WO2019110905A1 - Utilisation d'un moteur d'assistance d'un système de direction assistée afin de générer des cycles de test selon un cycle d'exploitation vibratoire - Google Patents

Utilisation d'un moteur d'assistance d'un système de direction assistée afin de générer des cycles de test selon un cycle d'exploitation vibratoire Download PDF

Info

Publication number
WO2019110905A1
WO2019110905A1 PCT/FR2018/053089 FR2018053089W WO2019110905A1 WO 2019110905 A1 WO2019110905 A1 WO 2019110905A1 FR 2018053089 W FR2018053089 W FR 2018053089W WO 2019110905 A1 WO2019110905 A1 WO 2019110905A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering system
power steering
assistance
mes
vehicle
Prior art date
Application number
PCT/FR2018/053089
Other languages
English (en)
Inventor
Matthieu LOUSSAUT
Christophe Ravier
Original Assignee
Jtekt Europe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jtekt Europe filed Critical Jtekt Europe
Priority to US16/770,726 priority Critical patent/US20210164869A1/en
Priority to CN201880088840.4A priority patent/CN111684257A/zh
Priority to DE112018006220.1T priority patent/DE112018006220T5/de
Priority to JP2020529763A priority patent/JP2021505464A/ja
Priority to BR112020011408-1A priority patent/BR112020011408A2/pt
Publication of WO2019110905A1 publication Critical patent/WO2019110905A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/06Steering behaviour; Rolling behaviour

Definitions

  • the present invention relates to characterization methods for empirically determining at least one property of a power steering system, such as for example the position of the end stops of a steering rack or the frequency response characteristics. the power steering system when developing or calibrating the system at the factory.
  • the known characterization methods require that a human operator installs the power steering system on a test bench and then maneuvers the steering wheel according to pre-established special maneuver cycles, so that sensors and recorders test bench can observe the reactions of the steering system and measure the indicator parameters that can then quantify the property we are looking for.
  • the objects assigned to the invention therefore seek to overcome the aforementioned drawbacks and to propose a method of characterization of a power steering system that allows a rapid, reliable and cost-effective characterization of said power steering system.
  • the objects assigned to the invention are also intended to propose a new method for characterizing a power steering system which has great versatility, in that said method is easily adapted to many models of power steering systems and / or allows a complete characterization of several properties of the same power steering system.
  • the objects assigned to the invention are achieved by means of a method of characterizing a power steering system for determining empirically at least one property of said power steering system, called “desired property", said power steering system comprising at least one heading defining device, such as a steering wheel, which makes it possible to define the orientation, called the "steering angle", of the power steering system, a steering mechanism provided with at least one movable member , such as a rack, the position of which is adapted to correspond to the selected steering angle, as well as at least one assistance engine arranged to be able to drive said steering mechanism, said method being characterized in that it includes, apart from a piloting phase during which the power steering system is assigned to driving a vehicle in order to follow that vehicle a trajectory which is determined according to the
  • an activation instruction which follows one or more pre-established “exploration cycles”, a measurement step (b), according to which one measures, during the scanning cycle (s) or at the end of said one or more scanning cycles, at least one physical parameter, called “indicator parameter”, which is specific to the response provided by the power assisted steering system.
  • automatic assistance engine and which is characteristic of the property sought, and a step (c) of analysis, during which the desired property is quantified from the measurement or measurements of the pa Indicator range.
  • the invention thus uses the assistance engine itself as a means (unique) for activating the steering mechanism according to the selected exploration cycle or cycles, without the need to use a means of control.
  • auxiliary drive and in particular an auxiliary motor, external to the steering system.
  • the automation of the scanning cycles advantageously makes it possible to apply to the assistance engine, during the phases in which the steering system is characterized, particularly precise instructions, which are much more precise than during manual maneuvers, and in particular constant velocity, acceleration or force setpoints for predetermined periods of time or predetermined displacement distances of the movable member, thereby permitting accurately measure the indicator parameter (s), without the activation of the power steering system itself constituting a source of potential error that would be related to an excessive and uncontrolled variability of the setpoint with respect to the exploration cycle ideal target.
  • the invention makes it possible, in particular, to equip the power steering system, regardless of the model of said system, with an on-board calculation module which contains a complete set of characterization functions, for example in the form of a library file stored in a non-volatile memory of said module, so that the power steering system will be intrinsically provided with the tools necessary for its characterization, and more generally the characterization of several of its properties.
  • Figure 1 illustrates, in a schematic view, a power steering system.
  • FIG. 2 illustrates an example of a vibratory scanning cycle in which an alternating sinusoidal torque setpoint whose frequency is varied is applied to the assistance motor.
  • FIG. 3 illustrates a safety function which, by superimposing itself on the exploration cycles as needed, makes it possible to limit the torque developed by the assistance motor when the steering mechanism approaches the end stops.
  • the invention relates to a method of characterizing a power steering system 1 for determining empirically at least one property of said power steering system 1, specific to said system, called “desired property”.
  • said power steering system 1 comprises at least one heading definition device 2 which makes it possible to define the orientation, called a "steering angle" A1, of the power steering system.
  • the heading defining device 2 will comprise a steering wheel 2 which allows a driver (human) to freely define said angle of Al steering to provide manual steering of a vehicle equipped with the power steering system 1.
  • Said steering system also comprises a steering mechanism 3 provided with at least one movable member 4, such as a rack 4, whose position P4 adapts to correspond to the chosen A1 steering angle.
  • the movable member 4 can therefore be likened to a rack in the following.
  • said movable member 4, and more particularly the rack 4 may preferably be movably mounted and guided in translation in a steering housing.
  • the steering mechanism 3 thus makes it possible to modify the orientation of an orientable member 5, such as a steering wheel 5, driven in displacement by the rack 4, in order to direct a vehicle on which said power steering system 1 is embedded. .
  • the steering mechanism 3 may comprise steering rods 6 which each connect one end of the rack 4 to a steerable rocket carrier and carrying the corresponding steering wheel 5.
  • the power steering system 1 also comprises at least one assistance engine 7 arranged to be able to drive said steering mechanism 3.
  • Said assistance motor 7 will preferably be an electric motor, with two directions of operation, in order to be able to drive the steering mechanism 3 indifferently to the left or to the right, for example a brushless motor.
  • the assistance engine 7 is placed, via a computer comprising a first embedded module 8, that is to say an integral part of the system 1, said "assistance module” 8, dependent of the heading definition apparatus 2.
  • the heading definition apparatus 2 may preferably be used to define a steering angle setpoint A2, which may typically be defined, in the case where the apparatus 2 comprises a steering wheel 2 or is formed by a steering wheel. pipe 2, by the angular position P2 of said steering wheel 2.
  • the heading definition apparatus 2 can provide a force data T2, called the "flying torque", which corresponds to the force exerted by the driver on said heading definition apparatus 2, and more particularly to the torque exerted by the driver on the steering wheel 2.
  • Said steering wheel torque T2 can be measured by a torque sensor 9 associated with the steering wheel 2.
  • the assistance module 8 defines, according to an assistance law stored in said assistance module 8, an assistance force instruction (assist torque setpoint) T7 that it applies to the assistance engine 7, in order to match the angle of the actual A1 steering of the system 1, and consequently the yaw angle of the wheels 5, with the orientation defined by the heading definition apparatus 2.
  • the invention can preferably be applied to a power steering system in which the steering wheel 2 is mechanically connected to the rack 4 and thus mechanically connected, at least indirectly, to the assistance engine 7 , for example by means of a steering column 10 carrying said steering wheel 2 and provided with a pinion 11 which meshes with the rack 4.
  • the steering wheel 2 is an integral part of the steering mechanism 3, and can transmit a manual steering force and / or a steering movement to the movable member (rack) 4, and conversely, be driven by the assistance engine 7.
  • the assistance motor 7 may be coupled to the rack 4 by any suitable mechanism, and in particular by a motor pinion 12, possibly separate from the pinion 11 of the steering column, and which meshes directly with the rack 4, as is illustrated in Figure 1, or by a ball screw, or again via a gearbox placed on the steering column 10 to form a so-called “single gear” mechanism.
  • a motor pinion 12 possibly separate from the pinion 11 of the steering column, and which meshes directly with the rack 4, as is illustrated in Figure 1, or by a ball screw, or again via a gearbox placed on the steering column 10 to form a so-called “single gear” mechanism.
  • the heading definition device 2 intervenes during a phase called "pilot phase", during which the power steering system 1 is actually assigned to driving a vehicle, in order to follow said vehicle a trajectory that is determined according to the situation of said vehicle relative to its environment.
  • the method comprises, outside of such a driving phase, that is to say at a moment when the steering system 1, and more generally the vehicle, is outside a traffic situation, and it is therefore not necessary to take into account the environment of said vehicle to define a vehicle trajectory adapted to such an environment, or necessary to respect a particular trajectory to ensure the safety of the vehicle and its occupants, a step (a) of automatic activation of the assistance engine 7, during which a computer 13 is used to automatically generate and apply to the assistance engine 7, without requiring external action on the device.
  • an activation instruction which follows one or more pre-established “pre-established” “exploration cycles” CY
  • a measurement step (b) according to which one measures, during the exploration cycle (s) CY or the outcome of said or desdi ts CY scan cycles, at least one physical parameter, called “indicator parameter”, which is specific to the response provided by the power steering system 1 to the automatic activation of the assistance engine 7 and which is characteristic of the property sought, then a step (c) of analysis, during which the desired property is quantized from the measurement or measurements of the indicator parameter.
  • characterization module 13
  • the first module namely the assistance module 8 used for steering assistance in the piloting phase
  • the second module namely the characterization module 13 for controlling the automated process for characterizing the control system.
  • power steering 1 out of control phase will coexist within the same onboard computer on the vehicle.
  • the invention makes it possible to inherently use the assistance engine 7 embedded in the power steering system 1 as an exclusive driving source for driving the steering mechanism 3 during the characterization, without requiring an external active motion source, such as the manual force of an operator or an external additional engine, which would be distinct from the assistance engine 7 (and for example integrated into a robotic arm).
  • the characterization according to the invention can therefore advantageously be achieved without the need to act mechanically actively, manually or by an external motor, on the power steering system 1, and more particularly on the mechanism of direction 3, from the outside, and more particularly without it being necessary to actuate, manually or by an external motor, one of the mobile mechanical members, such as the driving wheel
  • the animation of the steering mechanism 3 for the purpose of the characterization according to the invention can therefore be performed autonomously, easily and at a lower cost, by using exclusively drive means (assistance motor 7), and the case appropriate control means (characterization module 13) intrinsically present in the power steering system 1.
  • passive external loads such as for example blocking wedges, springs and / or dampers
  • the characterization method according to the invention takes place outside any piloting phase of a vehicle, in a test situation that can be described as a "virtual" situation, since said situation does not require not having to respect a particular trajectory or a particular dynamic behavior of the vehicle, and thus makes it possible to characterize the power steering system 1 as such, separately from the influence of the vehicle, by decorrelating the use of said steering system assisted by the use of the vehicle itself, and therefore without imposing restrictions to the characterization process related to the safety of said vehicle or occupants of the latter.
  • the method according to the invention will thus be particularly suitable for factory characterization, excluding traffic, typically on a test bench, of a vehicle equipped with a power steering system 1, or even of a power steering system 1 only, before the assembly of said system 1 on a vehicle, and for example a power steering system 1 on which the wheels 5, and where appropriate the rods 6 have not yet been put in place.
  • step (a) of automatic activation for the purpose of characterization takes place outside a vehicle control phase, it is advantageous to control the assistance engine 7 by means of a CY scan cycle.
  • an activation instruction whose nature, form and duration, defined according to a predetermined activation pattern ("pattern"), will be chosen arbitrarily and freely, so as to be able to highlight, optimally, the desired property, and without having to meet a requirement of trajectory of a vehicle, and in particular without having to take into consideration the safety of the vehicle, the occupants of said vehicle, or persons or objects present in the environment of said vehicle.
  • said scanning cycles will not be subject to any restriction related to such parameters representative of the dynamics of the vehicle, and therefore will not require, in practice, for their definition and their application, any external information gathering related to such parameters, and in particular no visual information.
  • the assistance engine 7 without having to take information concerning parameters representative of the dynamics of the vehicle in its environment, information taken by the senses (particularly tactile and visual).
  • a human driver who would then react to this information by manually operating the steering wheel 2, either by an automatic acquisition process (for example by means of a camera or a radar, in particular laser, infrared or ultrasounds) which would be implemented by an autopilot module.
  • said scanning cycles may optionally be dimensioned so as to meet certain hardware limitations inherent in the design of the power steering system 1 itself, such as for example the maximum torque that can deliver the assistance engine 7 (And therefore the maximum electric current that said assistance motor 7 can tolerate without damage).
  • the scanning cycle may preferably comprise at least one change of sign, which corresponds to a reversal of the activation direction of the assistance motor 7, so as to activate said engine of 7 assistance to the right, then to the left (or vice versa).
  • an "elementary" exploration cycle may preferably comprise a positive half cycle and a negative half cycle.
  • an elementary cycle comprising a single alternation, of constant sign, for example a positive sign, in order to solicit the assistance motor 7 only in one direction, to the right or on the contrary to the left, if that is enough to define the property sought.
  • each elementary cycle CY can be repeated as many times as necessary, preferably identically, up to a predetermined number of iterations Ni.
  • the repetition of the cycles of exploration CY will make it possible to multiply, during the successive cycles, the measurements of a same indicator parameter, for example by means of at least one, indeed exactly one, measure of said indicator parameter by cycle.
  • the accuracy and reliability of the analysis step (c) can be advantageously improved. during which the property sought is quantized from said indicator parameter, respectively from said average.
  • one or more indicator parameters among: the position P7 (and thus the displacements) of the shaft of the assistance motor 7, the position (and therefore the displacements) P4 of the movable member 4 (rack) or the position P2 (and therefore the displacements) of the steering wheel 2, preferably expressed in the reference of the assistance engine 7, the speed P7 ', P4', P2 ', and in particular the angular velocity ( preferably expressed in the reference system of the engine 7, taking into consideration the possible mechanical transmission ratios) of one or other of these components 7, 4, 2, the force T7 delivered by the assistance engine 7 , the flywheel torque T2, or a retaining force T4 exerted by an external element on the movable member (rack) 4 against the assistance motor 7.
  • the suffix "_mes” may be added in what follows to explicitly designate an indicator parameter (measured or evaluated) associated with a given quantity, especially when it is necessary to explicitly differentiate the actual value measured by said parameter indicating a corresponding setpoint value. However, for simplicity of description, it will generally be possible to equate the indicator parameter (actual measured quantity) with the corresponding instruction.
  • the method makes it possible to determine at least one desired property, among a mechanical resonance frequency of the steering mechanism 3, a cutoff frequency or a bandwidth of the steering mechanism 3 with respect to vibrations,
  • step (a) of automatic activation a cycle of exploration in effort CY_force which takes the form of a cycle of vibration exploration CY_sinus, such as illustrated in FIG. 2, according to which the assistance motor 7 is excited by means of an alternating torque command T7 periodic, preferably sinusoidal, whose frequency f7 is varied over several frequency steps in a predetermined range, preferably between 0Hz and 200 Hz.
  • the frequency domain f7 thus scanned will range from at least 0.5 Hz to 20 Hz, or even up to 50 Hz or 100 Hz, and in particular at least between 10 Hz and 15 Hz, which is generally the domain in which a resonance frequency (mechanical) of the power steering system 1 can be observed.
  • the alternations 20, 120 may preferably form here a sinusoidal signal.
  • the amplitude that is to say the peak value T7_1, T7_2, of the motor torque setpoint T7, will preferably correspond to a value between 20% and 50% of the maximum torque T7_max of assistance that may be provided by the assistance engine T7, so as to solicit the assistance engine 7 sufficiently important to obtain significant measurements (especially with regard to background noise), while avoiding damaging the engine of assistance 7 by a current of too high intensity.
  • T7_2 -T7_l so as to create a symmetrical activation, left and right.
  • the cycle of vibration exploration CY_sinus and therefore the uninterrupted succession of alternations, lasts for a sufficient duration, preferably equal to or greater than 30 s, and typically between 30 s and 90 s, in order to be able to stabilize the measurements and thus characterize, in gain and / or in phase, the response of the steering system 1, and more particularly the response of the steering mechanism 3.
  • the input (the excitation source of the system 1) corresponding here to the assistance motor 7, can be used as parameter indicator a representative parameter of a state of an output of said system 1, for example at the steering wheel of pipe 2, or at one end of the rack 4.
  • the displacements of the output member can be damped by means of an external load of the damping type, or even blocking the position of said output member 2, 4, that is, to say here block in position the driving wheel 2, or respectively the rack 4, and observe, as an indicator parameter, the forces (couples) T2_mes, T4_mes induced at said output member 2, 4 by the activation of the assistance motor 7.
  • the indicator parameter here the motor torque T7 representative of the input of the portion of the system 1 considered and the indicator parameter (here the position P2_mes, P4_mes or the effort T2_mes , T4_mes) representative of the output of said portion of the system 1, it is advantageously possible to determine the gain and / or the phase of the transfer function (typically T2_mes / T7 or P2_mes / T7 or T4_mes / T7 or P4_mes / T7) which characterizes the portion considered of the power steering system 1, and more particularly of the steering mechanism 3.
  • the characterization process may also include, during the activation step (a), a sub-step (a1) for securing, during which the motor torque setpoint T7 applied to the motor of the motor is set. assistance 7, in order to maintain said torque setpoint below (in absolute value) of a predetermined safety threshold T7_safe, said safety threshold T7_safe being adjusted, and more particularly reduced, when it is in a phase d approach of an Xlim limit position that one wishes not to exceed, and for example when one is in the approach phase of a limit stop SI, S2.
  • a function called "security function" is used which defines, as illustrated in FIG.
  • the safety threshold T7_safe is lowered (that is to say that its absolute value decreases), from a position of Xsafe safety which precedes the limit position Xlim in the direction of movement considered, and preferably until canceled when reaching said limit position Xlim.
  • the safety function can form a decreasing ramp from the Xsafe safety position to the Xlim limit position.
  • the safety threshold T7_safe can return directly to its maximum value (plateau value), such as the illustrates the rectangular corner-shaped border of the authorized domain DI in FIG.
  • the limit position Xlim is preferably defined as a percentage, for example between 75% and 100%, and more particularly between 80% and 95% of the position of the corresponding end stop SI, S2.
  • the invention also relates as such to a power steering system 1 to implement all or part of the aforementioned characterization processes.
  • the invention thus relates more particularly to a power steering system 1 which comprises a characterization module 13 forming a complete characterization "toolbox", containing and allowing to selectively implement an exploration cycle among a plurality of cycles. available, especially to facilitate automatic calibration and debugging of System 1 at the factory.
  • a power steering system 1 intended to equip a vehicle and comprising at least one heading definition device 2, such as a steering wheel, which allows a driver to define a steering angle A1 of the steering wheel.
  • a steering mechanism 3 provided with at least one movable member 4, such as a rack, whose position P4 adapts to correspond to the selected steering angle A1, as well as to the less an assistance engine 7 arranged to be able to drive said steering mechanism 3, said power steering system 1 comprising firstly a first onboard module 8, said “assistance module” 8, which contains a first set of functions said "laws of assistance”, which make it possible to generate, when the power steering system 1 is assigned to the driving of a vehicle, guidance instructions to the assistance engine 7, in order to forward to said vehicle the path that is determined according to the situation of said vehicle relative to its environment, and secondly a second module 13 on board, called “characterization module” 13, which contains a second set of functions, called “functions of characterization ', distinct from the assistance laws, and which make it possible to implement, during a period when the power steering system is not assigned to driving a vehicle, and automatically, a characterization process for to empirically determine at least one property of said power steering system, called “desired property".
  • the characterization module 13 is preferably an electronic or computer module.
  • said characterization method comprises a step (a) of automatic activation of the assistance engine 7, during which the second embedded module 13 automatically generates and applies to the assistance engine 7, without requiring external action on the heading definition device 2, an activation instruction T7, V7, P7 which follows one or more cycles called “exploration cycles” CY preset, to allow a step (b) of measurement, according to which at least one physical parameter, called “indicator parameter” P7_mes, T7_mes, P4_mes, T2_mes, V2_mes, etc., which is measured during the scanning cycle (s) CY or at the end of said one or more scanning cycles CY, which is specific to the response provided by the power steering system 1 to the automatic activation of the assistance engine 7 and which is characteristic of the desired property, then a step (c) of analysis, during which the property searched from the measure (s) of the indicator parameter.
  • the characterization module 13, as well as the assistance module 8, will therefore preferably be integrated with the steering system 1, and in particular integrated with an on-board calculation module that
  • the characterization functions and more particularly the exploration cycles CY that these characterization functions automatically implement, can advantageously be stored in a non-volatile memory of the characterization module 13, for example in the form of function libraries (dll files). ) programmed in said characterization module 13 and / or maps ("maps").
  • the characterization module 13 will thus contain a plurality of pre-established exploration cycles CY, so that, for example, it is possible to selectively activate, out of the driving phase of the vehicle, a cycle CY chosen from the exploration cycles described in the foregoing. .
  • the second onboard module (characterization module) 13 includes a vibration characterization function which uses a cycle of vibration exploration CY_sinus according to which the assistance motor 7 is excited by means of a periodic alternating torque setpoint T7, preferably sinusoidal, whose frequency f7 is varied over several frequency steps in a predetermined range, and which measures, at different frequency steps, the torque T2_mes and / or the displacement P2 generated at the driving wheel 2 in response to said excitation.
  • a vibration characterization function which uses a cycle of vibration exploration CY_sinus according to which the assistance motor 7 is excited by means of a periodic alternating torque setpoint T7, preferably sinusoidal, whose frequency f7 is varied over several frequency steps in a predetermined range, and which measures, at different frequency steps, the torque T2_mes and / or the displacement P2 generated at the driving wheel 2 in response to said excitation.
  • the characterization module 13 will also preferably include a selector for selecting and executing one or the other of said available characterization functions, separately from the other characterization functions and the assistance functions, and thus to control automatically, and autonomously, the assistance engine 7 for characterization, regardless of the driving of the vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

L'invention concerne un procédé de caractérisation d'un système de direction assistée (1) destiné à déterminer empiriquement au moins une propriété dudit système (1), ledit système de direction assistée comprenant au moins un volant de conduite (2), un mécanisme de direction (3) pourvu d'une crémaillère (4), ainsi qu'au moins un moteur d'assistance (7), ledit procédé comprenant, en dehors d'une phase de pilotage au cours de laquelle le système de direction assistée (1) est affecté à la conduite d'un véhicule afin de faire suivre audit véhicule une trajectoire qui est déterminée en fonction de la situation dudit véhicule par rapport à son environnement, une étape (a) d'activation automatique du moteur d'assistance (7), au cours de laquelle on utilise un calculateur (13) pour générer et appliquer automatiquement au moteur d'assistance (7), sans requérir d'action externe sur le volant de conduite (2), une consigne d'activation qui suit un ou plusieurs cycles dit «cycles d'exploration» (CY) préétablis afin de mesurer, pendant le ou les cycles d'exploration ou à l'issue dudit ou desdits cycles d'exploration (CY), au moins un paramètre indicateur (P7_mes, T7_mes, P4_mes, T2_mes, V2_mes), qui est propre à la réponse que fournit le système de direction assistée à l'activation automatique du moteur d'assistance et qui est caractéristique de la propriété recherchée.

Description

Utilisation d'un moteur d'assistance d'un système de direction assistée afin de générer des cycles de test selon un cycle d'exploitation vibratoire
La présente invention concerne les procédés de caractérisation destinés à déterminer empiriquement au moins une propriété d'un système de direction assistée, telle que par exemple la position des butées de fin de course d'une crémaillère de direction ou bien les caractéristiques de réponse en fréquence du système de direction assistée, lors de la mise au point ou de l'étalonnage dudit système en usine.
Les procédés de caractérisation connus nécessitent qu'un opérateur humain installe le système de direction assistée sur un banc de test, puis qu'il manœuvre le volant de conduite selon des cycles de manœuvre spéciaux préétablis, afin que des capteurs et des enregistreurs qui équipent le banc de test puissent observer les réactions du système de direction et mesurer les paramètres indicateurs qui permettent ensuite de quantifier la propriété que l'on recherche.
Bien entendu, de telles manœuvres manuelles sont parfois assez fastidieuses, et souvent relativement imprécises, dans la mesure où l'opérateur ne peut pas exercer de manière fiable et reproductible une consigne précise de vitesse ou d'effort, et notamment une consigne de valeur constante, ou bien peut par exemple se tromper de sens de manœuvre au cours d'un cycle, ce qui peut fausser l'estimation de la propriété recherchée.
Par ailleurs, s'il est envisageable, dans l'absolu, de remplacer l'opérateur par un bras robotisé qui actionne le volant, une telle solution est particulièrement complexe et coûteuse à mettre en œuvre, notamment parce qu'il est nécessaire à chaque test d'installer et de coupler le bras robotisé au volant de conduite, et de reconfigurer matériellement le bras robotisé et le banc de test en fonction du modèle de système de direction testé.
Les objets assignés à l'invention visent par conséquent à remédier aux inconvénients susmentionnés et à proposer un procédé de caractérisation de système de direction assistée qui permette une caractérisation rapide, fiable et à moindre coût dudit système de direction assistée.
Les objets assignés à l'invention visent également à proposer un nouveau procédé de caractérisation d'un système de direction assistée qui présente une grande polyvalence, en ceci que ledit procédé s'adapte de manière simple à de nombreux modèles de systèmes de direction assistée et/ou permet de caractériser de manière complète plusieurs propriétés d'un même système de direction assistée. Les objets assignés à l'invention sont atteints au moyen d'un procédé de caractérisation d'un système de direction assistée destiné à déterminer empiriquement au moins une propriété dudit système de direction assistée, dite « propriété recherchée », ledit système de direction assistée comprenant au moins un dispositif de définition de cap, tel qu'un volant de conduite, qui permet de définir l'orientation, dite « angle de braquage », du système de direction assistée, un mécanisme de direction pourvu d'au moins un organe mobile, tel qu'une crémaillère, dont la position s'adapte de manière à correspondre à l'angle de braquage choisi, ainsi qu'au moins un moteur d'assistance agencé pour pouvoir entraîner ledit mécanisme de direction, ledit procédé étant caractérisé en ce qu'il comprend, en dehors d'une phase de pilotage au cours de laquelle le système de direction assistée est affecté à la conduite d'un véhicule afin de faire suivre audit véhicule une trajectoire qui est déterminée en fonction de la situation dudit véhicule par rapport à son environnement, une étape (a) d'activation automatique du moteur d'assistance, au cours de laquelle on utilise un calculateur pour générer et appliquer automatiquement au moteur d'assistance, sans requérir d'action externe sur le dispositif de définition de cap, une consigne d'activation qui suit un ou plusieurs cycles dit « cycles d'exploration » préétablis, une étape (b) de mesure, selon laquelle on mesure, pendant le ou les cycles d'exploration ou à l'issue dudit ou desdits cycles d'exploration, au moins un paramètre physique, dit « paramètre indicateur », qui est propre à la réponse que fournit le système de direction assistée à l'activation automatique du moteur d'assistance et qui est caractéristique de la propriété recherchée, puis une étape (c) d'analyse, au cours de laquelle on quantifie la propriété recherchée à partir de la ou des mesures du paramètre indicateur.
Avantageusement, l'invention utilise ainsi le moteur d'assistance lui- même comme moyen (unique) pour activer le mécanisme de direction selon le ou les cycles d'exploration choisis, sans que l'on ait besoin d'utiliser un moyen d'entraînement auxiliaire, et notamment un moteur auxiliaire, externe au système de direction.
On fait ainsi l'économie d'un opérateur ou d'un bras robotisé.
En outre, l'automatisation des cycles d'exploration permet avantageusement d'appliquer au moteur d'assistance, pendant les phases où l'on caractérise le système de direction, des consignes particulièrement précises, bien plus précises que lors de manœuvres manuelles, et notamment des consignes de vitesse, d'accélération ou d'effort constantes pendant des durées prédéterminées ou sur des distances de déplacement de l'organe mobile prédéterminées, ce qui permet de mesurer avec précision le ou les paramètres indicateurs, sans que l'activation du système de direction assistée ne constitue en elle-même une source d'erreur potentielle qui serait liée à une variabilité excessive et incontrôlée de la consigne par rapport au cycle d'exploration idéal visé.
La caractérisation de la propriété recherchée est donc particulièrement précise et reproductible.
En outre, l'invention permet notamment d'équiper le système de direction assistée, quel que soit par ailleurs le modèle dudit système, d'un module de calcul embarqué qui contient un jeu complet de fonctions de caractérisation, par exemple sous forme d'un fichier-bibliothèque stocké dans une mémoire non volatile dudit module, de telle sorte que le système de direction assistée sera intrinsèquement pourvu des outils nécessaire à sa caractérisation, et plus globalement à la caractérisation de plusieurs de ses propriétés.
La mise au point et l'étalonnage dudit système de direction assistée seront donc grandement facilités.
D'autres objets, caractéristiques et avantages de l'invention apparaîtront plus en détail à la lecture de la description qui suit, ainsi qu'à l'aide des dessins annexés, fournis à titre purement illustratif et non limitatif, parmi lesquels :
La figure 1 illustre, selon une vue schématique, un système de direction assistée.
La figure 2 illustre un exemple de cycle d'exploration vibratoire au cours duquel on applique au moteur d'assistance une consigne de couple alternée, de type sinusoïdal, dont on fait varier la fréquence.
La figure 3 illustre une fonction de sécurisation qui, en se superposant au besoin aux cycles d'exploration, permet de limiter le couple développé par le moteur d'assistance lorsque le mécanisme de direction approche des butées de fin de course.
L'invention concerne un procédé de caractérisation d'un système de direction assistée 1 destiné à déterminer empiriquement au moins une propriété dudit système de direction assistée 1, spécifique audit système, dite « propriété recherchée ».
Tel que cela est visible sur la figure 1, ledit système de direction assistée 1 comprend au moins un dispositif de définition de cap 2 qui permet de définir l'orientation, dite « un angle de braquage » Al, du système de direction assistée.
De préférence, le dispositif de définition de cap 2 comprendra un volant de conduite 2 qui permet à un conducteur (humain) de définir librement ledit angle de braquage Al pour assurer un pilotage manuel d'un véhicule équipé du système de direction assistée 1.
Ledit système de direction comprend également un mécanisme de direction 3 pourvu d'au moins un organe mobile 4, tel qu'une crémaillère 4, dont la position P4 s'adapte de manière à correspondre à l'angle de braquage Al choisi.
Par commodité, l'organe mobile 4 pourra donc être assimilé à une crémaillère dans ce qui suit.
De façon connue en soi, ledit organe mobile 4, et plus particulièrement la crémaillère 4, pourra de préférence être monté mobile et guidé en translation dans un carter de direction.
Le mécanisme de direction 3 permet ainsi de modifier l'orientation d'un organe orientable 5, tel qu'une roue directrice 5, entraîné en déplacement par la crémaillère 4, afin de diriger un véhicule sur lequel ledit système de direction assistée 1 est embarqué.
De façon connue en soi, le mécanisme de direction 3 pourra comprendre des biellettes de direction 6 qui relient chacune une extrémité de la crémaillère 4 à un porte-fusée orientable en lacet et portant la roue directrice 5 correspondante.
Le système de direction assistée 1 comprend également au moins un moteur d'assistance 7 agencé pour pouvoir entraîner ledit mécanisme de direction 3.
Ledit moteur d'assistance 7 sera de préférence un moteur électrique, à double sens de fonctionnement, pour pouvoir entraîner le mécanisme de direction 3 indifféremment vers la gauche ou vers la droite, par exemple un moteur brushless.
Bien qu'il ne soit pas exclu d'utiliser un moteur 7 linéaire, on préférera un moteur 7 rotatif.
Le moteur d'assistance 7 est placé, par l'intermédiaire d'un calculateur comprenant un premier module 8 embarqué, c'est-à-dire faisant partie intégrante du système 1, dit « module d'assistance » 8, sous la dépendance de l'appareil de définition de cap 2.
L'appareil de définition de cap 2 peut de préférence servir à définir une consigne d'angle de braquage A2, laquelle pourra typiquement être définie, dans le cas où l'appareil 2 comprend un volant de conduite 2 ou est formé par un volant de conduite 2, par la position angulaire P2 dudit volant de conduite 2.
De manière alternative ou complémentaire à la fourniture d'une consigne de braquage A2, l'appareil de définition de cap 2 peut fournir une donnée d'effort T2, dite « couple volant », qui correspond à l'effort exercé par le conducteur sur ledit appareil de définition de cap 2, et plus particulièrement au couple exercé par le conducteur sur le volant de conduite 2.
Ledit couple volant T2 peut être mesuré par un capteur de couple 9 associé au volant de conduite 2.
En fonction notamment de la consigne d'angle de braquage A2 et/ou le cas échéant en fonction du « couple volant » T2 exercé par le conducteur sur ledit appareil de définition de cap 2, le module d'assistance 8 définit, d'après une loi d'assistance stockée dans ledit module d'assistance 8, une consigne d'effort d'assistance (consigne de couple d'assistance) T7 qu'il applique au moteur d'assistance 7, afin de faire coïncider l'angle de braquage Al réel du système 1, et par conséquent l'angle de lacet des roues 5, avec l'orientation définie par l'appareil de définition de cap 2.
Bien entendu, d'autres paramètres, et notamment des paramètres dynamiques du véhicule, tels que la vitesse longitudinale du véhicule, peuvent être pris en considération par la loi d'assistance.
On notera que l'invention peut de préférence trouver à s'appliquer à un système de direction assistée au sein duquel le volant de conduite 2 est relié mécaniquement à la crémaillère 4 et donc relié mécaniquement, au moins indirectement, au moteur d'assistance 7, par exemple par l'intermédiaire d'une colonne de direction 10 portant ledit volant de conduite 2 et pourvue d'un pignon 11 qui engrène sur la crémaillère 4.
De la sorte, le volant de conduite 2 fait partie intégrante du mécanisme de direction 3, et peut transmettre un effort de braquage manuel et/ou un mouvement de braquage à l'organe mobile (crémaillère) 4, et inversement, être entraîné par le moteur d'assistance 7.
En variante, on peut tout aussi bien envisager d'appliquer l'invention à un système de direction assistée dit « steer by wire », au sein duquel il n'existe pas de liaison mécanique d'entraînement entre le volant de conduite 2 et l'organe mobile (crémaillère) 4 entraîné par le moteur d'assistance 7, mais seulement une liaison électrique qui transmet la consigne d'angle de braquage A2 et/ou l'information de couple volant T2 au module d'assistance 8 qui à son tour asservit le moteur d'assistance 7.
Le moteur d'assistance 7 pourra être couplé à la crémaillère 4 par tout mécanisme approprié, et notamment par un pignon moteur 12, éventuellement distinct du pignon 11 de la colonne de direction, et qui engrène directement sur la crémaillère 4, tel que cela est illustré sur la figure 1, ou par une vis à billes, ou bien encore par l'intermédiaire d'un réducteur placé sur la colonne de direction 10 pour former un mécanisme dit « à simple pignon ».
Que l'on considère une direction à liaison mécanique ou un steer-by- wire, l'appareil de définition de cap 2 intervient lors d'une phase dite « phase de pilotage », au cours de laquelle le système de direction assistée 1 est effectivement affecté à la conduite d'un véhicule, afin de faire suivre audit véhicule une trajectoire qui est déterminée en fonction de la situation dudit véhicule par rapport à son environnement.
Selon l'invention, le procédé comprend, en dehors d'une telle phase de pilotage, c'est-à-dire à un moment où le système de direction 1, et plus globalement le véhicule, se trouve en-dehors d'une situation de circulation, et qu'il n'est donc pas nécessaire de tenir compte de l'environnement dudit véhicule pour définir une trajectoire de véhicule adaptée à un tel environnement, ni nécessaire de respecter une trajectoire particulière pour assurer la sécurité du véhicule et de ses occupants, une étape (a) d'activation automatique du moteur d'assistance 7, au cours de laquelle on utilise un calculateur 13 pour générer et appliquer automatiquement au moteur d'assistance 7, sans requérir d'action externe sur le dispositif de définition de cap 2, une consigne d'activation qui suit un ou plusieurs cycles dit « cycles d'exploration » CY préétablis, une étape (b) de mesure, selon laquelle on mesure, pendant le ou les cycles d'exploration CY ou à l'issue dudit ou desdits cycles d'exploration CY, au moins un paramètre physique, dit « paramètre indicateur », qui est propre à la réponse que fournit le système de direction assistée 1 à l'activation automatique du moteur d'assistance 7 et qui est caractéristique de la propriété recherchée, puis une étape (c) d'analyse, au cours de laquelle on quantifie la propriété recherchée à partir de la ou des mesures du paramètre indicateur.
Bien qu'il ne soit pas exclu d'utiliser ponctuellement un calculateur 13 externe au système de direction assistée 1, que l'on raccorderait électriquement audit système 1 lorsque l'on souhaite procéder à la caractérisation de ce dernier, ledit calculateur 13 peut de préférence faire partie intégrante du système de direction assistée 1, et donc du véhicule qu'équipe ledit système 1, et former à cet effet un second module embarqué, dit « module de caractérisation » 13.
De préférence, le premier module, à savoir le module d'assistance 8 utilisé pour l'assistance de direction en phase de pilotage, et le second module, à savoir le module de caractérisation 13 destiné à contrôler le processus automatisé de caractérisation du système de direction assistée 1 hors phase de pilotage coexisteront au sein d'un même calculateur embarqué sur le véhicule. Avantageusement, l'invention permet d'utiliser intrinsèquement le moteur d'assistance 7 embarqué dans le système de direction assistée 1 comme source motrice exclusive pour entraîner le mécanisme de direction 3 pendant la caractérisation, sans requérir de source de mouvement active externe, telle que la force manuelle d'un opérateur ou un moteur additionnel externe, qui serait distinct du moteur d'assistance 7 (et par exemple intégré à un bras robotisé).
Plus globalement, la caractérisation selon l'invention peut donc avantageusement être réalisée sans qu'il soit nécessaire d'agir mécaniquement de manière active, manuellement ou par un moteur externe, sur le système de direction assistée 1, et plus particulièrement sur le mécanisme de direction 3, depuis l'extérieur, et plus particulièrement sans qu'il soit nécessaire d'actionner, manuellement ou par un moteur externe, l'un des organes mécanique mobiles, tel que le volant de conduite
2, une extrémité apparente de la crémaillère 4, ou éventuellement une biellette de direction 6 ou une roue 5 raccordée à ladite crémaillère 4, qui forment une interface mécanique entre ledit système de direction assistée 1, respectivement ledit mécanisme de direction 3, et l'extérieur de celui-ci.
L'animation du mécanisme de direction 3 en vue de la caractérisation selon l'invention peut donc être réalisée de manière autonome, facile et à moindre coût, en exploitant exclusivement des moyens d'entraînement (moteur d'assistance 7), et le cas échéant des moyens de commande (module de caractérisation 13), intrinsèquement présents dans le système de direction assistée 1.
On notera que l'on peut prévoir par ailleurs d'utiliser une ou des charges externes passives, telles que par exemple des cales de blocage, des ressorts et/ou des amortisseurs, que l'on couple à l'une et/ou l'autre des interfaces mécaniques du système de direction assistée 1 (volant de conduite 2 ou extrémités de la crémaillère 4, par exemple) afin de simuler un comportement particulier du système de direction 1 et ainsi accéder à la propriété recherchée.
Ces charges externes seront toutefois passives, c'est-à-dire n'apporteront pas intrinsèquement, contrairement au moteur d'assistance 7, d'énergie au système de direction assistée, mais serviront plutôt à dissiper en tout ou partie l'énergie apportée au mécanisme de direction 3 par ledit moteur d'assistance 7 ou à modifier la distribution de ladite énergie dans le temps et à travers ledit mécanisme de direction
3.
Comme indiqué plus haut, le procédé de caractérisation selon l'invention prend place en-dehors de toute phase de pilotage d'un véhicule, dans une situation de test que l'on peut qualifier de situation "virtuelle", puisque ladite situation ne requiert pas de devoir respecter une trajectoire particulière ou un comportement dynamique particulier du véhicule, et permet donc de caractériser le système de direction assistée 1 en tant que tel, séparément de l'influence du véhicule, en dé-corrélant l'utilisation dudit système de direction assistée 1 de l'utilisation du véhicule lui-même, et par conséquent sans imposer au procédé de caractérisation de restrictions liées à la sécurité dudit véhicule ou des occupants de ce dernier.
Le procédé selon l'invention sera ainsi particulièrement adapté à la caractérisation en usine, hors circulation, typiquement sur un banc de test, d'un véhicule équipé d'un système de direction assistée 1, ou même d'un système de direction assistée 1 seul, avant l'assemblage dudit système 1 sur un véhicule, et par exemple d'un système de direction assistée 1 sur lequel les roues 5, et le cas échéant les biellettes 6 n'ont pas encore été mises en place.
Puisque l'étape (a) d'activation automatique en vue de la caractérisation prend place en-dehors d'une phase de pilotage de véhicule, on pourra avantageusement commander le moteur d'assistance 7 au moyen d'un cycle d'exploration CY, et donc d'une consigne d'activation, dont la nature, la forme et la durée, définies selon un diagramme d'activation prédéterminé (« pattern »), seront choisies arbitrairement et librement, de manière à pouvoir mettre en évidence, de manière optimale, la propriété recherchée, et sans avoir à répondre à un impératif de trajectoire d'un véhicule, et en particulier sans avoir à prendre en considération la sécurité du véhicule, des occupants dudit véhicule, ou des personnes ou objets présents dans l'environnement dudit véhicule.
En pratique, on pourra donc définir et appliquer les cycles d'exploration CY, et plus globalement la consigne d'activation appliquée au moteur d'assistance 7 pendant le procédé de caractérisation, sans avoir besoin d'acquérir (et en particulier de mesurer) ni de prendre en considération des paramètres représentatifs de la dynamique propre au véhicule par rapport à son environnement, c'est-à-dire des paramètres représentatifs du comportement propre du véhicule dans un référentiel externe audit véhicule, parmi lesquels notamment la vitesse longitudinale du véhicule, l'accélération latérale dudit véhicule, la vitesse de lacet dudit véhicule, ou la distance du véhicule à un obstacle ou à un repère externe (par exemple une ligne blanche de délimitation de voie de circulation) détecté dans ledit référentiel externe.
De la sorte, lesdits cycles d'exploration ne subiront aucune restriction liée à de tels paramètres représentatifs de la dynamique du véhicule, et ne nécessiteront donc, en pratique, pour leur définition et leur application, aucune prise d'information externe liée à de tels paramètres, et notamment aucune prise d'information visuelle. Ainsi, on pourra activer le moteur d'assistance 7 sans passer par une prise d'information concernant des paramètres représentatifs de la dynamique du véhicule dans son environnement, prise d'information qui serait réalisée soit par les sens (notamment tactiles et visuels) d'un conducteur humain, qui réagirait ensuite à cette information en actionnant manuellement le volant de conduite 2, soit par un processus d'acquisition automatique (par exemple au moyen d'une caméra ou d'un radar, notamment à laser, infrarouges ou à ultra-sons) qui serait mis en œuvre par un module de pilotage automatique.
Tout au plus, lesdits cycles d'exploration pourront éventuellement être dimensionnés de manière à respecter certaines limitations matérielles inhérentes à la conception du système de direction assistée 1 lui-même, telles que par exemple le couple maximal que peut délivrer le moteur d'assistance 7 (et donc le courant électrique maximal que ledit moteur d'assistance 7 peut tolérer sans dommage).
Tel que cela est illustré sur la figure 2, le cycle d'exploration pourra de préférence comporter au moins un changement de signe, qui correspond à une inversion du sens d'activation du moteur d'assistance 7, de manière à activer ledit moteur d'assistance 7 vers la droite, puis vers la gauche (ou inversement).
Ainsi, un cycle d'exploration, dit « élémentaire », pourra comprendre de préférence une alternance positive et une alternance négative.
Toutefois, on pourra bien entendu, en variante, utiliser un cycle élémentaire comprenant une seule alternance, de signe constant, par exemple positif, afin de ne solliciter le moteur d'assistance 7 que dans une seule direction, vers la droite ou au contraire vers la gauche, si cela suffit à définir la propriété recherchée.
Bien entendu, chaque cycle d'exploration CY élémentaire pourra être répété autant de fois que nécessaire, de préférence à l'identique, à concurrence d'un nombre d'itérations Ni prédéterminé.
Le cas échéant, la répétition des cycles d'exploration CY permettra de multiplier, au cours des cycles successifs, les mesures d'un même paramètre indicateur, par exemple à raison d'au moins une, voire exactement une, mesure dudit paramètre indicateur par cycle.
En utilisant ainsi une pluralité de mesures successives d'un même paramètre indicateur sur plusieurs cycles pour quantifier la propriété recherchée, et par exemple en utilisant à cet effet une moyenne arithmétique ou une moyenne pondérée des différentes mesures dudit paramètre indicateur sur plusieurs cycles, voire une sélection desdites mesures avec exclusion des valeurs jugées douteuses, on peut avantageusement améliorer la précision et la fiabilité de l'étape (c) d'analyse, au cours de laquelle on quantifie la propriété recherchée à partir dudit paramètre indicateur, respectivement à partir de ladite moyenne.
Bien entendu, lors de l'étape (b) de mesure, on observe les réactions du système de direction assistée 1, et plus particulièrement du mécanisme de direction 3, aux contraintes mécaniques créées par l'activation du moteur d'assistance 7, en mesurant et éventuellement enregistrant autant de paramètres indicateurs que nécessaires pour déterminer la propriété recherchée à partir de ladite réponse observée.
On pourra notamment mesurer, selon les besoins, un ou plusieurs paramètres indicateurs parmi : la position P7 (et donc les déplacements) de l'arbre du moteur d'assistance 7, la position (et donc les déplacements) P4 de l'organe mobile 4 (crémaillère) ou la position P2 (et donc les déplacements) du volant de conduite 2, de préférence exprimées dans le référentiel du moteur d'assistance 7, la vitesse P7', P4', P2', et notamment la vitesse angulaire (exprimée de préférence dans le référentiel du moteur 7, en prenant en considération les éventuels rapports de transmission mécaniques) de l'un ou l'autre de ces composants 7, 4, 2, l'effort T7 délivré par le moteur d'assistance 7, le couple volant T2, ou un effort de retenue T4 exercé par un élément externe sur l'organe mobile (crémaillère) 4 à l'encontre du moteur d'assistance 7.
Par simple commodité de description, on pourra ajouter dans ce qui suit le suffixe « _mes » pour désigner explicitement un paramètre indicateur (mesuré ou évalué) associé à une grandeur donnée, notamment lorsqu'il est nécessaire de différencier explicitement la valeur effective mesurée par ledit paramètre indicateur d'une valeur correspondante de consigne. Toutefois, par simplicité de description, on pourra généralement assimiler le paramètre indicateur (grandeur effective mesurée) à la consigne correspondante.
De préférence, le procédé permet de déterminer au moins une propriété recherchée, parmi une fréquence de résonance mécanique du mécanisme de direction 3, une fréquence de coupure ou une bande passante du mécanisme de direction 3 vis-à-vis de vibrations,
Ces différentes possibilités offertes par l'invention seront détaillées ci- après.
Selon une possibilité de l'invention, on peut appliquer, lors de l'étape (a) d'activation automatique, un cycle d'exploration en effort CY_force qui prend la forme d'un cycle d'exploration vibratoire CY_sinus, tel qu'illustré sur la figure 2, selon lequel on excite le moteur d'assistance 7 au moyen d'une consigne de couple T7 alternée périodique, de préférence sinusoïdale, dont on fait varier la fréquence f7 sur plusieurs pas de fréquence dans une plage prédéterminée, de préférence comprise entre 0Hz et 200 Hz.
De préférence le domaine de fréquence f7 ainsi balayé s'étendra au moins de 0,5 Hz à 20 Hz, voire jusqu'à 50 Hz ou 100 Hz, et notamment au moins entre 10 Hz et 15Hz, qui est généralement le domaine dans lequel on peut observer une fréquence de résonance (mécanique) du système de direction assistée 1.
Les alternances 20, 120 pourront de préférence former ici un signal sinusoïdal.
A titre indicatif, l'amplitude, c'est-à-dire la valeur de pic T7_l, T7_2, de la consigne de couple moteur T7, correspondra de préférence à une valeur comprise entre 20 % et 50 % du couple maximal T7_max d'assistance que peut délivrer le moteur d'assistance T7, de manière à solliciter le moteur d'assistance 7 de façon suffisamment importante pour obtenir des mesures significatives (notamment au regard du bruit de fond), tout en évitant d'endommager le moteur d'assistance 7 par un courant de trop forte intensité.
On choisira de préférence T7_2 = -T7_l de sorte à créer une activation symétrique, à gauche comme à droite.
Le cycle d'exploration vibratoire CY_sinus, et donc la succession ininterrompue d'alternances, dure pendant une durée suffisante, de préférence égale ou supérieure à 30 s, et typiquement comprise entre 30 s et 90 s, afin de pouvoir stabiliser les mesures et ainsi caractériser, en gain et/ou en phase, la réponse du système de direction 1, et plus particulièrement la réponse du mécanisme de direction 3.
L'entrée (la source d'excitation du système 1) correspondant ici au moteur d'assistance 7, on pourra utiliser comme paramètre indicateur un paramètre représentatif d'un état d'une sortie dudit système 1, par exemple au niveau du volant de conduite 2, ou bien au niveau d'une extrémité de la crémaillère 4.
On pourra ainsi notamment utiliser un paramètre indicateur de position (du volant 2, et/ou respectivement de la crémaillère 4) P2_mes, P4_mes, notamment si l'on choisit une sortie du système 1 (volant de conduite 2 et/ou crémaillère 4) qui est libre de ses mouvements sous l'excitation provoquée par le moteur.
En variante, on pourra amortir les déplacements de l'organe de sortie (volant de conduite 2 ou crémaillère 4) au moyen d'une charge externe de type amortisseur, voire bloquer la position dudit organe de sortie 2, 4, c'est-à-dire ici bloquer en position le volant de conduite 2, ou respectivement la crémaillère 4, et observer, comme paramètre indicateur, les efforts (couples) T2_mes, T4_mes induits au niveau dudit organe de sortie 2, 4 par l'activation du moteur d'assistance 7.
En particulier, on pourra par exemple bloquer le volant de conduite 2 et mesurer, pour chaque pas de fréquence, sur l'ensemble de la plage de fréquences f7 testées, le couple volant T2_mes qu'oppose ledit volant de conduite 2 bloqué à sa mise en rotation sous l'effet de l'excitation produite sur le mécanisme de direction 3 par le moteur d'assistance 7.
En mesurant et en comparant, à chaque fréquence f7 testée, le paramètre indicateur (ici le couple moteur T7) représentatif de l'entrée de la portion du système 1 considérée et le paramètre indicateur (ici la position P2_mes, P4_mes ou l'effort T2_mes, T4_mes) représentatif de la sortie de ladite portion du système 1, on peut avantageusement déterminer le gain et/ou la phase de la fonction de transfert (typiquement T2_mes/T7 ou P2_mes/T7 ou T4_mes/T7 ou P4_mes/T7) qui caractérise la portion considérée du système de direction assistée 1, et plus particulièrement du mécanisme de direction 3.
On pourra également utiliser ces données empiriques pour construire un diagramme de Bode correspondant.
Le cas échéant, on peut ainsi caractériser une réponse fréquentielle du système 1 aux vibrations, et plus particulièrement identifier, lorsqu'elles existent, une ou des fréquences de résonance et/ou une ou des fréquences de coupure (typiquement des fréquences de coupure à -3dB), ainsi que, le cas échéant, une bande passante correspondante (typiquement une bande passante à -3dB).
On peut ainsi modéliser le système de direction 1, et plus particulièrement le mécanisme de direction 3, sous forme d'un filtre, caractérisé par lesdites fréquences de coupure ou de résonance, ce qui peut être utile notamment pour l'application ultérieure de lois d'assistance au pilotage, ou pour effectuer des simulations mathématiques lors de la mise au point dudit système de direction assistée 1.
Par ailleurs, le procédé de caractérisation pourra également comporter, lors de l'étape d'activation (a), une sous-étape (al) de sécurisation, au cours de laquelle on écrête la consigne de couple moteur T7 appliqué au moteur d'assistance 7, afin de maintenir ladite consigne de couple en-dessous (en valeur absolue) d'un seuil de sécurité T7_safe prédéterminé, ledit seuil de sécurité T7_safe étant ajusté, et plus particulièrement réduit, lorsque l'on se trouve dans une phase d'approche d'une position limite Xlim que l'on souhaite ne pas dépasser, et par exemple lorsque l'on se trouve en phase d'approche d'une butée de fin de course SI, S2. A cet effet, on utilise une fonction dite « fonction de sécurisation » qui définit, tel que cela est illustré sur la figure 3, dans un référentiel associant un couple volant T7 (en ordonnée) à une valeur représentative de la position P7, P4, P2 du mécanisme de direction, et plus préférentiellement représentative de la position P4 de la crémaillère 4, d'une part un domaine autorisé DI (vierge sur la figure 3) et d'autre part un domaine interdit D2 (hachuré sur la figure 3), dont la frontière correspond au seuil de sécurité T7_safe.
On notera que, dans chaque sens de déplacement considéré (vers la droite, respectivement vers la gauche), le seuil de sécurité T7_safe est abaissé (c'est-à- dire que sa valeur absolue décroît), à partir d'une position de sécurité Xsafe qui précède la position limite Xlim dans le sens de déplacement considéré, et de préférence jusqu'à être annulé lorsque l'on atteint ladite position limite Xlim.
A cet effet, la fonction de sécurisation peut former une rampe décroissante depuis la position de sécurité Xsafe jusqu'à la position limite Xlim.
Ainsi, on peut forcer un ralentissement progressif du mécanisme de direction 3 pour éviter un dépassement de la position limite Xlim, et plus particulièrement un choc contre la butée SI (lorsque le cycle d'exploration utilisé ne vise pas à déterminer la position de ladite butée, bien entendu), lorsque l'on approche de ladite position limite Xlim.
En revanche, comme il n'est pas nécessaire de freiner le mécanisme 3 lorsque l'on s'éloigne de la position limite Xlim, le seuil de sécurité T7_safe pourra repasser directement à sa valeur maximale (valeur de plateau), tel que l'illustre la frontière en forme de coin rectangulaire du domaine autorisé DI sur la figure 3.
La position limite Xlim est de préférence définie comme un pourcentage, par exemple compris entre 75% et 100%, et plus particulièrement entre 80% et 95% de la position de la butée de fin de course SI, S2 correspondante.
Bien entendu, l'invention concerne également en tant que tel un système de direction assistée 1 permettant de mettre en œuvre tout ou partie des procédés de caractérisation susmentionnés.
L'invention concerne ainsi plus particulièrement un système de direction assistée 1 qui comprend un module de caractérisation 13 formant une « boîte à outils » de caractérisation complète, contenant et permettant de mettre en œuvre sélectivement un cycle d'exploration parmi une pluralité de cycles d'exploration disponibles, et ceci notamment afin de faciliter l'étalonnage automatique et la mise au point du système 1 en usine. Ainsi, l'invention concerne un système de direction assistée 1 destiné à équiper un véhicule et comprenant au moins un dispositif de définition de cap 2, tel qu'un volant de conduite, qui permet à un conducteur de définir un angle de braquage Al du système de direction assistée, un mécanisme de direction 3 pourvu d'au moins un organe mobile 4, tel qu'une crémaillère, dont la position P4 s'adapte de manière à correspondre à l'angle de braquage Al choisi, ainsi qu'au moins un moteur d'assistance 7 agencé pour pouvoir entraîner ledit mécanisme de direction 3, ledit système de direction assistée 1 comportant d'une part un premier module embarqué 8, dit « module d'assistance » 8, qui contient un premier jeu de fonctions dites « lois d'assistance », qui permettent de générer, lorsque le système de direction assistée 1 est affecté à la conduite d'un véhicule, des consignes de pilotage à destination du moteur d'assistance 7, afin de faire suivre audit véhicule une trajectoire qui est déterminée en fonction de la situation dudit véhicule par rapport à son environnement, et d'autre part un second module 13 embarqué, dit « module de caractérisation » 13, qui contient un second jeu de fonctions, dites « fonctions de caractérisation », distinctes des lois d'assistance, et qui permettent de mettre en œuvre, pendant une période où le système de direction assistée n'est pas affecté à la conduite d'un véhicule, et de manière automatique, un procédé de caractérisation destiné à déterminer empiriquement au moins une propriété dudit système de direction assistée, dite « propriété recherchée ».
Tout comme le module d'assistance 8, le module de caractérisation 13 est de préférence un module électronique ou informatique.
Comme indiqué plus haut, ledit procédé de caractérisation comprend une étape (a) d'activation automatique du moteur d'assistance 7, au cours de laquelle le second module embarqué 13 génère et applique automatiquement au moteur d'assistance 7, sans requérir d'action externe sur le dispositif de définition de cap 2, une consigne d'activation T7, V7, P7 qui suit un ou plusieurs cycles dit « cycles d'exploration » CY préétablis, afin de permettre une étape (b) de mesure, selon laquelle on mesure, pendant le ou les cycles d'exploration CY ou à l'issue dudit ou desdits cycles d'exploration CY, au moins un paramètre physique, dit « paramètre indicateur » P7_mes, T7_mes, P4_mes, T2_mes, V2_mes, etc, qui est propre à la réponse que fournit le système de direction assistée 1 à l'activation automatique du moteur d'assistance 7 et qui est caractéristique de la propriété recherchée, puis une étape (c) d'analyse, au cours de laquelle on quantifie la propriété recherchée à partir de la ou des mesures du paramètre indicateur. Le module de caractérisation 13, de même que le module d'assistance 8, sera donc de préférence intégré au système de direction 1, et notamment Intégré à un module de calcul embarqué pouvant être utilisé de manière autonome.
Les fonctions de caractérisation, et plus particulièrement les cycles d'exploration CY que ces fonctions de caractérisation mettent automatiquement en œuvre, pourront avantageusement être stockés dans une mémoire non volatile du module de caractérisation 13, par exemple sous forme de bibliothèques de fonctions (fichiers dll) programmées dans ledit module de caractérisation 13 et/ou de cartographies (« maps »).
Le module de caractérisation 13 contiendra ainsi une pluralité de cycles d'exploration CY préétablis, de sorte par exemple à permettre d'activer sélectivement, hors phase de pilotage du véhicule, un cycle CY choisi parmi les cycles d'exploration décrits dans ce qui précède.
De préférence, le second module embarqué (module de caractérisation ) 13 regroupe une fonction de caractérisation vibratoire qui utilise un cycle d'exploration vibratoire CY_sinus selon lequel on excite le moteur d'assistance 7 au moyen d'une consigne de couple T7 alternée périodique, de préférence sinusoïdale, dont on fait varier la fréquence f7 sur plusieurs pas de fréquence dans une plage prédéterminée, et qui mesure, aux différents pas de fréquence, le couple T2_mes et/ou le déplacement P2 généré au niveau du volant de conduite 2 en réponse à ladite excitation.
Le module de caractérisation 13 comprendra de préférence également un sélecteur permettant de sélectionner et d'exécuter l'une ou l'autre desdites fonctions de caractérisation disponibles, séparément des autres fonctions de caractérisation et des fonctions d'assistance, et ainsi commander automatiquement, et de manière autonome, le moteur d'assistance 7 pour une caractérisation, indépendamment du pilotage du véhicule.
Bien entendu, l'invention n'est nullement limitée aux seules variantes de réalisation décrites dans ce qui précède, l'homme du métier étant notamment à même d'isoler ou de combiner librement entre elles les caractéristiques susmentionnées, ou de leur substituer un équivalent.

Claims

REVENDICATIONS
1. Procédé de caractérisation d'un système de direction assistée (1) destiné à déterminer empiriquement au moins une propriété dudit système de direction assistée (1), dite « propriété recherchée », ledit système de direction assistée comprenant au moins un dispositif de définition de cap (2), tel qu'un volant de conduite (2), qui permet de définir l'orientation, dite « angle de braquage » (Al) du système de direction assistée, un mécanisme de direction (3) pourvu d'au moins un organe mobile (4), tel qu'une crémaillère (4), dont la position (P4) s'adapte de manière à correspondre à l'angle de braquage (Al) choisi, ainsi qu'au moins un moteur d'assistance (7) agencé pour pouvoir entraîner ledit mécanisme de direction (3), ledit procédé comprenant, en dehors d'une phase de pilotage au cours de laquelle le système de direction assistée (1) est affecté à la conduite d'un véhicule afin de faire suivre audit véhicule une trajectoire qui est déterminée en fonction de la situation dudit véhicule par rapport à son environnement, une étape (a) d'activation automatique du moteur d'assistance (7), au cours de laquelle on utilise un calculateur (13) pour générer et appliquer automatiquement au moteur d'assistance (7), sans requérir d'action externe sur le dispositif de définition de cap (2), une consigne d'activation qui suit un ou plusieurs cycles dit « cycles d'exploration » (CY) préétablis, une étape (b) de mesure, selon laquelle on mesure, pendant le ou les cycles d'exploration ou à l'issue dudit ou desdits cycles d'exploration (CY), au moins un paramètre physique, dit « paramètre indicateur » (P7_mes, T7_mes, P4_mes, T2_mes, V2_mes), qui est propre à la réponse que fournit le système de direction assistée à l'activation automatique du moteur d'assistance (7) et qui est caractéristique de la propriété recherchée, puis une étape (c) d'analyse, au cours de laquelle on quantifie la propriété recherchée à partir de la ou des mesures du paramètre indicateur, lors de l'étape (a) d'activation automatique, on applique un cycle d'exploration en effort (CY_force) qui prend la forme d'un cycle d'exploration vibratoire (CY_sinus), selon lequel on excite le moteur d'assistance (7) au moyen d'une consigne de couple (T7) alternée périodique, de préférence sinusoïdale, dont on fait varier la fréquence (f7) sur plusieurs pas de fréquence dans une plage prédéterminée, de préférence comprise entre 0Hz et 200 Hz, afin de caractériser une réponse fréquentielle du système de direction assistée (1) aux vibrations, et plus particulièrement identifier, lorsqu'elles existent, une ou des fréquences de résonance et/ou une ou des fréquences de coupure, ainsi que, le cas échéant, une bande passante correspondante, caractérisé en ce que une amplitude, c'est-à-dire une valeur de pic, de la consigne de couple (T7), correspond à une valeur comprise entre 20 % et 50 % d'un couple maximal d'assistance que peut délivrer le moteur d'assistance.
2. Procédé selon la revendication 1, caractérisé en ce qu'il permet de déterminer au moins une propriété recherchée, parmi une fréquence de résonance mécanique du mécanisme de direction (3), une fréquence de coupure ou une bande passante du mécanisme de direction (3) vis-à-vis de vibrations,
3. Système de direction assistée (1) destiné à équiper un véhicule et comprenant au moins un dispositif de définition de cap (2), tel qu'un volant de conduite, qui permet à un conducteur de définir un angle de braquage (Al) du système de direction assistée, un mécanisme de direction (3) pourvu d'au moins un organe mobile (4), tel qu'une crémaillère, dont la position (P4) s'adapte de manière à correspondre à l'angle de braquage choisi, ainsi qu'au moins un moteur d'assistance (7) agencé pour pouvoir entraîner ledit mécanisme de direction (3), ledit système de direction assistée (1) comportant d'une part un premier module embarqué (8), dit « module d'assistance », qui contient un premier jeu de fonctions dites « lois d'assistance », qui permettent de générer, lorsque le système de direction assistée est affecté à la conduite d'un véhicule, des consignes de pilotage à destination du moteur d'assistance, afin de faire suivre audit véhicule une trajectoire qui est déterminée en fonction de la situation dudit véhicule par rapport à son environnement, et d'autre part un second module embarqué (13), dit « module de caractérisation », qui contient un second jeu de fonctions, dites « fonctions de caractérisation », distinctes des lois d'assistance, et qui permettent de mettre en œuvre, pendant une période où le système de direction assistée n'est pas affecté à la conduite d'un véhicule, et de manière automatique, un procédé de caractérisation destiné à déterminer empiriquement au moins une propriété dudit système de direction assistée, dite « propriété recherchée », ledit procédé de caractérisation comprenant une étape (a) d'activation automatique du moteur d'assistance (7) au cours de laquelle le second module embarqué (13) génère et applique automatiquement au moteur d'assistance (7), sans requérir d'action externe sur le dispositif de définition de cap (2), une consigne d'activation (T7, V7, P7) qui suit un ou plusieurs cycles dit « cycles d'exploration » (CY) préétablis, afin de permettre une étape (b) de mesure, selon laquelle on mesure, pendant le ou les cycles d'exploration ou à l'issue dudit ou desdits cycles d'exploration, au moins un paramètre physique, dit « paramètre indicateur » (P7_mes, T7_mes, P4_mes, T2_mes, V2_mes), qui est propre à la réponse que fournit le système de direction assistée (1) à l'activation automatique du moteur d'assistance (7) et qui est caractéristique de la propriété recherchée, puis une étape (c) d'analyse, au cours de laquelle on quantifie la propriété recherchée à partir de la ou des mesures du paramètre indicateur, lors de l'étape (a) d'activation automatique, on applique un cycle d'exploration en effort (CY_force) qui prend la forme d'un cycle d'exploration vibratoire (CY_sinus), selon lequel on excite le moteur d'assistance (7) au moyen d'une consigne de couple (T7) alternée périodique, de préférence sinusoïdale, dont on fait varier la fréquence (f7) sur plusieurs pas de fréquence dans une plage prédéterminée, de préférence comprise entre 0Hz et 200 Hz, afin de caractériser une réponse fréquentielle du système de direction assistée (1) aux vibrations, et plus particulièrement identifier, lorsqu'elles existent, une ou des fréquences de résonance et/ou une ou des fréquences de coupure, ainsi que, le cas échéant, une bande passante correspondante, caractérisé en ce qu'une amplitude, c'est-à-dire une valeur de pic, de la consigne de couple (T7), correspond à une valeur comprise entre 20 % et 50 % d'un couple maximal d'assistance que peut délivrer le moteur d'assistance.
4. Système de direction assistée selon la revendication 3, caractérisé en ce que le second module embarqué (13) regroupe une fonction de caractérisation vibratoire qui utilise un cycle d'exploration vibratoire (CY_sinus) selon lequel on excite le moteur d'assistance (7) au moyen d'une consigne de couple (T7) alternée périodique, de préférence sinusoïdale, dont on fait varier la fréquence (f7) sur plusieurs pas de fréquence dans une plage prédéterminée, et qui mesure, aux différents pas de fréquence, le couple (T2) et/ou le déplacement (P2) généré au niveau du volant de conduite en réponse à ladite excitation.
PCT/FR2018/053089 2017-12-07 2018-12-03 Utilisation d'un moteur d'assistance d'un système de direction assistée afin de générer des cycles de test selon un cycle d'exploitation vibratoire WO2019110905A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/770,726 US20210164869A1 (en) 2017-12-07 2018-12-03 Use of an assist motor of a power steering system to generate test cycles according to a vibration ascertaining cycle
CN201880088840.4A CN111684257A (zh) 2017-12-07 2018-12-03 使用动力转向系统的辅助电机以根据振动确定周期生成测试周期
DE112018006220.1T DE112018006220T5 (de) 2017-12-07 2018-12-03 Verwendung eines Unterstützungsmotors eines Servolenkungssystems zum Erzeugen von Testzyklen gemäß einem Schwingungserfassungszyklus
JP2020529763A JP2021505464A (ja) 2017-12-07 2018-12-03 振動の確認サイクルによるテストサイクルを生成するためのパワーステアリングシステムにおけるアシストモータの使用
BR112020011408-1A BR112020011408A2 (pt) 2017-12-07 2018-12-03 utilização de um motor de assistencia de um sistema de direção assistida de acordo com um ciclo de verificação de vibração

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761762 2017-12-07
FR1761762A FR3074897B1 (fr) 2017-12-07 2017-12-07 Utilisation d'un moteur d'assistance d'un systeme de direction assistee afin de generer des cycles de test selon un cycle d'exploitation vibratoire

Publications (1)

Publication Number Publication Date
WO2019110905A1 true WO2019110905A1 (fr) 2019-06-13

Family

ID=61003246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/053089 WO2019110905A1 (fr) 2017-12-07 2018-12-03 Utilisation d'un moteur d'assistance d'un système de direction assistée afin de générer des cycles de test selon un cycle d'exploitation vibratoire

Country Status (7)

Country Link
US (1) US20210164869A1 (fr)
JP (1) JP2021505464A (fr)
CN (1) CN111684257A (fr)
BR (1) BR112020011408A2 (fr)
DE (1) DE112018006220T5 (fr)
FR (1) FR3074897B1 (fr)
WO (1) WO2019110905A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115343075A (zh) * 2022-07-29 2022-11-15 中国第一汽车股份有限公司 一种用于动力学模型辨识的转向拉杆刚度测量装置以及测试方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074898B1 (fr) * 2017-12-07 2020-07-17 Jtekt Europe Utilisation d’un moteur d’assistance d’un systeme de direction assistee afin de generer des cycles de test selon un cycle d’exploitation en effort
US11623683B2 (en) * 2021-06-25 2023-04-11 GM Global Technology Operations LLC Vehicle power steering test system control
JP2023017224A (ja) * 2021-07-26 2023-02-07 トヨタ自動車株式会社 車両用空調装置
DE102022125613B3 (de) 2022-10-05 2023-10-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Schwingungsanalyse eines Lenksystems sowie Lenksystemprüfstand
DE102022125611B3 (de) 2022-10-05 2023-10-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Messgenauer Lenksystemprüfstand und dessen Verwendung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972524A2 (fr) * 2007-03-19 2008-09-24 JTEKT Corporation Appareil de test pour appareil de direction
EP2259041A1 (fr) * 2009-06-05 2010-12-08 Emmetec S.r.l. Dispositif universel pour tester des ensembles de direction assistée électrique
CN105182968A (zh) * 2015-09-24 2015-12-23 吉林大学 一种适用于汽车c-eps系统的硬件在环性能测试试验台

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972524A2 (fr) * 2007-03-19 2008-09-24 JTEKT Corporation Appareil de test pour appareil de direction
EP2259041A1 (fr) * 2009-06-05 2010-12-08 Emmetec S.r.l. Dispositif universel pour tester des ensembles de direction assistée électrique
CN105182968A (zh) * 2015-09-24 2015-12-23 吉林大学 一种适用于汽车c-eps系统的硬件在环性能测试试验台

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115343075A (zh) * 2022-07-29 2022-11-15 中国第一汽车股份有限公司 一种用于动力学模型辨识的转向拉杆刚度测量装置以及测试方法

Also Published As

Publication number Publication date
US20210164869A1 (en) 2021-06-03
FR3074897B1 (fr) 2020-08-28
BR112020011408A2 (pt) 2020-11-24
DE112018006220T5 (de) 2020-09-03
JP2021505464A (ja) 2021-02-18
FR3074897A1 (fr) 2019-06-14
CN111684257A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2019110905A1 (fr) Utilisation d'un moteur d'assistance d'un système de direction assistée afin de générer des cycles de test selon un cycle d'exploitation vibratoire
WO2019110902A1 (fr) Utilisation d'un moteur d'assistance d'un système de direction assistée afin de générer des cycles de test selon un cycle d'exploitation en effort
WO2019110903A1 (fr) Utilisation d'un moteur d'assistance d'un système de direction assistée afin de générer des cycles de test selon un cycle d'exploitation en vitesse
EP2018308B1 (fr) Systeme de direction assistee electrique de vehicule automobile
WO2019110904A1 (fr) Utilisation d'un moteur d'assistance d'un système de direction assistée afin de générer des cycles de test selon un cycle d'exploitation en position
EP2870042B1 (fr) Procédé de détection du sens de déplacement d'un véhicule automobile
CN112710327A (zh) 用于车辆传感器的无监督的自动对准的方法
EP3166839B1 (fr) Procédé d'estimation en temps réel de l'effort aux biellettes au sein d'un mécanisme de direction assistée
EP0283626A1 (fr) Procédé de détermination de la vitesse air d'un hélicoptère, système pour la mise en oeuvre de ce procédé de détermination et procédé d'étalonnage de ces procédé et système de détermination de la vitesse air
WO2010072917A1 (fr) Procede de determination d'un cap en direction du nord geographique au moyen d'une centrale inertielle
JP4415994B2 (ja) ヨー角速度推定装置
EP2694375B1 (fr) Dispositif et procede de determination d'attitude d'un satellite, et satellite embarquant un tel dispositif
FR2953588A1 (fr) Procede de determination d'un cap par rotation d'un dispositif inertiel
FR3031959A1 (fr) Procede et dispositif de conjugaison d'organes de pilotage
EP3333539A1 (fr) Dispositif électronique de pilotage d'un drone, drone, procédé de pilotage et programme d'ordinateur associés
CN111572631A (zh) 转向抖动控制
EP1312998A1 (fr) Procédé et dispositif pour déterminer en temps réel le comportement d'un mobile, en particulier d'un aéronef
EP4104024B1 (fr) Mesure de fonction de transferts dans un système mécatronique
WO2017102362A1 (fr) Procédé de surveillance d'un système d'actionnement électromécanique
US20220060641A1 (en) Vehicle sensor operation
EP0502770B1 (fr) Procédé et système d'harmonisation autonome d'équipements à bord d'un véhicule, utilisant des moyens de mesure du champ de gravité terrestre
US10850766B2 (en) Portable device data calibration
FR3107605A1 (fr) Procede de pilotage du robot de conduite utilise pour les essais d’homologation de vehicules automobiles
FR2938910A1 (fr) Dispositif et procede de determination de la situation d'un objet
FR3015543A1 (fr) Dispositif de commande d'ouverture et de fermeture d'une porte d'aeronef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18833911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529763

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020011408

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020011408

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200605

122 Ep: pct application non-entry in european phase

Ref document number: 18833911

Country of ref document: EP

Kind code of ref document: A1