WO2019110889A1 - Improved device for clamping heat shields for rocket engine diverging nozzle section - Google Patents

Improved device for clamping heat shields for rocket engine diverging nozzle section Download PDF

Info

Publication number
WO2019110889A1
WO2019110889A1 PCT/FR2018/052974 FR2018052974W WO2019110889A1 WO 2019110889 A1 WO2019110889 A1 WO 2019110889A1 FR 2018052974 W FR2018052974 W FR 2018052974W WO 2019110889 A1 WO2019110889 A1 WO 2019110889A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
divergent
circumference
wall
nozzle section
Prior art date
Application number
PCT/FR2018/052974
Other languages
French (fr)
Inventor
Alain Pyre
Original Assignee
Arianegroup Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arianegroup Sas filed Critical Arianegroup Sas
Publication of WO2019110889A1 publication Critical patent/WO2019110889A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/97Rocket nozzles
    • F02K9/974Nozzle- linings; Ablative coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/224Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • F05D2300/50212Expansivity dissimilar

Definitions

  • the invention relates to the field of space launchers, and more particularly divergents equipping the engines of space launchers.
  • the divergents are subjected to extremely large heat fluxes that may cause them to reach particularly high temperatures, and, as a result, may compromise their mechanical integrity, so it is essential to provide protection devices. thermal to protect the divergents.
  • thermal protection devices are generally arranged around the diverging, and pressed against an outer face thereof with the aid of holding cables. To provide sufficient thermal protection, it is necessary that the thermal protections remain sufficiently tight against the divergent throughout the flight. Consequently, the cables allowing the tightening of the thermal protections must remain sufficiently tight, regardless of the thermal stresses existing during the flight. However, the cables must not be excessively tight in order not to damage the thermal protections and / or to unacceptably force the diverging ones. Moreover, these cables must be made of a material resistant to strong thermal stresses in flight, in order to maintain their mechanical properties, and thus ensuring sufficient tightening of the thermal protections throughout the flight. However, the coefficients of thermal expansion of the cables and the divergent are different from each other.
  • the temperatures of the cables and the divergent can vary greatly during the flight phase.
  • the divergent heats faster than the cables, which has the consequence of increasing the tightening of the cables.
  • the cables may be hotter than the diverging.
  • the coefficient of thermal expansion of the cables is very low compared to that of the divergent, the expansion of the divergent remains greater than that of the cables, so that the tightening of the latter also increases. Therefore, in case of high thermal gradients, when the expansion of the divergent is greater than that of the cable or cables, they are likely to break. There is therefore a need for a device to ensure a sufficient clamping of the thermal protections, whatever the thermal stresses.
  • the present disclosure relates to a set for rocket engine divergent, comprising:
  • a diverging rocket motor having an outer wall and an axis of revolution
  • thermal protection blocks made of thermally insulating material, configured to be arranged against the outer wall
  • At least one cable having two ends and configured to be wound around a circumference of the divergent so as to press the plurality of thermal protection blocks against the outer wall, the cable having a coefficient of thermal expansion less than that of the divergent, according to its circumference,
  • a clamping device configured to maintain the two ends of said at least one cable vis-à-vis
  • the assembly further comprises at least one cable reserve, through which the cable can slide, and configured to constrain a portion of the cable to follow a predetermined path having a given length; the cable reserve being made such that, as the temperature increases, said length also increases, but to a lesser extent than the length of the divergent circumference.
  • the thermal protection blocks may consist of different types of thermally insulating materials. They may be distributed on the outer wall of the divergent, being arranged against each other, so as to cover at least part of the surface of the outer wall, preferably the entire surface. To optimize their thermal protection function, and withstand dynamic stresses during flight, these blocks must be pressed against the outer wall of the diverging. This is possible thanks to at least a cable wrapped around the outer wall of the divergent, so as to perform at least one turn of the circumference thereof. In this way, the thermal protection blocks are sandwiched between the outer wall of the divergent and the at least one cable.
  • the cable may have a circular section or any other shape.
  • the cable must be sufficiently tight. This is possible thanks to the clamping device.
  • the cable is wrapped around the divergent so that its two ends are vis-à-vis, close to each other, after being wound in one or more turns around the diverging. Both ends of the cable are then held in this position by the clamping device.
  • the clamping device can be any system allowing the locking of the two ends of the cable and the maintenance of the clamping of the cable around the diverging, for example a system comprising plates taking the ends of the cable sandwich, or other.
  • cable reserve comprises a device made so that the cable follows a predetermined path within the reserve.
  • the cable follows a predetermined path within the reserve.
  • it does not follow the circumference of the divergent rectilinearly, but can be wound or folded so as to form back and forth on both sides of the reserve of cable.
  • the length of the cable on this predetermined path within the cable pool is therefore greater than the length that the cable would have had in the absence of a reserve of cable, if it had simply been wound around the divergent over its entire circumference .
  • the length of the cable due to the presence of the cable pool, allows it to expand sufficiently to accompany the expansion of the divergent. This is made possible by the fact that the cable is free to slide along its predetermined path inside the cable pool, and can therefore accompany the increase in the circumference of the divergent under the effect of thermal stresses.
  • the cable has a coefficient of thermal expansion less than the coefficient of thermal expansion of the divergent. Therefore, when the temperature increases in the absence of a reserve of cable, the cable is very tight around the diverging.
  • the cable in the presence of the reserve of cable, the cable can slide the along its predetermined path when the divergent expands under the effect of an increase in temperature. This allows a balancing of the tensions between the divergent and the reserve; thus the final tension is less than if there was no reserve of cable.
  • the presence of the cable reserve therefore ensures a sufficient cable clamping around the divergent subjected to strong thermal fluctuations, limiting or avoiding the risk of rupture of the cable.
  • the predetermined path comprises at least one round trip or a loop between two supports of the cable reserve; and the average coefficient of thermal expansion of the measured cable reserve from one support to the other is less than the coefficient of thermal expansion of the divergent circumference.
  • the supports may be studs machined in the cable pool, around which the cable can pass along its predetermined path, and against which it can bear when it is stretched.
  • the cable bypasses a first support in one direction, then bypasses a second support in an opposite direction, thus making a round trip.
  • the coefficient of thermal expansion of the cable portion disposed between two supports is less than the coefficient of thermal expansion of the divergent circumference.
  • the supports have a shape inscribed in a cylinder and are configured for the cable to pass against them along its predetermined path.
  • the cable reserve may have the form of a plate, and the supports may be cylinders protruding from the plate.
  • the cable pool may comprise two plates separated from each other by the cylindrical supports, the cable passing against these supports between the two plates.
  • one end of the cylindrical supports is fixed to the first plate, and the opposite end cylindrical supports is fixed to the second plate.
  • the cable passes between the two plates along its predetermined path bypassing the cylindrical supports. The presence of these two plates prevents the cable from getting out of the cable pool, by sliding along a cylindrical support for example.
  • the cable pool has two cylindrical supports, they can each be arranged at a distal end of the plate.
  • the cable bypasses a first support disposed at one end of the plate, then bypasses a second support disposed at the opposite end, bearing against these supports, and thus achieving a round trip.
  • the cylindrical supports have the advantage of being easy to achieve, and allow the cable to slide against them when it expands, without deteriorating.
  • the cable is made of carbon fiber.
  • This material has the advantage of maintaining a high stiffness at high temperatures, for example 1700 K.
  • the cable pool is made of carbon.
  • the cable pool that is to say the plate or plates that it has and the cylindrical supports, are made of carbon.
  • the use of carbon allows the cable pool to withstand high thermal stresses in flight. Moreover, the cable pool can thus expand in the same proportions as the carbon fiber cable.
  • FIGS. 1A and 1B schematically represent an assembly for rocket engine divergent according to the present invention
  • Figure 2 shows schematically a cable and a cable reserve of the assembly of Figure 1;
  • Figure 3 shows schematically a cable reserve of the assembly of Figure 1;
  • Figure IA shows an assembly comprising a rocket engine divergent 1 having an outer wall 2, a set of blocks thermal protectors 3 distributed on the outer wall 2 of the divergent, and a set of cables 10 wound around the divergent, and for pressing the thermal protection blocks 3 against the outer wall 2 of the diverging.
  • the cables 10 are circular section cables, whose diameter d is between 3 and 10 mm.
  • Figure IB shows a partial section of the assembly of Figure IA, along the IA-IA section plane.
  • the assembly comprises several successive rows of blocks 3 distributed in a vertical direction of the divergent 1, against its outer wall 2.
  • Each row of blocks 3 is held and pressed against the outer wall 2 by At least one cable 10.
  • two cables are arranged around each row of blocks 3, but more cables can be provided.
  • Each thermal protection block 3 has an inner face 31, configured to be disposed against the outer wall 2 of the diverging portion 1, and an outer face 32, opposite to the inner face 31.
  • the thermal protection blocks are made of thermally insulating material.
  • the blocks 3 comprise an expanded cork type material, which also gives it satisfactory properties of lightness, flexibility and resistance to shock and moisture.
  • the divergent 1 may further comprise a plurality of stiffeners 4 which extend circumferentially on the outer wall 2; for example and without limitation, the stiffeners 4 extend substantially parallel to each other, regularly.
  • Each thermal protection block 3 is configured to be pressed against the outer wall 2, despite the presence of the stiffeners 4.
  • the blocks 3 comprise for example notches 33, in which the stiffeners 4 can be inserted.
  • the thermal protection blocks 3 comprise, on their outer face 32, grooves 34 extending in a circumferential direction, in which the cables 10 may housing.
  • the grooves 34 may extend in a plane perpendicular to the axis of revolution of the divergent, or inclined relative to this axis, so that the cables 10 are arranged helically around the divergent, when they are housed in the grooves 34.
  • the cables can thus press the blocks 3, and tighten the latter against the outer wall 2, without risking to move along the vertical direction of the divergent 1 during flight.
  • FIG. 2 illustrates a single cable 10 with a clamping device 20, for clamping the cable 10 around the diverging 1, and two cable reserves 40.
  • the cable 10 has a first end 10a and a second end 10b.
  • the clamping device comprises a first locking element 20a and a second locking element 20b.
  • the first locking element 20a makes it possible to block the first end 10a of the cable 10
  • the second locking element 20b makes it possible to block the second end 10b of the cable 10.
  • the clamping device 20 may be any system for locking the two ends of the cable 10a and 10b and maintaining the clamping of the cable around the diverging, for example a tensioner, or other.
  • the first and second locking members 20a, 20b can be fixed and tightened to each other by a screw / nut system, for example, to tension the cable 10 around the diverging portion 1.
  • Figure 2 illustrates two cable reserves 40. Nevertheless, different numbers are possible: a reserve of cable, three or more.
  • FIG. 3 schematically represents a reserve of cable 40 in a view perpendicular to the axis of revolution of divergent 1.
  • the left-right direction on the sheet of FIG. 3 corresponds to the circumferential direction of divergent 1
  • the up-down direction on the sheet of FIG. 3 corresponds to the direction of the axis of revolution of the divergent 1. Therefore, in the rest of the description, the lower and upper ends of the cable reserve 40, and the part central disposed between the lower and upper ends, are considered along the axis of revolution of the divergent 1.
  • the cable pool 40 comprises a plate 41 and a plurality of pads 42 projecting from the plate 41.
  • the cable pool may comprise two plates 41 separated from each other by the pads 42 , the plate assembly 41 and pads 42 forming a single block.
  • one end of the pads 42 is fixed to the first plate 41, and the opposite end of the pads 42 is fixed to the second plate 41.
  • the pads 42 are sandwiched between the two plates 41 , the cable 10 thus passing between these two plates 4L or the plates 41 may be carbon, and the pads 42 may be cylindrical.
  • a stud 42 is disposed in the central portion of the cable reservoir 40 at each end, in the circumferential direction of the diverging portion 1, of the cable reserve 40.
  • L e denotes the distance between these pads 42 in the direction
  • three pads 42 are arranged at the lower end of the cable pool 40, and three pads 42 are arranged at the upper end of the cable pool 40.
  • a distance H, along the axis of revolution of the divergent 1, between a stud 42 disposed at the lower end of the cable reserve 40, and a stud 42 disposed at the upper end of the cable reserve 40, is included between 40 and 70 mm, preferably between 50 and 65 mm, more preferably between 58 and 62 mm.
  • the predetermined path of the cable 10 in the cable pool 40 is determined by the pads 42.
  • the cable 10 passes along each pad 42 bypassing and bearing against them. More specifically, the cable 10 first bypasses a stud 42 disposed in the central portion of the cable reserve 40, then back and forth between the lower end and the upper end of the cable reserve 40, successively bypassing the studs on each of these ends.
  • the cable pool 40 is configured such that the cable travels three times back and forth. More generally, the number N of round trips is optimized so that, thanks to the total length of the cable 10, the increase of the tension of the cable 10 remains moderate, which makes it possible to avoid excessive tightening of the cable. cable 10 in case of large temperature increases.
  • the length of the cable 10, due to the presence of the cable reserve 40, and the number N of back and forth, allows it to expand sufficiently to accompany the expansion of the divergent 1. This is made possible by the fact that the cable 10 is free to slide along the pads 42 inside the cable pool 40, and can therefore accompany the increase in the circumference of the divergent under the effect of thermal stresses.
  • the minimum number N of round trips and the distance H between the ends of the reserve must be calculated according to the expansion coefficients of the divergent, the cable and the cable reserve, the temperatures reached in the divergent and in the cable pool, the circumference of the divergent, and also depending on the voltage or the maximum elongation (e) considered admissible for the cable 10 when the latter expands with temperature.
  • e maximum elongation
  • an elongation of the order of 1% of the cable, relative to its initial length at ambient temperature may cause the cable to break.
  • a margin of 10% with respect to the elongation at break of the cable 10 can be fixed. It is therefore necessary to determine the minimum minimum number N of round trips, and the distance H between the ends of the reserve, to maintain a lengthening of the cable less than 0.90%, depending on the above parameters.
  • a first case corresponds to a case in which the divergent has reached an equilibrium temperature in operation (approximately 1000 K) but in which the thermal protection blocks 3 and the cables 10 have not yet heated.
  • the cable 10 is stretched by the divergent 1 with a deformation greater than its deformation rupture, which can cause the rupture thereof.
  • a second case corresponds to a subsequent situation in which the heat flow also strongly heats (at 1500 K for example) the thermal protection blocks 3 and the cable 10.

Abstract

Assembly for a rocket engine diverging nozzle section, comprising a rocket engine diverging nozzle section having an outer wall and an axis of revolution, a plurality of heat shield blocks which are made of a thermally insulating material and are designed to be placed against the outer wall, at least one cable (10) that has two ends (10a, 10b) and is designed to be wound about a circumference of the diverging nozzle section so as to press the plurality of heat shield blocks against the outer wall, the cable (10) having a coefficient of thermal expansion lower than that of the diverging nozzle section along its circumference, a clamping device (20) designed to keep the two ends (10a, 10b) of said at least one cable (10) face to face; the assembly further comprising at least one cable payout unit (40) through which the cable (10) can slide and which is designed to urge a portion of the cable (10) to follow a predetermined path having a certain length; the cable payout unit (40) being designed such that, when the temperature increases, said length also increases, but to a lesser extent than the length of the circumference of the diverging nozzle section.

Description

Dispositif amélioré de serrage de protections thermiques pour divergent de moteur fusée  Improved thermal protection clamping device for rocket motor divergent
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
[0001] L'invention se rapporte au domaine des lanceurs spatiaux, et plus particulièrement des divergents équipant les moteurs des lanceurs spatiaux.  The invention relates to the field of space launchers, and more particularly divergents equipping the engines of space launchers.
ETAT DE LA TECHNIQUE ANTERIEURE  STATE OF THE PRIOR ART
[0002] Les divergents se trouvent soumis à des flux thermiques extrêmement importants qui risquent de leur faire atteindre des températures particulièrement élevées, et, par suite, risquent de compromettre leur intégrité mécanique, de sorte qu'il est indispensable de prévoir des dispositifs de protection thermique pour protéger les divergents.  The divergents are subjected to extremely large heat fluxes that may cause them to reach particularly high temperatures, and, as a result, may compromise their mechanical integrity, so it is essential to provide protection devices. thermal to protect the divergents.
[0003] Ces dispositifs de protection thermique sont généralement disposés autour du divergent, et pressés contre une face externe de celui-ci à l'aide de câbles de maintien. Pour assurer une protection thermique suffisante, il est nécessaire que les protections thermiques restent suffisamment serrées contre le divergent tout au long du vol. Par conséquent, les câbles permettant ie serrage des protections thermiques doivent rester suffisamment tendus, quelles que soient les sollicitations thermiques existant au cours de vol. Les câbles ne doivent toutefois pas être excessivement tendus afin de ne pas endommager les protections thermiques et/ou solliciter de manière inacceptable le divergent. Par ailleurs, ces câbles doivent être en un matériau résistant aux fortes sollicitations thermiques en vol, afin de conserver leurs propriétés mécaniques, et donc assurant un serrage suffisant des protections thermiques pendant toute la durée du vol. Or, les coefficients de dilatation thermique des câbles et du divergent sont différents les uns des autres. De même, les températures des câbles et du divergent peuvent varier fortement durant la phase de vol. En début de vol par exemple, le divergent chauffe plus vite que les câbles, ce qui a pour conséquence d'augmenter le serrage des câbles. En cours de vol, les câbles peuvent être plus chauds que le divergent. Néanmoins, le coefficient de dilatation thermique des câbles étant très faible par rapport à celui du divergent, la dilatation du divergent reste plus importante que celle des câbles, de sorte que le serrage de ces derniers augmente également. Par conséquent, en cas de forts gradients thermiques, lorsque la dilatation du divergent est plus importante que celle du ou des câbles, ces derniers sont susceptibles de rompre. Il existe donc un besoin pour un dispositif permettant d'assurer un serrage suffisant des protections thermiques, quelles que soient les sollicitations thermiques. These thermal protection devices are generally arranged around the diverging, and pressed against an outer face thereof with the aid of holding cables. To provide sufficient thermal protection, it is necessary that the thermal protections remain sufficiently tight against the divergent throughout the flight. Consequently, the cables allowing the tightening of the thermal protections must remain sufficiently tight, regardless of the thermal stresses existing during the flight. However, the cables must not be excessively tight in order not to damage the thermal protections and / or to unacceptably force the diverging ones. Moreover, these cables must be made of a material resistant to strong thermal stresses in flight, in order to maintain their mechanical properties, and thus ensuring sufficient tightening of the thermal protections throughout the flight. However, the coefficients of thermal expansion of the cables and the divergent are different from each other. Similarly, the temperatures of the cables and the divergent can vary greatly during the flight phase. At the beginning of flight for example, the divergent heats faster than the cables, which has the consequence of increasing the tightening of the cables. During flight, the cables may be hotter than the diverging. Nevertheless, since the coefficient of thermal expansion of the cables is very low compared to that of the divergent, the expansion of the divergent remains greater than that of the cables, so that the tightening of the latter also increases. Therefore, in case of high thermal gradients, when the expansion of the divergent is greater than that of the cable or cables, they are likely to break. There is therefore a need for a device to ensure a sufficient clamping of the thermal protections, whatever the thermal stresses.
PRESENTATION DE L’INVENTION  PRESENTATION OF THE INVENTION
[0004] Le présent exposé concerne un ensemble pour divergent de moteur fusée, comportant :  The present disclosure relates to a set for rocket engine divergent, comprising:
- un divergent de moteur de fusée présentant une paroi extérieure et un axe de révolution,  a diverging rocket motor having an outer wall and an axis of revolution,
- une pluralité de blocs de protections thermiques en matériau thermiquement isolant, configurés pour être disposés contre la paroi extérieure,  a plurality of thermal protection blocks made of thermally insulating material, configured to be arranged against the outer wall,
- au moins un câble comportant deux extrémités et configuré pour être enroulé autour d'une circonférence du divergent de manière à plaquer la pluralité de blocs de protections thermiques contre la paroi extérieure, le câble ayant un coefficient de dilatation thermique inférieur à celui du divergent, suivant sa circonférence,  at least one cable having two ends and configured to be wound around a circumference of the divergent so as to press the plurality of thermal protection blocks against the outer wall, the cable having a coefficient of thermal expansion less than that of the divergent, according to its circumference,
- un dispositif de serrage configuré pour maintenir les deux extrémités dudit au moins un câble en vis-à-vis ;  - A clamping device configured to maintain the two ends of said at least one cable vis-à-vis;
l'ensemble comporte en outre au moins une réserve de câble, à travers laquelle le câble peut passer en coulissant, et configurée pour contraindre une portion du câble à suivre un trajet prédéterminé présentant une longueur donnée ; la réserve de câble étant réalisée de telle sorte que, lorsque la température augmente, ladite longueur augmente également, mais dans une moindre proportion que la longueur de la circonférence du divergent.  the assembly further comprises at least one cable reserve, through which the cable can slide, and configured to constrain a portion of the cable to follow a predetermined path having a given length; the cable reserve being made such that, as the temperature increases, said length also increases, but to a lesser extent than the length of the divergent circumference.
[0005] Les blocs de protection thermique peuvent être constitués de différents types de matériaux thermiquement isolants. Ils peuvent être répartis sur la paroi extérieure du divergent, en étant disposés les uns contre les autres, de sorte à recouvrir au moins en partie la surface de la paroi extérieure, de préférence la totalité de cette surface. Pour optimiser leur fonction de protection thermique, et résister aux sollicitations dynamiques en cours de vol, ces blocs doivent être plaqués contre la paroi extérieure du divergent. Ceci est possible grâce à au moins un câble enroulé autour de la paroi extérieure du divergent, de manière à effectuer au moins un tour de la circonférence de celui-ci. De cette manière, les blocs de protection thermique sont pris en sandwich entre la paroi extérieure du divergent et le au moins un câble. Le câble peut avoir une section circulaire ou toute autre forme. The thermal protection blocks may consist of different types of thermally insulating materials. They may be distributed on the outer wall of the divergent, being arranged against each other, so as to cover at least part of the surface of the outer wall, preferably the entire surface. To optimize their thermal protection function, and withstand dynamic stresses during flight, these blocks must be pressed against the outer wall of the diverging. This is possible thanks to at least a cable wrapped around the outer wall of the divergent, so as to perform at least one turn of the circumference thereof. In this way, the thermal protection blocks are sandwiched between the outer wall of the divergent and the at least one cable. The cable may have a circular section or any other shape.
[0006] Pour assurer le serrage des blocs de protection thermique contre la paroi extérieure du divergent, le câble doit être suffisamment tendu. Ceci est possible grâce au dispositif de serrage. Le câble est enroulé autour du divergent de sorte que ses deux extrémités soient en vis-à-vis, à proximité l'une de l'autre, après avoir été enroulée en faisant un ou plusieurs tours autour du divergent. Les deux extrémités du câble sont alors maintenues dans cette position par le dispositif de serrage. Le dispositif de serrage peut être tout système permettant le blocage des deux extrémités du câble et le maintien du serrage du câble autour du divergent, par exemple un système comportant des plaques prenant les extrémités du câble en sandwich, ou autre.  To ensure the clamping of the thermal protection blocks against the outer wall of the diverging, the cable must be sufficiently tight. This is possible thanks to the clamping device. The cable is wrapped around the divergent so that its two ends are vis-à-vis, close to each other, after being wound in one or more turns around the diverging. Both ends of the cable are then held in this position by the clamping device. The clamping device can be any system allowing the locking of the two ends of the cable and the maintenance of the clamping of the cable around the diverging, for example a system comprising plates taking the ends of the cable sandwich, or other.
[0007] Par réserve de câble, on comprend un dispositif réalisé de telle sorte que le câble suit un trajet prédéterminé au sein de la réserve. En d'autres termes, au sein de la réserve de câble, celui-ci ne suit pas la circonférence du divergent de manière rectiligne, mais peut être enroulé ou plié de telle sorte à former de va et viens de part et d'autre de la réserve de câble. La longueur du câble sur ce trajet prédéterminé au sein de la réserve de câble est par conséquent supérieure à la longueur que le câble aurait eue en l'absence de réserve de câble, s'il avait été simplement enroulé autour du divergent sur toute sa circonférence.  By cable reserve, it comprises a device made so that the cable follows a predetermined path within the reserve. In other words, within the cable pool, it does not follow the circumference of the divergent rectilinearly, but can be wound or folded so as to form back and forth on both sides of the reserve of cable. The length of the cable on this predetermined path within the cable pool is therefore greater than the length that the cable would have had in the absence of a reserve of cable, if it had simply been wound around the divergent over its entire circumference .
[0008] La longueur du câble, du fait de la présence de la réserve de câble, permet à celui-ci de se dilater suffisamment pour accompagner la dilatation du divergent. Ceci est rendu possible par le fait que le câble est libre de coulisser le long de son trajet prédéterminé à l'intérieur de la réserve de câble, et peut donc accompagner l'augmentation de la circonférence du divergent sous l'effet des sollicitations thermiques. Plus précisément, le câble a un coefficient de dilatation thermique inférieur au coefficient de dilatation thermique du divergent. Par conséquent, quand la température augmente en l'absence de réserve de câble, le câble se trouve très serré autour du divergent. En revanche, en présence de la réserve de câble, le câble peut coulisser le long de son trajet prédéterminé lorsque le divergent se dilate sous l'effet d'une augmentation de température. Cela permet un équilibrage des tensions entre le divergent et la réserve ; ainsi la tension finale est moindre que s'il n'y avait pas de réserve de câble. The length of the cable, due to the presence of the cable pool, allows it to expand sufficiently to accompany the expansion of the divergent. This is made possible by the fact that the cable is free to slide along its predetermined path inside the cable pool, and can therefore accompany the increase in the circumference of the divergent under the effect of thermal stresses. Specifically, the cable has a coefficient of thermal expansion less than the coefficient of thermal expansion of the divergent. Therefore, when the temperature increases in the absence of a reserve of cable, the cable is very tight around the diverging. On the other hand, in the presence of the reserve of cable, the cable can slide the along its predetermined path when the divergent expands under the effect of an increase in temperature. This allows a balancing of the tensions between the divergent and the reserve; thus the final tension is less than if there was no reserve of cable.
[0009] La présence de la réserve de câble permet donc d'assurer un serrage du câble suffisant autour du divergent soumis à de fortes fluctuations thermiques, en limitant ou en évitant le risque de rupture du câble.  The presence of the cable reserve therefore ensures a sufficient cable clamping around the divergent subjected to strong thermal fluctuations, limiting or avoiding the risk of rupture of the cable.
[0010] Dans certains modes de réalisation, le trajet prédéterminé comporte au moins un aller-retour ou une boucle entre deux appuis de la réserve de câble ; et le coefficient de dilatation thermique moyen de la réserve de câble mesuré d'un appui à l'autre est inférieur au coefficient de dilatation thermique de la circonférence du divergent.  In certain embodiments, the predetermined path comprises at least one round trip or a loop between two supports of the cable reserve; and the average coefficient of thermal expansion of the measured cable reserve from one support to the other is less than the coefficient of thermal expansion of the divergent circumference.
[0011] Les appuis peuvent être des plots usinés dans la réserve de câble, autour desquels le câble peut passer le long de son trajet prédéterminé, et contre lesquels il peut prendre appui lorsque celui- ci est tendu. Ainsi, le long de son trajet prédéterminé, le câble contourne un premier appui dans un sens, puis contourne un deuxième appui dans un sens opposé, effectuant ainsi un aller-retour. Le coefficient de dilatation thermique de la portion de câble disposée entre deux appuis est inférieur au coefficient de dilatation thermique de la circonférence du divergent. Ainsi, le nombre d'aller-retours du câble dans la réserve de câble peut être déterminé de manière à obtenir un serrage optimal du câble autour du divergent permettant d'assurer un serrage suffisant autour de celui-ci en cas de fortes augmentations de température, tout en limitant ou en évitant la détérioration des protections thermiques et du divergent.  The supports may be studs machined in the cable pool, around which the cable can pass along its predetermined path, and against which it can bear when it is stretched. Thus, along its predetermined path, the cable bypasses a first support in one direction, then bypasses a second support in an opposite direction, thus making a round trip. The coefficient of thermal expansion of the cable portion disposed between two supports is less than the coefficient of thermal expansion of the divergent circumference. Thus, the number of round trips of the cable in the cable pool can be determined in such a way as to obtain an optimum tightening of the cable around the divergent, making it possible to ensure sufficient clamping around it in the event of large temperature increases. , while limiting or avoiding the deterioration of the thermal protections and the divergent.
[0012] Dans certains modes de réalisation, les appuis ont une forme inscrite dans un cylindre et sont configurés pour que le câble passe contre ceux-ci le long de son trajet prédéterminé.  In some embodiments, the supports have a shape inscribed in a cylinder and are configured for the cable to pass against them along its predetermined path.
[0013] La réserve de câble peut avoir la forme d'une plaque, et les appuis peuvent être des cylindres faisant saillie depuis la plaque. De manière alternative, la réserve de câble peut comporter deux plaques séparées l'une de l'autre par les appuis cylindriques, le câble passant contre ces appuis entre les deux plaques. Dans ce cas, une extrémité des appuis cylindriques est fixée à la première plaque, et l'extrémité opposée des appuis cylindriques est fixée à la deuxième plaque. Selon cette alternative, le câble passe entre les deux plaques le long de son trajet prédéterminé en contournant les appuis cylindriques. La présence de ces deux plaques permet d'empêcher le câble de s'extraire de la réserve de câble, en glissant le long d'un appui cylindrique par exemple. Lorsque la réserve de câble comporte deux appuis cylindriques, ces derniers peuvent être disposés chacun à une extrémité distale de la plaque. Ainsi, le long de son trajet prédéterminé, le câble contourne un premier appui disposé à une extrémité de la plaque, puis contourne un deuxième appui disposé à l'extrémité opposée, en prenant appui contre ces appuis, et réalisant ainsi un aller-retour. Les appuis cylindriques présentent l'avantage d'être facile à réaliser, et permettent au câble de coulisser contre ceux-ci lorsqu'il se dilate, sans se détériorer. The cable reserve may have the form of a plate, and the supports may be cylinders protruding from the plate. Alternatively, the cable pool may comprise two plates separated from each other by the cylindrical supports, the cable passing against these supports between the two plates. In this case, one end of the cylindrical supports is fixed to the first plate, and the opposite end cylindrical supports is fixed to the second plate. According to this alternative, the cable passes between the two plates along its predetermined path bypassing the cylindrical supports. The presence of these two plates prevents the cable from getting out of the cable pool, by sliding along a cylindrical support for example. When the cable pool has two cylindrical supports, they can each be arranged at a distal end of the plate. Thus, along its predetermined path, the cable bypasses a first support disposed at one end of the plate, then bypasses a second support disposed at the opposite end, bearing against these supports, and thus achieving a round trip. The cylindrical supports have the advantage of being easy to achieve, and allow the cable to slide against them when it expands, without deteriorating.
[0014] Dans certains modes de réalisation, le câble est en fibres de carbone.  In some embodiments, the cable is made of carbon fiber.
[0015] Ce matériau présente l'avantage de conserver une raideur importante à des températures élevées, par exemple 1700 K.  This material has the advantage of maintaining a high stiffness at high temperatures, for example 1700 K.
[0016] Dans certains modes de réalisation, la réserve de câble est en carbone.  In some embodiments, the cable pool is made of carbon.
[0017] La réserve de câble, c'est-à-dire la ou les plaques qu'elle comporte et les appuis cylindriques, sont en carbone. L'emploi de carbone permet à la réserve de câble de résister aux fortes sollicitations thermiques en vol. Par ailleurs, la réserve de câble peut ainsi se dilater dans les mêmes proportions que le câble en fibres de carbone.  The cable pool, that is to say the plate or plates that it has and the cylindrical supports, are made of carbon. The use of carbon allows the cable pool to withstand high thermal stresses in flight. Moreover, the cable pool can thus expand in the same proportions as the carbon fiber cable.
BREVE DESCRIPTION DES DESSINS  BRIEF DESCRIPTION OF THE DRAWINGS
[0018] L'invention et ses avantages seront mieux compris à la lecture de la description détaillée faite ci-après de différents modes de réalisation de l'invention donnés à titre d'exemples non limitatifs. Cette description fait référence aux pages de figures annexées, sur lesquelles :  The invention and its advantages will be better understood on reading the detailed description given below of various embodiments of the invention given by way of non-limiting examples. This description refers to the pages of annexed figures, in which:
- les figures IA et IB représentent schématiquement un ensemble pour divergent de moteur de fusée selon la présente invention ;  FIGS. 1A and 1B schematically represent an assembly for rocket engine divergent according to the present invention;
- la figure 2 représente schématiquement un câble et une réserve de câble de l'ensemble de la figure 1 ;  - Figure 2 shows schematically a cable and a cable reserve of the assembly of Figure 1;
- la figure 3 représente schématiquement une réserve de câble de l'ensemble de la figure 1;  - Figure 3 shows schematically a cable reserve of the assembly of Figure 1;
DESCRIPTION DETAILLEE D'EXEMPLES DE REALISATION [0019] Un ensemble pour divergent de moteur de fusée selon la présente invention va être décrit en référence aux figures 1 à 3. La figure IA représente un ensemble comportant un divergent de moteur de fusée 1 ayant une paroi extérieure 2, un ensemble de blocs de protections thermiques 3 répartis sur la paroi extérieure 2 du divergent, et un ensemble de câbles 10 enroulés autour du divergent, et permettant de plaquer les blocs de protections thermiques 3 contre la paroi extérieur 2 du divergent. Dans cet exemple non limitatif, les câbles 10 sont des câbles de section circulaire, dont le diamètre d est compris entre 3 et 10 mm. DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS An assembly for rocket engine divergent according to the present invention will be described with reference to Figures 1 to 3. Figure IA shows an assembly comprising a rocket engine divergent 1 having an outer wall 2, a set of blocks thermal protectors 3 distributed on the outer wall 2 of the divergent, and a set of cables 10 wound around the divergent, and for pressing the thermal protection blocks 3 against the outer wall 2 of the diverging. In this nonlimiting example, the cables 10 are circular section cables, whose diameter d is between 3 and 10 mm.
[0020] La figure IB représente une coupe partielle de l'ensemble de la figure IA, suivant le plan de coupe IA-IA. Tel que représenté sur les figures IA et IB, l'ensemble comporte plusieurs rangées successives de blocs 3 réparties suivant une direction verticale du divergent 1, contre sa paroi extérieure 2. Chaque rangée de blocs 3 est maintenue et plaquée contre la paroi extérieure 2 par au moins un câble 10. Dans l'exemple de la figure IA, deux câbles sont disposés autour de chaque rangée de blocs 3, mais davantage de câbles peuvent être prévus. Chaque bloc de protection thermique 3 présente une face intérieure 31, configurée pour être disposée contre la paroi extérieure 2 du divergent 1, et une face extérieure 32, opposée à la face intérieure 31. Les blocs de protections thermiques sont en matériau thermiquement isolant. Par exemple et de manière non limitative, les blocs 3 comportent un matériau du type liège expansé, qui lui confère en outre des propriétés satisfaisantes de légèreté, de souplesse et de résistance aux chocs et à l'humidité.  Figure IB shows a partial section of the assembly of Figure IA, along the IA-IA section plane. As represented in FIGS. 1A and 1B, the assembly comprises several successive rows of blocks 3 distributed in a vertical direction of the divergent 1, against its outer wall 2. Each row of blocks 3 is held and pressed against the outer wall 2 by At least one cable 10. In the example of FIG. 1A, two cables are arranged around each row of blocks 3, but more cables can be provided. Each thermal protection block 3 has an inner face 31, configured to be disposed against the outer wall 2 of the diverging portion 1, and an outer face 32, opposite to the inner face 31. The thermal protection blocks are made of thermally insulating material. For example and without limitation, the blocks 3 comprise an expanded cork type material, which also gives it satisfactory properties of lightness, flexibility and resistance to shock and moisture.
[0021] Le divergent 1 peut comporter en outre une pluralité de raidisseurs 4 qui s'étendent circonférentiellement sur la paroi extérieure 2 ; par exemple et de manière non limitative, les raidisseurs 4 s'étendent de manière sensiblement parallèle les uns aux autres, de manière régulière. Chaque bloc de protection thermique 3 est configuré pour pouvoir être plaqué contre la paroi extérieure 2, malgré la présence des raidisseurs 4. Les blocs 3 comportent par exemple des encoches 33, dans lesquelles les raidisseurs 4 peuvent s'insérer.  The divergent 1 may further comprise a plurality of stiffeners 4 which extend circumferentially on the outer wall 2; for example and without limitation, the stiffeners 4 extend substantially parallel to each other, regularly. Each thermal protection block 3 is configured to be pressed against the outer wall 2, despite the presence of the stiffeners 4. The blocks 3 comprise for example notches 33, in which the stiffeners 4 can be inserted.
[0022] En outre, les blocs de protections thermiques 3 comportent, sur leur face extérieure 32, des gorges 34 s'étendant selon une direction circonférentielle, dans lesquelles les câbles 10 peuvent se loger. Les gorges 34 peuvent s'étendre suivant un plan perpendiculaire à l'axe de révolution du divergent, ou encore de manière inclinée par rapport à cet axe, de sorte que les câbles 10 soient agencés de manière hélicoïdale autour du divergent, lorsqu'ils sont logés dans les gorges 34. Les câbles peuvent ainsi plaquer les blocs 3, et serrer ces derniers contre la paroi extérieure 2, sans risquer de se déplacer le long de la direction verticale du divergent 1 en cours de vol. In addition, the thermal protection blocks 3 comprise, on their outer face 32, grooves 34 extending in a circumferential direction, in which the cables 10 may housing. The grooves 34 may extend in a plane perpendicular to the axis of revolution of the divergent, or inclined relative to this axis, so that the cables 10 are arranged helically around the divergent, when they are housed in the grooves 34. The cables can thus press the blocks 3, and tighten the latter against the outer wall 2, without risking to move along the vertical direction of the divergent 1 during flight.
[0023] La figure 2 illustre un câble 10 seul avec un dispositif de serrage 20, permettant de serrer le câble 10 autour du divergent 1, et deux réserves de câble 40. Le câble 10 comporte une première extrémité 10a et une deuxième extrémité 10b. Le dispositif de serrage comporte un premier élément de blocage 20a et un deuxième élément de blocage 20b. Le premier élément de blocage 20a permet de bloquer la première extrémité 10a du câble 10, et le deuxième élément de blocage 20b permet de bloquer la deuxième extrémité 10b du câble 10. Ainsi, lorsque le câble 10 est tendu autour du divergent 1, de manière à plaquer et à serrer les blocs 3 contre la paroi extérieure 2, les extrémités 10a et 10b de le câble 10 restent bloqués par le dispositif de serrage 20. Le serrage des câbles 10 peut ainsi être maintenu au cours du vol. Le dispositif de serrage 20 peut être tous systèmes permettant le blocage des deux extrémités du câble 10a et 10b et le maintien du serrage du câble autour du divergent, par exemple un tendeur, ou autre. En outre, le premier et le deuxième élément de blocage 20a, 20b peuvent être fixés et serrés l'un à l'autre par un système de vis/écrous, par exemple, afin de tendre le câble 10 autour du divergent 1.  Figure 2 illustrates a single cable 10 with a clamping device 20, for clamping the cable 10 around the diverging 1, and two cable reserves 40. The cable 10 has a first end 10a and a second end 10b. The clamping device comprises a first locking element 20a and a second locking element 20b. The first locking element 20a makes it possible to block the first end 10a of the cable 10, and the second locking element 20b makes it possible to block the second end 10b of the cable 10. Thus, when the cable 10 is stretched around the divergent 1, so to press and tighten the blocks 3 against the outer wall 2, the ends 10a and 10b of the cable 10 remain blocked by the clamping device 20. The tightening of the cables 10 can thus be maintained during the flight. The clamping device 20 may be any system for locking the two ends of the cable 10a and 10b and maintaining the clamping of the cable around the diverging, for example a tensioner, or other. In addition, the first and second locking members 20a, 20b can be fixed and tightened to each other by a screw / nut system, for example, to tension the cable 10 around the diverging portion 1.
[0024] La figure 2 illustre deux réserves de câble 40. Néanmoins, des nombres différents sont possibles : une réserve de câble, trois ou plus.  Figure 2 illustrates two cable reserves 40. Nevertheless, different numbers are possible: a reserve of cable, three or more.
[0025] La figure 3 représente schématiquement une réserve de câble 40 dans une vue perpendiculaire à l'axe de révolution du divergent 1. Ainsi, la direction gauche-droite sur la feuille de la figure 3 correspond à la direction circonférentielle du divergent 1, et la direction bas-haut sur la feuille de la figure 3 correspond à la direction de l'axe de révolution du divergent 1. Par conséquent, dans la suite de l'exposé, les extrémités inférieures et supérieures de la réserve de câble 40, et la partie centrale disposée entre les extrémités inférieures et supérieures, sont considérées suivant l'axe de révolution du divergent 1. FIG. 3 schematically represents a reserve of cable 40 in a view perpendicular to the axis of revolution of divergent 1. Thus, the left-right direction on the sheet of FIG. 3 corresponds to the circumferential direction of divergent 1, and the up-down direction on the sheet of FIG. 3 corresponds to the direction of the axis of revolution of the divergent 1. Therefore, in the rest of the description, the lower and upper ends of the cable reserve 40, and the part central disposed between the lower and upper ends, are considered along the axis of revolution of the divergent 1.
[0026] La réserve de câble 40 comporte une plaque 41 et une pluralité de plots 42 faisant saillie depuis la plaque 41. De manière alternative, la réserve de câble peut comporter deux plaques 41 séparées l'une de l'autre par les plots 42, l'ensemble plaques 41 et plots 42 formant un seul et même bloc. Dans ce cas, une extrémité des plots 42 est fixée à la première plaque 41, et l'extrémité opposée des plots 42 est fixée à la deuxième plaque 41. Selon cette alternative, les plots 42 sont donc pris en sandwich entre les deux plaques 41, le câble 10 passant ainsi entre ces deux plaques 4L La ou les plaques 41 peuvent être en carbone, et les plots 42 peuvent être cylindriques. Lorsque le câble 10 est serré autour du divergent 1, le câble 10 suit la circonférence du divergent 1, comme illustré sur la figure IA, et passe dans la réserve de câble 40, elle-même disposée autour du divergent 1, contre la surface externe de celui-ci (plus exactement, contre la surface des blocs de protections thermiques 3). En passant dans la réserve de câble 40, le câble 10 suit un trajet prédéterminé. Dans cet exemple, un plot 42 est disposé dans la partie centrale de la réserve de câble 40 à chaque extrémité, suivant la direction circonférentielle du divergent 1, de la réserve de câble 40. Le désigne la distance entre ces plots 42 suivant la direction circonférentielle du divergent 1. En outre, dans cet exemple, trois plots 42 sont disposés à l'extrémité inférieure de la réserve de câble 40, et trois plots 42 sont disposés à l'extrémité supérieure de la réserve de câble 40. De préférence, une distance H, suivant l'axe de révolution du divergent 1, entre un plot 42 disposé à l'extrémité inférieure de la réserve de câble 40, et un plot 42 disposé à l'extrémité supérieure de la réserve de câble 40, est comprise entre 40 et 70 mm, de préférence entre 50 et 65 mm, de préférence encore entre 58 et 62 mm. The cable pool 40 comprises a plate 41 and a plurality of pads 42 projecting from the plate 41. Alternatively, the cable pool may comprise two plates 41 separated from each other by the pads 42 , the plate assembly 41 and pads 42 forming a single block. In this case, one end of the pads 42 is fixed to the first plate 41, and the opposite end of the pads 42 is fixed to the second plate 41. According to this alternative, the pads 42 are sandwiched between the two plates 41 , the cable 10 thus passing between these two plates 4L or the plates 41 may be carbon, and the pads 42 may be cylindrical. When the cable 10 is tightened around the diverging portion 1, the cable 10 follows the circumference of the divergent portion 1, as illustrated in FIG. 1A, and passes into the cable reserve 40, itself disposed around the divergent portion 1, against the outer surface of it (more exactly, against the surface of the blocks of thermal protections 3). By passing through the cable pool 40, the cable 10 follows a predetermined path. In this example, a stud 42 is disposed in the central portion of the cable reservoir 40 at each end, in the circumferential direction of the diverging portion 1, of the cable reserve 40. L e denotes the distance between these pads 42 in the direction In addition, in this example, three pads 42 are arranged at the lower end of the cable pool 40, and three pads 42 are arranged at the upper end of the cable pool 40. Preferably, a distance H, along the axis of revolution of the divergent 1, between a stud 42 disposed at the lower end of the cable reserve 40, and a stud 42 disposed at the upper end of the cable reserve 40, is included between 40 and 70 mm, preferably between 50 and 65 mm, more preferably between 58 and 62 mm.
[0027] Le trajet prédéterminé du câble 10 dans la réserve de câble 40 est donc déterminé par les plots 42. Le câble 10 passe le long de chaque plot 42 en contournant et en prenant appui contre ces derniers. Plus précisément, le câble 10 contourne tout d'abord un plot 42 disposé dans la partie centrale de la réserve de câble 40, puis effectue des allers- retours entre l'extrémité inférieure et l'extrémité supérieure de la réserve de câble 40, en contournant successivement les plots sur chacune de ces extrémités. Dans cet exemple, la réserve de câble 40 est configurée de telle sorte que le câble effectue trois allers-retours. Plus généralement, le nombre N d'allers-retours est optimisé de telle sorte que, grâce à la longueur totale importante du câble 10, l'augmentation de la tension du câble 10 reste modérée, ce qui permet d'éviter un serrage excessif du câble 10 en cas de fortes augmentations de température. La longueur du câble 10, du fait de la présence de la réserve de câble 40, et du nombre N d'allers-retours, permet à celui-ci de se dilater suffisamment pour accompagner la dilatation du divergent 1. Ceci est rendu possible par le fait que le câble 10 est libre de coulisser le long des plots 42 à l'intérieur de la réserve de câble 40, et peut donc accompagner l'augmentation de la circonférence du divergent sous l'effet des sollicitations thermiques. The predetermined path of the cable 10 in the cable pool 40 is determined by the pads 42. The cable 10 passes along each pad 42 bypassing and bearing against them. More specifically, the cable 10 first bypasses a stud 42 disposed in the central portion of the cable reserve 40, then back and forth between the lower end and the upper end of the cable reserve 40, successively bypassing the studs on each of these ends. In this example, the cable pool 40 is configured such that the cable travels three times back and forth. More generally, the number N of round trips is optimized so that, thanks to the total length of the cable 10, the increase of the tension of the cable 10 remains moderate, which makes it possible to avoid excessive tightening of the cable. cable 10 in case of large temperature increases. The length of the cable 10, due to the presence of the cable reserve 40, and the number N of back and forth, allows it to expand sufficiently to accompany the expansion of the divergent 1. This is made possible by the fact that the cable 10 is free to slide along the pads 42 inside the cable pool 40, and can therefore accompany the increase in the circumference of the divergent under the effect of thermal stresses.
[0028] Le nombre N minimal d'allers-retours et la distance H entre les extrémités de la réserve doivent être calculés en fonction des coefficients de dilatation du divergent, du câble et de la réserve de câble, des températures atteintes dans le divergent et dans la réserve de câble, de la circonférence du divergent, et également en fonction de la tension ou de l'allongement maximal(e) considérée comme admissible pour le câble 10 lorsque ce dernier se dilate avec la température. Dans le cas d'un câble en fibre de carbone par exemple, un allongement de l'ordre de 1% du câble, par rapport à sa longueur initiale à température ambiante, peut provoquer la rupture de celui-ci. Afin d'éviter une telle rupture, une marge de 10% par rapport à l'allongement à rupture du câble 10 peut être fixée. Il est donc nécessaire de déterminer le nombre minimal N minimal d'allers-retours, et la distance H entre les extrémités de la réserve, permettant de conserver un allongement du câble inférieur à 0,90 %, en fonction des paramètres ci-dessus.  The minimum number N of round trips and the distance H between the ends of the reserve must be calculated according to the expansion coefficients of the divergent, the cable and the cable reserve, the temperatures reached in the divergent and in the cable pool, the circumference of the divergent, and also depending on the voltage or the maximum elongation (e) considered admissible for the cable 10 when the latter expands with temperature. In the case of a carbon fiber cable, for example, an elongation of the order of 1% of the cable, relative to its initial length at ambient temperature, may cause the cable to break. In order to avoid such a break, a margin of 10% with respect to the elongation at break of the cable 10 can be fixed. It is therefore necessary to determine the minimum minimum number N of round trips, and the distance H between the ends of the reserve, to maintain a lengthening of the cable less than 0.90%, depending on the above parameters.
[0029] Différents cas de figure sont possibles. Un premier cas de figure correspond à un cas dans lequel le divergent a atteint une température d'équilibre en fonctionnement (environ 1000 K) mais dans lequel les blocs de protections thermiques 3 et les câble 10 n'ont pas encore chauffé. Dans ce cas, pour une distance H = 60 mm, le nombre optimal N d'allers-retours est N = 6. En effet, pour des nombres inférieurs, le câble 10 est étiré par le divergent 1 avec une déformation supérieure à sa déformation à rupture, pouvant provoquer la rupture de celui-ci. Cette valeur de N = 7 permet ainsi d'obtenir au moins 10% de marge par rapport à l'allongement à rupture du câble 10. Different cases are possible. A first case corresponds to a case in which the divergent has reached an equilibrium temperature in operation (approximately 1000 K) but in which the thermal protection blocks 3 and the cables 10 have not yet heated. In this case, for a distance H = 60 mm, the optimal number N of round trips is N = 6. In fact, for lower numbers, the cable 10 is stretched by the divergent 1 with a deformation greater than its deformation rupture, which can cause the rupture thereof. This value of N = 7 thus makes it possible to obtain at least 10% margin with respect to the elongation at break of the cable 10.
[0030] Un deuxième cas de figure correspond à une situation ultérieure dans laquelle le flux thermique chauffe également fortement (à 1500 K par exemple) les blocs de protections thermiques 3 et les câble 10. Dans ce cas, pour une distance H = 60 mm, le nombre N d'allers-retours peut être N = 4 ou plus, afin de conserver au moins 10% de marge par rapport à l'allongement à rupture du câble 10.  A second case corresponds to a subsequent situation in which the heat flow also strongly heats (at 1500 K for example) the thermal protection blocks 3 and the cable 10. In this case, for a distance H = 60 mm , the number N of round trips can be N = 4 or more, in order to keep at least 10% of the margin with respect to the elongation at break of the cable 10.
[0031] Bien que la présente invention ait été décrite en se référant à des exemples de réalisation spécifiques, il est évident que des modifications et des changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l’invention telle que définie par les revendications. En particulier, des caractéristiques individuelles des différents modes de réalisation illustrés/mentionnés peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif.  Although the present invention has been described with reference to specific embodiments, it is obvious that modifications and changes can be made to these examples without departing from the general scope of the invention as defined by the revendications. In particular, individual features of the various embodiments illustrated / mentioned can be combined in additional embodiments. Therefore, the description and drawings should be considered in an illustrative rather than restrictive sense.

Claims

REVENDICATIONS 1. Ensemble pour divergent de moteur fusée, comportant : 1. A set for rocket engine divergent, comprising:
- un divergent (1) de moteur de fusée présentant une paroi extérieure (2) et un axe de révolution,  a rocket engine divergent (1) having an outer wall (2) and an axis of revolution,
- une pluralité de blocs de protection thermique (3) en matériau thermiquement isolant, configurés pour être disposés contre la paroi extérieure (2),  a plurality of thermal protection blocks (3) made of thermally insulating material, configured to be arranged against the outer wall (2),
- au moins un câble (10) comportant deux extrémités (10a, 10b) et configuré pour être enroulé autour d'une circonférence du divergent (1) de manière à plaquer la pluralité de blocs de protections thermiques (3) contre la paroi extérieure (2), le câble (10) ayant un coefficient de dilatation thermique inférieur à celui du divergent (1), suivant sa circonférence,  at least one cable (10) having two ends (10a, 10b) and configured to be wound around a circumference of the divergent (1) so as to press the plurality of thermal protection blocks (3) against the outer wall ( 2), the cable (10) having a coefficient of thermal expansion smaller than that of the divergent (1), according to its circumference,
- un dispositif de serrage (20) configuré pour maintenir les deux extrémités (10a, 10b) dudit au moins un câble (10) en vis-à-vis ;  - a clamping device (20) configured to maintain the two ends (10a, 10b) of said at least one cable (10) vis-à-vis;
l'ensemble étant caractérisé en ce qu'il comporte en outre au moins une réserve de câble (40), à travers laquelle le câble (10) peut passer en coulissant, et configurée pour contraindre une portion du câble (10) à suivre un trajet prédéterminé présentant une certaine longueur ; la réserve de câble (40) étant réalisée de telle sorte que, lorsque la température augmente, ladite longueur augmente également, mais dans une moindre proportion que la longueur de la circonférence du divergent (1).  the assembly being characterized in that it further comprises at least one cable reserve (40), through which the cable (10) can slide, and configured to constrain a portion of the cable (10) to follow a predetermined path having a certain length; the cable reservoir (40) being constructed such that, as the temperature increases, said length also increases, but to a lesser extent than the length of the circumference of the divergent (1).
2. Ensemble selon la revendication 1, dans lequel le trajet prédéterminé comporte au moins un aller-retour ou une boucle entre deux appuis (42) de la réserve de câble (40) ; et le coefficient de dilatation thermique moyen de la réserve de câble (40) mesuré d'un appui (42) à l'autre est inférieur au coefficient de dilatation thermique de la circonférence du divergent (1). 2. The assembly of claim 1, wherein the predetermined path comprises at least one round trip or loop between two supports (42) of the cable pool (40); and the average coefficient of thermal expansion of the cable pool (40) measured from one support (42) to the other is less than the coefficient of thermal expansion of the circumference of the divergent (1).
3. Ensemble selon la revendication 2, dans lequel les appuis (42) ont une forme inscrite dans un cylindre et sont configurés pour que le câble (10) passe contre ceux-ci le long de son trajet prédéterminé. 3. The assembly of claim 2, wherein the supports (42) have a shape inscribed in a cylinder and are configured so that the cable (10) passes against them along its predetermined path.
4. Ensemble selon l'une quelconque des revendications 1 à 3, dans lequel le câble (10) est en fibres de carbone. 4. An assembly according to any one of claims 1 to 3, wherein the cable (10) is carbon fiber.
5. Ensemble selon l'une quelconque des revendications 1 à 4, dans lequel la réserve de câble (40) est en carbone. 5. An assembly according to any one of claims 1 to 4, wherein the cable pool (40) is carbon.
PCT/FR2018/052974 2017-12-06 2018-11-26 Improved device for clamping heat shields for rocket engine diverging nozzle section WO2019110889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761734 2017-12-06
FR1761734A FR3074540B1 (en) 2017-12-06 2017-12-06 IMPROVED THERMAL PROTECTION TIGHTENING DEVICE FOR A DIFFERENT MOTOR

Publications (1)

Publication Number Publication Date
WO2019110889A1 true WO2019110889A1 (en) 2019-06-13

Family

ID=62143246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/052974 WO2019110889A1 (en) 2017-12-06 2018-11-26 Improved device for clamping heat shields for rocket engine diverging nozzle section

Country Status (2)

Country Link
FR (1) FR3074540B1 (en)
WO (1) WO2019110889A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1533733A (en) * 1967-08-07 1968-07-19 Hitco High temperature bodies and their manufacturing process
US4344591A (en) * 1979-09-05 1982-08-17 The United States Of America Asrepresented By The Administrator Of The National Aeronautics And Space Administration Multiwall thermal protection system
US20100199583A1 (en) * 2009-02-09 2010-08-12 The Boeing Company Tile gap seal assembly and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1533733A (en) * 1967-08-07 1968-07-19 Hitco High temperature bodies and their manufacturing process
US4344591A (en) * 1979-09-05 1982-08-17 The United States Of America Asrepresented By The Administrator Of The National Aeronautics And Space Administration Multiwall thermal protection system
US20100199583A1 (en) * 2009-02-09 2010-08-12 The Boeing Company Tile gap seal assembly and method

Also Published As

Publication number Publication date
FR3074540A1 (en) 2019-06-07
FR3074540B1 (en) 2019-12-20

Similar Documents

Publication Publication Date Title
EP1950392B1 (en) Device for assembling two units, for example for a turbomachine stator
CA2650771C (en) Centering a part inside a shaft
EP2357061B1 (en) Method for pulling out a ring which is seated with an interference fit in a bore
FR3017163A1 (en) DEVICE FOR A NON-CAREED PROPELLER HAVING A VARIABLE SHIFT OF A TURBOMACHINE
FR2768271A1 (en) Permanent magnet electrical machine rotor, and construction method
EP2319764A1 (en) System of tie rods enabling shock-free holding and release of space appendages
CA2913861A1 (en) Device for fixing two parts together
EP1310717B1 (en) Clamping band
EP0898551B1 (en) System for temporarily blocking the relative displacement of two bodies, following at least a preset direction
WO2019110889A1 (en) Improved device for clamping heat shields for rocket engine diverging nozzle section
EP2827008A1 (en) Device for tightening a nut
EP1692428B1 (en) Support device for fire-detection system
FR2841813A1 (en) DEVICE FOR FASTENING A RIGID AND FRAGILE FIBER COMPRISING A MECHANICALLY DEFORMABLE SHEATH AND CAPABLE OF BEING SUBJECTED TO AT LEAST ONE MECHANICAL STRESS
WO2019110888A1 (en) Improved device for locking cables for clamping heat shields of diverging nozzle sections of spacecraft engines
FR2953264A1 (en) ADJUSTED LENGTH SPACERS FOR BEARINGS
EP2435686B1 (en) Part for attaching together the mobile portion of a deployable divergent nozzle of a propulsive unit and a mechanism for deploying said mobile portion
EP3117172B1 (en) Pipe supporting system
FR2980996A1 (en) METHOD FOR MAKING A MECHANICAL OPERATION IN A STRUCTURE COMPRISING TWO LAYERS OF DIFFERENT RIGIDITIES
FR2926613A1 (en) Blower disk for e.g. turbopropeller engine of airplane, has clamps at its external periphery, and bush authorizing pivotment of platform around rod of pin, where ends of bush is in support on head of pin and each clamp during tightening nut
FR2535823A1 (en) Holder collar for a pipe
FR2877994A1 (en) Fan shaft bearing support for e.g. aircraft engine, has tabs, each with low thickness area provided for breaking when applied load is greater than preset load value and resisting stress as long as applied load does not attain preset value
FR2998625A1 (en) Device for fastening glass mirror to support of telescope in observation satellite, has rings comprising compensation unit for compensating differential thermal expansion such that clamping force is kept constant over temperature range
FR2925625A1 (en) REVERSIBLE ASSEMBLY DEVICE
FR3004758A1 (en) DEVICE FOR MAINTAINING EXTENDED SHAPE ELEMENTS OF AN AIRCRAFT TURBOMACHINE
FR2841812A1 (en) Fibre optic cable clamp unit has metal jaws with internal surface clamping deformable sheath between tapered ends

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18827185

Country of ref document: EP

Kind code of ref document: A1