WO2019111290A1 - 飛行時間型質量分析装置 - Google Patents

飛行時間型質量分析装置 Download PDF

Info

Publication number
WO2019111290A1
WO2019111290A1 PCT/JP2017/043392 JP2017043392W WO2019111290A1 WO 2019111290 A1 WO2019111290 A1 WO 2019111290A1 JP 2017043392 W JP2017043392 W JP 2017043392W WO 2019111290 A1 WO2019111290 A1 WO 2019111290A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
chamber
mass spectrometer
flight mass
flight
Prior art date
Application number
PCT/JP2017/043392
Other languages
English (en)
French (fr)
Inventor
朋也 工藤
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US16/755,949 priority Critical patent/US10991566B2/en
Priority to PCT/JP2017/043392 priority patent/WO2019111290A1/ja
Priority to CN201780096851.2A priority patent/CN111344833B/zh
Priority to JP2019557715A priority patent/JP6795105B2/ja
Publication of WO2019111290A1 publication Critical patent/WO2019111290A1/ja
Priority to US17/210,831 priority patent/US11361956B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/443Dynamic spectrometers
    • H01J49/446Time-of-flight spectrometers

Definitions

  • the present invention relates to a time-of-flight mass spectrometer.
  • TOFMS time-of-flight mass spectrometer
  • ions derived from sample components are given constant acceleration energy, introduced into a flight space formed in a flight tube, and then introduced into the flight space. Make it fly. Then, the time required for each ion to fly a certain distance is measured, and the mass-to-charge ratio m / z of each ion is calculated based on the time of flight. Therefore, when the metallic flight tube thermally expands and the flight distance changes with the rise of the ambient temperature, the flight time of each ion also fluctuates, resulting in the deviation of the mass-to-charge ratio. Conventionally, various measures have been attempted in order to achieve high mass accuracy by avoiding mass displacement due to thermal expansion of the flight tube.
  • Patent Documents 1 and 2 there is also known a method of correcting mass deviation caused by thermal expansion of a flight tube by data processing, but when mass deviation is large, sufficient correction effect is obtained Is difficult. Therefore, in order to achieve high mass accuracy, it is important to suppress the thermal expansion of the flight tube to some extent regardless of whether or not such data processing correction is performed.
  • Patent Documents 2 and 3 describe using Fe-Ni 36% (Invar: registered trademark) having a small coefficient of thermal expansion as a material of a flight tube.
  • Fe-Ni 36% Invar: registered trademark
  • Patent Document 3 such a material having a small coefficient of thermal expansion is considerably expensive compared to stainless steel and the like, and the cost of the apparatus is significantly increased.
  • Patent Documents 2 and 3 the flight tube is placed in a container (chamber) which is temperature-controlled or is not affected by the external temperature change so that the temperature of the flight tube does not change as much as possible even if the ambient temperature changes.
  • a container chamber
  • the thermal coupling between the chamber and the flight tube is dominated by radiant heat transfer, but otherwise the flight tube is attached to the inner wall surface of the chamber.
  • Some are due to thermal conduction, etc., through structurally supporting members, ie members that contact both the chamber and the flight tube. That is, the flight tube disposed inside the vacuum-insulated chamber is also affected by temperature fluctuations outside the chamber due to radiant heat transfer, heat conduction, and the like. Therefore, in order to improve the temperature stability of the flight tube, it is necessary to control the temperature of the chamber by a heater or the like disposed outside the chamber.
  • the stability of the temperature of the flight tube is important. Although it is possible to increase the temperature stability of the flight tube by improving the temperature control performance of the chamber itself, or to use a material with a small thermal expansion for the flight tube as described above, the cost increases significantly. In addition, there is a problem that the apparatus becomes large and the weight also increases.
  • the present invention has been made to solve these problems, and its main object is to achieve high mass accuracy by increasing the stability of the temperature of the flight tube without significantly increasing the cost. To provide.
  • a metal such as aluminum or stainless steel is used for the chamber, and a metal such as stainless steel is used for the flight tube.
  • the emissivity of stainless steel is about 0.3, and the emissivity of aluminum is even lower, 0.1 or less. This low emissivity reduces the thermal coupling between the chamber and the flight tube due to radiant heat transfer. That is, the thermal resistance in the radiation heat transfer path is large. If the heat resistance in the radiation heat transfer path becomes significantly larger than the heat resistance in the heat transfer path, the temperature of the flight tube becomes difficult to stabilize even if the temperature of the chamber is regulated to a certain temperature.
  • the present inventors have conceived of enhancing the temperature stability of a flight tube by minimizing the thermal resistance in the radiation heat transfer path, and have reached the present invention. That is, the present invention, which was made to solve the above problems, comprises a chamber maintained inside in a vacuum atmosphere, a flight tube disposed inside the chamber away from the inner wall of the chamber, and the outside of the chamber.
  • a time-of-flight mass spectrometer comprising The inner wall surface of the chamber facing the flight tube may be subjected to a radiation improving process.
  • the inner wall surface of the chamber is subjected to a predetermined emissivity improving process to increase the thermal coupling between the chamber and the flight tube by radiation heat transfer.
  • a predetermined emissivity improving process to increase the thermal coupling between the chamber and the flight tube by radiation heat transfer.
  • temperature stabilization time the time required for the flight tube to settle at a constant temperature (hereinafter referred to as “temperature stabilization time”) at the start of temperature control due to activation of the device depends on the time constant ⁇ of temperature change of the flight tube.
  • This time constant ⁇ is ⁇ ⁇ [heat resistance in the heat transfer path] ⁇ [heat capacity of flight tube].
  • the time constant ⁇ is also reduced, and the temperature stabilization time of the flight tube is shortened. be able to.
  • the emissivity improvement process can be performed by various processing methods.
  • the emissivity enhancement process may be a surface treatment on the inner wall surface of the material forming the chamber.
  • the surface treatment is roughly divided into a film formation treatment that forms some thin film on the surface by plating treatment, painting or coating treatment, thermal spraying treatment, etc., and the surface is chemically or physically scraped to roughen the surface. There is a processing process (forming unevenness).
  • the surface treatment may be an anodized treatment.
  • the surface treatment can be nickel plating.
  • the surface treatment can be a carbon film formation treatment.
  • the emissivity can be further improved by black alumite processing in which the surface is blackened by a method such as coloring with a black dye after alumite processing.
  • the emissivity can be further improved by performing the black nickel plating process in which the surface is blackened by a method such as oxidizing black after the nickel plating process.
  • the surface treatment may also be ceramic spray treatment.
  • the emissivity improving process may be a process of attaching a thin plate or thin foil of another material to the inner wall surface of the material forming the chamber.
  • a thin plate made of stainless steel may be attached to the inner wall surface of the chamber.
  • What kind of treatment method is adopted may be determined in consideration of the influence of the gas (outgas) released from the formation of the treatment under a vacuum atmosphere, the cost, and the like.
  • the temperature change of the flight tube can be suppressed even when the room temperature changes.
  • the degree of cost increase varies depending on the treatment method of the emissivity improvement process, but in any case the cost increase can be suppressed compared to the case where expensive materials such as invar are used for the flight tube, and the cost increase is suppressed while the cost increase is high. Mass accuracy can be realized.
  • FIG. 1 is a schematic configuration view of a part of the TOFMS of the present embodiment.
  • the TOFMS of this embodiment includes a quadrupole-time-of-flight mass spectrometer (Q- including an ion source, a quadrupole mass filter, a collision cell, and an orthogonal acceleration TOFMS1 appearing in FIG.
  • Q- quadrupole-time-of-flight mass spectrometer
  • Various product ions generated by dissociating precursor ions of a predetermined mass-to-charge ratio in a collision cell are introduced from the left side in the X-axis direction in FIG.
  • a substantially cylindrical or rectangular cylindrical flight tube is supported inside the chamber 10 evacuated by a vacuum pump such as a turbo molecular pump (not shown) via an insulating support member 11 having high vibration absorption performance. 12 is held. Further, the orthogonal acceleration unit 14 and the ion detector 15 are fixed to the flight tube 12 via a support member (not shown).
  • a reflector 13 composed of a large number of annular or rectangular annular reflective electrodes is disposed below the inside of the flight tube 12, and a reflectron-type flight space in which ions are folded back by a reflective electric field formed by the reflector is a flight tube. It is provided inside the twelve.
  • the flight tube 12 is made of metal such as stainless steel, and a predetermined DC voltage is applied to the flight tube 12. Further, different direct current voltages are applied to the plurality of reflective electrodes constituting the reflector based on the voltage applied to the flight tube 12. As a result, a reflective electric field is formed in the reflector, and the flight space other than that is an electric field, a magnetic field, and a high vacuum atmosphere.
  • ions having different mass-to-charge ratios introduced into the flight space at substantially the same time are separated according to the mass-to-charge ratio while flying, and reach the ion detector 15 with a time difference.
  • a detection signal from the ion detector is input to a signal processing unit (not shown), and a flight time of each ion is converted to a mass-to-charge ratio to create a mass spectrum.
  • the flight tube 12 thermally expands, the flight distance changes, resulting in the deviation of mass to charge ratio. Therefore, in order to enhance the temperature stability of the flight tube 12 in the TOFMS of the present embodiment, the following configuration is adopted.
  • the chamber 10 is temperature-controlled to a predetermined temperature by a temperature control unit 16 disposed around the chamber 10 and including a heater, a temperature sensor and the like.
  • a temperature control unit 16 disposed around the chamber 10 and including a heater, a temperature sensor and the like.
  • the flight tube 12 is heated so as to be maintained at a constant temperature by radiation heat transfer mainly from the temperature controlled chamber 10, radiation is applied to the inner wall surface of the chamber 10 so as to increase the efficiency of this radiation heat transfer.
  • Surface treatment is performed to increase the rate.
  • aluminum which is less expensive than stainless steel, is used as the material of the chamber 10, and it is on the inner wall surface of the main body 10a of the aluminum chamber 10 and at least faces the flight tube 12
  • the coating layer 10 b is formed by black nickel plating.
  • black nickel plating is one of the plating generally used for the purpose of anti-reflection and decoration, and is relatively inexpensive to process.
  • the coating layer 10b is formed by black nickel plating, the surface becomes black and the emissivity is improved.
  • the emissivity can be increased by about 10 times by forming the coating layer 10b by black nickel plating on the inner wall surface of the main body 10a of the chamber 10 made of aluminum.
  • the thermal resistance in the radiation heat transfer path between the chamber 10 and the flight tube 12 is significantly reduced as compared with the conventional case (in the case where the coating layer 10b is not formed by black nickel plating).
  • the temperature stability of the flight tube 12 can be improved.
  • the temperature change amount of the flight tube 12 with respect to the step-like change of the room temperature can be suppressed to about one half in the TOFMS of this embodiment.
  • the temperature stabilization time of the flight tube 12 can be shortened by about 60% compared to the conventional one.
  • the coating layer is formed by the black nickel plating in order to improve the emissivity of the inner wall surface of the chamber 10 in the above embodiment, the process for improving the emissivity is not limited to this in the present invention.
  • a coated layer may be formed by an alumite processing.
  • a coating layer capable of improving the emissivity may be formed on the surface by a carbon film forming process, a ceramic thermal spraying process, a plating process other than that, a coating process, a coating process, a thermal spraying process, or the like.
  • FIG. 2 shows an example in which the uneven surface 10c is formed by such processing. Also by this, the emissivity of the inner wall surface of the chamber 10 becomes high, so that the same effect as the above embodiment can be achieved.
  • a thin plate or thin foil of another material having a higher emissivity than the material of the chamber 10 is attached to the inner wall surface of the chamber 10 May be Specifically, a thin plate made of stainless steel may be attached to the inner wall surface of the chamber 10 made of aluminum as described above. Also by this, the emissivity of the inner wall surface of the chamber 10 becomes high, so that the same effect as the above embodiment can be achieved.
  • the above embodiments are merely examples of the present invention, and modifications, changes, additions, and the like may be appropriately made within the scope of the present invention in addition to the modifications described above. Is clear.
  • the above embodiment is the orthogonal acceleration type reflectron type TOFMS
  • it is not necessary to use the orthogonal acceleration type for example, it is generated from the sample by the configuration of injecting ions ejected from the ion trap into the flight space or by the MALDI ion source etc.
  • the configuration may be such that the ions are accelerated and introduced into the flight space.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

真空排気されるチャンバ(10)の内部には、絶縁性の支持部材(11)を介してフライトチューブ(12)が保持されている。チャンバ(10)の外側はヒータ等を含む温調部(16)で囲まれている。チャンバ(10)の本体(10a)はアルミニウムからなるが、その内壁面には黒ニッケルメッキによる被膜層(10b)が形成されている。これにより、チャンバ(10)の輻射率はアルミニウムのみの従来装置よりも高くなり、チャンバ(10)とフライトチューブ(12)との間の輻射伝熱経路の熱抵抗が小さくなるためにフライトチューブ(12)の温度安定性が向上する。また、フライトチューブ(12)の温度変化の時定数が小さくなるため、温度が一定に静定するまでの時間も短縮できる。

Description

飛行時間型質量分析装置
 本発明は飛行時間型質量分析装置に関する。
 一般に飛行時間型質量分析装置(以下、TOFMSと称すことがある)では、試料成分由来のイオンに一定の加速エネルギを付与し、フライトチューブ内に形成される飛行空間に導入して該飛行空間中を飛行させる。そして、各イオンが一定の距離を飛行するのに要する時間を測定し、その飛行時間に基づいて各イオンの質量電荷比m/zを算出する。そのため、周囲温度の上昇に伴って金属製のフライトチューブが熱膨張して飛行距離が変化すると、各イオンの飛行時間も変動して質量電荷比のずれをもたらす。こうしたフライトチューブの熱膨張に起因する質量ずれを回避して高い質量精度を達成するために、従来、様々な対策が試みられている。
 特許文献1、2等に開示されているように、フライトチューブの熱膨張により生じる質量ずれをデータ処理によって補正するという方法も知られているが、質量ずれが大きいと十分な補正効果を得るのが難しい。そのため、高い質量精度を達成するには、こうしたデータ処理による補正を行うか否かに拘わらず、フライトチューブの熱膨張自体を或る程度抑えることが重要である。
 フライトチューブの熱膨張を抑制する方法として、フライトチューブ自体を熱膨張率の小さな材料から作製するという方法がある。例えば特許文献2、3には、フライトチューブの材料として熱膨張率の小さなFe-Ni36%(インバー:登録商標)を用いることが記載されている。しかしながら、特許文献3にも記載されているように、こうした熱膨張率の小さな材料はステンレス等に比べてかなり高価であるため、装置のコストが大幅に高くなる。
 一方、特許文献2、3には、周囲温度が変化してもフライトチューブの温度が極力変化しないように、温調された或いは外部の温度変化の影響を受けない容器(チャンバ)内にフライトチューブを設置するという方法も開示されている。こうしたチャンバの内部は高真空状態であるため、チャンバとフライトチューブとの間の熱的結合は輻射伝熱によるものが支配的であるが、それ以外に、チャンバの内壁面に対してフライトチューブを構造的に支持する部材、つまりはチャンバとフライトチューブとの両方に接触する部材、などを通しての熱伝導などによるものがある。即ち、真空断熱されたチャンバの内部に配置されたフライトチューブも、輻射伝熱や熱伝導などによりチャンバの外側の温度変動の影響を受ける。そのため、フライトチューブの温度安定性を高めるには、チャンバの外側に配置したヒータ等によりチャンバを温調する必要がある。
国際公開第2017/064802号パンフレット 特開2003-68246号公報 特開2012-64437号公報
発明が解決すべき課題
 近年、質量分析装置には従来にも増して質量精度や分解能の向上が要求されている。そのために、TOFMSではフライトチューブの温度の一層の安定性が重要である。チャンバ自体の温調の性能を上げることでフライトチューブの温度安定性を高めたり、上述したようにフライトチューブに熱膨張の小さい材料を使用したりすることも可能であるものの、コストが大幅に増加するとともに、装置が大形になり重量も増すという問題もある。
 本発明はこうした課題を解決するためになされたものであり、その主たる目的は、コストを大幅に増加させることなくフライトチューブの温度の安定性を高めることで高い質量精度を達成することができるTOFMSを提供することである。
 一般にTOFMSにおいて、チャンバにはアルミニウム或いはステンレス等の金属が用いられ、フライトチューブにはステンレス等の金属が用いられる。ステンレスの輻射率は約0.3であり、アルミニウムの輻射率はさらに低く0.1以下である。このように輻射率が低いと輻射伝熱によるチャンバとフライトチューブとの間の熱的結合は小さい。つまり、上記輻射伝熱の経路における熱抵抗は大きい。輻射伝熱の経路における熱抵抗が熱伝導の経路における熱抵抗に比べて顕著に大きくなると、チャンバを一定温度に温調していてもフライトチューブの温度が安定しにくくなる。これは、室温が変動したときに十分に温調されていない熱伝導の経路を通してフライトチューブに温度変化が伝わり、フライトチューブが一定温度に維持されなくなってしまうためである。このような室温変動という外乱に対する温度制御の安定性を高めるには、輻射伝熱の経路における熱抵抗を熱伝導の経路における熱抵抗に比べて十分に小さくすることが必要である。
 本発明者は上記知見に基づき、輻射伝熱の経路における熱抵抗を極力小さくすることでフライトチューブの温度安定性を高めることに想到し、本発明をするに至った。
 即ち、上記課題を解決するために成された本発明は、内部が真空雰囲気に維持されるチャンバと、該チャンバの内部に該チャンバの内壁から離して配置されたフライトチューブと、前記チャンバの外側を温調する温度調整部と、を具備する飛行時間型質量分析装置において、
 前記チャンバの内壁面にあって前記フライトチューブに対面する内壁面に輻射率向上処理が施されてなることを特徴としている。
 本発明に係るTOFMSでは、チャンバの内壁面に所定の輻射率向上処理を施すことで、輻射伝熱によるチャンバとフライトチューブとの間の熱的結合を大きくする。それにより、例えばフライトチューブをチャンバ内に保持するためにフライトチューブとチャンバとの両方に接触するように設けられた支持部材を介する熱伝導による熱的結合に比べて、上記輻射伝熱による熱的結合を相対的に大きくすることができる。その結果、例えば室温が変化してその変化が温度調整部で十分に温調されていない支持部材等を介してフライトチューブに伝導したとしても、輻射伝熱によってフライトチューブの温度を安定に保つことができる。
 また、装置の起動による温調開始時等にフライトチューブが一定温度に静定するまでの所要時間(以下「温度安定化時間」という)は、フライトチューブの温度変化の時定数τに依存する。この時定数τはτ≒[伝熱の経路における熱抵抗]×[フライトチューブの熱容量]である。チャンバの輻射率が低いと輻射伝熱の経路における熱抵抗が大きくなるため、時定数τも大きくなってフライトチューブの温度安定化時間が長くなる。そうすると、TOFMSの装置起動時に測定を開始できるまでの時間が長くなり、測定効率が低下してしまう。これに対し、本発明に係るTOFMSでは、チャンバの輻射率を高めることで輻射伝熱の経路における熱抵抗が小さくなるので、それだけ時定数τも小さくなり、フライトチューブの温度安定化時間を短縮することができる。
 本発明において上記輻射率向上処理は様々な処理手法とすることができる。
 本発明の一態様として、前記輻射率向上処理は前記チャンバを形成する材料の内壁面に対する表面処理であるものとすることができる。
 表面処理には、大別して、メッキ加工処理、塗装又は塗布加工処理、溶射処理などによって表面に何らかの薄い被膜を形成する被膜形成処理と、表面を化学的に又は物理的に削って表面を粗くする(凹凸を形成する)加工処理とがある。
 チャンバがアルミニウム製である場合、上記表面処理はアルマイト加工処理とすることができる。また、上記表面処理はニッケルメッキ加工処理とすることができる。また、上記表面処理はカーボン被膜形成処理とすることができる。アルマイト加工処理の場合、アルマイト加工後に黒色の染料で着色する等の方法により表面を黒色にする黒アルマイト加工処理とすることで、さらに輻射率を向上させることができる。ニッケルメッキ加工処理の場合、ニッケルメッキ加工後に黒色に酸化させる等の方法により表面を黒色にする黒ニッケルメッキ加工処理とすることで、さらに輻射率を向上させることができる。また、上記表面処理はセラミック溶射処理とすることもできる。
 さらにまた本発明の別の態様として、前記輻射率向上処理は前記チャンバを形成する材料の内壁面に別の材料の薄板又は薄箔を貼り付ける処理であるものとすることができる。例えば、チャンバがアルミニウム製である場合、該チャンバの内壁面にステンレス製の薄板を貼り付けるようにするとよい。
 どのような処理方法を採用するのかは、真空雰囲気の下でそれら処理による形成物から放出されるガス(アウトガス)の影響やコストなどを考慮して決めればよい。
 本発明に係るTOFMSによれば、室温が変化した場合でもフライトチューブの温度変化を抑えることができる。コスト増加の程度は輻射率向上処理の処理方法により異なるが、いずれにしてもフライトチューブにインバーなどの高価な材料を用いる場合に比べればコストの増加を抑えることができ、コスト増加を抑えつつ高い質量精度を実現することができる。
本発明の一実施例であるTOFMSの一部の概略構成図。 他の実施例のTOFMSにおけるチャンバの概略断面図。
 以下、本発明の一実施例であるTOFMSについて、添付図面を参照して説明する。
 図1は本実施例のTOFMSの一部の概略構成図である。
 本実施例のTOFMSは、いずれも図示しないイオン源、四重極マスフィルタ、コリジョンセル、及び図1中に現れている直交加速TOFMS1を含む、四重極-飛行時間型質量分析装置(Q-TOFMS)であり、コリジョンセルで所定の質量電荷比のプリカーサイオンを解離させることで生成された各種のプロダクトイオンが図1中で左方からX軸方向に導入される。
 図1において、図示しないターボ分子ポンプ等の真空ポンプにより真空排気されるチャンバ10の内部には、絶縁性で且つ振動吸収性能の高い支持部材11を介して略円筒形状又は角筒形状のフライトチューブ12が保持されている。また、図示しない支持部材を介して、このフライトチューブ12に対し直交加速部14及びイオン検出器15がそれぞれ固定されている。フライトチューブ12の内部下側には、多数の円環状又は矩形環状の反射電極から成るリフレクタ13が配置され、このリフレクタにより形成される反射電場でイオンが折り返されるリフレクトロン型の飛行空間がフライトチューブ12の内部に設けられている。
 フライトチューブ12はステンレス等の金属製であり、所定の直流電圧がフライトチューブ12に印加される。また、リフレクタを構成する複数の反射電極には、フライトチューブ12に印加される電圧を基準としてそれぞれ異なる直流電圧が印加される。これによりリフレクタ中には反射電場が形成され、それ以外の飛行空間は無電場・無磁場で且つ高真空雰囲気のものとなる。
 図1中に示すように、直交加速部14にイオンがX軸方向に導入されている状態で、直交加速部14中の加速電極に外部からパルス状の直流電圧が印加されると、その直流電圧によってイオンはZ軸方向に所定の運動エネルギを付与される。これにより、イオンは直交加速部14からフライトチューブ12内の飛行空間に送り込まれる。イオンは図1中に点線で示すような軌道を通りつつ飛行空間中を飛行しイオン検出器15に到達する。飛行空間中のイオンの速度は該イオンの質量電荷比に依存する。そのため、略同時に飛行空間に導入された異なる質量電荷比を有するイオンは、飛行する間に質量電荷比に応じて分離され、時間差を有してイオン検出器15に到達する。イオン検出器による検出信号は図示しない信号処理部に入力され、各イオンの飛行時間が質量電荷比に換算されることでマススペクトルが作成される。
 フライトチューブ12が熱によって膨張すると、飛行距離が変化するために質量電荷比のずれになる。そこで、本実施例のTOFMSではフライトチューブ12の温度安定性を高めるために、以下のような構成となっている。
 チャンバ10はその周囲に配置された、ヒータ、温度センサ等を含む温調部16により所定温度に温調される。主として温調されているチャンバ10からの輻射伝熱によってフライトチューブ12は一定温度に維持されるように加熱されるが、この輻射伝熱の効率が高くなるようにチャンバ10の内壁面には輻射率が高まるような表面処理加工が施されている。具体的には、この実施例では、チャンバ10の材料としてはステンレスよりも安価であるアルミニウムが用いられ、そのアルミニウム製のチャンバ10の本体10aの内壁面にあって少なくともフライトチューブ12に対面する範囲に、黒ニッケルメッキ加工処理による被膜層10bが形成されている。
 よく知られているように黒色ニッケルメッキは反射防止や装飾を目的としてごく一般に利用されているメッキの一つであり、比較的、加工コストが安価である。黒色ニッケルメッキによる被膜層10bを形成すると、表面が黒色になり輻射率が向上する。本発明者の実験によれば、アルミニウム製のチャンバ10の本体10aの内壁面に黒色ニッケルメッキによる被膜層10bを形成することで、輻射率を10倍程度高められることが確認されている。これにより、本実施例のTOFMSでは、チャンバ10とフライトチューブ12との間の輻射伝熱の経路における熱抵抗が従来(黒色ニッケルメッキによる被膜層10bを形成しない場合)に比べて大幅に低下し、フライトチューブ12の温度安定性を向上させることができる。
 本発明者の実験によれば、本実施例のTOFMSでは従来に比べてステップ状の室温の変化に対するフライトチューブ12の温度変化量は約1/2に抑えられることが確認できた。一方、フライトチューブ12の温度安定化時間は従来に比べて約60%短縮できることが確認できた。
 上記実施例ではチャンバ10の内壁面の輻射率を向上させるために黒色ニッケルメッキによる被膜層を形成していたが、本発明において輻射率を向上させる処理はこれに限らない。
 例えば上述したようにチャンバがアルミニウム製である場合には、黒色ニッケルメッキの代わりに通常のニッケルメッキでもよいし、アルマイト加工処理による被膜層を形成してもよい。或いは、カーボン被膜形成処理やセラミック溶射処理、さらにはそれ以外のメッキ加工処理、塗装又は塗布加工処理、溶射処理などによって表面に輻射率の改善が可能な被膜層を形成してもよい。
 また、チャンバ10の材料とは異なる材料から成る被膜層を形成するのではなく、チャンバ10そのものの表面を化学的に又は物理的に削ることで凹凸を形成するようにしてもよい。図2はこうした加工処理により凹凸面10cを形成した例である。これによっても、チャンバ10の内壁面の輻射率が高くなるため、上記実施例と同様の効果を達成することができる。
 また、上述したような各種の加工処理によって被膜層を形成するのではなく、チャンバ10の内壁面に、そのチャンバ10の材料に比べて輻射率が高い別の材料の薄板又は薄箔を貼り付けてもよい。具体的には、上述したようなアルミニウム製であるチャンバ10の内壁面にステンレス製の薄板を貼り付ければよい。これによっても、チャンバ10の内壁面の輻射率が高くなるため、上記実施例と同様の効果を達成することができる。
 また、上記実施例は本発明の一例にすぎず、上記記載の変形例以外に本発明の趣旨の範囲で適宜に修正、変更、追加などを行っても本願特許請求の範囲に包含されることは明らかである。
 例えば上記実施例は直交加速式のリフレクトロン型TOFMSであるが、直交加速式である必要はなく、例えばイオントラップから射出したイオンを飛行空間に投入する構成やMALDIイオン源などにより試料から生成したイオンを加速して飛行空間に投入する構成であってもよい。また、リフレクトロン型でなくリニア型のTOFMSでもよい。
1…直交加速TOFMS
10…チャンバ
10a…本体
10b…被膜層
10c…凹凸面
11…支持部材
12…フライトチューブ
13…リフレクタ
14…直交加速部
15…イオン検出器
16…温調部

Claims (11)

  1.  内部が真空雰囲気に維持されるチャンバと、該チャンバの内部に該チャンバの内壁から離して配置されたフライトチューブと、前記チャンバの外側を温調する温度調整部と、を具備する飛行時間型質量分析装置において、
     前記チャンバの内壁面にあって前記フライトチューブに対面する内壁面に輻射率向上処理が施されてなることを特徴とする飛行時間型質量分析装置。
  2.  請求項1に記載の飛行時間型質量分析装置であって、
     前記輻射率向上処理は前記チャンバを形成する材料の内壁面に対する表面処理であることを特徴とする飛行時間型質量分析装置。
  3.  請求項2に記載の飛行時間型質量分析装置であって、
     前記表面処理は、前記チャンバを形成する材料の表面に薄い被膜を形成する被膜形成処理であることを特徴とする飛行時間型質量分析装置。
  4.  請求項2に記載の飛行時間型質量分析装置であって、
     前記表面処理は、前記チャンバを形成する材料の表面を化学的に又は物理的に削って表面を粗くする加工処理であることを特徴とする飛行時間型質量分析装置。
  5.  請求項3に記載の飛行時間型質量分析装置であって、
     前記チャンバはアルミニウム製であり、前記表面処理はアルマイト加工処理であることを特徴とする飛行時間型質量分析装置。
  6.  請求項5に記載の飛行時間型質量分析装置であって、
     前記アルマイト加工処理は黒アルマイト加工処理であることを特徴とする飛行時間型質量分析装置。
  7.  請求項3に記載の飛行時間型質量分析装置であって、
     前記表面処理はニッケルメッキ加工処理であることを特徴とする飛行時間型質量分析装置。
  8.  請求項7に記載の飛行時間型質量分析装置であって、
     前記ニッケルメッキ加工処理は黒ニッケルメッキ加工処理であることを特徴とする飛行時間型質量分析装置。
  9.  請求項3に記載の飛行時間型質量分析装置であって、
     前記表面処理はカーボン被膜形成処理であることを特徴とする飛行時間型質量分析装置。
  10.  請求項3に記載の飛行時間型質量分析装置であって、
     前記表面処理はセラミック溶射処理であることを特徴とする飛行時間型質量分析装置。
  11.  請求項1に記載の飛行時間型質量分析装置であって、
     前記輻射率向上処理は前記チャンバを形成する材料の内壁面に別の材料の薄板又は薄箔を貼り付ける処理であることを特徴とする飛行時間型質量分析装置。
PCT/JP2017/043392 2017-12-04 2017-12-04 飛行時間型質量分析装置 WO2019111290A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/755,949 US10991566B2 (en) 2017-12-04 2017-12-04 Time-of-flight mass spectrometer
PCT/JP2017/043392 WO2019111290A1 (ja) 2017-12-04 2017-12-04 飛行時間型質量分析装置
CN201780096851.2A CN111344833B (zh) 2017-12-04 2017-12-04 飞行时间质谱分析装置
JP2019557715A JP6795105B2 (ja) 2017-12-04 2017-12-04 飛行時間型質量分析装置
US17/210,831 US11361956B2 (en) 2017-12-04 2021-03-24 Time-of-flight mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/043392 WO2019111290A1 (ja) 2017-12-04 2017-12-04 飛行時間型質量分析装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/755,949 A-371-Of-International US10991566B2 (en) 2017-12-04 2017-12-04 Time-of-flight mass spectrometer
US17/210,831 Continuation US11361956B2 (en) 2017-12-04 2021-03-24 Time-of-flight mass spectrometer

Publications (1)

Publication Number Publication Date
WO2019111290A1 true WO2019111290A1 (ja) 2019-06-13

Family

ID=66751326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043392 WO2019111290A1 (ja) 2017-12-04 2017-12-04 飛行時間型質量分析装置

Country Status (4)

Country Link
US (2) US10991566B2 (ja)
JP (1) JP6795105B2 (ja)
CN (1) CN111344833B (ja)
WO (1) WO2019111290A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11257666B2 (en) * 2018-05-14 2022-02-22 Shimadzu Corporation Time-of-flight mass spectrometer
EP3799107A4 (en) * 2018-05-23 2022-05-11 Shimadzu Corporation TIME-OF-FLIGHT MASS SPECTROMETER
US20210210326A1 (en) * 2018-05-28 2021-07-08 Shimadzu Corporation Analytical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228880A (ja) * 1997-02-14 1998-08-25 Yaskawa Electric Corp 真空容器
JP2002520799A (ja) * 1998-07-17 2002-07-09 マスラブ・リミテッド 飛行時間型質量分析計
JP2006140064A (ja) * 2004-11-12 2006-06-01 Shimadzu Corp 飛行時間型質量分析装置
JP2012064437A (ja) * 2010-09-16 2012-03-29 Shimadzu Corp 飛行時間型質量分析装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316768B1 (en) * 1997-03-14 2001-11-13 Leco Corporation Printed circuit boards as insulated components for a time of flight mass spectrometer
JP4576775B2 (ja) 2001-08-29 2010-11-10 株式会社島津製作所 飛行時間型質量分析装置
JP3659216B2 (ja) * 2001-11-13 2005-06-15 株式会社島津製作所 飛行時間型質量分析装置
JP2010112202A (ja) * 2008-11-04 2010-05-20 Shimadzu Corp ターボ分子ポンプ
JP5588830B2 (ja) * 2010-11-05 2014-09-10 株式会社日立メディコ 陽極接地型x線管およびそれを用いたx線撮影装置
EP3005402B1 (en) * 2013-05-31 2021-08-18 PerkinElmer Health Sciences, Inc. Time of flight tubes and methods of using them
JP2017117726A (ja) * 2015-12-25 2017-06-29 東芝電子管デバイス株式会社 回転陽極型x線管
EP3388826A1 (en) 2015-10-16 2018-10-17 Shimadzu Corporation Method for correcting measurement error resulting from measurement device temperature displacement and mass spectrometer using said method
EP3799107A4 (en) * 2018-05-23 2022-05-11 Shimadzu Corporation TIME-OF-FLIGHT MASS SPECTROMETER

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228880A (ja) * 1997-02-14 1998-08-25 Yaskawa Electric Corp 真空容器
JP2002520799A (ja) * 1998-07-17 2002-07-09 マスラブ・リミテッド 飛行時間型質量分析計
JP2006140064A (ja) * 2004-11-12 2006-06-01 Shimadzu Corp 飛行時間型質量分析装置
JP2012064437A (ja) * 2010-09-16 2012-03-29 Shimadzu Corp 飛行時間型質量分析装置

Also Published As

Publication number Publication date
US20210233761A1 (en) 2021-07-29
CN111344833B (zh) 2022-09-02
JPWO2019111290A1 (ja) 2020-07-02
US20200243320A1 (en) 2020-07-30
US10991566B2 (en) 2021-04-27
JP6795105B2 (ja) 2020-12-02
CN111344833A (zh) 2020-06-26
US11361956B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
US11361956B2 (en) Time-of-flight mass spectrometer
US11443934B2 (en) Time-of-flight mass spectrometry device
US10283311B2 (en) X-ray source
US6855924B2 (en) Orthogonal acceleration time-of-flight mass spectrometer
US6998607B1 (en) Temperature compensated time-of-flight mass spectrometer
US11139158B2 (en) Mass spectrometer including a fixation band
US11107668B2 (en) Mass spectrometer
US9362098B2 (en) Ion optical element
US11043371B2 (en) Mass spectrometer
JP5451360B2 (ja) 質量分析装置及び質量分析方法
US11189478B2 (en) Mass spectrometer
WO2009081444A1 (ja) 質量分析装置
US11367587B2 (en) Gas field ionization source
JP2008077857A (ja) イオン銃、イオン銃を備える真空加工装置を利用する方法
Madeira et al. High resolution mass spectrometry using FTICR and orbitrap instruments
US7763849B1 (en) Reflecting ion cyclotron resonance cell
US3569755A (en) Vacuum tube and method of making it
EP4383309A1 (en) Mass spectrometer
US3572876A (en) Method of making a neutron source tube
WO2019220497A1 (ja) 飛行時間型質量分析装置
JP2020165808A (ja) イオン化法及び質量分析方法
Hartley et al. Low-Pressure, Field-Ionizing Mass Spectrometer
Hao et al. Surface neutralization/surface reionization (Ping–Pong) mass spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933885

Country of ref document: EP

Kind code of ref document: A1