmission direction, and in the first optical path 21, a combined channel 25 described later on the downstream side in the transmission direction of the merging portion 16. (Described later) is arranged.
 図3Bに示すように、第2光路22の伝送方向上流側端面は、第2入射面12であって、上流側端面5から露出している。第2入射面12は、上流側端面5と面一である。第2入射面12は、第1入射面11の幅方向一方側に間隔を隔てて配置されている。第2入射面12は、第2光が第2光路22に入射する入射面である。 As shown in FIG. 3B, the transmission direction upstream end surface of the second optical path 22 is the second incident surface 12 and is exposed from the upstream end surface 5. The second incident surface 12 is flush with the upstream end surface 5. The second incident surface 12 is disposed on one side in the width direction of the first incident surface 11 at an interval. The second incident surface 12 is an incident surface on which the second light enters the second optical path 22.
 図2Aに示すように、第2入射面12は、第1入射面11と同一形状を有する。そのため、第2入射面12の第2面積S2は、第1面積S1と同一であって、具体的には、コア2の厚みTに、上流側端面5に沿う幅W2を乗じた値である。詳しくは、コア2の厚みTが、第1光路21および第2光路22において同一であることから、第2入射面12の幅W2と、第1入射面11の幅W1とは、同一である。 As shown in FIG. 2A, the second incident surface 12 has the same shape as the first incident surface 11. Therefore, the second area S2 of the second incident surface 12 is the same as the first area S1, and specifically, it is a value obtained by multiplying the thickness T of the core 2 by the width W2 along the upstream end surface 5 . Specifically, since the thickness T of the core 2 is the same in the first optical path 21 and the second optical path 22, the width W2 of the second incident surface 12 and the width W1 of the first incident surface 11 are the same. .
 また、図3Bに示すように、第2光路22は、第2入射面12を含む第2コア部27を備える。第2コア部27は、第2光路22における伝送方向上流側端部に位置する。第2コア部27は、第2光路22において第2入射面12に入射された第2光のみを伝送する光路である。第2コア部27は、第2入射面12から伝送方向下流側に向かって真っ直ぐ延びる略直線形状を有する。なお、第2コア部27の伝送方向下流側端部には、次に説明する合流部16が配置され、第2光路22において、合流部16の伝送方向下流側には、第1光路21に共通する合流路25(後述)が配置される。 Further, as shown in FIG. 3B, the second optical path 22 includes a second core portion 27 including the second incident surface 12. The second core portion 27 is located at the upstream end of the second optical path 22 in the transmission direction. The second core portion 27 is an optical path for transmitting only the second light incident on the second incident surface 12 in the second optical path 22. The second core portion 27 has a substantially linear shape extending straight from the second incident surface 12 toward the downstream side in the transmission direction. A merging portion 16 to be described next is disposed at the downstream end of the second core portion 27 in the transmission direction, and in the second optical path 22 downstream of the merging portion 16 in the transmission direction, the first optical path 21 is A common combined channel 25 (described later) is disposed.
 図3Cに示すように、第3光路23の伝送方向上流側端面は、第3入射面13であって、上流側端面5から露出している。具体的には、第3入射面13は、上流側端面5と面一である。第3入射面13は、第2入射面12の幅方向一方側に間隔を隔てて配置されている。つまり、第3入射面13は、第1入射面11および第2入射面12と幅方向一方側に間隔が隔てられている。また、第3入射面13は、第3光が第3光路23に入射する入射面である。 As shown in FIG. 3C, the transmission direction upstream end surface of the third optical path 23 is the third incident surface 13 and is exposed from the upstream end surface 5. Specifically, the third incident surface 13 is flush with the upstream end surface 5. The third incident surface 13 is disposed on one side in the width direction of the second incident surface 12 at an interval. That is, the third incident surface 13 is spaced apart from the first incident surface 11 and the second incident surface 12 on one side in the width direction. The third incident surface 13 is an incident surface on which the third light enters the third optical path 23.
 図2Aに示すように、第3入射面13は、第2入射面12と同一形状を有する。そのため、第3入射面13の第3面積S3は、第2面積S2と同一であって、具体的には、コア2の厚みTに、上流側端面5に沿う幅W3を乗じた値である。詳しくは、コア2の厚みTが、第2光路22および第3光路23において同一であることから、第3入射面13の幅W3と、第2入射面12の幅W2とは、同一である。つまり、第1入射面11の第1面積S1と、第2入射面12のS2と、第3入射面13のS3とは、同一である。 As shown in FIG. 2A, the third incident surface 13 has the same shape as the second incident surface 12. Therefore, the third area S3 of the third incident surface 13 is the same as the second area S2, and specifically, it is a value obtained by multiplying the thickness T of the core 2 by the width W3 along the upstream end surface 5 . Specifically, since the thickness T of the core 2 is the same in the second optical path 22 and the third optical path 23, the width W3 of the third incident surface 13 and the width W2 of the second incident surface 12 are the same. . That is, the first area S1 of the first incident surface 11, S2 of the second incident surface 12, and S3 of the third incident surface 13 are the same.
 図3Cに示すように、第3光路23は、第3入射面13を含む第3コア部28を備える。第3コア部28は、第3光路23における伝送方向上流側端部に位置する。第3コア部28は、第3光路23において第3入射面13に入射された第3光のみを伝送する光路である。第3コア部28は、第3入射面13から伝送方向下流側に向かって真っ直ぐ延びる略直線形状を有する。なお、第3コア部28の伝送方向下流側端部には、次に説明する合流部16が配置され、第3光路23において、合流部16の伝送方向下流側には、第1光路21および第2光路22に共通する合流路25(第2合流部分18)が配置される。 As shown in FIG. 3C, the third light path 23 includes the third core portion 28 including the third incident surface 13. The third core unit 28 is located at the upstream end of the third optical path 23 in the transmission direction. The third core portion 28 is an optical path for transmitting only the third light incident on the third incident surface 13 in the third optical path 23. The third core portion 28 has a substantially linear shape extending straight from the third incident surface 13 toward the downstream side in the transmission direction. A merging portion 16 to be described next is disposed at the downstream end of the third core portion 28 in the transmission direction, and in the third optical path 23, on the downstream side of the merging portion 16 in the transmission direction, the first optical path 21 and A combined flow passage 25 (second combined portion 18) common to the second optical path 22 is disposed.
 図1および図3A~図3Cに示すように、合流部16は、第1合流部分17と、第2合流部分18とを独立して備える。 As shown in FIG. 1 and FIGS. 3A to 3C, the merging portion 16 independently includes a first merging portion 17 and a second merging portion 18.
 第1合流部分17は、第1光路21および第2光路22が初めて合一になる部分であって、第1コア部26の伝送方向下流側端部および第2コア部27の伝送方向下流側端部が集合する部分である。換言すれば、第1合流部分17は、第1コア部26および第2コア部27の伝送方向下流側端部に配置されている。つまり、第1合流部分17は、第1入射面11および第2入射面12の伝送方向下流側に配置されている。第1合流部分17では、第1光および第2光が合流する。 The first joining portion 17 is a portion where the first optical path 21 and the second optical path 22 are merged for the first time, and the downstream end of the first core portion 26 in the transmission direction and the downstream side of the second core portion 27 in the transmission direction It is a part where the ends gather. In other words, the first merging portion 17 is disposed at the downstream end of the first core portion 26 and the second core portion 27 in the transmission direction. That is, the first merging portion 17 is disposed downstream of the first incident surface 11 and the second incident surface 12 in the transmission direction. In the first merging portion 17, the first light and the second light merge.
 第2合流部分18は、第1合流部分17の伝送方向下流側に間隔を隔てて配置されている。具体的には、第2合流部分18は、第1光路21および第2光路22が合流した伝送方向下流側における中間合流路29を介して、第1合流部分17の伝送方向下流側に配置されている。第2合流部分18は、第1光路21、第2光路22および第3光路23が初めて合一になる部分であって、中間合流路29(後述)の伝送方向下流側端部および第3コア部28の伝送方向下流側端部が集合する部分である。換言すれば、第2合流部分18は、中間合流路29および第3コア部28の伝送方向下流側端部に配置されている。つまり、第2合流部分18は、第1入射面11、第2入射面12および第3入射面13の伝送方向下流側に配置されている。第2合流部分18では、第1光、第2光および第3光が初めて合流する。 The second merging portion 18 is disposed at an interval downstream of the first merging portion 17 in the transmission direction. Specifically, the second merging portion 18 is disposed downstream of the first merging portion 17 in the transmission direction via the intermediate combined channel 29 on the downstream side of the transmission direction where the first optical path 21 and the second optical path 22 merge. ing. The second merging portion 18 is a portion where the first optical path 21, the second optical path 22 and the third optical path 23 are merged for the first time, and the downstream end of the intermediate combined channel 29 (described later) in the transmission direction and the third core The downstream end of the transmission direction of the unit 28 is a part where it gathers. In other words, the second merging portion 18 is disposed at the downstream end of the intermediate combined flow passage 29 and the third core portion 28 in the transmission direction. That is, the second merging portion 18 is disposed on the downstream side in the transmission direction of the first incident surface 11, the second incident surface 12, and the third incident surface 13. In the second merging portion 18, the first light, the second light and the third light merge for the first time.
 合流路25は、中間合流路29と、全合流路30とを備える。 The combined channel 25 includes an intermediate combined channel 29 and a total combined channel 30.
 中間合流路29は、第1合流部分17および第2合流部分18間に配置されており、それらを光学的に接続(連結)している。中間合流路29は、第1光路21の伝送方向中央部および第2光路22の伝送方向中央部に共通する光路である。中間合流路29は、第1コア部26の延長線上に配置されており、第1コア部26と同一形状を有する。一方、中間合流路29は、第2コア部27に対して角度を有しており、中間合流路29と第2コア部27との成す角度Yは、例えば、170度以上、好ましくは、175度以上、より好ましくは、177度以上、また、例えば、180度未満である。 The middle combined channel 29 is disposed between the first joining portion 17 and the second joining portion 18 and optically connects (connects) them. The intermediate combined channel 29 is an optical path common to the central portion in the transmission direction of the first optical path 21 and the central portion in the transmission direction of the second optical path 22. The middle combined channel 29 is disposed on the extension of the first core portion 26 and has the same shape as the first core portion 26. On the other hand, the intermediate combined flow passage 29 has an angle with respect to the second core portion 27, and the angle Y formed between the intermediate combined flow passage 29 and the second core portion 27 is, for example, 170 degrees or more, preferably 175 The degree is more than 177 degrees, more preferably, for example, less than 180 degrees.
 全合流路30は、第2合流部分18の伝送方向下流側に配置されており、第2合流部分18と光学的に接続(連結)されている。全合流路30は、第1光路21の伝送方向下流側端部、第2光路22の伝送方向下流側端部、および、第3光路23の伝送方向下流側端部に共通する光路である。全合流路30は、第3コア部28の延長線上に配置されており、第3コア部28と同一形状を有する。一方、全合流路30は、中間合流路29に対して角度を有しており、全合流路30と中間合流路29との成す角度Zは、例えば、170度以上、好ましくは、175度以上、より好ましくは、177度以上、また、例えば、180度未満である。 The total merging channel 30 is disposed downstream of the second merging portion 18 in the transmission direction, and is optically connected (connected) to the second merging portion 18. The total merging channel 30 is an optical path common to the downstream end of the first optical path 21 in the transmission direction, the downstream end of the second optical path 22 in the transmission direction, and the downstream end of the third optical path 23 in the transmission direction. The entire combined flow passage 30 is disposed on an extension of the third core portion 28 and has the same shape as the third core portion 28. On the other hand, the total joint flow channel 30 has an angle with respect to the intermediate joint flow channel 29, and the angle Z formed between the total joint flow channel 30 and the intermediate joint channel 29 is, for example, 170 degrees or more, preferably 175 degrees or more More preferably, it is 177 degrees or more, for example, less than 180 degrees.
 図1および図2Bに示すように、全合流路30の伝送方向下流側端面は、出射面14である。出射面14は、第2合流部分18(合流部16)の伝送方向下流側に配置されている。また、出射面14は、下流側端面6から露出している。具体的には、出射面14は、下流側端面6と面一である。出射面14は、第2合流部分18(合流部16)で合流した全合流光(後述)を出射する。 As shown to FIG. 1 and FIG. 2B, the transmission direction downstream end surface of the total joint flow path 30 is the output surface 14. The exit surface 14 is disposed on the downstream side in the transmission direction of the second merging portion 18 (the merging portion 16). In addition, the emission surface 14 is exposed from the downstream end surface 6. Specifically, the exit surface 14 is flush with the downstream end surface 6. The emitting surface 14 emits the totally merged light (described later) merged at the second merging portion 18 (the merging portion 16).
 従って、コア2は、第1入射面11と、第2入射面12と、第3入射面13と、出射面14とを備え、さらに、第1合流部分17と、第2合流部分18とを備える。そのため、第1入射面11、第2入射面12および第3入射面13のそれぞれに入射した光は、第1合流部分17および第2合流部分18(合流部16)で合流した後、出射面14から出射される。 Therefore, the core 2 includes the first incident surface 11, the second incident surface 12, the third incident surface 13, and the exit surface 14, and further, the first joining portion 17 and the second joining portion 18 Prepare. Therefore, light incident on each of the first incident surface 11, the second incident surface 12, and the third incident surface 13 merges at the first merging portion 17 and the second merging portion 18 (merging portion 16), and then exits. It is emitted from 14.
 このコア2の第1入射面11、第2入射面12および第3入射面13のいずれもが、光導波路10における上流側端面5に配置される一方、コア2の出射面14が、光導波路10における下流側端面6に配置される。また、第3入射面13は、伝送方向に投影したときに、出射面14と互いに重複する(同一位置に位置する)一方、第1入射面11および第2入射面12は、上記した伝送方向(詳しくは、第3光が伝送される方向)に投影したときに、出射面14と重複せず、幅方向他方側にずれ、さらに、第1入射面11が、第2入射面12に対して、遠くに位置する。 The first incident surface 11, the second incident surface 12, and the third incident surface 13 of the core 2 are all disposed on the upstream end surface 5 of the optical waveguide 10, while the output surface 14 of the core 2 is an optical waveguide. 10 is disposed at the downstream end face 6. Further, when projected in the transmission direction, the third incident surface 13 overlaps (is located at the same position) as the emission surface 14, while the first incident surface 11 and the second incident surface 12 have the above-described transmission direction. (Specifically, when projected in the direction in which the third light is transmitted), the light does not overlap with the exit surface 14 and is shifted to the other side in the width direction, and the first entrance surface 11 is further against the second entrance surface 12 , Located far away.
 図3A~図3Cに示すように、従って、第1光路21の長さL1、つまり、第1入射面11から出射面14までの第1光路長さL1は、第2光路22の長さL2、つまり、第2入射面12から出射面14までの第2光路長L2に対して、長く(L1>L2)、かつ、第2光路長L2は、第3光路23の長さL3、つまり、第3入射面13から出射面14までの第3光路長L3に対して、長い(L2>L3)。つまり、L1>L2>L3 を満足する。 As shown in FIGS. 3A to 3C, therefore, the length L1 of the first optical path 21, that is, the first optical path length L1 from the first incident surface 11 to the exit surface 14 is the length L2 of the second optical path 22. That is, the second optical path length L2 from the second incident surface 12 to the exit surface 14 is longer (L1> L2), and the second optical path length L2 is the length L3 of the third optical path 23, that is, The third optical path length L3 from the third incident surface 13 to the exit surface 14 is long (L2> L3). That is, L1> L2> L3 is satisfied.
 第1光路長L1の第2光路長L2に対する比(L1/L2)は、例えば、1.001以上、好ましくは、1.01以上、より好ましくは、1.1以上であり、また、例えば、2以下である。 The ratio (L1 / L2) of the first optical path length L1 to the second optical path length L2 is, for example, 1.001 or more, preferably 1.01 or more, more preferably 1.1 or more, and, for example, 2 or less.
 また、第2光路長L2の第3光路長L3に対する比(L2/L3)は、例えば、1.001以上、好ましくは、1.01以上、より好ましくは、1.1以上であり、また、例えば、2以下である。 Further, the ratio (L2 / L3) of the second optical path length L2 to the third optical path length L3 is, for example, 1.001 or more, preferably 1.01 or more, more preferably 1.1 or more, and For example, 2 or less.
 さらに、第1光路長L1の第3光路長L3に対する比(L1/L3)は、例えば、1.002以上、好ましくは、1.02以上、より好ましくは、1.15以上、であり、また、例えば、3以下である。 Furthermore, the ratio (L1 / L3) of the first optical path length L1 to the third optical path length L3 is, for example, 1.002 or more, preferably 1.02 or more, more preferably 1.15 or more, , For example, 3 or less.
 コア2の材料としては、例えば、クラッド1と同様の材料の透明性樹脂が挙げられる。コア2の屈折率は、クラッド1の屈折率に対して、高い。また、コア2の屈折率および光透過率は、伝送方向にわたって、均一(一様)に調整されている。つまり、コア2は、伝送方向にわたって、光学的に均質である。 Examples of the material of the core 2 include a transparent resin of the same material as that of the clad 1. The refractive index of the core 2 is higher than that of the cladding 1. In addition, the refractive index and the light transmittance of the core 2 are uniformly adjusted in the transmission direction. That is, the core 2 is optically homogeneous over the transmission direction.
 光導波路10を得るには、例えば、まず、アンダークラッド3を準備し、次いで、フォト加工などにより、コア2を、アンダークラッド3の上面に形成し、その後、オーバークラッド4を、コア2の上面および側面を被覆するように、アンダークラッド3の上面に形成する。 In order to obtain the optical waveguide 10, for example, first, the undercladding 3 is prepared, and then the core 2 is formed on the top surface of the undercladding 3 by photo processing or the like, and then the overcladding 4 is formed on the top surface of the core 2 And the upper surface of the undercladding 3 so as to cover the side surfaces.
 そして、この光導波路10において、第1入射面11、第2入射面12および第3入射面13のそれぞれに、例えば、発光装置65から第1光、第2光および第3光のそれぞれを入射させる。 Then, in the optical waveguide 10, for example, each of the first light, the second light and the third light is incident from the light emitting device 65 to each of the first incident surface 11, the second incident surface 12 and the third incident surface 13. Let
 発光装置65は、第1光を発光する第1発光部61と、第2光を発光する第2発光部62と、第3光を発光する第3発光部63とを備える。 The light emitting device 65 includes a first light emitting unit 61 that emits a first light, a second light emitting unit 62 that emits a second light, and a third light emitting unit 63 that emits a third light.
 第1発光部61は、第1入射面11に概ね対向している。詳しくは、第1発光部61は、第1コア部26における第1光路26に沿う方向において、第1入射面11と対向配置される。但し、第1発光部61の出射側面は、第1入射面11に対して平行せず、斜めに対向している。 The first light emitting unit 61 generally faces the first light incident surface 11. Specifically, the first light emitting unit 61 is disposed to face the first incident surface 11 in the direction along the first light path 26 in the first core unit 26. However, the emission side surface of the first light emitting portion 61 is not parallel to the first incident surface 11 but obliquely opposed.
 第2発光部62は、伝送方向において、第2入射面12に対して対向配置される。 The second light emitting unit 62 is disposed to face the second incident surface 12 in the transmission direction.
 第3発光部63は、伝送方向において、第3入射面13に対して対向配置される。 The third light emitting unit 63 is disposed to face the third incident surface 13 in the transmission direction.
 上記したように、発光装置65は、上流側端面5に対して位置決めされる。 As described above, the light emitting device 65 is positioned with respect to the upstream end surface 5.
 すると、第1光、第2光および第3光のそれぞれは、第1光路21、第2光路22および第3光路23のそれぞれに沿って伝送され、その途中で、合流部16で合流して、出射面14からともに出射される。 Then, the first light, the second light, and the third light are transmitted along the first light path 21, the second light path 22, and the third light path 23, respectively, and join at the merging portion 16 along the way. , And are emitted from the emission surface 14 together.
 具体的には、第1コア部26において第1入射面11から伝送される第1光と、第2コア部27において第2入射面12から伝送される第2光とは、第1合流部分17において、合流して、中間合流光を合成する。 Specifically, the first light transmitted from the first incident surface 11 in the first core portion 26 and the second light transmitted from the second incident surface 12 in the second core portion 27 are the first merging portion At 17, merge to combine the intermediate merge light.
 中間合流光と、第3コア部28において第3入射面13から伝送される第3光とは、第2合流部分18において、合流して、全合流光を合成する。 The intermediate merging light and the third light transmitted from the third incident surface 13 in the third core unit 28 merge in the second merging portion 18 to combine all merging light.
 全合流光は、全合流路30において伝送され、その後、出射面14から出射される。 All combined light is transmitted in all combined channels 30 and then emitted from the exit surface 14.
 そして、第1光路21、第2光路22および第3光路23の各光路長がL1>L2>L3 を満足するので、第1入射面11に入射され、出射面14から出射される第1光の第1減衰割合R1は、第2入射面12に入射され、出射面14から出射される第2光の第2減衰割合R2に比べて、大きく、かつ、上記した第2減衰割合R2は、第3入射面13に入射され、出射面14から出射される第3光の第3減衰割合R3に比べて、大きい。 Then, since the optical path lengths of the first optical path 21, the second optical path 22 and the third optical path 23 satisfy L1> L2> L3, the first light incident on the first incident surface 11 and emitted from the emission surface 14 The first attenuation ratio R1 is larger than the second attenuation ratio R2 of the second light emitted to the second incident surface 12 and emitted from the emission surface 14, and the second attenuation ratio R2 described above is It is larger than the third attenuation ratio R3 of the third light which is incident on the third incident surface 13 and emitted from the emission surface 14.
 つまり、下記式(1)を満足する。 That is, the following formula (1) is satisfied.
 第1減衰割合R1>第2減衰割合R2>第3減衰割合R3      (1)
 一方、式(1)を満足しない場合には、出射面14から出射する3つの光の強度を均一にすることができない。
First damping ratio R1> second damping ratio R2> third damping ratio R3 (1)
On the other hand, when Formula (1) is not satisfied, the intensities of the three lights emitted from the emission surface 14 can not be made uniform.
 第1光の第1減衰割合R1の、第2光の第2減衰割合R2に対する比(R1/R2)は、例えば、1.001以上、好ましくは、1.01以上、より好ましくは、1.1以上であり、また、例えば、2以下である。 The ratio (R1 / R2) of the first attenuation ratio R1 of the first light to the second attenuation ratio R2 of the second light is, for example, 1.001 or more, preferably 1.01 or more, more preferably 1. It is one or more and, for example, two or less.
 第2光の第2減衰割合R2の、第3光の第3減衰割合R3に対する比(R2/R3)は、例えば、1.001以上、好ましくは、1.01以上、より好ましくは、1.1以上であり、また、例えば、2以下である。 The ratio (R2 / R3) of the second attenuation ratio R2 of the second light to the third attenuation ratio R3 of the third light is, for example, 1.001 or more, preferably 1.01 or more, more preferably 1. It is one or more and, for example, two or less.
 第1光の第1減衰割合R1の、第3光の第3減衰割合R3に対する比(R1/R3)は、例えば、1.002以上、好ましくは、1.02以上、より好ましくは、1.15以上、であり、また、例えば、3以下である。 The ratio (R1 / R3) of the first attenuation ratio R1 of the first light to the third attenuation ratio R3 of the third light is, for example, 1.002 or more, preferably 1.02 or more, more preferably 1. 15 or more and, for example, 3 or less.
 上記した比が上記した下限以上であれば、出射面14から出射する3つの光の強度を均一にすることができる。 If the above-described ratio is equal to or more than the above-described lower limit, the intensities of the three lights emitted from the emission surface 14 can be made uniform.
 そのため、第1光を第1入射面11に入射させ、第1光と同じ強度を有する第2光を第2入射面12に入射させ、第2光と同じ強度を有する第3光を第3入射面13に入射させたときに、出射面14から出射される第1光の第1強度I1の、第2光の第2強度I2に対する比(I1/I2)が、0.6以上、1.4以下であり、第1強度I1の、第3光の第3強度I3に対する比(I1/I3)が、0.6以上、1.4以下である。 Therefore, the first light is made incident on the first incident surface 11, the second light having the same intensity as the first light is made incident on the second incident surface 12, and the third light having the same intensity as the second light is made third The ratio (I1 / I2) of the first intensity I1 of the first light emitted from the emission surface 14 to the second intensity I2 of the second light when entering the incident surface 13 is 0.6 or more, 1 The ratio (I1 / I3) of the first intensity I1 to the third intensity I3 of the third light is 0.6 or more and 1.4 or less.
 また、第1強度I1の第2強度I2に対する比(I1/I2)、および、第1強度I1の第3強度I3に対する比(I1/I3)は、好ましくは、0.8以上、より好ましくは、0.9以上であり、また、好ましくは、1.2以下、より好ましくは、1.1以下である。 The ratio (I1 / I2) of the first strength I1 to the second strength I2 and the ratio (I1 / I3) of the first strength I1 to the third strength I3 are preferably 0.8 or more, more preferably 0.9 or more, and preferably 1.2 or less, more preferably 1.1 or less.
 上記した強度比が上記した下限以上、上限以下であれば、3つの光を均一な強度で出射することができる。 If the above-mentioned intensity ratio is more than the above-mentioned lower limit and below the upper limit, three lights can be emitted with uniform intensity.
 そして、この光導波路10では、第1光、第2光および第3光のそれぞれを、第1入射面11、第2入射面12および第3入射面13に入射し、第2合流部分18(合流部16)で、3つの光を合流し、出射面14から3つの光を出射する。 And in this optical waveguide 10, each of the 1st light, the 2nd light, and the 3rd light enters into the 1st entrance plane 11, the 2nd entrance plane 12, and the 3rd entrance plane 13, and the 2nd junction part 18 ( In the merging section 16), the three lights are merged, and the three lights are emitted from the emission surface.
 また、第1入射面11の第1面積S1と、第2入射面12の第2面積S2と、第3入射面13の第3面積S3とが、同一であるので、発光装置65と、第1入射面11、第2入射面12および第3入射面13とを容易に位置合わせでき、両者を容易に光学的に接続することができる。 In addition, since the first area S1 of the first incident surface 11, the second area S2 of the second incident surface 12, and the third area S3 of the third incident surface 13 are the same, the light emitting device 65 and the The first incident surface 11, the second incident surface 12, and the third incident surface 13 can be easily aligned, and both can be easily optically connected.
 さらに、第1光の第1減衰割合R1が、第1光より波長が短い第2光の第2減衰割合R2に比べて大きく、第2減衰割合R2が、第2光より波長が短い第3光の第3減衰割合R3に比べて、大きい(R1>R2>R3)ので、出射面14から出射する3つの光の強度を均一にすることができる。 Furthermore, the first attenuation ratio R1 of the first light is larger than the second attenuation ratio R2 of the second light whose wavelength is shorter than that of the first light, and the second attenuation ratio R2 has a wavelength shorter than that of the second light. As compared with the third attenuation ratio R3 of light, which is larger (R1> R2> R3), the intensities of the three lights emitted from the emission surface 14 can be made uniform.
 その結果、この光導波路10では、第1光、第2光および第3光の3つの光が簡単かつ精度よく入射し、それらを合流させながら、光学特性に優れた全合流光を出射することができる。 As a result, in the optical waveguide 10, the three light beams of the first light, the second light and the third light are easily and accurately incident and, while combining them, emit all the combined light with excellent optical characteristics. Can.
 この光導波路10では、第1光が、赤色光を含み、第2光が、緑色光を含み、第3光が、青色光を含むので、出射面14から、赤色光、緑色光および青色光を均一な強度で出射することができる。そのため、所望の色相を有する全合流光を出射することができる。 In the optical waveguide 10, since the first light contains red light, the second light contains green light, and the third light contains blue light, red light, green light and blue light are emitted from the emission surface 14 Can be emitted with uniform intensity. Therefore, it is possible to emit all the combined light having a desired hue.
 この光導波路10では、第1合流部分17で、第1光および第2光を合流し、第2合流部分18で、残部の光である第3光と、第1合流部分17で合流した中間合流光とを合流するので、合流回数を増やして光の均一化を図ることができる。 In the optical waveguide 10, the first light and the second light are joined in the first joining portion 17, and the third light which is the remaining light in the second joining portion 18 and the intermediate which is joined in the first joining portion 17 Since the merging light and the merging light are merged, the number of merging can be increased to make the light uniform.
 この光導波路10では、第1光路長L1が第2光路長L2に対して長いので、第1光の第1減衰割合R1を、第2光の第2減衰割合R2に比べて、確実に大きく設定することができる。 In the optical waveguide 10, since the first optical path length L1 is longer than the second optical path length L2, the first attenuation ratio R1 of the first light is surely larger than the second attenuation ratio R2 of the second light. It can be set.
 また、第2光路長L2が第3光路長L3に対して長いので、第2減衰割合R2を、第3光の第3減衰割合R3に比べて、確実に大きく設定することができる。 In addition, since the second optical path length L2 is longer than the third optical path length L3, the second attenuation ratio R2 can be reliably set larger than the third attenuation ratio R3 of the third light.
 その結果、第1光路長L1、第2光路長L2、第3光路長L3を、その順で短くするという簡易な構成で、出射面14から出射する3つの光の強度を確実に均一にすることができる。 As a result, with a simple configuration in which the first optical path length L1, the second optical path length L2, and the third optical path length L3 are shortened in that order, the intensities of the three lights emitted from the emission surface 14 are made uniform uniformly. be able to.
 この光導波路10では、第1光の第1強度I1と、第2光の第2強度I2の比(I1/I2)が、0.6以上、1.4以下であり、第1強度I1と、第3光の第3強度I3の比(I1/I3)が、0.6以上、1.4以下であるので、3つの光を均一な強度で出射することができる。 In the optical waveguide 10, the ratio (I1 / I2) of the first intensity I1 of the first light to the second intensity I2 of the second light is 0.6 or more and 1.4 or less, and the first intensity I1 and Since the ratio (I1 / I3) of the third intensity I3 of the third light is not less than 0.6 and not more than 1.4, the three lights can be emitted with uniform intensity.
 <変形例>
 以下の各変形例において、上記した第1実施形態と同様の部材については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例は、特記する以外、第1実施形態と同様の作用効果を奏することができる。
<Modification>
In the following modifications, the same members as those in the first embodiment described above are denoted by the same reference numerals, and the detailed description thereof will be omitted. Further, each modification can exhibit the same function and effect as those of the first embodiment except for the special mention.
 第1入射面11の第1面積S1、第2入射面12の第2面積S2、および、第3入射面13の第3面積S3は、略同一であればよく、例えば、上記した発光装置65と、第1入射面11、第2入射面12および第3入射面13との位置決めに支障を来さない程度の微小な相違があってもよい。具体的には、第1入射面11の幅W1、第2入射面12の幅W2、および、第3入射面13の幅W3が、略同一であればよく、詳しくは、W1/W2、および、W1/W3が、例えば、0.9以上、好ましくは、0.95以上であり、また、例えば、1.1以下、好ましくは、1.01以下の範囲が許容される。 The first area S1 of the first incident surface 11, the second area S2 of the second incident surface 12, and the third area S3 of the third incident surface 13 may be substantially the same, for example, the light emitting device 65 described above There may be minute differences that do not interfere with the positioning of the first incident surface 11, the second incident surface 12, and the third incident surface 13. Specifically, the width W1 of the first incident surface 11, the width W2 of the second incident surface 12, and the width W3 of the third incident surface 13 may be substantially the same, and more specifically, W1 / W2 and W1 / W3 is, for example, 0.9 or more, preferably 0.95 or more, and for example, a range of 1.1 or less, preferably 1.01 or less is acceptable.
 また、第1実施形態において、第1合流部分17では、第1光路21および第2光路22が合一となり、第1光および第2光を合流しているが、第1光、第2光および第3光のうち、いずれか2つが合流すればよい。図示しないが、第1合流部分17において、例えば、第1光路21および第3光路23が合一となり、第1光および第3光を合流してもよく、また、例えば、第2光路22および第3光路23が合一となり、第2光および第3光を合流してもよい。 In the first embodiment, the first light path 21 and the second light path 22 are united in the first merging portion 17 and the first light and the second light are merged. However, the first light and the second light are combined. And any two of the third lights may be merged. Although not shown, in the first merging portion 17, for example, the first light path 21 and the third light path 23 may be united, and the first light and the third light may be merged, for example, the second light path 22 and The third light path 23 may be integrated, and the second light and the third light may be merged.
 また、コア2は、第1光を部分的に吸収する第1光吸収剤と、第2光を部分的に吸収する第2光吸収剤とを、第1減衰割合R1が第2減衰割合R2に比べて大きく、かつ、第2減衰割合R2が第3減衰割合R3に比べて大きくなるように、含有することもできる。 Further, the core 2 has a first light absorbing agent that partially absorbs the first light and a second light absorbing agent that partially absorbs the second light, and the first attenuation ratio R1 is a second attenuation ratio R2 And the second damping ratio R2 may be larger than the third damping ratio R3.
 第1光吸収剤は、例えば、赤色光吸収剤などが挙げられ、具体的には、アントラキノン系化合物、フタロシアニン系化合物、シアニン系化合物、ポリメチレン系化合物、アルミニウム系化合物、ジイモニウム系化合物、イモニウム系化合物、アゾ系化合物などが挙げられる。 Examples of the first light absorber include red light absorbers. Specifically, anthraquinone compounds, phthalocyanine compounds, cyanine compounds, polymethylene compounds, aluminum compounds, diimonium compounds, and imonium compounds And azo compounds.
 第2光吸収剤は、例えば、緑色光吸収剤などが挙げられ、具体的には、アントラキノン系化合物、フタロシアニン系化合物などが挙げられる。 Examples of the second light absorber include green light absorbers, and specific examples include anthraquinone compounds, phthalocyanine compounds and the like.
 さらに、コア2は、第1光吸収剤および第2光吸収剤に加えて、第3光を部分的に吸収する第3光吸収剤を、第2減衰割合R2が第3減衰割合R3に比べて大きくなるように、含有することもできる。 Furthermore, in addition to the first light absorber and the second light absorber, the core 2 has a third light absorber that partially absorbs the third light, and the second attenuation ratio R2 is compared to the third attenuation ratio R3. It can also be contained to be large.
 第3光吸収剤は、例えば、青色光吸収剤などが挙げられ、具体的には、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、サルチル酸系化合物、クマリン系化合物などが挙げられる。 Examples of the third light absorber include blue light absorbers, and specific examples include benzotriazole-based compounds, benzophenone-based compounds, salicylic acid-based compounds, and coumarin-based compounds.
 第1光吸収剤および第2光吸収剤の含有割合は、第1減衰割合R1>第2減衰割合R2>第3減衰割合R3 の関係を満足するように、適宜調整される。 The content ratio of the first light absorber and the second light absorber is appropriately adjusted so as to satisfy the relationship of first attenuation ratio R1> second attenuation ratio R2> third attenuation ratio R3.
 そして、この変形例では、コア2は、第1光吸収剤と、第2光吸収剤とを、第1減衰割合R1>第2減衰割合R2>第3減衰割合R3 の関係を満足するように、含有する。そのため、出射面14から出射する3つの光の強度を均一にすることができる。 And in this modification, the core 2 satisfies the relationship of the first light absorbing agent and the second light absorbing agent such that the first attenuation ratio R1> the second attenuation ratio R2> the third attenuation ratio R3. ,contains. Therefore, the intensities of the three lights emitted from the emission surface 14 can be made uniform.
 第1実施形態では、上流側端面5を1つの平面(側面)として構成されている。しかし、図4に示すように、上流側端面5にテーパ面9を形成することもできる。 In the first embodiment, the upstream end surface 5 is configured as one plane (side surface). However, as shown in FIG. 4, the tapered surface 9 can be formed on the upstream end surface 5.
 この変形例では、上流側端面5の幅方向他端部は、斜めに切りかかれており、これにより、テーパ面9が形成される。上流側端面5において、テーパ面9と、幅方向中央部および幅方向一端部との成す角度Xは、鈍角であって、テーパ面9が後述する第3入射面13に平行するように設定されており、具体的には、例えば、170度以上、好ましくは、175度以上、より好ましくは、177度以上、また、例えば、180度未満である。 In this modification, the other end in the width direction of the upstream end surface 5 is obliquely cut, whereby the tapered surface 9 is formed. An angle X between the tapered surface 9 and the widthwise central portion and the widthwise one end portion at the upstream end surface 5 is an obtuse angle, and is set such that the tapered surface 9 is parallel to a third incident surface 13 described later. Specifically, for example, it is 170 degrees or more, preferably 175 degrees or more, more preferably 177 degrees or more, and for example, less than 180 degrees.
 第1入射面11の第1面積S1は、第2入射面12の第2面積S2、および、第3入射面13の第3面積S3と同一であって、第1入射面11の幅W1は、テーパ面9に沿う方向の長さである。 The first area S1 of the first incident surface 11 is the same as the second area S2 of the second incident surface 12 and the third area S3 of the third incident surface 13, and the width W1 of the first incident surface 11 is , And the length in the direction along the tapered surface 9.
 第1発光部61は、第1入射面11を含むテーパ面9に対して対向配置されている。 The first light emitting portion 61 is disposed to face the tapered surface 9 including the first incident surface 11.
 第1実施形態では、合流部16は、第1合流部分17および第2合流部分18の2つを備える。しかし、図5に示すように、合流部16は、1つであってもよい。具体的には、合流部16は、第1光、第2光および第3光の3つが合流する全合流部19のみを有する。 In the first embodiment, the merging portion 16 includes two of the first merging portion 17 and the second merging portion 18. However, as shown in FIG. 5, the number of merging portions 16 may be one. Specifically, the merging portion 16 has only the total merging portion 19 where three of the first light, the second light and the third light merge.
 全合流部19は、第1コア部26の伝送方向下流側端部、第2コア部27の伝送方向下流側端部、および、第3コア部28の伝送方向下流側端部が集合する部分である。全合流部19では、第1光、第2光および第3光の3つが合流して、全合流光を合成する。 The full merging portion 19 is a portion where the downstream end of the first core portion 26 in the transmission direction, the downstream end of the second core portion 27 in the transmission direction, and the downstream end of the third core portion 28 in the transmission direction gather It is. In the total merging section 19, three of the first light, the second light, and the third light merge to combine all merged light.
 また、合流路25は、中間合流路29(図1参照)を備えず、全合流路30のみを備える。全合流路30は、全合流部19で合成された全合流光を、出射面14に向けて伝送する。 Further, the combined channel 25 does not include the intermediate combined channel 29 (see FIG. 1), and includes only the entire combined channel 30. The total merging channel 30 transmits the total combined light combined in the total merging section 19 toward the exit surface 14.
 第2コア部27は、第2入射面12から全合流路30に向かって延びる形状を有する。また、第2コア部27は、第1コア部26と同様に、傾斜している。但し、第2コア部27の傾斜の程度は、第1コア部26の傾斜の程度に比べて、小さく、具体的には、第2コア部27の斜度(具体的には、第2コア部27と第1コア部26との成す角度α2)の、第1コア部26の斜度(具体的には、第1コア部26と第1コア部26との成す角度α1)に対する比(α2/α1)は、例えば、0.9以下、好ましくは、0.8以下、より好ましくは、0.7以下であり、また、例えば、0.1以上である。 The second core portion 27 has a shape that extends from the second incident surface 12 toward the overall combined flow channel 30. Further, the second core portion 27 is inclined in the same manner as the first core portion 26. However, the degree of inclination of the second core portion 27 is smaller than the degree of inclination of the first core portion 26. Specifically, the inclination degree of the second core portion 27 (specifically, the second core portion 27) The ratio (the angle α1 between the first core portion 26 and the first core portion 26) (specifically, the ratio α of the angle α2) between the portion 27 and the first core portion 26 (specifically, the angle α1 between the first core portion 26 and the first core portion 26) α 2 / α 1) is, for example, 0.9 or less, preferably 0.8 or less, more preferably 0.7 or less, and for example, 0.1 or more.
 また、図6に示すように、上流側端面5を、平面視略ステップ形状に形成することもできる。上流側端面5は、第1入射面11を含む第1面51と、第2入射面12を含む第2面52と、第3入射面13を含む第3面53とを独立して備える。 Moreover, as shown in FIG. 6, the upstream end surface 5 can also be formed in a substantially step shape in plan view. The upstream end surface 5 is independently provided with a first surface 51 including the first incident surface 11, a second surface 52 including the second incident surface 12, and a third surface 53 including the third incident surface 13.
 第1面51と、第2面52と、第3面53とは、幅方向に投影したときに、伝送方向に間隔を隔てて配置されており、この順に伝送方向下流側に配列されている。そのため、上流側端面5において、第1面51が、下流側端面6に対して最も遠くに配置され、第3面53が、下流側端面6に対して最も近くに配置されている。第2面52は、第1面51および第3面53の間に位置する。第1面51、第2面52および第3面53は、いずれも、幅方向に沿い、下流側端面6に平行する。 When projected in the width direction, the first surface 51, the second surface 52, and the third surface 53 are arranged at an interval in the transmission direction, and are arranged downstream in the transmission direction in this order . Therefore, in the upstream end surface 5, the first surface 51 is disposed farthest from the downstream end surface 6, and the third surface 53 is disposed closest to the downstream end surface 6. The second surface 52 is located between the first surface 51 and the third surface 53. The first surface 51, the second surface 52, and the third surface 53 are all parallel to the downstream end surface 6 along the width direction.
 第1面51は、第1入射面11を含む。 The first surface 51 includes a first incident surface 11.
 第2面52は、第2入射面12を含む。 The second surface 52 includes a second incident surface 12.
 第3面53は、第3入射面13を含む。 The third surface 53 includes the third incident surface 13.
 そのため、L1>L2>L3 をより確実に満足できる。 Therefore, L1> L2> L3 can be satisfied more reliably.
 具体的には、(L1/L2)は、例えば、1.01以上、好ましくは、1.1以上、より好ましくは、1.2以上であり、また、例えば、5以下である。 Specifically, (L1 / L2) is, for example, 1.01 or more, preferably 1.1 or more, more preferably 1.2 or more, and for example, 5 or less.
 また、第2光路長L2の第3光路長L3に対する比(L2/L3)は、例えば、1.01以上、好ましくは、1.1以上、より好ましくは、1.2以上であり、また、例えば、5以下である。 Further, the ratio (L2 / L3) of the second optical path length L2 to the third optical path length L3 is, for example, 1.01 or more, preferably 1.1 or more, more preferably 1.2 or more, and For example, 5 or less.
 さらに、第1光路長L1の第3光路長L3に対する比(L1/L3)は、例えば、1.02以上、好ましくは、1.2以上、より好ましくは、1.3以上であり、また、例えば、10以下である。 Furthermore, the ratio (L1 / L3) of the first optical path length L1 to the third optical path length L3 is, for example, 1.02 or more, preferably 1.2 or more, more preferably 1.3 or more, and For example, it is 10 or less.
 <第2実施形態>
 以下の第2実施形態において、上記した第1実施形態およびその変形例と同様の部材については、同一の参照符号を付し、その詳細な説明を省略する。また、第2実施形態は、特記する以外、第1実施形態およびその変形例と同様の作用効果を奏することができる。
Second Embodiment
In the following second embodiment, the same members as those in the first embodiment and the modification thereof are denoted by the same reference numerals, and the detailed description thereof will be omitted. In addition, the second embodiment can exhibit the same effects as those of the first embodiment and the modified example thereof, unless otherwise specified.
 第1実施形態およびその変形例では、第1光路21の第1光路長L1、第2光路22の第2光路長L2、および、第3光路23の第3光路長L3を、L1>L2>L3 を満足するように、設定している。これにより、式(1)[第1減衰割合R1>第2減衰割合R2>第3減衰割合R3]を満足している。 In the first embodiment and its modification, the first optical path length L1 of the first optical path 21, the second optical path length L2 of the second optical path 22, and the third optical path length L3 of the third optical path 23 are L1> L2>. It is set to satisfy L3. Thereby, the equation (1) [first attenuation ratio R1> second attenuation ratio R2> third attenuation ratio R3] is satisfied.
 一方、第2実施形態では、図7に示すように、第1光の第1漏洩割合LR1、第2光の第2漏洩割合LR2および第3光の第3漏洩割合LR3を、LR1>LR2>LR3 を満足するように、設定して、上記した式(1)を満足することもできる。 On the other hand, in the second embodiment, as shown in FIG. 7, the first leak ratio LR1 of the first light, the second leak ratio LR2 of the second light, and the third leak ratio LR3 of the third light, LR1> LR2> It is also possible to set so as to satisfy LR3 and to satisfy the above-mentioned equation (1).
 具体的には、図7に示すように、第1コア部26および第2コア部27は、ともに、伝送方向下流側に向かうに従って、開口断面積が小さくなる形状を有する。より具体的には、第1コア部26および第2コア部27は、それぞれの幅方向両側面が伝送方向下流側に向かうに従って近接する、平面視略テーパ形状を有する。第1コア部26の幅方向両側面の伝送方向に対する斜度(側面に沿う仮想面と伝送方向に沿う軸との成す第1角度β1)は、第2コア部27の幅方向両側面の伝送方向に対する斜度(側面に沿う仮想面と伝送方向に沿う軸との成す角度β2)に対して、大きく、具体的には、それらの比(β1/β2)が、例えば、1.001以上、好ましくは、1.01以上、より好ましくは、1.1以上であり、また、例えば、2以下である。 Specifically, as shown in FIG. 7, the first core portion 26 and the second core portion 27 both have a shape in which the cross-sectional area of the opening decreases as going downstream in the transmission direction. More specifically, the first core portion 26 and the second core portion 27 have a substantially tapered shape in plan view, in which the respective widthwise side surfaces approach each other toward the downstream side in the transmission direction. The degree of inclination (the first angle β1 formed by the virtual surface along the side surface and the axis along the transmission direction) of the width direction both sides of the first core portion 26 with respect to the transmission direction Specifically, the ratio (β1 / β2) thereof is, for example, 1.001 or more, with respect to the inclination with respect to the direction (the angle β2 between the virtual plane along the side surface and the axis along the transmission direction). Preferably, it is 1.01 or more, more preferably 1.1 or more, and for example, 2 or less.
 一方、第3コア部28は、伝送方向下流側に向かうに従って、開口断面積が同一の形状を有する。具体的には、第3コア部28は、伝送方向に沿う平面視略直線形状を有する。 On the other hand, the third core portion 28 has the same shape in the opening cross-sectional area as it goes downstream in the transmission direction. Specifically, the third core portion 28 has a substantially linear shape in plan view along the transmission direction.
 そのため、第1コア部26において第1合流部分17(合流部16)に臨む伝送方向下流側端縁(第1下流側端縁31)における第1開口断面積OS1は、第2コア部27において第1合流部分17(合流部16)に臨む伝送方向下流側端縁における第2開口断面積OS2に比べて、小さい。具体的には、第1下流側端縁31の幅W4は、第2下流側端縁32の幅W5に比べて、狭い。 Therefore, in the second core portion 27, the first opening cross-sectional area OS1 at the downstream end (first downstream end 31) of the first core portion 26 in the transmission direction facing the first joining portion 17 (joining portion 16) is This is smaller than the second opening cross-sectional area OS2 at the downstream end of the transmission direction facing the first joining portion 17 (the joining portion 16). Specifically, the width W4 of the first downstream side edge 31 is narrower than the width W5 of the second downstream side edge 32.
 そうすると、第1コア部26および第2コア部27が平面視略テーパ形状を有するため、第1コア部26および第2コア部27のそれぞれにおける第1光および第2光のそれぞれは、漏れ易く、さらに、第1下流側端縁31の幅W4が第2下流側端縁32の幅W5に比べて狭いため、第1コア部26における第1光の漏洩割合は、第2コア部27における第2光の漏洩割合に対して、大きい。 Then, since the first core portion 26 and the second core portion 27 have a substantially tapered shape in plan view, each of the first light and the second light in each of the first core portion 26 and the second core portion 27 easily leaks Further, since the width W4 of the first downstream side edge 31 is narrower than the width W5 of the second downstream side edge 32, the leakage ratio of the first light in the first core portion 26 is equal to that in the second core portion 27. It is large with respect to the leak rate of the second light.
 一方、中間合流路29および全合流路30(合流路25)における第1光の漏洩割合および第2光の漏洩割合は、第1光および第2光が共通の合流路25を伝送されることから、同一である。そうすると、第1光が第1入射面11から出射面14まで伝送されるときの第1漏洩割合LR1は、第2光が第2入射面12から出射面まで伝送されるときの第2漏洩割合LR2に対して、大きい。 On the other hand, the leakage ratio of the first light and the leakage ratio of the second light in the intermediate combined flow passage 29 and the total combined flow passage 30 (the combined flow passage 25) are that the first light and the second light are transmitted along the common combined flow passage 25. From the same. Then, the first leak ratio LR1 when the first light is transmitted from the first incident surface 11 to the output surface 14 is the second leak ratio when the second light is transmitted from the second incident surface 12 to the output surface Larger than LR2.
 さらに、第2開口断面積OS2は、第3コア部28において合流部に臨む伝送方向下流側端縁(第3下流側端縁33)における第3開口断面積OS3に比べて、小さい。具体的には、第2下流側端縁32の幅W5は、第3下流側端縁33の幅W6に比べて狭い。そのため、第2コア部27における第2光の漏洩割合は、第3コア部28における第3光の漏洩割合に対して、大きい。 Furthermore, the second opening cross-sectional area OS2 is smaller than the third opening cross-sectional area OS3 at the downstream end (third downstream end 33) of the third core portion 28 in the transmission direction facing the junction. Specifically, the width W5 of the second downstream side edge 32 is narrower than the width W6 of the third downstream side edge 33. Therefore, the leakage rate of the second light in the second core portion 27 is larger than the leakage rate of the third light in the third core portion 28.
 一方、全合流路30における第2光の漏洩割合および第3光の漏洩割合は、第2光および第3光が共通の全合流路30を伝送されることから、同一である。そうすると、第2光が第2入射面12から出射面出射面14まで伝送されるときの第2漏洩割合LR2は、第3光が第3入射面13から出射面14まで伝送されるときの第3漏洩割合LR3に対して、大きい。 On the other hand, the leakage ratio of the second light and the leakage ratio of the third light in the total combined flow channel 30 are the same because the second light and the third light are transmitted through the common combined flow channel 30 in common. Then, the second leakage ratio LR2 when the second light is transmitted from the second incident surface 12 to the outgoing surface outgoing surface 14 is the second leakage ratio LR2 when the third light is transmitted from the third incident surface 13 to the outgoing surface 14 3 Large for leak rate LR3.
 つまり、この光導波路10では、第1漏洩割合LR1>第2漏洩割合LR2>
第3漏洩割合LR3 の関係を満足する。
That is, in the optical waveguide 10, the first leakage ratio LR1> the second leakage ratio LR2>
Satisfy the relationship of the third leak rate LR3.
 そして、この光導波路10では、第1漏洩割合LR1が第2漏洩割合LR2に対して大きいので、第1光の第1減衰割合R1を、第1光より波長が短い第2光の第2減衰割合R2に比べて、確実に大きく設定することができる。 Then, in the optical waveguide 10, since the first leakage ratio LR1 is larger than the second leakage ratio LR2, the first attenuation ratio R1 of the first light is set to the second attenuation of the second light having a wavelength shorter than the first light. The ratio can be set larger than the ratio R2 with certainty.
 また、第2漏洩割合LR2が第3漏洩割合LR3に対して大きいので、第2減衰割合R2を、第2光より波長が短い第3光の第3減衰割合R3に比べて、確実に大きく設定することができる。 Further, since the second leak ratio LR2 is larger than the third leak ratio LR3, the second attenuation ratio R2 is surely set larger than the third attenuation ratio R3 of the third light having a wavelength shorter than that of the second light. can do.
 その結果、第1漏洩割合LR1、第2漏洩割合LR2、第3漏洩割合LR3を、その順で小さくする構成で、出射面14から出射する3つの光の強度を確実に均一にすることができる。 As a result, with the configuration in which the first leak ratio LR1, the second leak ratio LR2, and the third leak ratio LR3 are reduced in that order, the intensities of the three lights emitted from the emission surface 14 can be made uniform uniformly. .
 さらに、この光導波路10では、第1開口断面積OS1が第2開口断面積OS2に比べて、小さいので、第1漏洩割合LR1を第2漏洩割合LR2に対して大きく設定することできる。 Furthermore, in the optical waveguide 10, since the first opening cross-sectional area OS1 is smaller than the second opening cross-sectional area OS2, the first leak ratio LR1 can be set larger than the second leak ratio LR2.
 また、第2開口断面積OS2が第3開口断面積OS3に比べて小さいので、第2漏洩割合LR2を第3漏洩割合LR3に対して大きく設定することできる。 Further, since the second opening cross-sectional area OS2 is smaller than the third opening cross-sectional area OS3, the second leak ratio LR2 can be set larger than the third leak ratio LR3.
 <変形例>
 以下の各変形例において、上記した第2実施形態と同様の部材については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例は、特記する以外、第2実施形態と同様の作用効果を奏することができる。
<Modification>
In the following modifications, the same members as those in the second embodiment described above are denoted by the same reference numerals, and detailed descriptions thereof will be omitted. Further, each modification can exhibit the same function and effect as those of the second embodiment except for the special mention.
 図7に示すように、第2実施形態では、第3コア部28は、平面視略直線形状を有するが、例えば、図示しないが、第3コア部28における第3下流側端縁33の幅W6が、第2コア部27における第2下流側端縁32の幅W5に比べて広ければ、第3コア部28が平面視略テーパ形状を有することもできる。 As shown in FIG. 7, in the second embodiment, the third core portion 28 has a substantially linear shape in plan view, but for example, although not shown, the width of the third downstream side edge 33 in the third core portion 28 If W6 is wider than the width W5 of the second downstream side edge 32 of the second core portion 27, the third core portion 28 may have a substantially tapered shape in plan view.
 <第3実施形態>
 以下の第3実施形態において、上記した第1実施形態、第2実施形態およびそれらの変形例と同様の部材については、同一の参照符号を付し、その詳細な説明を省略する。また、第3実施形態は、特記する以外、第1実施形態、第2実施形態およびそれらの変形例と同様の作用効果を奏することができる。
Third Embodiment
In the following third embodiment, the same members as those in the first embodiment, the second embodiment, and their modifications described above are given the same reference numerals, and detailed descriptions thereof will be omitted. In addition, the third embodiment can exhibit the same effects as those of the first embodiment, the second embodiment, and the modifications thereof, unless otherwise specified.
 第2実施形態およびその変形例では、少なくとも第1コア部26および第2コア部27をテーパ形状に形成している。これにより、式(1)[第1減衰割合R1>第2減衰割合R2>第3減衰割合R3]を満足している。 In the second embodiment and its modification, at least the first core portion 26 and the second core portion 27 are formed in a tapered shape. Thereby, the equation (1) [first attenuation ratio R1> second attenuation ratio R2> third attenuation ratio R3] is satisfied.
 一方、図8に示すように、第3実施形態では、少なくとも第1光路21および第2光路22のそれぞれが、第1曲り部36、および、それよりも小さく曲がる第2曲り部37のそれぞれを有する。一方、第3光路23は、第3直線部50のみを有する。これにより、上記した式(1)を満足することもできる。 On the other hand, as shown in FIG. 8, in the third embodiment, each of at least the first optical path 21 and the second optical path 22 includes the first bending portion 36 and the second bending portion 37 which bends smaller than the first bending portion 36. Have. On the other hand, the third optical path 23 has only the third straight portion 50. Thereby, the above-mentioned formula (1) can also be satisfied.
 詳しくは、第1コア部26は、第1直線部48と、第1曲り部36とを有する。 Specifically, the first core portion 26 has a first straight portion 48 and a first curved portion 36.
 第1直線部48は、第1入射面11から第1光が入射する方向に沿って延びる平面視略直線形状を有する。第1直線部48の伝送方向下流側端部には、第1曲り部36が連続する。 The first linear portion 48 has a substantially linear shape in plan view extending along the direction in which the first light is incident from the first incident surface 11. At the downstream end of the first linear portion 48 in the transmission direction, a first curved portion 36 is continuous.
 第1曲り部36は、平面視において比較的小さく湾曲する。第1曲り部36は、第1中央部分38と、第1下流側部分39とを有する。 The first bending portion 36 curves relatively small in plan view. The first bent portion 36 has a first central portion 38 and a first downstream portion 39.
 第1中央部分38は、幅方向一方側に曲率中心を有する。 The first central portion 38 has a curvature center on one side in the width direction.
 第1下流側部分39は、第1中央部分38の伝送方向下流側に配置されており、幅方向他方側に曲率中心を有する。第1下流側部分39は、第1中央部分38の伝送方向下流側に配置されており、全合流路30に連続する。 The first downstream portion 39 is disposed on the downstream side of the first central portion 38 in the transmission direction, and has a center of curvature on the other side in the width direction. The first downstream side portion 39 is disposed downstream of the first central portion 38 in the transmission direction, and is continuous with the entire combined flow passage 30.
 第2コア部27は、第2直線部49と、第2曲り部37とを有する。 The second core portion 27 has a second straight portion 49 and a second curved portion 37.
 第2直線部49は、第2入射面12から第2光を入射する方向に沿って延びる平面視略直線形状を有する。第2直線部49の伝送方向下流側端部には、第2曲り部37が連続する。 The second linear portion 49 has a substantially linear shape in plan view extending along the direction in which the second light is incident from the second incident surface 12. At the downstream end of the second linear portion 49 in the transmission direction, the second bending portion 37 is continuous.
 第2曲り部37は、平面視において、第1曲り部36より大きく湾曲する。第2曲り部37は、第2中央部分40と、第2下流側部分41とを有する。 The second bending portion 37 curves more than the first bending portion 36 in a plan view. The second bending portion 37 has a second central portion 40 and a second downstream portion 41.
 第2中央部分40は、幅方向一方側に曲率中心を有しており、第1中央部分38より大きく湾曲する。 The second central portion 40 has a curvature center on one side in the width direction, and curves more than the first central portion 38.
 第2下流側部分41は、第2中央部分40の伝送方向下流側に配置されており、第1下流側部分39より大きく湾曲する。第2下流側部分41は、幅方向他方側に曲率中心を有する。第2下流側部分41は、全合流路30に連続する。 The second downstream side portion 41 is disposed on the downstream side of the second central portion 40 in the transmission direction, and curves more largely than the first downstream side portion 39. The second downstream side portion 41 has a curvature center on the other side in the width direction. The second downstream side portion 41 is continuous with the entire combined flow passage 30.
 一方、第3直線部50は、第3入射面13を含んでおり、幅方向一方側端面7に平行する。 On the other hand, the third straight portion 50 includes the third incident surface 13 and is parallel to the one end surface 7 in the width direction.
 そして、この第3実施形態の光導波路10では、第1曲り部36が第2曲り部37に対して、大きく曲がるので、第1漏洩割合LR1を第2漏洩割合LR2に対して大きく設定することできる。 And, in the optical waveguide 10 of the third embodiment, since the first curved portion 36 is largely bent with respect to the second curved portion 37, the first leakage ratio LR1 should be set larger than the second leakage ratio LR2. it can.
 また、第3光路23は、第3直線部50からなるので、第2漏洩割合LR2を第3漏洩割合LR3に対して大きく設定することできる。 Further, since the third light path 23 includes the third straight portion 50, the second leak ratio LR2 can be set larger than the third leak ratio LR3.
 その結果、第1開口断面積OS1、第2開口断面積OS2、第3開口断面積OS3をその順で小さくするという簡易な構成で、第1漏洩割合LR1、第2漏洩割合LR2、第3漏洩割合LR3を、その順で小さくすることができる。 As a result, the first leakage ratio LR1, the second leakage ratio LR2, and the third leakage are obtained with a simple configuration in which the first opening sectional area OS1, the second opening sectional area OS2, and the third opening sectional area OS3 are reduced in that order. The ratio LR3 can be reduced in that order.
 <変形例>
 第3実施形態では、第3コア部28は、第3直線部50を有するが、例えば、図示しないが、第2曲り部37に対してさらに小さく曲がる第3曲り部を有することもできる。この場合には、第3入射面13は、伝送方向に投影したときに、出射面14とずれて配置されている。
<Modification>
In the third embodiment, the third core portion 28 includes the third straight portion 50. For example, although not shown, the third core portion 28 may have a third curved portion bent smaller than the second curved portion 37. In this case, the third incident surface 13 is disposed so as to be offset from the exit surface 14 when projected in the transmission direction.
 また、図9に示すように、第1曲り部36および第2曲り部37のそれぞれを屈曲状に形成することもできる。 Further, as shown in FIG. 9, each of the first curved portion 36 and the second curved portion 37 can be formed in a bent shape.
 第1コア部26は、第1直線部48と、第1曲り部36と、第1下流側直線部35とを備える。 The first core portion 26 includes a first straight portion 48, a first curved portion 36, and a first downstream straight portion 35.
 第1曲り部36は、平面視略屈曲形状を有する。 The first bent portion 36 has a substantially bent shape in plan view.
 第1下流側直線部35は、第1曲り部36から伝送方向斜め幅方向一方側に向かって延び、第1直線部48と同幅の略直線形状を有する。第1下流側直線部35の下流側端部は、全合流路30に連続する。 The first downstream linear portion 35 extends from the first curved portion 36 toward one side in the transmission direction diagonal width direction, and has a substantially linear shape having the same width as the first linear portion 48. The downstream end of the first downstream straight portion 35 is continuous with the entire combined flow passage 30.
 第2光路22は、第2直線部49と、第2曲り部37と、第2下流側直線部44とを備える。 The second optical path 22 includes a second straight portion 49, a second curved portion 37, and a second downstream straight portion 44.
 第2曲り部37は、平面視において、第1曲り部36よりも小さく曲がる略屈曲形状を有する。 The second bent portion 37 has a substantially bent shape bent smaller than the first bent portion 36 in a plan view.
 第2下流側直線部44は、第2曲り部37から伝送方向斜め幅方向一方側に向かって延び、第2直線部49と同幅の略直線形状を有する。第2下流側直線部44の下流側端部は、全合流路30に連続する。 The second downstream linear portion 44 extends from the second curved portion 37 toward one side in the transmission direction diagonal width direction, and has a substantially linear shape having the same width as the second linear portion 49. The downstream end of the second downstream straight section 44 is continuous with the entire combined channel 30.
 そして、第1曲り部36における屈曲の程度は、第2曲り部37における屈曲の程度に比べて大きく、具体的には、第1直線部48と第1下流側直線部35との成す角度γ1が、第2直線部49と第2下流側直線部44との成す角度γ2に比べて、小さい。 The degree of bending in the first curved portion 36 is larger than the degree of bending in the second curved portion 37. Specifically, the angle γ1 formed between the first straight portion 48 and the first downstream side straight portion 35 Is smaller than an angle γ2 formed by the second straight portion 49 and the second downstream straight portion 44.
 また、図10に示すように、第1光路21の第1光路長L1、第2光路22の第2光路長L2、第3光路23の第3光路長L3を同一に設定したコア2において、次の手段などで、第1減衰割合R1、第2減衰割合R2、第3減衰割合R3を、その順で小さくすることもできる。なお、図10に示すコア2では、第1コア部26、第2コア部27および第3コア部28は、全合流部19に接続されており、それらの長さは、同一である。また、図10に示すコア2では、伝送方向(詳しくは、上流側端面5および下流側端面6の対向する方向)に投影したときに、第1入射面11、第2入射面12および第3入射面13は、出射面14に対してずれて配置されている。例えば、第1入射面11、第2入射面12および第3入射面13は、全合流路30の軸線に沿う仮想線を中心とする仮想円上に配置されている。 Further, as shown in FIG. 10, in the core 2 in which the first light path length L1 of the first light path 21, the second light path length L2 of the second light path 22, and the third light path length L3 of the third light path 23 are set the same. The first damping ratio R1, the second damping ratio R2, and the third damping ratio R3 can also be reduced in that order by the following means. In the core 2 shown in FIG. 10, the first core portion 26, the second core portion 27, and the third core portion 28 are connected to the all joining portion 19, and the lengths thereof are the same. Further, in the core 2 shown in FIG. 10, when projected in the transmission direction (specifically, the direction in which the upstream end surface 5 and the downstream end surface 6 face each other), the first incident surface 11, the second incident surface 12 and the third The incident surface 13 is disposed offset with respect to the output surface 14. For example, the first incident surface 11, the second incident surface 12, and the third incident surface 13 are disposed on an imaginary circle centered on an imaginary line along the axis of the combined channel 30.
 手段(1):第1コア部26の長さ、第2コア部27の長さ、第3コア部28の長さを、その順で短くする。 Means (1): The length of the first core portion 26, the length of the second core portion 27, and the length of the third core portion 28 are shortened in that order.
 手段(2):第1開口断面積OS1、第2開口断面積OS2、第3開口断面積OS3をその順で小さくすることにより、第1漏洩割合LR1、第2漏洩割合LR2、第3漏洩割合LR3を、その順で小さくする。 Means (2): The first leakage ratio LR1, the second leakage ratio LR2, and the third leakage ratio by decreasing the first opening sectional area OS1, the second opening sectional area OS2, and the third opening sectional area OS3 in that order. Make LR3 smaller in that order.
 手段(3):第1曲り部36、第2曲り部37をその順で大きくすることで、または、第1曲り部36、第2曲り部37、第3曲り部をその順で大きくすることにより、第1漏洩割合LR1、第2漏洩割合LR2、第3漏洩割合LR3を、その順で小さくする。 Means (3): increasing the first bending portion 36 and the second bending portion 37 in that order, or enlarging the first bending portion 36, the second bending portion 37 and the third bending portion in that order Thus, the first leak ratio LR1, the second leak ratio LR2, and the third leak ratio LR3 are reduced in that order.
 手段(4):コア2に、第1光吸収剤と、第2光吸収剤と、必要により、第3光吸収剤とを含有させる。 Means (4): The core 2 is made to contain the first light absorber, the second light absorber, and, if necessary, the third light absorber.
 上記した手段は、適宜組み合わせることができる。 The above-described means can be combined as appropriate.
 上記した各実施形態および各変形例は、適宜組み合わせることができる。
なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該当技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
Each embodiment and each modification which were mentioned above can be combined suitably.
Although the above invention is provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the invention which are apparent to those skilled in the relevant art are within the scope of the following claims.
 光導波路は、光学用途に用いられる。 Optical waveguides are used in optical applications.
1 クラッド
2 コア
11 第1入射面
12 第2入射面
13 第3入射面
14 出射面
16 合流部
17 第1合流部分
18 第2合流部分
19 全合流部
26 第1コア部
27 第2コア部
28 第3コア部
36 第1曲り部
37 第2曲り部
42 直線部
I1 第1強度(第1光)
I2 第2強度(第2光)
I3 第3強度(第3光)
L1 第1光路長
L2 第2光路長
L3 第3光路長
LR1 第1漏洩割合(第1光)
LR2 第2漏洩割合(第2光)
LR3 第3漏洩割合(第3光)
OS1 第1開口断面積(第1コア部)
OS2 第2開口断面積(第2コア部)
OS3 第3開口断面積(第3コア部)
R1 第1減衰割合(第1光)
R2 第2減衰割合(第2光)
R3 第3減衰割合(第3光)
S1 第1面積(第1入射面)
S2 第2面積(第2入射面)
S3 第3面積(第3入射面)
REFERENCE SIGNS LIST 1 clad 2 core 11 first incident surface 12 second incident surface 13 third incident surface 14 exit surface 16 joining portion 17 first joining portion 18 second joining portion 19 total joining portion 26 first core portion 27 second core portion 28 Third core portion 36 first curved portion 37 second curved portion 42 straight portion I1 first intensity (first light)
I2 second intensity (second light)
I3 third intensity (third light)
L1 first optical path length L2 second optical path length L3 third optical path length LR1 first leakage ratio (first light)
LR2 Second leak rate (second light)
LR3 third leak rate (third light)
OS1 1st opening cross section (1st core part)
OS2 Second Opening Cross Section (Second Core)
OS3 Third Opening Cross Section (Third Core)
R1 1st attenuation ratio (1st light)
R2 second attenuation ratio (second light)
R3 3rd attenuation ratio (3rd light)
S1 1st area (1st entrance plane)
S2 Second area (second incident surface)
S3 third area (third incident surface)

Claims (10)

  1.  クラッドと、前記クラッドに埋設されるコアとを備え、
     前記コアは、
      光の伝送方向上流側端面に配置され、第1波長の光が前記コアに入射する第1入射面と、
      前記伝送方向上流側端面に、前記伝送方向に交差する方向において前記第1入射面と間隔を隔てるように配置され、前記第1波長より短い第2波長の光が前記コアに入射する第2入射面と、
      前記伝送方向上流側端面に、前記伝送方向に交差する方向において前記第1入射面および前記第2入射面と間隔を隔てるように配置され、前記第2波長より短い第3波長の光が前記コアに入射する第3入射面と、
      前記第1入射面、前記第2入射面および前記第3入射面の前記伝送方向下流側に配置され、前記第1波長の光、前記第2波長の光および前記第3波長の光が合流する合流部と、
      前記合流部の前記伝送方向下流側に配置され、前記第1波長の光、前記第2波長の光および前記第3波長の光が出射する出射面とを有し、
     前記第1入射面の第1面積S1と、前記第2入射面の第2面積S2と、前記第3入射面の第3面積S3とが、略同一であり、
     前記第1入射面に入射され、前記出射面から出射される前記第1波長の光の第1減衰割合R1が、前記第2入射面に入射され、前記出射面から出射される前記第2波長の光の第2減衰割合R2に比べて、大きく、
     前記第2減衰割合R2が、前記第3入射面に入射され、前記出射面から出射される前記第3波長の光の第3減衰割合R3に比べて、大きいことを特徴とする、光導波路。
    A cladding and a core embedded in the cladding;
    The core is
    A first incident surface disposed on the upstream end surface in the light transmission direction, and light of the first wavelength enters the core;
    A second incident light is disposed on the upstream end surface in the transmission direction so as to be spaced apart from the first incident surface in a direction intersecting the transmission direction, and light of a second wavelength shorter than the first wavelength is incident on the core The face,
    At the upstream end face in the transmission direction, the core is disposed so as to be spaced apart from the first incident surface and the second incident surface in a direction intersecting the transmission direction, and the light of the third wavelength shorter than the second wavelength is the core The third incident surface to be incident on the
    The first light incident surface, the second light incident surface, and the third light incident surface are disposed downstream of the transmission direction, and the light of the first wavelength, the light of the second wavelength, and the light of the third wavelength merge At the confluence,
    It is disposed on the downstream side in the transmission direction of the merging section, and has an emission surface from which the light of the first wavelength, the light of the second wavelength, and the light of the third wavelength are emitted,
    The first area S1 of the first incident surface, the second area S2 of the second incident surface, and the third area S3 of the third incident surface are approximately the same.
    A first attenuation ratio R1 of the light of the first wavelength that is incident on the first incident surface and that is emitted from the output surface is incident on the second incident surface, and the second wavelength that is output from the output surface Is larger than the second attenuation ratio R2 of
    An optical waveguide characterized in that the second attenuation ratio R2 is larger than a third attenuation ratio R3 of the light of the third wavelength that is incident on the third incident surface and emitted from the emission surface.
  2.  前記第1波長の光が、赤色光を含み、
     前記第2波長の光が、緑色光を含み、
     前記第3波長の光が、青色光を含むことを特徴とする、請求項1に記載の光導波路。
    The light of the first wavelength comprises red light,
    The light of the second wavelength comprises green light,
    The optical waveguide according to claim 1, wherein the light of the third wavelength includes blue light.
  3.  前記合流部は、
      前記第1波長の光、前記第2波長の光および前記第3波長の光のうち、いずれか2つが合流する第1合流部分と、
      前記第1合流部分の前記伝送方向下流側に配置され、残部の光と、前記第1合流部分で合流した光とが合流する第2合流部分とを備えることを特徴とする、請求項1に記載の光導波路。
    The merging section is
    A first merging portion in which any two of the light of the first wavelength, the light of the second wavelength, and the light of the third wavelength merge;
    The device according to claim 1, further comprising: a second merging portion disposed downstream of the first merging portion in the transmission direction and in which the remaining light and the light merged in the first merging portion merge. Optical waveguide as described.
  4.  前記合流部は、
      前記第1波長の光、前記第2波長の光および前記第3波長の光の3つが合流する全合流部
    を備えることを特徴とする、請求項1に記載の光導波路。
    The merging section is
    The optical waveguide according to claim 1, further comprising: a total junction where three of the light of the first wavelength, the light of the second wavelength, and the light of the third wavelength merge.
  5.  前記第1入射面から前記出射面までの第1光路長L1が、前記第2入射面から前記出射面までの第2光路長L2に対して、長く、
     前記第2光路長L2が、前記第3入射面から前記出射面までの第3光路長L3に対して、長いことを特徴とする、請求項1に記載の光導波路。
    A first optical path length L1 from the first incident surface to the emission surface is longer than a second optical path length L2 from the second incident surface to the emission surface,
    The optical waveguide according to claim 1, wherein the second optical path length L2 is longer than a third optical path length L3 from the third incident surface to the exit surface.
  6.  前記第1波長の光が前記第1入射面から前記出射面まで伝送されるときの第1漏洩割合LR1は、前記第2波長の光が光前記第2入射面から前記出射面まで伝送されるときの第2漏洩割合LR2に対して、大きく、
     前記第2漏洩割合LR2は、前記第3波長の光が光前記第3入射面から前記出射面まで伝送されるときの第3漏洩割合LR3に対して、大きいことを特徴とする、請求項1に記載の光導波路。
    The first leak rate LR1 when the light of the first wavelength is transmitted from the first incident surface to the exit surface is that the light of the second wavelength is transmitted from the second incident surface to the light exit surface When compared to the second leak rate LR2,
    The second leak ratio LR2 is larger than a third leak ratio LR3 when the light of the third wavelength is transmitted from the light third incident surface to the light exit surface. The optical waveguide as described in.
  7.  前記コアは、
      前記合流部の伝送方向上流側に配置され、前記第1入射面に入射された前記第1波長の光を伝送する第1コア部と、
      前記合流部の伝送方向上流側に配置され、前記第2入射面に入射された前記第2波長の光を伝送する第2コア部と、
     前記合流部の伝送方向上流側に配置され、前記第3入射面に入射された前記第3波長の光を伝送する第3コア部とを備え、
     前記第1コア部および前記第2コア部は、ともに、前記伝送方向下流側に向かうに従って、開口断面積が小さくなる形状を有し、
     前記第3コア部は、前記伝送方向下流側に向かうに従って、開口断面積が小さくなる形状または開口断面積が同一の形状を有し、
     前記第1コア部において前記合流部に臨む前記伝送方向下流側端縁における第1開口断面積OS1が、前記第2コア部において前記合流部に臨む前記伝送方向下流側端縁における第2開口断面積OS2に比べて、小さく、
     前記第2開口断面積OS2が、前記第3コア部において前記合流部に臨む前記伝送方向下流側端縁における第3開口断面積OS3に比べて、小さいことを特徴とする、請求項1に記載の光導波路。
    The core is
    A first core portion disposed upstream of the merging portion in the transmission direction, and transmitting the light of the first wavelength incident on the first incident surface;
    A second core portion disposed upstream of the merging portion in the transmission direction and transmitting the light of the second wavelength incident on the second incident surface;
    And a third core section disposed upstream of the merging section in the transmission direction and transmitting the light of the third wavelength incident on the third incident surface.
    The first core portion and the second core portion both have a shape in which the cross-sectional area of the opening decreases toward the downstream side in the transmission direction,
    The third core portion has a shape in which the cross-sectional area of the opening decreases as it goes to the downstream side in the transmission direction, or the shape of the cross-sectional area of the opening is the same.
    In the first core portion, a first opening cross-sectional area OS1 at the downstream end edge in the transmission direction facing the junction, a second opening cross section at the downstream end edge in the transmission direction facing the junction at the second core portion Small compared to area OS2,
    The second opening cross-sectional area OS2 is smaller than the third opening cross-sectional area OS3 at the downstream end edge of the transmission direction facing the junction in the third core portion. Optical waveguide.
  8.  前記第1入射面および前記第2入射面は、ともに、光を前記第1入射面および前記第2入射面に入射する方向に投影したときに、前記出射面からずれて配置され、
     前記第3入射面は、光を前記第3入射面に入射する方向に投影したときに、前記出射面と同一位置、または、ずれて配置されており、
     前記コアにおける前記第1入射面から前記出射面までの第1光路は、第1曲り部を有し、
     前記コアにおける前記第2入射面から前記出射面までの第2光路は、第2曲り部を有し、
     前記コアにおける前記第3入射面から前記出射面までの第3光路は、直線部または第3曲り部を有し、
     前記第1曲り部は、前記第2曲り部に対して、大きく曲がり、
     前記第2曲り部は、前記第3曲り部に対して、大きく曲がることを特徴とする、請求項1に記載の光導波路。
    The first incident surface and the second incident surface are both deviated from the exit surface when light is projected in a direction in which the light is incident on the first incident surface and the second incident surface,
    The third incident surface is disposed at the same position as or shifted from the exit surface when light is projected in a direction in which the light is incident on the third incident surface,
    A first light path from the first incident surface to the exit surface in the core has a first bend,
    A second light path from the second incident surface to the exit surface in the core has a second curved portion,
    The third light path from the third incident surface to the exit surface in the core has a straight portion or a third curved portion,
    The first bending portion is largely bent with respect to the second bending portion.
    The optical waveguide according to claim 1, wherein the second curved portion is largely bent with respect to the third curved portion.
  9.  前記コアは、
      前記第1波長の光を部分的に吸収する第1光吸収剤と、
      前記第2波長の光を部分的に吸収する第2光吸収剤とを、
     前記第1減衰割合R1が前記第2減衰割合R2に比べて大きく、かつ、前記第2減衰割合R2が前記第3減衰割合R3に比べて大きくなるように、
    含有することを特徴とする、請求項1に記載の光導波路。
    The core is
    A first light absorbing agent partially absorbing the light of the first wavelength;
    A second light absorbing agent that partially absorbs the light of the second wavelength;
    The first attenuation rate R1 is larger than the second attenuation rate R2, and the second attenuation rate R2 is larger than the third attenuation rate R3.
    The optical waveguide according to claim 1, characterized in that it contains.
  10.  前記第1波長の光を前記第1入射面に入射させ、前記第1波長の光と同じ強度を有する前記第2波長の光を前記第2入射面に入射させ、前記第2波長の光と同じ強度を有する前記第3波長の光を前記第3入射面に入射させたときに、
     前記出射面から出射される前記第1波長の光の第1強度I1の、前記第2波長の光の第2強度I2に対する比(I1/I2)が、0.6以上、1.4以下であり、
     前記第1強度I1の、前記第3波長の光の第3強度I3に対する比(I1/I3)が、0.6以上、1.4以下であることを特徴とする、請求項1に記載の光導波路。
    Light of the first wavelength is incident on the first incident surface, light of the second wavelength having the same intensity as the light of the first wavelength is incident on the second incident surface, and light of the second wavelength When light of the third wavelength having the same intensity is incident on the third incident surface,
    A ratio (I1 / I2) of the first intensity I1 of the light of the first wavelength emitted from the emission surface to the second intensity I2 of the light of the second wavelength is 0.6 or more and 1.4 or less Yes,
    The ratio (I1 / I3) of the first intensity I1 to the third intensity I3 of the light of the third wavelength is 0.6 or more and 1.4 or less. Optical waveguide.
PCT/JP2018/045069 2017-12-13 2018-12-07 Optical waveguide WO2019117031A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-239003 2017-12-13
JP2017239003A JP7187148B2 (en) 2017-12-13 2017-12-13 optical waveguide

Publications (1)

Publication Number Publication Date
WO2019117031A1 true WO2019117031A1 (en) 2019-06-20

Family

ID=66820226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045069 WO2019117031A1 (en) 2017-12-13 2018-12-07 Optical waveguide

Country Status (3)

Country Link
JP (1) JP7187148B2 (en)
TW (1) TWI814759B (en)
WO (1) WO2019117031A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7105498B2 (en) * 2020-02-20 2022-07-25 国立大学法人福井大学 Optical waveguide multiplexer, light source module, two-dimensional light beam scanner, and light beam scanning image projector
EP4350402A1 (en) * 2021-05-28 2024-04-10 Kyocera Corporation Light source module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319707A (en) * 1988-06-21 1989-12-26 Mitsubishi Gas Chem Co Inc Optical multiplexer
JPH11352307A (en) * 1998-06-05 1999-12-24 Mitsubishi Rayon Co Ltd Method for using light transmission body or light transmission body array, and color image sensor
JP2005077971A (en) * 2003-09-03 2005-03-24 Sony Corp Light source module and display unit
JP2005189385A (en) * 2003-12-25 2005-07-14 Sony Corp Branch type optical waveguide, light source module, and optical information processing unit
JP2012048036A (en) * 2010-08-27 2012-03-08 Fujikura Ltd Optical waveguide element
WO2012160980A1 (en) * 2011-05-24 2012-11-29 日本電気株式会社 Optical waveguide optical terminator
US20170038532A1 (en) * 2015-08-05 2017-02-09 Huawei Technologies Co., Ltd. Optical attenuator and fabrication method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003673A (en) * 2004-06-18 2006-01-05 Sony Corp Optical waveguide device, light source device and optical information processing device
JP2007225920A (en) 2006-02-23 2007-09-06 Ricoh Co Ltd Optical element, optical module, and image forming apparatus
JP2009300562A (en) * 2008-06-11 2009-12-24 Central Glass Co Ltd Multi-channel right-angled optical path converting element
CA2789680C (en) * 2010-03-10 2017-10-03 David L. Barron Fiber optic pigtail assembly allowing single and mass splicing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319707A (en) * 1988-06-21 1989-12-26 Mitsubishi Gas Chem Co Inc Optical multiplexer
JPH11352307A (en) * 1998-06-05 1999-12-24 Mitsubishi Rayon Co Ltd Method for using light transmission body or light transmission body array, and color image sensor
JP2005077971A (en) * 2003-09-03 2005-03-24 Sony Corp Light source module and display unit
JP2005189385A (en) * 2003-12-25 2005-07-14 Sony Corp Branch type optical waveguide, light source module, and optical information processing unit
JP2012048036A (en) * 2010-08-27 2012-03-08 Fujikura Ltd Optical waveguide element
WO2012160980A1 (en) * 2011-05-24 2012-11-29 日本電気株式会社 Optical waveguide optical terminator
US20170038532A1 (en) * 2015-08-05 2017-02-09 Huawei Technologies Co., Ltd. Optical attenuator and fabrication method thereof

Also Published As

Publication number Publication date
TWI814759B (en) 2023-09-11
TW201928432A (en) 2019-07-16
JP7187148B2 (en) 2022-12-12
JP2019105774A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP5748859B2 (en) Optical merging / branching device, bidirectional optical propagation device, and optical transmission / reception system
US6744945B2 (en) Wavelength multiplexer and optical unit
WO2019117031A1 (en) Optical waveguide
KR20050004283A (en) Loss-less etendue-preserving light guides
US7577328B2 (en) Optical reflector, optical system and optical multiplexer/demultiplexer device
JP2000147309A (en) Hybrid optical wave guide device
JP2017129744A (en) Optical multiplexing device
JP5918930B2 (en) Array type photo module
JP2021005550A (en) Light source module and display device
US20220326426A1 (en) Transversal light pipe
JP2022039849A (en) Multi-core fiber coupling system
JP2012194448A (en) Optical connector and endoscope system
JPH07321413A (en) Optical relay amplifier
JPS62183405A (en) Optical waveguide circuit with taper and its production
CA2313720C (en) An optical coupler arrangement
JP2017040887A (en) Optical waveguide connector
JP2006139269A (en) Optical system having optical waveguide and optical multiplexer/demultiplexer
US6704478B2 (en) Wavelength separation optical device and multiple wavelength light transmission module
JP3820816B2 (en) Optical branching and coupling device
JP2946434B2 (en) Multi-branch or multi-branch structure of optical fiber and optical waveguide
EP1211530A2 (en) Optical coupling device with anisotropic light-guiding member
JPS60212710A (en) Multicore fiber branching device
US8693820B2 (en) Flat optical waveguide with connections to channel and input optical waveguides
CA2552417A1 (en) Optical functional circuit
WO2020209284A1 (en) Optical waveguide component and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888148

Country of ref document: EP

Kind code of ref document: A1