WO2019113995A1 - 一种基于超声振动的塑性成形及增韧工艺方法及其装置 - Google Patents
一种基于超声振动的塑性成形及增韧工艺方法及其装置 Download PDFInfo
- Publication number
- WO2019113995A1 WO2019113995A1 PCT/CN2017/117069 CN2017117069W WO2019113995A1 WO 2019113995 A1 WO2019113995 A1 WO 2019113995A1 CN 2017117069 W CN2017117069 W CN 2017117069W WO 2019113995 A1 WO2019113995 A1 WO 2019113995A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic vibration
- forming
- toughening
- mold
- amorphous alloy
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/10—Die sets; Pillar guides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/16—Heating or cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D10/00—Modifying the physical properties by methods other than heat treatment or deformation
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F3/00—Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/03—Amorphous or microcrystalline structure
Definitions
- the invention belongs to the field of amorphous alloy thermoplastic forming, and more particularly to a plastic forming and gradient toughening method and device based on ultrasonic vibration.
- Amorphous alloy is a new material with excellent properties such as high strength, corrosion resistance and wear resistance. Amorphous alloys exhibit good superplasticity in the hot state and enable near net shape formation of parts. However, the significant room temperature brittleness of amorphous alloys causes the amorphous alloy parts to be brittle fracture and completely fail once they are overloaded during service, making it difficult to directly apply to applications where impact loads are present. Therefore, it is necessary to further improve the toughness without impairing the excellent properties of the amorphous alloy to improve the impact resistance of the amorphous alloy parts.
- the amorphous alloy is in a thermodynamic metastable state, and spontaneously transitions to its thermodynamically stable state after sufficient energy is obtained, that is, crystallization occurs. After the amorphous alloy is crystallized, its properties also change. By forming nanocrystal grains inside the amorphous alloy, the strength and toughness can be remarkably improved. Therefore, according to the requirements of the actual service conditions for the performance of amorphous alloy parts, nanocrystals can be induced locally in the amorphous matrix by some means to form a nanocrystalline toughened amorphous matrix composite with mechanical properties gradient.
- Patent CN101736213A proposes a method of strengthening an amorphous alloy by ultrasonic treatment.
- the method strengthens the alloy by placing the amorphous alloy in a cooling water tank lower than the crystallization temperature of the amorphous alloy, and then loading the oscillation frequency at a power of not more than 3 ⁇ 10 4 W/mm 2 per unit area at the bottom of the water tank. deal with. Under the premise of the fracture strength unchanged, the compressive plastic deformation ability of the amorphous alloy at room temperature is obviously improved, and the relaxation exotherm is also increased. However, this method can only strengthen the toughness of amorphous alloy samples.
- Patent CN102002659A proposes a method for continuously performing nanocrystallization on an amorphous alloy strip.
- Patent CN105420522A proposes a kind A method for preparing an amorphous matrix composite material, wherein the sheet-like amorphous alloy and the toughened second phase material are alternately laminated and placed in a jig, under a condition of constant pressure or increasing load, the laminated amorphous alloy and The porous plate is heated while ultrasonic vibration is applied thereto, and the amorphous alloy is rapidly softened and pressed into the pores of the second phase toughening plate to obtain a plastic alloy having good plasticity, but
- the overall toughening of the amorphous alloy applies only to the processing of sheet metal products, and can not handle the actual parts with complex shapes and according to the parts Local nanocrystal gradient toughening is performed using performance requirements; the above three methods of strengthening and toughening are not combined with the amorphous alloy thermoplastic forming process, but need to be specially processed after the parts are formed and manufactured. Complex and long production cycle.
- the present invention provides a plastic forming and gradient toughening method and apparatus based on ultrasonic vibration, by using an insert connected to an ultrasonic vibration horn to locally strengthen a region of toughness.
- Ultrasonic vibration is performed for the purpose of nanocrystallizing a local region of the amorphous alloy part, thereby solving the technical problem of local toughening in the thermoplastic forming process.
- a ultrasonic vibration-based plastic forming and gradient toughening method characterized in that the toughening method comprises the following steps:
- the part to be strengthened is defined on the amorphous alloy part to be formed, which is used to form a nanocrystalline toughening phase, and other parts are retained in the forming. Its amorphous state;
- a toughening device designed to form an amorphous alloy part to be formed, the apparatus being coupled to an external drive mechanism, the apparatus including an insert and a heating rod coupled to the ultrasonic vibration horn,
- the insert corresponds to the portion to be strengthened toughness, and the ultrasonic vibration is applied to a portion to be toughened for heating the raw material blank to be processed to a forming temperature thereof, and the ultrasonic vibration horn is generated
- the parameters of the ultrasonic vibration are obtained in the process of analyzing the ultrasonic vibration energy propagation by finite element numerical simulation, wherein the ultrasonic vibration energy is adjusted by adjusting the amplitude, frequency and power of the ultrasonic vibration, when the ultrasonic vibration energy exceeds that required for nanocrystallization At the energy threshold, the amplitude, frequency, and power of the corresponding ultrasonic vibration are parameters of the desired ultrasonic vibration;
- the forming temperature ranges between a glass transition temperature and a crystallization temperature of the raw material blank.
- the heating rod is preferably a resistance heating rod.
- the toughening means preferably employs a mold for thermoplastic forming.
- the amorphous alloy is an amorphous alloy having a thermoplastic forming ability including a Pd, Pt, Au, Zr, Ti, Fe, Cu, Ni, Al, Mg or Ce group.
- a device for use in the above toughening method characterized in that the device comprises an upper die, a lower die and a female die,
- the upper mold is disposed opposite to the lower mold, and forms a forming cavity with the concave mold, and the upper mold and the lower mold are respectively provided with a punch and an insert, and the punch is connected with the driving servo press, and is used Forming the raw material blank into a desired three-dimensional structure, the insert being connected to the ultrasonic vibration horn for ultrasonic vibration of a portion to be toughened, wherein the concave mold is provided with a heating rod for the heating rod The billet is heated.
- the present invention employs an insert that is partially connected to an ultrasonic vibration horn, the insert and the desired
- the toughened part corresponds to ultrasonic vibration of the part to realize the nano-crystallization process, which is carried out simultaneously with the thermoplastic forming process, and no special processing is required after the parts are finished and manufactured, thereby simplifying the process. Shorten the forming time;
- the invention improves the toughness of the material by adopting ultrasonic vibration.
- the ultrasonic vibration can significantly improve the forming ability of the material.
- the ultrasonic vibration wave has a strong directionality, the vibration energy distribution can be realized.
- Directional precision control therefore, the use of ultrasonic vibration can effectively promote nanocrystallization, to achieve amorphous alloy toughening;
- the invention adopts a resistance heating rod, on the one hand, the forming temperature in the thermoplastic forming process is ensured, and on the other hand, the uniformity of the temperature field inside the mold can be ensured by adjusting the distribution of the electric resistance heating rod;
- the method provided by the present invention combines nano-crystallization toughening and thermoplastic forming of an amorphous alloy based on ultrasonic vibration to realize an integrated process of forming and toughening, which simplifies the production process, shortens the processing time, and improves the processing time. The dimensional accuracy is improved.
- the microstructure of the amorphous alloy-based composite material with the mechanical property gradient is formed inside the parts, which can significantly improve the comprehensive performance of the parts.
- FIG. 1 is a flow chart of a toughening method constructed in accordance with a preferred embodiment of the present invention
- FIG. 2 is a schematic view showing the structure of an amorphous alloy gear member forming apparatus constructed in accordance with a preferred embodiment of the present invention.
- a ultrasonic vibration based plastic forming and gradient toughening method includes the following steps:
- the amorphous state is retained in the parts requiring high strength, strong corrosion resistance and wear resistance, and the nanocrystalline toughening phase is formed in the parts requiring high toughness, so
- ultrasonic vibration is applied to the portion where the nanocrystalline toughening phase is required to be formed, and the ultrasonic vibration is not applied to the portion where the amorphous state needs to be retained.
- the insert connected with the ultrasonic vibration horn is used, and the propagation process of the ultrasonic vibration energy is analyzed by finite element numerical simulation, and the amplitude and frequency of the ultrasonic vibration are adjusted.
- the power is such that the vibration energy of the toughened target region exceeds the energy threshold of the nanocrystallization, thereby determining the amplitude, frequency and power of the ultrasonic vibration, and the resistance heating rod is embedded in the mold to heat the blank to the set forming temperature, and the mold is integrally mounted. On the servo press.
- the amorphous alloy billet is placed in a cavity, and the billet is heated to a glass transition temperature and a crystallization temperature using a resistance heating rod.
- the lower mold and the female mold are kept stationary, and the ultrasonic wave is started after the upper mold is brought into contact with the billet.
- the upper mold continues to descend until the upper mold, the lower mold, and the female mold are completely closed to obtain the desired amorphous alloy parts.
- the ultrasonic vibration is stopped, the upper mold is lifted up, and the part is separated from the part. Lower the die until the part is pushed out of the die.
- FIG. 2 is a schematic view showing the structure of an amorphous alloy gear member forming apparatus constructed in accordance with a preferred embodiment of the present invention, as shown in FIG. 2, which is an ultrasonic vibration assisted amorphous alloy gear member hot forging.
- the forming device is composed of three parts of an upper die, a lower die and a die 4.
- the upper mold is composed of an upper ultrasonic vibration ring 1 and an upper punch 2; the upper punch 2 is nested inside the upper ultrasonic vibration ring 2, and the upper punch 2 has a shoulder for limiting the movement of the upper ultrasonic vibration ring 1.
- the lower die is composed of a lower ultrasonic vibrating ring 6 and a lower punch 7, which is nested inside the lower ultrasonic vibrating ring 6, and a lower shoulder 7 has a shoulder for restricting the movement of the lower ultrasonic vibrating ring 6.
- the upper punch 2 is connected to the slider on the servo press.
- the lower punch 7 is connected to the lower slider of the servo press.
- the upper ultrasonic vibration ring 1 and the lower ultrasonic vibration ring 6 are respectively connected to the ultrasonic generator.
- the inner wall of the die 4 is machined in a tooth shape, and a resistance heating rod 3 is embedded inside.
- the cylindrical blank 5 is first placed inside the die 4.
- the resistance heating rod 3 is activated to heat the blank 5 to a set temperature.
- the lower molds (6 and 7) and the female mold 4 remain stationary.
- the upper punch 2 drives the upper ultrasonic vibration ring 1 down together until it comes into contact with the upper surface of the blank 5.
- the upper ultrasonic vibration ring 1 and the lower ultrasonic vibration ring 6 are activated to vibrate at a set frequency and amplitude.
- the upper punch 2 continues to drive the upper ultrasonic vibrating ring 1 down at a set loading rate until the blank 5 completely fills the cavity of the die 4. In this process, the ultrasonic vibration is concentrated on the edge portion of the blank 5, that is, the tooth portion of the gear member.
- the ultrasonic vibration of the upper ultrasonic vibration ring 1 and the lower ultrasonic vibration ring 6 is closed, and the resistance heating rod 3 is closed.
- the upper ultrasonic vibrating ring 1, the upper punch 2, the lower ultrasonic vibrating ring 6 and the lower punch 7 are advanced at the same speed until the formed part 5 is ejected out of the inner cavity of the female mold 5. The forming process is over.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Forging (AREA)
- Powder Metallurgy (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
一种基于超声振动的塑性成形及梯度增韧方法与装置,该方法包括:(a)在待成形的非晶合金零件上划分待加强韧性的部位用于形成纳米晶增韧相;(b)设计成形所用的增韧装置,其包括与超声振动变幅杆相连的镶块和加热棒(3),镶块与待加强韧性的部位相对应,加热棒(3)用于将原材料坯料(5)加热至其成形温度;(c)将原材料坯料(5)置于装置中,加热棒(3)加热,装置合模成形所需的非晶合金零件,合模过程中启动超声振动,开模时停止。这样增韧与热塑性成形同时进行,可简化生产工序,缩短加工时间,提高尺寸精度。
Description
本发明属于非晶合金热塑性成形领域,更具体地,涉及一种基于超声振动的塑性成形及梯度增韧方法与装置。
非晶合金是一种拥有高强度、耐腐蚀、抗磨损等优异性能的新型材料。非晶合金在热态下表现出良好的超塑性,能够实现零件近净成形。但是,非晶合金显著的室温脆性使得非晶合金零件在服役过程中一旦过载,将直接发生脆性断裂并彻底失效,导致其难以直接应用于存在冲击载荷的场合。因此,需要在不削弱非晶合金优异性能的前提下,进一步改善其韧性,以提高非晶合金零件的抗冲击能力。
非晶合金处于热力学亚稳态,在获得足够能量后会自发向其热力学稳定态转变,即发生晶化。非晶合金晶化后,其性能也随之改变。通过在非晶合金内部形成纳米晶粒,可以显著提高其强度和韧性。因此,可以根据实际服役条件对非晶合金零件性能的要求,通过某种方式在非晶基体的局部诱导生成纳米晶,形成具有力学性能梯度的纳米晶增韧非晶基复合材料。
专利CN101736213A提出一种通过超声处理使非晶合金强韧化的方法。该方法通过将非晶合金置于低于非晶合金晶化温度的冷却水水槽中,然后在水槽底部加载单位面积下功率不大于3×104W/mm2的振荡频率进行合金强韧化处理。经该方法处理后非晶合金在断裂强度不变的前提下,室温压缩塑性变形能力有比较明显的提高,弛豫放热量也增加,但是该方法只能对非晶合金样品进行整体强韧化处理,无法根据实际使用需求保留部分非晶区域,以形成具备力学性能梯度的非晶基复合材料;专利CN102002659A提出一种对非晶合金条带连续进行纳米晶化的方法。该方案在非晶合金的玻
璃转化温度以下,将非晶合金条带压紧在功率超声装置变幅杆顶端,非晶合金条带一边运动超声装置变幅杆一边对条带施加超声作用,从而实现非晶合金条带的连续纳米晶化,方法只能对非晶合金条带进行整体化处理,既无法处理具备复杂形状的实际零件,也不能实现纳米晶梯度增韧;专利CN105420522A提出一种非晶基复合材料的制备方法,该方法将片状非晶合金与增韧第二相材料交替层叠后置于夹具中,在恒压或渐增载荷的条件下,对层叠的非晶合金及多孔板加热,同时对其实施超声振动,非晶合金迅速软化并被压入第二相增韧板的孔中,从而获得塑性良好的非晶合金复合材料,但是该方法需要通过从外界引入第二相对非晶合金进行整体增韧,同样只适用于板材类产品的处理,也无法处理具备复杂形状的实际零件以及根据零件使用性能需求进行局部纳米晶梯度增韧;上述三种强韧化方法,都未能与非晶合金热塑性成形工艺结合起来,而是需要在零件完成成形制造后,再进行专门的处理,工艺过程复杂,生产周期较长。
[发明内容]
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于超声振动的塑性成形及梯度增韧方法与装置,通过采用与超声振动变幅杆连接的镶块对局部需要加强韧性的区域进行超声振动,其目的在于使非晶合金零件的局部区域纳米晶化,由此解决在热塑性成形过程中局部增韧的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种基于超声振动的塑性成形及梯度增韧方法,其特征在于,该增韧方法包括下列步骤:
(a)针对待成形的非晶合金零件的实际使用需求,在待成形的非晶合金零件上划分出待加强韧性的部位,该部位用于形成纳米晶增韧相,其他部位在成形中保留其非晶状态;
(b)设计用于成形待成形的非晶合金零件的增韧装置,该装置与外部驱动机构相连,该装置包括与超声振动变幅杆相连的镶块和加热棒,所述
镶块与所述待加强韧性的部位相对应,用于对待加强韧性的部位施加超声振动,所述加热棒用于将待加工的原材料坯料加热至其成形温度,所述超声振动变幅杆产生的超声振动的参数是在采用有限元数值模拟分析超声振动能量传播的过程中获取,其中,通过调整超声振动的幅度、频率和功率调整超声振动能量,当超声振动能量超过纳米晶化所需的能量阈值时,对应的超声振动的幅度、频率和功率为所需的超声振动的参数;
(c)将原材料坯料置于所述装置中,所述加热棒加热该原材料坯料至其成形温度,所述装置合模成形所需的非晶合金零件,超声振动在合模过程中启动,直至开模时停止。
进一步优选地,所述成形温度的范围介于所述原材料坯料的玻璃化温度和晶化温度之间。
进一步优选地,在步骤(b)中,所述加热棒优选采用电阻加热棒。
进一步优选地,在步骤(b)中,所述增韧装置优选采用用于热塑性成形的模具。
进一步优选地,所述非晶合金为包括Pd、Pt、Au、Zr、Ti、Fe、Cu、Ni、Al、Mg或Ce基具备热塑性成形能力的非晶合金。
按照本发明的另一方面,提供了一种上述增韧方法所采用的装置,其特征在于,该装置包括上模、下模和凹模,
所述上模与下模相对设置,并与所述凹模构成成形型腔,所述上模和下模中均设置有冲头和镶块,所述冲头与驱动伺服压力机相连,用于将原材料坯料成形为所需的三维结构,所述镶块与超声振动变幅杆相连,用于对待加强韧性的部位进行超声振动,所述凹模中设置有加热棒,该加热棒用于对坯料进行加热。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1、本发明通过采用局部与超声振动变幅杆相连的镶块,该镶块与所需
增韧的部位对应,以此对该部位进行超声振动,实现纳米晶化过程,该过程与热塑性成形工艺同时进行,不需要额外在零件完成成形制造后,再进行专门的处理,简化工艺过程,缩短成形时间;
2、本发明通过采用超声振动的方式提高材料的韧性,一方面由于超声振动能够显著提高材料成形能力,另一方面,由于超声振动波的传播具有很强的方向性,其振动能量分布可以实现定向精确控制,因而,采用超声振动能够有效促进纳米晶化,实现非晶合金增韧;
3、本发明采用电阻加热棒,一方面保证了热塑性成形过程中的成形温度,另一方面通过调整电阻加热棒的分布可以保证模具内部温度场的均匀性;
4、本发明提供的方法基于超声振动,将非晶合金的纳米晶化增韧和热塑性成形结合起来,实现了成形和韧化的一体化工艺,显著简化了生产工序,缩短了加工时间,提高了尺寸精度,同时,根据非晶合金零件的实际服役条件,在零件内部形成具备力学性能梯度的非晶合金基复合材料微观组织,能显著提高零件的综合性能。
图1是按照本发明的优选实施例所构建的增韧方法的流程图;
图2是按照本发明的优选实施例所构建的非晶合金齿轮件成形设备的结构示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1-上超声振动环 2-上冲头 3-加热棒 4-凹模 5-原材料坯料 6-下超声振动环 7-下冲头
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的
本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图1是按照本发明的优选实施例所构建的增韧方法的流程图,如图1所示,一种基于超声振动的塑性成形及梯度增韧方法,其包括下列步骤:
(1)根据非晶合金零件的实际使用需求,在需要高强度、强耐腐蚀和耐磨损等性能的部位保留非晶状态,而在需要高韧性的部位形成纳米晶增韧相,因此在热塑性成形工艺设计时,对需要形成纳米晶增韧相的部位施加超声振动,而需要保留非晶状态的部位则不施加超声振动。
(2)在模具设计时,在需要施加超声振动的部位,使用与超声振动变幅杆相连接的镶块,采用有限元数值模拟分析超声振动能量的传播过程,调整超声振动的幅度、频率和功率,使得韧化目标区域的振动能量超过纳米晶化的能量阈值,从而确定超声振动的幅度、频率和功率,模具内部嵌入电阻加热棒,以将坯料加热至设定成形温度,将模具整体安装在伺服压力机上。
(3)成形增韧一体化
将非晶合金坯料放入模腔内,使用电阻加热棒将坯料加热到玻璃转化温度和晶化温度之间,下模和凹模保持不动,上模下行与坯料接触后,启动超声振动。上模继续下行,直至上模、下模和凹模完全闭合,得到所需要的非晶合金零件为止。停止超声振动,上模上行,与零件脱离。下模上行,直至将零件顶出凹模。
下面结合实施例和附图对本发明进一步详细说明。
图2是按照本发明的优选实施例所构建的非晶合金齿轮件成形设备的结构示意图,如图2所示,是超声振动辅助非晶合金齿轮件热模锻成形。
由于齿轮失效主要发生在轮齿部位,因此需要在保持轮辐部位非晶态的同时,对轮齿部位进行纳米晶化增韧,以提高非晶合金齿轮件的抗冲击能力,根据这一需求,设计了如附图2所示的成形装置。
成形装置由上模、下模和凹模4三大部分组成。其中上模由上超声振动环1和上冲头2组成;上冲头2嵌套在上超声振动环2内部,上冲头2上有肩台,用于限制上超声振动环1的运动。下模由下超声振动环6和下冲头7组成,下冲头7嵌套在下超声振动环6内部,下冲头7上有肩台,用于限制下超声振动环6的运动。上冲头2与伺服压力机上滑块连接。下冲头7与伺服压力机下滑块连接。上超声振动环1和下超声振动环6分别与超声波发生器相连。凹模4内壁加工有齿形,内部嵌有电阻加热棒3。
在成形时,先将圆柱坯料5放入凹模4的内部。启动电阻加热棒3,将坯料5加热到设定温度。下模(6和7)和凹模4保持不动。上冲头2带动上超声振动环1一起下行,直至与坯料5上表面接触。启动上超声振动环1和下超声振动环6,让它们以设定的频率和振幅振动。上冲头2继续带动上超声振动环1以设定的加载速率向下运行,直至坯料5完全充填凹模4内腔。在此过程中,超声振动集中作用于坯料5的边缘部分,即齿轮件的轮齿部位。一方面能显著促进材料充填型腔,提高零件尺寸精度;另一方面在轮齿部位诱导纳米晶化,实现增韧,而轮辐部位则依旧保持非晶状态。关闭上超声振动环1和下超声振动环6的超声振动,以及电阻加热棒3。上超声振动环1、上冲头2、下超声振动环6和下冲头7一起以相同速度上行,直至将成形后的零件5顶出凹模5的内腔。成形过程结束。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (6)
- 一种基于超声振动的塑性成形及梯度增韧方法,其特征在于,该增韧方法包括下列步骤:(a)针对待成形的非晶合金零件的实际使用需求,在待成形的非晶合金零件上划分出待加强韧性的部位,该部位用于形成纳米晶增韧相,其他部位在成形中保留其非晶状态;(b)设计用于成形待成形的非晶合金零件的增韧装置,该装置与外部驱动机构相连,该装置包括与超声振动变幅杆相连的镶块和加热棒,所述镶块与所述待加强韧性的部位相对应,用于对待加强韧性的部位施加超声振动,所述加热棒用于将待加工的原材料坯料加热至其成形温度,所述超声振动变幅杆产生的超声振动的参数是在采用有限元数值模拟分析超声振动能量传播的过程中获取,其中,通过调整超声振动的幅度、频率和功率调整超声振动能量,当超声振动能量超过纳米晶化所需的能量阈值时,对应的超声振动的幅度、频率和功率为所需的超声振动的参数;(c)将原材料坯料置于所述装置中,所述加热棒加热该原材料坯料至其成形温度,所述装置合模成形所需的非晶合金零件,超声振动在合模过程中启动,直至开模时停止。
- 如权利要求1所述的一种基于超声振动的塑性成形及梯度增韧方法,其特征在于,所述成形温度的范围介于所述原材料坯料的玻璃化温度和晶化温度之间。
- 如权利要求1或2所述的一种基于超声振动的塑性成形及梯度增韧方法,其特征在于,在步骤(b)中,所述加热棒优选采用电阻加热棒。
- 如权利要求1-3任一项所述的一种基于超声振动的塑性成形及梯度增韧方法,其特征在于,在步骤(b)中,所述增韧装置优选采用用于热塑性成形的模具。
- 如权利要求1-4任一项所述的一种基于超声振动的塑性成形及梯度增韧方法,其特征在于,所述非晶合金为包括Pd、Pt、Au、Zr、Ti、Fe、Cu、Ni、Al、Mg或Ce基的具备热塑性成形能力的非晶合金。
- 一种如权利要求1-5所述的增韧方法所采用的装置,其特征在于,该装置包括上模、下模和凹模,所述上模与下模相对设置,并与所述凹模构成成形型腔,所述上模和下模中均设置有冲头和镶块,所述冲头与驱动伺服压力机相连,用于将原材料坯料成形为所需的三维结构,所述镶块与超声振动变幅杆相连,用于对待加强韧性的部位进行超声振动,所述凹模中设置有加热棒,该加热棒用于对坯料进行加热。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17916449.6A EP3530772B1 (en) | 2017-12-11 | 2017-12-19 | Plastic forming and toughening process method and apparatus based on ultrasonic vibration |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711304450.X | 2017-12-11 | ||
CN201711304450.XA CN108085632B (zh) | 2017-12-11 | 2017-12-11 | 一种基于超声振动的塑性成形及增韧工艺方法及其装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019113995A1 true WO2019113995A1 (zh) | 2019-06-20 |
Family
ID=62174565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/117069 WO2019113995A1 (zh) | 2017-12-11 | 2017-12-19 | 一种基于超声振动的塑性成形及增韧工艺方法及其装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3530772B1 (zh) |
CN (1) | CN108085632B (zh) |
WO (1) | WO2019113995A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111590190A (zh) * | 2020-05-28 | 2020-08-28 | 广东工业大学 | 一种用于大尺寸非晶合金的超声摩擦焊接成型方法 |
CN111753452A (zh) * | 2020-06-23 | 2020-10-09 | 华中科技大学 | 一种非晶合金零件的能场辅助智能多点成形方法及系统 |
CN112077303A (zh) * | 2020-08-20 | 2020-12-15 | 崇义章源钨业股份有限公司 | 棒线材连排模具及其的制造方法 |
CN114178387A (zh) * | 2021-12-14 | 2022-03-15 | 沈阳航空航天大学 | 一种超声振动辅助燃烧室帽罩粘性介质成形的装置 |
WO2024104059A1 (zh) * | 2022-11-14 | 2024-05-23 | 临海伟星新型建材有限公司 | 一种利用振动-温度复合场退火制备高韧性pp-r塑料管道的方法及装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109576514B (zh) * | 2018-11-05 | 2021-04-06 | 华中科技大学 | 非晶基复合材料、制备方法及超声振动热塑性成形装置 |
CN110026478B (zh) * | 2019-04-30 | 2024-05-03 | 中国民用航空飞行学院 | 基于气压加载的振动蠕变复合时效渐进成形的方法和装置 |
CN110117711B (zh) * | 2019-05-05 | 2021-01-19 | 深圳大学 | 一种驱动非晶合金快速回春的方法 |
JP7207347B2 (ja) * | 2020-02-13 | 2023-01-18 | トヨタ自動車株式会社 | 被打ち抜き材の製造方法 |
CN111531175A (zh) * | 2020-05-09 | 2020-08-14 | 苏州大学 | 粉末浆料超声场助压印成型微结构装置 |
CN114058890B (zh) * | 2021-11-24 | 2022-04-19 | 西北工业大学 | 一种三维超声结合声场检测制备Mg-Al-Zn-Mn-Cu多元合金的方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000140999A (ja) * | 1998-11-11 | 2000-05-23 | Toyota Motor Corp | 半凝固ビレットの製造方法 |
CN101623918A (zh) * | 2009-08-04 | 2010-01-13 | 深圳大学 | 一种超声波辅助注射成型模具及其成型方法 |
CN101736213A (zh) | 2010-01-05 | 2010-06-16 | 北京航空航天大学 | 一种通过超声处理使非晶合金强韧化的方法 |
CN102002659A (zh) | 2010-11-19 | 2011-04-06 | 江苏大学 | 一种对非晶合金条带连续进行纳米晶化的方法 |
CN102601936A (zh) * | 2012-03-01 | 2012-07-25 | 大连理工大学 | 一种超声振动与抽真空集成的微注塑模具及成型方法 |
US20140219861A1 (en) * | 2010-11-10 | 2014-08-07 | Purdue Research Foundation | Method of producing particulate-reinforced composites and composites produced thereby |
CN105215246A (zh) * | 2015-11-16 | 2016-01-06 | 上海卫星装备研究所 | 超声振动辅助金属微模压成形装置及其使用方法 |
CN105396888A (zh) * | 2015-09-30 | 2016-03-16 | 广西大学 | 一种超声波与背压力联合作用下的等径角挤压装置 |
CN105420522A (zh) | 2015-11-10 | 2016-03-23 | 华中科技大学 | 一种大塑性非晶基复合材料的制备方法 |
CN106975670A (zh) * | 2017-04-19 | 2017-07-25 | 哈尔滨理工大学 | 一种超声波辅助挤压装置及方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3127310B2 (ja) * | 1991-05-31 | 2001-01-22 | 本田技研工業株式会社 | 非晶質合金の製造方法 |
JP4112952B2 (ja) * | 2002-11-19 | 2008-07-02 | 新日本製鐵株式会社 | 表層部をナノ結晶化させた金属製品の製造方法 |
CN101220405A (zh) * | 2007-10-10 | 2008-07-16 | 天津大学 | 一种超声表面滚压加工纳米化方法及装置 |
CN101423923B (zh) * | 2008-12-12 | 2014-04-09 | 江苏大学 | 一种利用功率超声实现大块金属玻璃纳米晶化的方法 |
CN101698903B (zh) * | 2009-10-21 | 2012-07-04 | 河海大学 | 金属基非晶/纳米晶复合材料层的制备方法 |
-
2017
- 2017-12-11 CN CN201711304450.XA patent/CN108085632B/zh active Active
- 2017-12-19 EP EP17916449.6A patent/EP3530772B1/en active Active
- 2017-12-19 WO PCT/CN2017/117069 patent/WO2019113995A1/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000140999A (ja) * | 1998-11-11 | 2000-05-23 | Toyota Motor Corp | 半凝固ビレットの製造方法 |
CN101623918A (zh) * | 2009-08-04 | 2010-01-13 | 深圳大学 | 一种超声波辅助注射成型模具及其成型方法 |
CN101736213A (zh) | 2010-01-05 | 2010-06-16 | 北京航空航天大学 | 一种通过超声处理使非晶合金强韧化的方法 |
US20140219861A1 (en) * | 2010-11-10 | 2014-08-07 | Purdue Research Foundation | Method of producing particulate-reinforced composites and composites produced thereby |
CN102002659A (zh) | 2010-11-19 | 2011-04-06 | 江苏大学 | 一种对非晶合金条带连续进行纳米晶化的方法 |
CN102601936A (zh) * | 2012-03-01 | 2012-07-25 | 大连理工大学 | 一种超声振动与抽真空集成的微注塑模具及成型方法 |
CN105396888A (zh) * | 2015-09-30 | 2016-03-16 | 广西大学 | 一种超声波与背压力联合作用下的等径角挤压装置 |
CN105420522A (zh) | 2015-11-10 | 2016-03-23 | 华中科技大学 | 一种大塑性非晶基复合材料的制备方法 |
CN105215246A (zh) * | 2015-11-16 | 2016-01-06 | 上海卫星装备研究所 | 超声振动辅助金属微模压成形装置及其使用方法 |
CN106975670A (zh) * | 2017-04-19 | 2017-07-25 | 哈尔滨理工大学 | 一种超声波辅助挤压装置及方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3530772A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111590190A (zh) * | 2020-05-28 | 2020-08-28 | 广东工业大学 | 一种用于大尺寸非晶合金的超声摩擦焊接成型方法 |
CN111753452A (zh) * | 2020-06-23 | 2020-10-09 | 华中科技大学 | 一种非晶合金零件的能场辅助智能多点成形方法及系统 |
CN111753452B (zh) * | 2020-06-23 | 2023-04-07 | 华中科技大学 | 一种非晶合金零件的能场辅助智能多点成形方法及系统 |
CN112077303A (zh) * | 2020-08-20 | 2020-12-15 | 崇义章源钨业股份有限公司 | 棒线材连排模具及其的制造方法 |
CN114178387A (zh) * | 2021-12-14 | 2022-03-15 | 沈阳航空航天大学 | 一种超声振动辅助燃烧室帽罩粘性介质成形的装置 |
WO2024104059A1 (zh) * | 2022-11-14 | 2024-05-23 | 临海伟星新型建材有限公司 | 一种利用振动-温度复合场退火制备高韧性pp-r塑料管道的方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3530772A1 (en) | 2019-08-28 |
CN108085632A (zh) | 2018-05-29 |
EP3530772A4 (en) | 2019-12-18 |
CN108085632B (zh) | 2019-07-23 |
EP3530772B1 (en) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019113995A1 (zh) | 一种基于超声振动的塑性成形及增韧工艺方法及其装置 | |
CN103769482B (zh) | 一种钛合金进气道零件的整体成形方法 | |
CN105420522B (zh) | 一种大塑性非晶基复合材料的制备方法 | |
CN112139348B (zh) | 一种非晶微纳结构的制备方法及热压成型装置 | |
CN103447432B (zh) | 一种大尺寸镁合金零件的等温模锻工艺 | |
KR101293631B1 (ko) | 선박용 엔진 실린더 커버의 제조방법 | |
CN102527803A (zh) | 一种高强钢局部加热成形方法 | |
CN104174677A (zh) | 一种常温下镁合金超声波微挤压成形细化晶粒工艺 | |
CN108543898A (zh) | 超声辅助精锻方法与装置 | |
CN102773387A (zh) | 一种法兰式球阀阀盖的锻造方法 | |
CN101367103B (zh) | 一种镁合金板材旋压成型工艺 | |
CN105081071B (zh) | 一种阶梯盒形类零件工艺成形方法 | |
CN106583543A (zh) | 一种马氏体钢板材复杂形状构件的热成形方法 | |
CN106890865A (zh) | 大直径aq80m镁合金饼材挤锻集成成形工艺 | |
US20200055121A1 (en) | Method of creating a component using additive manufacturing | |
CN105363979A (zh) | 一种用于机器人减速器输出盘的锻造工艺 | |
CN101780624A (zh) | 一种钛合金蜗壳件成型方法 | |
CN104551545B (zh) | 一种细晶组织轴瓦的应变诱发式半固态成形装置及工艺 | |
CN114752818B (zh) | 一种钛合金点阵结构增韧纳米结构铝合金复合材料及其制备方法 | |
CN108942123B (zh) | 非晶柔轮及其制备方法 | |
CN104493436B (zh) | 一种有强制补料的两端内翻边钛合金筒形零件的制造方法 | |
CN105970130B (zh) | 一种交替反挤压制备细晶镁合金的方法 | |
CN102133698A (zh) | 一种飞机金属整体结构制造方法 | |
CN103056260B (zh) | 一种长轴类大倾斜角法兰锻件成形方法 | |
WO2022016609A1 (zh) | 一种产品制备工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017916449 Country of ref document: EP Effective date: 20190107 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17916449 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |