WO2019114691A1 - 组合式海上风力机支撑结构体系 - Google Patents

组合式海上风力机支撑结构体系 Download PDF

Info

Publication number
WO2019114691A1
WO2019114691A1 PCT/CN2018/120262 CN2018120262W WO2019114691A1 WO 2019114691 A1 WO2019114691 A1 WO 2019114691A1 CN 2018120262 W CN2018120262 W CN 2018120262W WO 2019114691 A1 WO2019114691 A1 WO 2019114691A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
tower
tension
offshore wind
support structure
Prior art date
Application number
PCT/CN2018/120262
Other languages
English (en)
French (fr)
Inventor
郭佳民
周观根
吴炯良
陈宁
钟浩东
熊志鑫
吴恭兴
侯先瑞
孙瑜
刘光众
Original Assignee
上海海事大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711347246.6A external-priority patent/CN109931226B/zh
Priority claimed from CN201711347497.4A external-priority patent/CN109931227A/zh
Priority claimed from CN201711348398.8A external-priority patent/CN107965422B/zh
Application filed by 上海海事大学 filed Critical 上海海事大学
Priority to CH00461/20A priority Critical patent/CH715604B1/de
Publication of WO2019114691A1 publication Critical patent/WO2019114691A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/442Spar-type semi-submersible structures, i.e. shaped as single slender, e.g. substantially cylindrical or trussed vertical bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the invention relates to a novel offshore wind turbine support structure system, in particular to a structural optimization of a conventional tension leg type offshore wind turbine support structure system.
  • the Tension Leg Platform Wind Turbine evolved from a tension leg platform for medium water depths. It is anchored by upright tension keys and mounted 3 to the bottom of the tower of the wind turbine. 4 pontoon structures, the shape of the pontoon is mostly round or square, and the pontoon can provide buoyancy for the whole structure. The two ends of the tension key are respectively connected to the end of the pontoon and the sea bottom, and when the service is in normal service, the tension key is in a tension state. Because of its simple structure, the tension leg type offshore wind turbine has broad application and promotion prospects.
  • the tension leg type offshore wind turbine has a large bending moment at the connection between the pontoon and the tower cylinder, so that a large local tensile stress is generated, so that the portion is easily damaged.
  • the tension leg type offshore wind turbine encounters bad sea conditions, lateral movement will occur, which will cause the tension key to generate enough internal force to effectively restrain the wind turbine, and the internal force of the tension key will increase. The risk of failure of the fracture, the tension button will cause the rollover of the entire wind turbine.
  • Offshore wind turbines are often distributed in pieces to form an offshore wind farm. If a collapsed wind turbine collides with other wind turbines during the drifting process, it will continuously cause damage to other wind turbines.
  • the existing offshore wind turbine support structure system basically has the following shortcomings:
  • the vertical tension key is sensitive to the change of external load, especially for the change of lateral load. Under the action of bad sea conditions, the internal force of the tension key is easily increased, and the risk of failure, the failure of the tension key It will inevitably lead to the rollover of the wind turbine as a whole, so the safety of the tension key will directly affect the service life of the entire wind turbine.
  • the present invention provides a cable-reinforced combined offshore wind turbine support structure system through the addition of a Spar cylinder and a reinforcing cable, thereby improving the stability of the entire support structure system and reducing the tower tower.
  • the bending moment with the pontoon improves the mechanical performance of the structure.
  • the invention also combines to form a catenary type combined offshore wind turbine support structure system by absorbing the advantages of the Spar cylinder and the catenary tension key, or by absorbing the Spar cylinder, the catenary tension key and the vertical increase
  • the advantages of the resistance device are combined to form a vertical structural structure of the combined offshore wind turbine support structure, which can better guarantee the safe service of the wind turbine.
  • one technical solution of the present invention provides a combined offshore wind turbine support structure system, including a wind turbine, a tower, a Spar cylinder, a plurality of reinforcing cables, a plurality of tension keys, and a plurality of buoys;
  • the wind turbine is disposed at the top of the tower; the first end of each pontoon is disposed on the connecting component at the bottom of the tower; the Spar cylinder is disposed at the bottom of the tower; the weight of the ballast is loaded in the Spar cylinder; the upper end of each reinforcing cable Connected to the tower, the lower end is connected to the second end of the corresponding pontoon; the lower end of each tension key is anchored to the sea bottom, and the upper end is connected to the second end of the pontoon.
  • the Spar cartridge is located on the same vertical line as the tower.
  • the Spar cartridge is located below the float.
  • the tension key is an upright tension key arranged in a vertical direction.
  • one end of the tension key is connected to the sea bottom anchoring structure, and the other end is fixedly connected with the second end of the pontoon, and then extends upward and is connected with the tower to form a reinforcing cable.
  • the buoys are symmetrically arranged at the periphery of the tower in a radial, equal angle to each other.
  • the cross-sectional shape of the pontoon is circular, rectangular or polygonal.
  • the vertical height of the structural system is lowered by increasing the ballast in the Spar cylinder to install the tension key; the structural system is floated by reducing the ballast in the Spar cylinder, and the tension key after installation is tensioned.
  • the reinforcing cable connects the tension key, the tower and the pontoon into an overall coordinated force system
  • the reinforcing cables are symmetrically arranged along the circumference of the tower, such that the maximum bending moment of the tower is located at the junction of the reinforcing cable and the tower.
  • the present invention discloses a cable-reinforced combined offshore wind turbine support structure system, which is based on the existing tension leg offshore wind turbine concept, and is equipped with a Spar cylinder (column) and between the pontoon and the tower A reinforcing cable is added; the Spar cylinder is placed directly below the tower, and the weight of the structure is adjusted and the height of the center of gravity of the structure is adjusted by loading the ballast weight.
  • the weight of the ballast can form a restoring moment when the structure is inclined, preventing the structure from being Rollover instability, improve the structure's ability to resist overturning.
  • the reinforced buoy, the tower and the tension key are connected to form an overall coordinated force system.
  • the presence of the reinforcing cable balances the vertical pulling force generated by the tension key, so that the bending moment value of the pontoon is reduced, and the pontoon becomes a resistance to axial pressure.
  • the main axial force-receiving member; the symmetrical arrangement of the reinforcing cables also reduces the maximum bending moment of the tower and improves the working efficiency of the pontoon and the tower.
  • the utility model inherits the advantages of the traditional tension leg type offshore wind turbine, improves the structural performance of the structure, has better buoyancy, stability and the ability to resist failure damage, and has the advantages of light structure, convenient construction and installation, and applicable fields. Wide and other advantages.
  • Another technical solution of the present invention is to provide a combined offshore wind turbine support structure system, comprising a wind turbine, a tower, a Spar cylinder, a plurality of buoys, and a plurality of catenary tension keys;
  • the wind turbine is disposed at the top of the tower; the first end of each pontoon is disposed on the connecting member at the bottom of the tower; the Spar cylinder is disposed at the bottom of the tower; the ballast weight is loaded in the Spar cylinder; each catenary line
  • the upper end of the tension button is connected to the pontoon or Spar tube, and the lower end is anchored to the sea floor.
  • a plurality of catenary tension keys arranged symmetrically along the circumference of the tower are connected to the second end of the corresponding pontoon.
  • the buoys are symmetrically arranged at the periphery of the tower in a radial, equal angle to each other.
  • the cross-sectional shape of the pontoon is circular, rectangular or polygonal.
  • the shape of the catenary of the catenary tension key changes according to a change of a floating state; the catenary tension key provides a component of the horizontal and vertical directions, and the ratio of the force component It changes as the shape of the catenary changes.
  • the centering torque is generated by ballast in the Spar cylinder, and the angle ⁇ between the tower and the vertical line is limited to a set range, ⁇ (-C, +C), where C ⁇ 90°, C The value is regulated by the size of the ballast.
  • the present scheme discloses a catenary-type combined offshore wind turbine support structure system.
  • a Spar cylinder is installed, and the vertical tension key is optimized as a catenary line.
  • the tension key effectively limits the range of movement of the structure and alleviates the sudden change of the internal force of the tension key when the structure moves, and reduces the probability of failure of the tension key.
  • the Spar cylinder is arranged under the tower cylinder. By loading different ballast weights, the structural construction can be adjusted, and the center of gravity of the wind turbine can be adjusted to improve the stability of the structure and avoid the instability of the structure after the tension key fails. .
  • Still another technical solution of the present invention is further provided with a vertical drag-increasing device under the Spar cylinder described in the previous aspect, which is inverted in the water with the opening facing downward.
  • the vertical resistance increasing device is a bottomless cover cylinder comprising a cylindrical top plate, a cylindrical outer plate and a plurality of stiffening ribs disposed therein; the cylindrical outer plate is provided with an opening.
  • the present invention discloses a vertical drag-increasing combined offshore wind turbine support structure, which is based on the existing tension leg type offshore wind turbine support structure, is equipped with a Spar cylinder, a vertical drag increasing device, and is upright
  • the tension key is optimized as a catenary tension key to carry out structural constraints, which alleviates the variation range of the internal force of the tension key when the structure moves, and reduces the failure probability of the tension key
  • the Spar cylinder is arranged under the tower to perform structural construction and correction.
  • the vertical resistance increase device is a cylinder without a bottom cover, which is inverted in the water to increase the vertical damping of the structure and slow down the influence of the heave on the structure.
  • FIG. 1 is a schematic view showing a support structure system of a cable-reinforced combined offshore wind turbine according to Embodiment 1.
  • Embodiment 2 is a schematic view showing the combination of the structural systems described in Embodiment 1.
  • FIG. 3 is a schematic view showing a support structure system of a catenary-type combined offshore wind turbine according to Embodiment 2.
  • Embodiment 4 is a schematic view showing the combination of the structural systems described in Embodiment 2.
  • FIG. 5 is a schematic diagram of a support structure system of a vertical drag-increasing combined offshore wind turbine according to Embodiment 3.
  • Figure 6 is a schematic view showing the combination of the structural systems described in Embodiment 3.
  • FIG. 7 is a three-dimensional schematic view of a vertical drag device in the structural system of Embodiment 3.
  • Fig. 8 is a simplified schematic view showing the force of the catenary tension key in the second and third embodiments.
  • a cable-reinforced combined offshore wind turbine support structure system of the present embodiment includes a wind turbine 1, a tower 2, a reinforcing cable 3, a tension key 4, a pontoon 5, and a Spar cylinder 6. .
  • the wind turbine 1 is placed at the top of the tower 2, and the first end of each pontoon 5 is placed on the connecting member at the bottom of the tower 2.
  • the shape of the pontoon 5 is circular or polygonal, and the number of pontoons 5 is determined by the buoyancy required of the structure.
  • the Spar cartridge 6 attached to the bottom of the tower 2 is located below the float 5 and is located on the same vertical line as the tower 2.
  • the ballast weight is loaded in the Spar cylinder 6 to reduce the center of gravity of the overall structure and increase the stability of the structure; when the tower 2 is tilted, the weight of the ballast loaded in the Spar cylinder 6 will generate a righting moment to prevent further tilting of the structure. .
  • each reinforcing cable 3 is connected to the tower 2, the lower end is connected to the second end of the pontoon 5; the lower end of each tension key 4 is anchored to the sea bottom, and the upper end is also connected to the second end of the pontoon 5; the reinforcing cable 3 and the tension key 4 can only Withstanding the tensile force and not being able to withstand the pressure, the vertical component of the reinforcing cable 3 will effectively balance the vertical pulling force of the tension key 4, thereby reducing the bending moment generated by the tension key 4 on the pontoon 5, so that the pontoon 5 is transformed from the conventional bent member into The pressure is the main component, which greatly improves the working efficiency of the float 5.
  • one end of the upright tension key 4 is connected to the sea bottom anchoring structure, the other end is fixedly connected with the second end of the pontoon 5 and extends obliquely upward to connect with the tower 2 to form a reinforcing cable 3, which plays a very important role in the movement of the structure. Good restraint, better guarantee the safe operation of offshore wind turbines in situ.
  • the reinforcing cable 3 connects the tension key 4, the tower 2 and the pontoon 5 into an overall coordinated force system; the reinforcing cables 3 are symmetrically arranged along the circumference of the tower 2, so that the internal forces of the reinforcing cables 3 can be adjusted and balanced with each other, and the groups are strengthened.
  • the cable 3 reduces the length of the cantilever of the tower 2; the presence of the reinforcing cable 3 greatly improves the stress performance of the connection between the tower 2 and the pontoon 5, thereby prolonging the service life of the entire structural system; the maximum bending of the tower 2 The moment is moved from the junction of the tower 2 and the pontoon 5 to the junction of the reinforcing cable 3 and the tower 2, and the maximum bending moment of the tower 2 is also reduced, thereby improving the mechanical performance of the tower 2, thereby improving The working efficiency of the tower 2 is obtained.
  • the vertical height of the entire structural system can be reduced by increasing the ballast in the Spar cylinder 6, thereby facilitating the in-position installation of the tension key 4.
  • the tension is achieved by reducing the ballast in the Spar cylinder 6 to cause the structure to float.
  • the tension of 4 in turn, achieves the constraint of the tension key 4 on the entire structure.
  • a catenary-type combined offshore wind turbine support structure system of the present embodiment includes a wind turbine 1, a tower 2, a pontoon 5, a catenary tension key 41, and a Spar cylinder. 6.
  • the wind turbine 1 is placed at the top of the tower 2, and the first end of each pontoon 5 is placed on the connecting member at the bottom of the tower 2.
  • the buoys 5 are symmetrically arranged at the periphery of the tower 2 in a radial manner and at an equal angle to each other.
  • the cross-sectional shape of the buoy 5 is circular, rectangular or polygonal, which can provide partial buoyancy for the structure and is also the main source of structural reserve buoyancy. .
  • the Spar cylinder 6 installed at the bottom of the tower 2 is located below the pontoon 5.
  • the Spar cylinder 6 can be loaded with ballast weights, and the ballast size is adjusted to reduce the center of gravity of the structure and improve the structural stability.
  • the Spar cylinder 6 is located at a certain depth below the sea surface. This arrangement not only reduces the large impact of the wave load, but also reduces the center of gravity of the entire structure and improves the stability of the structure.
  • the ballast of the Spar cylinder 6 can provide a recovery torque when the structure is inclined and rollover, thereby effectively improving the stability of the structure. Specifically, when the tower 2 of the structure is inclined and a corner is formed with the plumb line, the ballast in the Spar cylinder 6 generates a righting moment, and in the case where the tension key fails, the presence of the Spar cylinder 6 can be inclined.
  • is strictly limited to a certain range to prevent the occurrence of structural rollover, that is, ⁇ ⁇ (-C, + C), where C ⁇ 90 °, the size of C can be regulated by the size of the ballast.
  • a plurality of catenary tension keys 41 arranged symmetrically may be connected to any position of the pontoon 5 or to any position of the Spar cylinder 6.
  • the upper end of each catenary tension key 41 is connected to the second end of the pontoon 5, and the lower end is anchored to the sea bottom.
  • the tension key in the mooring mode is a catenary line, and it is not easy to directly determine the shape, and the shape thereof changes correspondingly with the change of the floating state.
  • the catenary tension key 41 is actively adjusted by the shape. The constraint on the structure.
  • the catenary tension key 41 is in a tension state, which restricts the free movement and rotation of the wind turbine structure, and ensures that the offshore wind turbine can work safely within a certain range of motion.
  • the catenary tension key 41 can effectively provide the component forces in both the horizontal and vertical directions, and the ratio of the component force varies with the shape of the catenary.
  • the i point corresponds to the upper end of the catenary tension key 41, and the horizontal and vertical component forces are Fix and Fiy, and the j point corresponds to the lower end of the catenary tension key 41, and the horizontal and vertical component forces Fjx and Fjy;
  • H corresponds to the vertical distance between the two ends, and q is the uniform load on the catenary tension key (which can be the difference between gravity and buoyancy).
  • the catenary tension button 41 is used for mooring.
  • the partial catenary tension button 41 that restricts the movement will be further tightened, and at the same time, the horizontal component is generated.
  • the efficiency will be increased to limit the further increase of the structural displacement, and the tension of the partial catenary tension key 41 facing the moving direction will decrease due to the relaxation until the horizontal component is zero, which will also alleviate the portion where the internal force has increased.
  • the internal force of the catenary tension key 41 is further increased; due to the cooperation of the two-direction tension key 41 and the improvement of the horizontal component force during the tensioning of the tension key 41, the horizontal movement of the tension key in the wind turbine can be effectively avoided.
  • the occurrence of tension surge in the process can further reduce the probability of failure of the tension key, thereby improving the ability of the equipment to serve safely.
  • the catenary tension button 41 can provide a horizontal pulling force Fx and a vertical pulling force Fy, which avoids the defect that the vertical force of the conventional vertical tension key increases sharply when the horizontal pulling force is provided, and can effectively prevent the occurrence of the tension key failure, thereby improving the safety of the device.
  • the failure probability of the catenary tension key 41 is reduced, so the probability of continuous failure of the tension key will also decrease. Due to the use of the catenary tension key 41, this structural system can be applied to the deep sea field, breaking through the defects that the traditional tension leg type offshore wind turbine is only suitable for shallow sea.
  • the pontoon 5 and the catenary tension key 41 are arranged symmetrically along the circumference of the tower 2, and the pontoon 5 and the tower 2 under the water surface can provide sufficient buoyancy for the structure, and the catenary tension key 41 is in a tension state.
  • the range of movement of the structure is strictly limited, and the vertical component force Fy of the tensioning force F of the tension key 41 can effectively reduce the heave effect of the wind turbine.
  • the structural vertical position can be adjusted according to the vertical height of the tension key when the structure is installed, and the actual length of the catenary tension key 41 is larger than the straight distance of the two ends.
  • the installation of the entire tension key 41 in place and the pre-tension application difficulty will be reduced.
  • By increasing the ballast in the Spar cylinder 6 to lower the vertical height of the entire structural system it is convenient to install the tension key 41 in place, reduce the ballast after the installation, and tension the key 41 by the buoyancy of the structure, thereby achieving tension
  • the key 41 constrains the entire structure.
  • a vertical drag-increasing combined offshore wind turbine support structure system of the present embodiment is further provided with a vertical drag increasing device 10 based on the second embodiment;
  • a vertical drag increasing device 10 For the wind turbine 1, the tower 2, the pontoon 5, the catenary tension button 41, the connection arrangement of the Spar cylinder 6, and the implementation effects, etc., refer to Embodiment 2, and details are not described herein.
  • the vertical drag increasing device 10 of the embodiment is a bottomless cap cylinder, which is installed under the Spar cylinder 6 and is inverted in the water.
  • the structural body movement is increased because the water body in the cylinder cannot flow freely.
  • the additional mass and hydrodynamic damping of the time increase the resistance opposite to the direction of motion and achieve the purpose of slowing the heave effect.
  • the vertical resistance increasing device 10 is located at the lowermost end of the structure to increase the vertical damping of the structure, reduce the heave effect of the structure, and mitigate the influence of the heave on the catenary tension key 41 and the entire structure, thereby improving the structure. Safety performance during service. Moreover, such an arrangement also reduces the center of gravity of the structure and reduces the difficulty of connecting the vertical drag device 10 to the Spar cartridge 6.
  • the vertical drag increasing device 10 includes a cylindrical outer plate 7, a stiffening rib 8, and a cylindrical top plate 9. Among them, the cylindrical outer panel 7 can be opened. The height of the corresponding stiffener 8 is determined by the number and size of the openings of the outer cylindrical plate 7.
  • the setting of the reinforcing cable 3 can effectively balance the vertical pulling force of the tension key 4, so that the pontoon 5 is transformed from the bent member into
  • the pressure-receiving member effectively improves the working efficiency of the pontoon 5, and at the same time effectively reduces the connection stress at the junction of the pontoon 5 and the tower 2; the reinforcing cable 3 connects the tension key 4, the tower 2 and the pontoon 5 to form an overall coordinated force.
  • the system thereby greatly reducing the bending moment of the tower 2 and the pontoon 5; at the same time, the Spar cylinder 6 is installed directly below the tower 2 to adjust the height of the center of gravity of the structure, improve the stability of the structure, and at the same time facilitate the structure installation process.
  • the assembly and tensioning of the righting and tension keys are greatly reducing the bending moment of the tower 2 and the pontoon 5; at the same time, the Spar cylinder 6 is installed directly below the tower 2 to adjust the height of the center of gravity of the structure, improve the stability of the structure, and at the same time facilitate the structure installation process.
  • the tension key adopts a catenary line form to constrain the translation and rotation of the structure, and the catenary line can provide the horizontal direction and the vertical direction component.
  • the internal force of the catenary tension key 41 under the horizontal load and the heave is reduced; the breaking force probability of the tension key is reduced by effectively reducing the internal force peak of the tension key during service of the wind turbine.
  • the Spar cylinder 6 installed under the tower 2 can adjust the height of the center of gravity of the structure, improve the stability of the structure, and facilitate the installation of the righting and tension keys during the structural installation.
  • a vertical drag-increasing device 10 having a bottomless cover opening cylindrical shape is further connected to the bottom end of the Spar cylinder, and the device is inverted in the water and attached by the water body.
  • the increase of mass and hydrodynamic damping increases the vertical motion resistance of the structure, reduces the heave amplitude of the structure, and reduces the influence of heave on the catenary tension key and the overall structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种组合式海上风力机(1)支撑结构体系,通过Spar筒(6)装载压载,进行结构扶正与重心调整,改良受力性能,提高浮性、稳性与抵御失效破坏能力;增设加强索(3),使浮筒(5)、塔筒(2)与张力键(4)连接成整体协调受力体系,平衡张力键的竖向拉力,降低浮筒弯矩,提高浮筒与塔筒的工作效率。或者,该支撑结构体系可用悬链线式张力键(41)来约束结构的平移与旋转,借助悬链线提供水平与竖向分力的特点,降低风力机服役期间张力键的内力峰值,从而降低张力键的破断概率。该支撑结构体系还可进一步由倒置在水中的垂向增阻装置(10),来增加结构的垂向阻尼;Spar筒、垂向增阻装置与悬链式张力键的应用提高了结构的稳性与张力键的抗破断能力,也降低了结构的施工难度与垂荡效应。

Description

组合式海上风力机支撑结构体系 技术领域
本发明涉及一种新型海上风力机支撑结构体系,具体地说是对传统张力腿式海上风力机支撑结构体系的一种结构优化。
背景技术
相比陆上风电而言,海上风电具有如下独特的优势,如,风场广阔、风力稳定、风电机组单机容量大、受噪音标准限制小、可节约土地资源、利于实现规模化等。张力腿式海上风力机(Tension Leg Platform Wind Turbine,TLPWT)由张力腿平台演变而来,适用于中等水深的海域,它采用直立式张力键系泊固定,在风力机的塔筒底部安装3到4个浮筒结构,浮筒截面形状多为圆形或方形,浮筒可为整体结构提供浮力。张力键两端分别与浮筒的端部和海底相连,正常服役时,张力键处于张紧状态。因为结构简单,张力腿式海上风力机具有广阔的应用和推广前景。
但是,一方面张力腿式海上风力机在浮筒与塔筒连接处由于各自构件均有较大的弯矩存在,所以会产生较大的局部拉应力,使得该部位极易发生破坏。另一方面,张力腿式海上风力机在遇到恶劣海况时,会发生侧向移动,进而导致张力键必须产生足够大的内力才能对风力机进行有效的约束,张力键内力的增大加大了其断裂失效的风险,张力键相继失效后会引发整个风力机的侧翻。海上风力机往往成片分布,形成海上风场,如果倒塌的风力机在发生漂移的过程中与其他风力机发生碰撞,将会连续造成其他风力机的破坏。
总体来说,现有海上风力机支撑结构体系基本存在如下几点不足:
1)、张力腿式海上风力机在浮筒与塔筒连接处产生较大的局部拉应力, 使得该部位极易发生破坏。
2)、垂直的张力键其内力对外部荷载的变化较为敏感,特别是对于横向荷载的变化,结构在恶劣海况的作用下张力键内力极易升高,进而存在失效的风险,张力键的失效必将导致风力机整体的侧翻,因此,张力键的安全会直接影响整个风力机的服役寿命。
3)、风力机结构的整体稳性较差。风力机的支撑结构体系在较大的风、浪、流载荷作用下,张紧状态的张力键一旦失效,整个结构体系将发生倾斜侧翻,上部的风力机将会落水失效。而且海上风力机往往大片布置形成风场,单根张力键的破断将导致结构的侧翻进而导致其他张力键的相继破断,结构将会在无约束的情况的下发生漂移,危害风场其他风力机的安全。
发明的公开
为了解决现有技术存在的问题,本发明通过Spar筒与加强索的增设,提供一种索加强型组合式海上风力机支撑结构体系,提高了整个支撑结构体系的稳性,也降低了塔筒与浮筒的弯矩,使结构的受力性能得以改善。本发明还通过吸收Spar筒、悬链线式张力键的优点,组合形成一种悬链线型组合式海上风力机支撑结构体系,或者通过吸收Spar筒、悬链线式张力键及垂向增阻装置的优点,组合形成一种垂向增阻型组合式海上风力机支撑结构体系,可以更好地保障风力机的安全服役。
为了达到上述目的,本发明的一个技术方案是提供一种组合式海上风力机支撑结构体系,包含风力机、塔筒、Spar筒、多个加强索、多个张力键、多个浮筒;
所述风力机设置在塔筒顶部;各浮筒的第一端设置在塔筒底部的连接部件上;所述Spar筒设置在塔筒底部;该Spar筒中装载压舱重物;各加强索的上端与塔筒相连,下端与相应浮筒的第二端相连;各张力键下端锚固在海底,上端与浮筒的第二端相连。
可选地,所述Spar筒与塔筒位于同一铅垂线上。
可选地,所述Spar筒位于浮筒的下方。
可选地,所述张力键是直立式张力键,在竖直方向布置。
可选地,所述张力键一端与海底锚固结构连接,另一端与浮筒第二端固定连接后向上延伸并与塔筒相连形成加强索。
可选地,所述浮筒以辐射状、相互夹角相等的方式对称布置在塔筒的周边。
可选地,所述浮筒的截面形状为圆形、矩形或多边形。
可选地,通过增加Spar筒中的压载使结构体系的竖向高度降低,以便安装张力键;通过减少Spar筒中的压载促使结构体系上浮,使安装后的张力键张紧。
可选地,所述加强索将张力键、塔筒及浮筒连接成为整体协调受力体系;
所述加强索沿塔筒周边等间距对称布置,使塔筒的最大弯矩位于加强索与塔筒的连接处。
本方案公开了一种索加强型组合式海上风力机支撑结构体系,以现有的张力腿式海上风力机概念为基础,加装了Spar筒(柱筒),并在浮筒与塔筒之间增设了一道加强索;Spar筒设置在塔筒正下方,通过装载压载重量,进行结构施工的扶正与结构重心高度的调整,压舱重物能够在结构倾斜时形成一个恢复力矩,阻止结构的侧翻失稳,提高结构的抗倾覆能力。加强索使浮筒、塔筒与张力键连接形成整体协调受力体系,加强索的存在平衡了张力键产生的竖向拉力,使浮筒的弯矩值得到降低,使浮筒成为一个抵抗轴向压力为主的轴向受力构件;加强索的成组对称布置也降低了塔筒的最大弯矩值,提高了浮筒与塔筒的工作效率。本方案在继承传统张力腿式海上风力机优点的同时,改善了结构的受力性能,具有更好的浮性、稳性与抵御失效破坏的能力,具有结构质量轻、施工安装便捷、适用领域广等优点。
本发明的另一个技术方案是提供一种组合式海上风力机支撑结构体系, 包含风力机、塔筒、Spar筒、多个浮筒、多个悬链线式张力键;
所述风力机设置在塔筒顶部,;各浮筒的第一端设置在塔筒底部的连接部件上;所述Spar筒设置在塔筒底部;该Spar筒中装载压舱重物;各悬链线式张力键上端连接于浮筒或Spar筒,下端锚固至海底。
可选地,沿塔筒周边对称布置的多个悬链线式张力键,上端与相应浮筒的第二端相连。
可选地,所述浮筒以辐射状、相互夹角相等的方式对称布置在塔筒的周边。
可选地,所述浮筒的截面形状为圆形、矩形或多边形。
可选地,所述悬链线式张力键的悬链线形状随浮态的变化而变化;所述悬链线式张力键提供水平和竖向两个方向的分力,分力大小的比例随着悬链线形状的变化而变化。
可选地,通过Spar筒中的压载产生扶正力矩,将塔筒与铅垂线的夹角θ限制在设定范围之内,θ∈(-C,+C),其中C<90°,C的数值通过压载的大小进行调控。
本方案公开了一种悬链线型组合式海上风力机支撑结构体系,以现有的张力腿式海上风力机概念为基础,加装了Spar筒,并将直立式张力键优化为悬链线式张力键,从而有效限制结构的移动范围,并缓解结构移动时张力键内力的突变幅度,降低张力键失效的概率。Spar筒设置在塔筒下方,通过装载不同的压载重量,可进行结构施工扶正,也可调节风力机工作期间的重心高度,提高结构的稳性,避免张力键失效后结构的侧翻失稳。本方案在继承传统张力腿式海上风力机优点的同时,通过Spar筒使整个结构的稳性得到了改善,通过悬链线式张力键将结构发生张力键失效、漂移,危及其他风力机的可能性降低。Spar筒与悬链式张力键的应用充分提高了结构的稳性与张力键的抗破断能力,也降低了结构的施工难度。本方案具有更好的浮性、稳性与抵御失效破坏的能力,张力键失效概率小,施工便捷,适用领域广。
本发明的还有一个技术方案是在前一方案所述的Spar筒下方进一步设置有垂向增阻装置,其倒置在水中,开口朝下。
所述垂向增阻装置为无底盖圆筒,包含圆筒顶板、圆筒外板及其内部设置的若干加劲肋;所述圆筒外板设有开孔。
本方案公开了一种垂向增阻型组合式海上风力机支撑结构,以现有的张力腿式海上风力机支撑结构为基础,加装了Spar筒、垂向增阻装置,并将直立式张力键优化为悬链线式张力键来进行结构的约束,缓解了结构移动时张力键内力的变化幅度,降低了张力键的失效概率;Spar筒设置在塔筒下方,可进行结构施工扶正和结构重心高度的调整;垂向增阻装置为无底盖的圆筒,倒置在水中用以增加结构的垂向阻尼,减缓垂荡对结构的影响。本方案在继承传统张力腿式海上风力机优点的同时,通过Spar筒使整个结构的稳性得到了改善,通过悬链线式张力键将结构发生张力键失效、漂移,危及其他风力机的可能性降低,通过垂向增阻装置使垂荡对结构的影响得到了缓解。Spar筒、垂向增阻装置与悬链式张力键的应用充分提高了结构的稳性与张力键的抗破断能力,也降低了结构的施工难度与垂荡效应。本方案具有更好的浮性、稳性与抵御失效破坏的能力,张力键失效概率小,施工便捷,垂向阻尼大,垂荡影响少,适用领域广。
附图的简要说明
图1为实施例1所述索加强型组合式海上风力机支撑结构体系示意图。
图2为实施例1所述结构体系的组合示意图。
图3为实施例2所述悬链线型组合式海上风力机支撑结构体系示意图。
图4为实施例2所述结构体系的组合示意图。
图5为实施例3所述垂向增阻型组合式海上风力机支撑结构体系示意图。
图6为实施例3所述结构体系的组合示意图。
图7为实施例3所述结构体系中垂向增阻装置三维示意图。
图8为实施例2、3中悬链线式张力键受力简化示意图。
实现本发明的最佳方式
以下结合附图对本发明的具体实施方式作进一步说明。
实施例1
如图1、图2所示,本实施例的一种索加强型组合式海上风力机支撑结构体系,包含风力机1、塔筒2、加强索3、张力键4、浮筒5和Spar筒6。
风力机1设置在塔筒2顶部,各浮筒5的第一端设置在塔筒2底部的连接部件上。浮筒5截面形状为圆形或多边形,浮筒5的数量由结构需提供的浮力来确定。
在塔筒2底部加装的Spar筒6,位于浮筒5的下方,并与塔筒2位于同一铅垂线上。Spar筒6中装载压舱重物,以降低整体结构的重心,增加结构的稳性;当塔筒2发生倾斜时,Spar筒6中装载的压舱重物会产生扶正力矩阻止结构的进一步倾斜。
各加强索3上端与塔筒2相连,下端与浮筒5的第二端相连;各张力键4下端锚固在海底,上端也与浮筒5的第二端相连;加强索3与张力键4只能承受拉力,不能承受压力,加强索3的竖向分量将有效平衡张力键4的竖向拉力,从而降低了张力键4对浮筒5产生的弯矩,使得浮筒5从传统的受弯构件转变为受压为主构件,大幅提高了浮筒5的工作效率。
示例地,是将直立式张力键4的一端与海底锚固结构连接,另一端与浮筒5第二端固定连接并斜向上延伸与塔筒2相连形成加强索3,这样对结构的移动起到了很好的约束作用,更好地保障了海上风力机在原位安全工作。
加强索3将张力键4、塔筒2及浮筒5连接成为整体协调受力体系;加强索3沿塔筒2周边等间距对称布置,使得加强索3的内力可以相互调整平衡,成组的加强索3减少了塔筒2的悬臂长度;加强索3的存在,极大地改善了塔筒2与浮筒5连接处的受力性能,进而可以延长整个结构体系的服役 寿命;塔筒2的最大弯矩由塔筒2与浮筒5连接处上移至了加强索3与塔筒2的连接处,塔筒2的弯矩最大值也得到了降低,改善了塔筒2的受力性能,从而提高了塔筒2的工作效率。
此外,可以通过增加Spar筒6中的压载来降低整个结构体系的竖向高度,进而方便张力键4的就位安装,安装结束后通过减少Spar筒6中的压载促使结构上浮实现张力键4的张紧,进而实现张力键4对整个结构的约束。
即使任一根张力键破断失效,结构在Spar筒6的作用下也能避免侧翻失稳,降低了张力键局部破损对整个结构的影响,也减小了结构损坏对其他风力机的影响。
实施例2
如图3、图4所示,本实施例的一种悬链线型组合式海上风力机支撑结构体系,包含风力机1、塔筒2、浮筒5、悬链线式张力键41和Spar筒6。
风力机1设置在塔筒2顶部,各浮筒5的第一端设置在塔筒2底部的连接部件上。这些浮筒5以辐射状、相互夹角相等的方式对称布置在塔筒2的周边,浮筒5的截面形状为圆形、矩形或多边形,可为结构提供部分浮力,同时也是结构储备浮力的主要来源。
在塔筒2底部加装的Spar筒6,位于浮筒5的下方,Spar筒6可装压载重物,通过压载大小的调整,达到降低结构重心,提高结构稳性的目的。Spar筒6位于海面之下的一定深度,这样设置不仅降低了波浪荷载的巨大冲击作用,同时也降低了整个结构的重心,提高了结构的稳性。
Spar筒6的压载在结构倾斜、侧翻时可提供恢复力矩,有效提高结构的稳性。具体来说,当结构的塔筒2发生倾斜,与铅垂线产生□角时,Spar筒6中的压载会产生扶正力矩,在张力键失效的情况下,Spar筒6的存在可将倾角θ严格地限制在一定范围之内,防止结构侧翻的发生,即θ∈(-C,+C),其中C<90°,C的大小可以通过压载的大小进行调控。
对称布置的多个悬链线式张力键41,上端可以连接于浮筒5的任意位置, 或连接于Spar筒6的任意位置。图例中各悬链线式张力键41的上端连接在浮筒5的第二端,下端锚固至海底。
这种系泊方式下的张力键为一条悬链线,不易直接确定形状,其形状会随浮态的变化而发生相应的变化,所述悬链线式张力键41通过形状的主动调整起到了对结构的约束作用。
在风力机服役期间,悬链线式张力键41处于张紧状态,约束着风力机结构的自由移动与旋转,保障了海上风力机可以在一定活动范围内安全工作。
如图8所示,悬链线式张力键41可以有效提供水平和竖向两个方向的分力,分力大小的比例随着悬链线形状的变化而变化。i点对应悬链线式张力键41上端,设水平及竖向的分力为Fix和Fiy,j点对应悬链线式张力键41下端,设水平及竖向的分力Fjx和Fjy;L对应两端的水平距离,H对应两端的竖直距离,q为悬链线式张力键上的均布荷载(可为重力与浮力的差值)。
采用悬链线式张力键41进行系泊,当风力机结构在受到较大外力作用发生移动时,限制移动发生的部分悬链线式张力键41将会进一步张紧,同时其产生水平分力的效率将会提高,限制结构位移的进一步增加,而面向移动方向的部分悬链线式张力键41的张力由于松弛会下降,直到水平分力为零,这也将缓和内力已增大的部分悬链线式张力键41内力的进一步增大;由于两个方向张力键41的配合,以及张力键41张紧过程中提供水平分力效率的提高,可有效避免张力键在风力机发生水平移动过程中张力突增情况的发生,进而可以减小张力键失效的概率,从而提高了设备安全服役的能力。
悬链线式张力键41可以提供水平向拉力Fx和竖向拉力Fy,避免了传统垂直张力键在提供水平拉力时内力急剧增加的缺陷,可有效预防张力键失效的发生,从而提高了设备安全服役的能力。悬链线式张力键41的失效概率得到了降低,因此张力键发生连续失效的概率也将降低。由于采用悬链线式张力键41,可以将这一结构体系应用在深海领域,突破了传统张力腿式海上风力机仅适用于浅海的缺陷。
浮筒5和悬链线式张力键41沿塔筒2周边径向对称布置,浮筒5与水面下的塔筒2部分可为结构提供足够的浮力,悬链线式张力键41处于张紧状态,严格限制结构的移动范围,张力键41的张紧力F的竖向分力Fy可有效降低风力机的垂荡效应。
此外,由于Spar筒6的存在,结构安装就位时可依据张力键的垂直高度进行结构竖向位置的调整,再加悬链线式张力键41的实际长度较其两端直线距离大的特点,整个张力键41的安装就位与预张力的施加难度将降低。通过增加Spar筒6中的压载来降低整个结构体系的竖向高度,可以方便张力键41的安装就位,安装结束后减少压载,通过结构的浮力来张紧张力键41,进而实现张力键41对整个结构的约束。
即使任一根悬链线式张力键41发生破断,在Spar筒6扶正弯矩的作用下也能够保证结构不发生侧翻,降低了个别悬链线式张力键41的失效对整个结构的影响,可有效避免结构上部风力机的落水破坏。
实施例3
如图5、图6所示,本实施例的一种垂向增阻型组合式海上风力机支撑结构体系,在实施例2的基础上加装了垂向增阻装置10;本结构中,风力机1、塔筒2、浮筒5、悬链线式张力键41、Spar筒6的连接布置及实施效果等,均可参见实施例2,不一一赘述。
本实施例的垂向增阻装置10为无底盖圆筒,安装在Spar筒6的下方,倒置在水中,当支撑结构在垂向运动时,由于筒内水体无法自由流出,增加了结构运动时的附加质量与水动力阻尼,从而加大了与运动方向相反的阻力,达到了减缓垂荡效应的目的。
垂向增阻装置10位于结构的最下端,用以增加结构的垂向阻尼,减小了结构的垂荡效应,减缓垂荡对悬链线式张力键41以及整个结构的影响,从而提高结构服役期间的安全性能。并且,这样设置也降低了结构的重心,且降低了垂向增阻装置10与Spar筒6的连接难度。
如图7所示,垂向增阻装置10包含圆筒外板7、加劲肋8与圆筒顶板9。其中,圆筒外板7可以开孔。相应的加劲肋8的高度,则依据圆筒外板7的开孔数目和大小决定。
综上所述,实施例1提出的一种索加强型组合式海上风力机支撑结构体系中,加强索3的设置可有效平衡张力键4的竖向拉力,使得浮筒5由受弯构件转变为受压构件,有效提高了浮筒5的工作效率,同时也有效降低了浮筒5与塔筒2连接处的连接应力;加强索3将张力键4、塔筒2与浮筒5连接成为整体协调受力体系,从而将塔筒2与浮筒5的弯矩大幅降低;同时,在塔筒2正下方加装Spar筒6用来调节结构的重心高度,改善结构的稳性,同时方便结构安装过程中的扶正与张力键的装配、张紧施工。
实施例2的悬链线型组合式海上风力机支撑结构中,张力键采用悬链线形式来约束结构的平移与旋转,利用悬链线可以提供水平方向与竖直方向分力的特点,来降低悬链线式张力键41在风力机承受水平荷载与垂荡作用下的内力;通过有效降低风力机服役期间张力键的内力峰值,进而降低张力键的破断概率。在塔筒2下方加装的Spar筒6可以调节结构的重心高度,提高结构的稳性,并方便结构安装过程中的扶正与张力键的安装。
实施例3的垂向增阻型组合式海上风力机支撑结构中,进一步设置无底盖开口圆筒状的垂向增阻装置10与Spar筒底端连接,该装置倒置在水中,通过水体附加质量和水动力阻尼的增加,加大结构的垂向运动阻力,减小结构的垂荡幅度,降低垂荡对悬链线式张力键与整体结构的影响。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (17)

  1. 一种组合式海上风力机支撑结构体系,其特征在于,
    包含风力机、塔筒、Spar筒、多个加强索、多个张力键、多个浮筒;
    所述风力机设置在塔筒顶部;
    各浮筒的第一端设置在塔筒底部的连接部件上;
    所述Spar筒设置在塔筒底部;该Spar筒中装载压舱重物;
    各加强索的上端与塔筒相连,下端与相应浮筒的第二端相连;
    各张力键下端锚固在海底,上端与浮筒的第二端相连。
  2. 如权利要求1所述组合式海上风力机支撑结构体系,其特征在于,
    所述Spar筒与塔筒位于同一铅垂线上。
  3. 如权利要求1所述组合式海上风力机支撑结构体系,其特征在于,
    所述Spar筒位于浮筒的下方。
  4. 如权利要求1所述组合式海上风力机支撑结构体系,其特征在于,
    所述张力键是直立式张力键,在竖直方向布置。
  5. 如权利要求1所述组合式海上风力机支撑结构体系,其特征在于,
    所述张力键一端与海底锚固结构连接,另一端与浮筒第二端固定连接后向上延伸并与塔筒相连形成加强索。
  6. 如权利要求1所述组合式海上风力机支撑结构体系,其特征在于,
    所述浮筒以辐射状、相互夹角相等的方式对称布置在塔筒的周边。
  7. 如权利要求1所述组合式海上风力机支撑结构体系,其特征在于,
    所述浮筒的截面形状为圆形、矩形或多边形。
  8. 如权利要求1所述组合式海上风力机支撑结构体系,其特征在于,
    通过增加Spar筒中的压载使结构体系的竖向高度降低,以便安装张力键;通过减少Spar筒中的压载促使结构体系上浮,使安装后的张力键张紧。
  9. 如权利要求1所述组合式海上风力机支撑结构体系,其特征在于,
    所述加强索将张力键、塔筒及浮筒连接成为整体协调受力体系;
    所述加强索沿塔筒周边等间距对称布置,使塔筒的最大弯矩位于加强索与塔筒的连接处。
  10. 一种组合式海上风力机支撑结构体系,其特征在于,
    包含风力机、塔筒、Spar筒、多个浮筒、多个悬链线式张力键;
    所述风力机设置在塔筒顶部;
    各浮筒的第一端设置在塔筒底部的连接部件上;
    所述Spar筒设置在塔筒底部;该Spar筒中装载压舱重物;
    各悬链线式张力键上端连接于浮筒或Spar筒,下端锚固至海底。
  11. 如权利要求10所述组合式海上风力机支撑结构体系,其特征在于,
    所述Spar筒下方进一步设置有垂向增阻装置,其倒置在水中,开口朝下。
  12. 如权利要求11所述组合式海上风力机支撑结构体系,其特征在于,
    所述垂向增阻装置为无底盖圆筒,包含圆筒顶板、圆筒外板及其内部设置的若干加劲肋;所述圆筒外板设有开孔。
  13. 如权利要求10或11所述组合式海上风力机支撑结构体系,其特征在于,
    沿塔筒周边对称布置的多个悬链线式张力键,上端与相应浮筒的第二端相连。
  14. 如权利要求10或11所述组合式海上风力机支撑结构体系,其特征在于,
    所述浮筒以辐射状、相互夹角相等的方式对称布置在塔筒的周边。
  15. 如权利要求10或11所述组合式海上风力机支撑结构体系,其特征在于,
    所述浮筒的截面形状为圆形、矩形或多边形。
  16. 如权利要求10或11所述组合式海上风力机支撑结构体系,其特征在于,
    所述悬链线式张力键的悬链线形状随浮态的变化而变化;所述悬链线式张力键提供水平和竖向两个方向的分力,分力大小的比例随着悬链线形状的变化而变化。
  17. 如权利要求10或11所述组合式海上风力机支撑结构体系,其特征在于,
    通过Spar筒中的压载产生扶正力矩,将塔筒与铅垂线的夹角θ限制在设定范围之内,θ∈(-C,+C),其中C<90°,C的数值通过压载的大小进行调控。
PCT/CN2018/120262 2017-12-15 2018-12-11 组合式海上风力机支撑结构体系 WO2019114691A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH00461/20A CH715604B1 (de) 2017-12-15 2018-12-11 Stützstruktursystem für eine Offshore-Windkraftanlage.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201711347246.6A CN109931226B (zh) 2017-12-15 2017-12-15 一种垂向增阻型组合式海上风力机支撑结构体系
CN201711347246.6 2017-12-15
CN201711347497.4A CN109931227A (zh) 2017-12-15 2017-12-15 一种索加强型组合式海上风力机支撑结构体系
CN201711348398.8 2017-12-15
CN201711347497.4 2017-12-15
CN201711348398.8A CN107965422B (zh) 2017-12-15 2017-12-15 一种悬链线型组合式海上风力机支撑结构体系

Publications (1)

Publication Number Publication Date
WO2019114691A1 true WO2019114691A1 (zh) 2019-06-20

Family

ID=66818984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120262 WO2019114691A1 (zh) 2017-12-15 2018-12-11 组合式海上风力机支撑结构体系

Country Status (2)

Country Link
CH (1) CH715604B1 (zh)
WO (1) WO2019114691A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753187A (zh) * 2021-09-26 2021-12-07 中国华能集团清洁能源技术研究院有限公司 漂浮式风电机组
CN113803215A (zh) * 2021-09-27 2021-12-17 珠海天岳科技股份有限公司 漂浮式风电系统
CN115853716A (zh) * 2023-02-02 2023-03-28 大连理工大学 一种集成运动抑制系统的海上浮式发电装置
CN116443196A (zh) * 2023-05-16 2023-07-18 广东海洋大学 一种浮式基础的海上风电装置
CN117360709A (zh) * 2023-11-28 2024-01-09 上海勘测设计研究院有限公司 一种张力腿式海上风力发电基础

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2378679A (en) * 2001-08-16 2003-02-19 Technologies Ltd Ocean Floating offshore wind turbine
CN102235011A (zh) * 2010-04-27 2011-11-09 南通大学 海上风力发电机组柔性浮式基础
WO2013137744A1 (en) * 2012-03-13 2013-09-19 Ntnu Technology Transfer As Floating wind turbine with wave energy converter
CN103434618A (zh) * 2013-09-03 2013-12-11 傅元韬 海市浮楼
CN103517850A (zh) * 2011-03-07 2014-01-15 日本日联海洋株式会社 柱型浮体结构物
CN104743073A (zh) * 2015-03-31 2015-07-01 长沙理工大学 一种半潜式波浪能-风能综合利用装置
CN104925231A (zh) * 2015-06-29 2015-09-23 中国能源建设集团广东省电力设计研究院有限公司 浮式风机基础及浮式风电机组
CN104986301A (zh) * 2015-06-29 2015-10-21 武汉理工大学 一种组合式漂浮风力发电平台
CN105649884A (zh) * 2015-12-30 2016-06-08 扈青丽 海上风能与海洋潮流能联合发电平台
CN107965422A (zh) * 2017-12-15 2018-04-27 上海海事大学 一种悬链线型组合式海上风力机支撑结构体系

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2378679A (en) * 2001-08-16 2003-02-19 Technologies Ltd Ocean Floating offshore wind turbine
CN102235011A (zh) * 2010-04-27 2011-11-09 南通大学 海上风力发电机组柔性浮式基础
CN103517850A (zh) * 2011-03-07 2014-01-15 日本日联海洋株式会社 柱型浮体结构物
WO2013137744A1 (en) * 2012-03-13 2013-09-19 Ntnu Technology Transfer As Floating wind turbine with wave energy converter
CN103434618A (zh) * 2013-09-03 2013-12-11 傅元韬 海市浮楼
CN104743073A (zh) * 2015-03-31 2015-07-01 长沙理工大学 一种半潜式波浪能-风能综合利用装置
CN104925231A (zh) * 2015-06-29 2015-09-23 中国能源建设集团广东省电力设计研究院有限公司 浮式风机基础及浮式风电机组
CN104986301A (zh) * 2015-06-29 2015-10-21 武汉理工大学 一种组合式漂浮风力发电平台
CN105649884A (zh) * 2015-12-30 2016-06-08 扈青丽 海上风能与海洋潮流能联合发电平台
CN107965422A (zh) * 2017-12-15 2018-04-27 上海海事大学 一种悬链线型组合式海上风力机支撑结构体系

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753187A (zh) * 2021-09-26 2021-12-07 中国华能集团清洁能源技术研究院有限公司 漂浮式风电机组
CN113753187B (zh) * 2021-09-26 2022-08-19 中国华能集团清洁能源技术研究院有限公司 漂浮式风电机组
CN113803215A (zh) * 2021-09-27 2021-12-17 珠海天岳科技股份有限公司 漂浮式风电系统
CN115853716A (zh) * 2023-02-02 2023-03-28 大连理工大学 一种集成运动抑制系统的海上浮式发电装置
CN116443196A (zh) * 2023-05-16 2023-07-18 广东海洋大学 一种浮式基础的海上风电装置
CN116443196B (zh) * 2023-05-16 2024-02-20 广东海洋大学 一种浮式基础的海上风电装置
CN117360709A (zh) * 2023-11-28 2024-01-09 上海勘测设计研究院有限公司 一种张力腿式海上风力发电基础

Also Published As

Publication number Publication date
CH715604B1 (de) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2019114691A1 (zh) 组合式海上风力机支撑结构体系
US9003631B2 (en) Power generation assemblies and apparatus
US7293960B2 (en) Power generation assemblies, and apparatus for use therewith
WO2018095304A1 (zh) 一种浮式风机的移动压载调平控制装置
US10569844B2 (en) Floating offshore wind turbine comprising a combination of damping means
US9574550B2 (en) Support structure for an offshore wind turbine
EP2783975B1 (en) Floating offshore structures
JP6334416B2 (ja) 洋上風力タービン
CN102285429A (zh) 海上风力机浮式支撑结构
CN108715215A (zh) 一种双浮体四立柱半潜式风机基础
CN110466705B (zh) 一种半潜式海上风机自稳定设备
CN110345010B (zh) 一种具有减摇功能的海上风机发电设备
CN104627331A (zh) 一种风力发电浮式基础
US9499241B2 (en) Floating offshore structures
CN107585268A (zh) 张力腿海上浮式风力发电机基础
CN114408110A (zh) 一种抗强风的全潜式风电平台
CN110712724A (zh) 一种具有高度自稳性的浮式风机平台
CN214304175U (zh) 网格化布置的深海漂浮式风机基础
CN107965422B (zh) 一种悬链线型组合式海上风力机支撑结构体系
CN207267525U (zh) 多柱spar型浮式风机平台
WO2019100490A1 (zh) 一种便于安装的浮式风电塔
CN211391621U (zh) 一种混合型漂浮式风机基础
CN210526798U (zh) 多立柱漂浮式风力发电装置
CN109931226B (zh) 一种垂向增阻型组合式海上风力机支撑结构体系
WO2022231511A1 (en) A buoyant structure for receiving a tower of a wind turbine in offshore deployment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10202000000461

Country of ref document: CH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888476

Country of ref document: EP

Kind code of ref document: A1