WO2019111817A1 - 生成装置、生成方法及びプログラム - Google Patents

生成装置、生成方法及びプログラム Download PDF

Info

Publication number
WO2019111817A1
WO2019111817A1 PCT/JP2018/044202 JP2018044202W WO2019111817A1 WO 2019111817 A1 WO2019111817 A1 WO 2019111817A1 JP 2018044202 W JP2018044202 W JP 2018044202W WO 2019111817 A1 WO2019111817 A1 WO 2019111817A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
virtual viewpoint
acquired
image data
generation
Prior art date
Application number
PCT/JP2018/044202
Other languages
English (en)
French (fr)
Inventor
前田 充
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to EP18886601.6A priority Critical patent/EP3605470A4/en
Priority to KR1020197031243A priority patent/KR102125293B1/ko
Priority to CN201880028801.5A priority patent/CN110574076B/zh
Publication of WO2019111817A1 publication Critical patent/WO2019111817A1/ja
Priority to US16/667,659 priority patent/US11012679B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/282Image signal generators for generating image signals corresponding to three or more geometrical viewpoints, e.g. multi-view systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • G06T15/205Image-based rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/243Image signal generators using stereoscopic image cameras using three or more 2D image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/08Indexing scheme for image data processing or generation, in general involving all processing steps from image acquisition to 3D model generation

Abstract

複数の撮像手段を有する画像処理システムにて、高品質な仮想視点からの広域な画像を生成できるようにすることを目的とする。この目的を達成するため、当該画像処理システムにおいて、第1の注視点に向けられた複数の撮影装置で構成される第1の撮影装置群と、前記第1の注視点とは異なる第2の注視点に向けられた複数の撮影装置で構成される第2の撮影装置群とを含む複数の撮影装置群に分類される複数の撮影装置により取得された複数の撮影画像に基づいて仮想視点画像を生成する生成装置であって、前記第1の撮影装置群に属する撮影装置により取得された撮影画像に基づく第1の画像データを取得する第1の取得手段と、前記第2の撮影装置群に属する撮影装置により取得された撮影画像に基づく第2の画像データを取得する第2の取得手段と、仮想視点の位置及び方向に関する情報を取得する第3の取得手段と、前記第1の取得手段により取得された前記第1の画像データと、前記第2の取得手段により取得された前記第2の画像データと、前記第3の取得手段により取得された仮想視点の位置及び方向に関する情報とに基づき、仮想視点画像を生成する生成手段と、を有することを特徴とする生成装置が提供される。

Description

生成装置、生成方法及びプログラム
 本発明は、生成装置、生成方法及びプログラムに関する。
 複数のカメラ(撮像装置)を異なる位置に設置して多視点で同期撮影し、撮影により得られた複数の視点画像を用いて仮想視点画像を生成する技術が注目されている。複数の視点画像から仮想視点画像を生成する技術によれば、例えば、サッカーやバスケットボールのハイライトシーンを様々な角度から視聴することができるため、通常の画像と比較してユーザに高臨場感を与えることができる。
 特許文献1には、被写体を取り囲むように複数のカメラを配置して被写体を撮影し、撮影した画像を用いて任意の仮想視点画像を生成及び表示することが開示されている。特許文献1では、スタジアムの中央の点を原点として世界座標X、Y、Z軸を決定し、複数のカメラは、原点が画面の中央にくるようにして原点に向けて設置されている。
特開2014-215828号公報
 特許文献1に記載された技術では、スタジアムの中央を注視点として全体風景を生成する場合、カメラの注視点から離れた位置にいる選手を映しているカメラの台数は少なく、さらに注視点近辺に比べてピントが合っていない。その結果、例えば注視点から遠いサイドスタンドから他方のサイドスタンドを見るような全体風景を生成すると、距離が近くてくっきり見えるはずの手前の選手の解像度が低くなり輪郭がぼやけるため、3次元モデルの精度を下げてしまう。このため、手前の選手の画質が下がり、そこよりも遠い中央付近の選手の画質が高くなり、遠近感が損なわれ、臨場感が低下する。
 本発明は、このような事情に鑑みてなされたものであり、複数の撮像手段を有する画像処理システムにて、高品質な仮想視点からの広域な画像を生成できるようにすることを目的とする。
 本発明に係る生成装置は、第1の注視点に向けられた複数の撮影装置で構成される第1の撮影装置群と、前記第1の注視点とは異なる第2の注視点に向けられた複数の撮影装置で構成される第2の撮影装置群とを含む複数の撮影装置群に分類される複数の撮影装置により取得された複数の撮影画像に基づいて仮想視点画像を生成する生成装置であって、前記第1の撮影装置群に属する撮影装置により取得された撮影画像に基づく第1の画像データを取得する第1の取得手段と、前記第2の撮影装置群に属する撮影装置により取得された撮影画像に基づく第2の画像データを取得する第2の取得手段と、仮想視点の位置及び方向に関する情報を取得する第3の取得手段と、前記第1の取得手段により取得された前記第1の画像データと、前記第2の取得手段により取得された前記第2の画像データと、前記第3の取得手段により取得された仮想視点の位置及び方向に関する情報とに基づき、仮想視点画像を生成する生成手段と、を有することを特徴とする。
 本発明によれば、複数の撮像手段を有する画像処理システムにて、高品質な仮想視点からの広域な画像を生成することが可能になる。
第1の実施形態における画像処理システムの構成例を示す図である。 第1の実施形態におけるオブジェクトの撮影状況の例を示す図である。 第1の実施形態における注視点の座標系を説明する図である。 第1の実施形態における3次元モデルデータの構成例を示す図である。 第1の実施形態におけるオブジェクトの撮影状況の例を示す図である。 第1の実施形態における仮想視点画像生成部の構成例を示す図である。 第1の実施形態における仮想視点画像の生成動作の例を示すフローチャートである。 第1の実施形態における仮想視点画像の生成の流れを示すシーケンス図である。 背景画像の例を説明する図である。 オブジェクトの画像の例を説明する図である。 合成画像の例を説明する図である。 第1の実施形態における仮想視点画像生成部の他の構成例を示す図である。 第2の実施形態における画像処理システムの構成例を示す図である。 第2の実施形態におけるオブジェクトの撮影状況の例を示す図である。 第2の実施形態におけるオブジェクトの撮影状況の例を示す図である。 第2の実施形態における3次元モデルデータの構成例を示す図である。 第2の実施形態における3次元モデルデータの点群の例を示す図である。 第2の実施形態における3次元モデルデータの点群の例を示す図である。 第2の実施形態における仮想視点画像の生成の流れを示すシーケンス図である。 第3の実施形態における画像処理システムの構成例を示す図である。 その他の実施形態における画像処理システムの構成例を示す図である。 その他の実施形態における3次元モデルデータの構成例を示す図である。 本実施形態における画像処理システムを実現可能なコンピュータ機能を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。
(第1の実施形態)
 本発明の第1の実施形態について説明する。
 図1は、第1の実施形態における画像処理システム100の構成例を示す図である。本実施形態における画像処理システム100は、競技場(スタジアム)やコンサートホール等の施設に複数のカメラ(撮像装置)及びマイク(集音装置)を設置して撮影及び集音を行う画像処理システムである。
 画像処理システム100は、注視点毎にセンサ群200、201、202を有する。センサ群200、201、202の各々は、複数のセンサシステムを有する。本実施形態では、センサ群200は30台のセンサシステム2L01~2L30を有し、センサ群201は30台のセンサシステム2C01~2C30を有し、センサ群202は30台のセンサシステム2R01~2R30を有する。また、各センサシステムは、マイク111、カメラ112、雲台113、及びカメラアダプタ120をそれぞれ有する。つまり、センサ群200、201、202の各々は、被写体を複数の方向から撮影するための複数のカメラをそれぞれ有する。
 図2に一例を示すように、センサ群200のセンサシステム2L01~2L30は、注視点2000を注視点として各カメラ112の設置がされている。同様に、センサ群201のセンサシステム2C01~2C30は、注視点2001を注視点として各カメラ112の設置がされ、センサ群202のセンサシステム2R01~2R30は、注視点2002を注視点として各カメラ112が設置されている。注視点2000に対応するセンサシステム2L01~2L30のカメラ112は、領域2100の範囲を撮影する。また、センサシステム2C01~2C30のカメラ112は、領域2101の範囲を撮影し、センサシステム2R01~2R30のカメラ112は、領域2102の範囲を撮影する。ここでは30台のセンサシステムで1つのセンサ群を構成する例を示したが、数やその配置はこれに限定されない。
 センサ群200について動作を説明する。
 画像処理システム100は、ユーザからの指示等に応じた制御を行うために、制御ステーション310及び仮想カメラ操作UI(ユーザインターフェース)330を有する。制御ステーション310は、画像処理システム100が有するそれぞれの機能部(ブロック)に対してネットワークを通じて動作状態の管理及びパラメータの設定・制御等を行う。30台のセンサシステム2L01~2L30により得られる画像及び音声を、センサシステム2L30からスイッチングハブ180を介して、サーバフロントエンド230へ送信する動作について説明する。ここで、センサシステム2L01~2L30は、ネットワーク180a、171、180bを介して、デイジーチェーンにより接続される。
 センサシステム2L01~2L29は、カメラ112により撮影した画像をカメラアダプタ120に入力し、撮影した画像にカメラを識別するためのカメラ識別子を付与してネットワーク171に送出する。センサシステム2L30は、カメラ112により撮影した画像をカメラアダプタ120に入力し、撮影した画像にカメラを識別するためのカメラ識別子を付与する。そして、センサシステム2L30は、センサ群200の各カメラ112で撮影した画像をネットワーク180bに送出する。ネットワーク180bに送出された画像は、スイッチングハブ180及びネットワーク211aを介してサーバフロントエンド230に入力される。
 なお、本実施形態において、特別な説明がない場合、センサシステム2L01からセンサシステム2L30までの30セットのセンサシステムを区別せずにセンサシステム2Lと記載する。各センサシステム2L内の装置についても同様に、特別な説明がない場合は区別せず、マイク111、カメラ112、雲台113、及びカメラアダプタ120と記載する。また、本実施形態では、特に断りがない限り、画像という文言が、動画と静止画の概念を含むものとして説明する。すなわち、本実施形態の画像処理システム100は、静止画及び動画の何れについても処理可能である。
 また、複数のセンサシステム2L同士がデイジーチェーンとなるようカスケード接続されている例を示したが、これに限られるものではない。例えば、各センサシステム2L01~2L30がスイッチングハブ180に接続されて、スイッチングハブ180を経由してセンサシステム2L間のデータ送受信を行うスター型のネットワーク構成としても良い。また、例えば、複数のセンサシステム2Lをいくつかのグループに分割して、分割したグループ単位でセンサシステム2L間をデイジーチェーン接続しても良い。また、グループ内のセンサシステム2Lが1つである場合、スター型の接続でももちろん構わない。
 また、センサシステム2Lは、前述した構成に限定されるものではなく、例えば、カメラ112とカメラアダプタ120とが一体となって構成されていても良い。また、この場合、マイク111は一体化されたカメラ112に内蔵されていてもよいし、カメラ112の外部に接続されていてもよい。また、カメラアダプタ120の機能の少なくとも一部をフロントエンドサーバ230が有していても良い。センサシステム2L01~2L30は同じ構成に限定されるものではなく、異なる構成であっても良い。
 また、本実施形態では仮想視点画像の生成に3次元モデルを構築するModel Based Rendering(以下、MBRと略す)の手法を用いて説明するが、これに限定されない。
 また、本実施形態では、画像処理システム100により提供される仮想視点コンテンツには、仮想視点画像と仮想視点音声が含まれる例を説明するが、これに限らない。例えば、仮想視点コンテンツに音声が含まれていなくても良い。また例えば、仮想視点コンテンツに含まれる音声が、仮想視点に最も近い位置に設置されたセンサシステム2Lのマイク111により集音された音声であっても良い。また、本実施形態では、説明の簡略化のため、部分的に音声についての記載を省略しているが、基本的に画像と音声はともに処理されるものとする。
 つまり、センサシステム2L01のマイク111にて集音された音声と、カメラ112にて撮影された画像は、カメラアダプタ120において画像処理が施された後、ネットワーク171を介してセンサシステム2L02のカメラアダプタ120に伝送される。同様に、センサシステム2L02は、集音された音声と撮影された画像をセンサシステム2L01から取得した画像及び音声のデータと合わせて、ネットワーク171を介してセンサシステム2L03に伝送する。この動作を続けることにより、センサシステム2L01~2L30により取得した画像及び音声が、センサシステム2L30からネットワーク180b、211a及びスイッチングハブ180を介してサーバフロントエンド230へ伝送される。
 センサ群201、202についても同様である。センサシステム2C01~2C30は、ネットワーク180c、172、180dを介してデイジーチェーンにより接続され、センサシステム2R01~2R30は、ネットワーク180e、173、180fを介してデイジーチェーンにより接続される。センサシステム2C01~2C30により取得した画像及び音声は、センサシステム2C30からネットワーク180d、211b及びスイッチングハブ180を介してサーバフロントエンド231へ伝送される。また、センサシステム2R01~2R30により取得した画像及び音声は、センサシステム2R30からネットワーク180f、211c及びスイッチングハブ180を介してサーバフロントエンド232へ伝送される。
 図1においては、デイジーチェーンとなるようセンサ群200、201、202内部のすべてがカスケード接続されている構成を示したが、これに限定するものではない。例えば、センサ群200のセンサシステム2L30とセンサ群201のセンサシステム2C01とを接続し、センサ群201のセンサシステム2C30とセンサ群202のセンサシステム2R01とを接続してデイジーチェーンとしてもよい。
 タイムサーバ290は、時刻及び同期信号を配信する機能を有し、スイッチングハブ180を介してセンサシステム2L01~2L30、2C01~2C30、2R01~2R30のそれぞれに時刻及び同期信号を配信する。時刻及び同期信号を受信したセンサシステムのカメラアダプタ120は、カメラ112を時刻と同期信号をもとに外部同期(Genlock)させ画像フレーム同期を行う。すなわち、タイムサーバ290は、複数のカメラ112の撮影タイミングを同期させる。
 次に、センサ群200のセンサシステム2L01~2L30により取得した画像及び音声が伝送されるサーバフロントエンド230の構成及び動作について説明する。サーバフロントエンド230は、センサシステム2L30から取得した画像及び音声から、セグメント化された伝送パケットを再構成してフレームデータのデータ形式を変換する。さらに、サーバフロントエンド230は、再構成されたフレームデータから選手等の対象(以下、「オブジェクト」とも称する)を切り出し、切り出した結果を前景画像として、全カメラからの画像から、その3次元モデルを生成する。
 3次元モデルの生成については様々な手法があり、例えばVisual Hull(視体積交差法)といった方式を用いることができる。例えば、生成された3次元モデルは点群として表現される。例えば、3次元モデルにおいて存在する点の数を表し、各点について、注視点を原点とする座標系でのx座標、y座標、z座標で表すことができる。ただし、これに限定されず、注視点を原点として空間をボクセルで分割し、物体が存在するボクセルを“1”とし存在しないボクセルを“0”として2値化し、それをx軸、y軸、z軸方向にスキャンして2値データの1次元データとして符号化しても構わない。サーバフロントエンド230は、3次元モデルにそれを識別する識別子を付与して、3次元モデルの点群データとともに、フレーム番号に応じてデータベース250に書き込む。
 さらに、サーバフロントエンド230は、前景画像をカメラ識別子、注視点の識別子、関連する3次元モデルの識別子、フレーム番号に応じてデータベース250に書き込む。ここでは、時刻を表す情報として、フレーム番号を用いているが、これに限定されず、タイムコードであっても良い。データベース250には、カメラの識別子で識別される注視点、カメラの位置、方向、画角が、カメラの設定時のカメラ設定情報として格納されている。データベース250は、入力されたフレーム番号単位で3次元モデルの識別子毎にそのオブジェクトの位置情報を記載したオブジェクト位置情報リストを生成する。
 データベース250には、さらに図2に示した注視点2001を競技場の座標の原点(0、0、0)とした場合の各注視点2000、2002の位置情報が格納されている。なお、注視点2000、2001、2002ともにx軸、y軸、z軸があらわす方向は同じものとする。すなわち、本実施形態では注視点2000、2001、2002は、同一線上にあり、これを結ぶ方向をx軸とする。x軸は、注視点2001から注視点2000への方向を負とし、注視点2001から注視点2002への方向を正とする。y軸は、x軸と直交しており、注視点2001から競技場正面のメインスタンド方向を負とし、バックスタンド方向を正とする。図2においては、下(例えば、センサシステム2L08が設置されている側)がメインスタンド、上(例えば、センサシステム2L01が設置されている側)がバックスタンドとする。z軸は、x軸及びy軸に直交しており、グラウンド面を原点とし、上方に向かって正とする。
 図3に、x軸、y軸、z軸及び注視点2000、2001、2002を示す。競技場の座標の原点2001-0とする注視点2001に対して、注視点2000はx方向に(-dx0)だけ離れており、注視点2002はx方向にdx1だけ離れている。したがって、注視点2000は注視点2001に対して(-dx0、0、0)となり、注視点2002は注視点2001に対して(dx1、0、0)となる。前述したオブジェクト位置情報リストに記載されるオブジェクトの位置情報は、これらの注視点の位置のずれを補正した注視点2001を原点とする世界座標で記述されている。なお、軸の方向、及び注視点の位置関係は、これに限定されない。また、競技場の座標の原点の位置も、これに限定されず、フィールドのいずれかのコーナーを原点にしたり、メインスタンドに原点を置いたりしてもよい。また、競技場の原点に必ずしも注視点が存在する必要はない。
 同様に、サーバフロントエンド231、232においても、各注視点を原点とする位置情報を有する3次元モデルのデータと位置情報とが前景画像とともにデータベース250に書き込まれる。
 図4に、第1の実施形態における3次元モデルのデータの構成例を示す。図4の(A)に一例を示すように、3次元モデルのデータは、各時刻で管理されており、データの先頭にその時刻を表すタイムコードが付与されており、その後に注視点の数が整数で示されている。図2に示した例では、注視点が3つであるので注視点数は3である。それに続いて、第1注視点へのポインタが指定されている。ここでは、第1注視点は注視点2000とする。このポインタは同じファイルであれば、そこから読み飛ばすデータサイズであったり、別なファイルポインタであったりしても構わない。
 第1注視点へのポインタにより指定されるデータには、図4の(B)に一例を示すように第1注視点の原点の位置が示されている。第1注視点の競技場の原点からのx座標、y座標、z座標、すなわち(-dx0)、0、0の値が順に記載されており、続いて、第1注視点に含まれるオブジェクトの数が記載されている。その後、各オブジェクトへのポインタが指定されており、そのポインタにより各オブジェクトの点群にアクセスが可能になっている。第1オブジェクトの点群データは、図4の(C)に一例を示すように、まず、第1オブジェクトを構成する点の数が記載されており、各点のx座標、y座標、z座標が順に入っている。第1注視点の他のオブジェクトについても同様にデータが生成されている。また、他の注視点についても同様にデータが生成されている。
 図1に戻り、バックエンドサーバ300は、仮想カメラ操作UI330から仮想視点の指定を受け付ける。仮想カメラ操作UI330は、情報設定手段及び抽出手段の一例である。バックエンドサーバ300は、受け付けた仮想視点に基づいて、データベース250から対応する前景画像、3次元モデルデータ及び音声データを読み出し、レンダリング処理を行って仮想視点画像を生成する。ここで、バックエンドサーバ300は、注視点毎に仮想視点画像を生成する。バックエンドサーバ300において、仮想視点画像生成部270は、注視点2000に対応する領域2100の仮想視点画像を生成する。また、仮想視点画像生成部271は、注視点2001に対応する領域2101の仮想視点画像を生成し、仮想視点画像生成部272は、注視点2002に対応する領域2102の仮想視点画像を生成する。また、仮想視点背景画像生成部275は、仮想視点からの背景画像を生成する。仮想視点画像生成部270、271、272は、画像生成手段の一例である。
 仮想視点画像を生成する際、不図示のユーザは仮想カメラ操作UI330を用いて、仮想視点画像における仮想視点を示す仮想カメラの位置、方向、画角等の設定を行う。以後、これらの仮想カメラの位置、方向、画角等の情報を仮想カメラ情報とも称する。仮想カメラ操作UI330で設定された仮想カメラ情報は、バックエンドサーバ300に出力される。なお、以下では、画像についてのみ説明する。例えば、図5に示すように、センサシステム2L19とセンサシステム2L20との間に仮想カメラ2700を設定したとする。図5において、図2に示した構成要素と同一の構成要素には同一の符号を付している。図5において、4200は仮想カメラ2700の画角を表す。
 バックエンドサーバ300は、仮想カメラ2700から見た仮想視点画像の生成に必要な画像を得るために、仮想カメラ情報をデータベース250に入力する。データベース250は、入力された仮想カメラ情報に基づいて、各センサシステム2L01~2L30、2C01~2C30、2R01~2R30の撮影した前景画像を検索して選択する。また、データベース250は、入力された仮想カメラ情報に基づいて、サーバフロントエンド230、231、232で生成された3次元モデルから必要なデータを検索して選択する。
 また、仮想カメラ2700の仮想カメラ情報から、画角4200に含まれる実空間上の撮影範囲が決定される。なお、この仮想カメラの位置情報は、注視点2001を世界座標の原点とする位置で表される。この撮影範囲に各注視点や各オブジェクトが含まれるかどうかは、その位置と撮影範囲との比較によって決定される。図5に示した例では、撮影範囲4000、4001、4002を合わせた領域が撮影範囲であるとする。ここでは、撮影範囲4000の仮想視点画像は、注視点2000を含むので仮想視点画像生成部270が生成する。また、撮影範囲4001の仮想視点画像は、注視点2001を含むので仮想視点画像生成部271が生成し、撮影範囲4002の仮想視点画像は、注視点2002を含むので仮想視点画像生成部272が生成する。
 画角4200の仮想視点画像を生成する画像は、仮想カメラ2700により撮影される範囲を仮想カメラ情報に基づいて特定することで選択される。また、図5に示すように、画角4200には領域2101、2102、2103が含まれ、領域2101と領域2102、領域2102と領域2103の間には重なる部分がある。これらの部分にオブジェクトが入っている場合、いずれの注視点からの3次元モデルデータを用いるか、その前景画像を用いるかを決定する。決定方法については、それぞれのオブジェクトの位置に近い注視点の3次元モデルデータ及び前景画像を用いるものとする。ただし、これに限定されるものではなく、例えば、仮想視点に近い注視点の3次元モデルデータ及び前景画像を用いても良い。すなわち、仮想カメラ2700に係る仮想視点画像を生成する場合、領域2100と領域2101の重なった部分のオブジェクトについては、注視点2000の3次元モデルデータと前景画像を用いて仮想視点画像を生成する。または、仮想カメラ2700から見た仮想視点画像を生成する場合、そのオブジェクトを撮影したカメラが多い方の注視点の3次元モデルデータ及び前景画像を採用してもよい。例えば、領域2100と領域2101の重なった部分のオブジェクトを例にとって説明する。注視点2000に関しては、センサシステムの位置、画角からセンサシステム2L14~センサシステム2L25の12台がオブジェクトを撮影している。注視点2001に関しては、センサシステムの位置、画角からセンサシステム2C19~センサシステム2L28の10台がオブジェクトを撮影している。したがって、この場合は注視点2000を撮影するセンサシステムの方が多いので、注視点2000の3次元モデルデータと前景画像を用いて仮想視点画像を生成する。
 仮想視点画像生成部270における領域2100に関する仮想視点画像の生成について説明する。図6は、仮想視点画像生成部270の構成例を示す図である。端子601には、仮想視点カメラ操作UI330から仮想カメラ情報と仮想視点映像を生成するフレーム番号の情報が入力される。端子602はデータベース250に接続されており、データベース250からオブジェクト位置情報リストを読み込み、さらに、画像生成に必要な前景画像や3次元モデルデータの要求を送出する。端子603にはデータベース250から読み出された前景画像データや3次元モデルデータが入力される。端子504は生成された仮想視点カメラ画像で選手等のオブジェクトの画像データを出力する。
 3次元モデル選択部620は、領域内のオブジェクトを生成するのに必要な3次元モデルデータの識別子を指定する。前景画像選択部630は、オブジェクトの画像を生成するのに必要な3次元モデルデータの識別子と仮想カメラの画角及びカメラ位置情報から、テクスチャマッピングに必要な前景画像のデータを決定する。画像バッファ600は、データベース250から入力された前景画像を格納する。モデルバッファ610は、データベース250から入力された3次元モデルデータを格納する。レンダリング部540は、入力された3次元モデルデータ及び前景画像からオブジェクトの仮想視点画像を生成する。
 図7は、第1の実施形態における仮想視点画像の生成動作の例を示すフローチャートである。ステップS700にて、不図示のユーザにより仮想カメラ操作UI330によって、仮想カメラ位置、方向、画角が決定される。ステップS701にて、仮想カメラ操作UI330は、仮想カメラ情報に基づいて、撮影範囲を決定し、撮影範囲に含まれる注視点を選択する。撮影範囲が示す空間と各注視点の位置を世界座標上で比較することにより、注視点が撮影範囲に含まれるか否かを判断する。ステップS702にて、バックエンドサーバ300は、ステップS701において選択された注視点に対応する仮想視点画像生成部270~272を処理開始が可能な状態にする。
 以降の処理は、選択された仮想視点画像生成部内部の動作である。
 ステップS703にて、3次元モデル選択部620、前景画像選択部630、及びレンダリング部640に、仮想カメラ操作UI330により決定された仮想カメラ情報と仮想視点画像を生成するフレームのフレーム番号とが端子601を介して入力される。ステップS704にて、3次元モデル選択部620は、入力されたフレーム番号のオブジェクト位置情報リストをデータベース250に端子602を介して要求し、これを受領する。ステップS705にて、3次元モデル選択部620は、ステップS704において取得したオブジェクト位置情報リストの位置情報と撮影範囲とを比較し、撮影範囲に含まれているオブジェクトを決定して、その3次元モデル識別子を決定する。
 ステップS706にて、3次元モデル選択部620は、ステップS705において決定した3次元モデル識別子、及びフレーム番号を、端子602を介してデータベース250に送信し、データを要求する。ステップS707にて、データベース250は、受信した3次元モデル識別子、及びフレーム番号に基づいて、3次元モデルのデータを読み出す。ステップS708にて、ステップS707において読み出された3次元モデルデータとその3次元モデル識別子、及びフレーム番号が、端子603を介してモデルバッファ610に格納される。
 ステップS709にて、前景画像選択部630は、端子601から入力された仮想カメラ情報と3次元モデル選択部620から送信されたオブジェクトの3次元モデル識別子に基づき、仮想視点から見えるモデルの表面に関する前景画像を選択する。さらに、前景画像選択部630は、選択された前景画像を撮影したカメラ識別子を選択する。この際、仮想視点から見えない面を撮影したカメラは選択されない。
 ステップS710にて、前景画像選択部630は、3次元モデル識別子、選択されたカメラ識別子、及びフレーム番号を、端子602を介してデータベース250に送信し、データを要求する。ステップS711にて、データベース250は、受信した3次元モデル識別子、カメラ識別子、及びフレーム番号に基づいて、必要な前景画像のデータを読み出す。ステップS712にて、ステップS711において読み出された前景画像のデータとその3次元モデル識別子、カメラ識別子、及びフレーム番号が、端子603を介して画像バッファ600に格納される。
 ステップS713にて、レンダリング部640は、3次元モデル識別子とフレーム番号に基づいて、3次元モデルデータをモデルバッファ610から読み出す。また、レンダリング部640は、3次元モデル識別子、カメラ識別子、及びフレーム番号に基づいて、画像バッファ600から前景画像を読み出す。そして、レンダリング部640は、3次元モデルデータに前景画像をテクスチャマッピングし、端子601から入力された仮想カメラ情報のカメラの姿勢、画角等から仮想視点からの画像を生成する。また、生成された画像の最終的な画像での画像位置情報を算出する。生成された仮想視点画像と画像位置情報は、端子604から出力される。
 図8は、第1の実施形態における仮想視点画像の生成の流れを示すシーケンス図である。まず、仮想カメラ操作UI330は、不図示のユーザによる入力に従って仮想カメラ位置、方向、画角を決定する。仮想カメラ操作UI330は、仮想カメラ情報に基づき、撮影範囲を決定し、撮影範囲に含まれる注視点を選択する。仮想カメラ操作UI330が選択した注視点に対応する仮想視点画像生成部270~272を選択し、仮想カメラ操作UI330は選択された仮想視点画像生成部を処理開始が可能な状態にする。そして、仮想カメラ操作UI330は、3次元モデル選択部620、前景画像選択部630、及びレンダリング部640に、決定した仮想カメラ情報と仮想視点映像を生成するフレームのフレーム番号を送信する(801)。
 3次元モデル選択部620は、入力されたフレーム番号の当該注視点のオブジェクト位置情報リストをデータベース250に要求する(802)。データベース250は、該当する注視点の該当するフレーム番号の位置情報リストを検索して読み出し(804)、3次元モデル選択部620に送信する(804)。
 3次元モデル選択部620は、オブジェクト位置情報リストの位置情報と撮影範囲とを比較し、撮影範囲に含まれているオブジェクトを決定して、その3次元モデル識別子を決定する(805)。その後、3次元モデル選択部620は、決定したオブジェクトの3次元モデル識別子、及びフレーム番号を、前景画像選択部630とデータベース250に送信する(806)。データベース250は、3次元モデル識別子、及びフレーム番号に基づいて、3次元モデルのデータを検索して読み出す(807)。そして、データベース250は、読み出した3次元モデルデータとその3次元モデル識別子、及びフレーム番号を、モデルバッファ610を介してレンダリング部640に送信する(808)。
 また、前景画像選択部630は、仮想カメラ操作UI330から送信された仮想カメラ情報と3次元モデル選択部620から送信されたオブジェクトの3次元モデル識別子に基づき、仮想視点から見えるモデルの表面に関する前景画像を選択する(809)。前景画像選択部630は、選択した前景画像を撮影したカメラ識別子を選択する。前景画像選択部630は、オブジェクトの3次元モデル識別子、選択したカメラ識別子、及びフレーム番号を、データベース250に送信する(810)。データベース250は、3次元モデル識別子、カメラ識別子、及びフレーム番号に基づいて、必要な前景画像のデータを検索して読み出す(811)。そして、データベース250は、読み出した前景画像のデータとその3次元モデル識別子、カメラ識別子、及びフレーム番号を、画像バッファ600を介してレンダリング部640に送信する(812)。
 レンダリング部640は、3次元モデルデータに前景画像をテクスチャマッピングし、端子601から入力された仮想カメラ情報のカメラの姿勢、画角等から仮想視点からの画像を生成する。このようにして、各仮想視点画像生成部270、271、272において、注視点毎に仮想視点からの画像を生成する。
 図1に戻り、仮想視点画像生成部270~272で生成された画像は合成部280に入力される。また、仮想視点背景画像生成部275は、データベース250に格納された背景画像データを用いて、仮想視点からの背景画像を生成し、合成部280に入力する。具体的には、仮想視点背景画像生成部275は、仮想カメラ操作UI330から入力される仮想カメラ位置、画角等に基づいて、実際に撮影した画像又はCG等から背景画像を生成する。
 合成部280は、仮想視点背景画像生成部275で生成された背景画像と各仮想視点画像生成部270~272で生成された画像データをそれぞれの撮影範囲に合わせて合成する。以下、合成部280による画像の合成を図9~図11を用いて説明する。
 図9は、仮想視点背景画像生成部275で生成された背景画像の一例を示す図である。図9において、900は背景画像全体を示し、950は設定された画角を示す。901、902、903は注視点で担当する撮影範囲を示す。撮影範囲901は、注視点2000を向いたカメラで構成される撮影範囲を示し、撮影範囲902は注視点2001を向いたカメラで構成される撮影範囲を示し、撮影範囲903は注視点2002を向いたカメラで構成される撮影範囲を示す。
 図10は、各仮想視点画像生成部270~272で生成された画像の例を表す。撮影範囲903には、注視点2002を撮影するカメラで撮影された前景画像に3次元モデルデータがテクスチャマッピングされた画像が生成されている。撮影範囲902には、注視点2001を撮影するカメラで撮影された前景画像に3次元モデルデータがテクスチャマッピングされた画像が生成されている。撮影範囲901には、注視点2000を撮影するカメラで撮影された前景画像に3次元モデルデータがテクスチャマッピングされた画像が生成されている。
 合成部280は、画像の合成にあたって、遠方の注視点の画像から合成を行う。これにより、遠景のオブジェクトと近景のオブジェクトとが重なった場合、自然に遠景のオブジェクトは近景のオブジェクトに隠される。図11に、背景画像と合成された画像を示す。前述のようにして合成された合成画像は、出力部285に送信され、外部に出力される。
 以上のように本実施形態によれば、仮想視点画像の生成に関連して、品質を低下させることなく、仮想視点からの広域な画像を生成することが可能となる。すなわち、各オブジェクトを正確にモデル化し、高品質な前景画像をそれぞれ用いることができるため、仮想視点画像全体の品質を向上させることができる。例えば、注視点2001を向いたカメラで撮影された画像のみから図11のような画像を生成しようとした場合、撮影範囲902内の選手の画質は本発明と変わらない。しかしながら、撮影範囲901、903内の選手はピントがずれるため、ぼけた画像になり、正確な3次元モデル生成や、高品質な前景画像のテクスチャマッピングが行えない。それに対して、本実施形態では、このような品質の低下を防ぎ、仮想視点から近いにもかかわらず遠景よりもぼけた不正確な画像を提供することがない。
 また、本実施形態では、3次元モデルを生成して仮想視点画像を生成する方法についてMBRを用いて説明した。特にその方法は限定されず、3次元モデルを構築しないImage Based Rendering(IBR)や別な方法を用いても構わない。以下にその一例として、IBRを用いる例について説明する。
 図1において、サーバフロントエンド230、231、232は、再構成されたフレームデータから選手等の対象を切り出して前景画像のみを生成する。また、サーバフロントエンド230、231、232は、前景画像をカメラ識別子、注視点の識別子、フレーム番号に応じてデータベース250に書き込む。バックエンドサーバ300は、仮想カメラ操作UI330から仮想視点の指定を受け付ける。バックエンドサーバ300は、受け付けた仮想視点に基づいて、データベース250から対応する前景画像及び音声データを読み出し、レンダリング処理を行って仮想視点画像を生成する。バックエンドサーバ300は注視点毎に仮想視点映像を生成する。仮想視点画像を生成する際、不図示のユーザは仮想カメラ操作UI330を用いて、仮想視点画像における仮想視点を示す仮想カメラの位置、方向、画角等の設定を行う。
 以下に、仮想視点画像生成部270を例にとって説明するが、仮想視点画像生成部271、272も同様である。仮想視点画像生成部270は、仮想カメラ2700から見た仮想視点画像の生成に必要な画像を得るために、仮想カメラ操作UI330から仮想カメラ情報が入力される。この仮想カメラ情報に基づいて、各センサシステム2L01~2L30、2C01~2C30、2R01~2R30の撮影した前景画像から必要なデータを検索して選択する。データベース250は、仮想カメラ2700の仮想カメラ情報から、画角4200に含まれる実空間上の撮影範囲を決定する。なお、仮想カメラの位置情報は注視点2001を世界座標の原点とする位置で表される。
 前述した実施形態と同様に、仮想視点画像生成部270における領域2100に関する仮想視点画像の生成について述べる。図12は、仮想視点画像生成部270の他の構成例を示す図である。図12において、図6に示した構成要素と同一の機能を有する構成要素には同一の符号を付し、重複する説明は省略する。前景画像選択部1230は、仮想カメラの画角及びカメラ位置情報から、オブジェクトの画像を生成するのに必要なカメラを選択し、必要な前景画像のデータを決定する。画像バッファ1200は、データベース250から入力された前景画像を格納する。レンダリング部1240は、入力された前景画像からオブジェクトの仮想視点画像を生成する。前景画像選択部1230は、それぞれの注視点を撮影しているカメラの位置情報を事前に蓄積している。なお、カメラの位置情報については外部からの読み込みを行っても良い。
 IBRの方法は特に限定せず、例えば非特許文献1に記載されているように、2台のカメラからの画像に基づいて画像を生成する。前景画像選択部1230は、仮想視点カメラの位置から最も近傍のカメラ2台を選択する。仮想視点画像生成部270においては、図5に示した仮想視点カメラ2700に対して、センサシステム2L19とセンサシステム2L20とのカメラの前景映像が選択される。同様に、仮想視点画像生成部271の前景画像選択部1230においては、センサシステム2C23とセンサシステム2C24が選択される。さらに、仮想視点画像生成部272の前景画像選択部1230においては、センサシステム2R27とセンサシステム2R28が選択される。
 前景画像選択部1230は、該当するフレーム番号とそれぞれのセンサシステムのカメラの識別子を、端子602を介してデータベース250に送信し、データを要求する。データベース250は、受信したフレーム番号、及びカメラ識別子に基づいて、必要な前景画像のデータを読み出す。読み出された前景画像データとそのフレーム番号、及びカメラ識別子は、端子603を介して画像バッファ1200に格納される。レンダリング部1240は、カメラ識別子、及びフレーム番号に基づいて、画像バッファ1200から前景画像を読み出す。レンダリング部1240は、2つのカメラの前景画像からモーフィング等の手法を用いて仮想視点からの画像を生成する。また、生成された画像の最終的な画像での画像位置情報を算出する。生成された仮想視点画像と画像位置情報は端子604から出力される。
 以上のようにして、仮想視点映像の生成に関連して、3次元モデルを用いないIBRによっても、品質を低下させることなく、仮想視点からの広域な画像を生成することが可能となる。すなわち、本実施形態では、仮想視点カメラに対して、高品質な前景画像をそれぞれ用いることができるため、仮想視点画像全体の品質を向上させることができる。
 なお、前述した実施形態における画像処理システム100は、以上説明した物理的な構成に限定されるわけではなく、論理的に構成されていても良い。また、センサ群200、201、202をスイッチングハブ180に接続しているが、これに限定されず、これらのセンサ群に関してもカスケード接続を行ってももちろん構わない。また、複数の仮想視点画像生成部を用いる例を示したが、これに限定されず、1つの仮想視点画像生成部によって、時分割や複数のスレッドでの並列処理を行うことで実現しても良い。
 なお、前述した実施形態では、各注視点間の位置情報の差を用いて説明したが、これに限定されず、カメラ位置、注視点位置等を1つの原点に基づく世界座標で計算してももちろん構わない。すなわち、図4の(C)において、各点群の情報をそれぞれの注視点原点からの座標ではなく、それぞれの点の座標に注視点の競技場原点からの座標を加算したものを格納しても構わない。なお、本実施形態においては、注視点が固定であるため、注視点の位置情報をリストにしてデータベース250に保存したり、サーバフロントエンド230~232とバックエンドサーバ300に固定値として格納したりすることも可能である。
 また、前述の実施形態において、仮想カメラから遠い注視点に含まれるオブジェクトの解像度を、仮想カメラから近い注視点に含まれるオブジェクトの解像度より低く抑えてレンダリングすることも可能である。すなわち、遠方のオブジェクトは合成時に小さくなるため、元の解像度を抑えることで、高速な処理が可能になる。これはIBRにおいて、遠い注視点に含まれるオブジェクトの3次元モデルの解像度を下げることで、高速なモデル生成とレンダリングが可能になる。また、前述の実施形態ではサッカー等の競技場を例にとって説明したが、これに限定されない。例えば、野球やバスケットボール、スケート等の競技であっても構わないし、舞台や映画のセットであっても構わない。
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。
 図13は、第2の実施形態における画像処理システム100の構成例を示す図である。図13において、図1に示した構成要素と同一の機能を有する構成要素には同一の符号を付し、重複する説明は省略する。サーバフロントエンド1330、1331、1332は、センサシステムから取得したデータの処理を行う。サーバフロントエンド1330~1332は、第1の実施形態におけるサーバフロントエンド230~232とは、制御ステーション1310から各注視点の位置情報を取得し、それぞれのデータに競技場原点からの位置情報を付与することが異なる。
 図14に、第2の実施形態における競技場の注視点の例を示す。本実施形態では、スキーのエアリアル競技を例にとって説明する。本実施形態でも、注視点は3つとして説明するが、これに限定されない。注視点12000、12001、12002は、撮影開始時の注視点を表し、注視点12001を競技場の原点12001-0とする。センサシステム12L01~12L06は、注視点12002に対応しており、それぞれ1台ずつのカメラ112と雲台113を有する。センサシステム12C01~12C06は、注視点12001に対応しており、それぞれ1台ずつのカメラ112と雲台113を有する。センサシステム12R01~12R06は、注視点12002に対応しており、それぞれ1台ずつのカメラ112と雲台113を有する。ここでは各注視点に対して6台のセンサシステムを用いる例を示したが、これに限定されない。
 図15に、それぞれの注視点の撮影範囲を示す。注視点12000に対応するセンサシステム12R01~12R06のカメラ112は、領域12100の範囲を撮影する。また、注視点12001に対応するセンサシステム12C01~12C06のカメラ112は、領域12101の範囲を撮影し、注視点12002に対応するセンサシステム12L01~12L06のカメラ112は、領域12102の範囲を撮影する。ここで、図14に示すように、注視点12001は競技場の原点であり、座標は(0,0,0)となる。また、注視点12000は競技場の座標では(dx1、dy1、-dz1)となり、注視点12002は競技場の座標では(-dx0、-dy0、dz0)となる。
 センサシステム12L01のマイク111にて集音された音声と、カメラ112にて撮影された画像は、カメラアダプタ120において画像処理が施された後、ネットワーク171を介してセンサシステム12L02のカメラアダプタ120に伝送される。同様に、センサシステム12L02は、集音された音声と撮影された画像をセンサシステム12L01から取得した画像及び音声のデータと合わせて、ネットワーク171を介してセンサシステム12L03に伝送する。この動作を続けることにより、センサシステム12L01~12L06により取得した画像及び音声が、センサシステム12L06からネットワーク180b、211a及びスイッチングハブ180を介してサーバフロントエンド1330へ伝送される。
 制御ステーション1310は、撮影ないし撮影の合間に雲台113を制御し、カメラ112の方向を動かすことで、注視点を移動させることができる。制御ステーション1310が雲台113を用いて新たな注視点を設定した場合について説明する。例えば、注視点12002を(sx1、sy1、sz1)だけ移動させる場合、制御ステーション1310は、センサシステム12L01~12L06の雲台113を制御し、その方向にカメラ112を向け、ピントや画角の制御を行う。その注視点の位置の変更の情報は、ネットワーク311aを通して、サーバフロントエンド1330に入力される。
 同様に、注視点12001を移動させる場合、制御ステーション1310は、センサシステム12C01~センサシステム12C06の雲台113を制御し、その方向にカメラ112を向け、ピントや画角の制御を行う。その注視点の位置の変更の情報は、ネットワーク311bを通して、サーバフロントエンド1331に入力される。また、注視点12000を移動させる場合、制御ステーション1310は、制御ステーション1310は、センサシステム12R01~センサシステム12R06の雲台113を制御し、その方向にカメラ112を向け、ピントや画角の制御を行う。その注視点の位置の変更の情報は、ネットワーク311cを通して、サーバフロントエンド1332に入力される。
 本実施形態において、サーバフロントエンド1330は、センサシステム12L06から取得した画像及び音声から、セグメント化された伝送パケットを再構成してフレームデータのデータ形式を変換する。さらに、サーバフロントエンド1330は、第1の実施形態におけるサーバフロントエンド230と同様に、再構成されたフレームデータから選手等の対象を切り出し、切り出した結果を前景画像として、全カメラからの画像から、その3次元モデルを生成する。ここでは、生成される3次元モデルは、第1の実施形態と同様に点群で表されるものとする。サーバフロントエンド1330は、3次元モデルにそれを識別する識別子が付与されて、3次元モデルの点群データとともに、フレーム番号に応じてデータベース250に書き込む。
 図16に、第2の実施形態における3次元モデルのデータの構成例を示す。図16の(A)に一例を示すように、3次元モデルのデータは、各時刻で管理されており、データの先頭にその時刻を表すタイムコードが付与されており、その後に注視点の数が整数で示されている。図14に示した例では、注視点が3つであるので注視点数は3である。それに続いて、第1注視点へのポインタが指定されている。ここでは、第1注視点は注視点12002とする。このポインタは同じファイルであれば、そこから読み飛ばすデータサイズであったり、別なファイルポインタであったりしても構わない。
 第1注視点へのポインタにより指定されるデータには、図16の(B)に一例を示すように第1注視点の原点の位置が示されている。第1注視点の競技場の原点からのx座標、y座標、z座標、すなわち、(-dx0)、(-dy0)、dz0の値が順に記載されており、続いて、第1注視点に含まれるオブジェクトの数が記載されている。その後、各オブジェクトへのポインタが指定されており、そのポインタにより各オブジェクトの点群にアクセスが可能になっている。また、第1オブジェクトを構成する点の数が続いて記載されており、座標を表現するデータのデータ長と点の数から、第1オブジェクトの3次元データのデータ量を計算でき、一括してデータを取得することが可能である。
 第1オブジェクトの点群データは、図16の(C)に一例を示すように、第1オブジェクトの外接立方体の原点のx座標、y座標、z座標が記載されている。続いて、第1オブジェクトの外接立方体の大きさを表す、x軸方向のサイズ(xサイズ)、y軸方向のサイズ(yサイズ)、z軸方向のサイズ(zサイズ)が入っている。それに続いて、各点のx座標、y座標、z座標が順に入っている。第1注視点の他のオブジェクトについても同様にデータが生成されている。また、他の注視点についても同様にデータが生成されている。
 ここで、第1オブジェクトを含む外接立方体を仮定する。図17A、17Bにその様子を示す。外接立方体の原点が注視点を原点とした場合の位置を第1オブジェクトの外接立方体原点座標として記述する。本実施形態では、図17Aに示すように、その注視点を原点とする座標位置をx、y、zとする。また、図17Bに示すように、外接立方体の大きさをxs0、ys0、zs0とする。以下、第1オブジェクトを構成する各点のx座標、y座標、z座標が、外接立方体の原点からの相対位置で順に入っている。
 バックエンドサーバ300は、第1の実施形態と同様に、データベース250から3次元モデルデータ、及び前景画像を読み出し、レンダリング処理を行って仮想視点画像を生成する。ここで、バックエンドサーバ300は、注視点毎に仮想視点画像を生成する。
 仮想視点画像を生成する際、不図示のユーザは仮想カメラ操作UI330を用いて、仮想カメラ情報を生成する。バックエンドサーバ300は、図15に示す仮想カメラ12700から見た仮想視点画像の生成に必要な画像を得るために、仮想カメラ情報をデータベース250に入力する。データベース250は、入力された仮想カメラ情報に基づいて、各センサシステム12L01~12L06、12C01~12C06、12R01~12R06の撮影した前景画像を検索して選択する。また、データベース250は、入力された仮想カメラ情報に基づいて、サーバフロントエンド1330、1331、1332で生成された3次元モデルから必要なデータを検索して選択する。
 また、仮想カメラ12700の仮想カメラ情報から、画角14200に含まれる実空間上の撮影範囲が決定される。なお、この仮想カメラの位置情報は、注視点12001を世界座標の原点とする位置で表される。本実施形態では注視点が移動するため、画角に注視点が含まれるか否かは、図16の(B)に示した、各注視点の競技場原点からの座標及びその領域が画角に含まれるか否かを判定する。また、この撮影範囲に各注視点や各オブジェクトが含まれるかどうかは、その位置と撮影範囲との比較によって決定される。この場合、データベース250は、まず、外接立方体でオブジェクトを表すため、まずは外接立方体が仮想視点12700からの視野に含まれるか否かを判定する。これは、画角に外接立方体の角の点が含まれるか否かで判断できる。
 図15に示した例では、仮想視点画像には注視点12002を含むので、仮想視点画像生成部1272が仮想視点画像を生成する。また、仮想視点映像には注視点12001を含むので、仮想視点画像生成部1271が仮想視点画像を生成する。なお、仮想視点映像には注視点12000を含まないので、仮想視点画像生成部1270は動作しない。
 仮想視点画像生成部1272における領域12102に関する仮想視点画像の生成について説明する。仮想視点画像生成部1272の構成は、第1の実施形態における仮想視点画像生成部270の構成と同様であるので説明は省略する。また、第1の実施形態における仮想視点画像の生成動作も、図7にフローチャートを示した第1の実施形態と同様である。ただし、本実施形態では、注視点が移動するため、ステップS701にて、注視点位置の情報をデータベース250の3次元モデルデータから読み出して比較する必要がある。また、ステップS705にて、オブジェクトの位置情報として、外接立方体の各点を参照する。
 図18は、第2の実施形態における仮想視点画像の生成の流れを示すシーケンス図である。まず、仮想カメラ操作UI330は、不図示のユーザによる入力に従って仮想カメラ位置、方向、画角を決定する。仮想カメラ操作UI330は、データベース250に画像生成するフレームの時刻を送り、当該時刻の注視点位置情報を要求する(1801)。データベース250は、それぞれの注視点の位置情報を仮想カメラ操作UI330に送る(1802)。仮想カメラ操作UI330は、仮想カメラ情報と注視点位置情報に基づき、撮影範囲を決定し、撮影範囲に含まれる注視点を選択する。仮想カメラ操作UI330が選択した注視点に対応する仮想視点映像生成部1270~1272を選択し、仮想カメラ操作UI330は選択された仮想視点映像生成部を処理開始が可能な状態にする。そして、仮想カメラ操作UI330は、3次元モデル選択部620、前景画像選択部630、及びレンダリング部640に、決定した仮想カメラ情報と仮想視点映像を生成するフレームのフレーム番号を送信する(1803)。
 3次元モデル選択部620は、入力されたフレーム番号の当該注視点のオブジェクト位置情報リストをデータベース250に要求する(1804)。データベース250は、該当する注視点の該当するフレーム番号の位置情報リストを検索して読み出し(1805)、3次元モデル選択部620に送信する(1806)。
 3次元モデル選択部620は、オブジェクト位置情報リストの位置情報と撮影範囲とを比較し、撮影範囲に含まれているオブジェクトを決定して、その3次元モデル識別子を決定する(1807)。その後、3次元モデル選択部620は、決定したオブジェクトの3次元モデル識別子、及びフレーム番号を、前景画像選択部630とデータベース250に送信する(1808)。データベース250は、3次元モデル識別子、及びフレーム番号に基づいて、3次元モデルのデータを検索して読み出す(1809)。そして、データベース250は、読み出した3次元モデルデータとその3次元モデル識別子、及びフレーム番号を、モデルバッファ610を介してレンダリング部640に送信する(1810)。
 また、前景画像選択部630は、仮想カメラ操作UI330から送信された仮想カメラ情報と3次元モデル選択部620から送信されたオブジェクトの3次元モデル識別子に基づき、仮想視点から見えるモデルの表面に関する前景画像を選択する(1811)。前景画像選択部630は、選択した前景画像を撮影したカメラ識別子を選択する。前景画像選択部630は、オブジェクトの3次元モデル識別子、選択したカメラ識別子、及びフレーム番号を、データベース250に送信する(1812)。データベース250は、3次元モデル識別子、カメラ識別子、及びフレーム番号に基づいて、必要な前景画像のデータを検索して読み出す(1813)。そして、データベース250は、読み出した前景画像のデータとその3次元モデル識別子、カメラ識別子、及びフレーム番号を、画像バッファ600を介してレンダリング部640に送信する(1814)。
 レンダリング部640は、3次元モデルデータに前景画像をテクスチャマッピングし、端子601から入力された仮想カメラ情報のカメラの姿勢、画角等から仮想視点からの画像を生成する。このようにして、仮想視点画像生成部1270、1271、1272のうちの仮想視点画像の生成を行う仮想視点画像生成部において、注視点毎に仮想視点からの画像を生成する。
 合成部280は、第1の実施形態と同様に、仮想視点背景画像生成部275で生成された背景画像と各仮想視点映像生成部1270~1272で生成された画像データをそれぞれの撮影範囲に合わせて合成する。
 以上のようにして本実施形態によれば、仮想視点画像の生成に関連して、品質の低下を防ぎ、仮想視点から近いにもかかわらず遠景よりもぼけた不正確な画像を提供することなく、仮想視点からの広域な画像を生成することが可能となる。すなわち、各オブジェクトを正確にモデル化し、高品質な前景画像をそれぞれ用いることができるため、仮想視点画像全体の品質を向上させることができる。また、移動するオブジェクトを追尾して、常にオブジェクトを注視点とすることが可能になる。これによりオブジェクトを常に最良のピントで撮影することができ、正確なオブジェクトの生成が可能になるとともに、遠距離からの仮想視点画像生成でも高品質を得ることが可能になる。
 なお、本実施形態では、注視点の位置情報は3次元モデルデータに含んで記録したが、これに限定されず、データベース250内にフレーム番号に対応付けして注視点の位置情報を別途リスト化しても構わない。また、前述した実施形態では、各注視点間の位置情報の差を用いて説明したが、これに限定されず、カメラ位置、注視点位置等を1つの原点に基づく世界座標で計算してももちろん構わない。すなわち、図14において、各点群の情報をそれぞれの外接立方体原点からの座標ではなく、それぞれの点の座標に注視点原点からの座標を加算したものを格納しても構わない。さらには図14において、各点群の情報をそれぞれの外接立方体原点からの座標ではなく、それぞれの点の座標に注視点原点と競技場原点からの座標を加算したものを格納しても構わない。
 なお、本実施形態では、遠景のオブジェクトを近景のオブジェクトで上書きすることで合成を行ったが、これに限定されない。例えば、各オブジェクトの位置や大きさは、例えば、外接立方体の大きさや位置を競技場原点、注視点座標、外接立方体の座標及びその大きさからその前後関係が導き出せる。これにより、近景のオブジェクトで隠れてしまう遠景のオブジェクトの生成を省略することができ、高速かつ低コストで画像生成が可能になる。
 なお、第1の実施形態と同様に仮想視点映像生成の方法はこれに限定されない。
(第3の実施形態)
 次に、本発明の第3の実施形態について説明する。
 図19は、第3の実施形態における画像処理システム100の構成例を示す図である。図19において、図1に示した構成要素と同一の機能を有する構成要素には同一の符号を付し、重複する説明は省略する。センサ350、351、352は、競技場の気象条件を感知する。気象条件の例としては、湿度、温度、天候等がある。バックエンドサーバ301は、仮想視点画像生成部270、271、272に加え、仮想視点画像補正部276、277、278を有する。競技場に関しては、第1の実施形態と同様として説明する。
 センサ350、351、352は、競技場の各所に配置されており、撮影時の環境条件として湿度と温度を測定する。これらを気象情報と呼ぶことにする。この気象情報は、データベース250に時刻毎に記録される。例えば、湿度が高ければ、大気中に水分子が多く存在し、遠距離の画像がかすんで見える。例えば、図5に示した例において、仮想カメラ2700から撮影範囲4002のオブジェクトは、気象条件によってはかすんで見えることになる。かすみに関してはすでにミー散乱としてモデル化されている。また、同様に、雨が降っていれば遠方の映像はかすんで見える。
 本実施形態において、各撮影範囲での仮想視点画像の生成に関しては第1の実施形態と同様である。仮想視点画像補正部276、277、278は、これらの気象情報、及び仮想カメラと注視点との距離に基づいて、かすみや光の減衰を計算して、生成した仮想視点画像にかすみ処理を施す。これにより、第1の実施形態と同様に、仮想視点画像の生成に関連して、品質を低下させることなく、仮想視点からの広域な画像を生成することができ、仮想視点画像の品質を向上させることができる。さらに、撮影時の気象条件に基づいて生成した仮想視点画像に補正処理を施すことで、競技場の空気感を再現でき、より現実に近い仮想視点画像の生成が可能になる。
 なお、注視点の距離に応じてかすみ処理を施す例を説明したが、これに限定されず、オブジェクトと仮想カメラとの距離に応じてかすみ処理を施すことも可能である。例えば、第2の実施形態における外接立方体の位置は競技場原点からの注視点の座標、及び注視点からの外接立方体の座標を参照することで容易に計算することが可能である。
(第4の実施形態)
 次に、本発明の第4の実施形態について説明する。
 第2の実施形態では、各オブジェクトの位置や点群の点座標を競技場の原点からの注視点座標、外接立方体の注視点からの座標で表したが、これに限定されない。図20は、第4の実施形態における画像処理システム100の構成例を示す図である。図20において、図1及び図13に示した構成要素と同一の機能を有する構成要素には同一の符号を付し、重複する説明は省略する。
 座標変換部1900は、注視点2000に関して、各外接立体原点、点群の各座標を注視点の原点からの相対座標ではなく、競技場原点に対する座標に変換する。同様に、座標変換部1901、1902は、それぞれ注視点2001、2002に関して、各外接立体原点、点群の各座標を注視点の原点からの相対座標ではなく、競技場原点に対する座標に変換する。このようにして変換された3次元モデルのデータは、図21に一例を示すように格納される。ただし、この形式に限定されず、第1注視点の競技場原点からの座標を省略することができる。これにより、すべての点が競技場原点に対する座標で表され、事前に計算しておくことで、レンダリング処理等で座標の差分からそれぞれの位置を計算する必要がなくなり、画像生成の高速化を図ることができる。
 なお、カメラの設置状態によっては、複数の注視点エリアが重なる領域が存在しうる。その際に、例えばオブジェクトの3次元モデルデータは、同じオブジェクトのデータが注視点エリア毎に存在するケースがある。この場合、すべてのデータを格納しておくこともできるが、3次元モデルの生成精度が異なる場合、最終的に生成される仮想視点画像の品質に影響をおよぼすこともある。そこで、例えば第1の実施形態で説明したように、オブジェクトの位置と注視点エリアの情報に基づいて、データを取捨選択するようにしても良い。例えば、ある3次元モデルデータについて、座標が最も近い注視点のデータのみを残し、他の注視点で重複するものは削除するといった処理が考えられる。
(本発明のその他の実施形態)
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 例えば、第1~第4の実施形態に示した画像処理システムは、図22に示すようなコンピュータ機能2200を有し、そのCPU2201により第1~第4の実施形態での動作が実施される。
 コンピュータ機能2200は、図22に示すように、CPU2201と、ROM2202と、RAM2203とを備える。また、操作部(CONS)2209のコントローラ(CONSC)2205と、CRTやLCD等の表示部としてのディスプレイ(DISP)2210のディスプレイコントローラ(DISPC)2206とを備える。さらに、ハードディスク(HD)2211、及びフレキシブルディスク等の記憶デバイス(STD)2212のコントローラ(DCONT)2207と、ネットワークインタフェースカード(NIC)2208とを備える。それら機能部2201、2202、2203、2205、2206、2207、2208は、システムバス2204を介して互いに通信可能に接続された構成としている。
 CPU2201は、ROM2202又はHD2211に記憶されたソフトウェア、又はSTD2212より供給されるソフトウェアを実行することで、システムバス2204に接続された各構成部を総括的に制御する。すなわち、CPU2201は、前述したような動作を行うための処理プログラムを、ROM2202、HD2211、又はSTD2212から読み出して実行することで、第1~第4の実施形態での動作を実現するための制御を行う。RAM2203は、CPU2201の主メモリ又はワークエリア等として機能する。CONSC2205は、CONS2209からの指示入力を制御する。DISPC2206は、DISP2210の表示を制御する。DCONT2207は、ブートプログラム、種々のアプリケーション、ユーザファイル、ネットワーク管理プログラム、及び第1~第4の実施形態における前記処理プログラム等を記憶するHD2211及びSTD2212とのアクセスを制御する。NIC2208はネットワーク2213上の他の装置と双方向にデータをやりとりする。
 なお、前記実施形態は、何れも本発明を実施するにあたっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 本願は、2017年12月4日提出の日本国特許出願特願2017-232480を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
100:画像処理システム 112:カメラ 201~203:センサ群 230~232、1330~1332:サーバフロントエンド 250:データベース 270~272、1270~1272:仮想視点画像生成部 275:仮想視点背景画像生成部 276~278:仮想視点画像補正部 280:合成部 285:出力部 300:バックエンドサーバ 310、1310:制御ステーション 330:仮想カメラ操作UI 350~352:センサ 600、1200:画像バッファ 610:モデルバッファ 620:3次元モデル選択部 630、1230:前景画像選択部 640、1240:レンダリング部 1900~1902:座標変換部
 

 

Claims (28)

  1.  第1の注視点に向けられた複数の撮影装置で構成される第1の撮影装置群と、前記第1の注視点とは異なる第2の注視点に向けられた複数の撮影装置で構成される第2の撮影装置群とを含む複数の撮影装置群に分類される複数の撮影装置により取得された複数の撮影画像に基づいて仮想視点画像を生成する生成装置であって、
     前記第1の撮影装置群に属する撮影装置により取得された撮影画像に基づく第1の画像データを取得する第1の取得手段と、
     前記第2の撮影装置群に属する撮影装置により取得された撮影画像に基づく第2の画像データを取得する第2の取得手段と、
     仮想視点の位置及び方向に関する情報を取得する第3の取得手段と、
     前記第1の取得手段により取得された前記第1の画像データと、前記第2の取得手段により取得された前記第2の画像データと、前記第3の取得手段により取得された仮想視点の位置及び方向に関する情報とに基づき、仮想視点画像を生成する生成手段と、
     を有することを特徴とする生成装置。
  2.  前記生成手段は、さらに、前記第1の注視点の位置と前記第2の注視点の位置とに基づいて前記仮想視点画像を生成することを特徴とする請求項1に記載の生成装置。
  3.  前記生成手段は、前記第3の取得手段により取得された情報により特定される仮想視点の位置と前記第1の注視点の位置との位置関係と、前記特定される仮想視点の位置と前記第2の注視点の位置との位置関係に基づいて、前記仮想視点画像を生成することを特徴とする請求項2に記載の生成装置。
  4.  前記生成手段は、前記第3の取得手段により取得された情報により特定される仮想視点の位置から前記第1の注視点の位置までの距離と、前記特定される仮想視点の位置から前記第2の注視点の位置までの距離に基づいて、前記仮想視点画像を生成することを特徴とする請求項2又は3に記載の生成装置。
  5.  前記第1の画像データと前記第2の画像データと前記仮想視点の位置及び方向に関する情報は、前記生成装置が有する通信手段を介して取得されることを特徴とする請求項1乃至4の何れか1項に記載の生成装置。
  6.  前記仮想視点画像は、第1の画像領域と、前記第1の画像領域とは異なる第2の画像領域とを含む複数の画像領域を有し、
     前記生成手段は、
      前記第1の画像領域に含まれるオブジェクトを表す画像を、前記第1の取得手段により取得された前記第1の画像データに基づいて生成し、
      前記第2の画像領域に含まれるオブジェクトを表す画像を、前記第2の取得手段により取得された前記第2の画像データに基づいて生成する
     ことを特徴とする請求項1乃至5の何れか1項に記載の生成装置。
  7.  少なくともオブジェクトとは異なる背景に関する背景画像データを取得する第4の取得手段をさらに有し、
     前記生成手段は、
      前記第4の取得手段により取得された前記背景画像データに基づき、前記第3の取得手段により取得された情報により特定される仮想視点から見た場合の背景に対応する背景画像を生成し、
      前記第1の画像領域に含まれるオブジェクトを表す画像と、前記第2の画像領域に含まれるオブジェクトを表す画像と、前記背景画像とを合成することにより、前記仮想視点画像を生成する
     ことを特徴とする請求項6に記載の生成装置。
  8.  前記生成手段は、前記仮想視点の位置から前記第1の注視点の位置までの距離が、前記仮想視点の位置から前記第2の注視点の位置までの距離よりも遠い場合、前記第1の画像領域において、前記第1の画像データに基づいて生成されたオブジェクトを表す画像と前記背景画像とを合成した後、前記第2の画像領域において、前記第2の画像データに基づいて生成されたオブジェクトを表す画像と前記背景画像とを合成することにより、前記仮想視点画像を生成することを特徴とする請求項7に記載の生成装置。
  9.  前記第1の画像データと前記第2の画像データと前記仮想視点の位置及び方向に関する情報と前記背景画像データは、前記生成装置が有する通信手段を介して取得されることを特徴とする請求項7又は8に記載の生成装置。
  10.  第1の位置を撮影するように設置された第1の撮影装置群と、前記第1の位置とは異なる第2の位置を撮影するように設置された第2の撮影装置群とを含む複数の撮影装置群に分類される複数の撮影装置により取得された複数の撮影画像に基づいて仮想視点画像を生成する生成装置であって、
     前記第1の撮影装置群に属する撮影装置により取得された撮影画像に基づく第1の画像データを取得する第1の取得手段と、
     前記第2の撮影装置群に属する撮影装置により取得された撮影画像に基づく第2の画像データを取得する第2の取得手段と、
     仮想視点の位置及び方向に関する情報を取得する第3の取得手段と、
     前記第1の撮影装置群に属する撮影装置により取得された撮影画像に基づいて生成される、前記第1の位置を含む第1の撮影範囲内のオブジェクトに対応する第1の3次元形状データを取得する第4の取得手段と、
     前記第2の撮影装置群に属する撮影装置により取得された撮影画像に基づいて生成される、前記第2の位置を含む第2の撮影範囲内のオブジェクトに対応する第2の3次元形状データを取得する第5の取得手段と、
     前記第1の取得手段により取得された前記第1の画像データと、前記第2の取得手段により取得された前記第2の画像データと、前記第3の取得手段により取得された前記仮想視点の位置及び方向に関する情報と、前記第4の取得手段により取得された前記第1の3次元形状データと、前記第5の取得手段により取得された前記第2の3次元形状データとに基づき、仮想視点画像を生成する生成手段と、
     を有することを特徴とする生成装置。
  11.  前記生成手段は、さらに、前記第1の位置と前記第2の位置に基づいて前記仮想視点画像を生成することを特徴とする請求項10に記載の生成装置。
  12.  前記生成手段は、前記第3の取得手段により取得された情報により特定される仮想視点の位置と前記第1の位置との位置関係と、前記特定される仮想視点の位置と前記第2の位置との位置関係に基づいて、前記仮想視点画像を生成することを特徴とする請求項11に記載の生成装置。
  13.  前記生成手段は、前記第3の取得手段により取得された情報により特定される仮想視点の位置から前記第1の位置までの距離と、前記特定される仮想視点の位置から前記第2の位置までの距離に基づいて、前記仮想視点画像を生成することを特徴とする請求項11又は12に記載の生成装置。
  14.  前記仮想視点画像は、第1の画像領域と、前記第1の画像領域とは異なる第2の画像領域とを含む複数の画像領域を有し、
     前記生成手段は、
      前記第1の画像領域に含まれるオブジェクトを表す画像を、前記第1の取得手段により取得された前記第1の画像データと前記第4の取得手段により取得された前記第1の3次元形状データとに基づいて生成し、
      前記第2の画像領域に含まれるオブジェクトを表す画像を、前記第2の取得手段により取得された前記第2の画像データと前記第5の取得手段により取得された前記第2の3次元形状データとに基づいて生成する
     ことを特徴とする請求項10乃至13の何れか1項に記載の生成装置。
  15.  前記第1の画像データと前記第2の画像データと前記仮想視点の位置及び方向に関する情報と前記第1の3次元形状データと前記第2の3次元形状データは、前記生成装置が有する通信手段を介して取得されることを特徴とする請求項10乃至14の何れか1項に記載の生成装置。
  16.  前記第1の画像データは、前記第1の撮影装置群に属する撮影装置により取得された撮影画像に基づいて生成されるオブジェクトの画像データであり、
     前記第2の画像データは、前記第2の撮影装置群に属する撮影装置により取得された撮影画像に基づいて生成されるオブジェクトの画像データである
     ことを特徴とする請求項1乃至15の何れか1項に記載の生成装置。
  17.  前記第1の画像データは、前記第1の撮影装置群に属する撮影装置により取得された撮影画像に基づいて生成されるオブジェクトのテクスチャを表すデータであり、
     前記第2の画像データは、前記第2の撮影装置群に属する撮影装置により取得された撮影画像に基づいて生成されるオブジェクトのテクスチャを表すデータである
     ことを特徴とする請求項1乃至15の何れか1項に記載の生成装置。
  18.  前記生成手段は、
      前記第1の取得手段により取得された前記第1の画像データと、前記第3の取得手段により取得された情報とに基づき、第1の仮想視点画像を生成し、
      前記第2の取得手段により取得された前記第2の画像データと、前記第3の取得手段により取得された情報とに基づき、第2の仮想視点画像を生成し、
      前記第1の仮想視点画像と前記第2の仮想視点画像とを合成して、前記仮想視点画像を生成する
     ことを特徴とする請求項1乃至17の何れか1項に記載の生成装置。
  19.  前記生成手段は、さらに、撮影時の環境条件に基づいて、前記仮想視点画像を生成することを特徴とする請求項1乃至18の何れか1項に記載の生成装置。
  20.  前記環境条件には、湿度と温度と天候のうち少なくとも1つが含まれることを特徴とする請求項19に記載の生成装置。
  21.  前記オブジェクトは、動体であることを特徴とする請求項6乃至17の何れか1項に記載の生成装置。
  22.  人物は、前記オブジェクトであることを特徴とする請求項6乃至17の何れか1項に記載の生成装置。
  23.  第1の注視点に向けられた複数の撮影装置で構成される第1の撮影装置群と、前記第1の注視点とは異なる第2の注視点に向けられた複数の撮影装置で構成される第2の撮影装置群とを含む複数の撮影装置群に分類される複数の撮影装置により取得された複数の撮影画像に基づいて仮想視点画像を生成する生成方法であって、
     前記第1の撮影装置群に属する撮影装置により取得された撮影画像に基づく第1の画像データを取得する第1の取得工程と、
     前記第2の撮影装置群に属する撮影装置により取得された撮影画像に基づく第2の画像データを取得する第2の取得工程と、
     仮想視点の位置及び方向に関する情報を取得する第3の取得工程と、
     前記第1の取得工程により取得された前記第1の画像データと、前記第2の取得工程により取得された前記第2の画像データと、前記第3の取得工程により取得された前記仮想視点の位置及び方向に関する情報とに基づき、仮想視点画像を生成する生成工程と、
     を有することを特徴とする生成方法。
  24.  前記生成工程は、さらに、前記第1の注視点の位置と前記第2の注視点の位置とに基づいて前記仮想視点画像を生成することを特徴とする請求項23に記載の生成方法。
  25.  前記生成工程は、前記第3の取得工程により取得された情報により特定される仮想視点の位置と前記第1の注視点の位置との位置関係と、前記特定される仮想視点の位置と前記第2の注視点の位置との位置関係に基づいて、前記仮想視点画像を生成することを特徴とする請求項24に記載の生成方法。
  26.  前記生成工程は、前記第3の取得工程により取得された情報により特定される仮想視点の位置から前記第1の注視点の位置までの距離と、前記特定される仮想視点の位置から前記第2の注視点の位置までの距離に基づいて、前記仮想視点画像を生成することを特徴とする請求項24又は25に記載の生成方法。
  27.  第1の位置を撮影するように設置された第1の撮影装置群と、前記第1の位置とは異なる第2の位置を撮影するように設置された第2の撮影装置群とを含む複数の撮影装置群に分類される複数の撮影装置により取得された複数の撮影画像に基づいて仮想視点画像を生成する生成方法であって、
     前記第1の撮影装置群に属する撮影装置により取得された撮影画像に基づく第1の画像データを取得する第1の取得工程と、
     前記第2の撮影装置群に属する撮影装置により取得された撮影画像に基づく第2の画像データを取得する第2の取得工程と、
     仮想視点の位置及び方向に関する情報を取得する第3の取得工程と、
     前記第1の撮影装置群に属する撮影装置により取得された撮影画像に基づいて生成される、前記第1の位置を含む第1の撮影範囲内のオブジェクトに対応する第1の3次元形状データを取得する第4の取得工程と、
     前記第2の撮影装置群に属する撮影装置により取得された撮影画像に基づいて生成される、前記第2の位置を含む第2の撮影範囲内のオブジェクトに対応する第2の3次元形状データを取得する第5の取得工程と、
     前記第1の取得工程により取得された前記第1の画像データと、前記第2の取得工程により取得された前記第2の画像データと、前記第3の取得工程により取得された前記仮想視点の位置及び方向に関する情報と、前記第4の取得工程により取得された前記第1の3次元形状データと、前記第5の取得工程により取得された前記第2の3次元形状データとに基づき、仮想視点画像を生成する工程と、
     を有することを特徴とする生成方法。
  28.  コンピュータを、請求項1乃至22の何れか1項に記載の生成装置の各手段として機能させるためのプログラム。
     

     
PCT/JP2018/044202 2017-12-04 2018-11-30 生成装置、生成方法及びプログラム WO2019111817A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18886601.6A EP3605470A4 (en) 2017-12-04 2018-11-30 GENERATION DEVICE, GENERATION METHOD AND PROGRAM
KR1020197031243A KR102125293B1 (ko) 2017-12-04 2018-11-30 생성 장치, 생성 방법, 및 기억 매체
CN201880028801.5A CN110574076B (zh) 2017-12-04 2018-11-30 图像生成设备、图像生成方法和计算可读存储介质
US16/667,659 US11012679B2 (en) 2017-12-04 2019-10-29 Generating apparatus, generating method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-232480 2017-12-04
JP2017232480A JP6415675B1 (ja) 2017-12-04 2017-12-04 生成装置、生成方法及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/667,659 Continuation US11012679B2 (en) 2017-12-04 2019-10-29 Generating apparatus, generating method, and storage medium

Publications (1)

Publication Number Publication Date
WO2019111817A1 true WO2019111817A1 (ja) 2019-06-13

Family

ID=64017199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044202 WO2019111817A1 (ja) 2017-12-04 2018-11-30 生成装置、生成方法及びプログラム

Country Status (6)

Country Link
US (1) US11012679B2 (ja)
EP (1) EP3605470A4 (ja)
JP (1) JP6415675B1 (ja)
KR (1) KR102125293B1 (ja)
CN (1) CN110574076B (ja)
WO (1) WO2019111817A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220103762A1 (en) * 2020-09-30 2022-03-31 Canon Kabushiki Kaisha Imaging apparatus, imaging system, and imaging method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600245B1 (en) * 2014-05-28 2020-03-24 Lucasfilm Entertainment Company Ltd. Navigating a virtual environment of a media content item
US10715714B2 (en) * 2018-10-17 2020-07-14 Verizon Patent And Licensing, Inc. Machine learning-based device placement and configuration service
CN111669603B (zh) * 2019-03-07 2023-03-21 阿里巴巴集团控股有限公司 多角度自由视角数据处理方法及装置、介质、终端、设备
WO2020181088A1 (en) 2019-03-07 2020-09-10 Alibaba Group Holding Limited Method, apparatus, medium, and device for generating multi-angle free-respective image data
US11295309B2 (en) * 2019-09-13 2022-04-05 International Business Machines Corporation Eye contact based financial transaction
US11010962B1 (en) * 2019-10-24 2021-05-18 Morson R. Livingston Systems and methods for facilitating generation of 3D digital objects from 2D images
JP7423251B2 (ja) 2019-10-25 2024-01-29 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム
JPWO2021149509A1 (ja) * 2020-01-23 2021-07-29
KR102368825B1 (ko) * 2020-06-10 2022-02-28 주식회사 엘지유플러스 부가 오브젝트를 포함하는 영상 출력 방법 및 장치
EP4016464A1 (en) * 2020-11-26 2022-06-22 Ricoh Company, Ltd. Apparatus, system, method, and carrier means
JP2022158487A (ja) * 2021-04-02 2022-10-17 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187564A (ja) * 2007-01-31 2008-08-14 Sanyo Electric Co Ltd カメラ校正装置及び方法並びに車両
JP2014215828A (ja) 2013-04-25 2014-11-17 シャープ株式会社 画像データ再生装置、および視点情報生成装置
WO2016088437A1 (ja) * 2014-12-04 2016-06-09 ソニー株式会社 情報処理装置、情報処理方法およびプログラム
JP2017212593A (ja) * 2016-05-25 2017-11-30 キヤノン株式会社 情報処理装置、画像処理システム、情報処理方法、及び、プログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610421B (zh) * 2008-06-17 2011-12-21 华为终端有限公司 视频通讯方法、装置及系统
WO2011052064A1 (ja) * 2009-10-30 2011-05-05 キヤノン株式会社 情報処理装置および方法
JP5614211B2 (ja) * 2010-09-30 2014-10-29 株式会社セガ 画像処理プログラム及びコンピュータ読み取り可能な記録媒体
JP2013038602A (ja) * 2011-08-08 2013-02-21 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
JP6672075B2 (ja) * 2016-05-25 2020-03-25 キヤノン株式会社 制御装置、制御方法、及び、プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187564A (ja) * 2007-01-31 2008-08-14 Sanyo Electric Co Ltd カメラ校正装置及び方法並びに車両
JP2014215828A (ja) 2013-04-25 2014-11-17 シャープ株式会社 画像データ再生装置、および視点情報生成装置
WO2016088437A1 (ja) * 2014-12-04 2016-06-09 ソニー株式会社 情報処理装置、情報処理方法およびプログラム
JP2017212593A (ja) * 2016-05-25 2017-11-30 キヤノン株式会社 情報処理装置、画像処理システム、情報処理方法、及び、プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220103762A1 (en) * 2020-09-30 2022-03-31 Canon Kabushiki Kaisha Imaging apparatus, imaging system, and imaging method

Also Published As

Publication number Publication date
KR102125293B1 (ko) 2020-06-23
CN110574076A (zh) 2019-12-13
JP2019101795A (ja) 2019-06-24
EP3605470A1 (en) 2020-02-05
CN110574076B (zh) 2020-11-06
US11012679B2 (en) 2021-05-18
US20200068188A1 (en) 2020-02-27
KR20190126919A (ko) 2019-11-12
JP6415675B1 (ja) 2018-10-31
EP3605470A4 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
WO2019111817A1 (ja) 生成装置、生成方法及びプログラム
EP3596542B1 (en) Technique for recording augmented reality data
US11790482B2 (en) Mixed reality system with virtual content warping and method of generating virtual content using same
US11410269B2 (en) Mixed reality system with virtual content warping and method of generating virtual content using same
JP6425780B1 (ja) 画像処理システム、画像処理装置、画像処理方法及びプログラム
CN110419061B (zh) 混合现实系统及使用该系统生成虚拟内容的方法
JP4804256B2 (ja) 情報処理方法
JP6513169B1 (ja) 仮想視点画像を生成するシステム、方法及びプログラム
US20190213975A1 (en) Image processing system, image processing method, and computer program
US20070252833A1 (en) Information processing method and information processing apparatus
JP2019083402A (ja) 画像処理装置、画像処理システム、画像処理方法、及びプログラム
JP2019103126A (ja) カメラシステム、カメラ制御装置、カメラ制御方法及びプログラム
JP2019128641A (ja) 画像処理装置、画像処理方法及びプログラム
US11847735B2 (en) Information processing apparatus, information processing method, and recording medium
WO2022142908A1 (zh) 三维模型生成方法、xr设备及存储介质
CN108985275A (zh) 增强现实设备及电子设备的显示追踪方法和装置
JP6759375B2 (ja) 仮想視点画像を生成するシステム、方法及びプログラム
JP7261121B2 (ja) 情報端末装置及びプログラム
WO2022176719A1 (ja) 画像処理装置、画像処理方法及びプログラム
US20230291883A1 (en) Image processing system, image processing method, and storage medium
JP2011048545A (ja) 画像合成装置及びプログラム
JP2023026244A (ja) 画像生成装置および画像生成方法、プログラム
JP2021018570A (ja) 画像処理装置、画像処理システム、画像処理方法およびプログラム
JP2023111640A (ja) 情報処理装置、情報処理方法、データ構造及びプログラム
JP2021052232A (ja) 形状推定装置、形状推定方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197031243

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018886601

Country of ref document: EP

Effective date: 20191031

NENP Non-entry into the national phase

Ref country code: DE