WO2019111392A1 - Rotary compressor and refrigeration cycle device - Google Patents

Rotary compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2019111392A1
WO2019111392A1 PCT/JP2017/044069 JP2017044069W WO2019111392A1 WO 2019111392 A1 WO2019111392 A1 WO 2019111392A1 JP 2017044069 W JP2017044069 W JP 2017044069W WO 2019111392 A1 WO2019111392 A1 WO 2019111392A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
refrigerant
pipe
rotary compressor
compression chamber
Prior art date
Application number
PCT/JP2017/044069
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 長澤
祐策 石部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/044069 priority Critical patent/WO2019111392A1/en
Priority to CZ2020-292A priority patent/CZ309387B6/en
Priority to PCT/JP2018/032083 priority patent/WO2019111461A1/en
Priority to JP2019558005A priority patent/JP6918138B2/en
Priority to KR1020207014918A priority patent/KR102336280B1/en
Priority to CN201880072911.1A priority patent/CN111417783B/en
Publication of WO2019111392A1 publication Critical patent/WO2019111392A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor

Definitions

  • the present invention relates to a rotary compressor and a refrigeration cycle apparatus provided with an injection flow channel.
  • the rotary compressor has mounted the electric motor which consists of a rotor and a stator in the upper part in an airtight container. Then, the rotation of the motor is transmitted to the eccentric part provided at the lower part by the crankshaft fixed to the rotor.
  • the eccentric portion is provided with a piston, and the rotation of the crankshaft eccentrically moves the piston to reduce the volume of the compression chamber.
  • the refrigerant is compressed in the compression chamber.
  • an injection port may be formed in the compression chamber.
  • the intermediate pressure liquid or gas refrigerant is injected into the compression chamber from the injection flow path connected to the injection port.
  • the injection muffler absorbs pressure fluctuations and pressure pulsations of the injection refrigerant generated in the compression chamber, and is considered to be able to stably and smoothly supply the refrigerant to be injected.
  • the present invention is intended to solve the above-mentioned problems, and is capable of absorbing pressure fluctuations and pressure pulsations of the injection refrigerant generated in the compression chamber, and a highly efficient rotary that can exert a supercharging effect of increasing the flow rate of the injection refrigerant.
  • An object of the present invention is to provide a compressor and a refrigeration cycle apparatus.
  • a rotary compressor includes a motor having a stator and a rotor, and an eccentric portion provided on a main shaft fixed to the rotor, the crankshaft rotated by the motor, and the eccentricity.
  • a rotary compressor comprising: a piston provided at a core portion; and a cylinder having a cylindrical through hole formed therein, the eccentric portion and the piston being disposed in the through hole to form a compression chamber.
  • injection muffler is expanded than the inner diameter of the injection pipe is location, and has a.
  • a refrigeration cycle apparatus includes the above-described rotary compressor.
  • the injection muffler is disposed between the branch pipe and the injection pipe and has a diameter larger than the inner diameter of the injection pipe. Therefore, pressure fluctuation and pressure pulsation of the injection refrigerant generated in the compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the rotary compressor is highly efficient.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle apparatus to which a twin rotary compressor according to Embodiment 1 of the present invention is applied. It is a longitudinal section showing a twin rotary compressor concerning Embodiment 1 of the present invention. It is a cross-sectional view which shows the injection port in the compression chamber which concerns on Embodiment 1 of this invention. It is a figure which shows the relationship between the supercharging rate (alpha) which concerns on Embodiment 1 of this invention, and the length L of the injection pipe
  • FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 200 to which a twin rotary compressor 100 according to Embodiment 1 of the present invention is applied.
  • the refrigeration cycle apparatus 200 includes a twin rotary compressor 100, a condenser 201, an expansion valve 202, and an evaporator 203.
  • the twin rotary compressor 100, the condenser 201, the expansion valve 202, and the evaporator 203 are connected by a refrigerant pipe 204 to form a refrigeration cycle circuit. Then, the refrigerant that has flowed out of the evaporator 203 is drawn into the twin rotary compressor 100 and becomes high temperature and high pressure. The high temperature and pressure refrigerant is condensed in the condenser 201 to become a liquid.
  • the refrigerant that has become a liquid is decompressed and expanded by the expansion valve 202 to be a low temperature low pressure gas-liquid two phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 203.
  • the refrigeration cycle apparatus 200 includes an injection flow path 205 for injecting a refrigerant from the refrigerant pipe 204 in front of the evaporator 203 and further in front of the expansion valve 202 in the refrigerant flow direction of the refrigeration cycle circuit. Details of the injection channel 205 will be described later.
  • the twin rotary compressor 100 described later can be applied to such a refrigeration cycle apparatus 200.
  • refrigeration cycle apparatus 200 an air conditioning apparatus, a freezer, or a water heater etc. are mentioned, for example.
  • FIG. 2 is a longitudinal sectional view showing a twin rotary compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view showing an injection port in a compression chamber according to Embodiment 1 of the present invention.
  • the twin rotary compressor 100 includes a cylindrical sealed container 101 whose upper and lower ends are closed.
  • the sealed container 101 includes a cylindrical member 101a, a bowl-shaped upper end closing member 101b closing the upper end of the cylindrical member 101a, and a bowl-shaped lower end closing member 101c closing the lower end of the cylindrical member 101a.
  • the sealed container 101 is installed and fixed to the pedestal 102.
  • An electric motor 103 is disposed in the upper part of the closed container 101.
  • the motor 103 has a stator 103a and a rotor 103b.
  • the stator 103 a of the motor 103 has a cylindrical shape and is fixed to the inner peripheral wall portion of the sealed container 101.
  • the rotor 103 b has a cylindrical shape, and is rotatably disposed in the hollow portion formed at the center of the stator 103 a in the horizontal direction and in the circumferential direction.
  • crankshaft 104 rotated by an electric motor 103 is disposed extending in the vertical direction.
  • the crankshaft 104 has a main shaft 104a, a first eccentric portion 104b, a second eccentric portion 104c, and an auxiliary shaft 104d.
  • the main shaft 104a is fixed to the rotor 103b.
  • the main shaft 104a transmits the rotational driving force from the rotor 103b to the first eccentric portion 104b and the second eccentric portion 104c.
  • the first eccentric portion 104b is provided on the main shaft 104a on the side of the main shaft 104a above the second eccentric portion 104c, decenters the center line from the main shaft 104a, and is larger than the main shaft 104a.
  • the second eccentric portion 104c is provided on the main shaft 104a on the side of the secondary shaft 104d below the first eccentric portion 104b, and the central axis is eccentric with the main shaft 104a and the first eccentric portion 104b, and is larger than the main shaft 104a. .
  • the first eccentric portion 104 b is provided with a first piston 105 a.
  • the first piston 105a has a partition member 105a1 that partitions the first compression chamber 106a.
  • the first eccentric portion 104b and the first piston 105a are disposed in a first cylinder 107a in which a cylindrical through hole is formed.
  • the first eccentric portion 104b and the first piston 105a are disposed in the through hole to form a first compression chamber 106a.
  • the first compression chamber 106 a is a sealed cylindrical space.
  • the first inflow refrigerant pipe 108a is connected to the first cylinder 107a via the through hole 107a1.
  • the second eccentric portion 104 c is provided with a second piston (not shown).
  • the second piston has a partition member that partitions the second compression chamber.
  • the second eccentric portion 104c and the second piston are disposed in a second cylinder 107b in which a cylindrical through hole is formed below the first cylinder 107a.
  • a second eccentric portion 104c and a second piston are disposed in the through hole to form a second compression chamber.
  • the second compression chamber is a sealed cylindrical space.
  • the second inflow refrigerant pipe 108b is connected to the second cylinder 107b through the through hole.
  • an upper bearing 109a that constitutes the upper wall portion of the first compression chamber 106a is provided while slidably holding the crankshaft 104.
  • a lower bearing 109b which constitutes a lower wall portion of the second compression chamber is provided while slidably holding the crankshaft 104.
  • the lower wall portion of the first compression chamber 106a and the upper wall portion of the second compression chamber are formed between the first cylinder 107a and the second cylinder 107b, and the first compression chamber 106a and the second compression chamber are partitioned.
  • An intermediate plate 110 is provided.
  • An upper discharge muffler 111a covering the upper bearing 109a is provided above the upper bearing 109a.
  • the upper discharge muffler 111a encloses the discharge port 107a2 of the compressed refrigerant of the first cylinder 107a.
  • a lower discharge muffler 111b covering the lower bearing 109b is provided below the lower bearing 109b.
  • the lower discharge muffler 111b encloses the compressed refrigerant discharge port of the second cylinder 107b.
  • the upper discharge muffler 111 a and the lower discharge muffler 111 b reduce the noise amplified by the resonance of the internal space in the sealed container 101.
  • the compressed refrigerant discharged from the upper discharge muffler 111 a and the lower discharge muffler 111 b is supplied from the discharge pipe 112 provided in the upper portion of the closed container 101 to the refrigerant pipe 204 of the refrigeration cycle circuit.
  • the first inflow refrigerant pipe 108 a and the second inflow refrigerant pipe 108 b have both inlets inserted into the suction muffler 113.
  • the suction muffler 113 is connected to the refrigerant pipe 204 of the refrigeration cycle circuit to allow the refrigerant to flow therein.
  • the suction muffler 113 is fixed to the outer periphery of the closed container 101.
  • Refrigerant oil is accumulated at the bottom of the sealed container 101.
  • the refrigeration oil accumulated at the bottom is sucked up from the hollow hole provided in the crankshaft 104 by the rotation of the crankshaft 104 in the manner of a centrifugal pump utilizing the rotation of the crankshaft 104.
  • the pumped refrigeration oil is circulated to each sliding portion through the oil supply hole opened from the hollow hole of the crankshaft 104 toward the outer peripheral portion. Thereby, the machine part is sealed by the refrigerator oil.
  • the sliding parts, the crankshaft 104, the first piston 105a, the second piston, the first cylinder 107a, the second cylinder 107b, the upper bearing 109a, the lower bearing 109b, and the intermediate plate 110 do not come into direct contact with each other. Damage is prevented and leakage of the refrigerant is further prevented.
  • An oil separator (not shown) is fitted on the top of the crankshaft 104.
  • the oil separator prevents the refrigerator oil from being discharged from the discharge pipe 112 out of the machine together with the discharged refrigerant.
  • the oil separator closes the flow path with respect to the mixed fluid of the refrigerant and the refrigerator oil flowing toward the discharge pipe 112, collides and separates the refrigerant and the refrigerator oil, and suppresses the outflow of the refrigerator oil to the outside of the machine.
  • the crankshaft 104 fixed to the rotor 103b of the motor part is rotated by the motor 103.
  • the first eccentric portion 104b and the second eccentric portion 104c, and the first piston 105a and the second piston attached to the outer peripheral portion of the first eccentric portion 104b and the second eccentric portion 104c, respectively Eccentric rotation.
  • the volumes of the first compression chamber 106 a and the second compression chamber are reduced, and the refrigerant is compressed to change to a high pressure.
  • the injection flow path 205 is formed by the refrigerant piping 204 in front of the evaporator 203 and further in front of the expansion valve 202 in the refrigerant flow direction of the refrigeration cycle circuit, and the first compression chamber 106 a and the second compression chamber. Inject the refrigerant into the
  • the injection flow path 205 includes a first injection port 205a1, a second injection port 205a2, a branch pipe 205b, a first injection pipe 205c, a second injection pipe 205d, an injection muffler 205e, and a first in-machine passage 205f1. , And the second in-machine passage 205 f 2.
  • the first injection port 205a1 is formed in the first compression chamber 106a by opening a part of the upper bearing 109a.
  • the second injection port 205a2 is formed in the second compression chamber by opening a part of the lower bearing 109b.
  • the branch pipe 205b is connected to the refrigerant pipe 204 of the refrigeration cycle circuit and to the injection muffler 205e.
  • the first injection pipe 205c has an inlet connected to the injection muffler 205e, is connected to the first in-machine passage 205f1, and supplies the refrigerant to the first injection port 205a1.
  • the second injection pipe 205d has an inlet connected to the injection muffler 205e, is connected to the second in-machine passage 205f2, and supplies the refrigerant to the second injection port 205a2.
  • the second injection pipe 205d is longer than the first injection pipe 205c because the second injection pipe 205d is connected to the lower part of the sealed container 101 than the first injection pipe 205c.
  • the injection muffler 205e is disposed between the branch pipe 205b and the first injection pipe 205c and the second injection pipe 205d.
  • the inner diameter of the injection muffler 205e is larger than the inner diameter of the first injection pipe 205c and the second injection pipe 205d.
  • the first injection pipe 205c and the second injection pipe 205d are inserted into the circular bottom of the injection muffler 205e at two places.
  • the injection muffler 205 e is fixed to the outer peripheral portion of the closed container 101 in the same manner as the suction muffler 113.
  • the volume of the injection muffler 205 e is 5% or more of the volume of the suction muffler 113.
  • the volume of the injection muffler 205e is based on the relationship between the suction refrigerant and the injection refrigerant.
  • the first in-machine passage 205f1 connects the first injection pipe 205c and the first injection port 205a1.
  • the first in-machine passage 205f1 is formed as a through hole or the like inside the upper bearing 109a.
  • the second in-machine passage 205f2 connects the second injection pipe 205d and the second injection port 205a2.
  • the second in-machine passage 205f2 is formed as a through hole or the like in the lower bearing 109b.
  • the refrigerant flowing from the refrigeration cycle circuit to the injection flow passage 205 flows into the injection muffler 205e through the branch pipe 205b.
  • the refrigerant flowing into the injection muffler 205e is supplied to the first injection pipe 205c and the second injection pipe 205d in the injection muffler 205e.
  • the refrigerant supplied to the first injection pipe 205c is injected as a liquid or gas refrigerant from the first injection port 205a1 into the inside of the first compression chamber 106a through the first in-machine passage 205f1 of the twin rotary compressor 100.
  • the refrigerant supplied to the second injection pipe 205d is injected as a liquid or gas refrigerant from the second injection port 205a2 into the second compression chamber through the second in-machine passage 205f2 of the twin rotary compressor 100.
  • the pressure in the injection muffler 205e is the pressure of the injection pressure from the refrigeration cycle circuit and the pressure of the first injection pipe 205c and the second injection pipe 205d supplied to the first compression chamber 106a and the second compression chamber. It is intermediate pressure. For this reason, the leakage of the refrigerant due to the pressure difference between the first compression chamber 106a and the second compression chamber is less likely to occur.
  • the pressure of the first injection pipe 205c and the second injection pipe 205d fluctuates according to the phase of the first piston 105a and the second piston.
  • the first injection pipe 205c and the second injection pipe 205d are connected to the branch pipe 205b via the injection muffler 205e which maintains the internal pressure at an intermediate pressure. Therefore, the pressure of the branch pipe 205b is kept constant, whereby the refrigerant injected from the injection flow path 205 is stabilized and the loss is small.
  • the shape of the injection muffler 205e or the dimensions of the length and the inner diameter of the first injection pipe 205c and the second injection pipe 205d are specified and designed. Thereby, the supercharging effect can be obtained at the time of suction of the injection refrigerant. As a result, the flow rate of the injection refrigerant increases, and the injection refrigerant can be injected with high efficiency.
  • the inventors obtained the following findings. That is, the supercharging is caused by the amplification of pressure fluctuations of the inlet and the outlet of the first injection pipe 205c and the second injection pipe 205d for drawing the refrigerant.
  • the reason why pressure fluctuations at the inlet and the outlet of the first injection pipe 205c and the second injection pipe 205d are different from each other is a pipe generated when the refrigerant passes through the injection muffler 205e, the first injection pipe 205c or the second injection pipe 205d. Attributable to friction loss. Therefore, the rate of supercharging correlates with the equation of pressure loss due to tube friction loss.
  • the tube friction coefficient of all the first and second injection tubes 205c and 205d is defined as ⁇ .
  • the length of each of the first and second injection pipes 205c and 205d is defined as L [m].
  • the length L is the length between the end of the first and second injection tubes 205c and 205d exposed to the outside from the injection muffler 205e and the end exposed to the outside of the sealed container 101.
  • the first and second injection pipes 205c and 205d are actually inserted into the injection muffler 205e and the closed vessel 101, the length L here is the length of the center line of the portion exposed to the outside.
  • the inner diameter of each of the first and second injection tubes 205c and 205d is defined as d [m].
  • the flow rate of the refrigerant flowing through each of all the first and second injection pipes 205c and 205d is defined as v [m / s].
  • the density of the refrigerant flowing through each of all the first and second injection pipes 205c and 205d is defined as [[kg / m].
  • the flow rate of the refrigerant flowing through each of all the first and second injection pipes 205c and 205d is defined as Q [m 3 / s].
  • the cross-sectional area of each of all the first and second injection tubes 205c and 205d is defined as (d / 2) 2 ⁇ ⁇ .
  • ⁇ P is divided by the pressure loss Pbase [Pa] when there is no supercharging effect in each of all the first and second injection pipes 205c and 205d, and multiplied by 100 to obtain all the first, second and third
  • the supercharging rate ⁇ is obtained as an increase rate when the case of no supercharging effect is 100%.
  • FIG. 4 is a view showing the relationship between the supercharging rate ⁇ and the length L and the inner diameter d of the first and second injection pipes 205c and 205d according to the first embodiment of the present invention. From FIG. 4, in order to obtain a supercharging effect further, it is more preferable that the length L and the inner diameter d of the first and second injection pipes 205 c and 205 d satisfy the following relationship.
  • L is in the range of ( ⁇ max + 1) / 2 ⁇ ⁇ ⁇ ⁇ max while satisfying the above-mentioned relational expression (Expression 2) obtained by modifying (Expression 1).
  • d is a range of ( ⁇ max + 1) / 2 ⁇ ⁇ ⁇ ⁇ max while satisfying the above (Expression 3) which is a modification of (Expression 1).
  • the volume of the injection muffler 205 e is 0.00073 [m 3 ].
  • the volume of the suction muffler 113 is 0.00731 [m 3 ]. In such a case, the following is obtained from the above-described relational expression (Expression 1) and various configurations.
  • the volumes of the injection muffler 205e is 10% of the volume of the suction muffler 113, which satisfies the condition necessary for the relationship between the suction refrigerant and the injection refrigerant.
  • FIG. 5 is a longitudinal sectional view showing a twin rotary compressor 100 according to a first modification of the first embodiment of the present invention.
  • first modification the description of the same matters as those of the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • connection points of the outlets of the first and second injection pipes 205c and 205d are different from those in the above embodiment. That is, the outlet of the first injection pipe 205 c is connected to the passage in the intermediate plate 110. The outlet of the second injection pipe 205d is connected to the passage of the lower bearing 109b.
  • FIG. 6 is a longitudinal sectional view showing a twin rotary compressor 100 according to Modification 2 of Embodiment 1 of the present invention.
  • the description of the same matters as those in the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • connection points of the outlets of the first and second injection pipes 205c and 205d are different from those in the above embodiment. That is, the outlet of the first injection pipe 205c is connected to the passage of the upper bearing 109a. The outlet of the second injection pipe 205 d is connected to the passage in the intermediate plate 110.
  • FIG. 7 is a longitudinal sectional view showing a twin rotary compressor 100 according to Modification 3 of Embodiment 1 of the present invention.
  • the description of the same matters as those in the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • the connection points of the outlets of the first and second injection pipes 205c and 205d are different from those in the above embodiment. That is, the outlets of the first and second injection pipes 205c and 205d are connected to either the first cylinder 107a or the second cylinder 107b in a circumferentially displaced position, and the upper bearing 109a or the lower bearing 109b from the inside thereof. It is connected to the inner passage and the passage in the middle plate 110 respectively.
  • FIG. 8 is a longitudinal sectional view showing a twin rotary compressor 100 according to Modification 4 in Embodiment 1 of the present invention.
  • the description of the same matters as those in the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • the connection points of the outlets of the first and second injection pipes 205c and 205d are different from those in the above embodiment. That is, the outlet of the first injection pipe 205c is connected to the first cylinder 107a, and is connected to the passage in the upper bearing 109a from the inside thereof. The outlet of the second injection pipe 205d is connected to the second cylinder 107b, and is connected to the passage in the lower bearing 109b from the inside thereof.
  • the twin rotary compressor in which two compression chambers are present has been described.
  • the features of the first embodiment hold even in a single rotary compressor having one compression chamber.
  • a twin rotary compressor 100 as a rotary compressor includes an electric motor 103 having a stator 103a and a rotor 103b.
  • the twin rotary compressor 100 has first and second eccentric parts 104b and 104c as eccentric parts provided on the main shaft 104a fixed to the rotor 103b, and the crankshaft 104 rotated by the electric motor 103 is Prepare.
  • the twin rotary compressor 100 includes first and second pistons 105a as pistons provided to the first and second eccentric portions 104b and 104c.
  • twin rotary compressor 100 a cylindrical through hole is formed, and the first and second eccentric parts 104b and 104c and the first and second pistons 105a are respectively disposed in the through hole to form a first compression chamber.
  • First and second cylinders 107a and 107b as cylinders in which the first and second compression chambers 106a are formed.
  • the twin rotary compressor 100 includes an injection flow path 205 for injecting a refrigerant into the first and second compression chambers 106 a from the refrigerant pipe 204 in front of the evaporator 203 in the refrigerant flow direction of the refrigeration cycle circuit.
  • the injection flow channel 205 has first and second injection ports 205a1 and 205a2 as injection ports formed in the first and second compression chambers 106a.
  • the injection flow path 205 has a branch pipe 205 b connected to the refrigerant pipe 204.
  • the injection flow channel 205 has first and second injection pipes 205c and 205d as injection pipes for supplying the refrigerant to the first and second injection ports 205a1 and 205a2.
  • the injection flow path 205 includes an injection muffler 205e disposed between the branch pipe 205b and the first and second injection pipes 205c and 205d and having a diameter larger than the inner diameter of the first and second injection pipes 205c and 205d. .
  • the injection muffler 205e is disposed between the branch pipe 205b and the first and second injection pipes 205c and 205d and has a diameter larger than the inner diameter of the first and second injection pipes 205c and 205d. . Therefore, the pressure fluctuation and the pressure pulsation of the injection refrigerant generated in the first and second compression chambers 106a can be absorbed, and the supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
  • the first and second eccentric parts 104b and 104c as eccentric parts, the first and second pistons 105a as pistons, and the first and second cylinders 107a and 107b as cylinders.
  • two first and second injection pipes 205c and 205d as injection pipes.
  • the two first and second injection pipes 205c and 205d are formed in the two first and second cylinders 107a and 107b respectively, and the first and second injections of the two first and second compression chambers 106a, respectively.
  • a refrigerant flow path leading to the ports 205a1 and 205a2 is formed.
  • the injection muffler 205e is disposed between the branch pipe 205b and the first and second injection pipes 205c and 205d and has a diameter larger than the inner diameter of the first and second injection pipes 205c and 205d. . Therefore, the pressure fluctuation and the pressure pulsation of the injection refrigerant generated in the first and second compression chambers 106a can be absorbed, and the supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
  • the injection refrigerant is injected from the injection muffler 205e into the two first and second compression chambers 106a by the two first and second injection pipes 205c and 205d, respectively.
  • the pressure difference between the two first and second compression chambers 106a prevents the refrigerant from leaking from one compression chamber to the other, thereby reducing the reduction in compressor performance.
  • a twin rotary compressor 100 as a rotary compressor includes an electric motor 103 having a stator 103a and a rotor 103b.
  • the twin rotary compressor 100 has a first eccentric portion 104b provided on the main shaft 104a fixed to the rotor 103b and a second eccentric portion 104c provided on the main shaft 104a, and is rotated by the electric motor 103.
  • a crankshaft 104 is provided.
  • the twin rotary compressor 100 includes a first piston 105 a provided to the first eccentric portion 104 b.
  • the twin rotary compressor 100 includes a second piston provided to the second eccentric portion 104c.
  • twin rotary compressor 100 In the twin rotary compressor 100, a cylindrical through hole is formed, and the first eccentric portion 104b and the first piston 105a are disposed in the through hole to form a first cylinder 107a in which a first compression chamber 106a is formed. Prepare.
  • the twin rotary compressor 100 is provided with a second cylinder 107b in which a cylindrical through hole is formed, a second eccentric portion 104c and a second piston are disposed in the through hole, and a second compression chamber is formed.
  • the twin rotary compressor 100 includes an injection flow path 205 for injecting the refrigerant from the refrigerant pipe 204 in front of the evaporator 203 in the refrigerant flow direction of the refrigeration cycle circuit into each of the first compression chamber 106 a and the second compression chamber.
  • the injection flow channel 205 has a first injection port 205a1 formed in the first compression chamber 106a.
  • the injection channel 205 has a second injection port 205a2 formed in the second compression chamber.
  • the injection flow path 205 has a branch pipe 205 b connected to the refrigerant pipe 204.
  • the injection flow path 205 has a first injection pipe 205c for supplying a refrigerant to the first injection port 205a1.
  • the injection flow path 205 has a second injection pipe 205d for supplying the refrigerant to the second injection port 205a2.
  • the injection flow path 205 is disposed between the branch pipe 205b and the first injection pipe 205c and the second injection pipe 205d, and the injection muffler 205e has a diameter larger than the inner diameter of the first injection pipe 205c and the second injection pipe 205d. Have.
  • the injection disposed between the branch pipe 205b and the first injection pipe 205c and the second injection pipe 205d and having a diameter larger than the inner diameters of the first injection pipe 205c and the second injection pipe 205d. It has a muffler 205e. Therefore, pressure fluctuations and pressure pulsations of the injection refrigerant generated in the first compression chamber 106a and the second compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
  • the injection refrigerant is injected from the injection muffler 205e into the first compression chamber 106a and the second compression chamber through the first injection pipe 205c and the second injection pipe 205d, respectively.
  • the pressure difference between the first compression chamber 106 a and the second compression chamber prevents the refrigerant from leaking from one compression chamber to the other compression chamber, and the reduction in compressor performance can be reduced.
  • K ⁇ (L / d 5 ) (Equation 1)
  • ⁇ [%] has ⁇ max as the maximum value
  • the pressure loss ⁇ P when there is a supercharging effect in each of all the first and second injection pipes 205c and 205d The pressure loss Pbase [Pa] when there is no supercharging effect in each of the 2 injection pipes 205c and 205d is divided and multiplied by 100, and supercharging is performed in each of all the first and second injection pipes 205c and 205d. It is the supercharging rate when there is an effect.
  • L [m] is the length of each of the first and second injection pipes 205c and 205d.
  • d [m] is the inner diameter of each of the first and second injection pipes 205c and 205d.
  • K [kg ⁇ m 3 / (s 2 ⁇ Pa)] is a coefficient having correlation with ⁇ , ⁇ , Q, Pbase, in which J ⁇ 100 / Pbase is replaced.
  • J [kg ⁇ m 3 / s 2 ] is a coefficient having correlation with ⁇ , ⁇ , and Q, in which (8 / ⁇ 2 ⁇ ⁇ ⁇ ⁇ Q 2 ) is replaced.
  • the pressure fluctuation generated in the compression chamber and the pressure pulsation of the injection refrigerant can be absorbed by the injection muffler 205e.
  • the length L of each of the first and second injection pipes 205c and 205d and the inner diameter d of each of the first and second injection pipes 205c and 205d are correlated with the supercharging rate ⁇ .
  • the size can be designed such that the supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, pressure fluctuation and pressure pulsation of the injection refrigerant generated in the compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
  • L is in the range of ( ⁇ max + 1) / 2 ⁇ ⁇ ⁇ ⁇ max while satisfying the following relational expression (Expression 2) obtained by modifying (Expression 1).
  • d is the range of ( ⁇ max + 1) / 2 ⁇ ⁇ ⁇ ⁇ max while satisfying the following (Expression 3) which is a modification of (Expression 1).
  • L ( ⁇ ⁇ d 5 ) / K (Equation 2)
  • d (K ⁇ L / ⁇ ) 1/5 (Equation 3)
  • the respective lengths L of the first and second injection pipes 205c and 205d and the respective inner diameters d of the first and second injection pipes 205c and 205d increase the flow rate of the injection refrigerant. It can be designed to a size that can exert the supercharging effect more effectively. Therefore, the pressure fluctuation and the pressure pulsation of the injection refrigerant generated in the compression chamber can be absorbed, and the supercharging effect of increasing the flow rate of the injection refrigerant can be more effectively exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
  • twin rotary compressor 100 has suction muffler 113 in the pipe for supplying the refrigerant to twin rotary compressor 100.
  • the volume of the injection muffler 205 e is 5% or more of the volume of the suction muffler 113.
  • the relationship between the refrigerant sucked into the twin rotary compressor 100 and the injection refrigerant is not impaired. Therefore, pressure fluctuation and pressure pulsation of the injection refrigerant generated in the compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
  • the injection muffler 205 e is fixed to the outer peripheral portion of the hermetic container 101 of the twin rotary compressor 100.
  • the injection muffler 205e is fixed to the outer peripheral portion of the hermetic container 101 of the twin rotary compressor 100, the piping vibration of the first and second injection pipes 205c and 205d can be suppressed.
  • the injection muffler 205e can be handled as part of the twin rotary compressor 100 and is easy to handle.
  • the refrigeration cycle apparatus 200 includes the twin rotary compressor 100 according to the first embodiment.
  • the refrigeration cycle apparatus 200 including the twin rotary compressor 100 can absorb pressure fluctuations and pressure pulsations of the injection refrigerant generated in the first compression chamber 106a and the second compression chamber, and the flow rate of the injection refrigerant The supercharge effect to increase can be exhibited. Therefore, the refrigeration cycle apparatus 200 including the twin rotary compressor 100 is highly efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A rotary compressor comprising an electric motor, a crank shaft, a piston, a cylinder, and an injection flowpath that injects a refrigerant into a compression chamber from a refrigerant pipe in front an evaporator in the refrigerant flow direction of a refrigeration cycle circuit. The injection flowpath has: an injection port formed in the compression chamber; a branch pipe connected to the refrigerant pipe; an injection pipe that supplies refrigerant to the injection port; and an injection muffler arranged between the branch pipe and the injection pipe and having a larger diameter than the inner diameter of the injection pipe.

Description

ロータリー圧縮機及び冷凍サイクル装置Rotary compressor and refrigeration cycle apparatus
 本発明は、インジェクション流路を備えるロータリー圧縮機及び冷凍サイクル装置に関する。 The present invention relates to a rotary compressor and a refrigeration cycle apparatus provided with an injection flow channel.
 従来、ロータリー圧縮機は、密閉容器内の上部に回転子及び固定子からなる電動機を搭載していた。そして、回転子に固定されたクランク軸によって電動機の回転が下部に設けられた偏芯部に伝達される。偏芯部には、ピストンが設けられ、クランク軸が回転することによりピストンが偏心運動して圧縮室の体積が縮小する。これにより、ロータリー圧縮機では、圧縮室内にて冷媒が圧縮される。 Conventionally, the rotary compressor has mounted the electric motor which consists of a rotor and a stator in the upper part in an airtight container. Then, the rotation of the motor is transmitted to the eccentric part provided at the lower part by the crankshaft fixed to the rotor. The eccentric portion is provided with a piston, and the rotation of the crankshaft eccentrically moves the piston to reduce the volume of the compression chamber. Thus, in the rotary compressor, the refrigerant is compressed in the compression chamber.
 また、圧縮室内には、インジェクションポートが形成されている場合がある。この場合には、中間圧の液又はガス冷媒は、インジェクションポートに接続されたインジェクション流路から圧縮室にインジェクションされる。 In addition, an injection port may be formed in the compression chamber. In this case, the intermediate pressure liquid or gas refrigerant is injected into the compression chamber from the injection flow path connected to the injection port.
 ここで、インジェクション流路において、インジェクションマフラーを有する技術が知られている(たとえば、特許文献1参照)。インジェクションマフラーは、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動を吸収し、インジェクションする冷媒を安定して円滑に供給できるとされている。 Here, there is known a technique having an injection muffler in the injection flow path (see, for example, Patent Document 1). The injection muffler absorbs pressure fluctuations and pressure pulsations of the injection refrigerant generated in the compression chamber, and is considered to be able to stably and smoothly supply the refrigerant to be injected.
実開平1-58046号公報Japanese Utility Model Application Publication No. 1-58046
 ところで、インジェクションマフラーを適用したロータリー圧縮機の場合には、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるだけでなく、インジェクション冷媒の流量を増大させる過給効果が発揮されることが見出された。 By the way, in the case of a rotary compressor to which an injection muffler is applied, not only absorption of pressure fluctuation and pressure pulsation of the injection refrigerant generated in the compression chamber can be absorbed, but a supercharging effect of increasing the flow rate of the injection refrigerant is exhibited. It was found.
 本発明は、上記課題を解決するためのものであり、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる高効率なロータリー圧縮機及び冷凍サイクル装置を提供することを目的とする。 The present invention is intended to solve the above-mentioned problems, and is capable of absorbing pressure fluctuations and pressure pulsations of the injection refrigerant generated in the compression chamber, and a highly efficient rotary that can exert a supercharging effect of increasing the flow rate of the injection refrigerant. An object of the present invention is to provide a compressor and a refrigeration cycle apparatus.
 本発明に係るロータリー圧縮機は、固定子及び回転子を有する電動機と、前記回転子に固定された主軸に設けられた偏芯部を有し、前記電動機によって回転させられるクランク軸と、前記偏芯部に設けられたピストンと、円筒状の貫通孔が形成され、該貫通孔に前記偏芯部と前記ピストンとが配置されて圧縮室が形成されるシリンダと、を備えたロータリー圧縮機であって、冷凍サイクル回路の冷媒流通方向にて蒸発器手前の冷媒配管から前記圧縮室に冷媒を注入するインジェクション流路を備え、前記インジェクション流路は、前記圧縮室に形成されたインジェクションポートと、前記冷媒配管に接続された分岐管と、前記インジェクションポートに冷媒を供給するインジェクション管と、前記分岐管と前記インジェクション管との間に配置されて前記インジェクション管の内径よりも拡径されたインジェクションマフラーと、を有するものである。 A rotary compressor according to the present invention includes a motor having a stator and a rotor, and an eccentric portion provided on a main shaft fixed to the rotor, the crankshaft rotated by the motor, and the eccentricity. A rotary compressor comprising: a piston provided at a core portion; and a cylinder having a cylindrical through hole formed therein, the eccentric portion and the piston being disposed in the through hole to form a compression chamber. An injection flow path for injecting a refrigerant into the compression chamber from a refrigerant pipe in front of the evaporator in a refrigerant flow direction of the refrigeration cycle circuit, the injection flow path being an injection port formed in the compression chamber; A branch pipe connected to the refrigerant pipe, an injection pipe for supplying a refrigerant to the injection port, and a space between the branch pipe and the injection pipe And injection muffler is expanded than the inner diameter of the injection pipe is location, and has a.
 本発明に係る冷凍サイクル装置は、上記のロータリー圧縮機を備えるものである。 A refrigeration cycle apparatus according to the present invention includes the above-described rotary compressor.
 本発明に係るロータリー圧縮機及び冷凍サイクル装置によれば、分岐管とインジェクション管との間に配置されてインジェクション管の内径よりも拡径されたインジェクションマフラーを有する。したがって、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ロータリー圧縮機が高効率となる。 According to the rotary compressor and the refrigeration cycle apparatus according to the present invention, the injection muffler is disposed between the branch pipe and the injection pipe and has a diameter larger than the inner diameter of the injection pipe. Therefore, pressure fluctuation and pressure pulsation of the injection refrigerant generated in the compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the rotary compressor is highly efficient.
本発明の実施の形態1に係るツインロータリー圧縮機を適用した冷凍サイクル装置を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle apparatus to which a twin rotary compressor according to Embodiment 1 of the present invention is applied. 本発明の実施の形態1に係るツインロータリー圧縮機を示す縦断面図である。It is a longitudinal section showing a twin rotary compressor concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る圧縮室内のインジェクションポートを示す横断面図である。It is a cross-sectional view which shows the injection port in the compression chamber which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る過給率αとインジェクション管の長さL及び内径dとの関係を示す図である。It is a figure which shows the relationship between the supercharging rate (alpha) which concerns on Embodiment 1 of this invention, and the length L of the injection pipe | tube, and the internal diameter d. 本発明の実施の形態1における変形例1に係るツインロータリー圧縮機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the twin rotary compressor which concerns on the modification 1 in Embodiment 1 of this invention. 本発明の実施の形態1における変形例2に係るツインロータリー圧縮機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the twin rotary compressor which concerns on the modification 2 in Embodiment 1 of this invention. 本発明の実施の形態1における変形例3に係るツインロータリー圧縮機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the twin rotary compressor which concerns on the modification 3 in Embodiment 1 of this invention. 本発明の実施の形態1における変形例4に係るツインロータリー圧縮機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the twin rotary compressor which concerns on the modification 4 in Embodiment 1 of this invention.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングが省略されている。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described based on the drawings. In the drawings, the same reference numerals denote the same or corresponding parts, which are common to the whole text of the specification. Further, in the cross sectional view, hatching is appropriately omitted in view of visibility. Furthermore, the form of the component shown in the specification full text is an illustration to the last, and is not limited to these descriptions.
実施の形態1.
<冷凍サイクル装置200>
 図1は、本発明の実施の形態1に係るツインロータリー圧縮機100を適用した冷凍サイクル装置200を示す冷媒回路図である。
Embodiment 1
<Refrigeration cycle apparatus 200>
FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 200 to which a twin rotary compressor 100 according to Embodiment 1 of the present invention is applied.
 図1に示すように、冷凍サイクル装置200は、ツインロータリー圧縮機100、凝縮器201、膨張弁202及び蒸発器203を備える。これらツインロータリー圧縮機100、凝縮器201、膨張弁202及び蒸発器203が冷媒配管204で接続されて冷凍サイクル回路を形成している。そして、蒸発器203から流出した冷媒は、ツインロータリー圧縮機100に吸入されて高温高圧となる。高温高圧となった冷媒は、凝縮器201において凝縮されて液体になる。液体となった冷媒は、膨張弁202で減圧膨張されて低温低圧の気液二相となり、気液二相の冷媒が蒸発器203において熱交換される。 As shown in FIG. 1, the refrigeration cycle apparatus 200 includes a twin rotary compressor 100, a condenser 201, an expansion valve 202, and an evaporator 203. The twin rotary compressor 100, the condenser 201, the expansion valve 202, and the evaporator 203 are connected by a refrigerant pipe 204 to form a refrigeration cycle circuit. Then, the refrigerant that has flowed out of the evaporator 203 is drawn into the twin rotary compressor 100 and becomes high temperature and high pressure. The high temperature and pressure refrigerant is condensed in the condenser 201 to become a liquid. The refrigerant that has become a liquid is decompressed and expanded by the expansion valve 202 to be a low temperature low pressure gas-liquid two phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 203.
 冷凍サイクル装置200は、冷凍サイクル回路の冷媒流通方向にて蒸発器203手前、更には膨張弁202手前の冷媒配管204から圧縮室に冷媒を注入するインジェクション流路205を備える。インジェクション流路205の詳細については、後述する。 The refrigeration cycle apparatus 200 includes an injection flow path 205 for injecting a refrigerant from the refrigerant pipe 204 in front of the evaporator 203 and further in front of the expansion valve 202 in the refrigerant flow direction of the refrigeration cycle circuit. Details of the injection channel 205 will be described later.
 後述のツインロータリー圧縮機100は、このような冷凍サイクル装置200に適用できる。なお、冷凍サイクル装置200としては、たとえば空気調和装置、冷凍装置又は給湯器などが挙げられる。 The twin rotary compressor 100 described later can be applied to such a refrigeration cycle apparatus 200. In addition, as refrigeration cycle apparatus 200, an air conditioning apparatus, a freezer, or a water heater etc. are mentioned, for example.
<ツインロータリー圧縮機100の構成>
 図2は、本発明の実施の形態1に係るツインロータリー圧縮機100を示す縦断面図である。図3は、本発明の実施の形態1に係る圧縮室内のインジェクションポートを示す横断面図である。
<Configuration of Twin Rotary Compressor 100>
FIG. 2 is a longitudinal sectional view showing a twin rotary compressor 100 according to Embodiment 1 of the present invention. FIG. 3 is a cross-sectional view showing an injection port in a compression chamber according to Embodiment 1 of the present invention.
 図2に示すように、ツインロータリー圧縮機100は、上下両端部を閉塞された筒状の密閉容器101を備える。密閉容器101は、筒状部材101aと、筒状部材101aの上端部を塞ぐ椀状の上端閉塞部材101bと、筒状部材101aの下端部を塞ぐ椀状の下端閉塞部材101cと、を有する。密閉容器101は、台座102に据付固定されている。 As shown in FIG. 2, the twin rotary compressor 100 includes a cylindrical sealed container 101 whose upper and lower ends are closed. The sealed container 101 includes a cylindrical member 101a, a bowl-shaped upper end closing member 101b closing the upper end of the cylindrical member 101a, and a bowl-shaped lower end closing member 101c closing the lower end of the cylindrical member 101a. The sealed container 101 is installed and fixed to the pedestal 102.
 密閉容器101内の上部には、電動機103が配置されている。電動機103は、固定子103a及び回転子103bを有する。電動機103の固定子103aは、円筒状であり、密閉容器101の内周壁部に固定されている。回転子103bは、円柱状であり、固定子103aの中心に形成される中空部分に水平方向かつ円周方向にて回転自在に配置されている。 An electric motor 103 is disposed in the upper part of the closed container 101. The motor 103 has a stator 103a and a rotor 103b. The stator 103 a of the motor 103 has a cylindrical shape and is fixed to the inner peripheral wall portion of the sealed container 101. The rotor 103 b has a cylindrical shape, and is rotatably disposed in the hollow portion formed at the center of the stator 103 a in the horizontal direction and in the circumferential direction.
 密閉容器101内には、電動機103によって回転させられるクランク軸104が上下方向に延びて配置されている。クランク軸104は、主軸104aと、第1偏芯部104bと、第2偏芯部104cと、副軸104dと、を有する。 In the sealed container 101, a crankshaft 104 rotated by an electric motor 103 is disposed extending in the vertical direction. The crankshaft 104 has a main shaft 104a, a first eccentric portion 104b, a second eccentric portion 104c, and an auxiliary shaft 104d.
 主軸104aは、回転子103bに固定されている。主軸104aが回転子103bからの回転駆動力を第1偏芯部104b及び第2偏芯部104cに伝達する。第1偏芯部104bは、第2偏芯部104cよりも上方の主軸104a側の主軸104aに設けられ、主軸104aと中心線を偏心させ、主軸104aよりも大きい。第2偏芯部104cは、第1偏芯部104bよりも下方の副軸104d側の主軸104aに設けられ、主軸104a及び第1偏芯部104bと中心線を偏心させ、主軸104aよりも大きい。 The main shaft 104a is fixed to the rotor 103b. The main shaft 104a transmits the rotational driving force from the rotor 103b to the first eccentric portion 104b and the second eccentric portion 104c. The first eccentric portion 104b is provided on the main shaft 104a on the side of the main shaft 104a above the second eccentric portion 104c, decenters the center line from the main shaft 104a, and is larger than the main shaft 104a. The second eccentric portion 104c is provided on the main shaft 104a on the side of the secondary shaft 104d below the first eccentric portion 104b, and the central axis is eccentric with the main shaft 104a and the first eccentric portion 104b, and is larger than the main shaft 104a. .
 図3に示すように、第1偏芯部104bには、第1ピストン105aが設けられている。第1ピストン105aは、第1圧縮室106aを仕切る仕切り部材105a1を有する。 As shown in FIG. 3, the first eccentric portion 104 b is provided with a first piston 105 a. The first piston 105a has a partition member 105a1 that partitions the first compression chamber 106a.
 第1偏芯部104b及び第1ピストン105aは、円筒状の貫通孔が形成された第1シリンダ107a内に配置されている。第1シリンダ107aには、貫通孔に第1偏芯部104bと第1ピストン105aとが配置されて第1圧縮室106aが形成される。第1圧縮室106aは、密閉された円柱空間である。第1シリンダ107aには、貫通孔107a1を介して第1流入冷媒配管108aが接続されている。 The first eccentric portion 104b and the first piston 105a are disposed in a first cylinder 107a in which a cylindrical through hole is formed. In the first cylinder 107a, the first eccentric portion 104b and the first piston 105a are disposed in the through hole to form a first compression chamber 106a. The first compression chamber 106 a is a sealed cylindrical space. The first inflow refrigerant pipe 108a is connected to the first cylinder 107a via the through hole 107a1.
 また、図3と同様に、第2偏芯部104cには、図示しない第2ピストンが設けられている。第2ピストンは、第2圧縮室を仕切る仕切り部材を有する。 Further, as in FIG. 3, the second eccentric portion 104 c is provided with a second piston (not shown). The second piston has a partition member that partitions the second compression chamber.
 第2偏芯部104c及び第2ピストンは、第1シリンダ107aよりも下方にて、円筒状の貫通孔が形成された第2シリンダ107b内に配置されている。第2シリンダ107bには、貫通孔に第2偏芯部104cと第2ピストンとが配置されて第2圧縮室が形成される。第2圧縮室は、密閉された円柱空間である。第2シリンダ107bには、貫通孔を介して第2流入冷媒配管108bが接続されている。 The second eccentric portion 104c and the second piston are disposed in a second cylinder 107b in which a cylindrical through hole is formed below the first cylinder 107a. In the second cylinder 107b, a second eccentric portion 104c and a second piston are disposed in the through hole to form a second compression chamber. The second compression chamber is a sealed cylindrical space. The second inflow refrigerant pipe 108b is connected to the second cylinder 107b through the through hole.
 第1シリンダ107aの上端には、クランク軸104を摺動自在に保持しつつ、第1圧縮室106aの上壁部を構成する上軸受109aが設けられている。 At the upper end of the first cylinder 107a, an upper bearing 109a that constitutes the upper wall portion of the first compression chamber 106a is provided while slidably holding the crankshaft 104.
 第2シリンダ107bの下端には、クランク軸104を摺動自在に保持しつつ、第2圧縮室の下壁部を構成する下軸受109bが設けられている。 At a lower end of the second cylinder 107b, a lower bearing 109b which constitutes a lower wall portion of the second compression chamber is provided while slidably holding the crankshaft 104.
 第1シリンダ107aと第2シリンダ107bとの間には、第1圧縮室106aの下壁部及び第2圧縮室の上壁部を構成し、第1圧縮室106aと第2圧縮室とを仕切る中間板110が設けられている。 The lower wall portion of the first compression chamber 106a and the upper wall portion of the second compression chamber are formed between the first cylinder 107a and the second cylinder 107b, and the first compression chamber 106a and the second compression chamber are partitioned. An intermediate plate 110 is provided.
 上軸受109aの上方には、上軸受109aを覆う上吐出マフラー111aが設けられている。上吐出マフラー111aは、第1シリンダ107aの圧縮された冷媒の排出口107a2を囲っている。下軸受109bの下方には、下軸受109bを覆う下吐出マフラー111bが設けられている。下吐出マフラー111bは、第2シリンダ107bの圧縮された冷媒の排出口を囲っている。上吐出マフラー111a及び下吐出マフラー111bは、密閉容器101内の内部空間の共振によって増幅される騒音を低減させる。上吐出マフラー111a及び下吐出マフラー111bから排出された圧縮冷媒は、密閉容器101の上部に設けられた吐出管112から冷凍サイクル回路の冷媒配管204に供給される。 An upper discharge muffler 111a covering the upper bearing 109a is provided above the upper bearing 109a. The upper discharge muffler 111a encloses the discharge port 107a2 of the compressed refrigerant of the first cylinder 107a. Below the lower bearing 109b, a lower discharge muffler 111b covering the lower bearing 109b is provided. The lower discharge muffler 111b encloses the compressed refrigerant discharge port of the second cylinder 107b. The upper discharge muffler 111 a and the lower discharge muffler 111 b reduce the noise amplified by the resonance of the internal space in the sealed container 101. The compressed refrigerant discharged from the upper discharge muffler 111 a and the lower discharge muffler 111 b is supplied from the discharge pipe 112 provided in the upper portion of the closed container 101 to the refrigerant pipe 204 of the refrigeration cycle circuit.
 第1流入冷媒配管108a及び第2流入冷媒配管108bは、吸入マフラー113内に双方の流入口を差し込んでいる。吸入マフラー113は、冷凍サイクル回路の冷媒配管204に接続され、冷媒を流入させる。吸入マフラー113は、密閉容器101の外周に固定されている。 The first inflow refrigerant pipe 108 a and the second inflow refrigerant pipe 108 b have both inlets inserted into the suction muffler 113. The suction muffler 113 is connected to the refrigerant pipe 204 of the refrigeration cycle circuit to allow the refrigerant to flow therein. The suction muffler 113 is fixed to the outer periphery of the closed container 101.
<ツインロータリー圧縮機100の動作>
 密閉容器101の底部には、冷凍機油が溜まっている。底部に溜まった冷凍機油は、クランク軸104の回転によってクランク軸104に設けられた中空孔からクランク軸104の回転を利用した遠心ポンプの要領で吸い上げられる。吸い上げられた冷凍機油は、クランク軸104の中空孔から外周部に向かって開いた給油孔を通って各摺動部に循環される。これにより、機械部分は、冷凍機油によってシールされる。このため、摺動部品であるクランク軸104、第1ピストン105a、第2ピストン、第1シリンダ107a、第2シリンダ107b、上軸受109a、下軸受109b、及び、中間板110が直接接触せず、損傷が防止され、更に冷媒の漏れが防止される。
<Operation of Twin Rotary Compressor 100>
Refrigerant oil is accumulated at the bottom of the sealed container 101. The refrigeration oil accumulated at the bottom is sucked up from the hollow hole provided in the crankshaft 104 by the rotation of the crankshaft 104 in the manner of a centrifugal pump utilizing the rotation of the crankshaft 104. The pumped refrigeration oil is circulated to each sliding portion through the oil supply hole opened from the hollow hole of the crankshaft 104 toward the outer peripheral portion. Thereby, the machine part is sealed by the refrigerator oil. For this reason, the sliding parts, the crankshaft 104, the first piston 105a, the second piston, the first cylinder 107a, the second cylinder 107b, the upper bearing 109a, the lower bearing 109b, and the intermediate plate 110 do not come into direct contact with each other. Damage is prevented and leakage of the refrigerant is further prevented.
 クランク軸104の上部には、図示しない油分離器が嵌められている。油分離器は、吐出される冷媒と一緒に冷凍機油を吐出管112から機外に出て行くことを防止する。油分離器は、吐出管112に向かって流れる冷媒と冷凍機油との混合流体に対して流路を塞ぎ、冷媒と冷凍機油とを衝突分離させ、機外への冷凍機油の流出を抑制する。 An oil separator (not shown) is fitted on the top of the crankshaft 104. The oil separator prevents the refrigerator oil from being discharged from the discharge pipe 112 out of the machine together with the discharged refrigerant. The oil separator closes the flow path with respect to the mixed fluid of the refrigerant and the refrigerator oil flowing toward the discharge pipe 112, collides and separates the refrigerant and the refrigerator oil, and suppresses the outflow of the refrigerator oil to the outside of the machine.
 ツインロータリー圧縮機100では、モータ部分の回転子103bに固定されたクランク軸104が電動機103によって回転する。これにより、第1偏芯部104b及び第2偏芯部104cと、第1偏芯部104b及び第2偏芯部104cの外周部にそれぞれ取り付けられた第1ピストン105a及び第2ピストンと、が偏芯回転する。そして、第1圧縮室106a及び第2圧縮室の容積が縮小され、冷媒が圧縮されて高圧に変化する。 In the twin rotary compressor 100, the crankshaft 104 fixed to the rotor 103b of the motor part is rotated by the motor 103. Thus, the first eccentric portion 104b and the second eccentric portion 104c, and the first piston 105a and the second piston attached to the outer peripheral portion of the first eccentric portion 104b and the second eccentric portion 104c, respectively, Eccentric rotation. Then, the volumes of the first compression chamber 106 a and the second compression chamber are reduced, and the refrigerant is compressed to change to a high pressure.
<インジェクション流路205の詳細>
 図1に示すように、インジェクション流路205は、冷凍サイクル回路の冷媒流通方向にて蒸発器203手前、更には膨張弁202手前の冷媒配管204から第1圧縮室106a及び第2圧縮室のそれぞれに冷媒を注入する。
<Details of Injection Channel 205>
As shown in FIG. 1, the injection flow path 205 is formed by the refrigerant piping 204 in front of the evaporator 203 and further in front of the expansion valve 202 in the refrigerant flow direction of the refrigeration cycle circuit, and the first compression chamber 106 a and the second compression chamber. Inject the refrigerant into the
 インジェクション流路205は、第1インジェクションポート205a1と、第2インジェクションポート205a2と、分岐管205bと、第1インジェクション管205cと、第2インジェクション管205dと、インジェクションマフラー205eと、第1機内通路205f1と、第2機内通路205f2と、を有する。 The injection flow path 205 includes a first injection port 205a1, a second injection port 205a2, a branch pipe 205b, a first injection pipe 205c, a second injection pipe 205d, an injection muffler 205e, and a first in-machine passage 205f1. , And the second in-machine passage 205 f 2.
 図2、図3に示すように、第1インジェクションポート205a1は、上軸受109aの一部を開口して第1圧縮室106aに形成されている。第2インジェクションポート205a2は、下軸受109bの一部を開口して第2圧縮室に形成されている。 As shown in FIGS. 2 and 3, the first injection port 205a1 is formed in the first compression chamber 106a by opening a part of the upper bearing 109a. The second injection port 205a2 is formed in the second compression chamber by opening a part of the lower bearing 109b.
 図1に示すように、分岐管205bは、冷凍サイクル回路の冷媒配管204に接続されるとともに、インジェクションマフラー205eに接続されている。 As shown in FIG. 1, the branch pipe 205b is connected to the refrigerant pipe 204 of the refrigeration cycle circuit and to the injection muffler 205e.
 第1インジェクション管205cは、インジェクションマフラー205eに流入口を差し込まれ、第1機内通路205f1に接続され、第1インジェクションポート205a1に冷媒を供給する。第2インジェクション管205dは、インジェクションマフラー205eに流入口を差し込まれ、第2機内通路205f2に接続され、第2インジェクションポート205a2に冷媒を供給する。第2インジェクション管205dは、第1インジェクション管205cよりも密閉容器101の下部に接続されるため、第1インジェクション管205cよりも長い。 The first injection pipe 205c has an inlet connected to the injection muffler 205e, is connected to the first in-machine passage 205f1, and supplies the refrigerant to the first injection port 205a1. The second injection pipe 205d has an inlet connected to the injection muffler 205e, is connected to the second in-machine passage 205f2, and supplies the refrigerant to the second injection port 205a2. The second injection pipe 205d is longer than the first injection pipe 205c because the second injection pipe 205d is connected to the lower part of the sealed container 101 than the first injection pipe 205c.
 インジェクションマフラー205eは、分岐管205bと第1インジェクション管205c及び第2インジェクション管205dとの間に配置されている。インジェクションマフラー205eの内径は、第1インジェクション管205c及び第2インジェクション管205dの内径よりも拡径されている。これにより、インジェクションマフラー205eの円形底部には、第1インジェクション管205c及び第2インジェクション管205dが2か所にて差し込まれている。 The injection muffler 205e is disposed between the branch pipe 205b and the first injection pipe 205c and the second injection pipe 205d. The inner diameter of the injection muffler 205e is larger than the inner diameter of the first injection pipe 205c and the second injection pipe 205d. Thus, the first injection pipe 205c and the second injection pipe 205d are inserted into the circular bottom of the injection muffler 205e at two places.
 インジェクションマフラー205eは、吸入マフラー113と同様に密閉容器101の外周部に固定されている。インジェクションマフラー205eの容積は、吸入マフラー113の容積の5%以上である。インジェクションマフラー205eの容積は、吸入冷媒とインジェクション冷媒との関係に基づくものである。 The injection muffler 205 e is fixed to the outer peripheral portion of the closed container 101 in the same manner as the suction muffler 113. The volume of the injection muffler 205 e is 5% or more of the volume of the suction muffler 113. The volume of the injection muffler 205e is based on the relationship between the suction refrigerant and the injection refrigerant.
 第1機内通路205f1は、第1インジェクション管205cと第1インジェクションポート205a1とを繋ぐ。第1機内通路205f1は、上軸受109a内部に貫通孔などとして形成されている。第2機内通路205f2は、第2インジェクション管205dと第2インジェクションポート205a2とを繋ぐ。第2機内通路205f2は、下軸受109b内部に貫通孔などとして形成されている。 The first in-machine passage 205f1 connects the first injection pipe 205c and the first injection port 205a1. The first in-machine passage 205f1 is formed as a through hole or the like inside the upper bearing 109a. The second in-machine passage 205f2 connects the second injection pipe 205d and the second injection port 205a2. The second in-machine passage 205f2 is formed as a through hole or the like in the lower bearing 109b.
<インジェクション流路205の動作>
 冷凍サイクル回路からインジェクション流路205を流通する冷媒は、分岐管205bを通ってインジェクションマフラー205e内に流入する。インジェクションマフラー205e内に流入した冷媒は、インジェクションマフラー205e内にて第1インジェクション管205c及び第2インジェクション管205dに供給される。第1インジェクション管205cに供給された冷媒は、ツインロータリー圧縮機100の第1機内通路205f1を経て第1インジェクションポート205a1から第1圧縮室106aの内部に液又はガス冷媒としてインジェクションされる。第2インジェクション管205dに供給された冷媒は、ツインロータリー圧縮機100の第2機内通路205f2を経て第2インジェクションポート205a2から第2圧縮室の内部に液又はガス冷媒としてインジェクションされる。
<Operation of Injection Channel 205>
The refrigerant flowing from the refrigeration cycle circuit to the injection flow passage 205 flows into the injection muffler 205e through the branch pipe 205b. The refrigerant flowing into the injection muffler 205e is supplied to the first injection pipe 205c and the second injection pipe 205d in the injection muffler 205e. The refrigerant supplied to the first injection pipe 205c is injected as a liquid or gas refrigerant from the first injection port 205a1 into the inside of the first compression chamber 106a through the first in-machine passage 205f1 of the twin rotary compressor 100. The refrigerant supplied to the second injection pipe 205d is injected as a liquid or gas refrigerant from the second injection port 205a2 into the second compression chamber through the second in-machine passage 205f2 of the twin rotary compressor 100.
 このとき、インジェクションマフラー205e内の圧力は、冷凍サイクル回路からのインジェクション圧力と、第1圧縮室106a及び第2圧縮室に供給される第1インジェクション管205c及び第2インジェクション管205dの圧力と、の中間圧になっている。このため、第1圧縮室106aと第2圧縮室との差圧による冷媒の漏れが発生し難い状態である。 At this time, the pressure in the injection muffler 205e is the pressure of the injection pressure from the refrigeration cycle circuit and the pressure of the first injection pipe 205c and the second injection pipe 205d supplied to the first compression chamber 106a and the second compression chamber. It is intermediate pressure. For this reason, the leakage of the refrigerant due to the pressure difference between the first compression chamber 106a and the second compression chamber is less likely to occur.
 第1インジェクション管205c及び第2インジェクション管205dの圧力は、第1ピストン105a及び第2ピストンの位相によって変動している。しかし、第1インジェクション管205c及び第2インジェクション管205dは、内圧を中間圧に保っているインジェクションマフラー205eを介して分岐管205bと接続されている。このため、分岐管205bの圧力が一定に保たれることにより、インジェクション流路205からインジェクションされる冷媒が安定し、損失が少ない。 The pressure of the first injection pipe 205c and the second injection pipe 205d fluctuates according to the phase of the first piston 105a and the second piston. However, the first injection pipe 205c and the second injection pipe 205d are connected to the branch pipe 205b via the injection muffler 205e which maintains the internal pressure at an intermediate pressure. Therefore, the pressure of the branch pipe 205b is kept constant, whereby the refrigerant injected from the injection flow path 205 is stabilized and the loss is small.
<インジェクション流路205の特徴>
 上述に加え、インジェクションマフラー205eの形状あるいは第1インジェクション管205c及び第2インジェクション管205dの長さ及び内径の寸法が指定して設計される。これにより、インジェクション冷媒の吸入時に過給効果が得られる。その結果、インジェクション冷媒の流量が増大し、インジェクション冷媒が高効率にインジェクションできる。
<Features of Injection Channel 205>
In addition to the above, the shape of the injection muffler 205e or the dimensions of the length and the inner diameter of the first injection pipe 205c and the second injection pipe 205d are specified and designed. Thereby, the supercharging effect can be obtained at the time of suction of the injection refrigerant. As a result, the flow rate of the injection refrigerant increases, and the injection refrigerant can be injected with high efficiency.
 ここで、発明者らは、以下の知見を得た。すなわち、過給は、冷媒を吸入する第1インジェクション管205c及び第2インジェクション管205dの入口と出口との圧力変動が重なって増幅することによって引き起こされる。第1インジェクション管205c及び第2インジェクション管205dの入口と出口との圧力変動がそれぞれ異なる要因は、冷媒がインジェクションマフラー205e、第1インジェクション管205c又は第2インジェクション管205dを通過する際に発生する管摩擦損失に起因する。そのため、過給率は、管摩擦損失に起因する圧力損失の式と相関関係がある。 Here, the inventors obtained the following findings. That is, the supercharging is caused by the amplification of pressure fluctuations of the inlet and the outlet of the first injection pipe 205c and the second injection pipe 205d for drawing the refrigerant. The reason why pressure fluctuations at the inlet and the outlet of the first injection pipe 205c and the second injection pipe 205d are different from each other is a pipe generated when the refrigerant passes through the injection muffler 205e, the first injection pipe 205c or the second injection pipe 205d. Attributable to friction loss. Therefore, the rate of supercharging correlates with the equation of pressure loss due to tube friction loss.
 全ての第1、第2インジェクション管205c、205dの管摩擦係数は、λと定義される。全ての第1、第2インジェクション管205c、205dのそれぞれの長さは、L[m]と定義される。ここで、長さLは、全ての第1、第2インジェクション管205c、205dがインジェクションマフラー205eから外部に露出した先端部と密閉容器101から外部に露出した先端部との間の長さである。第1、第2インジェクション管205c、205dは、インジェクションマフラー205e及び密閉容器101内に実際には差し込まれているが、ここでの長さLは外部に露出する部分の中心線上の長さである。全ての第1、第2インジェクション管205c、205dのそれぞれの内径は、d[m]と定義される。全ての第1、第2インジェクション管205c、205dのそれぞれを流れる冷媒流速は、v[m/s]と定義される。全ての第1、第2インジェクション管205c、205dのそれぞれを流れる冷媒の密度は、ρ[kg/m]と定義される。このとき、全ての第1、第2インジェクション管205c、205dのそれぞれの出口での圧力損失△P[Pa]は、
 △P=λ×(L/d)×1/2×ρ×vとなる。
The tube friction coefficient of all the first and second injection tubes 205c and 205d is defined as λ. The length of each of the first and second injection pipes 205c and 205d is defined as L [m]. Here, the length L is the length between the end of the first and second injection tubes 205c and 205d exposed to the outside from the injection muffler 205e and the end exposed to the outside of the sealed container 101. . Although the first and second injection pipes 205c and 205d are actually inserted into the injection muffler 205e and the closed vessel 101, the length L here is the length of the center line of the portion exposed to the outside. . The inner diameter of each of the first and second injection tubes 205c and 205d is defined as d [m]. The flow rate of the refrigerant flowing through each of all the first and second injection pipes 205c and 205d is defined as v [m / s]. The density of the refrigerant flowing through each of all the first and second injection pipes 205c and 205d is defined as [[kg / m]. At this time, the pressure loss ΔP [Pa] at each outlet of all the first and second injection pipes 205c and 205d is
ΔP = λ × (L / d) × 1⁄2 × ρ × v 2
 ここで、全ての第1、第2インジェクション管205c、205dのそれぞれを流れる冷媒流量は、Q[m/s]と定義される。全ての第1、第2インジェクション管205c、205dのそれぞれの管断面積は、(d/2)×πと定義される。その場合には、冷媒流速v=Q/((d/2)×π)であることから、△Pの式のvが置き換えられ、△Pは、
 △P=(L/d)×(8/π×λ×ρ×Q)となる。
Here, the flow rate of the refrigerant flowing through each of all the first and second injection pipes 205c and 205d is defined as Q [m 3 / s]. The cross-sectional area of each of all the first and second injection tubes 205c and 205d is defined as (d / 2) 2 × π. In that case, since the refrigerant flow velocity v = Q / ((d / 2) 2 × π), v in the equation of ΔP is replaced, and ΔP is
ΔP = (L / d 5 ) × (8 / π 2 × λ × ρ × Q 2 ).
 さらに、(8/π×λ×ρ×Q)は、λ、ρ、Qに相関のある係数J[kg・m/s]と置き換えられると、△Pは、
 △P=J×(L/d)となる。
Furthermore, when (8 / π 2 × λ × ρ × Q 2 ) is replaced with a coefficient J [kg · m 3 / s 2 ] correlated with λ, 、, Q, ΔP is
ΔP = J × (L / d 5 ).
 ここで、△Pに、全ての第1、第2インジェクション管205c、205dのそれぞれにて過給効果が無い場合の圧力損失Pbase[Pa]を除算し、100を乗算し、全ての第1、第2インジェクション管のそれぞれにて過給効果がある場合のαmaxを最大値とする過給率α[%]が算出されると、αは、
 α=△P/Pbase×100=J×100/Pbase×(L/d)となる。
 なお、過給率αは、過給効果が無い場合を100%とした場合の増加率として求められる。
Here, ΔP is divided by the pressure loss Pbase [Pa] when there is no supercharging effect in each of all the first and second injection pipes 205c and 205d, and multiplied by 100 to obtain all the first, second and third When the supercharging rate α [%] is calculated, which is the maximum value of αmax when there is a supercharging effect in each of the second injection pipes, α is
α = ΔP / Pbase × 100 = J × 100 / Pbase × (L / d 5 ).
The supercharging rate α is obtained as an increase rate when the case of no supercharging effect is 100%.
 J×100/Pbaseは、λ、ρ、Q、Pbaseに相関のある係数K[kg・m/(s・Pa)]と置き換えられると、
 α=K×(L/d)・・・(式1)となる。
If J × 100 / Pbase is replaced with a coefficient K [kg · m 3 / (s 2 · Pa)] having correlation with λ, 、, Q, Pbase,
α = K × (L / d 5 ) (equation 1).
 つまり、αとL、dとは、係数Kを用いた相関関係がある。その結果、次の関係式(式2)、(式3)を用いて、第1、第2インジェクション管205c、205dの長さL及び内径dが設計できる。
 L=(α×d)/K・・・(式2)
 d=(K×L/α)1/5・・・(式3)
That is, there is a correlation between α and L, d using a coefficient K. As a result, the length L and the inner diameter d of the first and second injection pipes 205c and 205d can be designed using the following relational expressions (Expression 2) and (Expression 3).
L = (α × d 5 ) / K (Equation 2)
d = (K × L / α) 1/5 (Equation 3)
 図4は、本発明の実施の形態1に係る過給率αと第1、第2インジェクション管205c、205dの長さL及び内径dとの関係を示す図である。図4より、更に過給効果を得るため、第1、第2インジェクション管205c、205dの長さL及び内径dは、次の関係を満たすとより好ましい。
 Lは、(式1)を変形した上記関係式(式2)を満たしつつ、(αmax+1)/2≦α≦αmaxの範囲である。
 dは、(式1)を変形した上記(式3)を満たしつつ、(αmax+1)/2≦α≦αmaxの範囲である。
FIG. 4 is a view showing the relationship between the supercharging rate α and the length L and the inner diameter d of the first and second injection pipes 205c and 205d according to the first embodiment of the present invention. From FIG. 4, in order to obtain a supercharging effect further, it is more preferable that the length L and the inner diameter d of the first and second injection pipes 205 c and 205 d satisfy the following relationship.
L is in the range of (αmax + 1) / 2 ≦ α ≦ αmax while satisfying the above-mentioned relational expression (Expression 2) obtained by modifying (Expression 1).
d is a range of (αmax + 1) / 2 ≦ α ≦ αmax while satisfying the above (Expression 3) which is a modification of (Expression 1).
<実施例>
 第1インジェクション管205cの長さLは、L=0.169[m]である。第2インジェクション管205dの長さLは、L=0.211[m]である。第1、第2インジェクション管205c、205dの内径dは、d=0.004[m]である。インジェクションマフラー205eの容積は、0.00073[m]である。吸入マフラー113の容積は、0.00731[m]である。このような場合に、上述の関係式(式1)及び各種構成から以下のようになる。
<Example>
The length L of the first injection pipe 205c is L = 0.169 [m]. The length L of the second injection pipe 205d is L = 0.211 [m]. The inner diameter d of the first and second injection pipes 205c and 205d is d = 0.004 [m]. The volume of the injection muffler 205 e is 0.00073 [m 3 ]. The volume of the suction muffler 113 is 0.00731 [m 3 ]. In such a case, the following is obtained from the above-described relational expression (Expression 1) and various configurations.
 すなわち、第1インジェクション管205cでの過給率αは、α=122.7%である。第2インジェクション管205dでの過給率αは、α=123.7%である。これらのように、過給効果を発揮する条件を満たす。また、インジェクションマフラー205eの容積は、吸入マフラー113の容積の10%となり、吸入冷媒とインジェクション冷媒との関係に必要な条件を満たす。以上により、この場合には、第1圧縮室106a及び第2圧縮室で発生する圧力変動並びにインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機100が高効率となる。 That is, the supercharging rate α in the first injection pipe 205c is α = 122.7%. The supercharging rate α in the second injection pipe 205 d is α = 123.7%. As described above, the conditions for exerting a supercharging effect are satisfied. Further, the volume of the injection muffler 205e is 10% of the volume of the suction muffler 113, which satisfies the condition necessary for the relationship between the suction refrigerant and the injection refrigerant. As described above, in this case, pressure fluctuations and pressure pulsations of the injection refrigerant generated in the first compression chamber 106a and the second compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
<変形例1>
 図5は、本発明の実施の形態1における変形例1に係るツインロータリー圧縮機100を示す縦断面図である。変形例1では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
<Modification 1>
FIG. 5 is a longitudinal sectional view showing a twin rotary compressor 100 according to a first modification of the first embodiment of the present invention. In the first modification, the description of the same matters as those of the above-described embodiment will be omitted, and only the characteristic portions will be described.
 図5に示すように、ツインロータリー圧縮機100は、第1、第2インジェクション管205c、205dの出口の接続箇所を上記実施の形態と異ならせている。すなわち、第1インジェクション管205cの出口は、中間板110内の通路に接続されている。第2インジェクション管205dの出口は、下軸受109bの通路に接続されている。 As shown in FIG. 5, in the twin rotary compressor 100, the connection points of the outlets of the first and second injection pipes 205c and 205d are different from those in the above embodiment. That is, the outlet of the first injection pipe 205 c is connected to the passage in the intermediate plate 110. The outlet of the second injection pipe 205d is connected to the passage of the lower bearing 109b.
<変形例2>
 図6は、本発明の実施の形態1における変形例2に係るツインロータリー圧縮機100を示す縦断面図である。変形例2では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
<Modification 2>
FIG. 6 is a longitudinal sectional view showing a twin rotary compressor 100 according to Modification 2 of Embodiment 1 of the present invention. In the second modification, the description of the same matters as those in the above-described embodiment will be omitted, and only the characteristic portions will be described.
 図6に示すように、ツインロータリー圧縮機100は、第1、第2インジェクション管205c、205dの出口の接続箇所を上記実施の形態と異ならせている。すなわち、第1インジェクション管205cの出口は、上軸受109aの通路に接続されている。第2インジェクション管205dの出口は、中間板110内の通路に接続されている。 As shown in FIG. 6, in the twin rotary compressor 100, the connection points of the outlets of the first and second injection pipes 205c and 205d are different from those in the above embodiment. That is, the outlet of the first injection pipe 205c is connected to the passage of the upper bearing 109a. The outlet of the second injection pipe 205 d is connected to the passage in the intermediate plate 110.
<変形例3>
 図7は、本発明の実施の形態1における変形例3に係るツインロータリー圧縮機100を示す縦断面図である。変形例3では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
<Modification 3>
FIG. 7 is a longitudinal sectional view showing a twin rotary compressor 100 according to Modification 3 of Embodiment 1 of the present invention. In the third modification, the description of the same matters as those in the above-described embodiment will be omitted, and only the characteristic portions will be described.
 図7に示すように、ツインロータリー圧縮機100は、第1、第2インジェクション管205c、205dの出口の接続箇所を上記実施の形態と異ならせている。すなわち、第1、第2インジェクション管205c、205dの出口は、第1シリンダ107a又は第2シリンダ107bのどちらか一方に周方向の位置をずらせて接続され、その内部から上軸受109a又は下軸受109b内の通路及び中間板110内の通路にそれぞれ接続されている。 As shown in FIG. 7, in the twin rotary compressor 100, the connection points of the outlets of the first and second injection pipes 205c and 205d are different from those in the above embodiment. That is, the outlets of the first and second injection pipes 205c and 205d are connected to either the first cylinder 107a or the second cylinder 107b in a circumferentially displaced position, and the upper bearing 109a or the lower bearing 109b from the inside thereof. It is connected to the inner passage and the passage in the middle plate 110 respectively.
<変形例4>
 図8は、本発明の実施の形態1における変形例4に係るツインロータリー圧縮機100を示す縦断面図である。変形例4では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
<Modification 4>
FIG. 8 is a longitudinal sectional view showing a twin rotary compressor 100 according to Modification 4 in Embodiment 1 of the present invention. In the fourth modification, the description of the same matters as those in the above-described embodiment will be omitted, and only the characteristic portions will be described.
 図8に示すように、ツインロータリー圧縮機100は、第1、第2インジェクション管205c、205dの出口の接続箇所を上記実施の形態と異ならせている。すなわち、第1インジェクション管205cの出口は、第1シリンダ107aに接続され、その内部から上軸受109a内の通路に接続されている。第2インジェクション管205dの出口は、第2シリンダ107bに接続され、その内部から下軸受109b内の通路に接続されている。 As shown in FIG. 8, in the twin rotary compressor 100, the connection points of the outlets of the first and second injection pipes 205c and 205d are different from those in the above embodiment. That is, the outlet of the first injection pipe 205c is connected to the first cylinder 107a, and is connected to the passage in the upper bearing 109a from the inside thereof. The outlet of the second injection pipe 205d is connected to the second cylinder 107b, and is connected to the passage in the lower bearing 109b from the inside thereof.
 なお、実施の形態1では、圧縮室が2つ存在するツインロータリー圧縮機について説明した。しかし、圧縮室が1つのシングルロータリー圧縮機においても実施の形態1の特徴は成立する。 In the first embodiment, the twin rotary compressor in which two compression chambers are present has been described. However, the features of the first embodiment hold even in a single rotary compressor having one compression chamber.
<実施の形態1の効果>
 実施の形態1によれば、ロータリー圧縮機としてのツインロータリー圧縮機100は、固定子103a及び回転子103bを有する電動機103を備える。ツインロータリー圧縮機100は、回転子103bに固定された主軸104aに設けられた偏芯部としての第1、第2偏芯部104b、104cを有し、電動機103によって回転させられるクランク軸104を備える。ツインロータリー圧縮機100は、第1、第2偏芯部104b、104cに設けられたピストンとしての第1、第2ピストン105aを備える。ツインロータリー圧縮機100は、円筒状の貫通孔が形成され、該貫通孔に第1、第2偏芯部104b、104cと第1、第2ピストン105aとがそれぞれ配置されて圧縮室としての第1、第2圧縮室106aが形成されるシリンダとしての第1、第2シリンダ107a、107bを備える。ツインロータリー圧縮機100は、冷凍サイクル回路の冷媒流通方向にて蒸発器203手前の冷媒配管204から第1、第2圧縮室106aに冷媒を注入するインジェクション流路205を備える。インジェクション流路205は、第1、第2圧縮室106aに形成されたインジェクションポートとしての第1、第2インジェクションポート205a1、205a2を有する。インジェクション流路205は、冷媒配管204に接続された分岐管205bを有する。インジェクション流路205は、第1、第2インジェクションポート205a1、205a2に冷媒を供給するインジェクション管としての第1、第2インジェクション管205c、205dを有する。インジェクション流路205は、分岐管205bと第1、第2インジェクション管205c、205dとの間に配置されて第1、第2インジェクション管205c、205dの内径よりも拡径されたインジェクションマフラー205eを有する。
<Effect of Embodiment 1>
According to Embodiment 1, a twin rotary compressor 100 as a rotary compressor includes an electric motor 103 having a stator 103a and a rotor 103b. The twin rotary compressor 100 has first and second eccentric parts 104b and 104c as eccentric parts provided on the main shaft 104a fixed to the rotor 103b, and the crankshaft 104 rotated by the electric motor 103 is Prepare. The twin rotary compressor 100 includes first and second pistons 105a as pistons provided to the first and second eccentric portions 104b and 104c. In the twin rotary compressor 100, a cylindrical through hole is formed, and the first and second eccentric parts 104b and 104c and the first and second pistons 105a are respectively disposed in the through hole to form a first compression chamber. First and second cylinders 107a and 107b as cylinders in which the first and second compression chambers 106a are formed. The twin rotary compressor 100 includes an injection flow path 205 for injecting a refrigerant into the first and second compression chambers 106 a from the refrigerant pipe 204 in front of the evaporator 203 in the refrigerant flow direction of the refrigeration cycle circuit. The injection flow channel 205 has first and second injection ports 205a1 and 205a2 as injection ports formed in the first and second compression chambers 106a. The injection flow path 205 has a branch pipe 205 b connected to the refrigerant pipe 204. The injection flow channel 205 has first and second injection pipes 205c and 205d as injection pipes for supplying the refrigerant to the first and second injection ports 205a1 and 205a2. The injection flow path 205 includes an injection muffler 205e disposed between the branch pipe 205b and the first and second injection pipes 205c and 205d and having a diameter larger than the inner diameter of the first and second injection pipes 205c and 205d. .
 この構成によれば、分岐管205bと第1、第2インジェクション管205c、205dとの間に配置されて第1、第2インジェクション管205c、205dの内径よりも拡径されたインジェクションマフラー205eを有する。したがって、第1、第2圧縮室106aで発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機100が高効率となる。 According to this configuration, the injection muffler 205e is disposed between the branch pipe 205b and the first and second injection pipes 205c and 205d and has a diameter larger than the inner diameter of the first and second injection pipes 205c and 205d. . Therefore, the pressure fluctuation and the pressure pulsation of the injection refrigerant generated in the first and second compression chambers 106a can be absorbed, and the supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
 実施の形態1によれば、偏芯部としての第1、第2偏芯部104b、104cと、ピストンとしての第1、第2ピストン105aと、シリンダとしての第1、第2シリンダ107a、107bと、インジェクション管としての第1、第2インジェクション管205c、205dと、は、2つ設けられている。2つの第1、第2インジェクション管205c、205dは、2つの第1、第2シリンダ107a、107bにそれぞれに形成される2つの第1、第2圧縮室106aのそれぞれの第1、第2インジェクションポート205a1、205a2に至る冷媒流路を形成する。 According to the first embodiment, the first and second eccentric parts 104b and 104c as eccentric parts, the first and second pistons 105a as pistons, and the first and second cylinders 107a and 107b as cylinders. And two first and second injection pipes 205c and 205d as injection pipes. The two first and second injection pipes 205c and 205d are formed in the two first and second cylinders 107a and 107b respectively, and the first and second injections of the two first and second compression chambers 106a, respectively. A refrigerant flow path leading to the ports 205a1 and 205a2 is formed.
 この構成によれば、分岐管205bと第1、第2インジェクション管205c、205dとの間に配置されて第1、第2インジェクション管205c、205dの内径よりも拡径されたインジェクションマフラー205eを有する。したがって、第1、第2圧縮室106aで発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機100が高効率となる。 According to this configuration, the injection muffler 205e is disposed between the branch pipe 205b and the first and second injection pipes 205c and 205d and has a diameter larger than the inner diameter of the first and second injection pipes 205c and 205d. . Therefore, the pressure fluctuation and the pressure pulsation of the injection refrigerant generated in the first and second compression chambers 106a can be absorbed, and the supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
 また、インジェクションマフラー205eから2つの第1、第2インジェクション管205c、205dによって2つの第1、第2圧縮室106aにそれぞれインジェクション冷媒がインジェクションされる。これにより、2つの第1、第2圧縮室106aの圧力差によって冷媒が一方の圧縮室から他方の圧縮室に漏れることが抑制され、圧縮機性能の低下が低減できる。 Further, the injection refrigerant is injected from the injection muffler 205e into the two first and second compression chambers 106a by the two first and second injection pipes 205c and 205d, respectively. As a result, the pressure difference between the two first and second compression chambers 106a prevents the refrigerant from leaking from one compression chamber to the other, thereby reducing the reduction in compressor performance.
 実施の形態1によれば、ロータリー圧縮機としてのツインロータリー圧縮機100は、固定子103a及び回転子103bを有する電動機103を備える。ツインロータリー圧縮機100は、回転子103bに固定された主軸104aに設けられた第1偏芯部104bと主軸104aに設けられた第2偏芯部104cとを有し、電動機103によって回転させられるクランク軸104を備える。ツインロータリー圧縮機100は、第1偏芯部104bに設けられた第1ピストン105aを備える。ツインロータリー圧縮機100は、第2偏芯部104cに設けられた第2ピストンを備える。ツインロータリー圧縮機100は、円筒状の貫通孔が形成され、該貫通孔に第1偏芯部104bと第1ピストン105aとが配置されて第1圧縮室106aが形成される第1シリンダ107aを備える。ツインロータリー圧縮機100は、円筒状の貫通孔が形成され、該貫通孔に第2偏芯部104cと第2ピストンとが配置されて第2圧縮室が形成される第2シリンダ107bを備える。ツインロータリー圧縮機100は、冷凍サイクル回路の冷媒流通方向にて蒸発器203手前の冷媒配管204から第1圧縮室106a及び第2圧縮室のそれぞれに冷媒を注入するインジェクション流路205を備える。インジェクション流路205は、第1圧縮室106aに形成された第1インジェクションポート205a1を有する。インジェクション流路205は、第2圧縮室に形成された第2インジェクションポート205a2を有する。インジェクション流路205は、冷媒配管204に接続された分岐管205bを有する。インジェクション流路205は、第1インジェクションポート205a1に冷媒を供給する第1インジェクション管205cを有する。インジェクション流路205は、第2インジェクションポート205a2に冷媒を供給する第2インジェクション管205dを有する。インジェクション流路205は、分岐管205bと第1インジェクション管205c及び第2インジェクション管205dとの間に配置されて第1インジェクション管205c及び第2インジェクション管205dの内径よりも拡径されたインジェクションマフラー205eを有する。 According to Embodiment 1, a twin rotary compressor 100 as a rotary compressor includes an electric motor 103 having a stator 103a and a rotor 103b. The twin rotary compressor 100 has a first eccentric portion 104b provided on the main shaft 104a fixed to the rotor 103b and a second eccentric portion 104c provided on the main shaft 104a, and is rotated by the electric motor 103. A crankshaft 104 is provided. The twin rotary compressor 100 includes a first piston 105 a provided to the first eccentric portion 104 b. The twin rotary compressor 100 includes a second piston provided to the second eccentric portion 104c. In the twin rotary compressor 100, a cylindrical through hole is formed, and the first eccentric portion 104b and the first piston 105a are disposed in the through hole to form a first cylinder 107a in which a first compression chamber 106a is formed. Prepare. The twin rotary compressor 100 is provided with a second cylinder 107b in which a cylindrical through hole is formed, a second eccentric portion 104c and a second piston are disposed in the through hole, and a second compression chamber is formed. The twin rotary compressor 100 includes an injection flow path 205 for injecting the refrigerant from the refrigerant pipe 204 in front of the evaporator 203 in the refrigerant flow direction of the refrigeration cycle circuit into each of the first compression chamber 106 a and the second compression chamber. The injection flow channel 205 has a first injection port 205a1 formed in the first compression chamber 106a. The injection channel 205 has a second injection port 205a2 formed in the second compression chamber. The injection flow path 205 has a branch pipe 205 b connected to the refrigerant pipe 204. The injection flow path 205 has a first injection pipe 205c for supplying a refrigerant to the first injection port 205a1. The injection flow path 205 has a second injection pipe 205d for supplying the refrigerant to the second injection port 205a2. The injection flow path 205 is disposed between the branch pipe 205b and the first injection pipe 205c and the second injection pipe 205d, and the injection muffler 205e has a diameter larger than the inner diameter of the first injection pipe 205c and the second injection pipe 205d. Have.
 この構成によれば、分岐管205bと第1インジェクション管205c及び第2インジェクション管205dとの間に配置されて第1インジェクション管205c及び第2インジェクション管205dのそれぞれの内径よりも拡径されたインジェクションマフラー205eを有する。したがって、第1圧縮室106a及び第2圧縮室で発生する圧力変動並びにインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機100が高効率となる。 According to this configuration, the injection disposed between the branch pipe 205b and the first injection pipe 205c and the second injection pipe 205d and having a diameter larger than the inner diameters of the first injection pipe 205c and the second injection pipe 205d. It has a muffler 205e. Therefore, pressure fluctuations and pressure pulsations of the injection refrigerant generated in the first compression chamber 106a and the second compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
 また、インジェクションマフラー205eから第1インジェクション管205c及び第2インジェクション管205dによって第1圧縮室106a及び第2圧縮室にそれぞれインジェクション冷媒がインジェクションされる。これにより、第1圧縮室106a及び第2圧縮室の圧力差によって冷媒が一方の圧縮室から他方の圧縮室に漏れることが抑制され、圧縮機性能の低下が低減できる。 Further, the injection refrigerant is injected from the injection muffler 205e into the first compression chamber 106a and the second compression chamber through the first injection pipe 205c and the second injection pipe 205d, respectively. As a result, the pressure difference between the first compression chamber 106 a and the second compression chamber prevents the refrigerant from leaking from one compression chamber to the other compression chamber, and the reduction in compressor performance can be reduced.
 実施の形態1によれば、上記のロータリー圧縮機にとしてのツインロータリー圧縮機100において、下記関係式(式1)を満たす。
 α=K×(L/d)・・・(式1)
 ここで、α[%]は、αmaxを最大値とし、全ての第1、第2インジェクション管205c、205dのそれぞれにて過給効果がある場合の圧力損失△Pに、全ての第1、第2インジェクション管205c、205dのそれぞれにて過給効果が無い場合の圧力損失Pbase[Pa]を除算し、100を乗算し、全ての第1、第2インジェクション管205c、205dのそれぞれにて過給効果がある場合の過給率である。
 L[m]は、全ての第1、第2インジェクション管205c、205dのそれぞれの長さである。
 d[m]は、全ての第1、第2インジェクション管205c、205dのそれぞれの内径である。
 K[kg・m/(s・Pa)]は、J×100/Pbaseを置き換えた、λ、ρ、Q、Pbaseに相関のある係数である。
 J[kg・m/s]は、(8/π×λ×ρ×Q)を置き換えた、λ、ρ、Qに相関のある係数である。
According to the first embodiment, in the twin rotary compressor 100 as the above-described rotary compressor, the following relational expression (Expression 1) is satisfied.
α = K × (L / d 5 ) (Equation 1)
Here, α [%] has αmax as the maximum value, and the pressure loss ΔP when there is a supercharging effect in each of all the first and second injection pipes 205c and 205d The pressure loss Pbase [Pa] when there is no supercharging effect in each of the 2 injection pipes 205c and 205d is divided and multiplied by 100, and supercharging is performed in each of all the first and second injection pipes 205c and 205d. It is the supercharging rate when there is an effect.
L [m] is the length of each of the first and second injection pipes 205c and 205d.
d [m] is the inner diameter of each of the first and second injection pipes 205c and 205d.
K [kg · m 3 / (s 2 · Pa)] is a coefficient having correlation with λ, 、, Q, Pbase, in which J × 100 / Pbase is replaced.
J [kg · m 3 / s 2 ] is a coefficient having correlation with λ, 、, and Q, in which (8 / π 2 × λ × ρ × Q 2 ) is replaced.
 この構成によれば、インジェクションマフラー205eによって圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できる。またそれとともに、第1、第2インジェクション管205c、205dのそれぞれの長さLと、第1、第2インジェクション管205c、205dのそれぞれの内径dと、が、過給率αとの相関関係によって、インジェクション冷媒の流量を増大させる過給効果が発揮できる寸法に設計できる。したがって、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機100が高効率となる。 According to this configuration, the pressure fluctuation generated in the compression chamber and the pressure pulsation of the injection refrigerant can be absorbed by the injection muffler 205e. In addition, the length L of each of the first and second injection pipes 205c and 205d and the inner diameter d of each of the first and second injection pipes 205c and 205d are correlated with the supercharging rate α. The size can be designed such that the supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, pressure fluctuation and pressure pulsation of the injection refrigerant generated in the compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
 実施の形態1によれば、ツインロータリー圧縮機100において、Lは、(式1)を変形した下記関係式(式2)を満たしつつ、(αmax+1)/2≦α≦αmaxの範囲である。dは、(式1)を変形した下記(式3)を満たしつつ、(αmax+1)/2≦α≦αmaxの範囲である。
 L=(α×d)/K・・・(式2)
 d=(K×L/α)1/5・・・(式3)
According to Embodiment 1, in the twin rotary compressor 100, L is in the range of (αmax + 1) / 2 ≦ α ≦ αmax while satisfying the following relational expression (Expression 2) obtained by modifying (Expression 1). d is the range of (αmax + 1) / 2 ≦ α ≦ αmax while satisfying the following (Expression 3) which is a modification of (Expression 1).
L = (α × d 5 ) / K (Equation 2)
d = (K × L / α) 1/5 (Equation 3)
 この構成によれば、第1、第2インジェクション管205c、205dのそれぞれの長さLと、第1、第2インジェクション管205c、205dのそれぞれの内径dと、が、インジェクション冷媒の流量を増大させる過給効果がより効果的に発揮できる寸法に設計できる。したがって、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果がより効果的に発揮できる。そのため、ツインロータリー圧縮機100が高効率となる。 According to this configuration, the respective lengths L of the first and second injection pipes 205c and 205d and the respective inner diameters d of the first and second injection pipes 205c and 205d increase the flow rate of the injection refrigerant. It can be designed to a size that can exert the supercharging effect more effectively. Therefore, the pressure fluctuation and the pressure pulsation of the injection refrigerant generated in the compression chamber can be absorbed, and the supercharging effect of increasing the flow rate of the injection refrigerant can be more effectively exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
 実施の形態1によれば、ツインロータリー圧縮機100は、ツインロータリー圧縮機100に冷媒を供給する配管に吸入マフラー113を有する。インジェクションマフラー205eの容積は、吸入マフラー113の容積の5%以上である。 According to the first embodiment, twin rotary compressor 100 has suction muffler 113 in the pipe for supplying the refrigerant to twin rotary compressor 100. The volume of the injection muffler 205 e is 5% or more of the volume of the suction muffler 113.
 この構成によれば、ツインロータリー圧縮機100に吸入される冷媒と、インジェクション冷媒と、の関係が損なわれない。したがって、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機100が高効率となる。 According to this configuration, the relationship between the refrigerant sucked into the twin rotary compressor 100 and the injection refrigerant is not impaired. Therefore, pressure fluctuation and pressure pulsation of the injection refrigerant generated in the compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
 実施の形態1によれば、インジェクションマフラー205eをツインロータリー圧縮機100の密閉容器101の外周部に固定する。 According to the first embodiment, the injection muffler 205 e is fixed to the outer peripheral portion of the hermetic container 101 of the twin rotary compressor 100.
 この構成によれば、インジェクションマフラー205eがツインロータリー圧縮機100の密閉容器101の外周部に固定されているので、第1、第2インジェクション管205c、205dの配管振動が抑制できる。また、インジェクションマフラー205eがツインロータリー圧縮機100の一部として取り扱え、取り扱い易い。 According to this configuration, since the injection muffler 205e is fixed to the outer peripheral portion of the hermetic container 101 of the twin rotary compressor 100, the piping vibration of the first and second injection pipes 205c and 205d can be suppressed. In addition, the injection muffler 205e can be handled as part of the twin rotary compressor 100 and is easy to handle.
 冷凍サイクル装置200は、実施の形態1のツインロータリー圧縮機100を備える。 The refrigeration cycle apparatus 200 includes the twin rotary compressor 100 according to the first embodiment.
 この構成によれば、ツインロータリー圧縮機100を備える冷凍サイクル装置200は、第1圧縮室106a及び第2圧縮室で発生する圧力変動並びにインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機100を備える冷凍サイクル装置200が高効率となる。 According to this configuration, the refrigeration cycle apparatus 200 including the twin rotary compressor 100 can absorb pressure fluctuations and pressure pulsations of the injection refrigerant generated in the first compression chamber 106a and the second compression chamber, and the flow rate of the injection refrigerant The supercharge effect to increase can be exhibited. Therefore, the refrigeration cycle apparatus 200 including the twin rotary compressor 100 is highly efficient.
 100 ツインロータリー圧縮機、101 密閉容器、101a 筒状部材、101b 上端閉塞部材、101c 下端閉塞部材、102 台座、103 電動機、103a 固定子、103b 回転子、104 クランク軸、104a 主軸、104b 第1偏芯部、104c 第2偏芯部、104d 副軸、105a 第1ピストン、105a1 仕切り部材、106a 第1圧縮室、107a 第1シリンダ、107a1 貫通孔、107a2 排出口、107b 第2シリンダ、108a 第1流入冷媒配管、108b 第2流入冷媒配管、109a 上軸受、109b 下軸受、110 中間板、111a 上吐出マフラー、111b 下吐出マフラー、112 吐出管、113 吸入マフラー、200 冷凍サイクル装置、201 凝縮器、202 膨張弁、203 蒸発器、204 冷媒配管、205 インジェクション流路、205a1 第1インジェクションポート、205a2 第2インジェクションポート、205b 分岐管、205c 第1インジェクション管、205d 第2インジェクション管、205e インジェクションマフラー、205f1 第1機内通路、205f2 第2機内通路。 DESCRIPTION OF SYMBOLS 100 twin rotary compressor, 101 closed container, 101a cylindrical member, 101b upper end closing member, 101c lower end closing member, 102 pedestal, 103 motor, 103a stator, 103b rotor, 104 crankshaft, 104a main shaft, 104b first bias Core part, 104c second eccentric part, 104d countershaft, 105a first piston, 105a1 partition member, 106a first compression chamber, 107a first cylinder, 107a1 through hole, 107a2 outlet, 107b second cylinder, 108a first Inflow refrigerant piping, 108b second inflow refrigerant piping, 109a upper bearing, 109b lower bearing, 110 middle plate, 111a upper discharge muffler, 111b lower discharge muffler, 112 discharge pipe, 113 suction muffler, 200 refrigeration cycle device, 2 Reference Signs List 1 condenser, 202 expansion valve, 203 evaporator, 204 refrigerant pipe, 205 injection flow path, 205a1 first injection port, 205a2 second injection port, 205b branch pipe, 205c first injection pipe, 205d second injection pipe, 205e Injection muffler, 205f1 1st machine passage, 205f 2 2nd machine passage.

Claims (8)

  1.  固定子及び回転子を有する電動機と、
     前記回転子に固定された主軸に設けられた偏芯部を有し、前記電動機によって回転させられるクランク軸と、
     前記偏芯部に設けられたピストンと、
     円筒状の貫通孔が形成され、該貫通孔に前記偏芯部と前記ピストンとが配置されて圧縮室が形成されるシリンダと、
    を備えたロータリー圧縮機であって、
     冷凍サイクル回路の冷媒流通方向にて蒸発器手前の冷媒配管から前記圧縮室に冷媒を注入するインジェクション流路を備え、
     前記インジェクション流路は、前記圧縮室に形成されたインジェクションポートと、前記冷媒配管に接続された分岐管と、前記インジェクションポートに冷媒を供給するインジェクション管と、前記分岐管と前記インジェクション管との間に配置されて前記インジェクション管の内径よりも拡径されたインジェクションマフラーと、を有するロータリー圧縮機。
    A motor having a stator and a rotor;
    A crankshaft having an eccentric portion provided on a main shaft fixed to the rotor, and rotated by the motor;
    A piston provided at the eccentric portion;
    A cylinder in which a cylindrical through hole is formed, the eccentric part and the piston are disposed in the through hole, and a compression chamber is formed;
    A rotary compressor equipped with
    It has an injection flow path for injecting the refrigerant into the compression chamber from the refrigerant pipe in front of the evaporator in the refrigerant flow direction of the refrigeration cycle circuit,
    The injection flow path includes an injection port formed in the compression chamber, a branch pipe connected to the refrigerant pipe, an injection pipe for supplying a refrigerant to the injection port, and a space between the branch pipe and the injection pipe. A rotary compressor having an injection muffler disposed at an inner diameter of the injection pipe and being larger than the inner diameter of the injection pipe.
  2.  前記偏芯部と、前記ピストンと、前記シリンダと、前記インジェクション管と、は、2つ設けられ、
     2つの前記インジェクション管は、2つの前記シリンダにそれぞれに形成される2つの前記圧縮室のそれぞれのインジェクションポートに至る冷媒流路を形成する請求項1に記載のロータリー圧縮機。
    Two of the eccentric portion, the piston, the cylinder, and the injection pipe are provided,
    2. The rotary compressor according to claim 1, wherein the two injection pipes form refrigerant flow paths leading to respective injection ports of the two compression chambers respectively formed in the two cylinders. 3.
  3.  固定子及び回転子を有する電動機と、
     前記回転子に固定された主軸に設けられた第1偏芯部と前記主軸に設けられた第2偏芯部とを有し、前記電動機によって回転させられるクランク軸と、
     前記第1偏芯部に設けられた第1ピストンと、
     前記第2偏芯部に設けられた第2ピストンと、
     円筒状の貫通孔が形成され、該貫通孔に前記第1偏芯部と前記第1ピストンとが配置されて第1圧縮室が形成される第1シリンダと、
     円筒状の貫通孔が形成され、該貫通孔に前記第2偏芯部と前記第2ピストンとが配置されて第2圧縮室が形成される第2シリンダと、
    を備えたロータリー圧縮機であって、
     冷凍サイクル回路の冷媒流通方向にて蒸発器手前の冷媒配管から前記第1圧縮室及び前記第2圧縮室のそれぞれに冷媒を注入するインジェクション流路を備え、
     前記インジェクション流路は、前記第1圧縮室に形成された第1インジェクションポートと、前記第2圧縮室に形成された第2インジェクションポートと、前記冷媒配管に接続された分岐管と、前記第1インジェクションポートに冷媒を供給する第1インジェクション管と、前記第2インジェクションポートに冷媒を供給する第2インジェクション管と、前記分岐管と前記第1インジェクション管及び前記第2インジェクション管との間に配置されて前記第1インジェクション管及び前記第2インジェクション管の内径よりも拡径されたインジェクションマフラーと、を有するロータリー圧縮機。
    A motor having a stator and a rotor;
    A crankshaft having a first eccentric portion provided on a main shaft fixed to the rotor and a second eccentric portion provided on the main shaft, the crankshaft being rotated by the motor;
    A first piston provided to the first eccentric portion;
    A second piston provided at the second eccentric portion;
    A first cylinder in which a cylindrical through hole is formed, and the first eccentric portion and the first piston are arranged in the through hole to form a first compression chamber;
    A second cylinder in which a cylindrical through hole is formed, and the second eccentric portion and the second piston are disposed in the through hole to form a second compression chamber;
    A rotary compressor equipped with
    It has an injection flow path for injecting a refrigerant from each of the first compression chamber and the second compression chamber from the refrigerant pipe in front of the evaporator in the refrigerant flow direction of the refrigeration cycle circuit,
    The injection flow path includes a first injection port formed in the first compression chamber, a second injection port formed in the second compression chamber, a branch pipe connected to the refrigerant pipe, and the first flow path. A first injection pipe for supplying a refrigerant to the injection port, a second injection pipe for supplying a refrigerant to the second injection port, and the branch pipe and the first injection pipe and the second injection pipe. A rotary compressor having an injection muffler whose diameter is larger than the inner diameter of the first injection pipe and the second injection pipe.
  4.  請求項1~3のいずれか1項に記載のロータリー圧縮機において、
     下記関係式(式1)を満たすロータリー圧縮機。
     α=K×(L/d)・・・(式1)
     ここで、α[%]は、αmaxを最大値とし、全ての前記インジェクション管のそれぞれにて過給効果がある場合の圧力損失△Pに、全ての前記インジェクション管のそれぞれにて過給効果が無い場合の圧力損失Pbase[Pa]を除算し、100を乗算し、全ての前記インジェクション管のそれぞれにて過給効果がある場合の過給率である。
     L[m]は、全ての前記インジェクション管のそれぞれの長さである。
     d[m]は、全ての前記インジェクション管のそれぞれの内径である。
     K[kg・m/(s・Pa)]は、J×100/Pbaseを置き換えた、λ、ρ、Q、Pbaseに相関のある係数である。
     J[kg・m/s]は、(8/π×λ×ρ×Q)を置き換えた、λ、ρ、Qに相関のある係数である。
    The rotary compressor according to any one of claims 1 to 3, wherein
    The rotary compressor which satisfies the following relational expression (formula 1).
    α = K × (L / d 5 ) (Equation 1)
    Here, α [%] has αmax as the maximum value, and the pressure loss ΔP when there is a supercharging effect in each of all the injection pipes, the supercharging effect in each of all the injection pipes is The pressure loss Pbase [Pa] in the absence case is divided and multiplied by 100, and it is a supercharging rate when there is a supercharging effect in each of all the injection pipes.
    L [m] is the length of each of all the injection tubes.
    d [m] is the inner diameter of each of the injection tubes.
    K [kg · m 3 / (s 2 · Pa)] is a coefficient having correlation with λ, 、, Q, Pbase, in which J × 100 / Pbase is replaced.
    J [kg · m 3 / s 2 ] is a coefficient having correlation with λ, 、, and Q, in which (8 / π 2 × λ × ρ × Q 2 ) is replaced.
  5.  請求項4に記載のロータリー圧縮機において、
     Lは、(式1)を変形した下記関係式(式2)を満たしつつ、(αmax+1)/2≦α≦αmaxの範囲であり、
     dは、(式1)を変形した下記(式3)を満たしつつ、(αmax+1)/2≦α≦αmaxの範囲であるロータリー圧縮機。
     L=(α×d)/K・・・(式2)
     d=(K×L/α)1/5・・・(式3)
    In the rotary compressor according to claim 4,
    L is in the range of (αmax + 1) / 2 ≦ α ≦ αmax, while satisfying the following relational expression (Expression 2) which is a modification of (Expression 1),
    The rotary compressor which is a range of ((alpha) max + 1) / 2 <= (alpha) <= (alpha) max, while satisfy | filling the following (Formula 3) which deform | transformed (Formula 1).
    L = (α × d 5 ) / K (Equation 2)
    d = (K × L / α) 1/5 (Equation 3)
  6.  前記ロータリー圧縮機に冷媒を供給する配管に吸入マフラーを有し、
     前記インジェクションマフラーの容積は、前記吸入マフラーの容積の5%以上である請求項1~5のいずれか1項に記載のロータリー圧縮機。
    A pipe for supplying a refrigerant to the rotary compressor has a suction muffler,
    The rotary compressor according to any one of claims 1 to 5, wherein a volume of the injection muffler is 5% or more of a volume of the suction muffler.
  7.  前記インジェクションマフラーを前記ロータリー圧縮機の密閉容器の外周部に固定する請求項1~6のいずれか1項に記載のロータリー圧縮機。 The rotary compressor according to any one of claims 1 to 6, wherein the injection muffler is fixed to an outer peripheral portion of a hermetic container of the rotary compressor.
  8.  請求項1~7のいずれか1項に記載のロータリー圧縮機を備える冷凍サイクル装置。 A refrigeration cycle apparatus comprising the rotary compressor according to any one of claims 1 to 7.
PCT/JP2017/044069 2017-12-07 2017-12-07 Rotary compressor and refrigeration cycle device WO2019111392A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2017/044069 WO2019111392A1 (en) 2017-12-07 2017-12-07 Rotary compressor and refrigeration cycle device
CZ2020-292A CZ309387B6 (en) 2017-12-07 2018-08-03 Double rotary compressor and refrigeration cycle equipment
PCT/JP2018/032083 WO2019111461A1 (en) 2017-12-07 2018-08-30 Twin rotary compressor and refrigeration cycle device
JP2019558005A JP6918138B2 (en) 2017-12-07 2018-08-30 Twin rotary compressor and refrigeration cycle equipment
KR1020207014918A KR102336280B1 (en) 2017-12-07 2018-08-30 Twin rotary compressor and refrigeration cycle unit
CN201880072911.1A CN111417783B (en) 2017-12-07 2018-08-30 Double rotary compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044069 WO2019111392A1 (en) 2017-12-07 2017-12-07 Rotary compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2019111392A1 true WO2019111392A1 (en) 2019-06-13

Family

ID=66750097

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/044069 WO2019111392A1 (en) 2017-12-07 2017-12-07 Rotary compressor and refrigeration cycle device
PCT/JP2018/032083 WO2019111461A1 (en) 2017-12-07 2018-08-30 Twin rotary compressor and refrigeration cycle device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032083 WO2019111461A1 (en) 2017-12-07 2018-08-30 Twin rotary compressor and refrigeration cycle device

Country Status (5)

Country Link
JP (1) JP6918138B2 (en)
KR (1) KR102336280B1 (en)
CN (1) CN111417783B (en)
CZ (1) CZ309387B6 (en)
WO (2) WO2019111392A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150096U (en) * 1987-03-24 1988-10-03
JP2010185406A (en) * 2009-02-13 2010-08-26 Mitsubishi Heavy Ind Ltd Injection pipe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458046A (en) 1987-08-28 1989-03-06 Omron Tateisi Electronics Co Data transfer system
JP2006194184A (en) * 2005-01-14 2006-07-27 Mitsubishi Heavy Ind Ltd Compressor
CN101173664A (en) * 2007-11-14 2008-05-07 美的集团有限公司 Second-order compression rotary compressor and control method and application thereof
JP4609583B2 (en) * 2009-03-25 2011-01-12 ダイキン工業株式会社 Discharge muffler and two-stage compressor equipped with a discharge muffler
JP2013231356A (en) * 2010-08-26 2013-11-14 Sanyo Electric Co Ltd Compressor
JP5905005B2 (en) * 2011-07-01 2016-04-20 東芝キヤリア株式会社 Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP6274041B2 (en) * 2014-07-18 2018-02-07 株式会社富士通ゼネラル Rotary compressor
CN109154297B (en) * 2016-05-20 2020-03-10 东芝开利株式会社 Hermetic compressor and refrigeration cycle device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150096U (en) * 1987-03-24 1988-10-03
JP2010185406A (en) * 2009-02-13 2010-08-26 Mitsubishi Heavy Ind Ltd Injection pipe

Also Published As

Publication number Publication date
KR20200070376A (en) 2020-06-17
CN111417783A (en) 2020-07-14
JPWO2019111461A1 (en) 2020-07-02
CZ2020292A3 (en) 2020-06-17
JP6918138B2 (en) 2021-08-11
CZ309387B6 (en) 2022-11-09
CN111417783B (en) 2022-06-21
WO2019111461A1 (en) 2019-06-13
KR102336280B1 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2010143521A1 (en) Refrigerant compressor and heat pump device
JP5866004B2 (en) Hermetic compressor and heat pump device
CN103703253B (en) Rotary blade type compressor
CN103906928A (en) Sealed rotary compressor and refrigeration cycle device
US20100054978A1 (en) Injectible two-stage compression rotary compressor
JP5217909B2 (en) Compressor
JP2012215158A (en) Compressor, refrigeration cycle apparatus having the compressor thereon
WO2019111392A1 (en) Rotary compressor and refrigeration cycle device
CN205101227U (en) Rotary compression mechanism and compressor and system comprising same
KR101587174B1 (en) Rotary compressor
CN114412795B (en) Enthalpy-increasing structure, compressor and air conditioner with same
CN110762000A (en) Enthalpy-increasing pulsation attenuation device, scroll compressor and air conditioning system
JP7003272B2 (en) Rotary compressor and refrigeration cycle equipment
CN205533232U (en) Multi -cylinder rotary compressor and have its refrigerating system
JP4948557B2 (en) Multistage compressor and refrigeration air conditioner
JP2020070748A (en) Rotatable compressor
JP5595324B2 (en) Compressor
CN219932448U (en) Compressor and refrigeration equipment
KR101587165B1 (en) Scoroll compressor and refrigerator having the same
KR101462933B1 (en) Rotary compressor
KR101463826B1 (en) Rotary compressor
KR20220165507A (en) Scroll compressor
JP2004019506A (en) Hermetic rotary compressor
KR101587168B1 (en) Rotary compressor
JP2023110118A (en) Rotary compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP