WO2019114581A1 - 一种激光控制方法、激光设备及存储介质 - Google Patents

一种激光控制方法、激光设备及存储介质 Download PDF

Info

Publication number
WO2019114581A1
WO2019114581A1 PCT/CN2018/119195 CN2018119195W WO2019114581A1 WO 2019114581 A1 WO2019114581 A1 WO 2019114581A1 CN 2018119195 W CN2018119195 W CN 2018119195W WO 2019114581 A1 WO2019114581 A1 WO 2019114581A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
configuration information
pulse configuration
waveform data
waveform
Prior art date
Application number
PCT/CN2018/119195
Other languages
English (en)
French (fr)
Inventor
何高锋
黎永坚
蒋峰
Original Assignee
深圳市创鑫激光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创鑫激光股份有限公司 filed Critical 深圳市创鑫激光股份有限公司
Publication of WO2019114581A1 publication Critical patent/WO2019114581A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the embodiments of the present application belong to the field of laser control technologies, and in particular, to a laser control method, a laser device, and a storage medium.
  • the laser outputs a series of laser pulses with a certain power (as shown in Figure 1) for laser processing.
  • a certain power as shown in Figure 1
  • the laser output from the laser cannot fully satisfy the processing. Precision requirements.
  • the embodiments of the present application provide a laser control method, a laser device, and a storage medium, so as to solve the problem that the laser output from the laser cannot fully meet the processing precision requirement due to the limitation of the processing technology in the prior laser precision machining process. .
  • an embodiment of the present application provides a laser control method applied to a laser device, including:
  • the waveform data includes a duration of the waveform and an amplitude of the waveform during the duration
  • the laser output is controlled in accordance with the laser control signal.
  • the generating the laser control signal according to the set of waveform data comprises:
  • the method further includes filtering invalid waveform data in the set of waveform data, the invalid waveform data including waveform data having a waveform whose duration is less than a preset threshold.
  • acquiring laser pulse configuration information includes:
  • the laser pulse configuration information is directly acquired from a memory inside the laser device, and the laser pulse configuration information in the memory is received by the laser device after receiving external laser pulse configuration information.
  • the process of analyzing the laser pulse configuration information includes:
  • the laser pulse configuration information is verified, and the laser pulse configuration information is re-acquired when the verification fails, and the acquisition of the laser pulse configuration information is stopped when the verification failure exceeds a certain number of times.
  • an embodiment of the present application provides a laser device, including a control board and a laser pump control module connected to the control board, wherein the laser pump control module is connected to a laser, and the control board is provided with a sequence of electricity.
  • the information acquiring module is configured to acquire laser pulse configuration information
  • the processing module is configured to parse the laser pulse configuration information, to obtain a set of waveform data
  • the control signal generating module is configured to generate a laser according to the set of waveform data. a control signal, wherein the waveform data includes a duration of the waveform and an amplitude of the waveform for the duration;
  • the laser pump control module is configured to control the laser output of the laser according to the laser control signal.
  • control signal generating module is specifically configured to: when generating the laser control signal according to the set of waveform data:
  • control signal generating module is further configured to filter invalid waveform data in the set of waveform data after traversing the set of waveform data, where the invalid waveform data includes a waveform whose duration of the waveform is less than a preset threshold data.
  • control board further includes a memory, and the information acquiring module is specifically configured to: when acquiring the laser pulse configuration information:
  • the laser pulse configuration information is directly acquired from the memory, and the laser pulse configuration information in the memory is stored by the laser device after receiving external laser pulse configuration information.
  • processing module is further used to: when parsing the laser pulse configuration information:
  • the laser pulse configuration information is verified, and the laser pulse configuration information is re-acquired when the verification fails, and the acquisition of the laser pulse configuration information is stopped when the verification failure exceeds a certain number of times.
  • the embodiment of the present application further provides a non-transitory computer readable storage medium, where the non-transitory computer readable storage medium stores program instructions, and when the laser device executes the program instructions, performs the above laser control method.
  • the laser device and the storage medium provided by the embodiments of the present application, by configuring the waveform of the laser output pulse before the laser outputs the laser, the amplitude control of the laser pulse outputted by the laser can be realized, and the fineness of the laser processing can be improved.
  • the same laser can output laser pulses of different sizes, which can meet a variety of laser precision machining applications.
  • 1 is a schematic diagram of laser pulses output by a conventional laser device
  • FIG. 2 is a flowchart of a laser control method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a data packet format of laser pulse configuration information according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a combined waveform provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another data packet format of laser pulse configuration information according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a pulse triggering event according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a periodic pulse trigger event and a combined waveform according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of an invalid waveform provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of multiple sets of combined waveforms provided by an embodiment of the present application.
  • FIG. 10 is a structural block diagram of a laser device according to an embodiment of the present application.
  • FIG. 11 is another structural block diagram of a laser device according to an embodiment of the present application.
  • FIG. 12 is a structural block diagram of a laser device according to another embodiment of the present application.
  • FIG. 13 is another structural block diagram of a laser device according to another embodiment of the present application.
  • FIG. 14 is a structural block diagram of a laser device according to another embodiment of the present application.
  • FIG. 15 is another structural block diagram of a laser device according to another embodiment of the present application.
  • a process, method, system, product, or device that comprises a series of steps or units is not limited to the listed steps or units, but optionally also includes steps or units not listed, or alternatively Other steps or units inherent to these processes, methods, products, or equipment.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the present application.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • the embodiment of the present application provides a laser control method, which is applied to a laser device, including but not limited to a laser marking machine, a laser welding machine, and a laser cutting machine.
  • a laser control method which is applied to a laser device, including but not limited to a laser marking machine, a laser welding machine, and a laser cutting machine.
  • the laser control Methods include:
  • the laser pulse configuration information in S10 is a data packet composed of a packet header, laser frequency information, a set of waveform data, a packet tail, and the like, wherein the laser frequency information is a laser.
  • the number of repetitions of the pulse per second according to the packet format shown in FIG. 3, parsing the laser pulse configuration information to obtain a set of waveform data, the waveform data including the duration of the waveform and the amplitude of the waveform during the duration
  • a waveform can be obtained from the waveform data, and a combined waveform can be obtained through a set of waveform data, as shown in Table 1 and Figure 4:
  • the durations T1, T2, and T3 in Table 1 are sequentially connected on the time axis, and the waveforms W1, W2, and W3 are combined to form a combined waveform, and the duration of the combined waveform is the sum of T1, T2, and T3, according to
  • the combined waveform can generate a periodic laser control signal, so that the laser periodically outputs a laser pulse whose pulse amplitude changes according to the periodic laser control signal, that is, the power of the laser pulse changes during a laser pulse period.
  • the shape of the laser pulse is consistent with the shape of the combined waveform, thereby enabling the editability of the laser pulse, and the different laser pulses can be edited according to the actual processing requirements, thereby improving the precision of the laser processing.
  • the process of parsing the laser pulse configuration information in S10 further includes: performing verification on the laser pulse configuration information, re-acquiring the laser pulse configuration information when the verification fails, and exceeding the verification failure
  • the laser pulse configuration information is stopped at a certain number of times; specifically, the laser pulse configuration information further includes checksum information, and the data packet format of the laser pulse configuration information is as shown in FIG. 5, and the laser pulse configuration information is configured.
  • the method further includes: performing verification on the laser pulse configuration information according to the checksum information, and if the verification result is consistent with the checksum information, feeding back the successfully received information, if the verification result and the verification result If the information is inconsistent, the information that fails to be received will be fed back, and the laser pulse configuration information will be re-acquired. If the verification fails more than a certain number of times, for example, the verification fails three times, the laser pulse configuration failure information will be fed back.
  • the acquiring the laser pulse configuration information may be acquiring the laser pulse configuration information from outside the laser device, or directly acquiring the laser pulse configuration information from a memory inside the laser device.
  • the laser pulse configuration information is stored by the laser device after receiving the external laser pulse configuration information.
  • the laser device using the laser control method provided by the embodiment can generate the laser pulse configuration information by using an external device, and the laser device and the external device form a laser processing system, and the laser device acquires the laser pulse configuration of the external device in real time.
  • the information is directly controlled by the laser, so that the flexibility is high, and the laser can be controlled by various laser pulse configuration information, so that different laser precision machining scenes can be quickly switched; on the other hand, the laser pulse configuration information can be obtained.
  • the laser pulse configuration information can be directly obtained from the memory, and the laser control can be quickly performed. It is suitable for laser precision machining scenes with large processing volume and relatively fixed processing.
  • the external device that generates the laser pulse configuration information may also be part of the laser device, and the laser device may also store the laser pulse configuration information in the internal memory while generating the laser pulse configuration information;
  • the stored in the memory of the laser device may also be the analyzed laser pulse configuration information, that is, directly stored in the memory is laser frequency information, a set of waveform data, checksum information, and the like.
  • it when acquiring waveform data from the memory, it is required to perform verification according to the checksum information, and then perform subsequent operations after the verification is passed. If the verification fails, the laser device is prompted to be faulty. .
  • generating the laser control signal according to the set of waveform data in S10 includes:
  • the time axis is the main line, and based on the laser frequency information, the pulse triggering event is periodically generated by the light-opening processing logic. As shown in FIG. 6, each rising edge in the figure represents that a combined waveform is to be triggered. The time interval between two adjacent pulse trigger events is greater than the duration of one combined waveform.
  • the following describes the process of "traversing the set of waveform data, splicing the durations of a set of waveforms in order to obtain a combined waveform having a certain duration and varying amplitude" in conjunction with Table 1, specifically, waveforms W1, W2, and W3, respectively.
  • the time value of the timer is equal to the duration of the corresponding waveform.
  • the timer of waveform W1 ends, the timer of waveform W2 will be triggered, and so on, until the end of one pulse triggering event, and then the next pulse triggering event, in which each timer is triggered, the corresponding acquisition will be synchronously obtained.
  • the amplitude of the waveform thereby generating a combined waveform having a certain duration and varying amplitude, and finally generating a periodic combined waveform as shown in FIG. 7.
  • the combined waveform is digital-to-analog converted to generate a periodic laser.
  • the laser control signal is an analog voltage whose amplitude changes or an analog current whose amplitude changes
  • the laser generates a pulse amplitude change laser according to an analog voltage whose amplitude changes or an analog current whose amplitude changes. pulse.
  • the method prior to traversing the set of waveform data, the method further includes the step of laser switching signal detection, such as assuming that the laser is on a laser when the laser switch signal is at a high level, and the laser switch signal is at a low level. The laser turns off the laser. When the laser switch signal is detected to be high, the laser opening processing logic is entered at this time, and the subsequent laser control signal generating step is executed.
  • the laser pulse control method after traversing the set of waveform data, further comprises filtering invalid waveform data in the set of waveform data, wherein the invalid waveform data includes a waveform having a duration less than Waveform data with preset thresholds.
  • the Tn in the figure is the duration corresponding to the invalid waveform data.
  • the preset threshold is related to the response time of the laser, and unnecessary filtering is unnecessary by filtering the invalid waveform data. The laser power adjustment saves system resources of the laser device.
  • the output power of a laser corresponding to the amplitude of a waveform exceeds the maximum laser power or rated power that the laser can output, an error message or amplitude of the waveform will be indicated.
  • the output power of the corresponding laser is adjusted to the maximum laser power or rated power that the laser can output to ensure normal operation of the laser and prevent damage to the laser.
  • the method when performing laser processing on the same product, the method further includes acquiring different laser pulse configuration information at different time periods, thereby generating a plurality of sets of combined waveforms as shown in FIG. In this way, different processing precisions can be realized for different processing positions of the same product, and the processing cost can be reduced by rational configuration.
  • the amplitude control of the laser pulse outputted by the laser can be realized, and the fineness of the laser processing can be improved, and the same laser can be made at the same time.
  • the embodiment of the present application further provides a laser device, which may be a laser marking machine, a laser welding machine, a laser cutting machine, etc.
  • the laser device includes a control board 100 and the control board 100.
  • the laser pump control module 200 is connected, wherein the laser pump control module 200 is a module inside the laser 300. In other embodiments, as shown in FIG. 11, the laser pump control module 200 can also be independent.
  • the laser 300 is disposed at the same time as the laser 300; the control board 100 is provided with an information acquisition module 110, a processing module 120, and a control signal generation module 130 that are electrically connected in sequence.
  • the information acquiring module 110 is configured to acquire laser pulse configuration information. Specifically, the composition of the laser pulse configuration information may refer to related content in the foregoing embodiment.
  • the information acquiring module 110 may be connected to an external device.
  • the configuration module of the device (not shown in FIG. 10 and FIG. 11 ) or the configuration module on the control board 100 (not shown in FIG. 10 and FIG. 11 ).
  • the external device may be an industrial computer or a belt.
  • the processing module 120 is configured to parse the laser pulse configuration information to obtain a set of waveform data. Further, the processing module 120 is further configured to verify the laser pulse configuration information when parsing the laser pulse configuration information. Retrieving the laser pulse configuration information when the verification fails, and stopping acquiring the laser pulse configuration information when the verification fails more than a certain number of times; specifically, the laser pulse configuration information further includes checksum information, and the processing The module 120 verifies the laser pulse configuration information according to the checksum information. If the result of the verification is consistent with the checksum information, the information that the reception is successful is fed back. If the result of the verification is inconsistent with the checksum information, The information of the failed reception will be fed back, and the laser pulse configuration information will be re-acquired. If the verification fails more than a certain number of times, for example, the verification fails three times, the laser pulse configuration failure information will be fed back.
  • the laser pump control module 200 in FIG. 12 is a module inside the laser 300, and the laser pump control module 200 in FIG. 12 is independent of the laser 300.
  • the controller board 100 further includes a memory 140.
  • the information acquisition module 110 is configured to acquire the laser pulse configuration information from the outside of the laser device when acquiring the laser pulse configuration information.
  • the laser pulse configuration information is directly acquired in the memory 140, and the laser pulse configuration information in the memory 140 is received by the laser device after receiving external laser pulse configuration information.
  • the laser pulse configuration information can be generated by an external device, and the laser device and the external device form a laser processing system, and the information acquisition module 110 obtains laser pulse configuration information of the external device in real time and directly performs laser control, so that flexibility Higher, the laser can be controlled by various laser pulse configuration information, which can realize fast switching of different laser precision machining scenes; on the other hand, the laser pulse configuration information can be stored in the memory 140 of the laser device.
  • the information acquisition module 110 can directly acquire the laser pulse configuration information from the memory 140, and can quickly perform laser control, and is suitable for a laser precision processing scene with a large processing amount and a relatively fixed processing process.
  • the external device that generates the laser pulse configuration information may also be part of the laser device, and the laser device may also store the laser pulse configuration information in the internal memory 140 while generating the laser pulse configuration information;
  • the stored in the memory 140 may also be laser pulse configuration information parsed by the processing module 120, that is, directly stored in the memory 140 is laser frequency information, a set of waveform data, The checksum information and the like, in the same manner, in some embodiments, when the waveform data is acquired from the memory 140, the verification is performed according to the checksum information, and after the verification is passed, the subsequent operations are performed, and if the verification fails, The laser device will be faulty.
  • the control signal generating module 130 is configured to generate a laser control signal according to the set of waveform data, and the laser pump control module 200 is configured to control the laser output of the laser according to the laser control signal.
  • the waveform data includes a duration of the waveform and an amplitude of the waveform during the duration; specifically, the control signal generating module 130 obtains a combined waveform by using a set of waveform data, and may generate a combined waveform according to a set of combined waveforms.
  • the periodic laser control signal causes the laser to periodically output a laser pulse whose pulse amplitude changes according to the periodic laser control signal, that is, the power of the laser pulse changes during a laser pulse period, and the shape of the laser pulse Consistent with the shape of the combined waveform, the laser pulse can be edited, and different laser pulses can be edited according to actual processing requirements, thereby improving the precision of laser processing.
  • the control signal generating module 130 when the laser control signal is generated according to the set of waveform data, the control signal generating module 130 is specifically configured to: traverse the set of waveform data, and sequentially splicing the durations of the set of waveforms. A combined waveform having a certain duration and varying amplitude is obtained, and a plurality of said combined waveforms are combined according to a time series to generate a periodic laser control signal.
  • the process of the control signal generating module 130 “traversing the set of waveform data and splicing the durations of the set of waveforms in sequence to obtain a combined waveform having a certain duration and a range of changes” may refer to the foregoing embodiment. The related technical content is not explained here.
  • the control signal generating module 130 is further configured to perform analog-to-digital conversion on the combined waveform, corresponding to generating periodic laser control.
  • the signal thereby periodically triggering the laser pulse control of the laser pumping control module 200, to cause the laser to periodically output a laser pulse having a pulse amplitude change.
  • the laser control signal is an analog voltage having a varying amplitude. Or an analog current whose amplitude varies, and the laser generates a laser pulse whose pulse amplitude changes according to an analog voltage whose amplitude changes or an analog current whose amplitude changes.
  • the control signal generating module 130 is further configured to detect a laser switching signal, which is fed back by a laser, such as assuming a laser switch. When the signal is high, the laser turns on the laser. When the laser switch signal is low, the laser turns off the laser. When the control signal generating module 130 detects that the laser switch signal is high, it will enter the laser opening processing logic to perform subsequent Laser control signal generation operation.
  • control signal generating module 130 is further configured to filter invalid waveform data in the set of waveform data after traversing the set of waveform data, where the invalid waveform data includes a duration of the waveform that is less than a preset threshold Waveform data; by filtering invalid waveform data, unnecessary laser power adjustment can be avoided, saving system resources of the laser device.
  • the processing module 120 will prompt an error message or correspond to the amplitude of the waveform. The output power of the laser is adjusted to the maximum laser power or rated power that the laser can output to ensure normal operation of the laser and prevent damage to the laser.
  • the information acquiring module 110 when performing laser processing on the same product, is further configured to acquire different laser pulse configuration information in different time periods, so that the control signal generating module 130 can generate Multiple sets of combined waveforms, such as combined waveform 1 and combined waveform 2 shown in Fig. 9, can achieve different processing precisions for different processing positions of the same product, and the processing cost can be reduced by rational configuration.
  • the information acquiring module 110 may include a UART (Universal Asynchronous). Receiver/Transmitter, a universal asynchronous transceiver device, can be connected to the configuration module 400 of the external device through the UART, and the processing module 120 is an MCU (Microcontroller) Unit, microcontroller), the MCU can obtain laser pulse configuration information from the configuration module 400 of the external device through the UART, and the MCU can also acquire laser pulse configuration information or waveform data from the memory 140.
  • UART Universal Asynchronous
  • Receiver/Transmitter a universal asynchronous transceiver device
  • the processing module 120 is an MCU (Microcontroller) Unit, microcontroller)
  • the MCU can obtain laser pulse configuration information from the configuration module 400 of the external device through the UART
  • the MCU can also acquire laser pulse configuration information or waveform data from the memory 140.
  • the memory 140 may be a FLASH memory chip
  • the control signal generation module 130 may include a CPLD (Complex) Programmable Logic Device, Complex Programmable Logic Device) and DAC (Digital to Analog) Converter, digital-to-analog converter), the waveform data can be acquired by the CPLD, and the waveform data is stored in its register, and the laser switch signal is acquired to trigger a pulse event, and the waveform data in the register is traversed to generate a combined waveform.
  • the DAC can generate and output a laser control signal to the laser pump control module 200 according to the combined waveform to control the laser output of the laser.
  • the control block diagram of the laser device thus formed can be referred to FIG. 14 or FIG.
  • the laser pump control module 200 is a module internal to the laser 300.
  • the laser pump control module 200 of FIG. 15 is disposed independently of the laser 300 and is coupled to the laser 300.
  • the laser device provided by the embodiment of the present application may perform the laser control method provided in the foregoing embodiment, and each component module of the laser device has a function of performing the above method steps, and in this embodiment, each component module is not
  • each component module is not
  • the amplitude control of the laser pulse outputted by the laser can be realized, the fineness of the laser processing can be improved, and the same laser can be outputted.
  • Different sizes of laser pulses can meet a variety of laser precision machining applications.
  • the embodiment of the present application provides a non-transitory computer readable storage medium storing program instructions for executing the above method embodiment when the laser device executes the program instructions.
  • the laser control method and steps described in the above, when performing the methods and steps, have the technical effects of the above-described method embodiments. For technical details that are not described in detail in this embodiment, refer to the technical content provided in the method embodiments of the present application.
  • the embodiment of the present application further provides a computer program product, which can execute the laser control method provided in the method embodiment of the present application, and has the corresponding functional modules and effects of the execution method.
  • a computer program product which can execute the laser control method provided in the method embodiment of the present application, and has the corresponding functional modules and effects of the execution method.
  • the above-mentioned integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a smart terminal device or processor to execute various embodiments of the present application. Part of the steps of the method.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, and a read only memory (Read-Only) Memory, ROM, random access memory (RAM), disk or optical disc, and other media that can store program code.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • multiple modules or components may be combined. Or it can be integrated into another system, or some features can be ignored or not executed.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光控制方法、激光设备及非易失性计算机可读存储介质。激光控制方法包括:获取并解析激光脉冲配置信息,得到一组波形数据,并根据一组波形数据生成激光控制信号,其中,波形数据包括波形的持续时间和波形在持续时间内的幅度(S10);根据激光控制信号对激光输出进行控制(S20)。激光设备包括:控制主板(100)和与控制主板(100)连接的激光泵浦控制模块(200),控制主板(100)设置有依次电性连接的信息获取模块(110)、处理模块(120)和控制信号生成模块(130)。通过在激光器输出激光前配置激光输出脉冲的波形,实现对激光器输出的激光脉冲的幅值控制,可以提高激光加工的精细程度,同时使得同一个激光器可输出不同大小的激光脉冲,可满足多种激光精密加工应用场景。

Description

一种激光控制方法、激光设备及存储介质
技术领域
本申请实施例属于激光控制技术领域,尤其涉及一种激光控制方法、激光设备及存储介质。
背景技术
在激光精密加工过程中,由激光器输出一系列具有一定功率的激光脉冲(如图1所示)进行激光加工,但在实际应用中,由于加工工艺的限制,激光器输出的激光并不能完全满足加工精度要求。
申请内容
为了解决上述问题,本申请实施例提供一种激光控制方法、激光设备及存储介质,以解决现有激光精密加工过程中由于加工工艺的限制,激光器输出的激光并不能完全满足加工精度要求的问题。
第一方面,本申请实施例提供一种激光控制方法,应用于激光设备,包括:
获取并解析激光脉冲配置信息,得到一组波形数据,并根据所述一组波形数据生成激光控制信号,其中,所述波形数据包括波形的持续时间和波形在所述持续时间内的幅度;
根据所述激光控制信号对激光输出进行控制。
进一步地,所述根据所述一组波形数据生成激光控制信号包括:
遍历所述一组波形数据,将一组波形的持续时间按顺序拼接,得到具有一定持续时间和变化幅度的组合波形,根据时间序列将若干所述组合波形组合转化,生成周期性的所述激光控制信号。
进一步地,所述方法还包括:过滤所述一组波形数据中的无效波形数据,所述无效波形数据包括波形的持续时间小于预设阈值的波形数据。
进一步地,获取激光脉冲配置信息包括:
从激光设备外部获取所述激光脉冲配置信息;或者
从激光设备内部的存储器中直接获取所述激光脉冲配置信息,所述存储器中的激光脉冲配置信息由激光设备接收外部的激光脉冲配置信息后存入。
进一步地,解析激光脉冲配置信息的过程包括:
对所述激光脉冲配置信息进行校验,在校验失败时重新获取所述激光脉冲配置信息,并在校验失败超过一定次数时停止获取激光脉冲配置信息。
第二方面,本申请实施例提供一种激光设备,包括控制主板和与所述控制主板连接的激光泵浦控制模块,其中所述激光泵浦控制模块连接激光器,所述控制主板设置有依次电性连接的信息获取模块、处理模块和控制信号生成模块;
所述信息获取模块用于获取激光脉冲配置信息,所述处理模块用于解析所述激光脉冲配置信息,得到一组波形数据,所述控制信号生成模块用于根据所述一组波形数据生成激光控制信号,其中,所述波形数据包括波形的持续时间和波形在所述持续时间内的幅度;
所述激光泵浦控制模块用于所述根据所述激光控制信号对所述激光器的激光输出进行控制。
进一步地,所述控制信号生成模块在根据所述一组波形数据生成激光控制信号时具体用于:
遍历所述一组波形数据,将一组波形的持续时间按顺序拼接,得到具有一定持续时间和变化幅度的组合波形,根据时间序列将若干所述组合波形组合转化,生成周期性的所述激光控制信号。
进一步地,所述控制信号生成模块还用于在遍历所述一组波形数据后过滤所述一组波形数据中的无效波形数据,所述无效波形数据包括波形的持续时间小于预设阈值的波形数据。
进一步地,所述控制主板还包括存储器,所述信息获取模块在获取激光脉冲配置信息时具体用于:
从所述激光设备外部获取所述激光脉冲配置信息;或者
从所述存储器中直接获取所述激光脉冲配置信息,所述存储器中的激光脉冲配置信息由激光设备接收外部的激光脉冲配置信息后存入。
进一步地,所述处理模块在解析激光脉冲配置信息时具体还用于:
对所述激光脉冲配置信息进行校验,在校验失败时重新获取所述激光脉冲配置信息,并在校验失败超过一定次数时停止获取激光脉冲配置信息。
第三方面,本申请实施例还提供一种非易失性计算机可读存储介质,所述非暂态计算机可读存储介质存储程序指令,当激光设备执行所述程序指令时执行上述的激光控制方法。
根据本申请实施例提供的激光控制方法、激光设备及存储介质,通过在激光器输出激光前配置激光输出脉冲的波形,实现对激光器输出的激光脉冲的幅值控制,可以提高激光加工的精细程度,同时使得同一个激光器可输出不同大小的激光脉冲,可满足多种激光精密加工应用场景。
附图说明
为了更清楚地说明本申请或现有技术中的方案,下面将对实施例或现有技术描述中所需要使用的附图作一个简单介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有激光设备输出的激光脉冲的示意图;
图2为本申请实施例提供的激光控制方法的流程图;
图3为本申请实施例提供的激光脉冲配置信息的数据包格式示意图;
图4为本申请实施例提供的组合波形的示意图;
图5为本申请实施例提供的激光脉冲配置信息的另一数据包格式示意图;
图6为本申请实施例提供的脉冲触发事件示意图;
图7为本申请实施例提供的周期性的脉冲触发事件、组合波形的示意图;
图8为本申请实施例提供的无效波形的示意图;
图9为本申请实施例提供的多组组合波形的示意图;
图10为本申请实施例提供的激光设备的结构框图;
图11为本申请实施例提供的激光设备的另一结构框图;
图12为本申请另一实施例提供的激光设备的结构框图;
图13为本申请另一实施例提供的激光设备的另一结构框图;
图14为本申请又一实施例提供的激光设备的结构框图;
图15为本申请又一实施例提供的激光设备的另一结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本申请的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例提供一种激光控制方法,应用于激光设备,所述激光设备包括但不限于激光打标机、激光焊接机和激光切割机,参阅图2所示的流程框图,所述激光控制方法包括:
S10、获取并解析激光脉冲配置信息,得到一组波形数据,并根据所述一组波形数据生成激光控制信号,所述波形数据包括波形的持续时间和波形在所述持续时间内的幅度;
S20、根据所述激光控制信号对激光输出进行控制。
在本申请实施例中,如图3所示,S10中所述激光脉冲配置信息为由包头、激光频率信息、一组波形数据、包尾等组成的数据包,其中所述激光频率信息为激光脉冲每秒重复的次数,根据图3所示的数据包格式,解析所述激光脉冲配置信息可得到一组波形数据,所述波形数据包括波形的持续时间和波形在所述持续时间内的幅度,通过波形数据可得到一个波形,通过一组波形数据可得到一个组合波形,如表1和图4所示:
波形 持续时间 幅度
W1 T1 A1
W2 T2 A2
W3 T3 A3
表1
在本实施例中,表1中持续时间T1、T2、T3在时间轴上依次衔接,波形W1、W2、W3组合形成组合波形,该组合波形的持续时间为T1、T2、T3之和,根据该组合波形可生成周期性的激光控制信号,使激光器根据该周期性的激光控制信号周期性地输出脉冲幅值变化的激光脉冲,即在一个激光脉冲周期内,激光脉冲的功率是变化的,该激光脉冲的形状与前述组合波形的形状一致,由此可实现激光脉冲的可编辑化,可根据实际加工要求编辑不同的激光脉冲,从而提高激光加工的精度。
在本申请一些实施例中,S10中解析激光脉冲配置信息的过程还包括对所述激光脉冲配置信息进行校验,在校验失败时重新获取所述激光脉冲配置信息,并在校验失败超过一定次数时停止获取激光脉冲配置信息;具体的,所述激光脉冲配置信息还包括校验和信息,所述激光脉冲配置信息的数据包格式如图5所示,在对所述激光脉冲配置信息进行解析后还包括根据所述校验和信息对所述激光脉冲配置信息进行校验,如果校验的结果与校验和信息一致,将反馈接收成功的信息,如果校验的结果与校验和信息不一致,将反馈接收失败的信息,并重新获取所述激光脉冲配置信息,如果继续校验失败超过一定次数,比如校验失败三次,将反馈激光脉冲配置失败信息。
在本申请实施例中,获取激光脉冲配置信息可以是从激光设备外部获取所述激光脉冲配置信息,也可以是从激光设备内部的存储器中直接获取所述激光脉冲配置信息,所述存储器中的激光脉冲配置信息由激光设备接收外部的激光脉冲配置信息后存入。具体的,采用本实施例提供的激光控制方法的激光设备,一方面可通过外部设备生成所述激光脉冲配置信息,激光设备与外部设备组成激光加工系统,激光设备实时获取外部设备的激光脉冲配置信息直接进行激光控制,这样灵活性较高,可以通过获得不同的激光脉冲配置信息来对激光进行多种控制,可实现不同激光精密加工场景的快速切换;另一方面,可将激光脉冲配置信息存储在激光设备的存储器中,当激光设备启动后可直接从存储器中获取激光脉冲配置信息,可快速进行激光控制,适用于加工量大、加工过程相对固定的激光精密加工场景。当然,在另一些实施例中,生成激光脉冲配置信息的外部设备也可以是激光设备的一部分,激光设备在生成激光脉冲配置信息的同时还可存储激光脉冲配置信息在内部的存储器中;此外,在另一些实施例中,在激光设备内部的存储器中存储的也可以是解析后的激光脉冲配置信息,即在存储器中存储的直接是激光频率信息、一组波形数据、校验和信息等,同样的,在一些实施例中,在从存储器中获取波形数据时,需要根据校验和信息进行校验,当校验通过后再进行后续操作,若校验失败,此时将提示激光设备故障。
进一步地,在本申请实施例中,S10中所述根据所述一组波形数据生成激光控制信号包括:
遍历所述一组波形数据,将一组波形的持续时间按顺序拼接,得到具有一定持续时间和变化幅度的组合波形,根据时间序列将若干所述组合波形组合转化,生成周期性的所述激光控制信号。在本实施例中,以时间轴为主线,基于前述激光频率信息,通过开光处理逻辑周期性产生脉冲触发事件,如图6所示,图中每一个上升沿都代表即将触发生成一个组合波形,其中两个相邻脉冲触发事件的时间间隔大于一个组合波形的持续时间。下面结合表1说明“遍历所述一组波形数据,将一组波形的持续时间按顺序拼接,得到具有一定持续时间和变化幅度的组合波形”的过程,具体地,波形W1、W2、W3各自对应一个计时器,计时器的时间值与对应的波形的持续时间相等,当图6中的一个脉冲触发事件开始时,将触发波形W1的计时器,将波形W1的持续时间赋予对应的计时器,波形W1的计时器计时结束的同时将触发波形W2的计时器,以此类推,直到一个脉冲触发事件结束,再进入下一个脉冲触发事件,其中每个计时器被触发时,将同步获取对应的波形的幅值,从而生成具有一定持续时间和变化幅度的组合波形,最终生成图7所示的周期性的组合波形,进一步地,将该组合波形进行数模转换,对应生成周期性的激光控制信号,由此周期性地触发激光脉冲控制,使激光器周期性地输出脉冲幅值变化的激光脉冲,在本实施例中,该激光控制信号为幅值变化的模拟电压或者幅值变化的模拟电流,激光器根据幅值变化的模拟电压或者幅值变化的模拟电流产生脉冲幅值变化的激光脉冲。在一些实施例中,在遍历所述一组波形数据前,所述方法还包括激光开关信号检测的步骤,比如假定激光开关信号为高电平的时激光器开激光,激光开关信号为低电平时激光器关激光,当检测到激光开关信号为高电平时,此时进入激光器开光处理逻辑,将执行后续的激光控制信号生成步骤。
在本申请一些实施例中,在遍历所述一组波形数据后,所述激光脉冲控制方法还包括过滤所述一组波形数据中的无效波形数据,所述无效波形数据包括波形的持续时间小于预设阈值的波形数据。具体地,如图8所示,图中Tn所示为无效波形数据对应的持续时间,在本实施例中,所述预设阈值与激光器的响应时间有关,通过过滤无效波形数据可以避免不必要的激光功率调节,节省激光设备的系统资源。在另一些实施例中,如果某个波形(比如波形W3)的幅值对应的激光器的输出功率超出了激光器可输出的最大激光功率或者额定功率,则将提示错误信息或者将该波形的幅值对应的激光器的输出功率调整为激光器可输出的最大激光功率或者额定功率,以保证激光器的正常运行,防止损坏激光器。
在本申请一些实施例中,在对同一个产品进行激光加工时,所述方法还包括在不同的时间段获取不同的激光脉冲配置信息,从而生成如图9所示的多组组合波形,通过这种方式,可对同一个产品不同加工位置实现不同的加工精度,通过合理配置,可以降低加工成本。
根据本申请实施例提供的激光控制方法,通过在激光器输出激光前配置激光输出脉冲的波形,实现对激光器输出的激光脉冲的幅值控制,可以提高激光加工的精细程度,同时使得同一个激光器可输出不同大小的激光脉冲,可满足多种激光精密加工应用场景。
本申请实施例还提供一种激光设备,所述激光设备可以是激光打标机、激光焊接机、激光切割机等,参阅图10,所述激光设备包括控制主板100和与所述控制主板100连接的激光泵浦控制模块200,其中所述激光泵浦控制模块200为激光器300内部的一个模块,在其他一些实施例中,如图11所示,所述激光泵浦控制模块200也可独立于激光器300设置,同时与激光器300连接;所述控制主板100设置有依次电性连接的信息获取模块110、处理模块120和控制信号生成模块130。
所述信息获取模块110用于获取激光脉冲配置信息,具体的,所述激光脉冲配置信息的组成可参考前述实施例中的相关内容,在本实施例中,所述信息获取模块110可连接外部设备的配置模块(图10、图11中未标示)或者控制主板100上的配置模块(图10、图11中未标示),在本申请实施例中,所述外部设备可以是工控机或者带有激光脉冲配置界面的电子终端。
所述处理模块120用于解析所述激光脉冲配置信息,得到一组波形数据;进一步地,所述处理模块120在解析激光脉冲配置信息时具体还用于对所述激光脉冲配置信息进行校验,在校验失败时重新获取所述激光脉冲配置信息,并在校验失败超过一定次数时停止获取激光脉冲配置信息;具体的,所述激光脉冲配置信息还包括校验和信息,所述处理模块120根据该校验和信息对所述激光脉冲配置信息进行校验,如果校验的结果与校验和信息一致,将反馈接收成功的信息,如果校验的结果与校验和信息不一致,将反馈接收失败的信息,并重新获取所述激光脉冲配置信息,如果继续校验失败超过一定次数,比如校验失败三次,将反馈激光脉冲配置失败信息。
在本申请实施例中,进一步参阅图12或图13,其中图12中所述激光泵浦控制模块200为激光器300内部的一个模块,图12中所述激光泵浦控制模块200独立于激光器300设置,同时与激光器300连接;所述控制主板100还包括存储器140,所述信息获取模块110在获取激光脉冲配置信息时具体用于从所述激光设备外部获取所述激光脉冲配置信息;或者从所述存储器140中直接获取所述激光脉冲配置信息,所述存储器140中的激光脉冲配置信息由激光设备接收外部的激光脉冲配置信息后存入。具体的,一方面可通过外部设备生成所述激光脉冲配置信息,激光设备与外部设备组成激光加工系统,所述信息获取模块110实时获取外部设备的激光脉冲配置信息直接进行激光控制,这样灵活性较高,可以通过获得不同的激光脉冲配置信息来对激光进行多种控制,可实现不同激光精密加工场景的快速切换;另一方面,可将激光脉冲配置信息存储在激光设备的存储器140中,当激光设备启动后所述信息获取模块110可直接从存储器140中获取激光脉冲配置信息,可快速进行激光控制,适用于加工量大、加工过程相对固定的激光精密加工场景。当然,在另一些实施例中,生成激光脉冲配置信息的外部设备也可以是激光设备的一部分,激光设备在生成激光脉冲配置信息的同时还可存储激光脉冲配置信息在内部的存储器140中;此外,在另一些实施例中,所述存储器140中存储的也可以是经所述处理模块120解析后的激光脉冲配置信息,即在存储器140中存储的直接是激光频率信息、一组波形数据、校验和信息等,同样的,在一些实施例中,在从存储器140中获取波形数据时,需要根据校验和信息进行校验,当校验通过后再进行后续操作,若校验失败,此时将提示激光设备故障。
所述控制信号生成模块130用于根据所述一组波形数据生成激光控制信号,所述激光泵浦控制模块200用于所述根据所述激光控制信号对所述激光器的激光输出进行控制。其中,所述波形数据包括波形的持续时间和波形在所述持续时间内的幅度;具体的,所述控制信号生成模块130通过一组波形数据可得到一个组合波形,根据一组组合波形可生成周期性的激光控制信号,使激光器根据该周期性的激光控制信号周期性地输出脉冲幅值变化的激光脉冲,即在一个激光脉冲周期内,激光脉冲的功率是变化的,该激光脉冲的形状与前述组合波形的形状一致,由此可实现激光脉冲的可编辑化,可根据实际加工要求编辑不同的激光脉冲,从而提高激光加工的精度。
在本申请实施例中,所述控制信号生成模块130在根据所述一组波形数据生成激光控制信号时具体用于:遍历所述一组波形数据,将一组波形的持续时间按顺序拼接,得到具有一定持续时间和变化幅度的组合波形,根据时间序列将若干所述组合波形组合转化,生成周期性的所述激光控制信号。具体的,所述控制信号生成模块130“遍历所述一组波形数据,将一组波形的持续时间按顺序拼接,得到具有一定持续时间和变化幅度的组合波形”的过程可以参考前述实施例中的相关技术内容,在此不展开说明;进一步地,在生成周期性的组合波形后,所述控制信号生成模块130具体还用于将该组合波形进行模数转换,对应生成周期性的激光控制信号,由此周期性地触发激光泵浦控制模块200的激光脉冲控制,使激光器周期性地输出脉冲幅值变化的激光脉冲,在本实施例中,该激光控制信号为幅值变化的模拟电压或者幅值变化的模拟电流,激光器根据幅值变化的模拟电压或者幅值变化的模拟电流产生脉冲幅值变化的激光脉冲。在一些实施例中,在所述控制信号生成模块130遍历所述一组波形数据前,所述控制信号生成模块130还用于检测激光开关信号,该激光开关信号由激光器反馈,比如假定激光开关信号为高电平的时激光器开激光,激光开关信号为低电平时激光器关激光,当所述控制信号生成模块130检测到激光开关信号为高电平时将进入激光器开光处理逻辑,以执行后续的激光控制信号生成的操作。
进一步地,所述控制信号生成模块130还用于在遍历所述一组波形数据后过滤所述一组波形数据中的无效波形数据,所述无效波形数据包括波形的持续时间小于预设阈值的波形数据;通过过滤无效波形数据可以避免不必要的激光功率调节,节省激光设备的系统资源。在另一些实施例中,如果某个波形的幅值对应的激光器的输出功率超出了激光器可输出的最大激光功率或者额定功率,则处理模块120将提示错误信息或者将该波形的幅值对应的激光器的输出功率调整为激光器可输出的最大激光功率或者额定功率,以保证激光器的正常运行,防止损坏激光器。
在本申请一些实施例中,在对同一个产品进行激光加工时,所述信息获取模块110还用于在不同的时间段获取不同的激光脉冲配置信息,从而所述控制信号生成模块130可生成多组组合波形,比如图9所示的组合波形1和组合波形2,通过这种方式,可对同一个产品不同加工位置实现不同的加工精度,通过合理配置,可以降低加工成本。
在本申请上述实施例中,所述信息获取模块110可以包括UART(Universal Asynchronous Receiver/Transmitter,通用异步收发装置),通过UART可连接外部设备的配置模块400,所述处理模块120为MCU(Microcontroller Unit,微控制器),MCU通过UART可从外部设备的配置模块400获取激光脉冲配置信息,此外MCU也可从存储器140中获取激光脉冲配置信息或者波形数据,在本实施例中,所述存储器140可为FLASH存储芯片,所述控制信号生成模块130可包括CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)和DAC(Digital to Analog Converter,数模转换器),通过CPLD可获取波形数据,并将波形数据存储至其寄存器中,以及获取激光开关信号以触发脉冲事件,遍历所述寄存器中的波形数据,从而生成组合波形,通过DAC可根据该组合波形生成并输出激光控制信号至激光泵浦控制模块200,以控制激光器的激光输出,由此组成的激光设备的控制框图可参阅图14或图15,其中图14中所述激光泵浦控制模块200为激光器300内部的一个模块,图15中所述激光泵浦控制模块200独立于激光器300设置,同时与激光器300连接。
需要说明的是,本申请实施例提供的激光设备可执行上述实施例中提供的激光控制方法,所述激光设备的各组成模块具有执行上述方法步骤的功能,在本实施例中各组成模块未详尽描述之处可参考上述方法实施例中的相关技术内容。
根据本申请实施例提供的激光设备,通过在激光器输出激光前配置激光输出脉冲的波形,实现对激光器输出的激光脉冲的幅值控制,可以提高激光加工的精细程度,同时使得同一个激光器可输出不同大小的激光脉冲,可满足多种激光精密加工应用场景。
本申请实施例提供一种非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有程序指令,当激光设备执行所述程序指令时,用于执行上述方法实施例中所述的激光控制方法和步骤,当执行所述方法和步骤时,具有上述方法实施例的技术效果。未在本实施例中详尽描述的技术细节,可参见本申请方法实施例中所提供的技术内容。
本申请实施例还提供一种计算机程序产品,所述产品可执行本申请方法实施例中所提供的激光控制方法,具备执行方法相应的功能模块和效果。未在本实施例中详尽描述的技术细节,可参见本申请方法实施例中所提供的技术内容。
需要说明的是,上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或智能终端设备或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请所提供的上述实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
显然,以上所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,附图中给出了本申请的较佳实施例,但并不限制本申请的专利范围。本申请可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本申请说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本申请专利保护范围之内。

Claims (13)

  1. 一种激光控制方法,应用于激光设备,其中,包括:
    获取并解析激光脉冲配置信息,得到一组波形数据,并根据所述一组波形数据生成激光控制信号,其中,所述波形数据包括波形的持续时间和波形在所述持续时间内的幅度;
    根据所述激光控制信号对激光输出进行控制。
  2. 根据权利要求1所述的激光控制方法,其中,所述根据所述一组波形数据生成激光控制信号包括:
    遍历所述一组波形数据,将一组波形的持续时间按顺序拼接,得到具有一定持续时间和变化幅度的组合波形,根据时间序列将若干所述组合波形组合转化,生成周期性的所述激光控制信号。
  3. 根据权利要求2所述的激光控制方法,其中,所述方法还包括:过滤所述一组波形数据中的无效波形数据,所述无效波形数据包括波形的持续时间小于预设阈值的波形数据。
  4. 根据权利要求1所述的激光控制方法,其中,获取激光脉冲配置信息包括:
    从激光设备外部获取所述激光脉冲配置信息;或者
    从激光设备内部的存储器中直接获取所述激光脉冲配置信息,所述存储器中的激光脉冲配置信息由激光设备接收外部的激光脉冲配置信息后存入。
  5. 根据权利要求4所述的激光控制方法,其中,在对同一个产品进行激光加工时,所述方法还包括在不同的时间段获取不同的激光脉冲配置信息。
  6. 根据权利要求1所述的激光控制方法,其中,所述解析激光脉冲配置信息的过程还包括对所述激光脉冲配置信息进行校验,在校验失败时重新获取所述激光脉冲配置信息,并在校验失败超过一定次数时停止获取激光脉冲配置信息。
  7. 根据权利要求1所述的激光控制方法,其中,解析激光脉冲配置信息的过程包括:
    对所述激光脉冲配置信息进行校验,在校验失败时重新获取所述激光脉冲配置信息,并在校验失败超过一定次数时停止获取激光脉冲配置信息。
  8. 一种激光设备,其中,包括控制主板和与所述控制主板连接的激光泵浦控制模块,其中所述激光泵浦控制模块连接激光器,所述控制主板设置有依次电性连接的信息获取模块、处理模块和控制信号生成模块;
    所述信息获取模块用于获取激光脉冲配置信息,所述处理模块用于解析所述激光脉冲配置信息,得到一组波形数据,所述控制信号生成模块用于根据所述一组波形数据生成激光控制信号,其中,所述波形数据包括波形的持续时间和波形在所述持续时间内的幅度;
    所述激光泵浦控制模块用于所述根据所述激光控制信号对所述激光器的激光输出进行控制。
  9. 根据权利要求8所述的激光设备,其中,所述控制信号生成模块在根据所述一组波形数据生成激光控制信号时具体用于:
    遍历所述一组波形数据,将一组波形的持续时间按顺序拼接,得到具有一定持续时间和变化幅度的组合波形,根据时间序列将若干所述组合波形组合转化,生成周期性的所述激光控制信号。
  10. 根据权利要求9所述的激光设备,其中,所述控制信号生成模块还用于在遍历所述一组波形数据后过滤所述一组波形数据中的无效波形数据,所述无效波形数据包括波形的持续时间小于预设阈值的波形数据。
  11. 根据权利要求8所述的激光设备,其中,所述控制主板还包括存储器,所述信息获取模块在获取激光脉冲配置信息时具体用于:
    从所述激光设备外部获取所述激光脉冲配置信息;或者
    从所述存储器中直接获取所述激光脉冲配置信息,所述存储器中的激光脉冲配置信息由激光设备接收外部的激光脉冲配置信息后存入。
  12. 根据权利要求8所述的激光设备,其中,所述处理模块在解析激光脉冲配置信息时具体还用于:
    对所述激光脉冲配置信息进行校验,在校验失败时重新获取所述激光脉冲配置信息,并在校验失败超过一定次数时停止获取激光脉冲配置信息。
  13. 一种非易失性计算机可读存储介质,其中,所述非暂态计算机可读存储介质存储程序指令,当激光设备执行所述程序指令时执行如权利要求1~9任一项所述的激光控制方法。
PCT/CN2018/119195 2017-12-13 2018-12-04 一种激光控制方法、激光设备及存储介质 WO2019114581A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711335746.8A CN107959223A (zh) 2017-12-13 2017-12-13 一种激光控制方法、激光设备及存储介质
CN201711335746.8 2017-12-13

Publications (1)

Publication Number Publication Date
WO2019114581A1 true WO2019114581A1 (zh) 2019-06-20

Family

ID=61957878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119195 WO2019114581A1 (zh) 2017-12-13 2018-12-04 一种激光控制方法、激光设备及存储介质

Country Status (2)

Country Link
CN (1) CN107959223A (zh)
WO (1) WO2019114581A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959223A (zh) * 2017-12-13 2018-04-24 深圳市创鑫激光股份有限公司 一种激光控制方法、激光设备及存储介质
CN108620727B (zh) * 2018-04-28 2020-09-08 深圳市创鑫激光股份有限公司 激光器的工作方法、准连续激光器、激光切割和焊接系统
CN108448373B (zh) * 2018-05-09 2020-02-04 深圳市创鑫激光股份有限公司 激光脉冲功率控制方法、脉冲光纤激光器及激光切割系统
CN109048072B (zh) * 2018-08-21 2020-07-17 深圳市创客工场科技有限公司 激光加工方法、装置、设备和计算机可读存储介质
CN109396117B (zh) * 2018-09-18 2022-03-08 镇江长悦光电科技有限公司 一种激光清洗设备的控制方法、清洗设备及存储介质
CN111618432B (zh) * 2019-02-28 2021-08-17 上海微电子装备(集团)股份有限公司 一种激光焊接方法和激光焊接系统
CN110039177B (zh) * 2019-04-10 2020-05-19 华中科技大学 一种玻璃密封焊接方法
CN111628400B (zh) * 2020-05-27 2022-03-15 深圳市杰普特光电股份有限公司 激光器的功率控制方法、装置、存储介质及激光器
CN114254247A (zh) * 2021-12-20 2022-03-29 长沙大科激光科技有限公司 一种具有激光器功率修正的波形编辑控制系统
CN114362727B (zh) * 2021-12-31 2024-08-06 广州星际悦动股份有限公司 脉冲信号调节方法、装置、存储介质及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580470A (en) * 1994-03-31 1996-12-03 Fanuc, Ltd. Output waveform control device
CN1236690A (zh) * 1998-02-24 1999-12-01 宫地技术株式会社 激光加工装置
CN101983421A (zh) * 2008-03-31 2011-03-02 伊雷克托科学工业股份有限公司 用于动态生成经剪裁的激光脉冲的方法和系统
CN102361724A (zh) * 2009-03-27 2012-02-22 伊雷克托科学工业股份有限公司 用短激光脉冲的定值的丛波的激光微加工
CN103477427A (zh) * 2011-03-31 2013-12-25 伊雷克托科学工业股份有限公司 使用多个量身定做的激光脉冲波形来激光处理工件的方法和系统
CN107026385A (zh) * 2015-11-20 2017-08-08 恩耐公司 可编程波形模拟器
CN107959223A (zh) * 2017-12-13 2018-04-24 深圳市创鑫激光股份有限公司 一种激光控制方法、激光设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845401A (zh) * 2006-05-17 2006-10-11 中国科学院上海光学精密机械研究所 半导体激光器泵浦光源的驱动方法
EP2392429A1 (fr) * 2010-06-03 2011-12-07 Lasag Ag Procédé et installation d'usinage laser pulsé, en particulier pour le soudage, avec variation de l' apuissance de chaque impulsion laser
JP5436732B1 (ja) * 2012-06-26 2014-03-05 三菱電機株式会社 レーザ出力制御装置、レーザ発振器およびレーザ出力制御方法
US9067278B2 (en) * 2013-03-29 2015-06-30 Photon Automation, Inc. Pulse spread laser

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580470A (en) * 1994-03-31 1996-12-03 Fanuc, Ltd. Output waveform control device
CN1236690A (zh) * 1998-02-24 1999-12-01 宫地技术株式会社 激光加工装置
CN101983421A (zh) * 2008-03-31 2011-03-02 伊雷克托科学工业股份有限公司 用于动态生成经剪裁的激光脉冲的方法和系统
CN102361724A (zh) * 2009-03-27 2012-02-22 伊雷克托科学工业股份有限公司 用短激光脉冲的定值的丛波的激光微加工
CN103477427A (zh) * 2011-03-31 2013-12-25 伊雷克托科学工业股份有限公司 使用多个量身定做的激光脉冲波形来激光处理工件的方法和系统
CN107026385A (zh) * 2015-11-20 2017-08-08 恩耐公司 可编程波形模拟器
CN107959223A (zh) * 2017-12-13 2018-04-24 深圳市创鑫激光股份有限公司 一种激光控制方法、激光设备及存储介质

Also Published As

Publication number Publication date
CN107959223A (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
WO2019114581A1 (zh) 一种激光控制方法、激光设备及存储介质
WO2013097381A1 (zh) 一种移动终端及其充电设备、方法
WO2020048009A1 (zh) 过流保护驱动电路及显示装置
WO2015093850A1 (en) Pre-charging system for a capacitor in a voltage inverter for an electric motor
JP2014501133A5 (zh)
WO2021254063A1 (zh) 接口切换装置、通信设备及接口切换方法
JPH04269035A (ja) スクランブラー回路
WO2016141613A1 (zh) 一种芯片引脚复用的方法及系统
WO2023184830A1 (zh) 一种备份电池单元的控制电路、方法、装置及存储系统
WO2018090759A1 (zh) 一种系统启动文件的校验及编译方法
CN107102917A (zh) 一种提高多服务器系统的可靠性架构
CN109213718A (zh) 一种i2c通信装置及i2c通信设备
TWI540908B (zh) 多媒體輸出裝置與其音頻輸出方法
WO2020113709A1 (zh) 驱动保护电路、显示装置及驱动保护方法
WO2024109392A1 (zh) 数字麦克风的失效检测方法、装置、设备及介质
WO2023169470A1 (zh) 临界值振荡控制装置、设备及无线耳机
CN109738791B (zh) 一种vr芯片上电前短路保护测试装置及方法
CN116224160A (zh) 电芯断线检测电路、afe芯片及电池管理系统
CN1130614C (zh) 节能控制装置
CN114966378A (zh) 多协议充电芯片的验证装置
CN210201839U (zh) 一种传输协议自适应解码系统
WO2021012191A1 (zh) 绝缘检测电路、主板及相关装置
CN106899502B (zh) 一种用于PXIe背板的触发信号分段路由装置及方法
JP3664387B2 (ja) バストリガ回路とそれを用いた波形測定装置
WO2020124711A1 (zh) 数据的传输方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887956

Country of ref document: EP

Kind code of ref document: A1