WO2019116702A1 - Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element Download PDF

Info

Publication number
WO2019116702A1
WO2019116702A1 PCT/JP2018/037876 JP2018037876W WO2019116702A1 WO 2019116702 A1 WO2019116702 A1 WO 2019116702A1 JP 2018037876 W JP2018037876 W JP 2018037876W WO 2019116702 A1 WO2019116702 A1 WO 2019116702A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
solvent
aligning agent
crystal aligning
Prior art date
Application number
PCT/JP2018/037876
Other languages
French (fr)
Japanese (ja)
Inventor
内山 克博
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201880066614.6A priority Critical patent/CN111212878B/en
Priority to JP2019558932A priority patent/JP6891975B2/en
Publication of WO2019116702A1 publication Critical patent/WO2019116702A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present disclosure relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal element.
  • Liquid crystal elements are used in various applications including display devices such as televisions, personal computers, and mobile phones, optical compensation films such as retardation films, and light control films. These liquid crystal elements have a liquid crystal alignment film having a function of aligning liquid crystal molecules in a predetermined direction.
  • a liquid crystal alignment film is formed by applying a liquid crystal alignment agent, in which a polymer component is dissolved in an organic solvent, on a glass or resin base and heating.
  • a liquid crystal alignment agent in which a polymer component is dissolved in an organic solvent
  • polyamic acid and soluble polyimide are widely used because they are excellent in mechanical strength, liquid crystal alignment property, and affinity with liquid crystal (see, for example, Patent Documents 1 and 2) ).
  • coating unevenness in-plane unevenness
  • the product yield decreases And the liquid crystal alignment of the resulting liquid crystal element may not be sufficient.
  • coating unevenness causes the thickness of the liquid crystal alignment film to be relatively thick (for example, 0.3 ⁇ m) in order to, for example, enhance the alignment of the liquid crystal by the liquid crystal alignment film or enhance the adhesion between the liquid crystal alignment film and the substrate.
  • the solvent can not be sufficiently removed in the heating step for film formation, and coating unevenness easily occurs on the surface of the alignment film due to the influence of the residual solvent in the alignment film. In this case, there is a concern that the liquid crystal alignment of the liquid crystal element to be obtained is not sufficient.
  • the substrate on which the alignment film is formed may be overlapped in a roll shape and temporarily stored.
  • the amount of the solvent remaining in the alignment film is large, the offset of the polymer component and the remaining solvent in the alignment film to the substrate side is easily caused.
  • the liquid crystal alignment film may be easily peeled off from the substrate, or the liquid crystal alignment of the liquid crystal element to be obtained may be deteriorated.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a liquid crystal aligning agent having good coatability to a substrate and capable of sufficiently reducing the residual solvent in the alignment film. Do.
  • a polymer component and a solvent component are contained, and the solvent component is 1 to 70 mass% of the following solvent (A) with respect to the total amount of the solvent component, and the following solvent (B) solvent Liquid crystal aligning agent containing 0 to 40% by mass with respect to the total amount of (A) Solvent: a group consisting of methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 3-methoxybutyl acetate, a compound represented by the following formula (1), and a compound represented by the following formula (2) At least one compound selected from (B) Solvent: a compound having a boiling point of 200 ° C. or higher at atmospheric pressure and different from the solvent (A).
  • R 1 is an alkyl group having 1 to 4 carbon atoms.
  • R 2 is an alkyl group having 1 to 4 carbon atoms
  • R 3 is an alkyl group having 1 to 4 carbon atoms.
  • N is 0 or 1.
  • ⁇ 2> Liquid crystal aligning film formed using liquid crystal aligning agent of said ⁇ 1> ⁇ 3>
  • the liquid crystal element which comprises the liquid crystal aligning film of said ⁇ 2>.
  • the manufacturing method of the liquid crystal aligning film which apply
  • the liquid crystal aligning agent of the present disclosure has good coatability with respect to a substrate, and can sufficiently remove the solvent in the liquid crystal aligning agent at the time of heating at the time of forming the alignment film. It can be sufficiently reduced. Thereby, a decrease in product yield can be suppressed, and a high quality liquid crystal element can be obtained.
  • the liquid crystal aligning agent of the present disclosure contains a polymer component and a solvent component.
  • the liquid crystal aligning agent is a liquid polymer composition in which a polymer component is dissolved in a solvent component.
  • the main skeleton of the polymer component contained in the liquid crystal aligning agent is not particularly limited.
  • polyamic acid, polyamic acid ester, polyimide, polyorganosiloxane, polyester, polyamide, polyamide imide, polybenzoxazole precursor, polybenzo Main skeletons such as oxazole, cellulose derivative, polyacetal, styrene-maleimide copolymer, poly (meth) acrylate and the like can be mentioned.
  • (meth) acrylate is meant to include acrylate and methacrylate.
  • the polymer component is selected from the group consisting of polyamic acid, polyimide, polyamic acid ester, polyamide imide, poly (meth) acrylate, and polyorganosiloxane among the above.
  • Photosensitive group-containing polymer As the polymer (P), a part or all of the content contained in the liquid crystal alignment agent may be used as a polymer having a photosensitive structure (hereinafter, also referred to as a “photosensitive group-containing polymer”).
  • the photosensitive structure may be any structure or functional group that is sensitive to light to cause a reaction, and includes photoalignable groups and polymerizable groups.
  • the polymer (P) has a photoalignable group, it becomes possible to impart liquid crystal alignment to a coating film produced using a liquid crystal aligning agent by the photoalignment method.
  • the effect by applying the light alignment method specifically, the effect of suppressing the occurrence of display defects and the decrease in yield due to the generation of dust and static electricity, and the like, to the organic thin film formed on the substrate
  • the effect of being able to uniformly impart the liquid crystal alignment ability is obtained.
  • the adhesion of the liquid crystal alignment film to the substrate can be enhanced, and the reduction in product yield can be further suppressed when manufacturing a liquid crystal device to which a roll-to-roll system is applied. It is preferable in that it can be
  • the photoalignable group is a functional group that imparts anisotropy to the film by a photoisomerization reaction by light irradiation, a photodimerization reaction, a photolysis reaction, a light fleece rearrangement reaction, or the like.
  • azobenzene structure containing azobenzene or a derivative thereof as a basic skeleton examples thereof include an azobenzene structure containing azobenzene or a derivative thereof as a basic skeleton, a cinnamic acid structure containing cinnamic acid or a derivative thereof as a basic skeleton, a chalcone structure containing chalcone or a derivative thereof as a basic skeleton, benzophenone or the like
  • examples thereof include a phenylbenzoate structure containing phenyl benzoate or a derivative thereof as a basic skeleton,
  • the group having a cinnamic acid structure preferably has a partial structure represented by the following formula (4).
  • R 31 and R 32 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, is .
  • R 33 is an alkoxy group or a cyano group having 1 to 3 carbon atoms
  • a halogen atom, an alkyl group of 1 to 3 carbon atoms, an alkoxy group of 1 to 3 carbon atoms or a cyano group, a 1 is an integer of 0 to 4. However, when a 1 is 2 or more, plural R 33 May be the same or different, "*" indicates that it is a bond.
  • the substituent was introduce
  • Group hereinafter, these are also referred to as “forward cinnamate group”
  • groups in which a substituent is introduced into the benzene ring possessed by the divalent group hereinafter, these are also referred to as “reverse cinnamate group” and the like.
  • the forward cinnamate group is represented, for example, by the following formula (cn-1).
  • the reverse cinnamate group is represented, for example, by the following formula (cn-2).
  • R 34 represents a hydrogen atom, a halogen atom, an alkyl group of 1 to 3 carbon atoms, an alkoxy group of 1 to 3 carbon atoms, or a cyano group.
  • R 35 represents a phenylene group or biphenylene Group, a terphenylene group or a cyclohexylene group, or at least a part of hydrogen atoms of a phenylene group, a biphenylene group, a terphenylene group or a cyclohexylene group is a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, It is a group substituted by any of an alkoxy group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms.
  • a 11 is a single bond, an oxygen atom, a sulfur atom, or an alkanediyl having 1 to 3 carbon atoms.
  • R 36 is an alkyl group having 1 to 3 carbon atoms.
  • a 12 represents an oxygen atom, * 2 -COO-, * 2 -OCO-, * 2 -NH-CO- or * 2 -CO-NH- (“* 2 ” represents a bond to R 37 ) It is.
  • R 37 is an alkanediyl group having 1 to 6 carbon atoms.
  • c1 is 0 or 1; "*" Indicates that it is a bond.
  • R 31 , R 32 , R 33 and a 1 are as defined in the above formula (4).
  • a (meth) acryloyl group or a vinyl group is preferable in that it is highly reactive to light.
  • the (meth) acryloyl group is a meaning that includes an acryloyl group and a methacryloyl group
  • the epoxy group is a meaning that includes an oxiranyl group and an oxetanyl group.
  • the photosensitive structure of the (P) polymer is selected from the group consisting of cinnamic acid structure, azobenzene structure, chalcone structure, stilbene structure, diphenylacetylene structure, (meth) acryloyl group, vinyl group, and phenylbenzoate structure. It is preferably at least one selected, particularly preferably a cinnamic acid structure or a (meth) acryloyl group.
  • the content ratio of the photosensitive structure is preferably 10 mol% or more with respect to the total amount of the monomer units constituting the polymer (P), It is more preferable that it is 20 mol% or more.
  • all of the polymer components of the liquid crystal aligning agent may be a polymer having a photoalignable group, and a part of the polymer may be a photoalignable group. It is good also as a polymer which it has.
  • the use ratio of the polymer is 1 to 80% by mass with respect to the total amount of the polymer component used for preparation of the liquid crystal alignment agent It is preferable that the amount be 2 to 70% by mass.
  • the usage ratio of the said polymer is 1-80 mass% with respect to the whole quantity of the polymer component used for preparation of a liquid crystal aligning agent. It is preferably set to 2 to 70% by mass.
  • a photosensitive group containing polymer may be used individually by 1 type, and 2 or more types may be mixed and used.
  • liquid crystalline polymer As the polymer (P), a partial structure (hereinafter also referred to as “liquid crystalline structure”) exhibiting liquid crystallinity in a predetermined temperature range is used as a side chain for a part or all of the content contained in the liquid crystal aligning agent. It may be used as a polymer (hereinafter also referred to as "liquid crystalline polymer”). By containing a liquid crystalline polymer in the liquid crystal aligning agent, it is preferable in that the initial voltage holding ratio of the liquid crystal element can be further increased.
  • the liquid crystalline structure includes a structure having a rigid portion (mesogen structure), and a specific example thereof includes a structure having a group represented by the following formula (5).
  • R 41 is a hydrogen atom or a monovalent organic group) and is .r is an integer of 1 to 3 When r is 2 or 3, each of Ar 2 and X 21 independently has the above-mentioned definition. “*” Represents a bonding hand.)
  • X 21 is preferably a single bond or —COO—.
  • the monovalent organic group of R 41 include an alkyl group having 1 to 6 carbon atoms, a protecting group and the like.
  • the protective group include, for example, t-butoxycarbonyl group, benzyloxycarbonyl group, 1,1-dimethyl-2-haloethyloxycarbonyl group, allyloxycarbonyl group and the like, and t-butoxycarbonyl group is preferable.
  • the substituent of the ring portion of Ar 1 and Ar 2 is preferably an alkyl group having 1 to 5 carbon atoms or a halogen atom, and more preferably a methyl group or a fluorine atom.
  • Preferred specific examples of the partial structure represented by the above formula (5) include, for example, 4,4′-biphenylene group, 4,4′-bicyclohexylene group, p-terphenylene group, and the following formula (5-1) And groups having a methyl group or a fluorine atom in the ring portion of these groups, and the like.
  • the “*” in the above formula (5) and the following formulas (5-1) to (5-4) may be bonded to a hydrogen atom. (In the formula, "*" indicates a bond.)
  • the polymer (P) is a liquid crystalline polymer
  • a polymer having a photosensitive group in a side chain can be preferably used as the liquid crystalline polymer.
  • the liquid crystalline polymer preferably has a group represented by each of the following formulas (F-1) to (F-7) in the side chain.
  • a 1 and B 1 and D 1 are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—
  • Y 2 is a benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, or carbon number
  • a divalent cyclic group having 5 to 8 cyclic hydrocarbons, at least one hydrogen atom bonded to the ring being a halogen atom, a nitro
  • R 11 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 13 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • k is an integer of 1 to 12
  • m and j are each independently an integer of 1 to 3
  • g is 1
  • the liquid crystalline polymer is preferably at least one selected from the group consisting of poly (meth) acrylates, polyamic acids, polyimides and polyamic acid esters. And poly (meth) acrylates are particularly preferred.
  • the use ratio of the liquid crystalline polymer is appropriately set in a range of 100% by mass or less based on the total amount of the polymer components used for the preparation of the liquid crystal aligning agent. Can.
  • 1 type may be used independently and 2 or more types may be mixed and used.
  • the polymer (P) can be obtained by appropriately combining conventional methods of organic chemistry according to the main skeleton thereof.
  • the polyamic acid, the polyimide, the polyamic acid ester, the polyamide imide, the poly (meth) acrylate, and the polyorganosiloxane are respectively described below.
  • the polyamic acid can be obtained by reacting tetracarboxylic acid dianhydride with a diamine compound.
  • tetracarboxylic acid dianhydride examples include aliphatic tetracarboxylic acid dianhydrides, alicyclic tetracarboxylic acid dianhydrides, and aromatic tetracarboxylic acid dianhydrides. .
  • aliphatic tetracarboxylic acid dianhydride for example, 1,2,3,4-butanetetracarboxylic acid dianhydride etc .
  • alicyclic tetracarboxylic acid dianhydrides include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 2,3,5-Tricarboxycyclopentylacetic acid dianhydride, 5- (2,5-dioxotetrahydrofuran-3-yl) -3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1 , 3-dione, 5- (2,5-dioxotetrahydrofuran-3-yl) -8-methyl-3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-
  • Diamine compound As a diamine compound used for the synthesis
  • combination of a polyamic acid, an aliphatic diamine, an alicyclic diamine, aromatic diamine, a diamino organosiloxane etc. can be mentioned, for example.
  • these diamines include, as aliphatic diamines, for example, metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine and the like; as alicyclic diamines, for example, 1,4 -Diaminocyclohexane, 4,4'- methylenebis (cyclohexylamine) and the like; As aromatic diamines, for example, dodecanoxydiaminobenzene, octadecanoxydiaminobenzene, cholestanyloxydiaminobenzene, cholestanyl diaminobenzoate, cholesteryl diaminobenzoate, 3,6-bis (4-aminobenzoyloxy) cholestane, 3 , 6-Bis (4-aminophenoxy) cholestane, 1,1-bis (4-((aminophenyl) methyl) pheny
  • an alignment group-containing diamine such as a compound represented by the following formula, a diamine having a cinnamic acid structure, and a diamine having a liquid crystalline structure:
  • diaminoorganosiloxane 1,3-bis (3-aminopropyl) -tetramethyldisiloxane and the like can be mentioned, respectively, and diamines described in JP-A-2010-97188 can be used.
  • a polyamic acid can be obtained by reacting the above-described tetracarboxylic acid dianhydride and a diamine compound, as necessary, together with a molecular weight modifier.
  • the use ratio of the tetracarboxylic acid dianhydride and the diamine compound to be subjected to the synthesis reaction of the polyamic acid is such that the acid anhydride group of the tetracarboxylic acid dianhydride is 0.2 with respect to 1 equivalent of the amino group of the diamine compound. A ratio of ⁇ 2 equivalents is preferred.
  • the molecular weight modifier examples include acid monoanhydrides such as maleic anhydride, phthalic anhydride and itaconic anhydride, monoamine compounds such as aniline, cyclohexylamine and n-butylamine, and monoisocyanate compounds such as phenyl isocyanate and naphthyl isocyanate. It can be mentioned.
  • the use ratio of the molecular weight modifier is preferably 20 parts by mass or less with respect to 100 parts by mass in total of the tetracarboxylic acid dianhydride used and the diamine compound.
  • the synthesis reaction of polyamic acid is preferably carried out in an organic solvent.
  • the reaction temperature at this time is preferably -20 ° C to 150 ° C, and the reaction time is preferably 0.1 to 24 hours.
  • the organic solvent used for the reaction include aprotic polar solvents, phenolic solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons, hydrocarbons and the like.
  • organic solvents are N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, ⁇ -butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol And using one or more selected from the group consisting of and halogenated phenols as a solvent, or using a mixture of one or more of these and another organic solvent (eg, butyl cellosolve, diethylene glycol diethyl ether, etc.) preferable.
  • organic solvent eg, butyl cellosolve, diethylene glycol diethyl ether, etc.
  • the amount (a) of the organic solvent used is such that the total amount (b) of the tetracarboxylic acid dianhydride and the diamine is 0.1 to 50% by mass with respect to the total amount (a + b) of the reaction solution. Is preferred.
  • a reaction solution in which the polyamic acid is dissolved is obtained. This reaction solution may be used as it is for preparation of a liquid crystal aligning agent, or may be used for preparation of a liquid crystal aligning agent after the polyamic acid contained in the reaction solution is isolated.
  • the polyamic acid ester is, for example, [I] a method of reacting a polyamic acid obtained by the above synthesis reaction with an esterifying agent, [II] tetracarboxylic acid diester These compounds can be obtained by a method of reacting a diamine compound with a diamine compound, a method of reacting a [III] tetracarboxylic acid diester dihalide with a diamine compound, or the like.
  • the polyamic acid ester to be contained in the liquid crystal aligning agent may have only an amic acid ester structure, or may be a partially esterified product in which an amic acid structure and an amic acid ester structure coexist.
  • the reaction solution obtained by dissolving the polyamic acid ester may be used as it is for preparation of a liquid crystal aligning agent, or the polyamic acid ester contained in the reaction solution may be isolated and then provided for preparation of a liquid crystal aligning agent. Good.
  • the polyimide can be obtained, for example, by dehydration ring closure and imidization of the polyamic acid synthesized as described above.
  • the polyimide may be a completely imidized product obtained by dehydrating and ring closing all of the amic acid structure of the precursor polyamic acid, and only a part of the amic acid structure may be dehydrating and ring closing, and the amic acid structure and the imide. It may be a partial imidate coexisting with a ring structure.
  • the polyimide used for the reaction preferably has an imidation ratio of 20 to 99%, more preferably 30 to 90%.
  • the imidation ratio is a percentage representing the ratio of the number of imide ring structures to the total number of amic acid structures of polyimide and the number of imide ring structures.
  • part of the imide ring may be an isoimide ring.
  • the dehydration ring closure of the polyamic acid is preferably carried out by dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydration ring closure catalyst to this solution, and heating as necessary.
  • a dehydrating agent for example, an acid anhydride such as acetic anhydride, propionic anhydride, trifluoroacetic anhydride and the like can be used.
  • the amount of the dehydrating agent used is preferably 0.01 to 20 moles relative to 1 mole of the polyamic acid's amic acid structure.
  • the dehydration ring closure catalyst for example, tertiary amines such as pyridine, collidine, lutidine and triethylamine can be used.
  • the amount of the dehydrating ring-closing catalyst used is preferably 0.01 to 10 moles relative to 1 mole of the dehydrating agent used.
  • an organic solvent used for a dehydration ring-closing reaction the organic solvent illustrated as what is used for the synthesis
  • the reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C.
  • the reaction time is preferably 1.0 to 120 hours.
  • a reaction solution containing a polyimide is obtained. This reaction solution may be used as it is for preparation of a liquid crystal aligning agent, or may be used for preparing a liquid crystal aligning agent after isolating the polyimide.
  • Polyimides can also be obtained by imidization of polyamic acid esters.
  • the polyamic acid, polyamic acid ester and polyimide obtained as described above preferably have a solution viscosity of 10 to 800 mPa ⁇ s when this is made into a solution with a concentration of 10% by mass, preferably 15 to 500 mPa. More preferably, it has a solution viscosity of s.
  • the solution viscosity (mPa ⁇ s) of the polyamic acid, polyamic acid ester and polyimide is 10% by mass of a solution prepared using a good solvent of these polymers (eg, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.)
  • the polymer solution of the above was a value measured at 25.degree. C. using an E-type rotational viscometer.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of polyamic acid, polyamic acid ester and polyimide is preferably 1,000 to 500,000, and more preferably 2,000 to 500 It is 300,000.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less.
  • Polyamide imide is, for example, a method of condensation reaction of tricarboxylic acid and diisocyanate compound, or reaction of tricarboxylic acid and diamine compound to introduce an imide bond into the molecule, and then reaction of this with diisocyanate compound to amidate It can be obtained by the method.
  • Examples of tricarboxylic acids used in the synthesis of polyamideimides include trimellitic anhydride, butane-1,2,4-tricarboxylic acid, and naphthalene-1,2,4-tricarboxylic acid.
  • Examples of the diisocyanate compound include diphenylmethane-4,4'-diisocyanate, diphenylether-4,4'-diisocyanate, tolylene diisocyanate and xylene diisocyanate.
  • a diamine compound the diamine compound etc. which were illustrated by the synthesis
  • the above reaction is preferably carried out in an organic solvent.
  • the proportion of the monomer used is preferably such that the number of isocyanate groups or amino groups is 0.85 to 1.05 moles with respect to 1 mole of the total of the carboxyl group and the acid anhydride group.
  • the synthesis reaction of polyamideimide is preferably carried out in an organic solvent.
  • the reaction temperature at this time is preferably -20 ° C to 150 ° C, and the reaction time is preferably 0.1 to 24 hours.
  • combination of a polyamic acid can be mentioned.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by GPC for the obtained polyamideimide is preferably 5,000 to 100,000, and more preferably 7,000 to 80,000.
  • the polyorganosiloxane can be obtained, for example, by hydrolyzing and condensing a hydrolyzable silane compound.
  • silane compounds used for the synthesis of polyorganosiloxanes include alkoxysilane compounds such as tetramethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and dimethyldiethoxysilane; 3-mercaptopropyltriethoxy Nitrogen / sulfur-containing alkoxysilane compounds such as silane, mercaptomethyltriethoxysilane, 3-aminopropyltrimethoxysilane, N- (3-cyclohexylamino) propyltrimethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3- Epoxy group-containing silane compounds such as glycidoxypropyltriethoxysilane,
  • unsaturated alkoxysilane compounds of the following: trimethoxysilylpropyl succinic anhydride and the like.
  • the hydrolyzable silane compounds can be used alone or in combination of two or more of them.
  • (meth) acryloxy is a meaning including "acryloxy” and "methacryloxy.”
  • the above-mentioned hydrolysis / condensation reaction is carried out by reacting one or more silane compounds as described above with water, preferably in the presence of a suitable catalyst and an organic solvent.
  • the proportion of water used is preferably 1 to 30 moles relative to 1 mole of the silane compound (total amount).
  • a catalyst to be used an acid, an alkali metal compound, an organic base, a titanium compound, a zirconium compound etc. can be mentioned, for example.
  • the amount of catalyst used varies depending on the type of catalyst, reaction conditions such as temperature, etc., and should be set appropriately. For example, it is preferably 0.01 to 3 times the molar amount of the total amount of silane compounds. .
  • organic solvent to be used examples include hydrocarbons, ketones, esters, ethers, alcohols and the like, and among these, it is preferable to use a water insoluble or poorly water soluble organic solvent.
  • the proportion of the organic solvent used is preferably 10 to 10,000 parts by mass with respect to 100 parts by mass in total of the silane compound used for the reaction.
  • the above hydrolysis / condensation reaction is preferably carried out, for example, by heating with an oil bath or the like. At that time, the heating temperature is preferably 130 ° C. or less, and the heating time is preferably 0.5 to 12 hours.
  • the organic solvent layer separated from the reaction solution is dried with a desiccant if necessary, and the solvent is removed to obtain the target polyorganosiloxane.
  • the method for synthesizing polyorganosiloxane is not limited to the above-mentioned hydrolysis / condensation reaction, and may be performed by, for example, a method of reacting a hydrolyzable silane compound in the presence of oxalic acid and alcohol.
  • the polyorganosiloxane may be a polyorganosiloxane having a photosensitive structure or a liquid crystalline structure in its side chain.
  • the method for synthesizing the polyorganosiloxane is not particularly limited, but a polyorganosiloxane having an epoxy group in a side chain using an epoxy group-containing silane compound as at least a part of the raw material (hereinafter, "epoxy group-containing polyorganosiloxane") And a method of reacting an epoxy group-containing polyorganosiloxane with a carboxylic acid having a photosensitive structure or a liquid crystalline structure, and the like.
  • a polyorganosiloxane having a photosensitive structure or a liquid crystalline structure in a side chain may be synthesized by a reaction in which a hydrolyzable silane compound having a photosensitive structure or a liquid crystalline structure is contained in a monomer.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by GPC for polyorganosiloxane is preferably in the range of 100 to 50,000, and more preferably in the range of 200 to 10,000.
  • Poly (meth) acrylate can be obtained by polymerizing a monomer containing a (meth) acrylic compound.
  • (meth) acrylic compounds include unsaturated carboxylic acids such as (meth) acrylic acid, ⁇ -ethyl acrylic acid, maleic acid, fumaric acid and vinylbenzoic acid; alkyl (meth) acrylates (meth) acrylic acid Cycloalkyl, benzyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, trimethoxysilylpropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, glycidyl (meth) acrylate, (meth) Unsaturated carboxylic acid esters such as 3,4-epoxycyclohexylmethyl acrylic acid, 3,4-epoxybutyl (meth) acrylic acid, 4-hydroxybutyl glycidyl ether acrylic acid; unsaturated carboxylic acids such as (meth)
  • monomers other than (meth) acrylic compounds may be used.
  • the monomer for example, aromatic vinyl compounds such as styrene, methylstyrene and divinylbenzene; conjugated diene compounds such as 1,3-butadiene and 2-methyl-1,3-butadiene; N-methylmaleimide, N-cyclohexyl Examples thereof include maleimide group-containing compounds such as maleimide and N-phenyl maleimide.
  • aromatic vinyl compounds such as styrene, methylstyrene and divinylbenzene
  • conjugated diene compounds such as 1,3-butadiene and 2-methyl-1,3-butadiene
  • N-methylmaleimide N-cyclohexyl
  • maleimide group-containing compounds such as maleimide and N-phenyl maleimide.
  • the proportion of monomers other than (meth) acrylic compounds is preferably 50 mol% or less, more preferably 40 mol% or less, and more preferably 30 mol or less, based on the total amount of monomers used for polymerization. It is further preferable to
  • Poly (meth) acrylate can be obtained by polymerizing the above-mentioned monomer in the presence of a polymerization initiator.
  • a polymerization initiator for example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2 Azo compounds such as 4, 4-dimethylvaleronitrile) are preferred.
  • the proportion of the polymerization initiator used is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of all the monomers used for the reaction.
  • the above polymerization reaction is preferably carried out in an organic solvent.
  • the organic solvent used for the reaction include alcohols, ethers, ketones, amides, esters, hydrocarbon compounds and the like, and diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether acetate and the like are preferable.
  • the reaction temperature is preferably 30 ° C. to 120 ° C., and the reaction time is preferably 1 to 36 hours.
  • the amount (a) of the organic solvent used should be such that the total amount (b) of the monomers used in the reaction is 0.1 to 60% by mass with respect to the total amount (a + b) of the reaction solution Is preferred.
  • the synthesis method is not particularly limited.
  • a hydrolyzable silane compound having a photosensitive structure or a liquid crystalline structure as a monomer (II) a polymer having an epoxy group in a side chain using an epoxy group-containing compound as at least a part of the raw material, and then a carbon having a photosensitive structure or a liquid crystalline structure The method of making it react with an acid, etc. are mentioned.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by GPC for the poly (meth) acrylate is preferably 250 to 500,000, more preferably 500 to 100,000, and 1,000 to 50. Is more preferably 1,000.
  • the liquid crystal aligning agent of the present disclosure includes, as at least a part of a solvent component, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 3-methoxybutyl acetate, a compound represented by the above formula (1), and the above formula It contains (A) a solvent which is at least one selected from the group consisting of compounds represented by (2).
  • the alkyl group of R 1 , R 2 and R 3 may be linear or branched and, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n- Examples include butyl, isobutyl and tert-butyl.
  • R 1 preferably has 3 or 4 carbon atoms, and more preferably an n-propyl group or an n-butyl group.
  • R 2 preferably has 1 or 2 carbon atoms.
  • R 3 is preferably a methyl group.
  • n is 0 or 1, preferably 0.
  • the compound represented by the above formula (1) examples include propylene glycol methyl ethyl ether, propylene glycol dimethyl ether, propylene glycol methyl n-propyl ether, and propylene glycol methyl n-butyl ether. Preferred is propylene glycol methyl-n-propyl ether or propylene glycol methyl-n-butyl ether.
  • 1 type may be used independently and may be used combining 2 or more types.
  • the compound represented by the above formula (2) examples include cyclohexyl acetate, cyclohexyl propionate, cyclohexyl butyrate, cyclohexyl pentanoate and the like. Preferably, it is cyclohexyl acetate or cyclohexyl propionate.
  • 1 type may be used independently and you may use it in combination of 2 or more type.
  • the solvent component together with the solvent (A), has a boiling point of 200 ° C. or higher at 1 atmospheric pressure in that it can sufficiently suppress the occurrence of coating unevenness even when the film thickness of the liquid crystal alignment film is thickened (A It is preferable to further include (B) a solvent different from the solvent).
  • the solvent (B) is preferably at least one selected from the group consisting of aprotic polar solvents and phenols, and is more preferably aprotic polar solvents.
  • Particularly preferred is at least one selected from (In the formula (3), R 4 and R 5 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms which may have an ether bond, and R 4 and R 5 may combine with each other to form a ring structure, and R 6 is an alkyl group having 1 to 4 carbon atoms.
  • examples of the monovalent hydrocarbon group having 1 to 6 carbon atoms of R 4 and R 5 include, for example, a chain hydrocarbon group having 1 to 6 carbon atoms and an alicyclic group having 3 to 6 carbon atoms.
  • a hydrocarbon group, an aromatic hydrocarbon group having 5 or 6 carbon atoms and the like can be mentioned.
  • the monovalent group having an ether bond includes, for example, an alkoxyalkyl group having 2 to 6 carbon atoms.
  • the ring R 4, R 5 are bonded to each other R 4 and R 5 are formed together with the nitrogen atom to which they are attached such as pyrrolidine ring, and a nitrogen-containing heterocyclic ring such as a piperidine ring.
  • a monovalent chain hydrocarbon group such as a methyl group may be bonded to these nitrogen-containing heterocycles.
  • R 4 and R 5 are preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, still more preferably a hydrogen atom or a methyl group .
  • the alkyl group having 1 to 4 carbon atoms of R 6 may be linear or branched.
  • R 6 is preferably a methyl group or an ethyl group.
  • the compound represented by the above formula (3) include, for example, 3-butoxy-N, N-dimethylpropanamide, 3-methoxy-N, N-dimethylpropanamide, 3-hexyloxy-N, N- Dimethylpropanamide, isopropoxy-N-isopropyl-propionamide, n-butoxy-N-isopropyl-propionamide and the like.
  • the compounds represented by the above formula (3) can be used singly or in combination of two or more.
  • the solvent component may further contain a solvent other than the (A) solvent and the (B) solvent (hereinafter, also referred to as "(C) solvent”).
  • the solvent (C) is not particularly limited as long as it is a solvent different from the solvents (A) and (B) as long as the effects of the present disclosure are not impaired.
  • the solvent (C) is preferably at least one selected from the group consisting of alcohols, ketones, esters, ethers, halogenated hydrocarbons and hydrocarbons.
  • alcohols for example, methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, diacetone alcohol and the like;
  • ketones for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone etc .
  • esters for example, ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl methoxy propionate, ethyl ethoxy propionate, diethyl oxalate, diethyl malonate, isoamyl propionate, isoamyl isobutyt Rate etc;
  • ethers for example, diethyl ether, ethylene glycol methyl ether,
  • the solvent (C) is preferably at least one selected from the group consisting of ketones, esters, ethers, and hydrocarbons from the viewpoint of being able to suitably suppress the coating unevenness.
  • the solvent (C) is preferably at least one selected from the group consisting of ketones, esters, ethers, and hydrocarbons from the viewpoint of being able to suitably suppress the coating unevenness.
  • it is preferably one selected from the group consisting of propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, cyclohexanone, cyclopentane and cyclopentanone.
  • the content ratio of the solvent (A) is 1 to 70% by mass with respect to the total amount of the solvent components contained in the liquid crystal aligning agent.
  • the content ratio of the solvent (A) is preferably 3 to 65% by mass, more preferably 5 to 60% by mass.
  • the content ratio of the solvent (B) is 0 to 40% by mass with respect to the total amount of solvent components contained in the liquid crystal aligning agent.
  • the content ratio of the solvent (B) is more than 40% by mass, the amount of the solvent remaining in the alignment film is excessively large, which is not preferable in that the offset easily occurs.
  • "containing 0 mass% of (B) solvent” means not containing (B) solvent in a liquid crystal aligning agent. It is preferable that a relatively small amount of (B) solvent is contained together with the (A) solvent in the liquid crystal aligning agent in that a liquid crystal alignment film in which coating unevenness is less likely to occur even when the film thickness is made can be obtained. .
  • the content ratio of the solvent (B) is set to 0.1 to 40% by mass with respect to the total amount of the solvent components contained in the liquid crystal aligning agent in that the effect of suppressing the coating unevenness can be further enhanced.
  • the content ratio of the solvent (C) is preferably 5 to 98% by mass, more preferably 10 to 95% by mass, with respect to the total amount of the solvent component contained in the liquid crystal aligning agent, and more preferably 20 to 90 It is more preferable to use mass%. Even when heating at the time of film formation is performed at low temperature (for example, at 150 ° C. or less), the content ratio of the solvent (C) is contained in the liquid crystal aligning agent because the amount of residual solvent in the liquid crystal alignment film can be sufficiently reduced. It is more preferable to set it as 40 mass% or more with respect to the whole quantity of the solvent component to be carried out, and it is still more preferable to set it as 50 mass% or more.
  • the liquid crystal aligning agent is preferably a mixed solvent in which the solvent components include (A) solvent and (B) solvent, and is a mixed solvent consisting of (A) solvent, (B) solvent and (C) solvent Is particularly preferred.
  • the liquid crystal aligning agent contains a polymer component and a solvent component, but may contain other components as needed.
  • other components for example, epoxy group-containing compounds, functional silane compounds, antioxidants, metal chelate compounds, curing catalysts, curing accelerators, surfactants, fillers, dispersants, photosensitizers, etc. It can be mentioned.
  • the blend ratio of the other components can be appropriately selected according to each compound, as long as the effects of the present invention are not impaired.
  • the solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass.
  • the solid content concentration is less than 1% by mass, the film thickness of the coating film is too small, and it is difficult to obtain a good liquid crystal alignment film.
  • the solid content concentration exceeds 10% by mass, the film thickness of the coating film becomes too large to obtain a good liquid crystal alignment film, and the viscosity of the liquid crystal alignment agent increases and the coating property decreases.
  • the liquid crystal element of the present disclosure includes a liquid crystal alignment film formed using the liquid crystal alignment agent described above.
  • Liquid crystal elements can be effectively applied to various applications. For example, clocks, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, various monitors, liquid crystal televisions It can be used as various display devices such as information display, light control film, retardation film and the like.
  • the operation mode of the liquid crystal is not particularly limited. For example, TN type, STN type, vertical alignment type (including VA-MVA type, VA-PVA type, etc.), IPS type, FFS type, OCB It can be applied to various modes such as (Optically Compensated Bend) type.
  • the liquid crystal element can be manufactured, for example, by the following steps.
  • the case of producing a retardation film and a liquid crystal display element will be described as an example.
  • Step 1 Formation of a Coating
  • a liquid crystal aligning agent is applied on a substrate, and then a coating film is formed on the substrate by heating the coated surface as required.
  • a transparent substrate can be preferably used as the substrate.
  • glass substrates such as float glass and soda glass; cellulose acylate (cellulose acetate and the like such as triacetyl cellulose (TAC)), polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polysulfone, polyether sulfone, Examples thereof include resin films of polyamide, polyimide, poly (meth) acrylate, polymethyl methacrylate, polycarbonate, cyclic polyolefin and the like.
  • the liquid crystal aligning agent of the present disclosure can be preferably applied as a liquid crystal aligning agent for coating a resin film.
  • conventionally well-known pretreatments such as a saponification process, may be performed with respect to the base material which apply
  • At least one of the pair of substrates uses a substrate provided with a transparent conductive film on one side of the substrate.
  • a transparent conductive film a NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 -SnO 2 ), etc. can be used.
  • a TN type, STN type or vertical alignment type liquid crystal display element two substrates provided with a patterned transparent conductive film are used.
  • a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb shape is not provided, and the electrode is not provided.
  • the opposite substrate is used.
  • a film made of a metal such as chromium can be used as the metal film.
  • the coating method of the liquid crystal aligning agent to a base material can employ
  • Specific examples include roll coater method, spinner method, inkjet printing method, offset printing method, flexographic printing method, bar coater method, extrusion die method, direct gravure coater method, chamber doctor coater method, offset gravure coater method, impregnation
  • the coater method, the MB coater method and the like can be mentioned.
  • the heating temperature at this time is set according to the substrate, but when the substrate is a resin film, it is preferably 150 ° C.
  • the heating time is preferably 0.1 to 15 minutes, more preferably 1 to 10 minutes.
  • the heating of the coated surface may be a plurality of heat treatments by prebaking and postbaking.
  • a coating film to be a liquid crystal alignment film is formed on the substrate.
  • the thickness of the coating film formed on the substrate is preferably 1 nm to 1 ⁇ m, more preferably 5 nm to 0.5 ⁇ m.
  • the film thickness of the liquid crystal alignment film may be relatively thick (for example, 0.2 ⁇ m or 0.3 ⁇ m or more).
  • the solvent tends to remain in the alignment film, and the influence of the remaining solvent causes coating unevenness on the surface of the alignment film, or the substrate on which the alignment film is formed is overlapped.
  • offset may occur in which the polymer component and the residual solvent in the alignment film are transferred to the substrate side.
  • the orientation of the liquid crystal of the display element to be obtained is likely to be reduced, and the product yield is likely to be reduced.
  • One possible means to reduce the residual solvent in the alignment film is to increase the heating temperature at the time of film formation, but if heating at high temperature is required, the application of the resin film as a substrate is limited. It will be done.
  • the liquid crystal aligning agent of the present disclosure can suppress the occurrence of the above-mentioned inconvenience even when the film thickness of the liquid crystal aligning film is increased to 0.3 ⁇ m or more, and is suitable as a liquid crystal aligning agent for a resin film.
  • Step 2 Alignment Treatment
  • the process which provides liquid crystal aligning ability to the coating film formed at the said process 1 is implemented.
  • the alignment ability of the liquid crystal molecules is imparted to the coating film to form a liquid crystal alignment film.
  • the alignment treatment for example, a rubbing treatment for imparting a liquid crystal alignment ability to the coating film by rubbing the coating film in a fixed direction with a roll wound with a cloth made of fibers such as nylon, rayon or cotton, a substrate coated with a liquid crystal aligning agent The surface may be irradiated with light to give a coating film with a liquid crystal alignment ability, or the like.
  • Photo-alignment treatment is preferably applied in that it can suppress the occurrence of display defects and yield reduction due to the generation of dust and static electricity, and can uniformly impart the liquid crystal alignment ability to the organic thin film formed on the substrate. can do.
  • the coating film formed at the said process 1 can be used as a liquid crystal aligning film as it is, you may give an orientation process with respect to this coating film.
  • examples of light to be irradiated include ultraviolet light including light having a wavelength of 150 to 800 nm, visible light and the like. Among these, ultraviolet light containing light of a wavelength of 300 to 400 nm is preferable.
  • the irradiation light may be polarized or non-polarized. It is preferable to use light including linear polarization as the polarization.
  • the light to be used is polarized light, the light may be irradiated from a direction perpendicular to the substrate surface, from an oblique direction, or a combination of these. In the case of irradiating non-polarized light, it is necessary to carry out from a direction oblique to the substrate surface.
  • Examples of the light source to be used include a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, a mercury-xenon lamp (Hg-Xe lamp) and the like.
  • Polarization can be obtained by means of using these light sources, for example, in combination with filters, diffraction gratings and the like.
  • the dose of light is preferably set to 0.1mJ / cm 2 ⁇ 1,000mJ / cm 2, and more preferably in the 1 ⁇ 500mJ / cm 2.
  • Step 3-1 Formation of Optical Anisotropic Film
  • a polymeric liquid crystal is apply
  • an optically anisotropic film which is an organic thin film having an optical compensation function is formed on the surface of the liquid crystal alignment film.
  • the polymerizable liquid crystal used herein is a liquid crystal compound which is polymerized by the treatment of at least one of heating and light irradiation.
  • a polymeric group which a polymeric liquid crystal has a (meth) acryloyl group, a vinyl group, a vinylphenyl group, an allyl group etc. are mentioned, for example, A (meth) acryloyl group is preferable.
  • the polymerizable liquid crystal conventionally known ones can be used. Specifically, for example, non-patent document 1 (“UV curable liquid crystal and its application”, liquid crystal, Volume 3, No. 1 (1999), pp 34 Mention may be made of the nematic liquid crystals described in -42).
  • the liquid crystal may be cholesteric liquid crystal, discotic liquid crystal, twisted nematic alignment liquid crystal to which a chiral agent is added, or the like.
  • the polymerizable liquid crystal may be a mixture of a plurality of liquid crystal compounds, and may be a composition further containing a known polymerization initiator, an appropriate solvent, a polymerizable monomer, a surfactant and the like.
  • an appropriate application method such as a bar coater method, a roll coater method, a spinner method, a printing method, an inkjet method, or the like can be employed.
  • the coating film of the polymerizable liquid crystal formed as described above is cured by applying at least one treatment selected from heating and light irradiation to cure the coating film and thereby the liquid crystal layer (optical Formation of the It is preferable to perform these treatments in a superimposed manner since good orientation can be obtained.
  • the heating temperature of a coating film is suitably selected by the kind of polymeric liquid crystal to be used. For example, when using RMS03-013C manufactured by Merck, it is preferable to heat at a temperature in the range of 40 to 80.degree.
  • the heating time is preferably 0.5 to 5 minutes.
  • the irradiation light for the coating film non-polarized ultraviolet light having a wavelength in the range of 200 to 500 nm can be preferably used.
  • the irradiation dose of light is preferably 50 to 10,000 mJ / cm 2, and more preferably 100 to 5,000 mJ / cm 2 .
  • the coating film may be irradiated with polarized radiation only once from a predetermined polarization direction, or radiation different in polarization direction (incident direction) may be irradiated to the coating multiple times.
  • the thickness of the optical anisotropic film to be formed is appropriately set according to the desired optical characteristics. For example, in the case of producing a half-wave plate in visible light with a wavelength of 540 nm as the retardation film, a thickness is selected such that the retardation of the optically anisotropic film as the retardation film is 240 to 300 nm. In the case of a quarter wavelength plate, the thickness is selected such that the phase difference is 120 to 150 nm.
  • the thickness of the optically anisotropic film from which the desired retardation is obtained varies depending on the optical properties of the polymerizable liquid crystal used. For example, when using RMS03-013C manufactured by Merck, the thickness for producing a quarter-wave plate is in the range of 0.6 to 1.5 ⁇ m.
  • a roll-to-roll system may be adopted because it can be easily produced on an industrial scale.
  • a resin film is unrolled from a roll of a long resin film, and a liquid crystal alignment film is formed on the unrolled film, and a polymerizable liquid crystal is coated on the liquid crystal alignment film.
  • the process of curing and, if necessary, the process of laminating a protective film is performed in a continuous process, and the film after these processes is recovered again as a wound body.
  • the resin film with an alignment film is wound once, and then the next step (polymerizability The liquid crystal may be applied and cured.
  • the polymerizable liquid crystal When the film is unwound for coating and curing treatment, peeling of the liquid crystal alignment film from the substrate is likely to occur.
  • the liquid crystal aligning agent of the present disclosure the amount of the solvent remaining in the alignment film can be reduced, which is preferable in that it is difficult to cause offset to the base material.
  • Step 3-2 Construction of Liquid Crystal Cell
  • a liquid crystal display element When a liquid crystal display element is manufactured as a liquid crystal element, two substrates on which a liquid crystal alignment film is formed as described above are prepared, and a liquid crystal cell is formed by disposing a liquid crystal between two opposed substrates. Manufacture. Specifically, the peripheral portions of a pair of substrates are pasted together with a sealing agent, liquid crystal is injected and filled in the cell gap partitioned by the substrate surface and the sealing agent, and then the injection holes are sealed; A sealing agent is applied to the periphery of the liquid crystal alignment film side of the base material, and liquid crystal is further dropped to a predetermined number of places on the liquid crystal alignment film surface, and then the other base material is bonded so that the liquid crystal alignment film faces.
  • the liquid crystal is spread over the entire surface of the substrate and then the sealing agent is cured (ODF method).
  • ODF method the epoxy resin etc. which contain an aluminum oxide ball as a hardening agent and a spacer, for example are mentioned.
  • liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred.
  • cholesteric liquid crystals, chiral agents, ferroelectric liquid crystals, and the like may be added to liquid crystals for use.
  • a polarizing plate is attached to the outer surface of the liquid crystal cell to obtain a liquid crystal display element.
  • the polarizing plate include a polarizing plate in which a polarizing film called “H film” obtained by absorbing iodine while stretching and orienting polyvinyl alcohol is sandwiched by a cellulose acetate protective film or a polarizing plate consisting of the H film itself.
  • the weight average molecular weight Mw, the number average molecular weight Mn and the epoxy equivalent of the polymer, and the solution viscosity of the polymer solution were measured by the following methods.
  • the necessary amounts of the raw material compounds and the polymers used in the following examples were secured by repeating the synthesis on the synthesis scale shown in the following synthesis examples as necessary.
  • Mw and Mn are polystyrene conversion values measured by GPC under the following conditions.
  • Epoxy equivalent The epoxy equivalent was measured by the hydrochloric acid-methyl ethyl ketone method described in JIS C 2105.
  • Solution viscosity of polymer solution The solution viscosity (mPa ⁇ s) of the polymer solution was measured at 25 ° C. using an E-type rotational viscometer.
  • the reaction was then allowed to reflux at 60 ° C. for 6 hours. After completion of the reaction, the organic layer is taken out and washed with a 0.2% by mass aqueous ammonium nitrate solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to obtain an epoxy group-containing polyorganosiloxane (EPS-1) was obtained as a viscous transparent liquid.
  • EPS-1 epoxy group-containing polyorganosiloxane
  • the epoxy group-containing polyorganosiloxane had a weight average molecular weight Mw of 2,200 and an epoxy equivalent of 186 g / mol.
  • Synthesis Example 1-2 Synthesis of Polyorganosiloxane (PS-1)
  • PS-1 epoxy group-containing polyorganosiloxane
  • EPS-1 epoxy group-containing polyorganosiloxane
  • 4- (4-n-pentylcyclohexyl) benzoic acid, propylene glycol monomethyl ether acetate 17 g and 0.3 g of tetrabutylammonium bromide were charged, and stirred at 90 ° C. for 12 hours. After completion of the reaction, the reaction solution was diluted with 0.75 equivalent (mass) of cyclohexane and washed five times with water.
  • This solution was concentrated, and the operation of diluting with propylene glycol monomethyl ether acetate (PGMEA) was repeated twice to obtain a solution containing polyorganosiloxane (PS-1) having a vertical alignment group.
  • the weight average molecular weight Mw of this polyorganosiloxane (PS-1) was 8,000.
  • an epoxy group-containing polyorganosiloxane (EPS-2) was obtained as a viscous transparent liquid.
  • the epoxy group-containing polyorganosiloxane had a weight average molecular weight Mw of 2,200 and an epoxy equivalent of 186 g / mol.
  • Synthesis Example 2-2 Synthesis of Photoalignable Group-Containing Polyorganosiloxane (PS-2) In a 100 mL three-necked flask, 10.1 g of epoxy group-containing polyorganosiloxane (EPS-2) obtained in Synthesis Example 2-1, acrylic group-containing carboxylic acid (Toagosei Co., Ltd., trade name "ALONIX M-5300", acrylic Acid ⁇ -carboxypolycaprolactone (degree of polymerization n ⁇ 2) 0.5 g, butyl acetate 20 g, cinnamic acid derivative (mc-1) obtained in Synthesis Example 2-A 1.5 g, and tetrabutyl ammonium bromide 0.3 g Were stirred at 90.degree.
  • EPS-2 epoxy group-containing polyorganosiloxane
  • reaction solution was diluted with an equal amount (mass) of propylene glycol monomethyl ether acetate and washed three times with water. This solution was concentrated, and the operation of diluting with propylene glycol monomethyl ether acetate was repeated twice to finally obtain a solution containing a polyorganosiloxane (PS-2) having a photoalignable group.
  • the weight average molecular weight Mw of this polyorganosiloxane (PS-2) was 9,000.
  • the number average molecular weight of the obtained polymethacrylate (LCP-1) was 46,000, and the weight average molecular weight was 119,600.
  • This polymethacrylate (LCP-1) exhibited liquid crystallinity in the temperature range of 116 ° C. to 315 ° C.
  • Synthesis Example 5-2 Synthesis of Liquid Crystalline Polymethacrylate (LCP-2)
  • LCP-2 A polymethacrylate (LCP-2) was obtained by the same operation as in Synthesis Example 5-1 except that a methacrylic acid ester (10) was used instead of the methacrylic acid ester (9).
  • the number average molecular weight of the obtained polymethacrylate (LCP-2) was 46,000, and the weight average molecular weight was 119,600.
  • This polymethacrylate (LCP-2) exhibited liquid crystallinity in the temperature range of 135 ° C. to 187 ° C.
  • Synthesis Example 5-3 Synthesis of Liquid Crystalline Polymethacrylate (LCP-3) A polymethacrylate (LCP-3) was obtained by the same procedure as in Synthesis Example 5-1 except that a methacrylic acid ester (11) was used instead of the methacrylic acid ester (9). The number average molecular weight of the obtained polymethacrylate (LCP-3) was 46,000, and the weight average molecular weight was 119,600. This polymethacrylate (LCP-3) exhibited liquid crystallinity in the temperature range of 66 ° C to 320 ° C.
  • Example 1 Preparation of Liquid Crystal Alignment Agent
  • polymethacrylate (AP-1) polymethacrylate
  • PS-1 polyorganosiloxane
  • MMP methyl 3-methoxypropionate
  • PGMEA propylene glycol monomethyl ether acetate
  • PGME propylene glycol monomethyl ether
  • the liquid crystal aligning agent (AL-1) prepared in the above was coated on a PET film with a bar coater and dried at 120 ° C. for 2 minutes to form a liquid crystal alignment film.
  • the coating property (coating nonuniformity) of the liquid crystal aligning agent was evaluated by observing the nonuniformity of the surface of this liquid crystal aligning film under a microscope.
  • the film thickness of the liquid crystal aligning film after drying produced two types, 0.1 micrometer and 0.3 micrometer. The thicker the film thickness, the more easily unevenness occurs on the surface of the liquid crystal alignment film.
  • the evaluation was "very good ( ⁇ )” when no unevenness was observed on the surface of the coating, “good ( ⁇ )” when unevenness was slightly observed on the surface of the coating, on the surface of the coating It was regarded as “Poor ( ⁇ )” when a slight unevenness was observed, and “Defect (x)” when a large number of unevenness was observed on the surface of the coating.
  • the evaluation was “very good” when the film thickness is 0.1 ⁇ m, and “good” when the film thickness is 0.3 ⁇ m.
  • the liquid crystal aligning agent (AL-1) prepared in the above was coated on a PET film with a bar coater and dried at 120 ° C. for 2 minutes to form a liquid crystal alignment film having a film thickness of 0.1 ⁇ m.
  • the PET film (B) was superposed on the liquid crystal alignment film surface (A), and a state of applying a load of 40 g / cm 2 was maintained at 80 ° C. for 30 minutes, and then cooled to room temperature while being superposed. Thereafter, the PET film (B) was peeled off from the liquid crystal alignment film surface (A), and it was visually observed whether the polymer component and the residual solvent of the liquid crystal alignment film were offset to the PET film (B).
  • Examples 2 to 23 and Comparative Examples 1 to 4 The same operation as in Example 1 is carried out except that the composition of the liquid crystal aligning agent is changed as described in Tables 1 and 2 below, and liquid crystal aligning agents (AL-2) to (AL-23), (BL-) 1) to (BL-4) were prepared respectively. Further, the same as Example 1 except that liquid crystal aligning agents (AL-2) to (AL-23) and (BL-1) to (BL-4) were used instead of the liquid crystal aligning agent (AL-1). We made various evaluations. The results are shown in Table 3 below.

Abstract

This liquid crystal aligning agent contains a polymer component and a solvent component. The solvent component contains a solvent (A) in an amount of 1-70% by mass relative to the total amount of the solvent component, while containing a solvent (B) in an amount of 0-40% by mass relative to the total amount of the solvent component. Solvent (A): At least one compound which is selected from the group consisting of methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 3-methoxybutyl acetate, compounds represented by formula (1) and compounds represented by formula (2). Solvent (B): A compound which is different from the solvent (A) and has a boiling point of 200°C or higher at 1 atmosphere. (In the formulae, R1 represents an alkyl group having 1-4 carbon atoms; R2 represents an alkyl group having 1-4 carbon atoms; R3 represents a hydrogen atom or an alkyl group having 1-4 carbon atoms; and n is 0 or 1.)

Description

液晶配向剤、液晶配向膜及び液晶素子Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年12月14日に出願された日本出願番号2017-240060号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-240060 filed on Dec. 14, 2017, the contents of which are incorporated herein by reference.
 本開示は、液晶配向剤、液晶配向膜及び液晶素子に関する。 The present disclosure relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal element.
 液晶素子は、テレビやパーソナルコンピュータ、携帯電話などの表示装置や、位相差フィルムなどの光学補償フィルム、調光フィルム等をはじめとする種々の用途に用いられている。これら液晶素子は、液晶分子を一定の方向に配向させる機能を有する液晶配向膜を具備している。液晶配向膜は一般に、重合体成分が有機溶媒に溶解されてなる液晶配向剤を、ガラス製又は樹脂製の基材上に塗布し、加熱することにより形成される。液晶配向剤の重合体成分としては、機械的強度や液晶配向性、液晶との親和性に優れていることから、ポリアミック酸や可溶性ポリイミドが広く使用されている(例えば、特許文献1、2参照)。 Liquid crystal elements are used in various applications including display devices such as televisions, personal computers, and mobile phones, optical compensation films such as retardation films, and light control films. These liquid crystal elements have a liquid crystal alignment film having a function of aligning liquid crystal molecules in a predetermined direction. In general, a liquid crystal alignment film is formed by applying a liquid crystal alignment agent, in which a polymer component is dissolved in an organic solvent, on a glass or resin base and heating. As the polymer component of the liquid crystal aligning agent, polyamic acid and soluble polyimide are widely used because they are excellent in mechanical strength, liquid crystal alignment property, and affinity with liquid crystal (see, for example, Patent Documents 1 and 2) ).
特開2017-198975号公報JP, 2017-198975, A 特開2016-206645号公報JP, 2016-206645, A
 液晶配向剤を基材上に塗布した際にハジキが発生したり、液晶配向剤が均一でなかったりすることによって配向膜表面に塗布ムラ(面内ムラ)が生じた場合、製品歩留まりの低下を招いたり、得られる液晶素子の液晶配向性が十分でなかったりすることが懸念される。こうした塗布ムラは、例えば液晶配向膜による液晶の配向性を高めたり、液晶配向膜と基材との密着性を高めたりするために、液晶配向膜の膜厚を比較的厚く(例えば0.3μm以上に)した場合に生じやすい。すなわち、液晶配向膜の膜厚を厚くすると、膜形成の際の加熱工程において溶剤を十分に除去できず、配向膜中の残存溶剤の影響によって配向膜表面に塗布ムラが生じやすくなる。この場合、得られる液晶素子の液晶配向性が十分でないことが懸念される。 If coating unevenness (in-plane unevenness) occurs on the surface of the alignment film due to repelling or non-uniformity of the liquid crystal alignment agent when the liquid crystal alignment agent is applied on the substrate, the product yield decreases And the liquid crystal alignment of the resulting liquid crystal element may not be sufficient. Such coating unevenness causes the thickness of the liquid crystal alignment film to be relatively thick (for example, 0.3 μm) in order to, for example, enhance the alignment of the liquid crystal by the liquid crystal alignment film or enhance the adhesion between the liquid crystal alignment film and the substrate. More likely to occur if That is, when the film thickness of the liquid crystal alignment film is increased, the solvent can not be sufficiently removed in the heating step for film formation, and coating unevenness easily occurs on the surface of the alignment film due to the influence of the residual solvent in the alignment film. In this case, there is a concern that the liquid crystal alignment of the liquid crystal element to be obtained is not sufficient.
 また、例えばロールツーロール方式では、液晶素子の製造過程において、配向膜が形成された基材をロール状に重ね合わせて一時的に保管することがある。配向膜中に残存する溶剤量が多いと、配向膜中の重合体成分や残存溶剤が基材側に移る裏移りが起きやすくなる。また、基材側への裏移りが起きた場合、液晶配向膜が基材から剥がれやすくなったり、得られる液晶素子の液晶配向性が悪化したりすることが懸念される。 Further, for example, in the roll-to-roll method, in the process of manufacturing a liquid crystal element, the substrate on which the alignment film is formed may be overlapped in a roll shape and temporarily stored. When the amount of the solvent remaining in the alignment film is large, the offset of the polymer component and the remaining solvent in the alignment film to the substrate side is easily caused. In addition, when offset to the substrate side occurs, there is a concern that the liquid crystal alignment film may be easily peeled off from the substrate, or the liquid crystal alignment of the liquid crystal element to be obtained may be deteriorated.
 本開示は上記課題に鑑みなされたものであり、基材に対する塗布性が良好であり、かつ配向膜中の残存溶剤を十分に低減することができる液晶配向剤を提供することを一つの目的とする。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a liquid crystal aligning agent having good coatability to a substrate and capable of sufficiently reducing the residual solvent in the alignment film. Do.
 本発明者は上記課題を解決するべく鋭意検討し、液晶配向剤の溶剤成分として、比較的低沸点の特定溶剤を含有することにより上記課題を解決可能であることを見出した。具体的には、本開示は上記課題を解決するために以下の手段を採用した。 MEANS TO SOLVE THE PROBLEM This inventor earnestly examined in order to solve the said subject, and found out that the said subject is solvable by containing the specific solvent of a comparatively low boiling point as a solvent component of a liquid crystal aligning agent. Specifically, the present disclosure adopts the following means in order to solve the problems.
<1> 重合体成分と、溶剤成分とを含有し、前記溶剤成分は、下記(A)溶剤を前記溶剤成分の全量に対して1~70質量%、及び下記(B)溶剤を前記溶剤成分の全量に対して0~40質量%含む、液晶配向剤。
(A)溶剤:3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシブチルアセテート、下記式(1)で表される化合物、及び下記式(2)で表される化合物よりなる群から選ばれる少なくとも一種の化合物。
(B)溶剤:1気圧における沸点が200℃以上であって前記(A)溶剤とは異なる化合物。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Rは炭素数1~4のアルキル基である。)
Figure JPOXMLDOC01-appb-C000005
(式(2)中、Rは炭素数1~4のアルキル基であり、Rは炭素数1~4のアルキル基である。nは0又は1である。)
<2> 上記<1>の液晶配向剤を用いて形成された液晶配向膜
<3> 上記<2>の液晶配向膜を具備する液晶素子。
<4> 上記<1>の液晶配向剤を基材上に塗布し、150℃以下で加熱して塗膜を形成する、液晶配向膜の製造方法。
<1> A polymer component and a solvent component are contained, and the solvent component is 1 to 70 mass% of the following solvent (A) with respect to the total amount of the solvent component, and the following solvent (B) solvent Liquid crystal aligning agent containing 0 to 40% by mass with respect to the total amount of
(A) Solvent: a group consisting of methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 3-methoxybutyl acetate, a compound represented by the following formula (1), and a compound represented by the following formula (2) At least one compound selected from
(B) Solvent: a compound having a boiling point of 200 ° C. or higher at atmospheric pressure and different from the solvent (A).
Figure JPOXMLDOC01-appb-C000004
(In the formula (1), R 1 is an alkyl group having 1 to 4 carbon atoms.)
Figure JPOXMLDOC01-appb-C000005
(In formula (2), R 2 is an alkyl group having 1 to 4 carbon atoms, R 3 is an alkyl group having 1 to 4 carbon atoms. N is 0 or 1.)
<2> Liquid crystal aligning film formed using liquid crystal aligning agent of said <1><3> The liquid crystal element which comprises the liquid crystal aligning film of said <2>.
The manufacturing method of the liquid crystal aligning film which apply | coats the liquid crystal aligning agent of <4> said <1> on a base material, and heats at 150 degrees C or less, and forms a coating film.
 本開示の液晶配向剤は、基材に対する塗布性が良好であり、しかも配向膜形成時の加熱の際に液晶配向剤中の溶剤を十分に除去することができ、配向膜中の残存溶剤を十分に低減することができる。これにより、製品歩留まりの低下を抑制することができ、また高品位の液晶素子を得ることができる。 The liquid crystal aligning agent of the present disclosure has good coatability with respect to a substrate, and can sufficiently remove the solvent in the liquid crystal aligning agent at the time of heating at the time of forming the alignment film. It can be sufficiently reduced. Thereby, a decrease in product yield can be suppressed, and a high quality liquid crystal element can be obtained.
 以下に、本開示の液晶配向剤に含まれる各成分、及び必要に応じて任意に配合されるその他の成分について説明する。本開示の液晶配向剤は、重合体成分と溶剤成分とを含有する。当該液晶配向剤は、重合体成分が溶剤成分に溶解されてなる液状の重合体組成物である。 Below, each component contained in the liquid crystal aligning agent of this indication, and the other component arbitrarily mix | blended as needed are demonstrated. The liquid crystal aligning agent of the present disclosure contains a polymer component and a solvent component. The liquid crystal aligning agent is a liquid polymer composition in which a polymer component is dissolved in a solvent component.
≪重合体成分≫
 液晶配向剤に含有される重合体成分は、その主骨格は特に限定されないが、例えばポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリオルガノシロキサン、ポリエステル、ポリアミド、ポリアミドイミド、ポリベンゾオキサゾール前駆体、ポリベンゾオキサゾール、セルロース誘導体、ポリアセタール、スチレン-マレイミド系共重合体、ポリ(メタ)アクリレート等の主骨格が挙げられる。なお、(メタ)アクリレートは、アクリレート及びメタクリレートを含むことを意味する。液晶素子の性能を十分に確保する等の観点から、重合体成分としては、上記の中でもポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリアミドイミド、ポリ(メタ)アクリレート、及びポリオルガノシロキサンよりなる群から選ばれる少なくとも一種の重合体(以下、「(P)重合体」ともいう。)が好ましく、膜形成時の加熱をより低温にできる点で、ポリ(メタ)アクリレート及びポリオルガノシロキサンよりなる群から選ばれる少なくとも一種がより好ましい。
«Polymer component»
The main skeleton of the polymer component contained in the liquid crystal aligning agent is not particularly limited. For example, polyamic acid, polyamic acid ester, polyimide, polyorganosiloxane, polyester, polyamide, polyamide imide, polybenzoxazole precursor, polybenzo Main skeletons such as oxazole, cellulose derivative, polyacetal, styrene-maleimide copolymer, poly (meth) acrylate and the like can be mentioned. In addition, (meth) acrylate is meant to include acrylate and methacrylate. From the viewpoint of sufficiently securing the performance of the liquid crystal element, etc., the polymer component is selected from the group consisting of polyamic acid, polyimide, polyamic acid ester, polyamide imide, poly (meth) acrylate, and polyorganosiloxane among the above. Selected from the group consisting of poly (meth) acrylates and polyorganosiloxanes in that heating at the time of film formation can be performed at a lower temperature, and at least one polymer (hereinafter referred to as "(P) polymer") At least one is more preferred.
(感光性基含有ポリマー)
 (P)重合体としては、液晶配向剤に含有されるうちの一部又は全部を、感光性構造を有する重合体(以下、「感光性基含有ポリマー」ともいう。)としてもよい。感光性構造としては、光に感応して反応を起こす構造又は官能基であればよく、光配向性基及び重合性基が挙げられる。
 (P)重合体が光配向性基を有する場合、液晶配向剤を用いて作製した塗膜に対し光配向法によって液晶配向性を付与することが可能となる。これにより、光配向法を適用することによる効果、具体的には、埃や静電気の発生等に起因する表示不良の発生や歩留まりの低下を抑制する効果、基板上に形成された有機薄膜に対して液晶配向能を均一に付与できる効果が得られる点で好ましい。また、(P)重合体が重合性基を有する場合、基板に対する液晶配向膜の密着性を高めることができ、ロールツーロール方式を適用した液晶素子を製造する場合に製品歩留まりの低下を更に抑制できる点で好ましい。
(Photosensitive group-containing polymer)
As the polymer (P), a part or all of the content contained in the liquid crystal alignment agent may be used as a polymer having a photosensitive structure (hereinafter, also referred to as a “photosensitive group-containing polymer”). The photosensitive structure may be any structure or functional group that is sensitive to light to cause a reaction, and includes photoalignable groups and polymerizable groups.
When the polymer (P) has a photoalignable group, it becomes possible to impart liquid crystal alignment to a coating film produced using a liquid crystal aligning agent by the photoalignment method. Thereby, the effect by applying the light alignment method, specifically, the effect of suppressing the occurrence of display defects and the decrease in yield due to the generation of dust and static electricity, and the like, to the organic thin film formed on the substrate This is preferable in that the effect of being able to uniformly impart the liquid crystal alignment ability is obtained. In addition, when the (P) polymer has a polymerizable group, the adhesion of the liquid crystal alignment film to the substrate can be enhanced, and the reduction in product yield can be further suppressed when manufacturing a liquid crystal device to which a roll-to-roll system is applied. It is preferable in that it can be
 光配向性基は、光照射による光異性化反応、光二量化反応、光分解反応、光フリース転位反応等によって膜に異方性を付与する官能基である。その具体例としては、アゾベンゼン又はその誘導体を基本骨格として含有するアゾベンゼン構造、桂皮酸又はその誘導体を基本骨格として含有する桂皮酸構造、カルコン又はその誘導体を基本骨格として含有するカルコン構造、ベンゾフェノン又はその誘導体を基本骨格として含有するベンゾフェノン構造、クマリン又はその誘導体を基本骨格として含有するクマリン構造、スチルベン又はその誘導体を基本骨格として含有するスチルベン構造、ジフェニルアセチレン又はその誘導体を基本骨格として含むジフェニルアセチレン構造、フェニルベンゾエート又はその誘導体を基本骨格として含むフェニルベンゾエート構造、シクロブタン又はその誘導体を基本骨格として含有するシクロブタン構造等が挙げられる。これらのうち、光に対する反応性が高い点で、(P)重合体が有する光配向性基は、桂皮酸構造を有する基であることが特に好ましい。 The photoalignable group is a functional group that imparts anisotropy to the film by a photoisomerization reaction by light irradiation, a photodimerization reaction, a photolysis reaction, a light fleece rearrangement reaction, or the like. Specific examples thereof include an azobenzene structure containing azobenzene or a derivative thereof as a basic skeleton, a cinnamic acid structure containing cinnamic acid or a derivative thereof as a basic skeleton, a chalcone structure containing chalcone or a derivative thereof as a basic skeleton, benzophenone or the like A benzophenone structure containing a derivative as a basic skeleton, a coumarin structure containing coumarin or a derivative thereof as a basic skeleton, a stilbene structure containing stilbene or a derivative thereof as a basic skeleton, a diphenylacetylene structure containing diphenylacetylene or a derivative thereof as a basic skeleton Examples thereof include a phenylbenzoate structure containing phenyl benzoate or a derivative thereof as a basic skeleton, and a cyclobutane structure containing cyclobutane or a derivative thereof as a basic skeleton. Among these, it is particularly preferable that the photoalignable group that the (P) polymer has is a group having a cinnamic acid structure, from the viewpoint of high reactivity with light.
 桂皮酸構造を有する基として具体的には、下記式(4)で表される部分構造を有していることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式(4)中、R31及びR32は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基又はシアノ基である。R33は、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基又はシアノ基である。a1は0~4の整数である。但し、a1が2以上の場合、複数のR33は同じでも異なっていてもよい。「*」は結合手であることを示す。)
Specifically, the group having a cinnamic acid structure preferably has a partial structure represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000006
(In the formula (4), R 31 and R 32 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, is .R 33 is an alkoxy group or a cyano group having 1 to 3 carbon atoms A halogen atom, an alkyl group of 1 to 3 carbon atoms, an alkoxy group of 1 to 3 carbon atoms or a cyano group, a 1 is an integer of 0 to 4. However, when a 1 is 2 or more, plural R 33 May be the same or different, "*" indicates that it is a bond.)
 上記式(4)で表される基としては、桂皮酸が有するカルボキシル基の水素原子を除去して得られる1価の基、又は当該1価の基が有するベンゼン環に置換基が導入された基(以下、これらを「順シンナメート基」ともいう。)や、桂皮酸が有するカルボキシル基がエステル化され、かつベンゼン環に2価の有機基が結合してなる1価の基、又は当該1価の基が有するベンゼン環に置換基が導入された基(以下、これらを「逆シンナメート基」ともいう。)等が挙げられる。順シンナメート基は、例えば下記式(cn-1)で表される。逆シンナメート基は、例えば下記式(cn-2)で表される。
Figure JPOXMLDOC01-appb-C000007
(式(cn-1)中、R34は、水素原子、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基又はシアノ基である。R35は、フェニレン基、ビフェニレン基、ターフェニレン基若しくはシクロヘキシレン基、又は、フェニレン基、ビフェニレン基、ターフェニレン基若しくはシクロヘキシレン基が有する水素原子の少なくとも一部が、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基及び炭素数1~10のアルコキシ基のうちいずれかによって置換された基である。A11は、単結合、酸素原子、硫黄原子、炭素数1~3のアルカンジイル基、-CH=CH-、-NH-、*-COO-、*-OCO-、*-NH-CO-、*-CO-NH-、*-CH-O-又は*-O-CH-(「*」はR35との結合手を示す。)である。b1は0又は1である。「*」は結合手であることを示す。
 式(cn-2)中、R36は、炭素数1~3のアルキル基である。A12は、酸素原子、*-COO-、*-OCO-、*-NH-CO-又は*-CO-NH-(「*」はR37との結合手を示す。)である。R37は、炭素数1~6のアルカンジイル基である。c1は0又は1である。「*」は結合手であることを示す。
 R31、R32、R33及びa1は、上記式(4)と同義である。)
As a group represented by the said Formula (4), the substituent was introduce | transduced into the benzene ring which the monovalent group obtained by removing the hydrogen atom of the carboxyl group which cinnamic acid has, or the said monovalent group has. Group (hereinafter, these are also referred to as “forward cinnamate group”), and a monovalent group in which a carboxyl group possessed by cinnamic acid is esterified, and a divalent organic group is bonded to a benzene ring, or And groups in which a substituent is introduced into the benzene ring possessed by the divalent group (hereinafter, these are also referred to as “reverse cinnamate group”) and the like. The forward cinnamate group is represented, for example, by the following formula (cn-1). The reverse cinnamate group is represented, for example, by the following formula (cn-2).
Figure JPOXMLDOC01-appb-C000007
(In the formula (cn-1), R 34 represents a hydrogen atom, a halogen atom, an alkyl group of 1 to 3 carbon atoms, an alkoxy group of 1 to 3 carbon atoms, or a cyano group. R 35 represents a phenylene group or biphenylene Group, a terphenylene group or a cyclohexylene group, or at least a part of hydrogen atoms of a phenylene group, a biphenylene group, a terphenylene group or a cyclohexylene group is a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, It is a group substituted by any of an alkoxy group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms.A 11 is a single bond, an oxygen atom, a sulfur atom, or an alkanediyl having 1 to 3 carbon atoms. group, -CH = CH -, - NH -, * 2 -COO -, * 2 -OCO -, * 2 -NH-CO -, * 2 -CO-NH -, * 2 -CH -O- or * 2 -O-CH 2 -. (. "* 2" to bond indicates a between R 35) is .b1 is 0 or 1, "*" indicates a bond .
In the formula (cn-2), R 36 is an alkyl group having 1 to 3 carbon atoms. A 12 represents an oxygen atom, * 2 -COO-, * 2 -OCO-, * 2 -NH-CO- or * 2 -CO-NH- (“* 2 ” represents a bond to R 37 ) It is. R 37 is an alkanediyl group having 1 to 6 carbon atoms. c1 is 0 or 1; "*" Indicates that it is a bond.
R 31 , R 32 , R 33 and a 1 are as defined in the above formula (4). )
 重合性基としては、光に感応して架橋反応を起こす官能基であることが好ましく、例えば、(メタ)アクリロイル基、ビニル基(ビニルフェニル基及びビニルオキシ基(CH=CH-O-)等のビニル構造含有基を含む。)、ビニリデン基、マレイミド基、アリル基、エチニル基、アリルオキシ基、エポキシ基等が挙げられる。これらの中でも、光に対する反応性が高い点で、(メタ)アクリロイル基又はビニル基が好ましい。なお、(メタ)アクリロイル基はアクリロイル基及びメタクリロイル基を含む意味であり、エポキシ基はオキシラニル基及びオキセタニル基を含む意味である。 The polymerizable group is preferably a functional group that is sensitive to light and causes a crosslinking reaction, for example, (meth) acryloyl group, vinyl group (vinylphenyl group and vinyloxy group (CH 2 = CH-O-), etc. And vinylidene groups, maleimide groups, allyl groups, ethynyl groups, allyloxy groups, epoxy groups and the like. Among these, a (meth) acryloyl group or a vinyl group is preferable in that it is highly reactive to light. The (meth) acryloyl group is a meaning that includes an acryloyl group and a methacryloyl group, and the epoxy group is a meaning that includes an oxiranyl group and an oxetanyl group.
 (P)重合体が有する感光性構造は、これらの中でも、桂皮酸構造、アゾベンゼン構造、カルコン構造、スチルベン構造、ジフェニルアセチレン構造、(メタ)アクリロイル基、ビニル基、及びフェニルベンゾエート構造よりなる群から選ばれる少なくとも一種であることが好ましく、桂皮酸構造又は(メタ)アクリロイル基であることが特に好ましい。(P)重合体が感光性構造を有する場合において、感光性構造の含有割合は、(P)重合体を構成する単量体単位の全量に対して、10モル%以上であることが好ましく、20モル%以上であることがより好ましい。 Among these, the photosensitive structure of the (P) polymer is selected from the group consisting of cinnamic acid structure, azobenzene structure, chalcone structure, stilbene structure, diphenylacetylene structure, (meth) acryloyl group, vinyl group, and phenylbenzoate structure. It is preferably at least one selected, particularly preferably a cinnamic acid structure or a (meth) acryloyl group. When the polymer (P) has a photosensitive structure, the content ratio of the photosensitive structure is preferably 10 mol% or more with respect to the total amount of the monomer units constituting the polymer (P), It is more preferable that it is 20 mol% or more.
 (P)重合体として光配向性基を有する重合体を使用する場合、液晶配向剤の重合体成分の全部を光配向性基を有する重合体としてもよく、その一部を光配向性基を有する重合体としてもよい。重合体成分の一部について光配向性基を有する重合体とする場合、当該重合体の使用割合は、液晶配向剤の調製に使用する重合体成分の全量に対して、1~80質量%とすることが好ましく、2~70質量%とすることがより好ましい。
 また、(P)重合体として重合性基を有する重合体を使用する場合、当該重合体の使用割合は、液晶配向剤の調製に使用する重合体成分の全量に対して、1~80質量%とすることが好ましく、2~70質量%とすることがより好ましい。なお、感光性基含有ポリマーは1種を単独で使用してもよく、2種以上を混合して使用してもよい。
(P) When a polymer having a photoalignable group is used as the polymer, all of the polymer components of the liquid crystal aligning agent may be a polymer having a photoalignable group, and a part of the polymer may be a photoalignable group. It is good also as a polymer which it has. In the case of using a polymer having a photoalignable group for a part of the polymer component, the use ratio of the polymer is 1 to 80% by mass with respect to the total amount of the polymer component used for preparation of the liquid crystal alignment agent It is preferable that the amount be 2 to 70% by mass.
Moreover, when using the polymer which has a polymeric group as (P) polymer, the usage ratio of the said polymer is 1-80 mass% with respect to the whole quantity of the polymer component used for preparation of a liquid crystal aligning agent. It is preferably set to 2 to 70% by mass. In addition, a photosensitive group containing polymer may be used individually by 1 type, and 2 or more types may be mixed and used.
(液晶性ポリマー)
 (P)重合体としては、液晶配向剤に含有されるうちの一部又は全部を、所定の温度範囲で液晶性を発現する部分構造(以下「液晶性構造」ともいう。)を側鎖に有する重合体(以下「液晶性ポリマー」ともいう。)としてもよい。液晶配向剤中に液晶性ポリマーを含有させることにより、液晶素子の初期の電圧保持率をより高くできる点で好ましい。
(Liquid crystalline polymer)
As the polymer (P), a partial structure (hereinafter also referred to as "liquid crystalline structure") exhibiting liquid crystallinity in a predetermined temperature range is used as a side chain for a part or all of the content contained in the liquid crystal aligning agent. It may be used as a polymer (hereinafter also referred to as "liquid crystalline polymer"). By containing a liquid crystalline polymer in the liquid crystal aligning agent, it is preferable in that the initial voltage holding ratio of the liquid crystal element can be further increased.
 液晶性構造としては、剛直な部位(メソゲン構造)を有する構造が挙げられ、その具体例としては、下記式(5)で表される基を有する構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
(式(5)中、Ar及びArは、それぞれ独立に、置換若しくは無置換のフェニレン基、又は置換若しくは無置換のシクロヘキシレン基であり、X21は単結合、-CO-、-COO-、-C=C-、-C≡C-、-N=N-又は-CONR41-(R41は水素原子又は1価の有機基である。)である。rは1~3の整数である。rが2又は3のとき、Ar、X21は、各々独立に上記定義を有する。「*」は結合手を示す。)
The liquid crystalline structure includes a structure having a rigid portion (mesogen structure), and a specific example thereof includes a structure having a group represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000008
(In Formula (5), Ar 1 and Ar 2 are each independently a substituted or unsubstituted phenylene group or a substituted or unsubstituted cyclohexylene group, and X 21 is a single bond, —CO—, —COO -, - C = C -, - C≡C -, - N = N- or -CONR 41 - (. R 41 is a hydrogen atom or a monovalent organic group) and is .r is an integer of 1 to 3 When r is 2 or 3, each of Ar 2 and X 21 independently has the above-mentioned definition. “*” Represents a bonding hand.)
 上記式(5)において、X21は、好ましくは単結合又は-COO-である。R41の1価の有機基としては、例えば炭素数1~6のアルキル基、保護基などが挙げられる。保護基の具体例としては、例えばt-ブトキシカルボニル基、ベンジルオキシカルボニル基、1,1-ジメチル-2-ハロエチルオキシカルボニル基、アリルオキシカルボニル基などが挙げられ、t-ブトキシカルボニル基が好ましい。Ar及びArの環部分の置換基は、炭素数1~5のアルキル基又はハロゲン原子が好ましく、メチル基又はフッ素原子がより好ましい。 In the above formula (5), X 21 is preferably a single bond or —COO—. Examples of the monovalent organic group of R 41 include an alkyl group having 1 to 6 carbon atoms, a protecting group and the like. Specific examples of the protective group include, for example, t-butoxycarbonyl group, benzyloxycarbonyl group, 1,1-dimethyl-2-haloethyloxycarbonyl group, allyloxycarbonyl group and the like, and t-butoxycarbonyl group is preferable. . The substituent of the ring portion of Ar 1 and Ar 2 is preferably an alkyl group having 1 to 5 carbon atoms or a halogen atom, and more preferably a methyl group or a fluorine atom.
 上記式(5)で表される部分構造の好ましい具体例としては、例えば4,4’-ビフェニレン基、4,4’-ビシクロへキシレン基、p-ターフェニレン基、及び下記式(5-1)~式(5-4)のそれぞれで表される基、並びにこれらの基の環部分にメチル基又はフッ素原子を有する基などが挙げられる。なお、上記式(5)及び下記式(5-1)~式(5-4)中の「*」は水素原子に結合していてもよい。
Figure JPOXMLDOC01-appb-C000009
(式中、「*」は結合手を示す。)
Preferred specific examples of the partial structure represented by the above formula (5) include, for example, 4,4′-biphenylene group, 4,4′-bicyclohexylene group, p-terphenylene group, and the following formula (5-1) And groups having a methyl group or a fluorine atom in the ring portion of these groups, and the like. The “*” in the above formula (5) and the following formulas (5-1) to (5-4) may be bonded to a hydrogen atom.
Figure JPOXMLDOC01-appb-C000009
(In the formula, "*" indicates a bond.)
 (P)重合体が液晶性ポリマーである場合、当該液晶性ポリマーとして、感光性基を側鎖に有する重合体を好ましく用いることができる。具体的には、液晶性ポリマーは、下記式(F-1)~式(F-7)のそれぞれで表される基を側鎖に有していることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(式(F-1)~式(F-7)中、A及びB及びDは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-又は-NH-CO-である。Bは、単結合、-COO-、-OCO-、-N=N-、-C=C-、-C≡C-又はフェニレン基である。Yは、ベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、又は炭素数5~8の環状炭化水素を有する1価の環状基であり、環に結合する少なくとも一個の水素原子が、ハロゲン原子、ニトロ基、シアノ基、-C=C(CN)、-C=CH-CN、炭素数1~3のアルキル基、又は炭素数1~3のアルコキシ基で置換されていてもよい。Yは、ベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、又は炭素数5~8の環状炭化水素を有する2価の環状基であり、環に結合する少なくとも一個の水素原子が、ハロゲン原子、ニトロ基、シアノ基、-C=C(CN)、-C=CH-CN、炭素数1~3のアルキル基、又は炭素数1~3のアルコキシ基で置換されていてもよい。Yは、ベンゼン環、ナフタレン環、又はビフェニル環を有する1価の環状基であり、環に結合する少なくとも一個の水素原子が、ハロゲン原子、ニトロ基、シアノ基、-C=C(CN)、-C=CH-CN、炭素数1~3のアルキル基、又は炭素数1~3のアルコキシ基で置換されていてもよい。Xは、単結合、-COO-、-OCO-、-N=N-、-C=C-、-C≡C-又はフェニレン基である。R11は、水素原子又は炭素数1~6のアルキル基である。R12は、水素原子、ハロゲン原子、ニトロ基、シアノ基、-C=C(CN)、-C=CH-CN、炭素数1~6のアルキル基、又は炭素数1~6のアルコキシ基である。R13は、水素原子又は炭素数1~3のアルキル基である。kは1~12の整数であり、m及びjは、それぞれ独立に1~3の整数であり、gは1~12の整数である。なお、式(F-6)中のベンゼン環に結合する少なくとも1個の水素原子は、ハロゲン原子、ニトロ基、シアノ基、-C=C(CN)、-C=CH-CN、炭素数1~3のアルキル基、又は炭素数1~3のアルコキシ基で置換されていてもよい。「*1」は、主鎖に結合する結合手であることを示す。)
When the polymer (P) is a liquid crystalline polymer, a polymer having a photosensitive group in a side chain can be preferably used as the liquid crystalline polymer. Specifically, the liquid crystalline polymer preferably has a group represented by each of the following formulas (F-1) to (F-7) in the side chain.
Figure JPOXMLDOC01-appb-C000010
(In Formula (F-1) to Formula (F-7), A 1 and B 1 and D 1 are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, B 2 is a single bond, -COO-, -OCO-, -N = N-, -C = C-, -C≡C- or a phenylene group. Y 1 is a benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, or a monovalent cyclic group having a cyclic hydrocarbon with 5 to 8 carbon atoms, and at least one hydrogen atom bonded to the ring is It may be substituted by a halogen atom, a nitro group, a cyano group, -C = C (CN) 2 , -C = CH-CN, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms Y 2 is a benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, or carbon number A divalent cyclic group having 5 to 8 cyclic hydrocarbons, at least one hydrogen atom bonded to the ring being a halogen atom, a nitro group, a cyano group, -C = C (CN) 2 , -C = CH It may be substituted by —CN, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms. Y 3 is a monovalent cyclic group having a benzene ring, a naphthalene ring or a biphenyl ring. And at least one hydrogen atom bonded to the ring is a halogen atom, a nitro group, a cyano group, -C = C (CN) 2 , -C = CH-CN, an alkyl group having 1 to 3 carbon atoms, or a carbon number It may be substituted by 1 to 3 alkoxy groups, and X 1 is a single bond, -COO-, -OCO-, -N = N-, -C = C-, -C≡C- or phenylene group. R 11 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R 12 represents a hydrogen atom, a halogen atom, a nitro group, a cyano group, -C = C (CN) 2 , -C = CH-CN, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms R 13 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, k is an integer of 1 to 12, m and j are each independently an integer of 1 to 3, and g is 1 And at least one hydrogen atom bonded to a benzene ring in formula (F-6) is a halogen atom, a nitro group, a cyano group, -C = C (CN) 2 , -C. It may be substituted with ア ル キ ル CH—CN, an alkyl group of 1 to 3 carbon atoms, or an alkoxy group of 1 to 3 carbon atoms “* 1” indicates a bond to be bonded to the main chain. )
 (P)重合体の一部又は全部が液晶性ポリマーである場合、当該液晶性ポリマーは、好ましくは、ポリ(メタ)アクリレート、ポリアミック酸、ポリイミド及びポリアミック酸エステルよりなる群から選ばれる少なくとも一種であり、ポリ(メタ)アクリレートであることが特に好ましい。(P)重合体として液晶性ポリマーを使用する場合、当該液晶性ポリマーの使用割合は、液晶配向剤の調製に使用する重合体成分の全量のうち、100質量%以下の範囲で適宜設定することができる。なお、液晶性ポリマーとしては、1種を単独で使用してもよく、2種以上を混合して使用してもよい。 When a part or all of the polymer (P) is a liquid crystalline polymer, the liquid crystalline polymer is preferably at least one selected from the group consisting of poly (meth) acrylates, polyamic acids, polyimides and polyamic acid esters. And poly (meth) acrylates are particularly preferred. (P) When a liquid crystalline polymer is used as the polymer, the use ratio of the liquid crystalline polymer is appropriately set in a range of 100% by mass or less based on the total amount of the polymer components used for the preparation of the liquid crystal aligning agent. Can. In addition, as a liquid crystalline polymer, 1 type may be used independently and 2 or more types may be mixed and used.
(重合体の合成)
 (P)重合体は、その主骨格に応じて有機化学の定法を適宜組み合わせることにより得ることができる。以下に、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリアミドイミド、ポリ(メタ)アクリレート、及びポリオルガノシロキサンについてそれぞれ説明する。
(Synthesis of polymer)
The polymer (P) can be obtained by appropriately combining conventional methods of organic chemistry according to the main skeleton thereof. The polyamic acid, the polyimide, the polyamic acid ester, the polyamide imide, the poly (meth) acrylate, and the polyorganosiloxane are respectively described below.
[ポリアミック酸]
 ポリアミック酸は、テトラカルボン酸二無水物とジアミン化合物とを反応させることにより得ることができる。
[Polyamic acid]
The polyamic acid can be obtained by reacting tetracarboxylic acid dianhydride with a diamine compound.
(テトラカルボン酸二無水物)
 ポリアミック酸の合成に使用するテトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などを挙げることができる。これらの具体例としては、脂肪族テトラカルボン酸二無水物として、例えば1,2,3,4-ブタンテトラカルボン酸二無水物などを;
 脂環式テトラカルボン酸二無水物として、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、3-オキサビシクロ[3.2.1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、4,9-ジオキサトリシクロ[5.3.1.02,6]ウンデカン-3,5,8,10-テトラオン、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物などを;芳香族テトラカルボン酸二無水物として、例えばピロメリット酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、エチレングリコールビスアンヒドロトリメート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物などを;それぞれ挙げることができるほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物を用いることができる。なお、上記テトラカルボン酸二無水物は、1種を単独で又は2種以上組み合わせて使用することができる。
(Tetracarboxylic acid dianhydride)
Examples of tetracarboxylic acid dianhydrides used in the synthesis of polyamic acids include aliphatic tetracarboxylic acid dianhydrides, alicyclic tetracarboxylic acid dianhydrides, and aromatic tetracarboxylic acid dianhydrides. . As specific examples of these, as aliphatic tetracarboxylic acid dianhydride, for example, 1,2,3,4-butanetetracarboxylic acid dianhydride etc .;
Examples of alicyclic tetracarboxylic acid dianhydrides include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 2,3,5-Tricarboxycyclopentylacetic acid dianhydride, 5- (2,5-dioxotetrahydrofuran-3-yl) -3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1 , 3-dione, 5- (2,5-dioxotetrahydrofuran-3-yl) -8-methyl-3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 3-Oxabicyclo [3.2.1] octane-2,4-dione-6-spiro-3 '-(tetrahydrofuran-2', 5'-dione), 2,4,6,8-tetracarboxybicyclo [ 3.3.0] Octane -2: 4,6: 8 dianhydride, 4,9-dioxatricyclo [5.3.1.0 2, 6] undecane -3,5,8,10- tetraone, cyclopentane tetracarboxylic Acid dianhydrides, cyclohexane tetracarboxylic acid dianhydrides and the like; as aromatic tetracarboxylic acid dianhydrides, for example, pyromellitic dianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, ethylene Glycol bisanhydrotrimate, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, 4,4'-carbonyldiphthalic anhydride, etc .; The tetracarboxylic acid dianhydride described in the publication can be used. In addition, the said tetracarboxylic dianhydride can be used individually by 1 type or in combination of 2 or more types.
(ジアミン化合物)
 ポリアミック酸の合成に使用するジアミン化合物としては、例えば脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン、ジアミノオルガノシロキサンなどを挙げることができる。これらジアミンの具体例としては、脂肪族ジアミンとして、例えばメタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミンなどを;脂環式ジアミンとして、例えば1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)などを;
 芳香族ジアミンとして、例えばドデカノキシジアミノベンゼン、オクタデカノキシジアミノベンゼン、コレスタニルオキシジアミノベンゼン、ジアミノ安息香酸コレスタニル、ジアミノ安息香酸コレステリル、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン、3,6-ビス(4-アミノフェノキシ)コレスタン、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ブチルシクロヘキサン、3,5-ジアミノ安息香酸=5ξ-コレスタン-3-イル、下記式(E-1)
Figure JPOXMLDOC01-appb-C000011
(式(E-1)中、XI及びXIIは、それぞれ独立に、単結合、-O-、*-COO-又は*-OCO-(ただし、「*」はXとの結合手を示す。)であり、Rは炭素数1~3のアルカンジイル基であり、RIIは単結合又は炭素数1~3のアルカンジイル基であり、aは0又は1であり、bは0~2の整数であり、cは1~20の整数であり、dは0又は1である。但し、a及びbが同時に0になることはない。)
で表される化合物、桂皮酸構造を有するジアミン、液晶性構造を有するジアミンなどの配向性基含有ジアミン:
(Diamine compound)
As a diamine compound used for the synthesis | combination of a polyamic acid, an aliphatic diamine, an alicyclic diamine, aromatic diamine, a diamino organosiloxane etc. can be mentioned, for example. Specific examples of these diamines include, as aliphatic diamines, for example, metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine and the like; as alicyclic diamines, for example, 1,4 -Diaminocyclohexane, 4,4'- methylenebis (cyclohexylamine) and the like;
As aromatic diamines, for example, dodecanoxydiaminobenzene, octadecanoxydiaminobenzene, cholestanyloxydiaminobenzene, cholestanyl diaminobenzoate, cholesteryl diaminobenzoate, 3,6-bis (4-aminobenzoyloxy) cholestane, 3 , 6-Bis (4-aminophenoxy) cholestane, 1,1-bis (4-((aminophenyl) methyl) phenyl) -4-butylcyclohexane, 3,5-diaminobenzoic acid = 5ξ-cholestan-3-yl , The following formula (E-1)
Figure JPOXMLDOC01-appb-C000011
(In formula (E-1), X I and X II each independently represent a single bond, -O-, * -COO- or * -OCO- (wherein "*" represents a bond to X I R 1 is an alkanediyl group having 1 to 3 carbon atoms, R II is a single bond or an alkanediyl group having 1 to 3 carbon atoms, a is 0 or 1, and b is 0. And is an integer of to 2, c is an integer of 1 to 20, and d is 0 or 1. However, a and b can not be 0 simultaneously.)
And an alignment group-containing diamine such as a compound represented by the following formula, a diamine having a cinnamic acid structure, and a diamine having a liquid crystalline structure:
p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4-アミノフェニル-4’-アミノベンゾエート、4,4’-ジアミノアゾベンゼン、1,5-ビス(4-アミノフェノキシ)ペンタン、ビス[2-(4-アミノフェニル)エチル]ヘキサン二酸、N,N-ビス(4-アミノフェニル)メチルアミン、2,6-ジアミノピリジン、1,4-ビス-(4-アミノフェニル)-ピペラジン、N,N’-ビス(4-アミノフェニル)-ベンジジン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-(フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニルなどを;ジアミノオルガノシロキサンとして、例えば、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサンなどを;それぞれ挙げることができるほか、特開2010-97188号公報に記載のジアミンを用いることができる。 p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4-aminophenyl-4'-aminobenzoate, 4,4'-diaminoazobenzene, 1,5-bis (4-aminophenoxy) pentane, bis [2- ( 4-Aminophenyl) ethyl] hexanedioic acid, N, N-bis (4-aminophenyl) methylamine, 2,6-diaminopyridine, 1,4-bis- (4-aminophenyl) -piperazine, N, N '-Bis (4-aminophenyl) -benzidine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4 '-Diaminodiphenyl ether, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis (4-aminophenyl) Subfluoropropane, 4,4 '-(phenylenediisopropylidene) bisaniline, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl etc. as a diaminoorganosiloxane For example, 1,3-bis (3-aminopropyl) -tetramethyldisiloxane and the like can be mentioned, respectively, and diamines described in JP-A-2010-97188 can be used.
(ポリアミック酸の合成)
 ポリアミック酸は、上記のようなテトラカルボン酸二無水物とジアミン化合物とを、必要に応じて分子量調整剤とともに反応させることにより得ることができる。ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物との使用割合は、ジアミン化合物のアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2~2当量となる割合が好ましい。分子量調整剤としては、例えば無水マレイン酸、無水フタル酸、無水イタコン酸などの酸一無水物、アニリン、シクロヘキシルアミン、n-ブチルアミンなどのモノアミン化合物、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート化合物等を挙げることができる。分子量調整剤の使用割合は、使用するテトラカルボン酸二無水物及びジアミン化合物の合計100質量部に対して、20質量部以下とすることが好ましい。
(Synthesis of polyamic acid)
A polyamic acid can be obtained by reacting the above-described tetracarboxylic acid dianhydride and a diamine compound, as necessary, together with a molecular weight modifier. The use ratio of the tetracarboxylic acid dianhydride and the diamine compound to be subjected to the synthesis reaction of the polyamic acid is such that the acid anhydride group of the tetracarboxylic acid dianhydride is 0.2 with respect to 1 equivalent of the amino group of the diamine compound. A ratio of ̃2 equivalents is preferred. Examples of the molecular weight modifier include acid monoanhydrides such as maleic anhydride, phthalic anhydride and itaconic anhydride, monoamine compounds such as aniline, cyclohexylamine and n-butylamine, and monoisocyanate compounds such as phenyl isocyanate and naphthyl isocyanate. It can be mentioned. The use ratio of the molecular weight modifier is preferably 20 parts by mass or less with respect to 100 parts by mass in total of the tetracarboxylic acid dianhydride used and the diamine compound.
 ポリアミック酸の合成反応は、好ましくは有機溶媒中において行われる。このときの反応温度は-20℃~150℃が好ましく、反応時間は0.1~24時間が好ましい。
 反応に使用する有機溶媒としては、例えば非プロトン性極性溶媒、フェノール系溶媒、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素などを挙げることができる。特に好ましい有機溶媒は、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド、m-クレゾール、キシレノール及びハロゲン化フェノールよりなる群から選択される1種以上を溶媒として使用するか、あるいはこれらの1種以上と、他の有機溶媒(例えばブチルセロソルブ、ジエチレングリコールジエチルエーテルなど)との混合物を使用することが好ましい。有機溶媒の使用量(a)は、テトラカルボン酸二無水物及びジアミンの合計量(b)が、反応溶液の全量(a+b)に対して、0.1~50質量%になる量とすることが好ましい。
 以上のようにして、ポリアミック酸を溶解してなる反応溶液が得られる。この反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで液晶配向剤の調製に供してもよい。
The synthesis reaction of polyamic acid is preferably carried out in an organic solvent. The reaction temperature at this time is preferably -20 ° C to 150 ° C, and the reaction time is preferably 0.1 to 24 hours.
Examples of the organic solvent used for the reaction include aprotic polar solvents, phenolic solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons, hydrocarbons and the like. Particularly preferred organic solvents are N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, γ-butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol And using one or more selected from the group consisting of and halogenated phenols as a solvent, or using a mixture of one or more of these and another organic solvent (eg, butyl cellosolve, diethylene glycol diethyl ether, etc.) preferable. The amount (a) of the organic solvent used is such that the total amount (b) of the tetracarboxylic acid dianhydride and the diamine is 0.1 to 50% by mass with respect to the total amount (a + b) of the reaction solution. Is preferred.
As described above, a reaction solution in which the polyamic acid is dissolved is obtained. This reaction solution may be used as it is for preparation of a liquid crystal aligning agent, or may be used for preparation of a liquid crystal aligning agent after the polyamic acid contained in the reaction solution is isolated.
[ポリアミック酸エステル]
 (P)重合体がポリアミック酸エステルである場合、当該ポリアミック酸エステルは、例えば、[I]上記合成反応により得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミン化合物とを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミン化合物とを反応させる方法、などによって得ることができる。液晶配向剤に含有させるポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。なお、ポリアミック酸エステルを溶解してなる反応溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸エステルを単離したうえで液晶配向剤の調製に供してもよい。
[Polyamic acid ester]
(P) When the polymer is a polyamic acid ester, the polyamic acid ester is, for example, [I] a method of reacting a polyamic acid obtained by the above synthesis reaction with an esterifying agent, [II] tetracarboxylic acid diester These compounds can be obtained by a method of reacting a diamine compound with a diamine compound, a method of reacting a [III] tetracarboxylic acid diester dihalide with a diamine compound, or the like. The polyamic acid ester to be contained in the liquid crystal aligning agent may have only an amic acid ester structure, or may be a partially esterified product in which an amic acid structure and an amic acid ester structure coexist. The reaction solution obtained by dissolving the polyamic acid ester may be used as it is for preparation of a liquid crystal aligning agent, or the polyamic acid ester contained in the reaction solution may be isolated and then provided for preparation of a liquid crystal aligning agent. Good.
[ポリイミド]
 (P)重合体がポリイミドの場合、当該ポリイミドは、例えば上記の如くして合成されたポリアミック酸を脱水閉環してイミド化することにより得ることができる。ポリイミドは、その前駆体であるポリアミック酸が有していたアミック酸構造のすべてを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造とが併存する部分イミド化物であってもよい。反応に使用するポリイミドは、そのイミド化率が20~99%であることが好ましく、30~90%であることがより好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ここで、イミド環の一部がイソイミド環であってもよい。
[Polyimide]
When the polymer (P) is a polyimide, the polyimide can be obtained, for example, by dehydration ring closure and imidization of the polyamic acid synthesized as described above. The polyimide may be a completely imidized product obtained by dehydrating and ring closing all of the amic acid structure of the precursor polyamic acid, and only a part of the amic acid structure may be dehydrating and ring closing, and the amic acid structure and the imide. It may be a partial imidate coexisting with a ring structure. The polyimide used for the reaction preferably has an imidation ratio of 20 to 99%, more preferably 30 to 90%. The imidation ratio is a percentage representing the ratio of the number of imide ring structures to the total number of amic acid structures of polyimide and the number of imide ring structures. Here, part of the imide ring may be an isoimide ring.
 ポリアミック酸の脱水閉環は、好ましくはポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。この方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸のアミック酸構造の1モルに対して0.01~20モルとすることが好ましい。脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01~10モルとすることが好ましい。脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は、好ましくは0~180℃である。反応時間は、好ましくは1.0~120時間である。このようにしてポリイミドを含有する反応溶液が得られる。この反応溶液は、そのまま液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよい。ポリイミドは、ポリアミック酸エステルのイミド化により得ることもできる。 The dehydration ring closure of the polyamic acid is preferably carried out by dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydration ring closure catalyst to this solution, and heating as necessary. In this method, as the dehydrating agent, for example, an acid anhydride such as acetic anhydride, propionic anhydride, trifluoroacetic anhydride and the like can be used. The amount of the dehydrating agent used is preferably 0.01 to 20 moles relative to 1 mole of the polyamic acid's amic acid structure. As the dehydration ring closure catalyst, for example, tertiary amines such as pyridine, collidine, lutidine and triethylamine can be used. The amount of the dehydrating ring-closing catalyst used is preferably 0.01 to 10 moles relative to 1 mole of the dehydrating agent used. As an organic solvent used for a dehydration ring-closing reaction, the organic solvent illustrated as what is used for the synthesis | combination of a polyamic acid can be mentioned. The reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C. The reaction time is preferably 1.0 to 120 hours. Thus, a reaction solution containing a polyimide is obtained. This reaction solution may be used as it is for preparation of a liquid crystal aligning agent, or may be used for preparing a liquid crystal aligning agent after isolating the polyimide. Polyimides can also be obtained by imidization of polyamic acid esters.
 以上のようにして得られるポリアミック酸、ポリアミック酸エステル及びポリイミドは、これを濃度10質量%の溶液としたときに、10~800mPa・sの溶液粘度を持つものであることが好ましく、15~500mPa・sの溶液粘度を持つものであることがより好ましい。なお、ポリアミック酸、ポリアミック酸エステル及びポリイミドの溶液粘度(mPa・s)は、これら重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。 The polyamic acid, polyamic acid ester and polyimide obtained as described above preferably have a solution viscosity of 10 to 800 mPa · s when this is made into a solution with a concentration of 10% by mass, preferably 15 to 500 mPa. More preferably, it has a solution viscosity of s. The solution viscosity (mPa · s) of the polyamic acid, polyamic acid ester and polyimide is 10% by mass of a solution prepared using a good solvent of these polymers (eg, γ-butyrolactone, N-methyl-2-pyrrolidone, etc.) The polymer solution of the above was a value measured at 25.degree. C. using an E-type rotational viscometer.
 ポリアミック酸、ポリアミック酸エステル及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。このような分子量範囲にあることで、液晶表示素子の良好な配向性及び安定性を確保することができる。 The weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of polyamic acid, polyamic acid ester and polyimide is preferably 1,000 to 500,000, and more preferably 2,000 to 500 It is 300,000. The molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. By being in such a molecular weight range, good alignment and stability of the liquid crystal display element can be secured.
[ポリアミドイミド]
 ポリアミドイミドは、例えば、トリカルボン酸とジイソシアネート化合物とを縮合反応させる方法、又はトリカルボン酸とジアミン化合物とを反応させて分子中にイミド結合を導入し、次いでこれにジイソシアネート化合物を反応させてアミド化する方法により得ることができる。
[Polyamide imide]
Polyamide imide is, for example, a method of condensation reaction of tricarboxylic acid and diisocyanate compound, or reaction of tricarboxylic acid and diamine compound to introduce an imide bond into the molecule, and then reaction of this with diisocyanate compound to amidate It can be obtained by the method.
 ポリアミドイミドの合成に使用するトリカルボン酸としては、例えばトリメリット酸無水物、ブタン-1,2,4-トリカルボン酸、ナフタレン-1,2,4-トリカルボン酸等が挙げられる。ジイソシアネート化合物としては、例えばジフェニルメタン-4,4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネート、トリレンジイソシアネート、キシレンジイソシアネート等が挙げられる。ジアミン化合物としては、ポリアミック酸の合成で例示したジアミン化合物等が挙げられる。 Examples of tricarboxylic acids used in the synthesis of polyamideimides include trimellitic anhydride, butane-1,2,4-tricarboxylic acid, and naphthalene-1,2,4-tricarboxylic acid. Examples of the diisocyanate compound include diphenylmethane-4,4'-diisocyanate, diphenylether-4,4'-diisocyanate, tolylene diisocyanate and xylene diisocyanate. As a diamine compound, the diamine compound etc. which were illustrated by the synthesis | combination of polyamic acid are mentioned.
 上記反応は、好ましくは有機溶媒中で行われる。ポリアミドイミドの合成に際し、モノマーの使用割合は、カルボキシル基及び酸無水物基の合計1モルに対するイソシアネート基又はアミノ基の数が0.85~1.05モルとなる量とすることが好ましい。ポリアミドイミドの合成反応は、好ましくは有機溶媒中において行われる。このときの反応温度は-20℃~150℃が好ましく、反応時間は0.1~24時間が好ましい。反応に使用する有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。得られるポリアミドイミドにつき、GPCにより測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは5,000~100,000であり、より好ましくは7,000~80,000である。 The above reaction is preferably carried out in an organic solvent. In the synthesis of the polyamideimide, the proportion of the monomer used is preferably such that the number of isocyanate groups or amino groups is 0.85 to 1.05 moles with respect to 1 mole of the total of the carboxyl group and the acid anhydride group. The synthesis reaction of polyamideimide is preferably carried out in an organic solvent. The reaction temperature at this time is preferably -20 ° C to 150 ° C, and the reaction time is preferably 0.1 to 24 hours. As an organic solvent used for reaction, the organic solvent illustrated as what is used for the synthesis | combination of a polyamic acid can be mentioned. The weight average molecular weight (Mw) in terms of polystyrene measured by GPC for the obtained polyamideimide is preferably 5,000 to 100,000, and more preferably 7,000 to 80,000.
[ポリオルガノシロキサン]
 ポリオルガノシロキサンは、例えば、加水分解性のシラン化合物を加水分解・縮合することにより得ることができる。ポリオルガノシロキサンの合成に使用するシラン化合物としては、例えば、テトラメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジエトキシシラン等のアルコキシシラン化合物;3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-(3-シクロヘキシルアミノ)プロピルトリメトキシシラン等の窒素・硫黄含有アルコキシシラン化合物;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン化合物;3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン等の不飽和結合含有アルコキシシラン化合物;トリメトキシシリルプロピルコハク酸無水物などを挙げることができる。加水分解性シラン化合物は、これらのうちの1種を単独で又は2種以上を組み合わせて使用することができる。なお、「(メタ)アクリロキシ」は、「アクリロキシ」及び「メタクリロキシ」を含む意味である。
[Polyorganosiloxane]
The polyorganosiloxane can be obtained, for example, by hydrolyzing and condensing a hydrolyzable silane compound. Examples of silane compounds used for the synthesis of polyorganosiloxanes include alkoxysilane compounds such as tetramethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and dimethyldiethoxysilane; 3-mercaptopropyltriethoxy Nitrogen / sulfur-containing alkoxysilane compounds such as silane, mercaptomethyltriethoxysilane, 3-aminopropyltrimethoxysilane, N- (3-cyclohexylamino) propyltrimethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3- Epoxy group-containing silane compounds such as glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, etc. And unsaturated alkoxysilane compounds of the following: trimethoxysilylpropyl succinic anhydride and the like. The hydrolyzable silane compounds can be used alone or in combination of two or more of them. In addition, "(meth) acryloxy" is a meaning including "acryloxy" and "methacryloxy."
 上記の加水分解・縮合反応は、上記の如きシラン化合物の1種又は2種以上と水とを、好ましくは適当な触媒及び有機溶媒の存在下で反応させることにより行う。反応に際し、水の使用割合は、シラン化合物(合計量)1モルに対して、好ましくは1~30モルである。使用する触媒としては、例えば酸、アルカリ金属化合物、有機塩基、チタン化合物、ジルコニウム化合物などを挙げることができる。触媒の使用量は、触媒の種類、温度などの反応条件などにより異なり、適宜に設定されるべきであるが、例えばシラン化合物の合計量に対して、好ましくは0.01~3倍モルである。使用する有機溶媒としては、例えば炭化水素、ケトン、エステル、エーテル、アルコールなどが挙げられ、これらのうち、非水溶性又は難水溶性の有機溶媒を用いることが好ましい。有機溶媒の使用割合は、反応に使用するシラン化合物の合計100質量部に対して、好ましくは10~10,000質量部である。 The above-mentioned hydrolysis / condensation reaction is carried out by reacting one or more silane compounds as described above with water, preferably in the presence of a suitable catalyst and an organic solvent. In the reaction, the proportion of water used is preferably 1 to 30 moles relative to 1 mole of the silane compound (total amount). As a catalyst to be used, an acid, an alkali metal compound, an organic base, a titanium compound, a zirconium compound etc. can be mentioned, for example. The amount of catalyst used varies depending on the type of catalyst, reaction conditions such as temperature, etc., and should be set appropriately. For example, it is preferably 0.01 to 3 times the molar amount of the total amount of silane compounds. . Examples of the organic solvent to be used include hydrocarbons, ketones, esters, ethers, alcohols and the like, and among these, it is preferable to use a water insoluble or poorly water soluble organic solvent. The proportion of the organic solvent used is preferably 10 to 10,000 parts by mass with respect to 100 parts by mass in total of the silane compound used for the reaction.
 上記の加水分解・縮合反応は、例えば油浴などにより加熱して実施することが好ましい。その際、加熱温度は130℃以下とすることが好ましく、加熱時間は0.5~12時間とすることが好ましい。反応終了後において、反応液から分取した有機溶媒層を、必要に応じて乾燥剤で乾燥した後、溶媒を除去することにより、目的とするポリオルガノシロキサンが得られる。なお、ポリオルガノシロキサンの合成方法は上記の加水分解・縮合反応に限らず、例えば加水分解性シラン化合物をシュウ酸及びアルコールの存在下で反応させる方法などにより行ってもよい。 The above hydrolysis / condensation reaction is preferably carried out, for example, by heating with an oil bath or the like. At that time, the heating temperature is preferably 130 ° C. or less, and the heating time is preferably 0.5 to 12 hours. After completion of the reaction, the organic solvent layer separated from the reaction solution is dried with a desiccant if necessary, and the solvent is removed to obtain the target polyorganosiloxane. The method for synthesizing polyorganosiloxane is not limited to the above-mentioned hydrolysis / condensation reaction, and may be performed by, for example, a method of reacting a hydrolyzable silane compound in the presence of oxalic acid and alcohol.
 ポリオルガノシロキサンを、感光性構造又は液晶性構造を側鎖に有するポリオルガノシロキサンとしてもよい。当該ポリオルガノシロキサンを合成する方法は特に限定されないが、原料の少なくとも一部にエポキシ基含有シラン化合物を用いて、エポキシ基を側鎖に有するポリオルガノシロキサン(以下、「エポキシ基含有ポリオルガノシロキサン」ともいう。)を合成し、次いで、エポキシ基含有ポリオルガノシロキサンと、感光性構造又は液晶性構造を有するカルボン酸とを反応させる方法などが挙げられる。この方法は簡便であって、しかも感光性構造及び液晶性構造の導入率を高くできる点で好ましい。その他、感光性構造又は液晶性構造を有する加水分解性のシラン化合物をモノマーに含む反応によって、感光性構造又は液晶性構造を側鎖に有するポリオルガノシロキサンを合成してもよい。ポリオルガノシロキサンにつき、GPCで測定したポリスチレン換算の重量平均分子量(Mw)は、100~50,000の範囲にあることが好ましく、200~10,000の範囲にあることがより好ましい。 The polyorganosiloxane may be a polyorganosiloxane having a photosensitive structure or a liquid crystalline structure in its side chain. The method for synthesizing the polyorganosiloxane is not particularly limited, but a polyorganosiloxane having an epoxy group in a side chain using an epoxy group-containing silane compound as at least a part of the raw material (hereinafter, "epoxy group-containing polyorganosiloxane") And a method of reacting an epoxy group-containing polyorganosiloxane with a carboxylic acid having a photosensitive structure or a liquid crystalline structure, and the like. This method is preferable in that it is simple and can increase the introduction ratio of the photosensitive structure and the liquid crystalline structure. In addition, a polyorganosiloxane having a photosensitive structure or a liquid crystalline structure in a side chain may be synthesized by a reaction in which a hydrolyzable silane compound having a photosensitive structure or a liquid crystalline structure is contained in a monomer. The weight average molecular weight (Mw) in terms of polystyrene measured by GPC for polyorganosiloxane is preferably in the range of 100 to 50,000, and more preferably in the range of 200 to 10,000.
[ポリ(メタ)アクリレート]
 ポリ(メタ)アクリレートは、(メタ)アクリル系化合物を含むモノマーを重合することにより得ることができる。(メタ)アクリル系化合物としては、例えば、(メタ)アクリル酸、α-エチルアクリル酸、マレイン酸、フマル酸、ビニル安息香酸等の不飽和カルボン酸;(メタ)アクリル酸アルキル(メタ)アクリル酸シクロアルキル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシシクロヘキシルメチル、(メタ)アクリル酸3,4-エポキシブチル、アクリル酸4-ヒドロキシブチルグリシジルエーテル等の不飽和カルボン酸エステル;無水マレイン酸等の不飽和多価カルボン酸無水物、等が挙げられる。なお、重合に際し、(メタ)アクリル系化合物としては、1種を単独で又は2種以上を組み合わせて使用することができる。
[Poly (meth) acrylate]
Poly (meth) acrylate can be obtained by polymerizing a monomer containing a (meth) acrylic compound. Examples of (meth) acrylic compounds include unsaturated carboxylic acids such as (meth) acrylic acid, α-ethyl acrylic acid, maleic acid, fumaric acid and vinylbenzoic acid; alkyl (meth) acrylates (meth) acrylic acid Cycloalkyl, benzyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, trimethoxysilylpropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, glycidyl (meth) acrylate, (meth) Unsaturated carboxylic acid esters such as 3,4-epoxycyclohexylmethyl acrylic acid, 3,4-epoxybutyl (meth) acrylic acid, 4-hydroxybutyl glycidyl ether acrylic acid; unsaturated polyhydric carboxylic acid anhydrides such as maleic anhydride Things, etc. In the polymerization, as the (meth) acrylic compound, one kind may be used alone, or two or more kinds may be used in combination.
 ポリ(メタ)アクリレートの合成に際しては、(メタ)アクリル系化合物以外のモノマーを用いてもよい。当該モノマーとしては、例えば、スチレン、メチルスチレン、ジビニルベンゼン等の芳香族ビニル化合物;1,3-ブタジエン、2-メチル-1,3-ブタジエン等の共役ジエン化合物;N-メチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等のマレイミド基含有化合物、等が挙げられる。これらのモノマーは、1種を単独で又は2種以上を組み合わせて使用することができる。
 (メタ)アクリル系化合物以外のモノマーの使用割合は、重合に使用するモノマーの合計量に対して、50モル%以下とすることが好ましく、40モル%以下とすることがより好ましく、30モル以下とすることが更に好ましい。
In the synthesis of poly (meth) acrylate, monomers other than (meth) acrylic compounds may be used. As the monomer, for example, aromatic vinyl compounds such as styrene, methylstyrene and divinylbenzene; conjugated diene compounds such as 1,3-butadiene and 2-methyl-1,3-butadiene; N-methylmaleimide, N-cyclohexyl Examples thereof include maleimide group-containing compounds such as maleimide and N-phenyl maleimide. These monomers can be used singly or in combination of two or more.
The proportion of monomers other than (meth) acrylic compounds is preferably 50 mol% or less, more preferably 40 mol% or less, and more preferably 30 mol or less, based on the total amount of monomers used for polymerization. It is further preferable to
 ポリ(メタ)アクリレートは、上記モノマーを重合開始剤の存在下で重合することにより得ることができる。使用する重合開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物が好ましい。重合開始剤の使用割合は、反応に使用する全モノマー100質量部に対して0.01~30質量部とすることが好ましい。 Poly (meth) acrylate can be obtained by polymerizing the above-mentioned monomer in the presence of a polymerization initiator. As a polymerization initiator to be used, for example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2 Azo compounds such as 4, 4-dimethylvaleronitrile) are preferred. The proportion of the polymerization initiator used is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of all the monomers used for the reaction.
 上記重合反応は、好ましくは有機溶媒中で行われる。反応に使用する有機溶媒としては、例えばアルコール、エーテル、ケトン、アミド、エステル、炭化水素化合物などが挙げられ、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテルアセテートなどが好ましい。反応温度は30℃~120℃とすることが好ましく、反応時間は、1~36時間とすることが好ましい。有機溶媒の使用量(a)は、反応に使用するモノマーの合計量(b)が、反応溶液の全体量(a+b)に対して、0.1~60質量%になるような量にすることが好ましい。 The above polymerization reaction is preferably carried out in an organic solvent. Examples of the organic solvent used for the reaction include alcohols, ethers, ketones, amides, esters, hydrocarbon compounds and the like, and diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether acetate and the like are preferable. The reaction temperature is preferably 30 ° C. to 120 ° C., and the reaction time is preferably 1 to 36 hours. The amount (a) of the organic solvent used should be such that the total amount (b) of the monomers used in the reaction is 0.1 to 60% by mass with respect to the total amount (a + b) of the reaction solution Is preferred.
 ポリ(メタ)アクリレートを、感光性基含有ポリマー又は液晶性ポリマーとする場合、その合成方法は特に限定されないが、例えば(I)感光性構造又は液晶性構造を有する加水分解性のシラン化合物をモノマーに含む重合により合成する方法、(II)原料の少なくとも一部にエポキシ基含有の化合物を用いてエポキシ基を側鎖に有する重合体を合成し、次いで、感光性構造又は液晶性構造を有するカルボン酸と反応させる方法、等が挙げられる。ポリ(メタ)アクリレートにつき、GPCで測定したポリスチレン換算の重量平均分子量(Mw)は、250~500,000であることが好ましく、500~100,000であることがより好ましく、1,000~50,000であることが更に好ましい。 When poly (meth) acrylate is used as a photosensitive group-containing polymer or a liquid crystalline polymer, the synthesis method is not particularly limited. For example, (I) a hydrolyzable silane compound having a photosensitive structure or a liquid crystalline structure as a monomer (II) a polymer having an epoxy group in a side chain using an epoxy group-containing compound as at least a part of the raw material, and then a carbon having a photosensitive structure or a liquid crystalline structure The method of making it react with an acid, etc. are mentioned. The weight average molecular weight (Mw) in terms of polystyrene measured by GPC for the poly (meth) acrylate is preferably 250 to 500,000, more preferably 500 to 100,000, and 1,000 to 50. Is more preferably 1,000.
≪溶剤成分≫
 本開示の液晶配向剤は、溶剤成分の少なくとも一部として、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシブチルアセテート、上記式(1)で表される化合物、及び上記式(2)で表される化合物よりなる群から選ばれる少なくとも一種である(A)溶剤を含有する。
«Solvent composition»
The liquid crystal aligning agent of the present disclosure includes, as at least a part of a solvent component, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 3-methoxybutyl acetate, a compound represented by the above formula (1), and the above formula It contains (A) a solvent which is at least one selected from the group consisting of compounds represented by (2).
[(A)溶剤]
 上記式(1)及び式(2)において、R、R及びRのアルキル基は直鎖状でも分岐状でもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が挙げられる。これらのうち、Rは、炭素数3又は4であることが好ましく、n-プロピル基又はn-ブチル基がより好ましい。Rは、炭素数1又は2であることが好ましい。Rはメチル基が好ましい。上記式(2)のnは0又は1であり、0であることが好ましい。
[(A) solvent]
In the above formulas (1) and (2), the alkyl group of R 1 , R 2 and R 3 may be linear or branched and, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n- Examples include butyl, isobutyl and tert-butyl. Among these, R 1 preferably has 3 or 4 carbon atoms, and more preferably an n-propyl group or an n-butyl group. R 2 preferably has 1 or 2 carbon atoms. R 3 is preferably a methyl group. In the above formula (2), n is 0 or 1, preferably 0.
 上記式(1)で表される化合物の具体例としては、例えば、プロピレングリコールメチルエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールメチル-n-プロピルエーテル、プロピレングリコールメチル-n-ブチルエーテル等が挙げられる。好ましくは、プロピレングリコールメチル-n-プロピルエーテル又はプロピレングリコールメチル-n-ブチルエーテルである。なお、上記式(1)で表される化合物としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Specific examples of the compound represented by the above formula (1) include propylene glycol methyl ethyl ether, propylene glycol dimethyl ether, propylene glycol methyl n-propyl ether, and propylene glycol methyl n-butyl ether. Preferred is propylene glycol methyl-n-propyl ether or propylene glycol methyl-n-butyl ether. In addition, as a compound represented by the said Formula (1), 1 type may be used independently and may be used combining 2 or more types.
 上記式(2)で表される化合物の具体例としては、例えば、酢酸シクロヘキシル、プロピオン酸シクロヘキシル、酪酸シクロヘキシル、ペンタン酸シクロヘキシル等が挙げられる。好ましくは、酢酸シクロヘキシル又はプロピオン酸シクロヘキシルである。なお、上記式(2)で表される化合物としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Specific examples of the compound represented by the above formula (2) include cyclohexyl acetate, cyclohexyl propionate, cyclohexyl butyrate, cyclohexyl pentanoate and the like. Preferably, it is cyclohexyl acetate or cyclohexyl propionate. In addition, as a compound represented by the said Formula (2), 1 type may be used independently and you may use it in combination of 2 or more type.
[(B)溶剤]
 溶剤成分は、液晶配向膜の膜厚を厚くした場合にも塗布ムラの発生を十分に抑制することができる点で、(A)溶剤と共に、1気圧における沸点が200℃以上であって(A)溶剤とは異なる(B)溶剤を更に含むことが好ましい。
[(B) solvent]
The solvent component, together with the solvent (A), has a boiling point of 200 ° C. or higher at 1 atmospheric pressure in that it can sufficiently suppress the occurrence of coating unevenness even when the film thickness of the liquid crystal alignment film is thickened (A It is preferable to further include (B) a solvent different from the solvent).
 (B)溶剤は、非プロトン性極性溶媒及びフェノール類よりなる群から選ばれる少なくとも一種であることが好ましく、非プロトン性極性溶媒であることがより好ましい。具体的には、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ガンマブチロラクトン、及び下記式(3)で表される化合物よりなる群から選ばれる少なくとも一種であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000012
(式(3)中、R及びRは、それぞれ独立に、水素原子、又はエーテル結合を有していてもよい炭素数1~6の1価の炭化水素基であり、RとRとが結合して環構造を形成していてもよい。Rは、炭素数1~4のアルキル基である。)
The solvent (B) is preferably at least one selected from the group consisting of aprotic polar solvents and phenols, and is more preferably aprotic polar solvents. Specifically, a group consisting of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, gamma-butyrolactone, and a compound represented by the following formula (3) Particularly preferred is at least one selected from
Figure JPOXMLDOC01-appb-C000012
(In the formula (3), R 4 and R 5 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms which may have an ether bond, and R 4 and R 5 may combine with each other to form a ring structure, and R 6 is an alkyl group having 1 to 4 carbon atoms.
(式(3)で表される化合物)
 上記式(3)において、R及びRの炭素数1~6の1価の炭化水素基としては、例えば炭素数1~6の鎖状炭化水素基、炭素数3~6の脂環式炭化水素基、炭素数5又は6の芳香族炭化水素基などが挙げられる。また、エーテル結合を有する1価の基としては、例えば炭素数2~6のアルコキシアルキル基等が挙げられる。R,Rが互いに結合してR及びRが結合する窒素原子と共に形成される環としては、例えばピロリジン環、ピペリジン環等の窒素含有複素環を挙げられる。これらの窒素含有複素環には、メチル基等の1価の鎖状炭化水素基が結合されていてもよい。
 R及びRは、好ましくは水素原子又は炭素数1~6のアルキル基であり、より好ましくは水素原子又は炭素数1~3のアルキル基であり、更に好ましくは水素原子又はメチル基である。Rの炭素数1~4のアルキル基は、直鎖状でも分岐状でもよい。Rは、好ましくはメチル基又はエチル基である。
(Compound represented by formula (3))
In the above formula (3), examples of the monovalent hydrocarbon group having 1 to 6 carbon atoms of R 4 and R 5 include, for example, a chain hydrocarbon group having 1 to 6 carbon atoms and an alicyclic group having 3 to 6 carbon atoms. A hydrocarbon group, an aromatic hydrocarbon group having 5 or 6 carbon atoms and the like can be mentioned. The monovalent group having an ether bond includes, for example, an alkoxyalkyl group having 2 to 6 carbon atoms. The ring R 4, R 5 are bonded to each other R 4 and R 5 are formed together with the nitrogen atom to which they are attached such as pyrrolidine ring, and a nitrogen-containing heterocyclic ring such as a piperidine ring. A monovalent chain hydrocarbon group such as a methyl group may be bonded to these nitrogen-containing heterocycles.
R 4 and R 5 are preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, still more preferably a hydrogen atom or a methyl group . The alkyl group having 1 to 4 carbon atoms of R 6 may be linear or branched. R 6 is preferably a methyl group or an ethyl group.
 上記式(3)で表される化合物の具体例としては、例えば3-ブトキシ-N,N-ジメチルプロパンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ヘキシルオキシ-N,N-ジメチルプロパンアミド、イソプロポキシ-N-イソプロピル-プロピオンアミド、n-ブトキシ-N-イソプロピル-プロピオンアミドなどが挙げられる。上記式(3)で表される化合物は、1種を単独で又は2種以上を組み合わせて使用できる。 Specific examples of the compound represented by the above formula (3) include, for example, 3-butoxy-N, N-dimethylpropanamide, 3-methoxy-N, N-dimethylpropanamide, 3-hexyloxy-N, N- Dimethylpropanamide, isopropoxy-N-isopropyl-propionamide, n-butoxy-N-isopropyl-propionamide and the like. The compounds represented by the above formula (3) can be used singly or in combination of two or more.
[(C)溶剤]
 溶剤成分は、(A)溶剤及び(B)溶剤以外の溶剤(以下、「(C)溶剤」ともいう。)を更に含んでいてもよい。(C)溶剤としては、(A)溶剤及び(B)溶剤とは異なる溶剤であれば、本開示の効果を妨げない限り特に限定されない。(C)溶剤は、好ましくは、アルコール類、ケトン類、エステル類、エーテル類、ハロゲン化炭化水素類及び炭化水素類よりなる群から選ばれる少なくとも一種である。これらの具体例としては、アルコール類として、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリエチレングリコール、ダイアセトンアルコール等を;
 ケトン類として、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等を;
 エステル類として、例えば乳酸エチル、乳酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、シュウ酸ジエチル、マロン酸ジエチル、イソアミルプロピオネート、イソアミルイソブチレート等を;
 エーテル類として、例えば、ジエチルエーテル、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、テトラヒドロフラン、ジイソペンチルエーテル等を;
 ハロゲン化炭化水素類として、例えば、ジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、トリクロロエタン、クロルベンゼン等を;
 炭化水素類として、例えば、ヘキサン、ヘプタン、オクタン、シクロペンタン、シクロヘキサン、ベンゼン、トルエン、キシレン等を、それぞれ挙げることができる。なお、(C)溶剤としては1種を単独で又は2種以上を組み合わせて使用することができる。
[(C) solvent]
The solvent component may further contain a solvent other than the (A) solvent and the (B) solvent (hereinafter, also referred to as "(C) solvent"). The solvent (C) is not particularly limited as long as it is a solvent different from the solvents (A) and (B) as long as the effects of the present disclosure are not impaired. The solvent (C) is preferably at least one selected from the group consisting of alcohols, ketones, esters, ethers, halogenated hydrocarbons and hydrocarbons. As specific examples of these, as alcohols, for example, methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, diacetone alcohol and the like;
As ketones, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone etc .;
As esters, for example, ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl methoxy propionate, ethyl ethoxy propionate, diethyl oxalate, diethyl malonate, isoamyl propionate, isoamyl isobutyt Rate etc;
As ethers, for example, diethyl ether, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol n-propyl ether, ethylene glycol i-propyl ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl Ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether (PGME), propylene glycol mono Chill ether acetate (PGMEA), tetrahydrofuran, a di-isopentyl ether and the like;
As halogenated hydrocarbons, for example, dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, trichloroethane, chlorobenzene and the like;
Examples of hydrocarbons include, for example, hexane, heptane, octane, cyclopentane, cyclohexane, benzene, toluene, xylene and the like. In addition, as (C) solvent, it can be used individually by 1 type or in combination of 2 or more types.
 (C)溶剤としては、塗布ムラの抑制を好適に図ることができる点で、これらのうち、ケトン類、エステル類、エーテル類及び炭化水素類よりなる群から選ばれる少なくとも一種であることが好ましい。低温焼成によって液晶配向膜を形成することが可能となり、フィルム基材の適用が可能になる点で、上記のうち、1気圧における沸点が180℃以下である低沸点溶剤であることが好ましい。具体的には、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、シクロヘキサノン、シクロペンタン及びシクロペンタノンよりなる群から選ばれる一種であることが好ましい。 Among these, the solvent (C) is preferably at least one selected from the group consisting of ketones, esters, ethers, and hydrocarbons from the viewpoint of being able to suitably suppress the coating unevenness. . Among the above, it is preferable to use a low boiling point solvent having a boiling point of 180 ° C. or less at 1 atmospheric pressure, in that the liquid crystal alignment film can be formed by low temperature firing and the application of the film substrate is possible. Specifically, it is preferably one selected from the group consisting of propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, cyclohexanone, cyclopentane and cyclopentanone.
 溶剤成分のうち、(A)溶剤の含有割合は、液晶配向剤に含有される溶剤成分の全量に対して、1~70質量%である。1質量%未満であると、液晶配向剤の塗布性を改善する効果及び配向膜中に残存する溶剤を低減する効果が小さく、一方、70質量%よりも多いと、重合体の溶解性が低下して配向膜の塗布ムラの抑制効果が小さい。(A)溶剤の含有割合は、好ましくは3~65質量%であり、更に好ましくは5~60質量%である。 Among the solvent components, the content ratio of the solvent (A) is 1 to 70% by mass with respect to the total amount of the solvent components contained in the liquid crystal aligning agent. When it is less than 1% by mass, the effect of improving the coating properties of the liquid crystal aligning agent and the effect of reducing the solvent remaining in the alignment film are small, while when it is more than 70% by mass, the solubility of the polymer is lowered. As a result, the effect of suppressing the application unevenness of the alignment film is small. The content ratio of the solvent (A) is preferably 3 to 65% by mass, more preferably 5 to 60% by mass.
 (B)溶剤の含有割合は、液晶配向剤に含有される溶剤成分の全量に対して、0~40質量%である。(B)溶剤の含有割合が40質量%よりも多いと、配向膜中の溶剤の残存量が多くなりすぎ、裏移りが生じやすくなる点で好ましくない。なお、「(B)溶剤を0質量%含む」とは、液晶配向剤中に(B)溶剤を含有しないことを意味する。膜厚にした場合にも塗布ムラがより生じにくい液晶配向膜を得ることができる点で、比較的少量の(B)溶剤が(A)溶剤と共に液晶配向剤中に含有されていることが好ましい。具体的には、塗布ムラを抑制する効果をより高くできる点で、(B)溶剤の含有割合を液晶配向剤に含有される溶剤成分の全量に対して、0.1~40質量%とすることが好ましく、0.5~40質量%とすることがより好ましく、1~35質量%とすることが更に好ましく、1~20質量%とすることが特に好ましい。 The content ratio of the solvent (B) is 0 to 40% by mass with respect to the total amount of solvent components contained in the liquid crystal aligning agent. When the content ratio of the solvent (B) is more than 40% by mass, the amount of the solvent remaining in the alignment film is excessively large, which is not preferable in that the offset easily occurs. In addition, "containing 0 mass% of (B) solvent" means not containing (B) solvent in a liquid crystal aligning agent. It is preferable that a relatively small amount of (B) solvent is contained together with the (A) solvent in the liquid crystal aligning agent in that a liquid crystal alignment film in which coating unevenness is less likely to occur even when the film thickness is made can be obtained. . Specifically, the content ratio of the solvent (B) is set to 0.1 to 40% by mass with respect to the total amount of the solvent components contained in the liquid crystal aligning agent in that the effect of suppressing the coating unevenness can be further enhanced. Is preferably 0.5 to 40% by mass, more preferably 1 to 35% by mass, and particularly preferably 1 to 20% by mass.
 (C)溶剤の含有割合は、液晶配向剤に含有される溶剤成分の全量に対して、5~98質量%とすることが好ましく、10~95質量%とすることがより好ましく、20~90質量%とすることが更に好ましい。膜形成時の加熱を低温で(例えば150℃以下で)行った場合にも液晶配向膜中の残存溶剤の量を十分に少なくできる点で、(C)溶剤の含有割合を液晶配向剤に含有される溶剤成分の全量に対して、40質量%以上とすることがより好ましく、50質量%以上とすることが更に好ましい。この場合、重合体成分をポリ(メタ)アクリレート及びポリオルガノシロキサンよりなる群から選ばれる少なくとも一種とすることにより、重合体の溶剤に対する溶解性をより良好にでき、塗布ムラを十分に抑えることができる点で好ましい。液晶配向剤は、溶剤成分が(A)溶剤と(B)溶剤とを含む混合溶媒であることが好ましく、(A)溶剤と(B)溶剤と(C)溶剤とからなる混合溶媒であることが特に好ましい。 The content ratio of the solvent (C) is preferably 5 to 98% by mass, more preferably 10 to 95% by mass, with respect to the total amount of the solvent component contained in the liquid crystal aligning agent, and more preferably 20 to 90 It is more preferable to use mass%. Even when heating at the time of film formation is performed at low temperature (for example, at 150 ° C. or less), the content ratio of the solvent (C) is contained in the liquid crystal aligning agent because the amount of residual solvent in the liquid crystal alignment film can be sufficiently reduced. It is more preferable to set it as 40 mass% or more with respect to the whole quantity of the solvent component to be carried out, and it is still more preferable to set it as 50 mass% or more. In this case, by setting the polymer component to at least one selected from the group consisting of poly (meth) acrylate and polyorganosiloxane, the solubility of the polymer in the solvent can be made better, and the coating unevenness can be sufficiently suppressed. It is preferable at the point which can be done. The liquid crystal aligning agent is preferably a mixed solvent in which the solvent components include (A) solvent and (B) solvent, and is a mixed solvent consisting of (A) solvent, (B) solvent and (C) solvent Is particularly preferred.
≪その他の成分≫
 液晶配向剤は、重合体成分及び溶剤成分を含有するが、必要に応じてその他の成分を含有していてもよい。かかるその他の成分としては、例えば、エポキシ基含有化合物、官能性シラン化合物、酸化防止剤、金属キレート化合物、硬化触媒、硬化促進剤、界面活性剤、充填剤、分散剤、光増感剤等が挙げられる。その他の成分の配合割合は、本発明の効果を損なわない範囲で、各化合物に応じて適宜選択することができる。
«Other ingredients»
The liquid crystal aligning agent contains a polymer component and a solvent component, but may contain other components as needed. As such other components, for example, epoxy group-containing compounds, functional silane compounds, antioxidants, metal chelate compounds, curing catalysts, curing accelerators, surfactants, fillers, dispersants, photosensitizers, etc. It can be mentioned. The blend ratio of the other components can be appropriately selected according to each compound, as long as the effects of the present invention are not impaired.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。固形分濃度が1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得られにくくなる。一方、固形分濃度が10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得られにくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。 The solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass. When the solid content concentration is less than 1% by mass, the film thickness of the coating film is too small, and it is difficult to obtain a good liquid crystal alignment film. On the other hand, when the solid content concentration exceeds 10% by mass, the film thickness of the coating film becomes too large to obtain a good liquid crystal alignment film, and the viscosity of the liquid crystal alignment agent increases and the coating property decreases. Tend to
≪液晶素子≫
 本開示の液晶素子は、上記で説明した液晶配向剤を用いて形成された液晶配向膜を具備する。液晶素子は種々の用途に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置や、調光フィルム、位相差フィルム等として用いることができる。液晶表示素子として用いる場合、液晶の動作モードは特に限定されず、例えばTN型、STN型、垂直配向型(VA-MVA型、VA-PVA型などを含む。)、IPS型、FFS型、OCB(Optically Compensated Bend)型など種々のモードに適用することができる。
«Liquid crystal element»
The liquid crystal element of the present disclosure includes a liquid crystal alignment film formed using the liquid crystal alignment agent described above. Liquid crystal elements can be effectively applied to various applications. For example, clocks, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, various monitors, liquid crystal televisions It can be used as various display devices such as information display, light control film, retardation film and the like. When used as a liquid crystal display element, the operation mode of the liquid crystal is not particularly limited. For example, TN type, STN type, vertical alignment type (including VA-MVA type, VA-PVA type, etc.), IPS type, FFS type, OCB It can be applied to various modes such as (Optically Compensated Bend) type.
 液晶素子は、例えば以下の工程により製造することができる。ここでは、位相差フィルム及び液晶表示素子を製造する場合を一例に挙げて説明する。
[工程1:塗膜の形成]
 先ず基材上に液晶配向剤を塗布し、次いで必要に応じて塗布面を加熱することにより基材上に塗膜を形成する。基材としては透明基材を好ましく用いることができる。具体的には、例えばフロートガラス、ソーダガラスなどのガラス基板;セルロースアシレート(トリアセチルセルロース(TAC)などのセルロースアセテート等)、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリ(メタ)アクリレート、ポリメチルメタクリレート、ポリカーボネート、環状ポリオレフィン等の樹脂フィルム等が挙げられる。特に、本開示の液晶配向剤は、樹脂フィルムに対する塗布用の液晶配向剤として好ましく適用できる。なお、液晶配向剤を塗布する基材に対し、基材表面と液晶配向膜との密着性を良好にするために、鹸化処理などの従来公知の前処理が施されていてもよい。
The liquid crystal element can be manufactured, for example, by the following steps. Here, the case of producing a retardation film and a liquid crystal display element will be described as an example.
[Step 1: Formation of a Coating]
First, a liquid crystal aligning agent is applied on a substrate, and then a coating film is formed on the substrate by heating the coated surface as required. A transparent substrate can be preferably used as the substrate. Specifically, for example, glass substrates such as float glass and soda glass; cellulose acylate (cellulose acetate and the like such as triacetyl cellulose (TAC)), polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polysulfone, polyether sulfone, Examples thereof include resin films of polyamide, polyimide, poly (meth) acrylate, polymethyl methacrylate, polycarbonate, cyclic polyolefin and the like. In particular, the liquid crystal aligning agent of the present disclosure can be preferably applied as a liquid crystal aligning agent for coating a resin film. In addition, conventionally well-known pretreatments, such as a saponification process, may be performed with respect to the base material which apply | coats a liquid crystal aligning agent in order to make adhesiveness of a base-material surface and a liquid crystal aligning film favorable.
 液晶表示素子の場合、一対の基材のうち少なくとも一方は、基材の片面に透明導電膜を設けられた基材を用いる。透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜などとすることができる。TN型、STN型又は垂直配向型の液晶表示素子を製造する場合には、パターニングされた透明導電膜が設けられている基板二枚を用いる。IPS型又はFFS型の横電界式の液晶表示素子を製造する場合には、櫛歯状にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。金属膜としては、例えばクロムなどの金属からなる膜を使用することができる。 In the case of a liquid crystal display element, at least one of the pair of substrates uses a substrate provided with a transparent conductive film on one side of the substrate. As the transparent conductive film, a NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 -SnO 2 ), etc. can be used. In the case of producing a TN type, STN type or vertical alignment type liquid crystal display element, two substrates provided with a patterned transparent conductive film are used. In the case of manufacturing a IPS type or FFS type lateral electric field liquid crystal display element, a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb shape is not provided, and the electrode is not provided. The opposite substrate is used. For example, a film made of a metal such as chromium can be used as the metal film.
 基材への液晶配向剤の塗布は、基材の種類に応じた適宜の塗布方法を採用することができる。具体例としては、ロールコーター法、スピンナー法、インクジェット印刷法、オフセット印刷法、フレキソ印刷法、バーコーター法、エクストリューションダイ法、ダイレクトグラビアコーター法、チャンバードクターコーター法、オフセットグラビアコーター法、含浸コーター法、MBコーター法等が挙げられる。液晶配向剤の塗布後は、塗布面を加熱(ベーク)することが好ましい。このときの加熱温度は基材に応じて設定されるが、基材を樹脂フィルムとする場合、好ましくは150℃以下であり、より好ましくは40~150℃であり、更に好ましくは80~140℃である。加熱時間は、好ましくは0.1~15分、より好ましくは1~10分である。塗布面の加熱は、プレベーク及びポストベークによる複数回の加熱処理としてもよい。こうして液晶配向膜となる塗膜が基材上に形成される。 The coating method of the liquid crystal aligning agent to a base material can employ | adopt the suitable coating method according to the kind of base material. Specific examples include roll coater method, spinner method, inkjet printing method, offset printing method, flexographic printing method, bar coater method, extrusion die method, direct gravure coater method, chamber doctor coater method, offset gravure coater method, impregnation The coater method, the MB coater method and the like can be mentioned. After the application of the liquid crystal alignment agent, it is preferable to heat (bak) the application surface. The heating temperature at this time is set according to the substrate, but when the substrate is a resin film, it is preferably 150 ° C. or less, more preferably 40 to 150 ° C., still more preferably 80 to 140 ° C. It is. The heating time is preferably 0.1 to 15 minutes, more preferably 1 to 10 minutes. The heating of the coated surface may be a plurality of heat treatments by prebaking and postbaking. Thus, a coating film to be a liquid crystal alignment film is formed on the substrate.
 基材上に形成される塗膜の膜厚は、好ましくは1nm~1μm、より好ましくは5nm~0.5μmである。ここで、基材上に液晶配向膜を形成する際には、液晶配向膜による液晶の配向性や、液晶配向膜と基材(特に、樹脂フィルム基材)との密着性を高くするために、液晶配向膜の膜厚を比較的厚く(例えば0.2μmや0.3μm以上に)することがある。一方、液晶配向膜の膜厚を厚くすると配向膜中に溶剤が残存しやすく、その残存溶剤の影響により、配向膜表面に塗布ムラが生じたり、あるいは配向膜が形成された基材を重ねた場合に配向膜中の重合体成分や残存溶剤が基材側に移る裏移りが起きたりすることがある。この場合、得られる表示素子の液晶の配向性が低下したり製品歩留まりが低下したりしやすくなる。配向膜中の残存溶剤を低減するための一つの手段としては、膜形成時の加熱温度を高くすることが考えられるが、高温での加熱が必要になると、基材として樹脂フィルムの適用が制限されてしまう。この点、本開示の液晶配向剤は、液晶配向膜の膜厚を0.3μm以上と厚くした場合にも上記不都合が生じることを抑制でき、樹脂フィルム用の液晶配向剤として好適である。 The thickness of the coating film formed on the substrate is preferably 1 nm to 1 μm, more preferably 5 nm to 0.5 μm. Here, when forming a liquid crystal alignment film on a substrate, in order to enhance the alignment of the liquid crystal by the liquid crystal alignment film and the adhesion between the liquid crystal alignment film and the substrate (in particular, a resin film substrate) The film thickness of the liquid crystal alignment film may be relatively thick (for example, 0.2 μm or 0.3 μm or more). On the other hand, when the film thickness of the liquid crystal alignment film is increased, the solvent tends to remain in the alignment film, and the influence of the remaining solvent causes coating unevenness on the surface of the alignment film, or the substrate on which the alignment film is formed is overlapped. In some cases, offset may occur in which the polymer component and the residual solvent in the alignment film are transferred to the substrate side. In this case, the orientation of the liquid crystal of the display element to be obtained is likely to be reduced, and the product yield is likely to be reduced. One possible means to reduce the residual solvent in the alignment film is to increase the heating temperature at the time of film formation, but if heating at high temperature is required, the application of the resin film as a substrate is limited. It will be done. In this respect, the liquid crystal aligning agent of the present disclosure can suppress the occurrence of the above-mentioned inconvenience even when the film thickness of the liquid crystal aligning film is increased to 0.3 μm or more, and is suitable as a liquid crystal aligning agent for a resin film.
[工程2:配向処理]
 続いて、上記工程1で形成した塗膜に液晶配向能を付与する処理(配向処理)を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向処理としては、塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦ることによって塗膜に液晶配向能を付与するラビング処理、液晶配向剤を塗布した基板面に光照射して塗膜に液晶配向能を付与する光配向処理などが挙げられる。埃や静電気の発生等に起因する表示不良の発生や歩留まりの低下を抑制できる点、基板上に形成された有機薄膜に対して液晶配向能を均一に付与できる点で、光配向処理を好ましく適用することができる。なお、垂直配向型の液晶表示素子を製造する場合には、上記工程1で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向処理を施してもよい。
[Step 2: Alignment Treatment]
Then, the process (alignment process) which provides liquid crystal aligning ability to the coating film formed at the said process 1 is implemented. Thereby, the alignment ability of the liquid crystal molecules is imparted to the coating film to form a liquid crystal alignment film. As the alignment treatment, for example, a rubbing treatment for imparting a liquid crystal alignment ability to the coating film by rubbing the coating film in a fixed direction with a roll wound with a cloth made of fibers such as nylon, rayon or cotton, a substrate coated with a liquid crystal aligning agent The surface may be irradiated with light to give a coating film with a liquid crystal alignment ability, or the like. Photo-alignment treatment is preferably applied in that it can suppress the occurrence of display defects and yield reduction due to the generation of dust and static electricity, and can uniformly impart the liquid crystal alignment ability to the organic thin film formed on the substrate. can do. In addition, when manufacturing a liquid crystal display element of a vertical alignment type, although the coating film formed at the said process 1 can be used as a liquid crystal aligning film as it is, you may give an orientation process with respect to this coating film.
 光配向処理において、照射する光としては、例えば150~800nmの波長の光を含む紫外線、可視光線などを挙げることができる。これらのうち、300~400nmの波長の光を含む紫外線が好ましい。照射光は偏光であっても非偏光であってもよい。偏光としては、直線偏光を含む光を使用することが好ましい。光の照射は、用いる光が偏光である場合には、基板面に垂直の方向から行っても斜め方向から行ってもよく、あるいはこれらを組み合わせて行ってもよい。非偏光を照射する場合には、基板面に対して斜めの方向から行う必要がある。 In the light alignment treatment, examples of light to be irradiated include ultraviolet light including light having a wavelength of 150 to 800 nm, visible light and the like. Among these, ultraviolet light containing light of a wavelength of 300 to 400 nm is preferable. The irradiation light may be polarized or non-polarized. It is preferable to use light including linear polarization as the polarization. When the light to be used is polarized light, the light may be irradiated from a direction perpendicular to the substrate surface, from an oblique direction, or a combination of these. In the case of irradiating non-polarized light, it is necessary to carry out from a direction oblique to the substrate surface.
 使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、水銀-キセノンランプ(Hg-Xeランプ)などを挙げることができる。偏光は、これらの光源を例えばフィルター、回折格子などと併用する手段などにより得ることができる。光の照射量は、0.1mJ/cm~1,000mJ/cmとすることが好ましく、1~500mJ/cmとすることがより好ましい。 Examples of the light source to be used include a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, a mercury-xenon lamp (Hg-Xe lamp) and the like. Polarization can be obtained by means of using these light sources, for example, in combination with filters, diffraction gratings and the like. The dose of light is preferably set to 0.1mJ / cm 2 ~ 1,000mJ / cm 2, and more preferably in the 1 ~ 500mJ / cm 2.
[工程3-1:光学異方性膜の形成]
 液晶素子として位相差フィルムを製造する場合、次いで、光照射した後の塗膜(液晶配向膜)上に重合性液晶を塗布して硬化する。これにより、液晶配向膜の表面上に、光学補償機能を有する有機薄膜である光学異方性膜が形成される。ここで使用される重合性液晶は、加熱及び光照射のうちの少なくともいずれかの処理によって重合する液晶化合物である。重合性液晶が有する重合性基としては、例えば、(メタ)アクリロイル基、ビニル基、ビニルフェニル基、アリル基等が挙げられ、(メタ)アクリロイル基が好ましい。
[Step 3-1: Formation of Optical Anisotropic Film]
When manufacturing a retardation film as a liquid crystal element, next, a polymeric liquid crystal is apply | coated and hardened on the coating film (liquid crystal aligning film) after light irradiation. Thereby, an optically anisotropic film which is an organic thin film having an optical compensation function is formed on the surface of the liquid crystal alignment film. The polymerizable liquid crystal used herein is a liquid crystal compound which is polymerized by the treatment of at least one of heating and light irradiation. As a polymeric group which a polymeric liquid crystal has, a (meth) acryloyl group, a vinyl group, a vinylphenyl group, an allyl group etc. are mentioned, for example, A (meth) acryloyl group is preferable.
 重合性液晶としては従来公知のものを使用することができ、具体的には、例えば非特許文献1(「UVキュアラブル液晶とその応用」、液晶、第3巻第1号(1999年)、pp34~42)に記載されているネマチック液晶を挙げることができる。また、コレステリック液晶、ディスコティック液晶、カイラル剤を添加されたツイストネマティック配向型液晶などであってもよい。重合性液晶は、複数の液晶化合物の混合物であってもよく、更に公知の重合開始剤や適当な溶媒、重合性モノマー、界面活性剤などを含有する組成物であってもよい。形成された液晶配向膜上に重合性液晶を塗布するには、例えばバーコーター法、ロールコーター法、スピンナー法、印刷法、インクジェット法などの適宜の塗布方法を採用することができる。 As the polymerizable liquid crystal, conventionally known ones can be used. Specifically, for example, non-patent document 1 (“UV curable liquid crystal and its application”, liquid crystal, Volume 3, No. 1 (1999), pp 34 Mention may be made of the nematic liquid crystals described in -42). The liquid crystal may be cholesteric liquid crystal, discotic liquid crystal, twisted nematic alignment liquid crystal to which a chiral agent is added, or the like. The polymerizable liquid crystal may be a mixture of a plurality of liquid crystal compounds, and may be a composition further containing a known polymerization initiator, an appropriate solvent, a polymerizable monomer, a surfactant and the like. In order to apply the polymerizable liquid crystal on the formed liquid crystal alignment film, an appropriate application method such as a bar coater method, a roll coater method, a spinner method, a printing method, an inkjet method, or the like can be employed.
 続いて、上記のように形成された重合性液晶の塗膜に対して、加熱及び光照射から選択される1種以上の処理を施すことにより、該塗膜を硬化して液晶層(光学異方性膜)を形成する。これらの処理を重畳的に行うことが、良好な配向が得られることから好ましい。塗膜の加熱温度は、使用する重合性液晶の種類によって適宜に選択される。例えば、メルク社製のRMS03-013Cを使用する場合、40~80℃の範囲の温度で加熱することが好ましい。加熱時間は、好ましくは0.5~5分である。塗膜に対する照射光としては、200~500nmの範囲の波長を有する非偏光の紫外線を好ましく使用することができる。光の照射量としては、50~10,000mJ/cmとすることが好ましく、100~5,000mJ/cmとすることがより好ましい。なお、塗膜に対する偏光放射線の照射は、所定の偏光方向から1回のみ行ってもよく、偏光方向(入射方向)が異なる放射線を塗膜に対して複数回照射してもよい。 Subsequently, the coating film of the polymerizable liquid crystal formed as described above is cured by applying at least one treatment selected from heating and light irradiation to cure the coating film and thereby the liquid crystal layer (optical Formation of the It is preferable to perform these treatments in a superimposed manner since good orientation can be obtained. The heating temperature of a coating film is suitably selected by the kind of polymeric liquid crystal to be used. For example, when using RMS03-013C manufactured by Merck, it is preferable to heat at a temperature in the range of 40 to 80.degree. The heating time is preferably 0.5 to 5 minutes. As the irradiation light for the coating film, non-polarized ultraviolet light having a wavelength in the range of 200 to 500 nm can be preferably used. The irradiation dose of light is preferably 50 to 10,000 mJ / cm 2, and more preferably 100 to 5,000 mJ / cm 2 . The coating film may be irradiated with polarized radiation only once from a predetermined polarization direction, or radiation different in polarization direction (incident direction) may be irradiated to the coating multiple times.
 形成される光学異方性膜の厚みとしては、所望の光学特性によって適宜に設定される。例えば、位相差フィルムとして、波長540nmの可視光における1/2波長板を製造する場合は、位相差フィルムとしての光学異方性膜の位相差が240~300nmとなるような厚さが選択され、1/4波長板であれば、位相差が120~150nmとなるような厚さが選択される。目的の位相差が得られる光学異方性膜の厚みは、使用する重合性液晶の光学特性によって異なる。例えばメルク製のRMS03-013Cを使用する場合、1/4波長板を製造するための厚さは、0.6~1.5μmの範囲である。 The thickness of the optical anisotropic film to be formed is appropriately set according to the desired optical characteristics. For example, in the case of producing a half-wave plate in visible light with a wavelength of 540 nm as the retardation film, a thickness is selected such that the retardation of the optically anisotropic film as the retardation film is 240 to 300 nm. In the case of a quarter wavelength plate, the thickness is selected such that the phase difference is 120 to 150 nm. The thickness of the optically anisotropic film from which the desired retardation is obtained varies depending on the optical properties of the polymerizable liquid crystal used. For example, when using RMS03-013C manufactured by Merck, the thickness for producing a quarter-wave plate is in the range of 0.6 to 1.5 μm.
 位相差フィルムを生産する方法としては、工業的規模で簡便に生産できることからロールツーロール方式が採用されることがある。この方法では、長尺状の樹脂フィルムをロール状にした巻回体から樹脂フィルムを巻き出し、その巻き出したフィルム上に液晶配向膜を形成する処理、液晶配向膜上に重合性液晶を塗布して硬化する処理、及び必要に応じて保護フィルムを積層する処理までを連続した工程で行い、それら工程を経た後のフィルムを再び巻回体として回収する。また、ロールツーロール方式では、液晶配向膜を形成する工程から、重合性液晶を塗布及び硬化する工程へ移行する間に、配向膜付きの樹脂フィルムを一度巻き取り、その後、次工程(重合性液晶の塗布及び硬化)を行うことがある。このとき、液晶配向膜中の残存溶剤又は重合体成分が基材側へ移動する裏移りがあったり、裏移りがなくても配向膜中の溶剤除去が十分でなかったりすると、重合性液晶の塗布及び硬化処理のためにフィルムを巻き出した際に、液晶配向膜が基材から剥がれる膜剥がれが生じやすくなる。この点、本開示の液晶配向剤によれば、配向膜中に残存する溶剤量を少なくでき、これにより基材への裏移りを生じにくくできる点で好ましい。 As a method of producing a retardation film, a roll-to-roll system may be adopted because it can be easily produced on an industrial scale. In this method, a resin film is unrolled from a roll of a long resin film, and a liquid crystal alignment film is formed on the unrolled film, and a polymerizable liquid crystal is coated on the liquid crystal alignment film. The process of curing and, if necessary, the process of laminating a protective film is performed in a continuous process, and the film after these processes is recovered again as a wound body. In the roll-to-roll method, while moving from the step of forming a liquid crystal alignment film to the step of applying and curing a polymerizable liquid crystal, the resin film with an alignment film is wound once, and then the next step (polymerizability The liquid crystal may be applied and cured. At this time, if there is back-off where the residual solvent or polymer component in the liquid crystal alignment film moves to the substrate side, or if there is not enough solvent removal in the alignment film even if there is no back-off, the polymerizable liquid crystal When the film is unwound for coating and curing treatment, peeling of the liquid crystal alignment film from the substrate is likely to occur. In this respect, according to the liquid crystal aligning agent of the present disclosure, the amount of the solvent remaining in the alignment film can be reduced, which is preferable in that it is difficult to cause offset to the base material.
[工程3-2:液晶セルの構築]
 液晶素子として液晶表示素子を製造する場合、上記のようにして液晶配向膜が形成された基材を2枚準備し、対向配置した2枚の基材間に液晶を配置することにより液晶セルを製造する。具体的には、一対の基材の周辺部をシール剤によって貼り合わせ、基材表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止する方法;一方の基材の液晶配向膜側の周辺部にシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶を滴下した後、液晶配向膜が対向するように他方の基材を貼り合わせるとともに液晶を基板の全面に押し広げ、その後シール剤を硬化する方法(ODF方式)、などが挙げられる。シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂などが挙げられる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、中でもネマチック液晶が好ましい。また、液晶にコレステリック液晶、カイラル剤、強誘電性液晶などを添加して使用してもよい。
[Step 3-2: Construction of Liquid Crystal Cell]
When a liquid crystal display element is manufactured as a liquid crystal element, two substrates on which a liquid crystal alignment film is formed as described above are prepared, and a liquid crystal cell is formed by disposing a liquid crystal between two opposed substrates. Manufacture. Specifically, the peripheral portions of a pair of substrates are pasted together with a sealing agent, liquid crystal is injected and filled in the cell gap partitioned by the substrate surface and the sealing agent, and then the injection holes are sealed; A sealing agent is applied to the periphery of the liquid crystal alignment film side of the base material, and liquid crystal is further dropped to a predetermined number of places on the liquid crystal alignment film surface, and then the other base material is bonded so that the liquid crystal alignment film faces. At the same time, the liquid crystal is spread over the entire surface of the substrate and then the sealing agent is cured (ODF method). As a sealing agent, the epoxy resin etc. which contain an aluminum oxide ball as a hardening agent and a spacer, for example are mentioned. Examples of liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred. In addition, cholesteric liquid crystals, chiral agents, ferroelectric liquid crystals, and the like may be added to liquid crystals for use.
 続いて、必要に応じて液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子が得られる。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板が挙げられる。 Subsequently, if necessary, a polarizing plate is attached to the outer surface of the liquid crystal cell to obtain a liquid crystal display element. Examples of the polarizing plate include a polarizing plate in which a polarizing film called “H film” obtained by absorbing iodine while stretching and orienting polyvinyl alcohol is sandwiched by a cellulose acetate protective film or a polarizing plate consisting of the H film itself.
 以下、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。 Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited by these examples.
 以下の例において、重合体の重量平均分子量Mw、数平均分子量Mn及びエポキシ当量、並びに重合体溶液の溶液粘度は以下の方法により測定した。以下の実施例で用いた原料化合物及び重合体の必要量は、下記の合成例に示す合成スケールでの合成を必要に応じて繰り返すことにより確保した。 In the following examples, the weight average molecular weight Mw, the number average molecular weight Mn and the epoxy equivalent of the polymer, and the solution viscosity of the polymer solution were measured by the following methods. The necessary amounts of the raw material compounds and the polymers used in the following examples were secured by repeating the synthesis on the synthesis scale shown in the following synthesis examples as necessary.
[重合体の重量平均分子量Mw及び数平均分子量Mn]
 Mw及びMnは、以下の条件におけるGPCにより測定したポリスチレン換算値である。
 カラム:東ソー(株)製、TSKgelGRCXLII
 溶剤:テトラヒドロフラン
 温度:40℃
 圧力:68kgf/cm
[エポキシ当量]
 エポキシ当量は、JIS C 2105に記載の塩酸-メチルエチルケトン法により測定した。
[重合体溶液の溶液粘度]
 重合体溶液の溶液粘度(mPa・s)は、E型回転粘度計を用いて25℃で測定した。
[Weight average molecular weight Mw and number average molecular weight Mn of polymer]
Mw and Mn are polystyrene conversion values measured by GPC under the following conditions.
Column: Tosoh Corp. TSKgel GRC XLII
Solvent: Tetrahydrofuran Temperature: 40 ° C.
Pressure: 68 kgf / cm 2
[Epoxy equivalent]
The epoxy equivalent was measured by the hydrochloric acid-methyl ethyl ketone method described in JIS C 2105.
Solution viscosity of polymer solution
The solution viscosity (mPa · s) of the polymer solution was measured at 25 ° C. using an E-type rotational viscometer.
<重合体及び化合物の合成>
[合成例1-1:エポキシ基含有ポリオルガノシロキサン(EPS-1)の合成]
 撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、プロピレングリコールモノメチルエーテルアセテート100g、脱イオン水 100g、トリエチルアミン10.0g、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン68.1g、メタクリロキシオクチルトリメトキシシラン31.9g、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)0.074gを仕込み、室温で混合した。次いで、60℃で6時間、還流させながら反応させた。反応終了後、有機層を取り出し、0.2質量% 硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒及び水を留去することにより、エポキシ基含有ポリオルガノシロキサン(EPS-1)を粘調な透明液体として得た。このエポキシ基含有ポリオルガノシロキサンについて、H-NMR分析を行ったところ、化学シフト(δ)=3.2ppm付近にオキシラニル基に基づくピークが得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。このエポキシ基含有ポリオルガノシロキサンの重量平均分子量Mwは2,200、エポキシ当量は186g/モルであった。
<Synthesis of Polymer and Compound>
Synthesis Example 1-1 Synthesis of Epoxy Group-Containing Polyorganosiloxane (EPS-1)
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser, 100 g of propylene glycol monomethyl ether acetate, 100 g of deionized water, 10.0 g of triethylamine, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 68.1 g, 31.9 g of methacryloxyoctyl trimethoxysilane, and 0.074 g of pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) were charged and mixed at room temperature. The reaction was then allowed to reflux at 60 ° C. for 6 hours. After completion of the reaction, the organic layer is taken out and washed with a 0.2% by mass aqueous ammonium nitrate solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to obtain an epoxy group-containing polyorganosiloxane (EPS-1) was obtained as a viscous transparent liquid. The epoxy group-containing polyorganosiloxane was subjected to 1 H-NMR analysis, and a peak based on the oxiranyl group was obtained around chemical shift (δ) = 3.2 ppm, and a side reaction of the epoxy group occurred during the reaction. It was confirmed that there was not. The epoxy group-containing polyorganosiloxane had a weight average molecular weight Mw of 2,200 and an epoxy equivalent of 186 g / mol.
[合成例1-2:ポリオルガノシロキサン(PS-1)の合成]
 100mLの三口フラスコに、合成例1-1で得たエポキシ基含有ポリオルガノシロキサン(EPS-1)10.1g、4-(4-n-ペンチルシクロヘキシル)安息香酸1.3g、プロピレングリコールモノメチルエーテルアセテート17g、及びテトラブチルアンモニウムブロミド0.3gを仕込み、90℃で12時間撹拌した。反応終了後、反応溶液に対し、0.75等量(質量)のシクロヘキサンで希釈し、5回水洗した。この溶液を濃縮し、プロピレングリコールモノメチルエーテルアセテート(PGMEA)で希釈する操作を2回繰り返し、垂直配向性基を有するポリオルガノシロキサン(PS-1)を含む溶液を得た。このポリオルガノシロキサン(PS-1)の重量平均分子量Mwは8,000であった。
Synthesis Example 1-2 Synthesis of Polyorganosiloxane (PS-1)
In a 100 mL three-necked flask, 10.1 g of epoxy group-containing polyorganosiloxane (EPS-1) obtained in Synthesis Example 1-1, 1.3 g of 4- (4-n-pentylcyclohexyl) benzoic acid, propylene glycol monomethyl ether acetate 17 g and 0.3 g of tetrabutylammonium bromide were charged, and stirred at 90 ° C. for 12 hours. After completion of the reaction, the reaction solution was diluted with 0.75 equivalent (mass) of cyclohexane and washed five times with water. This solution was concentrated, and the operation of diluting with propylene glycol monomethyl ether acetate (PGMEA) was repeated twice to obtain a solution containing polyorganosiloxane (PS-1) having a vertical alignment group. The weight average molecular weight Mw of this polyorganosiloxane (PS-1) was 8,000.
[合成例2-A:桂皮酸誘導体(mc-1)の合成]
 冷却管を備えた500mLの三口フラスコに、1-ブロモ-4-シクロヘキシルベンゼン19.2g、酢酸パラジウム0.18g、トリス(2-トリル)ホスフィン0.98g、トリエチルアミン32.4g、及びジメチルアセトアミド135mLを加えて混合した。次いで、シリンジでアクリル酸7gを混合溶液に加えて撹拌した。この混合溶液を更に120℃で3時間、加熱しながら撹拌した。薄層クロマトグラフィー(TLC)で反応の終了を確認した後、反応溶液を室温まで冷却した。沈殿物をろ別した後、ろ液を1N塩酸水溶液300mLに注ぎ、沈殿物を回収した。これらの沈殿物を酢酸エチルとヘキサンの1:1(質量比)溶液で再結晶することにより、下記式(mc-1)で表される桂皮酸誘導体を10.2g得た。
Figure JPOXMLDOC01-appb-C000013
Synthesis Example 2-A Synthesis of Cinnamic Acid Derivative (mc-1)
In a 500 mL three-necked flask equipped with a condenser, 19.2 g of 1-bromo-4-cyclohexylbenzene, 0.18 g of palladium acetate, 0.98 g of tris (2-tolyl) phosphine, 32.4 g of triethylamine, and 135 mL of dimethylacetamide Added and mixed. Next, 7 g of acrylic acid was added to the mixed solution with a syringe and stirred. The mixture solution was further stirred while heating at 120 ° C. for 3 hours. After completion of the reaction was confirmed by thin layer chromatography (TLC), the reaction solution was cooled to room temperature. After filtering off the precipitate, the filtrate was poured into 300 mL of 1 N aqueous hydrochloric acid solution, and the precipitate was recovered. These precipitates were recrystallized with a 1: 1 (mass ratio) solution of ethyl acetate and hexane to obtain 10.2 g of a cinnamic acid derivative represented by the following formula (mc-1).
Figure JPOXMLDOC01-appb-C000013
[合成例2-1:エポキシ基含有ポリオルガノシロキサン(EPS-2)の合成]
 撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機層を取り出し、0.2重量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒及び水を留去することにより、エポキシ基含有ポリオルガノシロキサン(EPS-2)を粘調な透明液体として得た。
 このエポキシ基含有ポリオルガノシロキサンについて、H-NMR分析を行ったところ、化学シフト(δ)=3.2ppm付近にオキシラニル基に基づくピークが得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。このエポキシ基含有ポリオルガノシロキサンの重量平均分子量Mwは2,200、エポキシ当量は186g/モルであった。
Synthesis Example 2-1 Synthesis of Epoxy Group-Containing Polyorganosiloxane (EPS-2)
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel and reflux condenser, 100.0 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 500 g of methyl isobutyl ketone and 10.0 g of triethylamine are charged, and room temperature Mixed. Next, 100 g of deionized water was added dropwise over 30 minutes from the dropping funnel, and then reacted at 80 ° C. for 6 hours while mixing under reflux. After completion of the reaction, the organic layer is taken out and washed with a 0.2 wt% aqueous ammonium nitrate solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to obtain an epoxy group-containing polyorganosiloxane (EPS-2) was obtained as a viscous transparent liquid.
The epoxy group-containing polyorganosiloxane was subjected to 1 H-NMR analysis, and a peak based on the oxiranyl group was obtained around chemical shift (δ) = 3.2 ppm, and a side reaction of the epoxy group occurred during the reaction. It was confirmed that there was not. The epoxy group-containing polyorganosiloxane had a weight average molecular weight Mw of 2,200 and an epoxy equivalent of 186 g / mol.
[合成例2-2:光配向性基含有ポリオルガノシロキサン(PS-2)の合成]
 100mLの三口フラスコに、合成例2-1で得たエポキシ基含有ポリオルガノシロキサン(EPS-2)10.1g、アクリル基含有カルボン酸(東亜合成株式会社、商品名「アロニックスM-5300」、アクリル酸ω-カルボキシポリカプロラクトン(重合度n≒2))0.5g、酢酸ブチル20g、合成例2-Aで得た桂皮酸誘導体(mc-1)1.5g、及びテトラブチルアンモニウムブロミド0.3gを仕込み、90℃で12時間撹拌した。反応終了後、反応溶液と等量(質量)のプロピレングリコールモノメチルエーテルアセテートで希釈し、3回水洗した。この溶液を濃縮し、プロピレングリコールモノメチルエーテルアセテートで希釈する操作を2回繰り返し、最終的に光配向性基を有するポリオルガノシロキサン(PS-2)を含む溶液を得た。このポリオルガノシロキサン(PS-2)の重量平均分子量Mwは9,000であった。
Synthesis Example 2-2 Synthesis of Photoalignable Group-Containing Polyorganosiloxane (PS-2)
In a 100 mL three-necked flask, 10.1 g of epoxy group-containing polyorganosiloxane (EPS-2) obtained in Synthesis Example 2-1, acrylic group-containing carboxylic acid (Toagosei Co., Ltd., trade name "ALONIX M-5300", acrylic Acid ω-carboxypolycaprolactone (degree of polymerization n ≒ 2) 0.5 g, butyl acetate 20 g, cinnamic acid derivative (mc-1) obtained in Synthesis Example 2-A 1.5 g, and tetrabutyl ammonium bromide 0.3 g Were stirred at 90.degree. C. for 12 hours. After completion of the reaction, the reaction solution was diluted with an equal amount (mass) of propylene glycol monomethyl ether acetate and washed three times with water. This solution was concentrated, and the operation of diluting with propylene glycol monomethyl ether acetate was repeated twice to finally obtain a solution containing a polyorganosiloxane (PS-2) having a photoalignable group. The weight average molecular weight Mw of this polyorganosiloxane (PS-2) was 9,000.
[合成例3-1:エポキシ含有ポリメタクリレート(AP-1)の合成]
 冷却管及び攪拌機を備えたフラスコに、重合開始剤として2,2’-アゾビス(イソブチロニトリル)1質量部、及び溶媒としてプロピレングリコールモノメチルエーテルアセテート180質量部を仕込んだ。ここに、3,4-エポキシシクロヘキシルメチルメタアクリレート50質量部、及び(3-エチルオキセタン-3-イル)メチルメタクリレート50質量部を加え、フラスコ内を窒素置換した後、緩やかに攪拌を始めた。溶液温度を80℃に上昇させ、この温度を5時間維持することにより、エポキシ基を有するポリメタクリレートを32.9質量%含有する重合体溶液を得た。得られたエポキシ含有ポリメタクリレートの数平均分子量Mnは16,000であった。
Synthesis Example 3-1 Synthesis of Epoxy-Containing Polymethacrylate (AP-1)
In a flask equipped with a condenser and a stirrer, 1 part by mass of 2,2′-azobis (isobutyronitrile) as a polymerization initiator and 180 parts by mass of propylene glycol monomethyl ether acetate as a solvent were charged. To this, 50 parts by mass of 3,4-epoxycyclohexylmethyl methacrylate and 50 parts by mass of (3-ethyl oxetan-3-yl) methyl methacrylate were added, and the inside of the flask was replaced with nitrogen, and then stirring was gently started. By raising the solution temperature to 80 ° C. and maintaining this temperature for 5 hours, a polymer solution containing 32.9% by mass of polymethacrylate having an epoxy group was obtained. The number average molecular weight Mn of the obtained epoxy-containing polymethacrylate was 16,000.
[合成例4-1:光配向性基含有ポリアミック酸(PAA-1)の合成]
 テトラカルボン酸二無水物として2,3,5-トリカルボキシシクロペンチル酢酸二無水物2.24g(0.01モル)、及びジアミンとして下記式(8)で表される化合物2.54g(0.01モル)をN-メチル-2-ピロリドン(NMP)27.1gに溶解し、40℃で3時間反応させることにより、ポリアミック酸(PAA-1)を15質量%含有する溶液31.8gを得た。このポリアミック酸溶液の溶液粘度は68mPa・sであった。
Figure JPOXMLDOC01-appb-C000014
Synthesis Example 4-1 Synthesis of Photoalignable Group-Containing Polyamic Acid (PAA-1)
2.24 g (0.01 mol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride as tetracarboxylic acid dianhydride, and 2.54 g (0.01 mol) of a compound represented by the following formula (8) as diamine Mol) was dissolved in 27.1 g of N-methyl-2-pyrrolidone (NMP) and reacted at 40 ° C. for 3 hours to obtain 31.8 g of a solution containing 15% by mass of polyamic acid (PAA-1) . The solution viscosity of this polyamic acid solution was 68 mPa · s.
Figure JPOXMLDOC01-appb-C000014
[合成例5-A:メタクリル酸エステル(9)の合成]
 4,4’-ビフェニルジオールと1,6-ジブロモヘキサンをアルカリ条件下で加熱することにより、4’-(6-ブロモヘキシルオキシ)ビフェニル-4-オールを合成した。この生成物にメタクリル酸リチウムを反応させ、2-(4’-ヒドロキシビフェニル-4-イルオキシ)ヘキシルオキシメタクリレートを得た。次いで、塩基性条件下において、4-メトキシシンナモイルクロリドを加え、下記式(9)で表される化合物(メタクリル酸エステル(9))を合成した。
Figure JPOXMLDOC01-appb-C000015
Synthesis Example 5-A: Synthesis of Methacrylate (9)
4 '-(6-bromohexyloxy) biphenyl-4-ol was synthesized by heating 4,4'-biphenyldiol and 1,6-dibromohexane under alkaline conditions. The product was reacted with lithium methacrylate to give 2- (4'-hydroxybiphenyl-4-yloxy) hexyloxy methacrylate. Subsequently, 4-methoxycinnamoyl chloride was added under basic conditions to synthesize a compound represented by the following formula (9) (methacrylic acid ester (9)).
Figure JPOXMLDOC01-appb-C000015
[合成例5-B:メタクリル酸エステル(10)の合成]
 4-ヒドロキシ桂皮酸と1-ヒドロキシ-6-ヘキサノールをアルカリ条件下で加熱することにより4-(6-ヒドロキシヘキシルオキシ)桂皮酸を合成した。この生成物にメタクリル酸クロライドを塩基性条件下で反応させ、下記式(10)で表される化合物(メタクリル酸エステル(10))を得た。
Figure JPOXMLDOC01-appb-C000016
Synthesis Example 5-B: Synthesis of Methacrylate (10)
4- (6-hydroxyhexyloxy) cinnamic acid was synthesized by heating 4-hydroxycinnamic acid and 1-hydroxy-6-hexanol under alkaline conditions. This product was reacted with methacrylic acid chloride under basic conditions to obtain a compound (methacrylic acid ester (10)) represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000016
[合成例5-C:メタクリル酸エステル(11)の合成]
 4-ヨードフェノールと6-クロロ-1-ヘキサノールをアルカリ条件下で加熱することにより4-(6-ヒドロキシヘキシルオキシ)ヨードフェノールを合成した。この生成物に2-メチル-3-ブチン-2-オールを反応させた後、アルカリ条件下で加熱することで4-(6-ヒドロキシヘキシルオキシ)エチニルベンゼン(これを化合物Aとする。)を得た。また、別経路において、4-メトキシ桂皮酸クロライドと4-ヨードフェノールを反応させ、4-ヨードフェニル-3-(4-メトキシフェニル)アクリレート(これを化合物Bとする。)を合成した。続いて、化合物Aと化合物Bを塩基性条件下で反応させることにより、下記式(11)で表される化合物(メタクリル酸エステル(11))を得た。
Figure JPOXMLDOC01-appb-C000017
Synthesis Example 5-C: Synthesis of Methacrylate (11)
4- (6-hydroxyhexyloxy) iodophenol was synthesized by heating 4-iodophenol and 6-chloro-1-hexanol under alkaline conditions. This product is reacted with 2-methyl-3-butyn-2-ol, and then heated under alkaline conditions to give 4- (6-hydroxyhexyloxy) ethynylbenzene (which will be referred to as Compound A). Obtained. Further, in another route, 4-methoxycinnamic acid chloride was reacted with 4-iodophenol to synthesize 4-iodophenyl-3- (4-methoxyphenyl) acrylate (referred to as compound B). Subsequently, compound A and compound B were reacted under basic conditions to obtain a compound (methacrylic acid ester (11)) represented by the following formula (11).
Figure JPOXMLDOC01-appb-C000017
[合成例5-1:液晶性を有するポリメタクリレート(LCP-1)の合成]
 メタクリル酸エステル(9)をテトラヒドロフラン中に溶解し、反応開始剤としてアゾビスイソブチロニトリル(AIBN)を添加して重合することによりポリマー溶液を得た。このポリマー溶液をジエチルエーテル(5000ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をジエチルエーテルで洗浄し、40℃のオーブン中で減圧乾燥し、液晶性を有するポリメタクリレート(LCP-1)を粉末で得た。得られたポリメタクリレート(LCP-1)の数平均分子量は46,000、重量平均分子量は119,600であった。このポリメタクリレート(LCP-1)は116℃~315℃の温度範囲で液晶性を示した。
Synthesis Example 5-1 Synthesis of Liquid Crystalline Polymethacrylate (LCP-1)
A polymer solution was obtained by dissolving methacrylic acid ester (9) in tetrahydrofuran, adding azobisisobutyronitrile (AIBN) as a reaction initiator and polymerizing. The polymer solution was added dropwise to diethyl ether (5000 ml) and the resulting precipitate was filtered. The precipitate was washed with diethyl ether and dried under reduced pressure in an oven at 40 ° C. to obtain liquid crystalline polymethacrylate (LCP-1) as a powder. The number average molecular weight of the obtained polymethacrylate (LCP-1) was 46,000, and the weight average molecular weight was 119,600. This polymethacrylate (LCP-1) exhibited liquid crystallinity in the temperature range of 116 ° C. to 315 ° C.
[合成例5-2:液晶性を有するポリメタクリレート(LCP-2)の合成]
 メタクリル酸エステル(9)に代えてメタクリル酸エステル(10)を用いた点以外は合成例5-1と同様の操作を行うことによりポリメタクリレート(LCP-2)を得た。得られたポリメタクリレート(LCP-2)の数平均分子量は46,000、重量平均分子量は119,600であった。このポリメタクリレート(LCP-2)は135℃~187℃の温度範囲で液晶性を示した。
[合成例5-3:液晶性を有するポリメタクリレート(LCP-3)の合成]
 メタクリル酸エステル(9)に代えてメタクリル酸エステル(11)を用いた点以外は合成例5-1と同様の操作を行うことによりポリメタクリレート(LCP-3)を得た。得られたポリメタクリレート(LCP-3)の数平均分子量は46,000、重量平均分子量は119,600であった。このポリメタクリレート(LCP-3)は66℃~320℃の温度範囲で液晶性を示した。
Synthesis Example 5-2 Synthesis of Liquid Crystalline Polymethacrylate (LCP-2)
A polymethacrylate (LCP-2) was obtained by the same operation as in Synthesis Example 5-1 except that a methacrylic acid ester (10) was used instead of the methacrylic acid ester (9). The number average molecular weight of the obtained polymethacrylate (LCP-2) was 46,000, and the weight average molecular weight was 119,600. This polymethacrylate (LCP-2) exhibited liquid crystallinity in the temperature range of 135 ° C. to 187 ° C.
Synthesis Example 5-3 Synthesis of Liquid Crystalline Polymethacrylate (LCP-3)
A polymethacrylate (LCP-3) was obtained by the same procedure as in Synthesis Example 5-1 except that a methacrylic acid ester (11) was used instead of the methacrylic acid ester (9). The number average molecular weight of the obtained polymethacrylate (LCP-3) was 46,000, and the weight average molecular weight was 119,600. This polymethacrylate (LCP-3) exhibited liquid crystallinity in the temperature range of 66 ° C to 320 ° C.
<液晶配向膜の作製及び評価>
[実施例1]
1.液晶配向剤の調製
 重合体成分としてポリメタクリレート(AP-1)を含有する溶液に、ポリオルガノシロキサン(PS-1)を、ポリメタクリレート(AP-1):ポリオルガノシロキサン(PS-1)=95:5(質量比)となるように加え、更に溶剤として3-メトキシプロピオン酸メチル(MMP)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、及びプロピレングリコールモノメチルエーテル(PGME)を加えて十分に撹拌し、溶剤組成がMMP:PGMEA:PGME=10:40:50(質量比)、固形分濃度4.0質量%の溶液とした。この溶液を孔径1μmのフィルターを用いてろ過することにより液晶配向剤(AL-1)を調製した。
<Preparation and Evaluation of Liquid Crystal Alignment Film>
Example 1
1. Preparation of Liquid Crystal Alignment Agent In a solution containing polymethacrylate (AP-1) as a polymer component, polyorganosiloxane (PS-1) was added to polymethacrylate (AP-1): polyorganosiloxane (PS-1) = 95. Further, methyl 3-methoxypropionate (MMP), propylene glycol monomethyl ether acetate (PGMEA), and propylene glycol monomethyl ether (PGME) are added as solvents, and sufficiently stirred, It was set as the solution whose solvent composition is MMP: PGMEA: PGME = 10: 40: 50 (mass ratio) and solid content concentration 4.0 mass%. The solution was filtered using a filter with a pore size of 1 μm to prepare a liquid crystal aligning agent (AL-1).
2.塗布性の評価
 評価用サンプルとして、上記1.で調製した液晶配向剤(AL-1)をPETフィルム上にバーコーターで塗布し、120℃で2分乾燥して液晶配向膜を形成した。この液晶配向膜の表面のムラを顕微鏡下にて観察することにより液晶配向剤の塗布性(塗布ムラ)を評価した。評価用サンプルとしては、乾燥後の液晶配向膜の膜厚が0.1μm、0.3μmの2種類を作製した。なお、膜厚が厚いほど液晶配向膜の表面にムラが生じやすくなる。評価は、塗膜表面にムラが全く観察されなかった場合を「非常に良好(◎)」、塗膜表面にムラがごく僅かに観察された場合を「良好(○)」、塗膜表面にムラが少し観察された場合に「可(△)」、塗膜表面にムラが多数観察された場合に「不良(×)」とした。その結果、この実施例では、膜厚0.1μmの場合に「非常に良好」、膜厚0.3μmの場合に「良好」の評価であった。
2. Evaluation of coatability As a sample for evaluation, the above 1. The liquid crystal aligning agent (AL-1) prepared in the above was coated on a PET film with a bar coater and dried at 120 ° C. for 2 minutes to form a liquid crystal alignment film. The coating property (coating nonuniformity) of the liquid crystal aligning agent was evaluated by observing the nonuniformity of the surface of this liquid crystal aligning film under a microscope. As a sample for evaluation, the film thickness of the liquid crystal aligning film after drying produced two types, 0.1 micrometer and 0.3 micrometer. The thicker the film thickness, the more easily unevenness occurs on the surface of the liquid crystal alignment film. The evaluation was "very good (◎)" when no unevenness was observed on the surface of the coating, "good (○)" when unevenness was slightly observed on the surface of the coating, on the surface of the coating It was regarded as "Poor (△)" when a slight unevenness was observed, and "Defect (x)" when a large number of unevenness was observed on the surface of the coating. As a result, in this example, the evaluation was "very good" when the film thickness is 0.1 μm, and "good" when the film thickness is 0.3 μm.
3.基材への裏移り性の評価
 評価用サンプルとして、上記1.で調製した液晶配向剤(AL-1)をPETフィルム上にバーコーターで塗布し、120℃で2分乾燥して、膜厚0.1μmの液晶配向膜を形成した。次いで、液晶配向膜面(A)にPETフィルム(B)を重ね合わせ、荷重40g/cmを与えた状態を80℃で30分間保持した後、重ね合わせたまま室温まで冷却した。その後、PETフィルム(B)を液晶配向膜面(A)から剥離し、PETフィルム(B)に液晶配向膜の重合体成分及び残留溶剤が裏移りしているかどうかを目視にて観察した。なお、液晶配向膜の重合体成分及び残留溶剤がPETフィルム(B)に裏移りした場合、裏移りした部分が白濁したように観察される。評価は、PETフィルム(B)に裏移りが全く観察されなかった場合を「非常に良好(◎)」、裏移りがごく僅かに観察された場合を「良好(○)」、裏移りが少し観察された場合を「可(△)」、裏移りが全体的に観察された場合を「不良(×)」とした。また、荷重を40g/cmから80g/cmに変更した以外は上記と同様にして評価を行った。その結果、この実施例では、荷重を40g/cmとした場合及び80g/cmとした場合の両方で「非常に良好」の評価であった。
3. Evaluation of Settling to Base Material As a sample for evaluation, the above 1. The liquid crystal aligning agent (AL-1) prepared in the above was coated on a PET film with a bar coater and dried at 120 ° C. for 2 minutes to form a liquid crystal alignment film having a film thickness of 0.1 μm. Next, the PET film (B) was superposed on the liquid crystal alignment film surface (A), and a state of applying a load of 40 g / cm 2 was maintained at 80 ° C. for 30 minutes, and then cooled to room temperature while being superposed. Thereafter, the PET film (B) was peeled off from the liquid crystal alignment film surface (A), and it was visually observed whether the polymer component and the residual solvent of the liquid crystal alignment film were offset to the PET film (B). When the polymer component and the residual solvent of the liquid crystal alignment film are transferred to the PET film (B), it is observed that the transferred portion is cloudy. The evaluation was "very good (◎)" when no offset was observed on the PET film (B), "good (○)" when offset was observed slightly, and the offset was slightly The case where it observed was made into "good ((triangle | delta))", and the case where the offset was entirely observed was made into "defect (x)." Moreover, evaluation was performed in the same manner as described above except that the load was changed from 40 g / cm 2 to 80 g / cm 2 . As a result, in this example, when the load was 40 g / cm 2 and when it was 80 g / cm 2 , it was evaluated as “very good”.
[実施例2~23及び比較例1~4]
 液晶配向剤の配合組成を下記表1及び表2に記載の通りに変更した以外は実施例1と同様の操作を行い、液晶配向剤(AL-2)~(AL-23)、(BL-1)~(BL-4)をそれぞれ調製した。また、液晶配向剤(AL-1)に代えて液晶配向剤(AL-2)~(AL-23)、(BL-1)~(BL-4)をそれぞれ用いた以外は実施例1と同様にして各種評価を行った。それらの結果を下記表3に示した。
[Examples 2 to 23 and Comparative Examples 1 to 4]
The same operation as in Example 1 is carried out except that the composition of the liquid crystal aligning agent is changed as described in Tables 1 and 2 below, and liquid crystal aligning agents (AL-2) to (AL-23), (BL-) 1) to (BL-4) were prepared respectively. Further, the same as Example 1 except that liquid crystal aligning agents (AL-2) to (AL-23) and (BL-1) to (BL-4) were used instead of the liquid crystal aligning agent (AL-1). We made various evaluations. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表1及び表2中、重合体欄の括弧内の数値は、液晶配向剤の調製に使用した重合体成分の合計100質量部に対する各重合体の配合割合(質量部)を示す。溶剤欄の数値は、液晶配向剤の調製に使用した溶剤成分の合計100質量部に対する各溶剤の配合割合(質量部)を示す。「-」は、その化合物を使用しなかったことを意味する。化合物の略号は以下の通りである。
<溶剤>
 MMP:3-メトキシプロピオン酸メチル
 EEP:3-エトキシプロピオン酸エチル
 MBA:3-メトキシブチルアセテート
 PGMPE:プロピレングリコールメチルプロピルエーテル
 PGMBE:プロピレングリコールメチルブチルエーテル
 CA:酢酸シクロヘキシル
 CP:プロピオン酸シクロヘキシル
 NMP:N-メチル-2-ピロリドン
 GBL:ガンマブチロラクトン
 NEP:N-エチル-2-ピロリドン
 DMI:1,3-ジメチル-2-イミダゾリジノン
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 PGME:プロピレングリコールモノメチルエーテル
 DEDG:ジエチレングリコールジエチルエーテル
 BC:ブチルセロソルブ
In Tables 1 and 2, the numerical values in the parenthesis of the polymer column show the blending ratio (parts by mass) of each polymer to the total 100 parts by mass of the polymer component used for the preparation of the liquid crystal aligning agent. The numerical values in the solvent column indicate the blending ratio (parts by mass) of each solvent with respect to a total of 100 parts by mass of the solvent components used for preparing the liquid crystal aligning agent. "-" Means that the compound was not used. Abbreviations of the compounds are as follows.
<Solvent>
MMP: methyl 3-methoxypropionate EEP: ethyl 3-ethoxypropionate MBA: 3-methoxybutyl acetate PGMPE: propylene glycol methyl propyl ether PGMBE: propylene glycol methyl butyl ether CA: cyclohexyl acetate CP: cyclohexyl propionate NMP: N-methyl -2-pyrrolidone GBL: gamma-butyrolactone NEP: N-ethyl-2-pyrrolidone DMI: 1,3-dimethyl-2-imidazolidinone PGMEA: propylene glycol monomethyl ether acetate PGME: propylene glycol monomethyl ether DEDG: diethylene glycol diethyl ether BC: Butyl cellosolve
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表3から分かるように、(A)溶剤を含む液晶配向剤を用いた実施例1~23は、塗布性及び裏移り性は「非常に良好」、「良好」又は「可」の評価であり、両者のバランスが取れていた。また、(B)溶剤を併用することにより、液晶配向膜の膜厚を0.3μmとした場合の塗布性がより改善された。一方、(A)溶剤を含まない比較例のうち比較例1~3は、膜厚を0.3μmとすると塗布性が「不良」の評価であった。また、比較例3,4は裏移り性が「不良」の評価であった。 As can be seen from Table 3, in Examples 1 to 23 using a liquid crystal aligning agent containing a solvent (A), the coatability and the releasability are evaluated as “very good”, “good” or “good”. , Both were in balance. Moreover, the coating property at the time of setting the film thickness of a liquid crystal aligning film to 0.3 micrometer was further improved by using (B) solvent together. On the other hand, among the comparative examples (A) containing no solvent, in the comparative examples 1 to 3, when the film thickness was 0.3 μm, the coating property was evaluated as “defective”. Moreover, in Comparative Examples 3 and 4, the reverse transferability was evaluated as "poor".

Claims (11)

  1.  重合体成分と、溶剤成分とを含有し、
     前記溶剤成分は、下記(A)溶剤を前記溶剤成分の全量に対して1~70質量%、及び下記(B)溶剤を前記溶剤成分の全量に対して0~40質量%含む、液晶配向剤。
    (A)溶剤:3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシブチルアセテート、下記式(1)で表される化合物、及び下記式(2)で表される化合物よりなる群から選ばれる少なくとも一種の化合物。
    (B)溶剤:1気圧における沸点が200℃以上であって前記(A)溶剤とは異なる化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは炭素数1~4のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは炭素数1~4のアルキル基であり、Rは炭素数1~4のアルキル基である。nは0又は1である。)
    Containing a polymer component and a solvent component,
    The solvent component is a liquid crystal aligning agent comprising 1 to 70% by mass of the following solvent (A) with respect to the total amount of the solvent component, and 0 to 40% by mass with respect to the following solvent (B). .
    (A) Solvent: a group consisting of methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 3-methoxybutyl acetate, a compound represented by the following formula (1), and a compound represented by the following formula (2) At least one compound selected from
    (B) Solvent: a compound having a boiling point of 200 ° C. or higher at atmospheric pressure and different from the solvent (A).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 is an alkyl group having 1 to 4 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), R 2 is an alkyl group having 1 to 4 carbon atoms, R 3 is an alkyl group having 1 to 4 carbon atoms. N is 0 or 1.)
  2.  前記(B)溶剤は、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ガンマブチロラクトン、及び下記式(3)で表される化合物よりなる群から選ばれる少なくとも一種である、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R及びRは、それぞれ独立に、水素原子、又はエーテル結合を有していてもよい炭素数1~6の1価の炭化水素基であり、RとRとが結合して環構造を形成していてもよい。Rは、炭素数1~4のアルキル基である。)
    The solvent (B) is selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, gamma-butyrolactone, and a compound represented by the following formula (3) The liquid crystal aligning agent of Claim 1 which is at least 1 type chosen from the group which consists of.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (3), R 4 and R 5 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms which may have an ether bond, and R 4 and R 5 may combine with each other to form a ring structure, and R 6 is an alkyl group having 1 to 4 carbon atoms.
  3.  前記重合体成分として、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリアミドイミド、ポリ(メタ)アクリレート、及びポリオルガノシロキサンよりなる群から選ばれる少なくとも一種である(P)重合体を含有する、請求項1又は2に記載の液晶配向剤。 The polymer component contains at least one (P) polymer selected from the group consisting of polyamic acid, polyimide, polyamic acid ester, polyamide imide, poly (meth) acrylate, and polyorganosiloxane. Or 2. Liquid crystal aligning agent as described in 2.
  4.  前記(P)重合体は、桂皮酸構造、アゾベンゼン構造、カルコン構造、スチルベン構造、ジフェニルアセチレン構造、(メタ)アクリロイル基、ビニル基、及びフェニルベンゾエート構造よりなる群から選ばれる少なくとも一種の感光性構造を有する、請求項3に記載の液晶配向剤。 The (P) polymer is at least one photosensitive structure selected from the group consisting of cinnamic acid structure, azobenzene structure, chalcone structure, stilbene structure, diphenylacetylene structure, (meth) acryloyl group, vinyl group, and phenylbenzoate structure. The liquid crystal aligning agent of Claim 3 which has.
  5.  前記(P)重合体は、所定の温度範囲で液晶性を発現する部分構造を側鎖に有する、請求項3又は4に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 3 or 4 in which said (P) polymer has a partial structure which expresses liquid crystallinity in a predetermined temperature range in a side chain.
  6.  セルロースアシレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリ(メタ)アクリレート、ポリメチルメタクリレート、ポリカーボネート、及び環状ポリオレフィンよりなる群から選ばれる少なくとも一種の樹脂基材への塗布用である、請求項1~5のいずれか一項に記載の液晶配向剤。 Cellulose acylate, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polysulfone, polyether sulfone, polyamide, polyimide, poly (meth) acrylate, polymethyl methacrylate, polycarbonate, and at least one resin selected from cyclic polyolefins The liquid crystal aligning agent according to any one of claims 1 to 5, which is for coating on a substrate.
  7.  アルコール類、ケトン類、エステル類、エーテル類、ハロゲン化炭化水素類及び炭化水素類よりなる群から選ばれる少なくとも一種であって前記(A)溶剤とは異なる(C)溶剤を更に含有する、請求項1~6のいずれか一項に記載の液晶配向剤。 At least one member selected from the group consisting of alcohols, ketones, esters, ethers, halogenated hydrocarbons and hydrocarbons, which further comprises (C) a solvent different from the above-mentioned (A) solvent, Item 7. The liquid crystal aligning agent according to any one of items 1 to 6.
  8.  前記(C)溶剤の含有割合が、前記溶剤成分の全体量に対して20質量%以上である、請求項7に記載の液晶配向剤。 The liquid crystal aligning agent of Claim 7 whose content rate of the said (C) solvent is 20 mass% or more with respect to the total amount of the said solvent component.
  9.  請求項1~8のいずれか一項に記載の液晶配向剤を用いて形成された液晶配向膜。 A liquid crystal alignment film formed using the liquid crystal alignment agent according to any one of claims 1 to 8.
  10.  請求項9に記載の液晶配向膜を具備する液晶素子。 The liquid crystal element which comprises the liquid crystal aligning film of Claim 9.
  11.  請求項1~8のいずれか一項に記載の液晶配向剤を基材上に塗布し、150℃以下で加熱して塗膜を形成する、液晶配向膜の製造方法。 A method for producing a liquid crystal alignment film, which comprises applying the liquid crystal aligning agent according to any one of claims 1 to 8 on a substrate and heating it at 150 ° C or less to form a coating.
PCT/JP2018/037876 2017-12-14 2018-10-11 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element WO2019116702A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880066614.6A CN111212878B (en) 2017-12-14 2018-10-11 Liquid crystal aligning agent, liquid crystal alignment film, method for producing same, and liquid crystal element
JP2019558932A JP6891975B2 (en) 2017-12-14 2018-10-11 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017240060 2017-12-14
JP2017-240060 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019116702A1 true WO2019116702A1 (en) 2019-06-20

Family

ID=66820188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037876 WO2019116702A1 (en) 2017-12-14 2018-10-11 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element

Country Status (4)

Country Link
JP (1) JP6891975B2 (en)
CN (1) CN111212878B (en)
TW (1) TWI814748B (en)
WO (1) WO2019116702A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521446B (en) * 2022-09-19 2023-07-18 广东省科学院生物与医学工程研究所 Azobenzene liquid crystal polymer and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304777A (en) * 1996-05-14 1997-11-28 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
JPH1073825A (en) * 1996-09-02 1998-03-17 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
JP2017513042A (en) * 2014-02-19 2017-05-25 ロリク アーゲーRolic Ag Liquid crystal alignment composition, liquid crystal alignment film, and liquid crystal display element
WO2018199087A1 (en) * 2017-04-25 2018-11-01 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177872B2 (en) * 1995-03-27 2001-06-18 ジェイエスアール株式会社 Liquid crystal alignment agent
JP4433175B2 (en) * 2004-07-01 2010-03-17 Jsr株式会社 Liquid crystal alignment agent for inkjet coating
JP5273357B2 (en) * 2007-07-06 2013-08-28 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP2009251094A (en) * 2008-04-02 2009-10-29 Konica Minolta Opto Inc Retardation film, polarizing plate and liquid crystal display device
JP5532195B2 (en) * 2008-06-10 2014-06-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5671797B2 (en) * 2009-01-29 2015-02-18 Jnc株式会社 Alignment agent and liquid crystalline polyimide used therefor
JP6179076B2 (en) * 2011-10-13 2017-08-16 Jsr株式会社 Liquid crystal alignment agent
JP6146135B2 (en) * 2012-08-30 2017-06-14 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, method for producing liquid crystal aligning film, and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304777A (en) * 1996-05-14 1997-11-28 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
JPH1073825A (en) * 1996-09-02 1998-03-17 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
JP2017513042A (en) * 2014-02-19 2017-05-25 ロリク アーゲーRolic Ag Liquid crystal alignment composition, liquid crystal alignment film, and liquid crystal display element
WO2018199087A1 (en) * 2017-04-25 2018-11-01 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
JPWO2019116702A1 (en) 2020-08-27
CN111212878A (en) 2020-05-29
CN111212878B (en) 2022-06-14
JP6891975B2 (en) 2021-06-18
TWI814748B (en) 2023-09-11
TW201927865A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
JP6911885B2 (en) Manufacturing method of liquid crystal alignment film and manufacturing method of liquid crystal element
KR102236019B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method therefor, liquid crystal device, and polymer
TW201443157A (en) Liquid crystal aligning agent and method for producing liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, method for producing liquid crystal aligning film, retardation film and method for producing retardation
JP6547461B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, retardation film, and method of producing retardation film
WO2016080033A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal alignment film, liquid crystal display element, polymer and compound
JP2017138575A (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, polymer and diamine
WO2020208884A1 (en) Film-forming composition, cured film, and retardation film
JP5158314B2 (en) Liquid crystal aligning agent and liquid crystal display element
JPWO2020148953A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
KR102548025B1 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP6891975B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP2017040721A (en) Liquid crystal aligning agent, liquid crystal alignment film, production method of liquid crystal alignment film, liquid crystal display element, polymer and compound
CN106947498B (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, and method for producing liquid crystal alignment film and liquid crystal element
KR102404080B1 (en) A liquid crystal aligning agent, a liquid crystal aligning film, a liquid crystal element, and the manufacturing method of a liquid crystal element
KR102404078B1 (en) A liquid crystal aligning agent, a liquid crystal aligning film, a liquid crystal element, and the manufacturing method of a liquid crystal element
JP5321786B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2023170991A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
JP2023107736A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and method for producing liquid crystal element
WO2021005888A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
CN115449376A (en) Liquid crystal aligning agent and application thereof, polyamic acid ester, polyimide, diamine and tetracarboxylic dianhydride manufacturing method
JP2023131106A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
TW202328409A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2019176276A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887401

Country of ref document: EP

Kind code of ref document: A1