WO2019113918A1 - 辅助变流电路、辅助变流器和辅助变流柜 - Google Patents

辅助变流电路、辅助变流器和辅助变流柜 Download PDF

Info

Publication number
WO2019113918A1
WO2019113918A1 PCT/CN2017/116339 CN2017116339W WO2019113918A1 WO 2019113918 A1 WO2019113918 A1 WO 2019113918A1 CN 2017116339 W CN2017116339 W CN 2017116339W WO 2019113918 A1 WO2019113918 A1 WO 2019113918A1
Authority
WO
WIPO (PCT)
Prior art keywords
thyristor
phase
inverter
auxiliary converter
voltage
Prior art date
Application number
PCT/CN2017/116339
Other languages
English (en)
French (fr)
Inventor
唐子辉
蒋学君
孙晓丽
王雷
陈宏�
刘革莉
杨春宇
刘立刚
Original Assignee
中车永济电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车永济电机有限公司 filed Critical 中车永济电机有限公司
Publication of WO2019113918A1 publication Critical patent/WO2019113918A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters

Definitions

  • the present invention relates to the field of electronic power technologies, and in particular, to an auxiliary converter circuit, an auxiliary converter, and an auxiliary converter cabinet.
  • the auxiliary converter is the main power supply equipment on the electric locomotive, which is related to the overall running performance of the electric locomotive.
  • the auxiliary converter can invert the high-voltage single-phase alternating current in the traction converter into a low-voltage three-phase alternating current, and supply power to the auxiliary devices such as the braking system, the cooling system, the air conditioner, and the lighting on the electric locomotive.
  • the auxiliary converter mainly includes four parts: an AC power source, a rectifier, an inverter, and a filter.
  • the rectifier converts the alternating current into direct current
  • the inverter inverts the direct current into the alternating current, which generates high frequency harmonics.
  • the integrated high leakage inductance auxiliary transformer and The filter circuit composed of the filter capacitor filters out a part of the high-frequency harmonics, and adopts an electromagnetic compatibility filter, that is, adds a high-frequency filter device in the auxiliary converter, including a plurality of filter inductors, filter capacitors, and matched resistors.
  • the high frequency harmonics generated in the auxiliary converter are filtered out. All of the above settings increase the weight of the auxiliary converter, increase the volume of the auxiliary converter, and the plurality of circuit components increase the loss of the auxiliary converter, and the efficiency is low.
  • the invention provides an auxiliary converter circuit, which uses a three-phase reactor and a small number of circuit components of a three-phase capacitor to form a filter, and filters the three-phase AC voltage outputted by the inverter, and the auxiliary converter circuit is used as an auxiliary converter.
  • the loss of the auxiliary converter is reduced, the efficiency is improved, and the auxiliary converter is lightened.
  • a first aspect of the present invention provides an auxiliary converter circuit including: an alternating current power source, a rectifier, an inverter, and a filter, the filter including: a three-phase reactor and a three-phase capacitor; in,
  • the rectifier is connected to the alternating current power source, and the rectifier is configured to convert a single-phase alternating current voltage output by the alternating current power source into a direct current voltage;
  • the inverter is connected to the rectifier, and the inverter is configured to invert a DC voltage output by the rectifier into a three-phase AC voltage;
  • the three-phase reactors are respectively connected to the inverter and the three-phase capacitor, and the three-phase capacitors are used for connection with an output voltage detecting device;
  • the filter is configured to filter out high frequency harmonics in the three-phase AC voltage output by the inverter.
  • a second aspect of the present invention provides an auxiliary converter including: a controller, two output voltage detecting devices, and two auxiliary converter circuits as described above, wherein
  • Two of the auxiliary converter circuits are respectively connected to the controller;
  • Each of the auxiliary converter circuits is connected to each of the corresponding output voltage detecting devices.
  • a third aspect of the invention provides an auxiliary converter cabinet for storing an auxiliary converter as described above, the auxiliary converter cabinet comprising: an upper layer region, a middle layer region, a bottom layer region, and a longitudinal region The longitudinal region is located on the same side of the middle layer region and the bottom layer region, and the longitudinal region is located below the upper layer region;
  • the alternating current power source is located at a front surface of the longitudinal region
  • two of the rectifiers are located at a front surface of the bottom layer region
  • two ground detecting devices are located at a front surface of the longitudinal region
  • one of the inverters is located at the bottom layer a front side of the area, another of the inverters being located in the middle layer area
  • two of the three-phase reactors being located on the back side of the bottom layer area
  • two of the three-phase capacitors being located on the back side of the longitudinal area
  • two The output voltage detecting means is located on the front side of the longitudinal area
  • the controller is located in the upper layer area.
  • the auxiliary converter circuit comprises: an alternating current power source, a rectifier, an inverter, a filter, the filter comprises: a three-phase reactor and a three-phase capacitor; the rectifier is connected with an alternating current power source, and the rectifier is used for outputting the alternating current power source.
  • the single-phase AC voltage is converted into a DC voltage;
  • the inverter is connected to the rectifier, and the inverter is used to invert the DC voltage outputted by the rectifier into a three-phase AC voltage;
  • the three-phase reactor is respectively connected to the inverter and the three-phase capacitor,
  • the phase capacitor is used to connect with the output voltage detecting device;
  • the filter is used to filter out the three-phase AC voltage of the inverter output High frequency harmonics.
  • the auxiliary converter circuit provided by the invention utilizes a filter composed of a three-phase reactor and a three-phase capacitor for filtering, and solves multiple circuits of an integrated high leakage inductance auxiliary transformer, a filter capacitor, an electromagnetic compatibility filter and the like in the prior art.
  • the problem of high loss and low efficiency generated when the component is filtered is that when the auxiliary converter circuit is used as a component of the auxiliary converter, the loss of the auxiliary converter is reduced, the efficiency is improved, and the auxiliary converter is lightened.
  • FIG. 1 is a schematic diagram 1 of an auxiliary converter circuit provided by the present invention.
  • FIG. 2 is a second schematic diagram of an auxiliary converter circuit provided by the present invention.
  • FIG. 3 is a schematic diagram of an auxiliary converter provided by the present invention.
  • FIG. 4 is a schematic structural view of an auxiliary converter cabinet provided by the present invention.
  • FIG. 1 is a schematic diagram 1 of an auxiliary converter circuit provided by the present invention.
  • the embodiment provides an auxiliary converter circuit 1000 including: an AC power source 10 , a rectifier 20 , an inverter 30 , and a filter 40 .
  • the filter 40 includes a three-phase reactor 41 and a three-phase capacitor 42.
  • Traction converters and auxiliary converters are usually provided on electric locomotives. Traction converters mainly provide traction for electric locomotives, while auxiliary converters are mainly used for braking systems, cooling systems, air conditioners, lighting, etc. on electric locomotives. The device is powered.
  • the rectifier 20 is connected to an AC power source 10, which is a high voltage single-phase AC power source in a traction converter on an electric locomotive, typically 1000V in size.
  • the rectifier 20 is for converting a single-phase AC voltage output from the AC power source 10 into a DC voltage.
  • the rectifier 20 can be used to connect to the controller, and the controller can control the rectifier 20 to adjust the magnitude of the DC voltage output by the rectifier 20.
  • the operator can adjust the DC voltage output by the rectifier 20 to be higher than 1000V or lower than 1000V or remain unchanged as the case may be.
  • the inverter 30 is connected to the rectifier 20, and the inverter 30 is used to invert the DC voltage output from the rectifier 20 into a three-phase AC voltage. Specifically, the inverter 30 inverts the DC voltage to obtain a pulse width modulation ( Pulse Width Modulation, PWM) Waveform voltage.
  • PWM Pulse Width Modulation
  • the inverter 30 may be provided with a modulation ratio, and the inverter 30 may keep the output PWM waveform voltage constant by the modulation ratio; the inverter 30 may also adjust the PWM output pulse width to adjust the three-phase output of the inverter 30.
  • the size of the AC voltage is provided to the rectifier 20, and the inverter 30 is used to invert the DC voltage output from the rectifier 20 into a three-phase AC voltage.
  • PWM Pulse Width Modulation
  • the inverter 30 can also be used to connect to the controller, and the controller can control the inverter 30 to adjust the magnitude of the three-phase AC voltage output by the inverter 30.
  • the operator can adjust the three-phase AC voltage output by the inverter 30 to be higher than, lower than or equal to the DC voltage output by the rectifier 20 according to specific conditions.
  • the three-phase reactor 41 is connected to the inverter 30 and the three-phase capacitor 42, respectively, and the three-phase reactor 41 and the three-phase capacitor 42 together constitute a filter 40, wherein the PWM waveform voltage output by the inverter 30 cannot be directly used.
  • the device 40 is used to supply power to the device, and the filter 40 is used to filter the PWM waveform voltage to obtain a sine wave voltage, and at the same time, the high frequency harmonics in the three-phase AC voltage output by the inverter 30 can be filtered to obtain a three-phase high quality.
  • the AC voltage supplies power to the device to avoid the influence of high frequency harmonics generated by the inverter 30 during the inverter process on the device.
  • the PWM waveform voltage output from the inverter 30 is high, and the voltage is filtered by the filter 40.
  • the current can be reduced, thereby reducing the loss of the three-phase reactor 41 and improving the efficiency.
  • the inductance value of the three-phase reactor 41 can be 1 mH, so that the resonance frequency of the sine wave voltage outputted by the filter 40 is kept within a small range, and the operator can also replace the three-phase with other inductance values according to the specific situation. Reactor.
  • the three-phase reactor 41 may be an integrated arrangement, which is respectively connected to the inverter 30 and the three-phase capacitor 42; or may be separately provided as three single-phase reactors.
  • the three-phase windings of the three-phase capacitor 42 can be connected end to end, in a triangular structure or a star structure. This embodiment does not limit the arrangement of the three-phase reactor 41 and the structure of the three-phase capacitor 42.
  • the specific process of the auxiliary converter circuit 1000 for powering the device in the embodiment is: the rectifier 20 converts the single-phase AC voltage 1000V into a DC voltage of 750V, and the inverter 30 will The 750V DC voltage inverts the 750V three-phase PWM waveform voltage, and the filter 40 filters the 750V three-phase PWM waveform voltage into a 450V sine wave voltage for powering the device.
  • the operator can also control the magnitude of the DC voltage output by the rectifier 20, the magnitude of the three-phase AC voltage output by the inverter 30, and the magnitude of the sine wave voltage output by the filter 40, as the case may be.
  • the auxiliary converter circuit provided in this embodiment includes: an AC power source, a rectifier, an inverter, and a filter.
  • the filter includes: a three-phase reactor and a three-phase capacitor; the rectifier is connected to an AC power source, and the rectifier is used to output the AC power source.
  • the single-phase AC voltage is converted into a DC voltage;
  • the inverter is connected to the rectifier, and the inverter is used to invert the DC voltage outputted by the rectifier into a three-phase AC voltage;
  • the three-phase reactor is respectively connected to the inverter and the three-phase capacitor.
  • a three-phase capacitor is used to connect to the output voltage detecting device; the filter is used to filter out high frequency harmonics in the three-phase AC voltage output from the inverter.
  • the three-phase AC voltage is filtered by a filter composed of a three-phase reactor and a small number of three-phase capacitor components, and the integrated high leakage inductance auxiliary transformer and filter capacitor used in the prior art are compared on the premise of effective filtering.
  • a plurality of circuit components such as an electromagnetic compatibility filter are filtered.
  • FIG. 2 is a schematic diagram 2 of the auxiliary converter circuit 1000 provided by the present invention.
  • the rectifier 20 includes: a first thyristor S1, a second thyristor S2, and a first diode. Tube D1 and second diode D2.
  • the cathode of the first thyristor S1 is connected to the cathode of the first diode D1, and the anode of the first thyristor S1 is respectively connected to the first end of the alternating current power source 10 and the cathode of the second thyristor S2;
  • the cathode of the silicon control S2 is also connected to the second end of the alternating current power source 10 and the cathode of the second diode D2, respectively, and the anode of the second thyristor S2 is connected to the anode of the second diode D2.
  • the cathode of the first diode D1 is connected to the first end of the inverter 30, the anode of the first diode D1 is connected to the cathode of the second diode D2, and the anode of the second diode D2 is connected to the inverter The second end of 30 is connected.
  • the gate of the first thyristor S1 and the gate of the second thyristor S2 are respectively connected to the controller.
  • the controller can send to the gate of the first thyristor S1 and the gate of the second thyristor S2
  • the control signal controls the turn-off and turn-on of the first thyristor S1 and the second thyristor S2.
  • the controller can also adjust the contact angle of the DC voltage outputted by the rectifier 20 by controlling the turn-off and conduction of the first thyristor S1 and the second thyristor S2, thereby controlling the magnitude of the output DC voltage. For example, when the controller controls the conduction thyristor when the contact angle is 30°, the DC voltage output from the rectifier 20 is the magnitude of the voltage when the contact angle is 30°.
  • the first diode D1 and the second diode D2 are freewheeling diodes, and the first diode D1 and the second diode D2 are formed between the first thyristor S1 and the second thyristor S2.
  • the loop causes the high DC voltage of the thyristor output to be consumed in a continuous current mode in the loop, thereby protecting the components in the circuit from damage.
  • the inverter 30 includes a pre-processing unit 31 and an inverter unit 32.
  • the pre-processing unit 31 is connected to the rectifier 20 and the inverter unit 32 respectively, and the inverter unit 32 is connected to the three-phase reactor 41.
  • the pre-processing unit 31 is configured to pre-process the DC voltage outputted by the rectifier 20, and the pre-processing may be The DC voltage is subjected to at least one of filtering or voltage stabilization processing.
  • the filtering process is to filter the harmonics in the DC voltage and voltage signal; the voltage stabilization process is to process the collected unstable sawtooth DC voltage into a stable smooth DC voltage.
  • the inverter unit 32 is convenient to invert the pre-processed DC voltage to a stable three-phase AC voltage to supply power to the device.
  • the inverter unit 32 may include: a first thyristor T1, a second thyristor T2, a third thyristor T3, a fourth thyristor T4, a fifth thyristor T5, and a sixth thyristor T6.
  • the collectors of the first thyristors T1 are respectively connected to the cathodes of the first diode D1 and the collectors of the third thyristors T3, and the emitters of the first thyristors T1 and the first phase lines L1 and II of the three-phase AC voltages, respectively.
  • the collector of the thyristor T2 is connected; the emitter of the second thyristor T2 is connected to the anode of the second diode D2 and the emitter of the fourth thyristor T4, respectively.
  • the collector of the third thyristor T3 is also connected to the collector of the fifth thyristor T5, and the emitter of the third thyristor T3 is respectively connected to the collector of the second phase line L2 and the fourth thyristor T4 of the three-phase AC voltage;
  • the emitter of the thyristor T4 is also connected to the emitter of the sixth thyristor T6.
  • the emitters of the fifth thyristor T5 are respectively connected to the collectors of the third phase line L3 and the sixth thyristor T6 of the three-phase AC voltage.
  • a gate of the first thyristor T1, a gate of the second thyristor T2, a gate of the third thyristor T3, a gate of the fourth thyristor T4, a gate of the fifth thyristor T5, and a gate of the sixth thyristor T6 are respectively used for Connect to the controller.
  • the controller is directed to the gate of the first thyristor T1, the gate of the second thyristor T2, the gate of the third thyristor T3, the gate of the fourth thyristor T4, the gate of the fifth thyristor T5, and the sixth thyristor T6.
  • the gate sends a control signal.
  • the controller can be used to control the length of time the thyristor is turned on, and control the rate of change of the three-phase AC voltage output by the inverter unit 32. For example, if the thyristor is turned on instantaneously, the output three-phase AC voltage needs to be changed from 0V to the set three-phase AC voltage value in an instant, and the voltage change rate is large, which easily causes the circuit to oscillate and generates a large number of high-frequency harmonics. It has an adverse effect on external devices.
  • the controller controls the thyristor to be turned on for 3-4us, and the three-phase AC voltage output rate output by the inverter unit 32 is small, which reduces the high frequency harmonic generated by the inverter unit 32 during the inverter process. wave.
  • the controller can also be used to adjust the contact angle of the three-phase AC voltage output by the inverter unit 32, thereby controlling the magnitude of the three-phase AC voltage value of the output voltage output of the inverter unit 32, thereby causing the output of the three-phase AC voltage.
  • the time at which the thyristor is turned on is changed from 0 V to the set voltage value.
  • the operator can set the three-phase AC voltage value according to the equipment requirements.
  • each thyristor in the inverter unit 32 may be provided with a parasitic diode connected in parallel, and the parasitic diode forms a closed loop with the thyristor for protecting the thyristor from damage.
  • the filter 40 includes a three-phase reactor 41 and a three-phase capacitor 42.
  • the inductance value of the three-phase reactor 41 may be 1 mH; to reduce the capacitance of the capacitance of the three-phase capacitor 42, reduce the volume of the capacitor
  • the three-phase winding of the three-phase capacitor may be connected end to end such that the three-phase capacitor 42 has a triangular structure.
  • the filter 40 is configured to filter the PWM waveform voltage to obtain a sine wave voltage, and at the same time, filter the high frequency harmonics in the three-phase AC voltage output by the inverter 30 to obtain a three-phase AC power supply device with excellent quality. The influence of the high frequency harmonic generated by the inverter 30 during the inverter process on the external device is eliminated.
  • the controller in order to reduce the influence of high-frequency harmonics on the device, first controls the rate of change of the three-phase AC voltage output by the inverter unit, thereby reducing the generation of the inverter unit in the inverter process.
  • High-frequency harmonics secondly, the controller controls the contact angle of the three-phase AC voltage output by the inverter unit to further reduce the high-frequency harmonics in the three-phase AC voltage; and also consists of a three-phase reactor and a three-phase capacitor.
  • the filter further reduces the high frequency harmonic content in the three-phase AC voltage.
  • the three-phase reactor and the three-phase capacitors have a small number of circuit components, which can effectively reduce the high-frequency harmonics in the three-phase AC voltage, and ensure the electromagnetic compatibility of the auxiliary converter circuit.
  • the performance when the auxiliary converter circuit is used as an auxiliary converter, reduces the loss of the auxiliary converter, improves the efficiency, and makes the auxiliary converter lighter.
  • the auxiliary converter circuit 1000 may further include: a grounding detecting device 100, the rectifier 20 is connected to the inverter 30 through the grounding detecting device 100, and the grounding detecting device 100 is configured to perform grounding detection on the auxiliary converter circuit 1000 to protect effect.
  • the high-impedance grounding detection mode is adopted, and the resistance value of the grounding detecting device 100 is 10K ⁇ /20K ⁇ .
  • the high impedance can reduce the current in the auxiliary converter circuit 1000. Thereby, the loss of the ground detecting device 100 is reduced, and the efficiency is improved.
  • the auxiliary converter circuit 1000 provided by the present invention may further include: a fuse 50, a surge suppressor 60, a first current detecting device 70, a DC filtering device 80, a DC detecting device 90, and a Two current detecting devices 200.
  • the fuse 50 is connected to the AC power source 10, and the fuse 50 is used for overcurrent protection of the auxiliary converter circuit 1000 to avoid adversely affecting the device when the auxiliary converter circuit 1000 is overloaded, and to the auxiliary converter circuit 1000 itself. Protect.
  • the surge suppressor 60 is connected to the fuse 50 and the first current detecting device 70, respectively.
  • the surge suppressor 60 uses a varistor, and the varistor is used to generate an instant to the auxiliary converter circuit 1000.
  • the high peak voltage is suppressed to protect the auxiliary converter circuit 1000 itself.
  • the first current detecting device 70 is connected to the rectifier 20, and the first current detecting device 70 is configured to detect the single-phase AC voltage output from the AC power source 10; the DC filter device 80 is connected to the rectifier 20 and the DC detecting device 90, respectively, and the DC filter device 80 is used to filter out harmonics generated by the rectifier 20 during the rectification process to avoid adverse effects on the device; the DC detecting device 90 is used for The DC voltage output from the rectifier 20 is detected.
  • the ground detecting device 100 is connected to the DC detecting device 90 and the inverter 30, respectively, the second current detecting device 200 is connected to the inverter 30 and the filter 40, and the second current detecting device 200 is used to output the inverter 30. Three-phase AC voltage is detected.
  • the auxiliary converter circuit provided in this embodiment includes protection devices (fuse and surge suppressor), grounding detecting device, and current detecting device (first current detecting device, DC detecting device, and second current detecting device), and the auxiliary is improved. The safety and reliability of the converter circuit.
  • the present invention has been described by taking a controller as an external device of the auxiliary converter circuit as an example.
  • the auxiliary converter circuit may further include a controller, that is, the controller is an internal device of the auxiliary converter circuit.
  • the present invention does not particularly limit the specific arrangement of the controller.
  • FIG. 3 is a schematic diagram of an auxiliary converter provided by the present invention.
  • the auxiliary converter 2000 provided in this embodiment includes: a controller 400 and two outputs. Voltage detecting device 300 and two auxiliary converter circuits 1000 as described above.
  • the two auxiliary converter circuits 1000 are respectively connected to the controller 400, and each of the auxiliary converter circuits 1000 is respectively connected to the corresponding output voltage detecting device 300.
  • the auxiliary converter 2000 uses two auxiliary converter circuits 1000 as described above. When a converter circuit is used in the prior art, the power consumption of each component in the circuit is reduced, and the use of each component is increased. life. Moreover, if one auxiliary converter circuit 1000 in the auxiliary converter 2000 fails to operate, the other auxiliary converter circuit 1000 can operate normally, and the reliability of the auxiliary converter 2000 is improved.
  • the auxiliary converter 2000 further includes a fan 500.
  • the two auxiliary converter circuits 1000 are respectively connected to the fan 500, and the fan 500 is used to assist the converter 2000 to dissipate heat.
  • the auxiliary converter provided in this embodiment can effectively reduce the high frequency harmonics in the voltage outputted by the circuit by using the auxiliary converter circuit, and ensure the electromagnetic compatibility performance of the auxiliary converter circuit, and assist the converter circuit as an auxiliary.
  • the auxiliary converter includes two sets of auxiliary converter circuits. If one of the auxiliary converter circuits fails to operate, the other auxiliary converter circuit can still operate normally, which improves the reliability of the auxiliary converter.
  • FIG. 4 is a junction of the auxiliary converter cabinet provided by the invention.
  • the auxiliary converter cabinet 3000 provided in this embodiment is used for storing the auxiliary converter 2000 as described above, and includes: an upper layer area 3001, a middle layer area 3002, a bottom layer area 3003, and a longitudinal area 3004.
  • the region 3004 is located on the same side of the middle layer region 3002 and the bottom layer region 3003, and the longitudinal region 3004 is located below the upper layer region 3001.
  • the AC power source 10 is located on the front side of the longitudinal region 3004, the two rectifiers 20 are located on the front side of the bottom layer region 3003, the two ground detecting devices 100 are located on the front side of the longitudinal region 3004, one inverter 30 is located on the front side of the bottom layer region 3003, and the other inverter The device 30 is located in the middle area 3002.
  • the components of the rectifier 20 and the inverter 30 in the auxiliary converter 2000 are disposed in the front area of the auxiliary converter cabinet 3000 to facilitate maintenance of the auxiliary converter 2000.
  • Two three-phase reactors 41 are located on the back side of the bottom layer region 3003, two three-phase capacitors 42 are located on the back side of the longitudinal region 3004, two output voltage detecting devices 300 are located on the front side of the longitudinal region 3004, and the controller 400 is located in the upper layer region 3001, the fan 500 is located in the upper area 3001.
  • the two rectifiers 20 are disposed close to the AC power source 10
  • the two ground detecting devices 100 are disposed close to the AC power source 10
  • the two output voltage detecting devices 300 are disposed near the controller 400
  • the fan 500 is disposed adjacent to the inverter 30.
  • the fan 500 is disposed close to the component with high heat generation in the auxiliary converter 2000, which is beneficial to assisting the heat exchanger 2000 to dissipate heat in time and improve performance.
  • the auxiliary converter cabinet provided in this embodiment is convenient for the auxiliary converter to be repaired by setting the main power device in the front area of the auxiliary converter cabinet, and also setting the heat generating component in the auxiliary converter. It is beneficial to assist the converter to dissipate heat in time and improve the performance of the auxiliary converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

一种辅助变流电路(1000)、辅助变流器(2000)和辅助变流柜(3000),其中辅助变流电路包括:交流电源(10)、整流器(20)、逆变器(30)、滤波器(40),滤波器包括:三相电抗器(41)和三相电容器(42);整流器与交流电源连接,整流器用于将交流电源输出的单相交流电压转化为直流电压;逆变器与整流器连接,逆变器用于将整流器输出的直流电压逆变为三相交流电压;三相电抗器分别与逆变器和三相电容器连接,三相电容器用于与输出电压检测装置连接;滤波器用于滤去逆变器输出的三相交流电压中的高频谐波。该辅助变流电路在作为辅助变流器的组成部分时,降低了辅助变流器的损耗,提高了效率,使得辅助变流器轻量化。

Description

辅助变流电路、辅助变流器和辅助变流柜 技术领域
本发明涉及电子电力技术领域,尤其涉及一种辅助变流电路、辅助变流器和辅助变流柜。
背景技术
辅助变流器是电力机车上的主要供电设备,关系着电力机车的整体运行性能。其中,辅助变流器可以将牵引变流器中的高压单相交流电逆变为低压三相交流电,并为电力机车上的制动系统、冷却系统、空调、照明等辅助设备供电。
现有技术中,辅助变流器主要包括交流电源、整流器、逆变器和滤波器四个部分。其中,整流器将交流电转化为直流电、逆变器将直流电逆变为交流电的过程中,均会产生高频谐波,为了减少高频谐波对外部设备的影响,利用集成高漏感辅助变压器和滤波电容组成的滤波电路滤去一部分高频谐波,同时采用电磁兼容滤波器,即在辅助变流器中增加一套高频率滤波装置,包括多个滤波电感、滤波电容、以及匹配的电阻,滤去辅助变流器中产生的高频谐波。上述设置均增加了辅助变流器的重量,增大了辅助变流器的体积,且多个电路元件增加了辅助变流器的损耗,效率低。
随着交流技术的发展,轻量化成为电力机车辅助变流器技术发展的主流。因此非常有必要开发一款轻量化的辅助变流器,降低辅助变流器的损耗,提高效率。
发明内容
本发明提供一种辅助变流电路,利用三相电抗器和三相电容器少量电路元件组成滤波器,对逆变器输出的三相交流电压进行滤波,在辅助变流电路作为辅助变流器的组成部分时,降低了辅助变流器的损耗,提高了效率,使得辅助变流器轻量化。
本发明的第一方面提供一种辅助变流电路,包括:交流电源、整流器、逆变器、滤波器,所述滤波器包括:三相电抗器和三相电容器;其 中,
所述整流器与所述交流电源连接,所述整流器用于将所述交流电源输出的单相交流电压转化为直流电压;
所述逆变器与所述整流器连接,所述逆变器用于将所述整流器输出的直流电压逆变为三相交流电压;
所述三相电抗器分别与所述逆变器和所述三相电容器连接,所述三相电容器用于与输出电压检测装置连接;
所述滤波器用于滤去所述逆变器输出的三相交流电压中的高频谐波。
本发明的第二方面提供一种辅助变流器,包括:控制器、两个输出电压检测装置以及两个上述的辅助变流电路,其中,
两个所述辅助变流电路分别与所述控制器连接;
每个所述辅助变流电路分别与各自对应的所述输出电压检测装置连接。
本发明的第三方面提供一种辅助变流柜,所述辅助变流柜用于存放如上述的辅助变流器,所述辅助变流柜包括:上层区域、中层区域、底层区域以及纵向区域,所述纵向区域位于所述中层区域和所述底层区域的同一侧,且所述纵向区域位于所述上层区域的下方;
所述交流电源位于所述纵向区域的正面,两个所述整流器位于所述底层区域的正面,两个所述接地检测装置位于所述纵向区域的正面,一个所述逆变器位于所述底层区域的正面,另一个所述逆变器位于所述中层区域,两个所述三相电抗器位于所述底层区域的背面,两个所述三相电容器位于所述纵向区域的背面,两个所述输出电压检测装置位于所述纵向区域的正面,所述控制器位于所述上层区域。
本发明提供的辅助变流电路,包括:交流电源、整流器、逆变器、滤波器,滤波器包括:三相电抗器和三相电容器;整流器与交流电源连接,整流器用于将交流电源输出的单相交流电压转化为直流电压;逆变器与整流器连接,逆变器用于将整流器输出的直流电压逆变为三相交流电压;三相电抗器分别与逆变器和三相电容器连接,三相电容器用于与输出电压检测装置连接;滤波器用于滤去逆变器输出的三相交流电压中 的高频谐波。本发明提供的辅助变流电路,利用三相电抗器和三相电容器组成的滤波器进行滤波,解决了现有技术中采用集成高漏感辅助变压器、滤波电容、电磁兼容滤波器等多个电路元件进行滤波时产生的高损耗、低效率的问题,在辅助变流电路作为辅助变流器的组成部分时,降低了辅助变流器的损耗,提高了效率,使得辅助变流器轻量化。
附图说明
图1为本发明提供的辅助变流电路的示意图一;
图2为本发明提供的辅助变流电路的示意图二;
图3为本发明提供的辅助变流器的示意图;
图4为本发明提供的辅助变流柜的结构示意图。
附图标记说明:
10-交流电源;
20-整流器;
30-逆变器;
31-预处理单元;
32-逆变单元;
40-滤波器;
41-三相电抗器;
42-三相电容器;
50-熔断器;
60-浪涌抑制器;
70-第一电流检测装置;
80-直流滤波装置;
90-直流检测装置;
100-接地检测装置;
200-第二电流检测装置;
300-输出电压检测装置;
400-控制器;
500-风机;
1000-辅助变流电路;
2000-辅助变流器;
3000-辅助变流柜;
S1-第一可控硅;
S2-第一可控硅;
D1-第一二极管;
D2-第二二极管;
T1-第一晶闸管;
T2-第二晶闸管;
T3-第三晶闸管;
T4-第四晶闸管;
T5-第五晶闸管;
T6-第六晶闸管;
L1-第一相线;
L2-第二相线;
L3-第三相线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明提供的辅助变流电路的示意图一,如图1所示,本实施例提供一种辅助变流电路1000,包括:交流电源10、整流器20、逆变器30、滤波器40,滤波器40包括:三相电抗器41和三相电容器42。
电力机车上通常设置有牵引变流器和辅助变流器,牵引变流器主要为电力机车提供牵引力,而辅助变流器主要为电力机车上的制动系统、冷却系统、空调、照明等辅助设备供电。
整流器20与交流电源10连接,该交流电源10为电力机车上牵引变流器中的高压单相交流电源,大小通常为1000V。整流器20用于将交流电源10输出的单相交流电压转化为直流电压。
可选的,整流器20可用于与控制器连接,控制器可以控制整流器20,调节整流器20输出的直流电压的大小。操作人员可根据具体情况调节整流器20输出的直流电压高于1000V或低于1000V或保持不变。
逆变器30与整流器20连接,逆变器30用于将整流器20输出的直流电压逆变为三相交流电压,具体的,逆变器30将该直流电压进行逆变,得到脉冲宽度调制(Pulse Width Modulation,PWM)波形电压。逆变器30中可以设置有调制比,逆变器30可以通过调制比将输出的PWM波形电压保持恒定;逆变器30也可通过调整PWM的脉冲宽度,调整逆变器30输出的三相交流电压的大小。
可选的,逆变器30也可用于与控制器连接,控制器可以控制逆变器30,调节逆变器30输出的三相交流电压的大小。操作人员可根据具体情况调节逆变器30输出的三相交流电压高于、低于或等于整流器20输出的直流电压。
三相电抗器41分别与逆变器30和三相电容器42连接,三相电抗器41和三相电容器42共同组成滤波器40,其中,逆变器30输出的PWM波形电压,不能直接用于给设备供电,滤波器40用于将该PWM波形电压进行滤波处理,得到正弦波电压,同时可滤去逆变器30输出的三相交流电压中的高频谐波,得到品质优良的三相交流电压给设备供电,避免逆变器30在逆变过程中产生的高频谐波对设备的影响。
逆变器30输出的PWM波形电压较高,利用滤波器40对该电压进行滤波,在功率一定的情况下,能够减小电流,从而降低三相电抗器41的损耗,提高效率。三相电抗器41的电感值可为1mH,以使滤波器40输出的正弦波电压的谐振频率保持在一个较小的范围内,操作人员也可根据具体情况,更换为其他电感值的三相电抗器。
三相电抗器41可以为集成设置,分别与逆变器30和三相电容器42连接;也可单独设置成为三个单相电抗器。三相电容器42的三相绕组可首尾连接,呈三角形结构或者星形结构。本实施例对三相电抗器41的设置方式和三相电容器42的结构不做限制。
其中,本实施例中辅助变流电路1000为设备供电的具体过程为:整流器20将单相交流电压1000V,转化为750V的直流电压,逆变器30将 750V的直流电压逆变750V的三相PWM波形电压,滤波器40将750V的三相PWM波形电压进行滤波,转变为450V的正弦波电压,用于给设备供电。操作人员也可根据具体情况,控制整流器20输出直流电压的大小、逆变器30输出的三相交流电压的大小以及滤波器40输出的正弦波电压的大小。
本实施例提供的辅助变流电路,包括:交流电源、整流器、逆变器、滤波器,滤波器包括:三相电抗器和三相电容器;整流器与交流电源连接,整流器用于将交流电源输出的单相交流电压转化为直流电压;逆变器与整流器连接,逆变器用于将整流器输出的直流电压逆变为三相交流电压;三相电抗器分别与逆变器和三相电容器连接,三相电容器用于与输出电压检测装置连接;滤波器用于滤去逆变器输出的三相交流电压中的高频谐波。利用三相电抗器和三相电容器少量电路元器件组成的滤波器对三相交流电压进行滤波,在达到有效滤波的前提下,相对于现有技术中采用的集成高漏感辅助变压器、滤波电容、电磁兼容滤波器等多个电路元件进行滤波,在辅助变流电路作为辅助变流器的组成部分时,降低了辅助变流器的损耗,提高了效率,使得辅助变流器轻量化。
下面采用具体的实施例,对本发明提供的整流器、逆变器以及滤波器进行详细说明。
首先对于整流器进行说明,图2为本发明提供的辅助变流电路1000的示意图二,如图2所示,整流器20包括:第一可控硅S1、第二可控硅S2、第一二极管D1和第二二极管D2。
第一可控硅S1的阴极与第一二极管D1的阴极连接,第一可控硅S1的阳极分别与交流电源10的第一端、第二可控硅S2的阴极连接;第二可控硅S2的阴极还分别与交流电源10的第二端、第二二极管D2的阴极连接,第二可控硅S2的阳极与第二二极管D2的阳极连接。
第一二极管D1的阴极与逆变器30的第一端连接,第一二极管D1的阳极与第二二极管D2的阴极连接;第二二极管D2的阳极与逆变器30的第二端连接。
第一可控硅S1的门极和第二可控硅S2的门极分别用于与控制器连接。其中,控制器可向第一可控硅S1的门极和第二可控硅S2的门极发送 控制信号,控制第一可控硅S1和第二可控硅S2的关断与导通。此外,控制器通过控制第一可控硅S1和第二可控硅S2的关断与导通,还可对整流器20输出的直流电压的接触角进行调节,进而控制输出的直流电压的大小。例如:控制器控制接触角为30°时导通可控硅,则整流器20输出的直流电压值为接触角为30°时电压的大小。
其中,第一二极管D1和第二二极管D2为续流二极管,第一二极管D1和第二二极管D2与第一可控硅S1和第二可控硅S2之间形成回路,使得可控硅输出的高直流电压在回路中以续电流方式消耗,从而起到保护电路中的元件不被损坏的作用。
本实施例中采用两个可控硅和两个二极管,在保证输出直流电压波形一致的前提下,少量的电路元件进一步降低了整流器的损耗,提高了效率。
其次对于逆变器进行说明,如图2所示,逆变器30包括:预处理单元31和逆变单元32。
预处理单元31分别与整流器20和逆变单元32连接,逆变单元32与三相电抗器41连接;预处理单元31用于将整流器20输出的直流电压进行预处理,该预处理可为对该直流电压进行滤波或稳压处理中的至少一种。滤波处理是将直流电压电压信号中的谐波进行过滤;稳压处理是将采集到的不稳定的锯齿波直流电压进行处理变为稳定的平滑直流电压。便于逆变单元32对预处理后的直流电压逆变为稳定的三相交流电压给设备供电。
具体的,逆变单元32可以包括:第一晶闸管T1、第二晶闸管T2、第三晶闸管T3、第四晶闸管T4、第五晶闸管T5和第六晶闸管T6。
第一晶闸管T1的集电极分别与第一二极管D1的阴极、第三晶闸管T3的集电极连接,第一晶闸管T1的发射极分别与三相交流电压中的第一相线L1、第二晶闸管T2的集电极连接;第二晶闸管T2的发射极分别与第二二极管D2的阳极、第四晶闸管T4的发射极连接。
第三晶闸管T3的集电极还与第五晶闸管T5的集电极连接,第三晶闸管T3的发射极分别与三相交流电压中的第二相线L2、第四晶闸管T4的集电极连接;第四晶闸管T4的发射极还与第六晶闸管T6的发射极连接。
第五晶闸管T5的发射极分别与三相交流电压中的第三相线L3、第六晶闸管T6的集电极连接。
第一晶闸管T1的门极、第二晶闸管T2的门极、第三晶闸管T3的门极、第四晶闸管T4的门极、第五晶闸管T5的门极和第六晶闸管T6的门极分别用于与控制器连接。其中,控制器向第一晶闸管T1的门极、第二晶闸管T2的门极、第三晶闸管T3的门极、第四晶闸管T4的门极、第五晶闸管T5的门极和第六晶闸管T6的门极发送控制信号。
一方面,控制器可用于控制晶闸管导通的时间长短,控制逆变单元32输出的三相交流电压的变化率。例如:若晶闸管瞬间导通,则输出的三相交流电压需要在瞬间内由0V变为设置的三相交流电压值,电压的变化率大,易造成电路震荡,产生大量的高频谐波,对外界设备产生不利影响。本实施例中,控制器控制晶闸管导通的时间为3-4us,逆变单元32输出的三相交流电压变化率较小,减少了逆变单元32在逆变过程中的产生的高频谐波。
另一方面,控制器还可用于调节逆变单元32输出的三相交流电压的接触角,进而控制逆变单元32输出电压输出的三相交流电压值的大小,进而使得输出的三相交流电压在在晶闸管的导通的时间由0V变为该设置的电压值。操作人员可根据设备所需进行三相交流电压值的设置。
进一步的,逆变单元32中每个晶闸管均可以设置一个并联的寄生二极管,该寄生二极管与晶闸管形成闭合回路,用于保护晶闸管不被损坏。
接着对于滤波器进行说明,如图2所示,滤波器40包括:三相电抗器41和三相电容器42。
为了使滤波器40输出的电压的谐振频率保持在一个比较小的范围内,三相电抗器41的电感值可以为1mH;为了减小三相电容器42的电容的容值,减小电容的体积,三相电容的三相绕组可以为首尾连接,使得三相电容器42呈三角形结构。滤波器40用于将该PWM波形电压进行滤波处理,得到正弦波电压,同时可滤去逆变器30输出的三相交流电压中的高频谐波,得到品质优良的三相交流电源供给设备,消除逆变器30在逆变过程中产生的高频谐波对外界设备的影响。
综上所述,本实施例中为了减少高频谐波对设备的影响,首先通过控制器控制逆变单元输出的三相交流电压的变化率,减少逆变单元在逆变过程中的产生的高频谐波;其次,通过控制器控制逆变单元输出的三相交流电压的接触角,进一步降低三相交流电压中的高频谐波;还通过三相电抗器和三相电容器共同组成的滤波器,再进一步降低三相交流电压中的高频谐波含量。同时,与现有技术相比,本实施例采用三相电抗器和三相电容器少量电路元器件便能有效降低三相交流电压中的高频谐波,保证了该辅助变流电路的电磁兼容性能,在辅助变流电路作为辅助变流器的组成部分时,降低了辅助变流器的损耗,提高了效率,使得辅助变流器轻量化。
进一步的,辅助变流电路1000还可包括:接地检测装置100,整流器20通过接地检测装置100与逆变器30连接,接地检测装置100用于对辅助变流电路1000进行接地检测,起到保护作用。本实施例中采用高阻抗接地检测方式,接地检测装置100的阻值大小为10KΩ/20KΩ,在保证辅助变流电路1000功率一致的前提下,高阻抗能够减小辅助变流电路1000中的电流,从而降低接地检测装置100的损耗,提高效率。
进一步的,如图2所示,本发明提供的辅助变流电路1000还可包括:熔断器50、浪涌抑制器60、第一电流检测装置70、直流滤波装置80、直流检测装置90和第二电流检测装置200。
其中,熔断器50与交流电源10连接,熔断器50用于对辅助变流电路1000进行过流保护,避免在辅助变流电路1000过载时对设备产生不利影响,并对辅助变流电路1000本身进行保护。
浪涌抑制器60分别与熔断器50和第一电流检测装置70连接,本实施例中浪涌抑制器60采用压敏电阻,利用压敏电阻的特性,用于对辅助变流电路1000产生瞬间高峰值电压时进行抑制,对辅助变流电路1000本身进行保护。
第一电流检测装置70与整流器20连接,第一电流检测装置70用于对交流电源10输出的单相交流电压进行检测;直流滤波装置80分别与整流器20和直流检测装置90连接,直流滤波装置80用于滤去整流器20在整流过程中产生的谐波,避免对设备的不利影响;直流检测装置90用于 对整流器20输出的直流电压进行检测。
接地检测装置100分别与直流检测装置90和逆变器30连接,第二电流检测装置200分别与逆变器30和滤波器40连接,第二电流检测装置200用于对逆变器30输出的三相交流电压进行检测。
本实施例提供的辅助变流电路包括保护装置(熔断器和浪涌抑制器)、接地检测装置和电流检测装置(第一电流检测装置、直流检测装置和第二电流检测装置),提高了辅助变流电路的安全性和可靠性。
在上述的实施例中,本发明以控制器为辅助变流电路的外部器件为例进行的说明。在具体实现过程中,辅助变流电路还可以包括控制器,即控制器为辅助变流电路的内部器件。本发明对控制器的具体设置方式不做特别限制。
本发明还提供一种辅助变流器,图3为本发明提供的辅助变流器的示意图,如图3所示,本实施例提供的辅助变流器2000包括:控制器400、两个输出电压检测装置300以及两个如上述的辅助变流电路1000。
其中,两个辅助变流电路1000分别与控制器400连接,每个辅助变流电路1000分别与各自对应的输出电压检测装置300连接。本实施例中辅助变流器2000采用两个上述的辅助变流电路1000,相对于现有技术中采用一个变流电路时,减小了电路中各元件的功耗,增长了各元件的使用寿命。且若辅助变流器2000中一个辅助变流电路1000出现故障不能运行时,另外一个辅助变流电路1000可正常运行,提高了辅助变流器2000的可靠性。
进一步的,辅助变流器2000还包括:风机500,两个辅助变流电路1000分别与风机500连接,风机500用于辅助变流器2000散热。
本实施例提供的辅助变流器,采用上述辅助变流电路能有效降低该电路输出的电压中的高频谐波,保证了该辅助变流电路的电磁兼容性能,在辅助变流电路作为辅助变流器的组成部分时,降低了辅助变流器的损耗,提高了效率,使得辅助变流器轻量化。且辅助变流器包括两套辅助变流电路,若其中一个辅助变流电路出现故障不能运行时,另外一个辅助变流电路仍可正常运行,提高了辅助变流器的可靠性。
本发明还提供一种辅助变流柜,图4为本发明提供的辅助变流柜的结 构示意图,如图4所示,本实施例提供的辅助变流柜3000用于存放如上述的辅助变流器2000,包括:上层区域3001、中层区域3002、底层区域3003以及纵向区域3004,纵向区域3004位于中层区域3002和底层区域3003的同一侧,且纵向区域3004位于上层区域3001的下方。
交流电源10位于纵向区域3004的正面,两个整流器20位于底层区域3003的正面,两个接地检测装置100位于纵向区域3004的正面,一个逆变器30位于底层区域3003的正面,另一个逆变器30位于中层区域3002。辅助变流器2000中的整流器20、逆变器30中的各元件均设置在辅助变流柜3000的正面区域,便于对辅助变流器2000进行维修。
两个三相电抗器41位于底层区域3003的背面,两个三相电容器42位于纵向区域3004的背面,两个输出电压检测装置300位于纵向区域3004的正面,控制器400位于上层区域3001,风机500位于上层区域3001。具体的,两个整流器20靠近交流电源10设置,两个接地检测装置100靠近交流电源10设置,两个输出电压检测装置300靠近控制器400设置,风机500靠近逆变器30设置。风机500靠近辅助变流器2000中发热高的元器件设置,有利于辅助变流器2000及时散热,提高性能。
本实施例提供的辅助变流柜,通过将主要功率器件设置于辅助变流柜的正面区域,便于对辅助变流器进行维修,还通过将风机靠近辅助变流器中发热高的元器件设置,有利于辅助变流器及时散热,提高了辅助变流器的性能。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种辅助变流电路,其特征在于,包括:交流电源、整流器、逆变器、滤波器,所述滤波器包括:三相电抗器和三相电容器;其中,
    所述整流器与所述交流电源连接,所述整流器用于将所述交流电源输出的单相交流电压转化为直流电压;
    所述逆变器与所述整流器连接,所述逆变器用于将所述整流器输出的直流电压逆变为三相交流电压;
    所述三相电抗器分别与所述逆变器和所述三相电容器连接,所述三相电容器用于与输出电压检测装置连接;
    所述滤波器用于滤去所述逆变器输出的三相交流电压中的高频谐波。
  2. 根据权利要求1所述的辅助变流电路,其特征在于,所述整流器包括:第一可控硅、第二可控硅、第一二极管和第二二极管,其中,
    所述第一可控硅的阴极与所述第一二极管的阴极连接,所述第一可控硅的阳极分别与所述交流电源的第一端、所述第二可控硅的阴极连接;所述第二可控硅的阴极还分别与所述交流电源的第二端、所述第二二极管的阴极连接,所述第二可控硅的阳极与所述第二二极管的阳极连接;
    所述第一二极管的阴极与所述逆变器的第一端连接,所述第一二极管的阳极与所述第二二极管的阴极连接;所述第二二极管的阳极与所述逆变器的第二端连接;
    所述第一可控硅的门极和所述第二可控硅的门极分别用于与控制器连接。
  3. 根据权利要求2所述的辅助变流电路,其特征在于,所述逆变器包括:预处理单元和逆变单元,其中,
    所述预处理单元分别与所述整流器和所述逆变单元连接,所述逆变单元与所述三相电抗器连接;
    所述预处理单元用于将所述整流器输出的直流电压进行预处理,所述逆变单元用于将预处理后的直流电压逆变为三相交流电压。
  4. 根据权利要求3所述的辅助变流电路,其特征在于,所述逆变单 元包括:第一晶闸管、第二晶闸管、第三晶闸管、第四晶闸管、第五晶闸管和第六晶闸管,其中,
    所述第一晶闸管的集电极分别与所述第一二极管的阴极、所述第三晶闸管的集电极连接,所述第一晶闸管的发射极分别与所述三相交流电压中的第一相线、所述第二晶闸管的集电极连接;所述第二晶闸管的发射极分别与所述第二二极管的阳极、所述第四晶闸管的发射极连接;
    所述第三晶闸管的集电极还与所述第五晶闸管的集电极连接,所述第三晶闸管的发射极分别与所述三相交流电压中的第二相线、所述第四晶闸管的集电极连接;所述第四晶闸管的发射极还与所述第六晶闸管的发射极连接;
    所述第五晶闸管的发射极分别与所述三相交流电压中的第三相线、所述第六晶闸管的集电极连接;
    所述第一晶闸管的门极、所述第二晶闸管的门极、所述第三晶闸管的门极、所述第四晶闸管的门极、所述第五晶闸管的门极和所述第六晶闸管的门极分别用于与所述控制器连接。
  5. 根据权利要求1所述的辅助变流电路,其特征在于,所述三相电抗器的电感值为1mH。
  6. 根据权利要求1所述的辅助变流电路,其特征在于,所述三相电容器的三相绕组首尾连接,呈三角形结构。
  7. 根据权利要求1所述的辅助变流电路,其特征在于,还包括接地检测装置,所述整流器通过所述接地检测装置与所述逆变器连接,所述接地检测装置用于对所述辅助变流电路进行接地检测。
  8. 一种辅助变流器,其特征在于,包括:控制器、两个输出电压检测装置以及两个如权利要求1-7任一项所述的辅助变流电路,其中,
    两个所述辅助变流电路分别与所述控制器连接;
    每个所述辅助变流电路分别与各自对应的所述输出电压检测装置连接。
  9. 一种辅助变流柜,其特征在于,所述辅助变流柜用于存放如权利要求8所述的辅助变流器,所述辅助变流柜包括:上层区域、中层区域、底层区域以及纵向区域,所述纵向区域位于所述中层区域和所述底层区 域的同一侧,且所述纵向区域位于所述上层区域的下方;
    所述交流电源位于所述纵向区域的正面,两个所述整流器位于所述底层区域的正面,两个所述接地检测装置位于所述纵向区域的正面,一个所述逆变器位于所述底层区域的正面,另一个所述逆变器位于所述中层区域,两个所述三相电抗器位于所述底层区域的背面,两个所述三相电容器位于所述纵向区域的背面,两个所述输出电压检测装置位于所述纵向区域的正面,所述控制器位于所述上层区域。
  10. 根据权利要求9所述的辅助变流柜,其特征在于,两个所述整流器靠近所述交流电源设置,两个所述接地检测装置靠近所述交流电源设置,两个所述输出电压检测装置靠近所述控制器设置。
PCT/CN2017/116339 2017-12-11 2017-12-15 辅助变流电路、辅助变流器和辅助变流柜 WO2019113918A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711307265.6A CN109905017A (zh) 2017-12-11 2017-12-11 辅助变流电路、辅助变流器和辅助变流柜
CN201711307265.6 2017-12-11

Publications (1)

Publication Number Publication Date
WO2019113918A1 true WO2019113918A1 (zh) 2019-06-20

Family

ID=66819796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116339 WO2019113918A1 (zh) 2017-12-11 2017-12-15 辅助变流电路、辅助变流器和辅助变流柜

Country Status (2)

Country Link
CN (1) CN109905017A (zh)
WO (1) WO2019113918A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676840A (zh) * 2019-08-30 2020-01-10 合肥学院 一种电力系统控制设备和电力系统控制方法
CN110707990A (zh) * 2019-10-16 2020-01-17 合肥学院 一种交直流两用电机控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201248213Y (zh) * 2008-08-27 2009-05-27 中国北车集团大同电力机车有限责任公司 电力机车电器屏柜
CN104811022A (zh) * 2015-05-11 2015-07-29 永济新时速电机电器有限责任公司 辅助变流器和车辆
CN105471272A (zh) * 2015-11-18 2016-04-06 永济新时速电机电器有限责任公司 辅助变流装置
CN206389297U (zh) * 2017-01-16 2017-08-08 西南交通大学 一种高速列车辅助变流器
CN107070282A (zh) * 2017-05-17 2017-08-18 中国铁道科学研究院 一种辅助变流器、牵引动力单元及车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066803B (zh) * 2012-08-29 2015-04-08 永济新时速电机电器有限责任公司 机车用大功率辅助滤波柜
CN204488519U (zh) * 2014-05-16 2015-07-22 华北科技学院 一种ss3型电力机车辅助变流系统
CN106100359A (zh) * 2016-06-28 2016-11-09 中车青岛四方车辆研究所有限公司 交‑直‑交型动车组辅助变流器及其工作过程

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201248213Y (zh) * 2008-08-27 2009-05-27 中国北车集团大同电力机车有限责任公司 电力机车电器屏柜
CN104811022A (zh) * 2015-05-11 2015-07-29 永济新时速电机电器有限责任公司 辅助变流器和车辆
CN105471272A (zh) * 2015-11-18 2016-04-06 永济新时速电机电器有限责任公司 辅助变流装置
CN206389297U (zh) * 2017-01-16 2017-08-08 西南交通大学 一种高速列车辅助变流器
CN107070282A (zh) * 2017-05-17 2017-08-18 中国铁道科学研究院 一种辅助变流器、牵引动力单元及车辆

Also Published As

Publication number Publication date
CN109905017A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
TWI477055B (zh) 中壓變頻驅動系統
AU2010353929B2 (en) Converting device of electrical energy
CA2536306A1 (en) Power converter, motor drive, btb system and system linking inverter system
CN203445790U (zh) 一种高压dc/dc开关电源
CN105141019A (zh) 一种电动汽车充电系统
CN110920422B (zh) 一种基于电流源的大功率电动汽车充电装置及控制方法
JP2011514798A (ja) 電力フィードバック装置
CN101615884A (zh) 移相斩波的高功率因数串级调速装置
WO2017098836A1 (ja) 電力変換装置
WO2010124634A1 (zh) 一种高电压功率变换装置
WO2018218754A1 (zh) 一种基于高压直流配电的电动车充电站
WO2019113918A1 (zh) 辅助变流电路、辅助变流器和辅助变流柜
CN112117926A (zh) 一种可调幅的高频高压静电电源
CN104253549A (zh) 一种基于lcl滤波的大功率pwm整流器电路拓扑结构
CN212811585U (zh) 一种能量双向流动型ac-dc变换器
CN103997230A (zh) 一种基于全波斩控整流电路的中频炉
KR20160110621A (ko) 승압형 매트릭스 컨버터 및 이를 이용한 전동기 구동 시스템
CN204349829U (zh) 宽范围等离子切割机电流源
CN110868090A (zh) SiC功率模块和包括其的电力机车蓄电池充电电路
CN115441757A (zh) 一种五电平pwm整流器及供电设备
CN204442188U (zh) 一种静电除尘高频装置
CN210412978U (zh) 一种基于逆变技术的高稳定性大电流弧焊电源
WO2013135088A1 (zh) 辅助变流器
CN211830601U (zh) 一种基于交错并联的改进型三相混合整流器
CN107370378B (zh) 一种用于无轨电车的大功率高压dcdc转换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934594

Country of ref document: EP

Kind code of ref document: A1