WO2019114312A1 - 一种网状电子鼓 - Google Patents

一种网状电子鼓 Download PDF

Info

Publication number
WO2019114312A1
WO2019114312A1 PCT/CN2018/101221 CN2018101221W WO2019114312A1 WO 2019114312 A1 WO2019114312 A1 WO 2019114312A1 CN 2018101221 W CN2018101221 W CN 2018101221W WO 2019114312 A1 WO2019114312 A1 WO 2019114312A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
drum
circuit
mesh
resistor
Prior art date
Application number
PCT/CN2018/101221
Other languages
English (en)
French (fr)
Inventor
钟发志
杜宗辉
Original Assignee
音王电声股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 音王电声股份有限公司 filed Critical 音王电声股份有限公司
Publication of WO2019114312A1 publication Critical patent/WO2019114312A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10DSTRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
    • G10D13/00Percussion musical instruments; Details or accessories therefor
    • G10D13/01General design of percussion musical instruments
    • G10D13/02Drums; Tambourines with drumheads
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means

Definitions

  • the present invention relates to a percussion instrument, and more particularly to a mesh electronic drum.
  • CN106531139A a mesh electronic drum comprising a drum disk, a drumhead, and a data acquisition module. And data processing modules.
  • the data acquisition module includes a trigger and a conductive medium, the conductive medium is a magnetic member, the magnetic member is disposed on the drum, and the trigger includes a Hall sensor that is non-contact matched with the magnetic member.
  • the drum skin comprises a drum ring and a mesh surface, and the drum ring fixedly mounts the mesh surface on the drum disk body, the mesh surface is formed by stacking four layers of mesh layers, and the magnetic components are disposed on two adjacent layers.
  • the Hall sensor is mounted on a lower surface of the PCB board, the upper surface of the PCB board is attached with an elastic buffer layer; the magnetic component is located at the center of the mesh surface, and the Hall sensor is mounted on the Inside the drum disk, the Hall sensor is located directly below the magnetic member.
  • the drum skin with the magnetic component is completely separated from the PCB equipped with the Hall sensor (with an elastic buffer layer attached thereto), and when the drum skin is hit, the magnetic component generates vibration, and the Hall sensor
  • the invention designs a mesh electronic drum, which solves the technical problem that when the existing mesh electronic drum hits a drum skin, the drum skin will generate continuous vibration to generate continuous multiple signals, or The external sound vibration causes resonance to generate a signal, causing false triggering of the mesh surface.
  • the present invention adopts the following scheme:
  • a mesh electronic drum comprising a drum ring (1), a mesh surface (2), a drum disk body (10), a data acquisition module and a data processing module, and the drum ring (1) fixes the mesh surface (2) Mounted on the drum disk body (10), a multi-layer structure is sandwiched under the mesh surface (2) and above the fixing plate (7), the multilayer structure is from top to bottom: soft material Layer (3), elastic recovery material layer (4), first soft foaming buffer material layer (6) and second soft foaming buffer material layer (9); first soft foaming buffer material layer (6) Opening a mounting hole in which a PCB board (5) is embedded, and a Hall sensor (51) is fixed on the PCB board (5); wherein the soft material layer (3) is used for The magnetic member (31) is fixed therein and the mesh surface (2) is pressed to avoid mechanical noise when striking the mesh surface (2); the elastic recovery material layer (4) is used to separate the magnetic member (31) And the Hall sensor (51), and having the ability to quickly restore the original shape after tapping; the first soft foaming buffer material layer (6) is used to weak
  • the hardness of the first soft foaming buffer layer (6) and the second soft foaming buffer layer (9) is greater than the hardness of the elastic restoring material layer (4).
  • first soft foaming cushioning material layer (6) and the second soft foaming cushioning material layer (9) are made of a neoprene foaming material, and the elastic restoring material layer (3) is a sponge.
  • the PCB board (5) is fixed in the mounting hole by a supporting member (52), and the upper portion of the supporting member (52) is provided with a T-shaped groove (521); the PCB board (5) is located at the T The horizontal portion of the groove, the Hall sensor (51) is located in the vertical portion of the T-slot.
  • the upper surface of the elastic recovery material layer (4) is a groove (41) structure, and the bottom of the soft material layer (3) is embedded in the groove (41); the soft material layer (3) The upper portion is fixedly connected to the mesh surface (2).
  • the Hall sensor (51) and the magnetic member (31) are coaxial or concentrically arranged.
  • the senor (8) is a piezoelectric ceramic buzzer, and the sensor (8) detects a signal of a striking drum ring (1) or a drum disc body (10), and a PCB board to which a Hall chip is fixed (5)
  • the signal of the mesh surface (2) is detected, and the two signals are connected to the PCB (0) soldered with the connector through the wire, and the signal is transmitted to the sound source module through the connector.
  • fixing plate (7) and the drum disk body (10) are fixed by one or more screws (71).
  • the data processing module includes a shaping circuit, a digital-to-analog conversion circuit, a control circuit, a DSP data processing circuit, a sound source storage circuit, an analog-to-digital conversion circuit, and a post-stage signal amplification circuit;
  • the Hall sensor is connected to the input end of the shaping circuit, the output end of the shaping circuit is connected to the input end of the digital-to-analog conversion circuit, the output end of the digital-to-analog conversion circuit is connected to the input end of the control circuit, the output end of the control circuit and the DSP data processing
  • the input end of the circuit is connected, the output end of the DSP data processing circuit is connected with the input end of the sound source storage circuit, the output end of the sound source storage circuit is connected with the input end of the analog-to-digital conversion circuit, and the output end of the analog-to-digital conversion circuit and the signal of the rear stage are amplified.
  • the input end of the circuit is connected, and when the output end of the signal amplifying circuit of the latter stage outputs an audio signal, the audio signal of the Hall sensor provided with the change of the magnetic range can be processed to obtain a desired audio signal output;
  • the data processing module further includes a pre-stage signal amplifying circuit when the data processing module is connected, and the Hall sensor is connected through the input end of the pre-stage signal amplifying circuit and the shaping circuit, and the input signal of the pre-stage signal amplifying circuit and the Hall sensor are connected.
  • the output end of the pre-stage signal amplifying circuit is connected with the input end of the shaping circuit, the smaller audio voltage signal provided by the Hall sensor with less variation of the magnetic range can be amplified to meet the requirements of the audio input signal;
  • the pre-stage signal amplifying circuit comprises a first resistor (R1), a second resistor (R2), a third resistor (R3), a fourth resistor (R4), a fifth resistor (R5), and a first capacitor.
  • R1 a first resistor
  • R2 a second resistor
  • R3 a third resistor
  • R4 a fourth resistor
  • R5 a fifth resistor
  • C1 a first capacitor
  • C2 a second capacitor
  • C3 a triode
  • Q1 triode
  • One end of the first capacitor (C1) is connected to the Hall sensor (H) at the input end of the pre-stage signal amplifying circuit, and the Hall sensor (H) is also connected to the power output end, and the other end of the first capacitor (C1) and the first One end of a resistor (R1) is connected, the other end of the first resistor (R1), one end of the second resistor (R2), one end of the third resistor (R3) and the base of the transistor (Q1) are connected, and the second resistor ( The other end of R2), one end of the fourth resistor (R4), and one end of the second capacitor (C2) are all connected to the power source, the other end of the second capacitor (C2) is grounded, and the other end of the third resistor (R3) is grounded.
  • the other end of the fourth resistor (R4), the collector of the triode (Q1) and one end of the third capacitor (C3) are connected, the emitter of the triode (Q1) is connected to one end of the fifth resistor (R5), and the fifth resistor ( The other end of R5) is grounded, and when the other end of the third capacitor (C3) is the output end of the pre-stage signal amplifying circuit, the circuit amplifies the audio voltage signal provided by the Hall sensor with the change of the magnetic range to satisfy the audio input signal. Requirements.
  • the mesh electronic drum has the following beneficial effects:
  • the striking signal collecting method of the mesh electronic drum of the present invention can better detect the net surface signal, improve the sensitivity of the mesh surface, and prevent the electronic percussion signal of the drum edge or the drum disc from being falsely triggered.
  • the mesh electronic drum of the present invention can absorb the mesh striking signal through the setting of the buffer material, avoiding conduction to the drum disc body and generating an error signal that the drum disc body is hit, thereby improving the hitting signal generation. Accuracy and sensitivity.
  • Figure 1 is a schematic exploded view of the mesh electronic drum of the present invention
  • Figure 2 is a cross-sectional view of the mesh electronic drum of the present invention.
  • Figure 3 A partial enlarged view of Figure 2;
  • Figure 4 is a schematic view showing the connection of magnetic components of the mesh electronic drum of the present invention.
  • Figure 5 is a schematic view showing the connection of a Hall chip of the mesh electronic drum of the present invention.
  • FIG. 6 is a block diagram showing the operation of the data processing module of the mesh electronic drum of the present invention.
  • Fig. 7 is a schematic view showing the connection of components of a pre-stage signal amplifying circuit of the mesh electronic drum of the present invention.
  • 1 drum ring
  • 2 mesh surface
  • 3 soft material layer
  • 31 magnetic component
  • 4 elastic recovery material layer
  • 41 groove
  • 5 PCB board
  • 51 Hall sensor
  • 52 support member
  • 521 T-shaped groove
  • 6 first soft foaming buffer material layer
  • 61 mounting hole
  • 7 fixing plate
  • 71 screw
  • 8 sensor
  • 9 second soft foaming buffer material layer
  • Drum disk body
  • FIGS. 1 through 6 The present invention will be further described below in conjunction with FIGS. 1 through 6:
  • the mesh electronic drum of the present invention comprises a drum disk body 10, a drum ring 1, a mesh surface 2, a data acquisition module and a data processing module.
  • the data acquisition module includes a trigger and a conductive medium, the conductive medium is a magnetic member 31, the magnetic member 31 is disposed in a layer of soft material 3, and the trigger includes a Hall sensor 51 that is non-contact-matched to the magnetic member 31.
  • the mesh surface 2 is formed by stacking three layers of mesh layers, and the side mesh surface adjacent to the soft material layer 3 including the magnetic member 31 is white, and the drum ring 1 fixedly mounts the mesh surface 2 on the drum disk body 10.
  • the Hall sensor 51 is mounted on the lower surface of a PCB board 5, and the upper surface of the PCB board 5 is attached with a layer 4 of elastic recovery material, and the PCB board 5 is placed in the mounting hole of the first soft foaming buffer material layer 6,
  • a second soft foaming buffer layer 9 is disposed under the first soft foaming buffer layer 6, and a second soft foaming buffer layer 9 is attached to the fixing plate 7, and the fixing plate 7 is fixed by screws 71.
  • the drum disk 10 is on the drum.
  • the soft material layer 3 containing the magnetic member 31 is attached to the upper surface of the elastic recovery material layer 4, the Hall sensor 51 is located directly below the magnetic member 31, the soft material layer 3 containing the magnetic member 31 and the Hall sensor are mounted.
  • the PCB board 5 of 51 is concentric and is completely separated from the flexible material layer 3 containing the magnetic member 31 by the elastic recovery material layer 4.
  • Soft material layer 3 It may be a silicone rubber, for example, its Shore hardness is 30°, which is used for fixing the magnetic member 31, and the elastic force is good after the drum stick is struck.
  • Elastic recovery material layer 4 It can be sponge, the density is 22kg/m 3 , the material is soft and soft, and it has good resilience and quick rebound after being compressed by external force.
  • the principle of the trigger signal of the drum disk is that the magnetic component 31 and the lower Hall chip 51 change the magnetic flux to generate a sine wave voltage signal through constant distance change, so the sponge is selected to realize this function.
  • Function 2 After the downward vibration, the elastic recovery material layer 4 quickly recovers due to the elastic force and comes into contact with the mesh surface 2 again, and does not generate a second vibration when the force is not continued, and does not continue to generate a signal.
  • the first soft foaming buffer material layer 6 the material is a neoprene foaming material (commonly known as: gram-return force, also known as CR foam), for example, the hardness may be 15°.
  • a neoprene foaming material commonly known as: gram-return force, also known as CR foam
  • the hardness may be 15°.
  • the second soft foaming buffer material layer 9 is made of a neoprene foam material (commonly known as: gram-return force, also known as CR foam), and has the same hardness as the first soft foaming buffer material layer 6. It further reduces the force transmitted by the above steps to 0, so that it is not transmitted to the drum disk 10, because the trigger of the drum ring 1 or the drum disk 10 is supported by the sensor attached to the drum disk 10. 8 to induce the signal, such as knocking the net surface 2 signal to the drum disk 10, there will be a crosstalk edge signal. Similarly, it is also possible to attenuate and absorb the influence of the drum ring 1 or the drum disk 10 on the soft material layer 3 and the magnetic member 31 after tapping.
  • a neoprene foam material commonly known as: gram-return force, also known as CR foam
  • the vibration signal of the drum ring 1 or the drum disk 10 is transmitted to the first soft foaming buffer layer 6 through the second soft foaming buffer layer 9. Then, it is transferred to the elastic recovery material layer 4, and finally to the soft material layer 3. Since the foaming cushioning material is used, the strength of the drum ring 1 or the drum disk 10 is gradually attenuated step by step, so that the elastic recovery material layer 4 is basically Without vibration, no distance will be generated, that is, no magnetic flux change will occur, no voltage signal will be generated, and the crosstalk of the side can be avoided.
  • the first soft foaming cushioning material layer 6 and the second soft foaming cushioning material layer 9 are both harder than the elastic restoring material layer 4.
  • the magnetic member 31 housed in the soft material layer 3 When the mesh surface 2 is struck, the magnetic member 31 housed in the soft material layer 3 generates a downward vibration, the distance between the magnetic member 31 and the Hall sensor 51 changes, and the range of the magnetic field sensed by the Hall sensor 51 changes.
  • the generated audio voltage signal is output to the data processing module, and the data processing module processes the received audio voltage signal to obtain a desired audio signal and outputs it.
  • the elastic recovery material layer 4 under the mesh surface 2 is quickly recovered by the elastic force after being vibrated downward and comes into contact with the mesh surface 2 again, and does not generate a second vibration without further stress. It will not continue to generate signals. Therefore, the soft material layer 3 is placed against the mesh surface 2, and mechanical noise is also avoided when striking the mesh surface.
  • the Hall sensor 51 and the magnetic member 31 are both indirectly fixed on the drum disk 10, the Hall sensor 51 can be completely concentric with the magnetic member 31 by the tooling tool, thereby greatly improving the mesh signal and avoiding the Chinese patent (application) Publication No.: CN106531139A)
  • the published mesh electronic drum is caused by the Hall sensor and the magnetic material being offset from each other in different parts, so that even if the mesh surface vibrates, only a small signal can be generated, and each drum disk 10 signal has The difference is that the drum disk 10 has low sensitivity.
  • the PCB board 5 is fixed in the mounting hole by the support member 52.
  • the upper portion of the support member 52 is provided with a T-shaped groove 521; the PCB board 5 is located at a horizontal portion of the T-shaped groove, and the Hall sensor 51 is located at the T-shaped groove.
  • the upper surface of the elastic recovery material layer 4 is a groove 41 structure, and the bottom of the soft material layer 3 is embedded in the groove 41.
  • the groove 41 may be a tapered groove or a rectangular groove or an irregularly shaped groove, and the bottom of the soft material layer 3 is also arranged to be a tapered structure, a rectangular structure or an irregular structure to cooperate with the groove 41 of a different shape.
  • the upper portion of the soft material layer 3 is fixedly connected to the mesh surface 2.
  • the Hall sensor 51 and the magnetic member 31 are coaxially or concentrically arranged.
  • the fixing plate 7 and the drum disk body 10 are fixed by one or more screws 71.
  • the magnetic member 31 is embedded in the soft material layer 3.
  • a Hall sensor 51 is fixed under the PCB board 5.
  • the data processing module includes a shaping circuit, a digital-to-analog conversion circuit, a control circuit, a DSP data processing circuit, a sound source storage circuit, an analog-to-digital conversion circuit, and a post-stage signal amplifying circuit; the input of the Hall sensor and the shaping circuit
  • the end connection, the output end of the shaping circuit is connected with the input end of the digital-to-analog conversion circuit, the output end of the digital-to-analog conversion circuit is connected with the input end of the control circuit, and the output end of the control circuit is connected with the input end of the DSP data processing circuit, and the DSP data is connected.
  • the output end of the processing circuit is connected to the input end of the sound source storage circuit, the output end of the sound source storage circuit is connected to the input end of the analog-to-digital conversion circuit, and the output end of the analog-to-digital conversion circuit is connected to the input end of the signal amplification circuit of the latter stage, the latter stage
  • the audio signal of the Hall sensor provided by the magnetic range change can be processed to obtain the desired audio signal output
  • the Hall sensor is connected through an input end of the pre-stage signal amplifying circuit and the shaping circuit, and the input end of the pre-stage signal amplifying circuit and the Hall sensor are connected.
  • the output end of the pre-stage signal amplifying circuit is connected with the input end of the shaping circuit, the smaller audio voltage signal provided by the Hall sensor with less variation in the magnetic range can be amplified to meet the requirements of the audio input signal;
  • the pre-stage signal amplifying circuit comprises a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a fifth resistor R5, a first capacitor C1, a second capacitor C2, a third capacitor C3 and a transistor Q1;
  • One end of a capacitor C1 is connected to the Hall sensor H at the input end of the pre-stage signal amplifying circuit, the Hall sensor H is also connected to the power output end, and the other end of the first capacitor C1 is connected to one end of the first resistor R1, first The other end of the resistor R1, one end of the second resistor R2, one end of the third resistor R3 and the base of the transistor Q1 are connected, and the other end of the second resistor R2, one end of the fourth resistor R4 and one end of the second capacitor C2 are connected.
  • the other end of the second capacitor C2 is grounded, the other end of the third resistor R3 is grounded, the other end of the fourth resistor R4, the collector of the transistor Q1 and one end of the third capacitor C3 are connected, and the emitter and the third of the transistor Q1
  • One end of the fifth resistor R5 is connected, the other end of the fifth resistor R5 is grounded, and when the other end of the third capacitor C3 is the output end of the pre-stage signal amplifying circuit, the circuit performs the audio voltage signal provided by the Hall sensor with the change of the magnetic range. Zoom in Requirements foot audio input signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种网状电子鼓,包括鼓圈(1)、网面(2)、鼓盘盘体(10)、数据采集模块和数据处理模块,鼓圈(1)将网面(2)固定安装在鼓盘盘体(10)上,网面(2)下方与固定板(7)上方夹持多层结构,多层结构从上至下依次:软性材料层(3)、弹性恢复材料层(4)、第一软性发泡缓冲材料层(6)以及第二软性发泡缓冲材料层(9);第一软性发泡缓冲材料层(6)开有安装孔,在安装孔中埋设PCB板(5),PCB板(5)上固定有霍尔传感器(51)。网状电子鼓的打击信号收集方式既能更好检测网面信号,提升网面灵敏度,又能防止鼓边或鼓盘盘体误触发的电子打击乐器信号。

Description

一种网状电子鼓 技术领域
本发明涉及一种打击乐器,尤其是涉及一种网状电子鼓。
背景技术
之前,已有模拟原声鼓的的电子打击乐器,例如已公开的ZL201621158393.X和申请公布号:CN106531139A的中国专利:一种网状电子鼓,其包括鼓盘盘体、鼓皮、数据采集模块和数据处理模块。数据采集模块包括触发器和传导介质,传导介质为磁性部件,磁性部件设置在所述的鼓皮上,触发器包括与磁性部件非接触匹配的霍尔传感器。鼓皮包括鼓圈和网面,鼓圈将所述的网面固定安装在所述的鼓盘盘体上,网面由四层网面层叠加而成,磁性部件设置在相邻两层所述的网面之间,磁性部件被两层所述的网面夹紧。霍尔传感器安装在一PCB板的下表面上,所述的PCB板的上表面附着有弹性缓冲层;磁性部件位于所述的网面的中心处,所述的霍尔传感器安装在所述的鼓盘盘体内,所述的霍尔传感器位于所述的磁性部件的正下方。所述装有磁性部件的鼓皮与所述装有霍尔传感器的PCB(附着有弹性缓冲层)是完全分隔开来的,当敲击鼓皮时,磁性部件产生震动,与霍尔传感器的距离发生改变,霍尔传感器感应到的磁场范围产生变化,由此生成音频电压信号输出给数据处理模块,数据处理模块将接收到的音频电压信号进行处理,得到所需的音频信号输出。
但是,在上述的以往电子打击乐器中,在敲击一次鼓皮时,鼓皮会产生连续不断的震动而产生连续的多次信号,或在受外部声音震动的影响而产生共振而产生信号,造成网面的误触发。
发明内容
本发明设计了一种网状电子鼓,其解决的技术问题是现有网状电子鼓在敲击一次鼓皮时,鼓皮会产生连续不断的震动而产生连续的多次信号,或在受外部声音震动的影响而产生共振而产生信号,造成网面的误触发。
为了解决上述存在的技术问题,本发明采用了以下方案:
一种网状电子鼓,包括鼓圈(1)、网面(2)、鼓盘盘体(10)、数据采集模块和数据处理模块,鼓圈(1)将所述网面(2)固定安装在所述鼓盘盘体(10)上,所述网面(2)下方与所述固定板(7)上方夹持多层结构,所述多层结构从上至下依次:软性材料层(3)、弹性恢复材料层(4)、第一软性发泡缓冲材料层(6)以及第二软性发泡缓冲材料层(9);第一软性发泡缓冲材料层(6)开有安装孔,在所述安装孔中埋设PCB板(5),所述PCB板(5)上固定有霍尔传感器(51);其中,所述软性材料层(3)用于将磁性部件(31)固定其中,并且挤压网面(2),避免了敲击网面(2)时产生机械噪音;所述弹性恢复材料层(4)用于隔开所述磁性部件(31)与所述霍尔传感器(51),并且在敲击后具有快速恢复原状的能力;所述第一软性发泡缓冲材料层(6)用于减弱或吸收敲击所述网面(2)后向下传递的能量以及减弱或吸收敲击所述鼓圈(1)或鼓盘盘体(10)后向上传递的能量;所述第二软性发泡缓冲材料层(9)也用于减弱或吸收敲击所述网面(2)后向下传递的能量以及减弱或吸收敲击所述鼓圈(1)或鼓盘盘体(10)后向上传递的能量;在所述固定板(7)下方的空腔中设有传感器(8),所述传感器(8)检测敲击鼓圈(1)或鼓盘盘体(10)的敲击信号。
进一步,第一软性发泡缓冲材料层(6)以及第二软性发泡缓冲材料层(9)的硬度都大于弹性恢复材料层(4)的硬度。
进一步,第一软性发泡缓冲材料层(6)以及第二软性发泡缓冲材料层(9)的材质为氯丁橡胶发泡材料,所述弹性恢复材料层(3)为海棉。
进一步,所述PCB板(5)通过支撑部件(52)固定在安装孔中,所述支撑部件(52)的上部开有T型槽(521);所述PCB板(5)位于所述T型槽的水平部分,霍尔传感器(51)位于所述T型槽的垂直部分。
进一步,所述弹性恢复材料层(4)上表面为凹槽(41)结构,所述软性材料层(3)底部嵌入所述凹槽(41)中;所述软性材料层(3)的上部与所述网面(2)固定连接。
进一步,所述霍尔传感器(51)与所述磁性部件(31)为同轴或同心设置。
进一步,所述传感器(8)为压电陶瓷蜂鸣片,所述传感器(8)检测敲击鼓圈(1)或鼓盘盘体(10)信号,固定有霍尔芯片的PCB板(5)检测网面(2)的信号,两路信号均通过导线与焊有接插件的PCB(0)相连,信号通过接插件传送至音源模块。
进一步,所述固定板(7)与所述鼓盘盘体(10)通过一个或多个螺丝(71)进行固定。
进一步,所述数据处理模块包括整形电路、数模转换电路、控制电路、DSP数据处理电路、音源存储电路、模数转换电路和后级信号放大电路;
霍尔传感器与整形电路的输入端连接,整形电路的输出端和数模转换电路的输入端连接,数模转换电路的输出端和控制电路的输入端连接,控制电路的输出端和DSP数据处理电路的输入端连接,DSP数据处理电路的输出端和音源存储电路的输入端连接,音源存储电路的输出端和模数转换电路的输入端连接,模数转换电路的输出端和后级信号放大电路的输入端连接,后级信号放大电路的输出端输出音频信号时,可以将霍尔传感器随磁性范围变化提供的音频电压信号处理后得到所需的音频信号输出;
进一步,所述数据处理模块当数据处理模块还包括前级信号放大电路,霍尔传感器通过前级信号放大电路和整形电路的输入端连接, 前级信号放大电路和的输入端和霍尔传感器连接,前级信号放大电路的输出端和整形电路的输入端连接时,可以放大因霍尔传感器随磁性范围变化较小提供的较小的音频电压信号,使其满足音频输入信号的要求;
和/或,所述前级信号放大电路包括第一电阻(R1)、第二电阻(R2)、第三电阻(R3)、第四电阻(R4)、第五电阻(R5)、第一电容(C1)、第二电容(C2)、第三电容(C3)和三极管(Q1);
第一电容(C1)的一端为前级信号放大电路的输入端与霍尔传感器(H)连接,霍尔传感器(H)还与电源输出端连接,第一电容(C1)的另一端和第一电阻(R1)的一端连接,第一电阻(R1)的另一端、第二电阻(R2)的一端、第三电阻(R3)的一端和三极管(Q1)的基极连接,第二电阻(R2)的另一端、第四电阻(R4)的一端和第二电容(C2)的一端均接入电源,第二电容(C2)的另一端接地,第三电阻(R3)的另一端接地,第四电阻(R4)的另一端、三极管(Q1)的集电极和第三电容(C3)的一端连接,三极管(Q1)的发射极和第五电阻(R5)的一端连接,第五电阻(R5)的另一端接地,第三电容(C3)的另一端为前级信号放大电路的输出端时,该电路将霍尔传感器随磁性范围变化提供的音频电压信号进行放大使其满足音频输入信号的要求。
该网状电子鼓与现有网状电子鼓相比,具有以下有益效果:
(1)本发明网状电子鼓的打击信号收集方式既能更好检测网面信号,提升网面灵敏度,又能防止鼓边或鼓盘盘体误触发的电子打击乐器信号。
(2)本发明网状电子鼓可以网面打击信号通过缓冲材料的设置进行吸收,避免传导至至鼓盘盘体上并产生鼓盘盘体被击打的错误信号,提高击打信号产生的准确性和灵敏性。
附图说明
图1:本发明网状电子鼓的部件分解示意图;
图2:本发明网状电子鼓的剖视图;
图3:图2中局部放大示意图;
图4:本发明网状电子鼓的磁性部件连接示意图;
图5:本发明网状电子鼓的霍尔芯片连接示意图;
图6:本发明网状电子鼓的数据处理模块工作方框示意图;
图7:本发明网状电子鼓的前级信号放大电路的元器件连接示意图。
附图标记说明:
1—鼓圈;2—网面;3—软性材料层;31—磁性部件;4—弹性恢复材料层;41—凹槽;5—PCB板;51—霍尔传感器;52—支撑部件;521—T型槽;6—第一软性发泡缓冲材料层;61—安装孔;7—固定板;71—螺丝;8—传感器;9—第二软性发泡缓冲材料层;10—鼓盘盘体。
具体实施方式
下面结合图1至图6,对本发明做进一步说明:
如图1和图2所示,本发明网状电子鼓包括鼓盘盘体10、鼓圈1、网面2、数据采集模块和数据处理模块。
数据采集模块包括触发器和传导介质,传导介质为磁性部件31,磁性部件31设置在一种软性材料层3中,触发器包括与磁性部件31非接触匹配的霍尔传感器51。
网面2由三层网面层叠加而成,其靠近包含磁性部件31的软性材料层3的侧网面为白色,鼓圈1将网面2固定安装在鼓盘盘体10上。霍尔传感器51安装在一PCB板5板的下表面上,PCB板5的上表面附着有弹性恢复材料层4,PCB板5放置在第一软性发泡缓冲材料层6的安装孔中,第一软性发泡缓冲材料层6下方设有第二软性发泡缓冲材料层9,第二软性发泡缓冲材料层9附在固定板7上,并且固定板7通过螺丝71固定在鼓盘盘体10上。
装有磁性部件31的软性材料层3附着于弹性恢复材料层4上表面,霍尔传感器51位于磁性部件31的正下方,装有磁性部件31的软 性材料层3与装有霍尔传感器51的PCB板5同心且靠弹性恢复材料层4将装有霍尔传感器的PCB板5与装有磁性部件31的软性材料层3完全分隔开来的。
1、软性材料层3:其可以为硅橡胶,例如:其邵氏硬度为30°,其固定磁性部件31用,鼓棒敲击后弹力好。
2、弹性恢复材料层4:其可以为海棉,密度为22kg/m 3,材质柔软更软,受外力压缩后回弹性好、回弹快。
其作用一:因鼓盘盘体触发信号原理就是磁性部件31与下方的霍尔芯片51通过不断的距离改变使得磁通量发生变化产生正弦波电压信号,因此选用海棉来实现这个功能。作用二:弹性恢复材料层4在向下震动后由于弹力快速回复并再次与网面2接触,在未继续受力的情况下不会产生第二次震动,不会继续产生信号。
3、第一软性发泡缓冲材料层6:其材质为氯丁橡胶发泡材料(俗称:克回力,又称CR泡棉),例如:硬度可以为15°。
其第一作用:固定有霍尔芯片的PCB 5;第二作用:当鼓棒敲击网面2时的力度传至软性材料层3,再使弹性恢复材料层4来回震动改变距离,第一软性发泡缓冲材料层6使敲击的力度进一步减弱,当传至第一软性发泡缓冲材料层6时力度更进一步减弱或吸收了;第三作用:当敲击鼓圈1或鼓盘盘体10,敲击产生的振动能量除了被传感器8感应,还会向上方的软性材料层3以及磁性部件31传导,第一软性发泡缓冲材料层6可以吸收振动能量避免磁性部件31受到影响。
4、第二软性发泡缓冲材料层9:其材质为氯丁橡胶发泡材料(俗称:克回力,又称CR泡棉),其硬度同第一软性发泡缓冲材料层6。其起到进一步减弱上述步骤传过来的力度为0,使其不传至鼓盘盘体10上,因鼓圈1或鼓盘盘体10的触发是靠固定在鼓盘盘体10上的传感器8来感应产生信号,如敲网面2有信号传至鼓盘盘体10,则会出现串扰边的信号。同理,也可以衰减和吸收鼓圈1或鼓盘盘体10敲击后向上对软性材料层3以及磁性部件31的影响。
总之,敲鼓圈1或鼓盘盘体10时,鼓圈1或鼓盘盘体10的震动信号通过第二软性发泡缓冲材料层9传至第一软性发泡缓冲材料层6,再传至弹性恢复材料层4,最后传至软性材料层3,因均使用发泡缓冲材料,敲鼓圈1或鼓盘盘体10的力度一步一步衰减,使弹性恢复材料层4基本上无震动,不会产生距离化,即不会产生磁通量变化,不会有电压信号产生,避免了敲击边串扰面的情况。
硬度比较:第一软性发泡缓冲材料层6和第二软性发泡缓冲材料层9硬度都大于弹性恢复材料层4。
当敲击网面2时,装在软性材料层3中的磁性部件31产生向下震动,磁性部件31与霍尔传感器51的距离发生改变,霍尔传感器51感应到的磁场范围产生变化,由此生成音频电压信号输出给数据处理模块,数据处理模块将接收到的音频电压信号进行处理,得到所需的音频信号并输出。
敲击网面2后,网面2下的弹性恢复材料层4在向下震动后由于弹力快速回复并再次与网面2接触,在未继续受力的情况下不会产生第二次震动,也就不会继续产生信号。因此软性材料层3顶住网面2,也避免了敲击网面时产生机械噪音。
由于霍尔传感器51与磁性部件31都是间接固定在鼓盘盘体10上,通过冶具可以完全保证霍尔传感器51与磁性部件31同心,这样大大提高了网面信号,避免了中国专利(申请公布号:CN106531139A)公布的网状电子鼓因霍尔传感器与磁性材料分别在不同部件造成相互偏位,造成即使网面震动也只能产生较小的信号,每个鼓盘盘体10信号有差异,鼓盘盘体10灵敏度低。
如图3所示,PCB板5通过支撑部件52固定在安装孔中,支撑部件52的上部开有T型槽521;PCB板5位于T型槽的水平部分,霍尔传感器51位于T型槽的垂直部分。弹性恢复材料层4上表面为凹槽41结构,软性材料层3底部嵌入凹槽41中。凹槽41可以锥形凹槽或矩形凹槽或不规则形状凹槽,软性材料层3底部也对应设置为锥形 结构、矩形结构或不规则结构与不同形状的凹槽41进行配合。
软性材料层3的上部与网面2固定连接。霍尔传感器51与磁性部件31为同轴或同心设置。固定板7与鼓盘盘体10通过一个或多个螺丝71进行固定。
如图4所示,软性材料层3中埋设磁性部件31。
如图5所示,PCB板5下方固定有霍尔传感器51。
如图6所示,当数据处理模块包括整形电路、数模转换电路、控制电路、DSP数据处理电路、音源存储电路、模数转换电路和后级信号放大电路;霍尔传感器和整形电路的输入端连接,整形电路的输出端和数模转换电路的输入端连接,数模转换电路的输出端和控制电路的输入端连接,控制电路的输出端和DSP数据处理电路的输入端连接,DSP数据处理电路的输出端和音源存储电路的输入端连接,音源存储电路的输出端和模数转换电路的输入端连接,模数转换电路的输出端和后级信号放大电路的输入端连接,后级信号放大电路的输出端输出音频信号时,可以将霍尔传感器随磁性范围变化提供的音频电压信号处理后得到所需的音频信号输出;
如图7所示,当数据处理模块还包括前级信号放大电路,霍尔传感器通过前级信号放大电路和整形电路的输入端连接,前级信号放大电路和的输入端和霍尔传感器连接,前级信号放大电路的输出端和整形电路的输入端连接时,可以放大因霍尔传感器随磁性范围变化较小提供的较小的音频电压信号,使其满足音频输入信号的要求;
前级信号放大电路包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第一电容C1、第二电容C2、第三电容C3和三极管Q1;第一电容C1的一端为前级信号放大电路的输入端与霍尔传感器H连接,霍尔传感器H还与电源输出端连接,第一电容C1的另一端和第一电阻R1的一端连接,第一电阻R1的另一端、第二电阻R2的一端、第三电阻R3的一端和三极管Q1的基极连接,第二电阻R2的另一端、第四电阻R4的一端和第二电容C2的一端均接入电 源,第二电容C2的另一端接地,第三电阻R3的另一端接地,第四电阻R4的另一端、三极管Q1的集电极和第三电容C3的一端连接,三极管Q1的发射极和第五电阻R5的一端连接,第五电阻R5的另一端接地,第三电容C3的另一端为前级信号放大电路的输出端时,该电路将霍尔传感器随磁性范围变化提供的音频电压信号进行放大使其满足音频输入信号的要求。
上面结合附图对本发明进行了示例性的描述,显然本发明的实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围内。

Claims (10)

  1. 一种网状电子鼓,包括鼓圈(1)、网面(2)、鼓盘盘体(10)、数据采集模块和数据处理模块,鼓圈(1)将所述网面(2)固定安装在所述鼓盘盘体(10)上,其特征在于:
    所述网面(2)下方与所述固定板(7)上方夹持多层结构,所述多层结构从上至下依次:软性材料层(3)、弹性恢复材料层(4)、第一软性发泡缓冲材料层(6)以及第二软性发泡缓冲材料层(9);第一软性发泡缓冲材料层(6)开有安装孔,在所述安装孔中埋设PCB板(5),所述PCB板(5)上固定有霍尔传感器(51);
    其中,所述软性材料层(3)用于将磁性部件(31)固定其中,并且挤压网面(2),避免了敲击网面(2)时产生机械噪音;
    所述弹性恢复材料层(4)用于隔开所述磁性部件(31)与所述霍尔传感器(51),并且在敲击后具有快速恢复原状的能力;
    所述第一软性发泡缓冲材料层(6)用于减弱或吸收敲击所述网面(2)后向下传递的能量以及减弱或吸收敲击所述鼓圈(1)或鼓盘盘体(10)后向上传递的能量;
    所述第二软性发泡缓冲材料层(9)也用于减弱或吸收敲击所述网面(2)后向下传递的能量以及减弱或吸收敲击所述鼓圈(1)或鼓盘盘体(10)后向上传递的能量;
    在所述固定板(7)下方的空腔中设有传感器(8),所述传感器(8)检测敲击鼓圈(1)或鼓盘盘体(10)的敲击信号。
  2. 根据权利要求1所述网状电子鼓,其特征在于:第一软性发泡缓冲材料层(6)以及第二软性发泡缓冲材料层(9)的硬度都大于弹性恢复材料层(4)的硬度。
  3. 根据权利要求2所述网状电子鼓,其特征在于:第一软性发泡缓冲材料层(6)以及第二软性发泡缓冲材料层(9)的材质为氯丁橡胶发泡材料,所述弹性恢复材料层(3)为海棉。
  4. 根据权利要求1-3中任何一项所述网状电子鼓,其特征在于:所述PCB板(5)通过支撑部件(52)固定在安装孔中,所述支撑部件(52)的上部开有T型槽(521);所述PCB板(5)位于所述T型槽的水平部分,霍尔传感器(51)位于所述T型槽的垂直部分。
  5. 根据权利要求1-3中任何一项所述网状电子鼓,其特征在于:所述弹性恢复材料层(4)上表面为凹槽(41)结构,所述软性材料层(3)底部嵌入所述凹槽(41)中;所述软性材料层(3)的上部与所述网面(2)固定连接。
  6. 根据权利要求1-5所述网状电子鼓,其特征在于:所述霍尔传感器(51)与所述磁性部件(31)为同轴或同心设置。
  7. 根据权利要求1-6中任何一项所述网状电子鼓,其特征在于:所述传感器(8)为压电陶瓷蜂鸣片,所述传感器(8)检测敲击鼓圈(1)或鼓盘盘体(10)信号,固定有霍尔芯片的PCB板(5)检测网面(2)的信号,两路信号均通过导线与焊有接插件的PCB(0)相连,信号通过接插件传送至音源模块。
  8. 根据权利要求1-7中任何一项所述网状电子鼓,其特征在于:所述固定板(7)与所述鼓盘盘体(10)通过一个或多个螺丝(71)进行固定。
  9. 根据权利要求8所述所述网状电子鼓,其特征在于:所述数据 处理模块包括整形电路、数模转换电路、控制电路、DSP数据处理电路、音源存储电路、模数转换电路和后级信号放大电路;
    霍尔传感器与整形电路的输入端连接,整形电路的输出端和数模转换电路的输入端连接,数模转换电路的输出端和控制电路的输入端连接,控制电路的输出端和DSP数据处理电路的输入端连接,DSP数据处理电路的输出端和音源存储电路的输入端连接,音源存储电路的输出端和模数转换电路的输入端连接,模数转换电路的输出端和后级信号放大电路的输入端连接,后级信号放大电路的输出端输出音频信号时,可以将霍尔传感器随磁性范围变化提供的音频电压信号处理后得到所需的音频信号输出;
  10. 根据权利要求9所述网状电子鼓,其特征在于:所述数据处理模块当数据处理模块还包括前级信号放大电路,霍尔传感器通过前级信号放大电路和整形电路的输入端连接,前级信号放大电路和的输入端和霍尔传感器连接,前级信号放大电路的输出端和整形电路的输入端连接时,可以放大因霍尔传感器随磁性范围变化较小提供的较小的音频电压信号,使其满足音频输入信号的要求;
    和/或,所述前级信号放大电路包括第一电阻(R1)、第二电阻(R2)、第三电阻(R3)、第四电阻(R4)、第五电阻(R5)、第一电容(C1)、第二电容(C2)、第三电容(C3)和三极管(Q1);
    第一电容(C1)的一端为前级信号放大电路的输入端与霍尔传感器(H)连接,霍尔传感器(H)还与电源输出端连接,第一电容(C1)的另一端和第一电阻(R1)的一端连接,第一电阻(R1)的另一端、第二电阻(R2)的一端、第三电阻(R3)的一端和三极管(Q1)的基极连接,第二电阻(R2)的另一端、第四电阻(R4)的一端和第二电容(C2)的一端均接入电源,第二电容(C2)的另一端接地,第三电阻(R3)的另一端接地,第四电阻(R4)的另一端、三极管(Q1)的集电极和第三电容(C3)的一端连接,三极管(Q1)的发射极和第五 电阻(R5)的一端连接,第五电阻(R5)的另一端接地,第三电容(C3)的另一端为前级信号放大电路的输出端时,该电路将霍尔传感器随磁性范围变化提供的音频电压信号进行放大使其满足音频输入信号的要求。
PCT/CN2018/101221 2017-12-12 2018-08-19 一种网状电子鼓 WO2019114312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711323965.4 2017-12-12
CN201711323965.4A CN109920402B (zh) 2017-12-12 2017-12-12 一种网状电子鼓

Publications (1)

Publication Number Publication Date
WO2019114312A1 true WO2019114312A1 (zh) 2019-06-20

Family

ID=66819879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101221 WO2019114312A1 (zh) 2017-12-12 2018-08-19 一种网状电子鼓

Country Status (2)

Country Link
CN (1) CN109920402B (zh)
WO (1) WO2019114312A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11854514B2 (en) 2019-10-23 2023-12-26 D'addario & Company, Inc. Drumhead with reduced volume
USD1030484S1 (en) 2023-12-26 2024-06-11 Iromascents A.B. Ltd. Chamber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050150366A1 (en) * 2004-01-08 2005-07-14 Roland Corporation Electronic percussion instrument, system and method with rim shot detection
CN203706658U (zh) * 2014-02-24 2014-07-09 陈兴国 电子鼓环形触发结构
CN106023965A (zh) * 2015-03-30 2016-10-12 雅马哈株式会社 击打表面设备
CN106128441A (zh) * 2016-08-23 2016-11-16 宁波音王电声股份有限公司 一种非接触触发式网状电子鼓
CN107093420A (zh) * 2016-02-17 2017-08-25 罗兰株式会社 电子打击乐器
CN107204179A (zh) * 2017-06-29 2017-09-26 得理乐器(珠海)有限公司 一种电子鼓鼓边信号检测装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293000A (en) * 1992-08-25 1994-03-08 Adinolfi Alfonso M Electronic percussion system simulating play and response of acoustical drum
JP3506340B2 (ja) * 1994-04-28 2004-03-15 株式会社コルグ 電子ドラム
JP3803187B2 (ja) * 1997-12-15 2006-08-02 株式会社コルグ 電気ドラム
FR2900881B1 (fr) * 2006-05-09 2009-06-26 Tachi S Co Structure acoustique pour dossier de siege, notamment de vehicule
CN201917350U (zh) * 2010-12-20 2011-08-03 重庆集诚汽车电子有限责任公司 霍尔式凸轮轴位置传感装置
CN202838942U (zh) * 2012-09-19 2013-03-27 陈兴国 一种双触发电子鼓的结构
CN103956157A (zh) * 2014-03-31 2014-07-30 陈兴国 可调多用途双触发电子鼓结构
US20160136036A1 (en) * 2014-11-19 2016-05-19 Danzhi Cai Massage device
CN208673716U (zh) * 2017-12-12 2019-03-29 音王电声股份有限公司 一种网状电子鼓

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050150366A1 (en) * 2004-01-08 2005-07-14 Roland Corporation Electronic percussion instrument, system and method with rim shot detection
CN203706658U (zh) * 2014-02-24 2014-07-09 陈兴国 电子鼓环形触发结构
CN106023965A (zh) * 2015-03-30 2016-10-12 雅马哈株式会社 击打表面设备
CN107093420A (zh) * 2016-02-17 2017-08-25 罗兰株式会社 电子打击乐器
CN106128441A (zh) * 2016-08-23 2016-11-16 宁波音王电声股份有限公司 一种非接触触发式网状电子鼓
CN106531139A (zh) * 2016-08-23 2017-03-22 宁波音王电声股份有限公司 一种网状电子鼓
CN107204179A (zh) * 2017-06-29 2017-09-26 得理乐器(珠海)有限公司 一种电子鼓鼓边信号检测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11854514B2 (en) 2019-10-23 2023-12-26 D'addario & Company, Inc. Drumhead with reduced volume
USD1030484S1 (en) 2023-12-26 2024-06-11 Iromascents A.B. Ltd. Chamber

Also Published As

Publication number Publication date
CN109920402B (zh) 2024-03-22
CN109920402A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
JP6531923B2 (ja) 網状電子ドラム
US8173886B2 (en) Electronic percussion instrument
US10032440B2 (en) Modular self-dampening triggering system for acoustic percussion elements
CN107025903B (zh) 乐器和声换能器装置
US8872015B2 (en) Cymbal transducer using electret accelerometer
JP2010262166A (ja) 打撃検出装置
WO2019114312A1 (zh) 一种网状电子鼓
WO2016112038A1 (en) Magnetically secured instrument trigger
US8358050B2 (en) Apparatus for use with an acoustic drum to produce electrical signals while muting the sound of the acoustic drum
JP4967048B2 (ja) 変換装置
JP4380611B2 (ja) ドラムヘッド
JP2005010535A (ja) 弦楽器用駒および弦楽器
CN101996623A (zh) 用于打击电声乐器的电容式传感器
TW201610979A (zh) 具有蜘蛛網狀感測器之電子鼓及鈸
JP2007072301A (ja) 電子ドラム
CN210349300U (zh) 一种独立镲帽结构的镲片
CN110211554B (zh) 一种独立镲帽结构的镲片
CN113270083B (zh) 打击检测装置及打击乐器
TWM548340U (zh) 可抑制音源雜訊的電子打擊樂器
CN208673716U (zh) 一种网状电子鼓
US9336765B2 (en) Pickup device
JP5762043B2 (ja) 電子ドラム
KR200412624Y1 (ko) 진동 센서
CN109087622B (zh) 一种便携式电木鼓
WO2023120392A1 (en) Electronic instrument, electronic cymbal set, and electronic hi-hat cymbals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889721

Country of ref document: EP

Kind code of ref document: A1