WO2019115856A1 - A fluid distribution element for a piston engine and a piston engine equipped with such a fluid distribution element - Google Patents

A fluid distribution element for a piston engine and a piston engine equipped with such a fluid distribution element Download PDF

Info

Publication number
WO2019115856A1
WO2019115856A1 PCT/FI2017/050891 FI2017050891W WO2019115856A1 WO 2019115856 A1 WO2019115856 A1 WO 2019115856A1 FI 2017050891 W FI2017050891 W FI 2017050891W WO 2019115856 A1 WO2019115856 A1 WO 2019115856A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
distribution element
fluid distribution
channel
piston engine
Prior art date
Application number
PCT/FI2017/050891
Other languages
French (fr)
Inventor
Panu SYVÄLUOMA
Original Assignee
Wärtsilä Finland Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wärtsilä Finland Oy filed Critical Wärtsilä Finland Oy
Priority to KR1020207016878A priority Critical patent/KR102439058B1/en
Priority to EP17821671.9A priority patent/EP3724485B1/en
Priority to CN201780097666.5A priority patent/CN111527301B/en
Priority to PCT/FI2017/050891 priority patent/WO2019115856A1/en
Publication of WO2019115856A1 publication Critical patent/WO2019115856A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0001Fuel-injection apparatus with specially arranged lubricating system, e.g. by fuel oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • F02M63/0285Arrangement of common rails having more than one common rail
    • F02M63/029Arrangement of common rails having more than one common rail per cylinder bank, e.g. storing different fuels or fuels at different pressure levels per cylinder bank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/462Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down
    • F02M69/465Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down of fuel rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8084Fuel injection apparatus manufacture, repair or assembly involving welding or soldering

Definitions

  • the present disclosure relates to piston engines and more particularly to fluid distribution elements for piston engines.
  • the present disclosure further concerns pistons engines equipped with such fluid distribution elements.
  • Piston engines often require multiple different types of fluids to be provided to the vicinity of each cylinder.
  • the physical size of the engines result in that a complex arrangement of piping or tubing is required for conducting these fluids to the cylinders along a cylinder bank.
  • the fluid distribution element has multiple fluid ducts corresponding to the respective fluids to be provided.
  • the fluid distribution element is provided to the engine assembly so as to extend along the side of engine.
  • the fluid distribution element is further provided with fluid outlets conveniently located near the associated cylinders, thereby simplifying the required piping associated to the fluids concerned.
  • Such segments have typically been manufactured by casting metal in order to achieve a structure capable of withstanding vibrations associated to piston engines, as well as ensuring secure coupling between the outlet and subsequent piping in such a highly vibrating environment.
  • fluid distribution elements have been composed of a plurality of cast segments attached one after another, because a single-piece cast has generally been considered unfeasible due to the requirement of multiple different variants of such fluid distribution elements corresponding to different types of engines - each having their own distinctive related dimension, which in turn, would require a separate mould for each variant.
  • known fluid distribution elements have been manufactures by casting separate segments, subsequently attached one after another in the longitudinal direction of the engine (i.e. crankshaft direction) in order to form the whole fluid distribution element.
  • the number of segments used corresponds to the number of cylinders in a respective cylinder bank of the associated engine.
  • the segments are provided with outlets communicating with the fluid ducts.
  • An object of the present disclosure is to provide a fluid distribution element having a simple construction, enabling it to be easily manufactured as configured for different types of piston engines having various dimensions, i.e. made-to-measure, while ensuring fluid tightness of the ducts even in high vibration conditions.
  • the disclosure is based on the idea of providing separate longitudinal profile pieces arranged side-by-side so as to define the fluid channels of the fluid distribution element.
  • profile pieces may easily be configured for different lengths and dimensions, thus contributing for greater versatility with respect to configuring the fluid distribution element for different types of engines having various respective dimensions.
  • Fig. 1 schematically represents a portion of a fluid distribution element according to an embodiment of the present disclosure illustrated as an axonometric perspective view
  • Fig. 2 schematically represents a portion of a fluid distribution element according to an embodiment of the present disclosure illustrated as a cut view.
  • a fluid distribution element 1 for a piston engine such as a reciprocating internal combustion engine
  • the fluid distribution element has at least two longitudinal parallel fluid channels 2a, 2b, 2c, 2d adjacent to each other.
  • Each of the fluid channels comprises an inlet 3a, 3b, 3c, 3d, and, for at least one cylinder in an associated bank of the respective piston engine, an outlet 4a, 4b, 4c, 4d for providing fluid communication between the fluid channel and a respective cylinder head.
  • each of the fluid channels 2a, 2b, 2c 2d may comprise, for each cylinder in an associated bank of the respective piston engine, an outlet 4a, 4b, 4c, 4d. That is, for example, fluid channel 2a may have a number of outlets 4a corresponding to the number of cylinders in the associated bank of the respective piston engine.
  • each or any of the fluid channels 2a, 2b, 2c 2d may comprise, for each cylinder in an associated bank of the respective piston engine, multiple outlets 4a, 4a’, 4b, 4c, 4d. That is, for example, fluid channel 2a may have a number of outlets 4a, 4a’ corresponding to twice the number of cylinders in the associated bank of the respective piston engine.
  • the fluid channels are defined by separate longitudinal profile pieces 5a, 5b, 5c, 5d arranged side-by-side, i.e. laterally with respect to their longitudinal directions.
  • profile pieces 5a, 5b, 5c, 5d are arranged one above another, when in use, Moreover, adjacent profile pieces are adjoined by welding, so as to form at least two closed cross- sectional profiles defining the at least two fluid channels, respectively.
  • a fixture arrangement 6 is also provided for fixing the fluid distribution element to the respective piston engine.
  • the fixture arrangement may be provided as side plate attached to an outermost (preferably lowermost, when in use) profile piece 5d so that portions of the side plate extend outwardly with respect to the profile piece 5d in both lateral directions, i.e. sideways, when in use.. Holes may further be provided on these portions for enabling the fluid distribution element 1 to be attached to the respective piston engine with attachment means through the holes.
  • adjacent profiles pieces are adjoined by laser welding along longitudinal seams 7ab, 7bc, 7cd between said profiles.
  • At least one of the longitudinal profile pieces is a U-profile piece.
  • an open portion of a U-profile is adjoined against a closed portion of an adjacent profile piece, or a side plate 6.
  • U-profile pieces may be adjoined side-by-side, such that an open portion of a U-profile piece is adjoined against a closed portion of an adjacent U-profile piece, and an open portion of an outermost U-profile piece is adjoined against a side plate 6.
  • At least one of the longitudinal profile pieces may be a U-profile piece and at least one of the longitudinal profile pieces is a rectangular profile piece, such that an open portion of said U-profile piece is adjoined against said rectangular profile piece.
  • an outermost profile piece i.e. uppermost or lowermost profile piece, when in use, is a rectangular profile piece, thus enabling the outermost profile piece a larger flow with respect to an adjacent U-profile piece.
  • an uppermost profile piece, when in use is a rectangular profile piece. This enables a fluid channel for starting air to be positioned, when in use, closest to the cylinder head. This, in turn, minimizes the relatively costly piping (due to the larger flow area) required between the fluid distribution element and cylinder head.
  • the fixture arrangement 6 is provided as said side plate.
  • the fluid distribution element 1 extends at least a distance corresponding to a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine.
  • the distance between the first and last cylinder may be regarded as the minimum distance between said cylinders.
  • the distance between the first and last cylinder may be regarded as the distance between the centre axes of said cylinders.
  • each of the longitudinal profiles pieces 5a, 5b, 5c, 5d defining a fluid channel 2a, 2b, 2c, 2d extends at least a distance corresponding to a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine.
  • the distance between the first and last cylinder may be regarded as the minimum distance between said cylinders.
  • the distance between the first and last cylinder may be regarded as the distance between the centre axes of said cylinders.
  • the fluid distribution element 1 may alternatively be provided shorter than a distance corresponding to a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine.
  • the fluid distribution element 1 may extend at least a distance corresponding to 3/4 - 7/8 of a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine.
  • the distance between the first and last cylinder may be regarded as the minimum distance between said cylinders.
  • the distance between the first and last cylinder may be regarded as the distance between the centre axes of said cylinders.
  • each of the longitudinal profiles pieces 5a, 5b, 5c, 5d defining a fluid channel 2a, 2b, 2c, 2d may alternatively be provided shorter than a distance corresponding to a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine.
  • each of the longitudinal profiles pieces 5a, 5b, 5c, 5d defining a fluid channel 2a, 2b, 2c, 2d may extend at least a distance corresponding to 3/4 - 7/8 of a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine.
  • the distance between the first and last cylinder may be regarded as the minimum distance between said cylinders.
  • the distance between the first and last cylinder may be regarded as the distance between the centre axes of said cylinders.
  • the inlets 3a, 3b, 3c, 3d of the fluid channels 2a, 2b, 2c, 2d are provided on either, or both, of the longitudinal end of the fluid distribution element. That is, a fluid channel may have an inlet at one end, or both ends. An inlet does not need to be provided on an end surface, but may be provided on an end portion of the fluid channel. That is, in this context, the longitudinal end of fluid distribution element 1 or a profile piece 5a, 5b, 5c, 5d encompasses and end portion thereof, for example a portion extending 1/8 of the whole length of the fluid distribution element 1 .
  • fluid channels may have an inlet at one end, while other fluid channels may have an inlet at both ends.
  • a fluid channel may have an inlet on the same or opposite respective longitudinal end as an adjacent fluid channel, i.e. all of the inlet do not need to be on the same side.
  • at least one outlet 4a, 4a’, 4b, 4c, 4d of a fluid channel is formed on a lateral side of the fluid distribution element 1 .
  • all of the outlets 4a, 4a’, 4b, 4c, 4d are provided on one or more lateral sides of the fluid distribution element 1 .
  • the fluid channel 2a of the uppermost profile piece 5a has outlets 4a, 4a’ on the upwards facing lateral side, whereas the fluid channels 2b, 2c, 2d have outlets 4b, 4c 4d on the sideways facing lateral side.
  • the fluid channels 2a, 2b, 2c, 2d comprises a starting air channel 2a and at least one fluid channel, which is one of the following:
  • a control oil channel may be provided, for example, as a VIC oil channel for hydraulic medium used for variable intake valve timing, a VEC oil channel for hydraulic medium used for variable exhaust valve timing, or both.
  • VIC oil channel for hydraulic medium used for variable intake valve timing
  • VEC oil channel for hydraulic medium used for variable exhaust valve timing
  • multiple control oil channels may be provided for different purposes, e.g. as described above
  • the starting air channel 2a has a cross-sectional flow area larger than that of any of the other fluid channels.
  • the starting air channel 2a is an outermost fluid channel.
  • the starting air channel 2a is defined by a profile piece 5a on the opposite side of the fluid distribution element 1 with respect to the fixture arrangement 6. More preferably, the starting air channel 2a is an uppermost fluid channel, when in use. This enables a fluid channel for starting air to be positioned, when in use, closest to the cylinder head. This, in turn, minimizes the relatively costly piping (due to the larger flow area) required between the fluid distribution element and cylinder head.
  • one or more longitudinal profile pieces 5a, 5b, 5c, 5d defining a fluid channel 2a, 2b, 2c, 2d are made of steel.
  • one or more longitudinal profile pieces 5a, 5b, 5c, 5d defining a fluid channel 2a, 2b, 2c, 2d are made of stainless steel.
  • a piston engine is provided.
  • said engine is reciprocating internal combustion engine.
  • the engine comprises a plurality of cylinders, each cylinder being provided with an own cylinder head.
  • the piston engine is equipped with a fluid distribution element 1 according to the first aspect of present disclosure, as discussed above in connection any of the embodiment and variants thereof.
  • Each cylinder head of the engine is in fluid communication with at least one fluid channel 2a, 2b, 2c, 2d via a respective outlet 4a, 4a’, 4b, 4c, 4d corresponding with said cylinder head.
  • Fig. 1 schematically represents a portion of a fluid distribution element 1 according to an embodiment of the present disclosure, illustrated as an axonometric perspective view. It should be noted however, that although an end portion and an intermediate portion of the fluid distribution element 1 are illustrated, an opposite end potion is not illustrated.
  • profile pieces 5a, 5b, 5c 5d are placed side-by-side, i.e. one above another, when in use.
  • profile piece 5a is positioned uppermost
  • profile piece 5b is positioned below profile piece 5a
  • profile piece 5c is positioned below profile piece 5d.
  • a fixture arrangement 6 is further positioned below profile piece 5d.
  • the uppermost profile piece 5a has multiple outlets 4a on a lateral side thereof, namely the upward facing side thereof.
  • the outlets 4a are spaced apart along the longitudinal direction, the positions of the outlets 4a being intended to correspond to the positions of the cylinders in an associated bank of the respective piston engine.
  • the number of the outlets 4a are intended to correspond to the number of the cylinders in an associated bank of the respective piston engine.
  • the uppermost profile piece 5a has multiple outlets 4a’ on a lateral side thereof, namely the upward facing side thereof.
  • the outlets 4a’ are spaced apart along the longitudinal direction, the positions of the outlets 4a’ being intended to correspond to the positions of the cylinders in an associated bank of the respective piston engine.
  • the number of the outlets 4a’ are intended to correspond to the number of the cylinders in an associated bank of the respective piston engine.
  • each of the remaining profile pieces 5b, 5c, 5d also have a plurality of outlets 4b, 4c, 4d, on their lateral sides, namely a side-ways facing side thereof.
  • the outlets of each profile pieces 5b, 5c, 5d are respectively spaced apart along the longitudinal direction.
  • the positions of the outlets 4b, 4c, 4d are intended to correspond to the positions of the cylinders in an associated bank of the respective piston engine.
  • the longitudinal positions of the outlets 4b, 4c 4d are staggered. That is, the outlets 4b, 4c, 4d corresponding to a given cylinder are arranged such that the longitudinal position of immediately adjacent outlet 4b, 4c; 4c, 4d are different to each other.
  • each profile piece 5b, 5c, 5d of the fluid distribution element of Fig. 1 has a number of outlets corresponding to the number of cylinders in an associated bank of the respective piston engine.
  • Fig. 1 also illustrates inlets 3b, 3c, 3d of the profile pieces 5cb, 5c, 5d, respectively, positioned at the longitudinal end of the fluid distribution element 1 .
  • Inlets 3b, 3d are arranged on the respective longitudinal end surfaces of the profile pieces ' 5b, 5c, while the outlet 3c is arranged on the lateral side surface of the profile piece 5c.
  • the inlet 3a of the profile piece 5a is not shown in Fig. 1 , as it located on the longitudinal end of the fluid distribution profile 1 not illustrated therein.
  • Fig. 2 schematically represents a portion of a fluid distribution element according to an embodiment of the present disclosure illustrated as a cut view. Namely, Fig. 2 illustrates a cross-sectional cut view of the fluid distribution element of Fig. 1 , as seen towards the longitudinal end of the fluid distribution element 1 not shown in Fig. 1 .
  • the fluid channels 2a, 2b, 2c, 2d defined by the respective rectangular profile pieces 5a, 5b, 5c, 5d can be seen form Fig. 2.
  • the cross-sectional area of the profile piece 5a i.e. the cross-sectional flow area of the fluid channel 2a
  • the cross-sectional flow area of outlets 4a, intended for starting air are larger than those of the other outlets 4a’, 4b, 4c, 4d
  • an inlet 3a for the fluid channel 2a can be seen on the longitudinal end surface of the of the profile piece 5a.
  • the profile pieces 5a, 5b, 5c, 5d have been arranged aligned on their lateral sides equipped with the outlets 4b, 4c, 4d.
  • reference numeral 7ab, 7bc and 7cd denote the longitudinal seams between the adjacent profile pieces 5a, 5b, 5c, 5c along which the said adjacent profile pieces have been adjoined to each other by welding. Although only the longitudinal seam on one lateral side has been referred to, adjacent profile pieces may naturally be adjoined to each other along longitudinal seam on both lateral sides.
  • the profile pieces 5a, 5b, 5c 5d in Fig. 2 have equal heights (i.e. dimension in which the profile pieces are adjoined side-by-side one above another, however, the profile piece 5a has a greater width than the other profile pieces in order to provide a larger cross-sectional flow area to the fluid channel 2a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

A fluid distribution element (1) for a piston engine, having at least two longitudinal parallel fluid channels (2a, 2b, 2c, 2d) adjacent to each other. Each of the fluid channels comprises an inlet (3a, 3b, 3c, 3d), and, for at least one cylinder in an associated bank of the respective piston engine, an outlet (4a, 4a', 4b, 4c, 4d) for providing fluid communication between the fluid channel and a respective cylinder head. The fluid channels are defined by separate longitudinal profile pieces (5a, 5b, 5c, 5d) arranged side-by-side, such that adjacent profile pieces are adjoined by welding, so as to form at least two closed cross- sectional profiles defining the at least two fluid channels. A fixture arrangement (6) is provided for fixing the fluid distribution element to the respective piston engine.

Description

A FLUID DISTRIBUTION ELEMENT FOR A PISTON ENGINE AND A PISTON
ENGINE EQUIPPED WITH SUCH A FLUID DISTRIBUTION ELEMENT
FIELD OF THE DISCLOSURE
The present disclosure relates to piston engines and more particularly to fluid distribution elements for piston engines. The present disclosure further concerns pistons engines equipped with such fluid distribution elements.
BACKGROUND OF THE DISCLOSURE
Piston engines often require multiple different types of fluids to be provided to the vicinity of each cylinder. In certain applications, such as marine engines and/or powerplant engines, the physical size of the engines result in that a complex arrangement of piping or tubing is required for conducting these fluids to the cylinders along a cylinder bank.
This issue has previously been addressed by providing a fluid distribution element having multiple fluid ducts corresponding to the respective fluids to be provided. The fluid distribution element is provided to the engine assembly so as to extend along the side of engine. The fluid distribution element is further provided with fluid outlets conveniently located near the associated cylinders, thereby simplifying the required piping associated to the fluids concerned.
Such segments have typically been manufactured by casting metal in order to achieve a structure capable of withstanding vibrations associated to piston engines, as well as ensuring secure coupling between the outlet and subsequent piping in such a highly vibrating environment. Typically, such fluid distribution elements have been composed of a plurality of cast segments attached one after another, because a single-piece cast has generally been considered unfeasible due to the requirement of multiple different variants of such fluid distribution elements corresponding to different types of engines - each having their own distinctive related dimension, which in turn, would require a separate mould for each variant.
For this reason, known fluid distribution elements have been manufactures by casting separate segments, subsequently attached one after another in the longitudinal direction of the engine (i.e. crankshaft direction) in order to form the whole fluid distribution element. Typically, the number of segments used corresponds to the number of cylinders in a respective cylinder bank of the associated engine. Moreover, the segments are provided with outlets communicating with the fluid ducts.
Even in this case, a separate variant is required for each engine type having a different distance between adjacent cylinders, thus requiring a separate casting mould for each segment variant. In addition to resulting in relatively heavy segments (as opposed to mere piping) resulting from the monolithic structure achieve by casting, this approach requires the mating surfaces of the cast segments to be further machined in order to achieve tight seals between adjacent segments. Nevertheless, seals between the mating surfaces adjacent segments require a periodical check in order to confirm working condition due to the vibrations associated with piston engines.
Another known way of producing fluid distribution elements has been to extrude a single profile piece, incorporating required fluid ducts in the extruded profile as closed profile sections. While this approach enables the fluid distribution profile to be manufactured continuously, and subsequently cut to a desired length, it does not allow the number and size of the fluid ducts to be modified to correspond to the associated engine type without changing the extrusion die and mandrel. Such extrusion dies and mandrels are very costly, and hence, maintaining a specific extrusion die-mandrel - set for each type and variation of fluid distribution element is not generally desirable. In addition, replacing the die-mandrel -set is very time consuming hinders the flexibility of manufacturing of fluid distribution elements for engines of each type and variant.
BRIEF DESCRIPTION OF THE DISCLOSURE
An object of the present disclosure is to provide a fluid distribution element having a simple construction, enabling it to be easily manufactured as configured for different types of piston engines having various dimensions, i.e. made-to-measure, while ensuring fluid tightness of the ducts even in high vibration conditions.
It is a further object of the present disclosure to provide a piston engine equipped with such a fluid distribution element.
The objects of the disclosure are achieved by a fluid distribution element and a piston engine characterized by what is stated in the independent claims. The preferred embodiments of the disclosure are disclosed in the dependent claims.
The disclosure is based on the idea of providing separate longitudinal profile pieces arranged side-by-side so as to define the fluid channels of the fluid distribution element.
An advantage of the disclosure is that profile pieces may easily be configured for different lengths and dimensions, thus contributing for greater versatility with respect to configuring the fluid distribution element for different types of engines having various respective dimensions. BRIEF DESCRIPTION OF THE DRAWINGS
In the following the disclosure will be described in greater detail by means of preferred embodiments with reference to the accompanying drawings, in which
Fig. 1 schematically represents a portion of a fluid distribution element according to an embodiment of the present disclosure illustrated as an axonometric perspective view, and
Fig. 2 schematically represents a portion of a fluid distribution element according to an embodiment of the present disclosure illustrated as a cut view.
DETAILED DESCRIPTION OF THE DISCLOSURE
In an embodiment according to a first aspect of the present disclosure, a fluid distribution element 1 for a piston engine, such as a reciprocating internal combustion engine, is provided. The fluid distribution element has at least two longitudinal parallel fluid channels 2a, 2b, 2c, 2d adjacent to each other.
Each of the fluid channels comprises an inlet 3a, 3b, 3c, 3d, and, for at least one cylinder in an associated bank of the respective piston engine, an outlet 4a, 4b, 4c, 4d for providing fluid communication between the fluid channel and a respective cylinder head. Preferably, but not necessarily, each of the fluid channels 2a, 2b, 2c 2d may comprise, for each cylinder in an associated bank of the respective piston engine, an outlet 4a, 4b, 4c, 4d. That is, for example, fluid channel 2a may have a number of outlets 4a corresponding to the number of cylinders in the associated bank of the respective piston engine. Moreover, each or any of the fluid channels 2a, 2b, 2c 2d may comprise, for each cylinder in an associated bank of the respective piston engine, multiple outlets 4a, 4a’, 4b, 4c, 4d. That is, for example, fluid channel 2a may have a number of outlets 4a, 4a’ corresponding to twice the number of cylinders in the associated bank of the respective piston engine. The fluid channels are defined by separate longitudinal profile pieces 5a, 5b, 5c, 5d arranged side-by-side, i.e. laterally with respect to their longitudinal directions. More particularly, the profile pieces 5a, 5b, 5c, 5d are arranged one above another, when in use, Moreover, adjacent profile pieces are adjoined by welding, so as to form at least two closed cross- sectional profiles defining the at least two fluid channels, respectively.
A fixture arrangement 6 is also provided for fixing the fluid distribution element to the respective piston engine. For example, the fixture arrangement may be provided as side plate attached to an outermost (preferably lowermost, when in use) profile piece 5d so that portions of the side plate extend outwardly with respect to the profile piece 5d in both lateral directions, i.e. sideways, when in use.. Holes may further be provided on these portions for enabling the fluid distribution element 1 to be attached to the respective piston engine with attachment means through the holes.
In an embodiment according to a first aspect of the present disclosure, adjacent profiles pieces are adjoined by laser welding along longitudinal seams 7ab, 7bc, 7cd between said profiles.
In a further embodiment according to a first aspect of the present disclosure, at least one of the longitudinal profile pieces is a U-profile piece. In such an arrangement, an open portion of a U-profile is adjoined against a closed portion of an adjacent profile piece, or a side plate 6.
For example, multiple U-profile pieces may be adjoined side-by-side, such that an open portion of a U-profile piece is adjoined against a closed portion of an adjacent U-profile piece, and an open portion of an outermost U-profile piece is adjoined against a side plate 6.
For example, at least one of the longitudinal profile pieces may be a U-profile piece and at least one of the longitudinal profile pieces is a rectangular profile piece, such that an open portion of said U-profile piece is adjoined against said rectangular profile piece. Preferably, in such a case, an outermost profile piece (i.e. uppermost or lowermost profile piece, when in use, is a rectangular profile piece, thus enabling the outermost profile piece a larger flow with respect to an adjacent U-profile piece. More preferably, in such a case, an uppermost profile piece, when in use, is a rectangular profile piece. This enables a fluid channel for starting air to be positioned, when in use, closest to the cylinder head. This, in turn, minimizes the relatively costly piping (due to the larger flow area) required between the fluid distribution element and cylinder head.
Preferably, but not necessarily, when an open portion of a U-profile piece is adjoined against a side plate, the fixture arrangement 6 is provided as said side plate.
In still a further embodiment according to a first aspect of the present disclosure, the fluid distribution element 1 extends at least a distance corresponding to a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine. Suitably, the distance between the first and last cylinder may be regarded as the minimum distance between said cylinders. Alternatively, the distance between the first and last cylinder may be regarded as the distance between the centre axes of said cylinders.
In yet a further embodiment according to a first aspect of the present disclosure, each of the longitudinal profiles pieces 5a, 5b, 5c, 5d defining a fluid channel 2a, 2b, 2c, 2d extends at least a distance corresponding to a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine. Suitably, the distance between the first and last cylinder may be regarded as the minimum distance between said cylinders. Alternatively, the distance between the first and last cylinder may be regarded as the distance between the centre axes of said cylinders.
It should be noted, however, that the fluid distribution element 1 may alternatively be provided shorter than a distance corresponding to a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine. For example, the fluid distribution element 1 may extend at least a distance corresponding to 3/4 - 7/8 of a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine. Suitably, the distance between the first and last cylinder may be regarded as the minimum distance between said cylinders. Alternatively, the distance between the first and last cylinder may be regarded as the distance between the centre axes of said cylinders.
It should be noted, however, that each of the longitudinal profiles pieces 5a, 5b, 5c, 5d defining a fluid channel 2a, 2b, 2c, 2d may alternatively be provided shorter than a distance corresponding to a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine. For example, each of the longitudinal profiles pieces 5a, 5b, 5c, 5d defining a fluid channel 2a, 2b, 2c, 2d may extend at least a distance corresponding to 3/4 - 7/8 of a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine. Suitably, the distance between the first and last cylinder may be regarded as the minimum distance between said cylinders. Alternatively, the distance between the first and last cylinder may be regarded as the distance between the centre axes of said cylinders.
In another embodiment according to a first aspect of the present disclosure, the inlets 3a, 3b, 3c, 3d of the fluid channels 2a, 2b, 2c, 2d are provided on either, or both, of the longitudinal end of the fluid distribution element. That is, a fluid channel may have an inlet at one end, or both ends. An inlet does not need to be provided on an end surface, but may be provided on an end portion of the fluid channel. That is, in this context, the longitudinal end of fluid distribution element 1 or a profile piece 5a, 5b, 5c, 5d encompasses and end portion thereof, for example a portion extending 1/8 of the whole length of the fluid distribution element 1 . Moreover, some fluid channels may have an inlet at one end, while other fluid channels may have an inlet at both ends. Furthermore, a fluid channel may have an inlet on the same or opposite respective longitudinal end as an adjacent fluid channel, i.e. all of the inlet do not need to be on the same side. In still another embodiment according to a first aspect of the present disclosure, at least one outlet 4a, 4a’, 4b, 4c, 4d of a fluid channel is formed on a lateral side of the fluid distribution element 1 . Preferably, all of the outlets 4a, 4a’, 4b, 4c, 4d are provided on one or more lateral sides of the fluid distribution element 1 . For example, when in use, the fluid channel 2a of the uppermost profile piece 5a has outlets 4a, 4a’ on the upwards facing lateral side, whereas the fluid channels 2b, 2c, 2d have outlets 4b, 4c 4d on the sideways facing lateral side.
In yet another embodiment according to a first aspect of the present disclosure, the fluid channels 2a, 2b, 2c, 2d comprises a starting air channel 2a and at least one fluid channel, which is one of the following:
— a fuel return channel for liquid fuel;
— a fuel leakage channel for liquid fuel;
— a gas channel for gaseous fuel;
— a lube channel for lubrication oil;
— a control channel for control air;
— a water channel for introducing water into combustion chambers;
— a control oil channel.
A control oil channel may be provided, for example, as a VIC oil channel for hydraulic medium used for variable intake valve timing, a VEC oil channel for hydraulic medium used for variable exhaust valve timing, or both. Naturally, multiple control oil channels may be provided for different purposes, e.g. as described above
Preferably, but not necessarily, the starting air channel 2a has a cross-sectional flow area larger than that of any of the other fluid channels.
Preferably, but not necessarily the starting air channel 2a is an outermost fluid channel. Suitably, the starting air channel 2a, is defined by a profile piece 5a on the opposite side of the fluid distribution element 1 with respect to the fixture arrangement 6. More preferably, the starting air channel 2a is an uppermost fluid channel, when in use. This enables a fluid channel for starting air to be positioned, when in use, closest to the cylinder head. This, in turn, minimizes the relatively costly piping (due to the larger flow area) required between the fluid distribution element and cylinder head.
In a further embodiment according to a first aspect of the present disclosure, one or more longitudinal profile pieces 5a, 5b, 5c, 5d defining a fluid channel 2a, 2b, 2c, 2d are made of steel. In still a further embodiment according to a first aspect of the present disclosure, one or more longitudinal profile pieces 5a, 5b, 5c, 5d defining a fluid channel 2a, 2b, 2c, 2d are made of stainless steel.
It should be noted, that the first aspect of the present disclosure encompasses the combinations of the embodiments discussed above and variations thereof.
In an embodiment according to a second aspect of the present disclosure a piston engine is provided. Most suitably, said engine is reciprocating internal combustion engine.
The engine comprises a plurality of cylinders, each cylinder being provided with an own cylinder head.
Moreover, the piston engine is equipped with a fluid distribution element 1 according to the first aspect of present disclosure, as discussed above in connection any of the embodiment and variants thereof.
Each cylinder head of the engine is in fluid communication with at least one fluid channel 2a, 2b, 2c, 2d via a respective outlet 4a, 4a’, 4b, 4c, 4d corresponding with said cylinder head.
In the following, the embodiment of a fluid distribution element 1 according to the first aspect of the present disclosure illustrated in Figs. 1 and 2 is discussed in greater detail. However, it should be noted that the enclosed drawings are provided for the purpose of illustrating a non-limiting exemplary embodiment for the purpose of further elaborating the present disclosure.
Fig. 1 schematically represents a portion of a fluid distribution element 1 according to an embodiment of the present disclosure, illustrated as an axonometric perspective view. It should be noted however, that although an end portion and an intermediate portion of the fluid distribution element 1 are illustrated, an opposite end potion is not illustrated.
Longitudinal rectangular profile pieces 5a, 5b, 5c 5d are placed side-by-side, i.e. one above another, when in use. In the fluid distribution element 1 of Fig. 1 profile piece 5a is positioned uppermost, profile piece 5b is positioned below profile piece 5a, profile piece 5c. A fixture arrangement 6 is further positioned below profile piece 5d.
The uppermost profile piece 5a, has multiple outlets 4a on a lateral side thereof, namely the upward facing side thereof. The outlets 4a are spaced apart along the longitudinal direction, the positions of the outlets 4a being intended to correspond to the positions of the cylinders in an associated bank of the respective piston engine. Also, the number of the outlets 4a are intended to correspond to the number of the cylinders in an associated bank of the respective piston engine. In addition, the uppermost profile piece 5a, has multiple outlets 4a’ on a lateral side thereof, namely the upward facing side thereof. The outlets 4a’ are spaced apart along the longitudinal direction, the positions of the outlets 4a’ being intended to correspond to the positions of the cylinders in an associated bank of the respective piston engine. Also the number of the outlets 4a’ are intended to correspond to the number of the cylinders in an associated bank of the respective piston engine.
Correspondingly, each of the remaining profile pieces 5b, 5c, 5d also have a plurality of outlets 4b, 4c, 4d, on their lateral sides, namely a side-ways facing side thereof. The outlets of each profile pieces 5b, 5c, 5d are respectively spaced apart along the longitudinal direction. Also, the positions of the outlets 4b, 4c, 4d are intended to correspond to the positions of the cylinders in an associated bank of the respective piston engine. The longitudinal positions of the outlets 4b, 4c 4d are staggered. That is, the outlets 4b, 4c, 4d corresponding to a given cylinder are arranged such that the longitudinal position of immediately adjacent outlet 4b, 4c; 4c, 4d are different to each other.
Moreover, the number of respective the outlets 4b, 4c, 4c are intended to correspond to the number of the cylinders in an associated bank of the respective piston engine. That is, each profile piece 5b, 5c, 5d of the fluid distribution element of Fig. 1 has a number of outlets corresponding to the number of cylinders in an associated bank of the respective piston engine.
Fig. 1 also illustrates inlets 3b, 3c, 3d of the profile pieces 5cb, 5c, 5d, respectively, positioned at the longitudinal end of the fluid distribution element 1 . Inlets 3b, 3d are arranged on the respective longitudinal end surfaces of the profile pieces'5b, 5c, while the outlet 3c is arranged on the lateral side surface of the profile piece 5c. The inlet 3a of the profile piece 5a, is not shown in Fig. 1 , as it located on the longitudinal end of the fluid distribution profile 1 not illustrated therein.
Fig. 2 schematically represents a portion of a fluid distribution element according to an embodiment of the present disclosure illustrated as a cut view. Namely, Fig. 2 illustrates a cross-sectional cut view of the fluid distribution element of Fig. 1 , as seen towards the longitudinal end of the fluid distribution element 1 not shown in Fig. 1 .
Particularly, the fluid channels 2a, 2b, 2c, 2d defined by the respective rectangular profile pieces 5a, 5b, 5c, 5d can be seen form Fig. 2. Particularly, the cross-sectional area of the profile piece 5a, i.e. the cross-sectional flow area of the fluid channel 2a, is larger than that of the other profile pieces 5b, 5c, 5d. As can be seen, also the cross-sectional flow area of outlets 4a, intended for starting air, are larger than those of the other outlets 4a’, 4b, 4c, 4d Moreover, an inlet 3a for the fluid channel 2a can be seen on the longitudinal end surface of the of the profile piece 5a.
As can also be seen from the illustration of Fig. 2, the profile pieces 5a, 5b, 5c, 5d have been arranged aligned on their lateral sides equipped with the outlets 4b, 4c, 4d.
Moreover, reference numeral 7ab, 7bc and 7cd denote the longitudinal seams between the adjacent profile pieces 5a, 5b, 5c, 5c along which the said adjacent profile pieces have been adjoined to each other by welding. Although only the longitudinal seam on one lateral side has been referred to, adjacent profile pieces may naturally be adjoined to each other along longitudinal seam on both lateral sides.
The profile pieces 5a, 5b, 5c 5d in Fig. 2 have equal heights (i.e. dimension in which the profile pieces are adjoined side-by-side one above another, however, the profile piece 5a has a greater width than the other profile pieces in order to provide a larger cross-sectional flow area to the fluid channel 2a.

Claims

1 . A fluid distribution element (1 ) for a piston engine, having at least two longitudinal parallel fluid channels (2a, 2b, 2c, 2d) adjacent to each other, wherein each of the fluid channels comprises
- an inlet (3a, 3b, 3c, 3d), and
- for at least one cylinder in an associated bank of the respective piston engine, an outlet (4a, 4a’, 4b, 4c, 4d) for providing fluid communication between the fluid channel and a respective cylinder head,
characterized in that the fluid channels are defined by separate longitudinal profile pieces (5a, 5b, 5c, 5d) arranged side-by-side, such that adjacent profile pieces are adjoined by welding, so as to form at least two closed cross-sectional profiles defining the at least two fluid channels, respectively, and
wherein a fixture arrangement (6) being provided for fixing the fluid distribution element to the respective piston engine.
2. The fluid distribution element according to Claim 1 , characterized in that adjacent profiles are adjoined by laser welding along longitudinal seams (7ab, 7bc, 7cd) between said profiles.
3. The fluid distribution element according to Claim 1 or Claim 2, characterized in that at least one of the longitudinal profile pieces is a U-profile piece, an open portion of which is adjoined against a closed portion of an adjacent profile piece, or a side plate (6) .
4. The fluid distribution element according to Claim 3, characterized in that at least one longitudinal profile piece is a rectangular profile piece, wherein an open portion of a U-profile piece being adjoined against said rectangular profile piece.
5. The fluid distribution element according to Claim 3, characterized in that the fixture arrangement (6) is provided as a side plate against which an open portion of a U profile piece is adjoined.
6. The fluid distribution element according to any of the preceding Claims 1 -5, characterized by the fluid distribution element (1 ) extending at least a distance corresponding to 3/4 - 7/8 of a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine.
7. The fluid distribution element (1 ) according to any of the preceding Claims 1 -6, characterized in that each of the longitudinal profiles pieces (5a, 5b, 5c, 5d) defining a fluid channel (2a, 2b, 2c, 2d) extends at least a distance corresponding to 3/4 - 7/8 of a distance between a first cylinder and a last cylinder in an associated bank of the respective piston engine.
8. The fluid distribution element (1 ) according to any of the preceding Claims 1 -7, characterized in that the inlets (3a, 3b, 3c, 3d) of the fluid channels are provided on either, or both, of the longitudinal end of the fluid distribution element.
9. The fluid distribution element (1 ) according to any of the preceding Claims 1 -8, characterized in that at least one outlet (4a, 4a’, 4b, 4c, 4d) of a fluid channel is formed on a lateral side of the fluid distribution element (1 ).
10. The fluid distribution element (1 ) according to any of the preceding Claims 1 -5, characterized in that the fluid channels (2a, 2b, 2c, 2d) comprises a starting air channel (2a) and at least one fluid channel, which is one of the following:
- a fuel return channel for liquid fuel;
- a fuel leakage channel for liquid fuel;
- a gas channel for gaseous fuel;
- a lube channel for lubrication oil;
- a control channel for control air;
- a water channel for introducing water into combustion chambers;
- a control oil channel
1 1 . The fluid distribution element (1 ) according to Claim 10, characterized in that the starting air channel (2a) has a cross-sectional flow area larger than that of any of the other fluid channels.
12. The fluid distribution element (1 ) according to any of the preceding Claims 10 or 1 1 , characterized in that the starting air channel (2a) is an outermost fluid channel.
13. The fluid distribution element according to any of the preceding Claims 1 -12, characterized in that one or more longitudinal profile pieces (5a, 5b, 5c, 5d) defining a fluid channel (2a, 2b, 2c, 2d) are made of steel.
14. The fluid distribution element according to any of the preceding Claims 1 -13, characterized in that one or more longitudinal profile pieces (5a, 5b, 5c, 5d) defining a fluid channel (2a, 2b, 2c, 2d) are made of stainless steel.
15. A piston engine, comprising a plurality of cylinders, each cylinder being provided with an own cylinder head, characterized by the piston engine being equipped with a fluid distribution element (1 ) according to any of the preceding Claims 1 -14,
wherein each cylinder head of the engine is in fluid communication with at least one fluid channel (2a, 2b, 2c, 2d) via a respective outlet (4a, 4a’, 4b, 4c, 4d) corresponding with said cylinder head.
PCT/FI2017/050891 2017-12-14 2017-12-14 A fluid distribution element for a piston engine and a piston engine equipped with such a fluid distribution element WO2019115856A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207016878A KR102439058B1 (en) 2017-12-14 2017-12-14 Fluid distribution element for piston engine and piston engine having such fluid distribution element
EP17821671.9A EP3724485B1 (en) 2017-12-14 2017-12-14 A piston engine equipped with a fluid distribution element
CN201780097666.5A CN111527301B (en) 2017-12-14 2017-12-14 Piston engine
PCT/FI2017/050891 WO2019115856A1 (en) 2017-12-14 2017-12-14 A fluid distribution element for a piston engine and a piston engine equipped with such a fluid distribution element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FI2017/050891 WO2019115856A1 (en) 2017-12-14 2017-12-14 A fluid distribution element for a piston engine and a piston engine equipped with such a fluid distribution element

Publications (1)

Publication Number Publication Date
WO2019115856A1 true WO2019115856A1 (en) 2019-06-20

Family

ID=60812089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI2017/050891 WO2019115856A1 (en) 2017-12-14 2017-12-14 A fluid distribution element for a piston engine and a piston engine equipped with such a fluid distribution element

Country Status (4)

Country Link
EP (1) EP3724485B1 (en)
KR (1) KR102439058B1 (en)
CN (1) CN111527301B (en)
WO (1) WO2019115856A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519368A (en) * 1982-05-04 1985-05-28 Sharon Manufacturing Company Fuel injection rail assembly
DE3542786A1 (en) * 1985-12-04 1987-06-11 Audi Ag Fuel distribution pipe
DE3728576A1 (en) * 1987-08-27 1989-03-09 Opel Adam Ag Fuel injection system
EP0381842A1 (en) * 1989-02-07 1990-08-16 Krupp MaK Maschinenbau GmbH Multi-cylinder internal-combustion engine with separate cylinder heads
JP3308004B2 (en) * 1992-11-24 2002-07-29 スカニア シーブイ アクチボラグ Multi-cylinder internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2055902A1 (en) * 1970-11-13 1972-05-18 Motoren- Und Turbinen-Union Friedrichshafen Gmbh, 7990 Friedrichshafen Multi-cylinder internal combustion engine
DE19743445A1 (en) * 1997-10-01 1999-04-08 Man Nutzfahrzeuge Ag Coolant and lubricant guide for internal combustion engines
CA2635410C (en) * 2008-06-19 2010-08-17 Westport Power Inc. Dual fuel connector
EP2410168A1 (en) * 2010-07-23 2012-01-25 Wärtsilä Schweiz AG Fluid dispenser and method for providing an operating fluid using a fluid dispenser
DE102011082743A1 (en) * 2011-09-15 2013-03-21 Robert Bosch Gmbh fuel distributor
KR101687080B1 (en) * 2014-12-04 2016-12-16 현대자동차주식회사 Exhaust heat recovery system
JP6546771B2 (en) * 2015-04-15 2019-07-17 臼井国際産業株式会社 Gasoline direct injection rail

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519368A (en) * 1982-05-04 1985-05-28 Sharon Manufacturing Company Fuel injection rail assembly
DE3542786A1 (en) * 1985-12-04 1987-06-11 Audi Ag Fuel distribution pipe
DE3728576A1 (en) * 1987-08-27 1989-03-09 Opel Adam Ag Fuel injection system
EP0381842A1 (en) * 1989-02-07 1990-08-16 Krupp MaK Maschinenbau GmbH Multi-cylinder internal-combustion engine with separate cylinder heads
JP3308004B2 (en) * 1992-11-24 2002-07-29 スカニア シーブイ アクチボラグ Multi-cylinder internal combustion engine

Also Published As

Publication number Publication date
KR20200089696A (en) 2020-07-27
CN111527301B (en) 2022-04-12
KR102439058B1 (en) 2022-08-31
CN111527301A (en) 2020-08-11
EP3724485A1 (en) 2020-10-21
EP3724485B1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
US20030029413A1 (en) Modular engine architecture
US5558048A (en) Cylinder block cooling arrangement
RU2695550C2 (en) Internal combustion engine (embodiments) and engine cylinder head gasket with cooling jacket
JP6384492B2 (en) Multi-cylinder engine cooling structure
KR102355836B1 (en) Engine device
US7520257B2 (en) Engine cylinder head
US4834030A (en) Diesel internal combustion engine
US1410319A (en) Cylinder for internal-combustion engines
US9297293B2 (en) Cooling structure of internal combustion engine
EP3724485B1 (en) A piston engine equipped with a fluid distribution element
US10584657B2 (en) Oil cooled internal combustion engine cylinder liner and method of use
CN108425762B (en) Cylinder block of internal combustion engine
CN111033022B (en) Internal combustion engine housing with cylinder cooling
JP6397267B2 (en) Heat exchanger
WO2019115857A1 (en) A fluid distribution element for a piston engine and a piston engine equipped with such a fluid distribution element
JP2013174214A (en) Main bearing of internal combustion engine
US10634020B2 (en) Internal combustion engine
EP4361428A1 (en) Cylinder head water jacket design
CN104696100A (en) An internal combustion engine with an oil duct in a crankcase
US8925502B1 (en) Hydraulically actuated valve assembly for an engine
CN110998086B (en) Fluid distribution element
US20230228329A1 (en) Oil scraper ring for pistons of an internal combustion engine
EP3343009B1 (en) Crankcase for an internal combustion engine
JPH1150909A (en) Crankcase of engine
US1024474A (en) Motor-cooling system.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17821671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207016878

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017821671

Country of ref document: EP

Effective date: 20200714