WO2019110858A1 - Method, system and computer program for measuring the posterior vertex diopter power of an astigmatism lens - Google Patents

Method, system and computer program for measuring the posterior vertex diopter power of an astigmatism lens Download PDF

Info

Publication number
WO2019110858A1
WO2019110858A1 PCT/ES2018/070774 ES2018070774W WO2019110858A1 WO 2019110858 A1 WO2019110858 A1 WO 2019110858A1 ES 2018070774 W ES2018070774 W ES 2018070774W WO 2019110858 A1 WO2019110858 A1 WO 2019110858A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
stokes
test
astigmatic
notation
Prior art date
Application number
PCT/ES2018/070774
Other languages
Spanish (es)
French (fr)
Inventor
Vicente Micó Serrano
Original Assignee
Universitat De València
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat De València filed Critical Universitat De València
Publication of WO2019110858A1 publication Critical patent/WO2019110858A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power

Definitions

  • the present invention relates generally, in a first aspect, to a method for measuring the posterior vertex diopter power of an astigmatic lens, comprising the use of a front-opener, and in particular to a method comprising the use of a modified front-o-meter. that incorporates a Stokes lens, and that allows the measurement to be done more quickly, simply and free of ambiguities.
  • a second aspect of the present invention concerns a system adapted to implement the method of the first aspect of the invention.
  • the present invention concerns a computer program adapted to automatically calculate the measurement of the posterior vertex diopter power of the astigmatic lens of the method of the first aspect of the invention.
  • the frontofocometer is an instrument that is essential in ophthalmic optics because it allows to measure the diopter power of the lenses, and thus control the prescriptions. Its basic function is to determine the posterior vertex power of a lens to determine the equivalent number of diopters. There are numerous books and manuals that describe both the components that comprise it and its scheme and operation.
  • Figure 1 shows the diagram of a manual frontofocómetro, which consists essentially of a bulb B that emits light that is condensed by one or several Fv, Fo lenses that finally ends up being focused on a T test of the frontofocometer , which in general is in the shape of a cross is usually composed of two pairs of 3 lines in perpendicular directions and a succession of points with circular geometry.
  • a system of collimating lens C sends the image of the test to infinity or, in other words, provides a beam of parallel or collimated illumination.
  • Said collimated beam leaves the frontofocometer to a small open space where the lens to be measured will be placed and, subsequently, falls back on an OB objective that focuses the light on a R-grid.
  • Said reticle serves, essentially, to reference and orient the directions of the test and to measure prismatic effects by decentering.
  • a OC ocular lens system sends the image back to infinity, leaving the collimated beam by the eyepiece of the device.
  • the observer emmetropic or compensated ametropic
  • looks through said OC eyepiece he observes a beam of light that comes from infinity, so the image of that beam is formed on his retina.
  • Said beam carries information of the test in cross T and of the reticle R, reason why both objects appear neatly focused in the retina of the observer. Additionally, there is a parallel system E, Eg, D, P that allows to introduce in the plane of the reticle R a small circular field with the scale of measurement that, in the previous conditions, will mark 0 diopters since there is no measuring lens.
  • the lens (s) L to be measured is positioned (n) / fixed (n) in the open space between the collimator system C and the OB lens: they rest on the support shell that is just to the right of collimator C and are fixed with the help of a pressure system (kind of articulated arm between C and OB).
  • a pressure system kind of articulated arm between C and OB.
  • the entire OB + R eye system + OC continues to act the same and provide a collimated beam to infinity that the observer sees sharply focused on his retina. But this is because the axial position of the T test has been changed. This change in position is calibrated to diopters so that the spherical power of the L lens can be read on the circular dial when looking through the eyepiece of the frontofocometer.
  • the lens L to be measured is astigmatic (it has astigmatism)
  • the image of the T test is differently defocused depending on the power of each meridian.
  • An astigmatic lens is characterized by having two maximal powers in two directions or perpendicular meridians.
  • the measurement of the power of the lens L is done by focusing on each meridian separately and noting the powers with which these consecutive approaches are made ( Figure 2b-c).
  • the annotated powers are managed to obtain the sphero-cylindrical notation of the dioptric power (S, Ocb) with a series of associated problems that will be described below.
  • a method for measuring the posterior vertex diopter power of an astigmatic lens comprising the characteristics of the preamble of claim 1 of the present invention, that is to say: a) arranging an astigmatic lens on a support shell of a frontofocometer, between a collimator and an objective thereof; b) illuminating and displacing a test of the front-electrode to collimate a beam of light, containing an image of said test, on said objective, after going through said collimator and said astigmatic lens, and focusing on a reticule of the frontofocometer at least a portion of said image corresponding to at least one meridian of two perpendicular meridians in which the astigmatic lens has two respective maximum powers; and c) measuring the posterior vertex diopter power of the astigmatic lens from at least the magnitude of said test displacement.
  • step b) comprises carrying out two displacements of the test, one for each of the two mentioned meridians
  • step c) comprises making two measurements of the diopter power, one by displacement of the test.
  • the frontofocometer provides the measurement of the frontal powers corresponding to the two main meridians of the lens. In this way, the focus of the test is achieved in two main directions where the test image appears sharp but distorted (in fact what is observed corresponds to the two focal points of the astigmatic beam refracted by the lens).
  • the image of each of these points will be a line whose size will vary depending on the astigmatism of the lens.
  • we will be focusing on one of the two focal points, which should be perfectly centered in the reticle so that the reading is correct (reading without induced prismatic effect).
  • the dioptric scale will mark the frontal power of the posterior vertex of one of the main meridians.
  • the astigmatism is given by the difference between the two measured frontal powers.
  • the optical formula of the power of the problem lens it is necessary to consider that when a vertical line is clearly observed, it constitutes the focal image of the horizontal meridian. Therefore, it can be said that the observation of a focused focal allows to know the power of the meridian perpendicular to the orientation of said focal.
  • an astigmatic power lens (- 0.25, -1, 00x0 °) the principal meridians are oriented in the directions 0 ° -180 ° and 90 or - 270 °.
  • you are viewing the horizontal line of the test clearly, you are measuring the frontal power of the vertical meridian (-1.25D) of the astigmatic lens, and vice versa (-0.25D).
  • the optical formula of the lens in its direct regular sphero-cylindrical notation, is obtained in the following way: i) it is taken as sphere (S) the most positive reading of both, ii) the value of the cylinder (C) is obtained as the difference in module between both powers with a negative sign, and iii) the axis of the cylinder (b) is the meridian where the value of the power that has been taken as sphere has been written down.
  • This notation is known as the direct sphero-cylindrical formula since the value of the cylinder is defined as a negative lens value.
  • the transposed sphero-cylindrical notation can be defined from the following values: (S + C, -Oc (b + 90 °)) resulting in the previous example in (-1, 25D, + 1x90 °).
  • the procedure continues the following steps: i) take as S the most positive reading of both, ii) the value C is obtained as the difference in module between both powers with a negative sign, and iii) the axis of the cylinder (b) is the countershaft of the value of the axis that has been written down as the value of S (or value of the axis in which it has been written down as a value of S plus 90 °).
  • the measure of (S, Ocb) (-0.25, -1, 00x0 °) is obtained again.
  • This procedure is used daily in most optics for such important aspects as, for example: i) measurement of the power that a client wears in his glasses, ii) verification that the astigmatic lenses that have been ordered from the factory corresponds to the refraction for which it has been requested and there is no error, and iii) properly position and mark said lens in the frontofocometer as a previous step to mount it in glasses to deliver to a client.
  • the present invention concerns, in a first aspect, a method for measuring the posterior vertex diopter power of an astigmatic lens, comprising: a) arranging an astigmatic lens on a support shell of a front-opener, between a collimator and an objective thereof; b) illuminating and displacing a test of the frontofocometer to collimate a beam of light, containing an image of said test, on said objective, after passing said collimator and said astigmatic lens, and focusing on a lattice of the frontofocometer at least a portion of said image corresponding to at least one meridian of two perpendicular meridians in which the astigmatic lens has two respective maximum powers; and c) measuring the posterior vertex diopter power of the astigmatic lens from at least the magnitude of said test displacement.
  • the method proposed by the first aspect of the present invention comprises, in a characteristic manner, providing, as a front-opener, a modified frontofocometer incorporating a Stokes lens with a rotation axis that is aligned with the optical axis of the frontofocometer and which is common both for a relative turn, opposite sign, of each of the lenses that make up the Stokes lens and for a global rotation of the entire Stokes lens.
  • step b) comprises focusing on the reticle the image of the test simultaneously for both of said two perpendicular meridians, by means of a single displacement of the test and acting on the Stokes lens for performing said global rotation and / or relative rotation, so that it adopts a certain global angular position and certain relative angular positions, for each lens of the Stokes lens; and step c) comprises obtaining the measurement of the posterior vertex diopter power of the astigmatic lens simultaneously for both of the two perpendicular meridians from the magnitude of said single displacement of the test, of the relative angle Q that has been rotated each of the lenses that make up the Stokes lens, and the overall angular position of the Stokes lens.
  • the method proposed by the first aspect of the invention fulfills the three objectives indicated above, that is, the simplicity and speed in obtaining the measurement and, above all, that of eliminating errors insofar as they can occur with the standard method.
  • an element capable of measuring astigmatism without altering the spherical power is key to the method of the present invention.
  • This element is known as Stokes lenses and, in general (for the first implementation, explained below), is based on two ordinary cylindrical lenses, of equal power but opposite sign, and which can be turned in counter-direction. In this way, when both axes of the lenses are aligned, the Stokes lens does not introduce refractive power because the negative cylinder is compensated with the positive. However, as the cylindrical lenses are rotated in opposite directions, resulting astigmatism is generated in a certain direction and equal to 45 ° of the initial starting position of the axes of the lenses.
  • the generated astigmatism reaches its maximum value when both lenses have been turned 45 ° one with respect to the other, case that is to have axes of the positive and negative cylinders at 90 ° or crossed one with respect to the other. That is why, often, this type of lens is also known as the crossed cylinder lens of Jackson, although this name is reserved for fixed power lenses while in a Stokes lens the power is variable.
  • M S + C / 2
  • both main meridians of the test can be clearly focused by reducing the measurement time, now we only have to measure once and not two as before (one for each meridian), and we also eliminate the possibility of making the errors associated with the method of standard measurement because the process of annotation of values is unambiguous.
  • the present invention is applicable to the most generalized test consisting of a cross with three lines per segment and a circle formed by points, as well as any other valid for the measurement of astigmatism and which includes, therefore, elements of image distinguishable for both main meridians of the astigmatic lens.
  • the method proposed by the first aspect of the invention comprises providing said modified frontofocometer with the Stokes lens disposed between the astigmatic lens and the objective.
  • the method proposed by the first aspect of the invention comprises arranging the Stokes lens in another location, provided that the conditions set out below are met.
  • the Stokes lens can be placed anywhere in the frontofocometer scheme because it does not introduce spherical power that misaligns the measurement with the power wheel of the frontofocometer. Now, two things have to be taken into account. On the one hand, the ease of insertion of the Stokes lens. In this sense, the easiest thing is to introduce it in the free open path that the frontofocometer provides. And on the other hand, it is necessary to respect the distance between the collimator lens and the supporting shell of the lens to be measured. That is, the lens to be measured must be supported on the support shell because that is where the posterior vertex focal is measured (if the lens to be measured moves axially, the reading changes and no later vertex power is being measured) .
  • the method proposed by the first aspect of the invention comprises performing a conversion, preferably automatic, of the measurement of the posterior vertex diopter power of the obtained astigmatic lens, from said polar Fourier notation to a spherical-cylindrical notation, direct or transposed.
  • the mentioned method of conversion between the values of the realized measurement (magnitude of the only displacement of the test, angle Q and global angular position of the Stokes lens) in polar Fourier notation to the standard sphero-cylindrical notation, is also relevant to the time to meet the three objectives indicated above, ie the simplicity and speed in obtaining the measure and, above all, to eliminate errors to the extent that they can be produced with the standard method.
  • the method proposed by the first aspect of the invention also comprises automatically detecting, by means of position sensors, the magnitude of the single displacement of the test (for example, indirectly through the detection of the position of the test). the spherical focusing wheel of the frontofocometer), the relative angular positions of the Stokes lens lenses and the overall angular position of the Stokes lens.
  • the method proposed by the first aspect of the invention comprises obtaining the measurement of the posterior vertex diopter power of the astigmatic lens by calculating it automatically by processing the values obtained by means of the automatic detection indicated in the previous paragraph or by processing some values supplied by the a user to a computing device responsible for carrying out the aforementioned automatic calculation.
  • the expressions or equations indicated above, which define S, C and b for direct spherical-cylindrical notation, are implemented, in the case that the conversion of notations is automatic, by means of an algorithm included in a software application installed in a device.
  • the The method of the first aspect of the invention comprises automatically determining when the test image is focused on the reticle, capturing superimposed images of the reticle and the test by means of image acquisition (including one or more image sensors, associated optical elements, and components and associated electrical and electronic circuitry) and processing them by means of image recognition software.
  • the method proposed by the first aspect of the invention comprises automatically and in a controlled manner the displacement of the test and the relative and global turns of the Stokes lens, until reaching positions for which it is obtained said determination that the test image is focused on the reticle, either such determination made, preferably, automatically (through the aforementioned image recognition) or carried out by a user looking through the eyepiece of the frontofocometer .
  • the Stokes lens is formed by two cylindrical lenses of equal power in module but of opposite sign
  • the Stokes lens is formed by two equal sphero-cylindrical lenses with zero spherical equivalent (no introduces spherical component) of opposite values of sphere and cylinder.
  • the spherical equivalent of the combination of both lenses (either cylindrical or sphero-cylindrical) in the Stokes lens is zero.
  • the method proposed by the first aspect of the invention comprises properly positioning and marking, prior to beveling and goggle assembly, an astigmatic lens manufactured with the dioptric power measured in step c), Aligning it previously to the marking with the global orientation of the Stokes lens determined when making the measurement.
  • the aforementioned positioning / marking of an astigmatic lens in the appropriate orientation to compensate for a certain refractive error of a patient in glasses follows a process inverse to the measurement of the frontal dioptric power.
  • an inverse notation conversion is made to the one explained above, that is to say Fourier polar notation and the pertinent values are obtained (magnitude of the single displacement of the test, angle Q and global angular position of the Stokes), which are introduced in the modified frontofocometer, that is, they are applied to the displacement of the test and to the Stokes lens.
  • the astigmatic lens is inserted to position it in its place enabled of the frontofocometer (support shell) and the astigmatic lens is rotated, without touching any control of the frontofocometer, until the test image is seen clearly.
  • the rotation is around the optical axis and what is being done is to position the main meridians of the astigmatic lens according to the desired orientation.
  • the astigmatic lens will have been correctly positioned, that is, it will have been determined that it is in a suitable position for the marking.
  • the astigmatic lens is then marked with the usual system of the frontofocometer and is worn with beveling and assembly in glasses.
  • the positioning process provides the same advantages as the measurement process, ie: i) it saves time since you do not have to check both meridians (everything appears sharp at the same time) and, more importantly, ii) reduces the error of the positioning associated with conventional methods, since there is no possibility of being wrong with inverse readings in the main meridians.
  • a second aspect of the present invention concerns a system for measuring the posterior vertex diopter power of an astigmatic lens, comprising a modified frontofocometer incorporating a Stokes lens with a rotation axis that is aligned with the optical axis of the frontofocometer and which is common both for a relative turn, opposite in sign, of each of the lenses that make up the Stokes lens and for a global turn of the whole Stokes lens, and which is configured to implement the method of the first aspect of the present invention.
  • the system of the second aspect of the present invention comprises at least one processor configured to process values of magnitude of the single displacement of the test, of the relative angular positions of the lens of the Stokes lens and of the position overall angle of the Stokes lens, to automatically calculate the measurement of the posterior vertex diopter power of the astigmatic lens to implement step c) of the method of the first aspect of the present invention to implement the embodiments described above and referred to said automatic calculation.
  • the system of the second aspect of the present invention comprises at least one processor configured to process, according to a conversion algorithm, the values obtained in polar Fourier notation for the measurement of the posterior vertex diopter power of the astigmatic lens, to automatically convert them into values of a sphero-cylindrical notation, thus implementing the embodiments of the method of the first aspect of the present invention described above and referred to said automatic notation conversion.
  • the system of the second aspect of the present invention is configured to implement the embodiments of the method of the first aspect of the present invention described above and referred to automatic positional detections and automatic calculation of the measurement of the posterior vertex diopter power of the astigmatic lens from said positional detections.
  • the system comprises:
  • an electronic control system operatively connected to said position sensors to receive output signals thereof which are indicative of the position detections made, and which includes at least one processor configured to process data contained in said output signals to automatically calculate the measurement of the posterior vertex diopter power of the astigmatic lens.
  • system configured to implement the embodiments of the method of the first aspect of the present invention described above and referred to the automatic determination of when the test image is focused on the reticle, for which system comprises a system for acquiring and recognizing images which in turn comprises means for acquiring images (including one or more image sensors, associated optical elements, and components and associated electrical and electronic circuitry) that are configured and arranged to acquire superimposed images of the reticle and the test, and an image recognition software to process the acquired images to automatically determine when the test image is focused on the reticle.
  • system comprises a system for acquiring and recognizing images which in turn comprises means for acquiring images (including one or more image sensors, associated optical elements, and components and associated electrical and electronic circuitry) that are configured and arranged to acquire superimposed images of the reticle and the test, and an image recognition software to process the acquired images to automatically determine when the test image is focused on the reticle.
  • the system of the second aspect of the present invention is configured to implement the embodiments of the method of the first aspect of the present invention described above and referred to the automatic and controlled realization of the displacement of the test and the relative and global turns of the Stokes lens, for which the system comprises actuating means kinematically connected (directly or indirectly through supports or mounts thereof) to the test, to the lens lenses of Stokes and to the Stokes lens, and which are operatively connected to said electronic control system to receive corresponding control commands generated by it, and in response to them carry out, automatically and controlled, the displacement of the test and the turns relative and global of the Stokes lens.
  • the present invention contemplates that this is manufactured with the modification described above, that is with the incorporation of the Stokes lens, whether manual, semi-automatic or automatic, or provide an accessory that incorporates the lens of Stokes and that is directly coupled to the existing frontofocómetros.
  • a kit including such an accessory and the elements necessary to implement the method of the first aspect of the present invention is proposed by a further aspect of the present invention.
  • the present invention also concerns, in a third aspect, a computer program including program code instructions that when executed in a processor implements step c) of the method of the first aspect of the invention by automatically calculating the power measurement posterior vertex of the astigmatic lens.
  • the computer program according to the third aspect of the present invention includes program code instructions that when executed in a processor carry out the automatic conversion of the power measurement posterior vertex diopter of the obtained astigmatic lens, from the Fourier polar notation to a sphero-cylindrical notation, implementing those embodiments of the method of the first aspect of the invention explained above and referred to such automatic conversion of notations.
  • the computer program according to the third aspect of the present invention includes program code instructions that when executed in a processor automatically carry out the inverse conversion of notations, from the spherical notation to the cylindrical to the Fourier polar notation, of the measurement of the posterior vertex diopter power of the astigmatic lens to be positioned and marked, of the embodiment of the method of the first aspect of the invention explained above and referred to the positioning and marking of a lens astigmatic
  • Figure 1 shows the diagram of a manual front-opener, used for the application of the standard measurement procedure, as described above with reference to said figure in the section of prior art;
  • Figure 2 shows the defocusing of the T test for: (a) spherical lens, and (b) - (c) astigmatic lenses applying the standard measurement procedure;
  • Figure 3 shows a simplified diagram of a modified manual front-opener to be used by the method of the first aspect of the invention and forming part of the system proposed by the second aspect of the invention, for an example of embodiment
  • Figure 4 shows a series of schematic views of the Stokes lens of the frontofocometer of Figure 3, for different relative angular positions of the two lenses LS + and LS- that make it, and different global angular positions of the Stokes lens.
  • rows: (a) - (b) - (c) and (d) - (e) - (f) are for the particular case of generation of pure astigmatic power at 0 ° / 90 ° and for the generic case of b / (b + 90 °), respectively.
  • Figure 5 shows a graph relating to a calibration performed with a Stokes lens constructed by the present inventor from two pure cylinders, and incorporated into a frontofocó manual meter, thus obtaining the modified front electrode according to the present invention, used to carry out an experimental validation of the method and system of the present invention.
  • Figure 6 shows a series of illustrations corresponding to images obtained by the standard measurement method (left and center columns) and the method proposed by the first aspect of the invention (right column), for the measurement of different astigmatic lenses.
  • FIG 3 a possible scheme of frontofocómetro modified according to the present invention is illustrated, where the elements of the same have been reduced to the indispensable ones. From left to right it is illustrated: the light source F (in the form of a bulb or LED), a condensing lens C, the cross-T test, a system of lenses colimagers Le, the astigmatic lens to measure L supported on the shell of support of the frontofocómetro, the lens of Stokes LS, the objective OB of the eyepiece, the reticle R and the ocular OC.
  • the light source F in the form of a bulb or LED
  • a condensing lens C the cross-T test
  • a system of lenses colimagers Le the astigmatic lens to measure L supported on the shell of support of the frontofocómetro
  • the lens of Stokes LS the objective OB of the eyepiece
  • the reticle R the ocular OC
  • the Stokes LS lens is composed of two cylindrical lenses of equal value and opposite sign. Said lenses have been identified in Figure 3 as LS + and LS- to designate, respectively, the positive and negative cylindrical lenses.
  • Said first implementation means that a pure positive cylinder with an arbitrary axis is being coupled at 45 ° (note that the axis is irrelevant but to understand the example it is better to fix a value) with a pure negative cylinder of the same power in module with axis in 45 °, that is: (Cx45 °) + (-Cx45 °).
  • the resulting power is zero (both cylinder and sphere) and therefore not act on the astigmatic lens to be measured.
  • the Stokes lens allows to rotate equally but in the opposite direction both pure cylindrical lenses until reaching the orthogonality situation after having rotated ⁇ 45 ° both lenses, a situation that is described by (Cx90 °) + (-Cx0 °).
  • the Stokes LS lens can be rotated globally from 0 to 180 ° (no more needed) to generate the astigmatic power aligned with said meridians and to obtain the image of the T test focused simultaneously in all directions.
  • the astigmatic lens L in addition to astigmatism has a spherical component
  • this component is compensated with the own spherical power wheel of the frontofocometer to be able to have the entire test focused simultaneously.
  • the spherical power read from the circular dial of the frontofocometer is not properly a spherical power but a spherical equivalent of the L lens. This is because, according to the present invention, the measurement is being made in the Fourier polar notation of the dioptric power.
  • both lenses LS +, LS- are held by a mount (not shown) that allows the lenses to rotate at the same angle but in the opposite direction.
  • the frame can globally rotate the entire Stokes LS lens to cover the entire angular range of astigmatism orientations. In this way, we start from a position in which the axes of the lenses LS +, LS- are aligned and, therefore, there is no resultant astigmatic component.
  • Figure 4a in which it has been chosen for simplicity that the overall angle of the Stokes LS lens is 45 °.
  • the lens L is an astigmatic lens with main meridians at 0 o and 90 °
  • LS- of the Stokes LS lens does not compensate the astigmatic component, so that the T test will be defocused in one of its main meridians (cases of Figs 2b-c) being able to alternate between them acting on the spherical power wheel.
  • That pure astigmatic power (in the form of a crossed cylinder of Jackson) will be maximum when the angle of turn Q is equal to + 45 ° (or -45 °), in which case the horizontal and vertical powers are + C (or -C) and - C (or + C), respectively.
  • This situation corresponds to the diagram of Figure 4c. Note that, independently of the angle Q, the main meridians of the pure astigmatic power always leave ⁇ 45 ° from the global orientation of the Stokes LS lens (in this particular case, horizontal and vertical meridians).
  • these powers generate a pure astigmatic component in the form of a Jackson cross cylinder of power [Cx0 °] (or [-CxO 0 ]) that is part of the Fourier polar notation of the dioptric power.
  • FIG. 5 shows a graph relating to a calibration, performed with the manual front-scope meter itself, in which the technique proposed by the method of the first aspect of the present invention has been implemented, of generated powers (ordinate axis) as the lenses cylindrical rotating (abscissa axis).
  • the Risley prism support allows both lenses to rotate the same amount globally. This fact is vital either to be able to align the Stokes lens with the main meridians of the lens to be measured (measurement process of the lens) or to fix a given orientation and align the lens with this orientation (process of marking and assembly of the lens). the lens in glasses). In this way, whatever the astigmatic component of the lens (value and orientation) can be compensated with the Stokes lens while the spherical component of said lens is adjusted with the spherical power wheel of the frontofocómetro itself.
  • the present inventor has performed tests with different astigmatic, positive and negative lenses, measured with the standard method and with the method proposed by the first aspect of the present invention.
  • the tests have been performed up to a power of
  • tests have been done in different orientations and with different lighting sources (the manual frontofocómetros have two types of illuminations: white light and green filter).
  • Figure 6 illustrations of some (not all, the most representative) of the measurements made are included. These are representative schemes of some measures taken. In the first two columns have been included illustrations corresponding to the images from the standard method where you can see, separately, clear both directions or meridians of the frontofocometer test along with the power readings (circular dial in each image) of both measurements . These powers are annotated separately (white text at the top of the illustrations) to obtain the spheroidal-cylindrical notation of the posterior vertex diopter power of the measured lens (bold text at the bottom of both illustrations).
  • the column on the right includes an illustration corresponding to the image obtained from the method proposed by the present invention, in which it can be seen how the test of the frontofocó meter appears clear in all its directions simultaneously.
  • M the dial adjustment wheel of the frontofocómetro
  • ⁇ cb the Fourier polar notation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Eyeglasses (AREA)

Abstract

The method comprises: a) placing an astigmatism lens in a lensmeter comprising a Stokes' lens; b) focusing the image of the test target on the reticle simultaneously for the two perpendicular meridians, carried out by means of a single movement of the test target and using the Stokes' lens; and c) measuring the posterior vertex diopter power from the size of the single movement of the test, the relative angle θ through which each of the lenses of the Stokes' lens has been rotated, and the global angular position of the Stokes' lens. The invention also relates to a system using the method of the invention and to a computer program adapted to automatically calculate the measurement of the method of the invention.

Description

DESCRIPCIÓN  DESCRIPTION
Método, sistema y programa de ordenador para medir la potencia dióptrica de vértice posterior de una lente astigmática Method, system and computer program to measure the posterior vertex diopter power of an astigmatic lens
Sector de la técnica Sector of the technique
La presente invención concierne en general, en un primer aspecto, a un método para medir la potencia dióptrica de vértice posterior de una lente astigmática, que comprende el uso de un frontofocómetro, y en particular a un método que comprende el uso de un frontofocómetro modificado que incorpora una lente de Stokes, y que permite realizar la medida de manera más rápida, simple y libre de ambigüedades. The present invention relates generally, in a first aspect, to a method for measuring the posterior vertex diopter power of an astigmatic lens, comprising the use of a front-opener, and in particular to a method comprising the use of a modified front-o-meter. that incorporates a Stokes lens, and that allows the measurement to be done more quickly, simply and free of ambiguities.
Un segundo aspecto de la presente invención concierne a un sistema adaptado para implementar el método del primer aspecto de la invención. A second aspect of the present invention concerns a system adapted to implement the method of the first aspect of the invention.
En un tercer aspecto, la presente invención concierne a un programa de ordenador adaptado para calcular automáticamente la medida de la potencia dióptrica de vértice posterior de la lente astigmática del método del primer aspecto de la invención. In a third aspect, the present invention concerns a computer program adapted to automatically calculate the measurement of the posterior vertex diopter power of the astigmatic lens of the method of the first aspect of the invention.
Estado de la técnica anterior State of the prior art
El frontofocómetro es un instrumento que resulta imprescindible en óptica oftálmica porque permite efectuar la medición de la potencia dióptrica de las lentes, y de esa forma controlar las prescripciones. Su funcionamiento básico tiene por objeto determinar la potencia de vértice posterior de una lente para conocer la cantidad de dioptrías equivalente. Existen numerosos libros y manuales que describen tanto los componentes que lo integran como su esquema y el funcionamiento. The frontofocometer is an instrument that is essential in ophthalmic optics because it allows to measure the diopter power of the lenses, and thus control the prescriptions. Its basic function is to determine the posterior vertex power of a lens to determine the equivalent number of diopters. There are numerous books and manuals that describe both the components that comprise it and its scheme and operation.
A modo ilustrativo, en la Figura 1 se muestra el esquema de un frontofocómetro manual, el cual consta esencialmente de una bombilla B que emite luz que es condensada por una o varias lentes Fv, Fo que finalmente acaba siendo focalizada sobre un test T del frontofocómetro, que en general es en forma de cruz está compuesto por, normalmente, dos pares de 3 líneas en direcciones perpendiculares y una sucesión de puntos con geometría circular. Tras el test T, un sistema de lentes colimadoras C manda a infinito la imagen del test o, dicho de otro modo, proporciona un haz de iluminación paralela o colimada. Dicho haz colimado sale del frontofocómetro a un pequeño espacio abierto donde se colocará la lente a medir y, posteriormente, incide de nuevo sobre un objetivo OB que focaliza la luz sobre un retículo R. Dicho retículo sirve, esencialmente, para referenciarse y orientar las direcciones del test y para medir efectos prismáticos por descentramiento. Finalmente, un sistema de lentes a modo de ocular OC vuelve a enviar la imagen a infinito, saliendo dicho haz colimado por el ocular del aparato. Cuando el observador (emétrope o amétrope compensado) mira a través de dicho ocular OC, observa un haz de luz que procede del infinito por lo que la imagen de dicho haz se forma sobre su retina. Dicho haz lleva información del test en cruz T y del retículo R, por lo que ambos objetos aparecen nítidamente enfocados en la retina del observador. Adicionalmente, existe un sistema paralelo E, Eg, D, P que permite introducir en el plano del retículo R un pequeño campo circular con la escala de medida que, en las condiciones anteriores, marcará 0 dioptrías puesto que no hay lente de medida. By way of illustration, Figure 1 shows the diagram of a manual frontofocómetro, which consists essentially of a bulb B that emits light that is condensed by one or several Fv, Fo lenses that finally ends up being focused on a T test of the frontofocometer , which in general is in the shape of a cross is usually composed of two pairs of 3 lines in perpendicular directions and a succession of points with circular geometry. After the T test, a system of collimating lens C sends the image of the test to infinity or, in other words, provides a beam of parallel or collimated illumination. Said collimated beam leaves the frontofocometer to a small open space where the lens to be measured will be placed and, subsequently, falls back on an OB objective that focuses the light on a R-grid. Said reticle serves, essentially, to reference and orient the directions of the test and to measure prismatic effects by decentering. Finally, a OC ocular lens system sends the image back to infinity, leaving the collimated beam by the eyepiece of the device. When the observer (emmetropic or compensated ametropic) looks through said OC eyepiece, he observes a beam of light that comes from infinity, so the image of that beam is formed on his retina. Said beam carries information of the test in cross T and of the reticle R, reason why both objects appear neatly focused in the retina of the observer. Additionally, there is a parallel system E, Eg, D, P that allows to introduce in the plane of the reticle R a small circular field with the scale of measurement that, in the previous conditions, will mark 0 diopters since there is no measuring lens.
La(s) lente(s) L a medir se posiciona(n)/fija(n) en el espacio abierto que hay entre el sistema colimador C y el objetivo OB: se apoyan en la concha de apoyo que hay justo a la derecha del colimador C y se fijan con la ayuda de un sistema de presión (especie de brazo articulado entre C y OB). Cuando la lente introducida L es esférica (no hay astigmatismo), todo el test T se desenfoca por igual en todas direcciones (Figura 2a) y puede volverse a reenfocar actuando sobre la rueda de potencia del frontofocómetro. Dicha rueda de potencia (no ilustrada) desplaza la posición del test T de manera que el haz ya no está colimado a la salida del sistema C pero se colima tras pasar por la lente L. De este modo, todo el sistema ocular OB + R + OC sigue actuando igual y proporcionan un haz colimado a infinito que el observador ve nítidamente enfocado en su retina. Pero esto se debe a que se ha cambiado la posición axial del test T. Y ese cambio en posición está calibrado a dioptrías de manera que se puede leer la potencia esférica de la lente L en el dial circular al mirar por el ocular del frontofocómetro. The lens (s) L to be measured is positioned (n) / fixed (n) in the open space between the collimator system C and the OB lens: they rest on the support shell that is just to the right of collimator C and are fixed with the help of a pressure system (kind of articulated arm between C and OB). When the introduced lens L is spherical (there is no astigmatism), the entire T test is equally unfocused in all directions (Figure 2a) and can be refocused by acting on the frontofocometer power wheel. Said power wheel (not illustrated) displaces the position of the T test so that the beam is no longer collimated at the output of system C but collimates after passing through the lens L. Thus, the entire OB + R eye system + OC continues to act the same and provide a collimated beam to infinity that the observer sees sharply focused on his retina. But this is because the axial position of the T test has been changed. This change in position is calibrated to diopters so that the spherical power of the L lens can be read on the circular dial when looking through the eyepiece of the frontofocometer.
Sin embargo, cuando la lente L a medir es astigmática (tiene astigmatismo), la imagen del test T se desenfoca de manera diferente en función de la potencia de cada meridiano. Una lente astigmática se caracteriza por tener dos potencias maximales en dos direcciones o meridianos perpendiculares. La medida de la potencia de la lente L se realiza enfocando a cada meridiano por separado y anotando las potencias con las que se realizan dichos enfoques consecutivos (Figura 2b-c). Posteriormente, se manejan las potencias anotadas para obtener la notación esfero-cilíndrica de la potencia dióptrica (S, Ocb) con una serie de problemas asociados que se describirán a continuación. However, when the lens L to be measured is astigmatic (it has astigmatism), the image of the T test is differently defocused depending on the power of each meridian. An astigmatic lens is characterized by having two maximal powers in two directions or perpendicular meridians. The measurement of the power of the lens L is done by focusing on each meridian separately and noting the powers with which these consecutive approaches are made (Figure 2b-c). Subsequently, the annotated powers are managed to obtain the sphero-cylindrical notation of the dioptric power (S, Ocb) with a series of associated problems that will be described below.
Es, por tanto, conocido un método para medir la potencia dióptrica de vértice posterior de una lente astigmática, que comprende las características del preámbulo de la reivindicación 1 de la presente invención, es decir: a) disponer una lente astigmática sobre una concha de apoyo de un frontofocómetro, entre un colimador y un objetivo del mismo; b) iluminar y desplazar un test del frontofocó etro para colimar un haz de luz, que contiene una imagen de dicho test, sobre dicho objetivo, tras pasar por dicho colimador y dicha lente astigmática, y enfocar sobre un retículo del frontofocómetro al menos una porción de dicha imagen correspondiente a al menos un meridiano de dos meridianos perpendiculares en los cuales la lente astigmática tiene dos respectivas potencias maximales; y c) medir la potencia dióptrica de vértice posterior de la lente astigmática a partir al menos de la magnitud de dicho desplazamiento del test. A method for measuring the posterior vertex diopter power of an astigmatic lens is therefore known, comprising the characteristics of the preamble of claim 1 of the present invention, that is to say: a) arranging an astigmatic lens on a support shell of a frontofocometer, between a collimator and an objective thereof; b) illuminating and displacing a test of the front-electrode to collimate a beam of light, containing an image of said test, on said objective, after going through said collimator and said astigmatic lens, and focusing on a reticule of the frontofocometer at least a portion of said image corresponding to at least one meridian of two perpendicular meridians in which the astigmatic lens has two respective maximum powers; and c) measuring the posterior vertex diopter power of the astigmatic lens from at least the magnitude of said test displacement.
Como se ha indicado anteriormente, en tal método conocido o procedimiento estándar, la etapa b) comprende realizar dos desplazamientos del test, uno para cada uno de los dos mencionados meridianos, y la etapa c) comprende realizar dos medidas de la potencia dióptrica, una por desplazamiento del test. El hecho de tener que realizar los citados dos desplazamientos y dos medidas hace que el tiempo necesario para realizar la medida total de la lente, es decir para los dos meridianos, sea considerablemente elevado. As indicated above, in such known method or standard procedure, step b) comprises carrying out two displacements of the test, one for each of the two mentioned meridians, and step c) comprises making two measurements of the diopter power, one by displacement of the test. The fact of having to carry out the aforementioned two displacements and two measurements means that the time necessary to make the total measurement of the lens, that is to say for the two meridians, is considerably high.
A continuación se describe con mayor detalle el citado procedimiento estándar. The aforementioned standard procedure is described in more detail below.
Tal y como se ha explicado anteriormente, esencialmente y para el caso de lentes astigmáticas, el frontofocómetro proporciona la medida de las potencias frontales correspondientes a los dos meridianos principales de la lente. De esta forma, el enfoque del test se consigue en dos direcciones principales entre sí donde la imagen del test aparece nítida pero deformada (en realidad lo que se observa corresponde a las dos focales del haz astigmático refractado por la lente). As explained above, essentially and for the case of astigmatic lenses, the frontofocometer provides the measurement of the frontal powers corresponding to the two main meridians of the lens. In this way, the focus of the test is achieved in two main directions where the test image appears sharp but distorted (in fact what is observed corresponds to the two focal points of the astigmatic beam refracted by the lens).
Una vez colocada la lente sobre la cocha de apoyo del frontofocómetro y para obtener ambas potencias principales, hay que realizar un doble proceso en el que se desplaza (variación de la vergencia de la luz incidente) y se varía su orientación (giro transversal al eje óptico). Esto se consigue, respectivamente, girando la rueda de enfoque esférico del frontofocómetro y girando el mando que se encarga de girar el test hasta conseguir alcanzar una de las dos posiciones de máxima nitidez, es decir, hasta lograr enfocar una de las dos focales principales. Nótese que nunca se pueden tener ambas focales enfocadas a la vez, nunca si la lente es astigmática. Once the lens is placed on the support coch of the frontofocometer and to obtain both main powers, it is necessary to carry out a double process in which it moves (variation of the vergence of the incident light) and its orientation is varied (cross-axis rotation) optical). This is achieved, respectively, by turning the spherical focusing wheel of the front-opener and rotating the knob that turns the test until it reaches one of the two positions of maximum sharpness, that is, until one of the two main focal points is focused. Note that you can never have both focuses focused at once, never if the lens is astigmatic.
Si consideramos, por ejemplo, el test más generalizado que consiste en una cruz con tres líneas por segmento y un círculo formado por puntos, cuando su orientación y posición sean las correctas, la imagen de cada uno de estos puntos será una recta cuyo tamaño variará en función el astigmatismo de la lente. En tal caso, estaremos enfocando una de las dos focales, la cual debe estar perfectamente centrada en el retículo para que la lectura sea correcta (lectura sin efecto prismático inducido). En ese momento, la escala dióptrica marcará la potencia frontal de vértice posterior de uno de los meridianos principales. If we consider, for example, the most generalized test consisting of a cross with three lines per segment and a circle formed by points, when its orientation and position are correct, the image of each of these points will be a line whose size will vary depending on the astigmatism of the lens. In this case, we will be focusing on one of the two focal points, which should be perfectly centered in the reticle so that the reading is correct (reading without induced prismatic effect). At that time, the dioptric scale will mark the frontal power of the posterior vertex of one of the main meridians.
Después de obtener una de las lecturas, para enfocar la otra focal basta girar la rueda de enfoque de potencia esférica para modificar la posición/vergencia del test sin cambiar su orientación. De esta forma, se observan nítidamente las líneas perpendiculares a las anteriores, anotando nuevamente el valor de potencia indicado en la escala dióptrica. After obtaining one of the readings, in order to focus the other focus it is enough to rotate the spherical power focusing wheel to modify the position / vergence of the test without changing its orientation. In this way, the lines perpendicular to the previous ones are clearly observed, noting again the power value indicated in the dioptric scale.
A partir de ambas lecturas anotadas, el astigmatismo viene dado por la diferencia entre las dos potencias frontales medidas. Ahora bien, para obtener la fórmula óptica de la potencia de la lente problema, es necesario considerar que cuando se observa nítidamente una línea vertical, ésta constituye la focal imagen del meridiano horizontal. Por tanto, puede decirse que la observación de una focal enfocada permite conocer la potencia del meridiano perpendicular a la orientación de dicha focal. En un ejemplo aplicado a una lente astigmática de potencia (- 0,25, -1 ,00x0°) los meridianos principales están orientados en las direcciones 0°-180° y 90o- 270°. Sin embargo, cuando se está viendo la línea horizontal del test nítidamente, se está midiendo la potencia frontal del meridiano vertical (-1.25D) de la lente astigmática, y viceversa (-0.25D). From both readings noted, the astigmatism is given by the difference between the two measured frontal powers. Now, to obtain the optical formula of the power of the problem lens, it is necessary to consider that when a vertical line is clearly observed, it constitutes the focal image of the horizontal meridian. Therefore, it can be said that the observation of a focused focal allows to know the power of the meridian perpendicular to the orientation of said focal. In an example applied to an astigmatic power lens (- 0.25, -1, 00x0 °) the principal meridians are oriented in the directions 0 ° -180 ° and 90 or - 270 °. However, when you are viewing the horizontal line of the test clearly, you are measuring the frontal power of the vertical meridian (-1.25D) of the astigmatic lens, and vice versa (-0.25D).
A partir de ambas lecturas, la fórmula óptica de la lente, en su notación esfero-cilíndrica regular directa, se obtiene de la siguiente forma: i) se toma como esfera (S) la lectura más positiva de ambas, ii) el valor del cilindro (C) se obtiene como la diferencia en módulo entre ambas potencias con signo negativo, y iii) el eje del cilindro (b) es el meridiano donde se ha anotado el valor de la potencia que se ha tomado como esfera. En el ejemplo anterior, las potencias principales son -0,25D@0° y -1 ,25D@90°, donde @ significa "en el meridiano de", por lo que el valor de la esfera resulta ser S = -0,25D. Según se ha definido, el valor del cilindro resulta ser C = -|-0,25-1 ,25|=-1 D y el eje del cilindro es b = 0o. Finalmente, la notación esfero-cilíndrica total se anota en la forma (S, Ocb) = (-0,25, -1 ,00x0°). Esta notación se conoce con el nombre de fórmula esfero-cilíndrica directa puesto que el valor del cilindro se define como un valor de lente negativo. Además, se puede definir la notación esfero-cilíndrica traspuesta a partir de los siguientes valores: (S+C, -Oc(b+90°)) resultando en el ejemplo anterior en (-1 ,25D, +1x90°). From both readings, the optical formula of the lens, in its direct regular sphero-cylindrical notation, is obtained in the following way: i) it is taken as sphere (S) the most positive reading of both, ii) the value of the cylinder (C) is obtained as the difference in module between both powers with a negative sign, and iii) the axis of the cylinder (b) is the meridian where the value of the power that has been taken as sphere has been written down. In the previous example, the main powers are -0,25D @ 0 ° and -1, 25D @ 90 °, where @ means "in the meridian of", so the value of the sphere turns out to be S = -0, 25D. As defined, the cylinder value turns out to be C = - | -0,25-1, 25 | = -1 D and the cylinder axis is b = 0 or . Finally, the total sphero-cylindrical notation is recorded in the form (S, Ocb) = (-0.25, -1, 00x0 °). This notation is known as the direct sphero-cylindrical formula since the value of the cylinder is defined as a negative lens value. In addition, the transposed sphero-cylindrical notation can be defined from the following values: (S + C, -Oc (b + 90 °)) resulting in the previous example in (-1, 25D, + 1x90 °).
Otra forma de anotar los resultados es a partir de la notación bicilíndrica en la que las potencias principales se especifican como lentes cilindricas puras. Teniendo en cuenta que cuando se enfocan nítidamente unas líneas del test, la potencia está a 90° de las mismas, se puede especificar la lente anterior como la suma de dos cilindros de potencias principales iguales as (Oicbi) = (-0,25x90°) y (02cb2) = (-1 ,25x0°). De este modo, el procedimiento sigue los siguientes pasos: i) se toma como S la lectura más positiva de ambas, ii) el valor C se obtiene como la diferencia en módulo entre ambas potencias con signo negativo, y iii) el eje del cilindro (b) es el contraeje del valor del eje que se ha anotado como valor de S (o valor del eje en el que se ha anotado como valor de S más 90°). De esta forma, se vuelve a obtener la medida de (S, Ocb) = (-0,25, -1 ,00x0°). Estas dos lentes cilindricas puras pueden entonces combinarse fácilmente para obtener la notación esfero-cilíndrica anteriormente expuesta. Another way to record the results is from the bicilíndrica notation in which the main powers are specified as pure cylindrical lenses. Bearing in mind that when a few lines of the test are clearly focused, the power is at 90 ° of them, the previous lens can be specified as the sum of two cylinders of main powers equal to (Oicbi) = (-0,25x90 ° ) and (0 2c b 2 ) = (-1, 25x0 °). In this way, the procedure continues the following steps: i) take as S the most positive reading of both, ii) the value C is obtained as the difference in module between both powers with a negative sign, and iii) the axis of the cylinder (b) is the countershaft of the value of the axis that has been written down as the value of S (or value of the axis in which it has been written down as a value of S plus 90 °). In this way, the measure of (S, Ocb) = (-0.25, -1, 00x0 °) is obtained again. These two pure cylindrical lenses can then be easily combined to obtain the above-cited sphero-cylindrical notation.
Este procedimiento es el usado a diario en la mayoría de ópticas para aspectos tan importantes como, por ejemplo: i) medida de la potencia que un cliente lleva en su gafa, ii) comprobación de que la lentes astigmática que se ha pedido a fábrica se corresponde con la refracción para la que ha sido solicitada y no hay ningún error, y iii) posicionar y marcar apropiadamente dicha lente en el frontofocómetro como paso previo a montarla en gafa para entregar a un cliente. This procedure is used daily in most optics for such important aspects as, for example: i) measurement of the power that a client wears in his glasses, ii) verification that the astigmatic lenses that have been ordered from the factory corresponds to the refraction for which it has been requested and there is no error, and iii) properly position and mark said lens in the frontofocometer as a previous step to mount it in glasses to deliver to a client.
Además de la desventaja mencionada anteriormente relativa al tiempo elevado asociado al procedimiento estándar de medida, éste adolece también de otros inconvenientes. En particular, existen ambigüedades en el proceso de anotación de la potencia dióptrica. Puesto que existen diferentes maneras de especificar la potencia medida (notación esfero-cilíndrica directa, bicilíndrica, potencia por meridiano, etc.), existen diferentes formas de anotar los resultados para obtener la notación final de la potencia de la lente que se ha medido. Además, el propio proceso de medida resulta confuso si no se tienen en cuenta todas las variables que entran en juego (potencias en meridianos perpendiculares a las líneas nítidas del test, ejes y contraejes de lentes cilindricas, etc.). Esto conlleva a incrementar la probabilidad de error en la anotación de los resultados y, por tanto, al fallo en la medida de la lente. Este error resulta crucial en un proceso de refracción puesto que la gafa entregada al cliente no se corresponde con la refracción obtenida en gabinete. Desgraciadamente, esto suele pasar con relativa frecuencia en el día a día de las ópticas donde suelen existir errores en la anotación del eje más que en las lecturas de potencias. Como ejemplo, en el ejemplo anterior sería típico que la potencia medida de la lente fuese (-0,25, -1 ,00x90°) en lugar de (-0,25, -1 ,00x0°). Y la única manera de solucionarlo es volviendo a pedir a fábrica otra lente para esta vez sí medirla y posicionarla/marcarla bien para poder montarla bien en gafa. In addition to the aforementioned disadvantage relative to the high time associated with the standard measurement method, it also suffers from other drawbacks. In particular, there are ambiguities in the annotation process of dioptric power. Since there are different ways to specify the measured power (direct sphero-cylindrical notation, bi-cylindrical, power per meridian, etc.), there are different ways to record the results to obtain the final notation of the lens power that has been measured. In addition, the measurement process itself is confusing if all the variables that come into play are not taken into account (powers in meridians perpendicular to the sharp lines of the test, axes and countershafts of cylindrical lenses, etc.). This leads to an increase in the probability of error in the annotation of the results and, therefore, to the failure in the measurement of the lens. This error is crucial in a refraction process since the glasses delivered to the client do not correspond to the refraction obtained in the cabinet. Unfortunately, this usually happens relatively frequently in day-to-day optics where there are usually errors in the annotation of the axis rather than in the power readings. As an example, in the previous example it would be typical for the measured power of the lens to be (-0.25, -1, 00x90 °) instead of (-0.25, -1, 00x0 °). And the only way to solve it is by asking the factory for another lens for this time, to measure it and position it / mark it well in order to mount it well in glasses.
Aparece, por tanto, necesario ofrecer una alternativa al estado de la técnica que cubra las lagunas halladas en el mismo, mediante la provisión de un método para medir la potencia dióptrica de vértice posterior de una lente astigmática que en particular no adolezca de las desventajas del descrito arriba como procedimiento estándar de medida, y que mejore considerablemente sus prestaciones, tanto en términos de rapidez como de simplicidad como de probabilidad de errores en la medida. Explicación de la invención It appears, therefore, necessary to offer an alternative to the state of the art that covers the gaps found therein, by providing a method to measure the posterior vertex diopter power of an astigmatic lens that in particular does not suffer from the disadvantages of described above as the standard measurement procedure, and that considerably improves its performance, both in terms of speed and simplicity as well as the probability of errors in the measurement. Explanation of the invention
Con tal fin, la presente invención concierne, en un primer aspecto, a un método para medir la potencia dióptrica de vértice posterior de una lente astigmática, que comprende: a) disponer una lente astigmática sobre una concha de apoyo de un frontofocómetro, entre un colimador y un objetivo del mismo; b) iluminar y desplazar un test del frontofocómetro para colimar un haz de luz, que contiene una imagen de dicho test, sobre dicho objetivo, tras pasar por dicho colimador y dicha lente astigmática, y enfocar sobre un retículo del frontofocómetro al menos una porción de dicha imagen correspondiente a al menos un meridiano de dos meridianos perpendiculares en los cuales la lente astigmática tiene dos respectivas potencias maximales; y c) medir la potencia dióptrica de vértice posterior de la lente astigmática a partir al menos de la magnitud de dicho desplazamiento del test. For this purpose, the present invention concerns, in a first aspect, a method for measuring the posterior vertex diopter power of an astigmatic lens, comprising: a) arranging an astigmatic lens on a support shell of a front-opener, between a collimator and an objective thereof; b) illuminating and displacing a test of the frontofocometer to collimate a beam of light, containing an image of said test, on said objective, after passing said collimator and said astigmatic lens, and focusing on a lattice of the frontofocometer at least a portion of said image corresponding to at least one meridian of two perpendicular meridians in which the astigmatic lens has two respective maximum powers; and c) measuring the posterior vertex diopter power of the astigmatic lens from at least the magnitude of said test displacement.
A diferencia de los métodos del estado de la técnica, el método propuesto por el primer aspecto de la presente invención comprende, de manera característica, proporcionar, como frontofocómetro, un frontofocómetro modificado que incorpora una lente de Stokes con un eje de giro que está alineado con el eje óptico del frontofocómetro y que es común tanto para un giro relativo, contrario en signo, de cada una de las lentes que conforman la lente de Stokes como para un giro global de toda la lente de Stokes. Unlike the methods of the state of the art, the method proposed by the first aspect of the present invention comprises, in a characteristic manner, providing, as a front-opener, a modified frontofocometer incorporating a Stokes lens with a rotation axis that is aligned with the optical axis of the frontofocometer and which is common both for a relative turn, opposite sign, of each of the lenses that make up the Stokes lens and for a global rotation of the entire Stokes lens.
Asimismo, según el método propuesto por el primer aspecto de la invención: la etapa b) comprende enfocar sobre el retículo la imagen del test simultáneamente para ambos de dichos dos meridianos perpendiculares, mediante un único desplazamiento del test y actuando sobre la lente de Stokes para realizar el citado giro global y/o giro relativo, para que adopte una posición angular global determinada y unas posiciones angulares relativas determinadas, para cada lente de la lente de Stokes; y la etapa c) comprende obtener la medida de la potencia dióptrica de vértice posterior de la lente astigmática simultáneamente para ambos de los dos meridianos perpendiculares a partir de la magnitud del citado único desplazamiento del test, del ángulo relativo Q que se ha girado cada una de las lentes que conforman la lente de Stokes, y de la posición angular global de la lente de Stokes. Likewise, according to the method proposed by the first aspect of the invention: step b) comprises focusing on the reticle the image of the test simultaneously for both of said two perpendicular meridians, by means of a single displacement of the test and acting on the Stokes lens for performing said global rotation and / or relative rotation, so that it adopts a certain global angular position and certain relative angular positions, for each lens of the Stokes lens; and step c) comprises obtaining the measurement of the posterior vertex diopter power of the astigmatic lens simultaneously for both of the two perpendicular meridians from the magnitude of said single displacement of the test, of the relative angle Q that has been rotated each of the lenses that make up the Stokes lens, and the overall angular position of the Stokes lens.
El método propuesto por el primer aspecto de la invención cumple los tres objetivos indicados arriba, es decir en el de simplicidad y rapidez en la obtención de la medida y, sobre todo, el de eliminar los errores en la medida que se pueden producir con el método estándar. Ello se consigue gracias a poder enfocar simultáneamente sobre el retículo ambas direcciones del test, viéndose nítidas las líneas del test de ambos meridianos principales de la lente astigmática bajo medida. The method proposed by the first aspect of the invention fulfills the three objectives indicated above, that is, the simplicity and speed in obtaining the measurement and, above all, that of eliminating errors insofar as they can occur with the standard method. Them and thanks to being able to focus simultaneously on the reticle both directions of the test, seeing clearly the test lines of both main meridians of the astigmatic lens under measurement.
La inclusión en el frontofocómetro de un elemento con capacidad para medir el astigmatismo sin alterar la potencia esférica resulta clave para el método de la presente invención. Dicho elemento se conoce con el nombre de lentes de Stokes y, en general (para la primera implementación, explicada más abajo), se basa en dos lentes cilindricas ordinarias, de igual potencia pero signo contrario, y que pueden ser giradas en contradirección. De este modo, cuando ambos ejes de las lentes están alineados, la lente de Stokes no introduce potencia refractiva porque el cilindro negativo se compensa con el positivo. Sin embargo, a medida que se van girando en direcciones opuestas las lentes cilindricas, se va generando astigmatismo resultante en una dirección determinada e igual a 45° de la posición inicial de partida de los ejes de las lentes. El astigmatismo generado alcanza su valor máximo cuando ambas lentes se han girado 45° una con respecto a la otra, caso que equivale a tener ejes de los cilindros positivo y negativo a 90° o cruzados uno con respecto al otro. Por eso, muchas veces, a este tipo de lente también se le conoce con el nombre de lente cilindro cruzado de Jackson, si bien este nombre se reserva para lentes de potencia fija mientras que en una lente de Stokes la potencia es variable. The inclusion in the frontofocometer of an element capable of measuring astigmatism without altering the spherical power is key to the method of the present invention. This element is known as Stokes lenses and, in general (for the first implementation, explained below), is based on two ordinary cylindrical lenses, of equal power but opposite sign, and which can be turned in counter-direction. In this way, when both axes of the lenses are aligned, the Stokes lens does not introduce refractive power because the negative cylinder is compensated with the positive. However, as the cylindrical lenses are rotated in opposite directions, resulting astigmatism is generated in a certain direction and equal to 45 ° of the initial starting position of the axes of the lenses. The generated astigmatism reaches its maximum value when both lenses have been turned 45 ° one with respect to the other, case that is to have axes of the positive and negative cylinders at 90 ° or crossed one with respect to the other. That is why, often, this type of lens is also known as the crossed cylinder lens of Jackson, although this name is reserved for fixed power lenses while in a Stokes lens the power is variable.
Además, otra de las ventajas que tiene una lente de Stokes (y por inclusión una lente de tipo cilindro cruzado de Jackson) es que tienen una componente esférica nula y, por tanto, no afecta a la medida de potencia esférica dada por la rueda de vergencia que posee el frontofocómetro. In addition, another of the advantages that has a Stokes lens (and by inclusion a cross-cylinder type lens of Jackson) is that they have a null spherical component and, therefore, does not affect the measure of spherical power given by the wheel of vergence that has the frontofocómetro.
A modo explicativo, debe indicarse que, esencialmente, la componente esférica (M) de una lente astigmática se define como M = S+C/2 y una lente de Stokes tiene una componente M nula porque los valores de S y C se auto adaptan para proporcionar M = 0D (no así una lente cilindrica pura donde M siempre será distinto de 0 ya que, aunque un cilindro puro no tenga valor de S, sí posee valor de C). Este hecho es importantísimo porque permite medir de forma independiente el astigmatismo y la componente esférica: una mediante la lente de Stokes y la otra mediante la rueda de potencia esférica del propio frontofocómetro. Por tanto, se pueden enfocar nítidamente ambos meridianos principales del test reduciendo el tiempo de medida, ahora solo hay que medir una vez y no dos como antes (una para cada meridiano), y además se elimina la posibilidad de cometer los errores asociados al método de medida estándar porque el proceso de anotación de valores es inequívoco. Debe indicarse que la presente invención es aplicable tanto al test más generalizado que consiste en una cruz con tres líneas por segmento y un círculo formado por puntos, como a cualquier otro válido para la medida de astigmatismo y que incluya, por tanto, elementos de imagen distinguibles para ambos meridianos principales de la lente astigmática. By way of explanation, it should be noted that, essentially, the spherical component (M) of an astigmatic lens is defined as M = S + C / 2 and a Stokes lens has a null component M because the values of S and C are self-adapting to provide M = 0D (not a pure cylindrical lens where M will always be different from 0 since, although a pure cylinder does not have a value of S, it does have a value of C). This fact is very important because it allows to measure independently the astigmatism and the spherical component: one by means of the Stokes lens and the other by means of the spherical power wheel of the front-opener. Therefore, both main meridians of the test can be clearly focused by reducing the measurement time, now we only have to measure once and not two as before (one for each meridian), and we also eliminate the possibility of making the errors associated with the method of standard measurement because the process of annotation of values is unambiguous. It should be noted that the present invention is applicable to the most generalized test consisting of a cross with three lines per segment and a circle formed by points, as well as any other valid for the measurement of astigmatism and which includes, therefore, elements of image distinguishable for both main meridians of the astigmatic lens.
De acuerdo a un ejemplo de realización, el método propuesto por el primer aspecto de la invención comprende proporcionar el citado frontofocómetro modificado con la lente de Stokes dispuesta entre la lente astigmática y el objetivo. According to an exemplary embodiment, the method proposed by the first aspect of the invention comprises providing said modified frontofocometer with the Stokes lens disposed between the astigmatic lens and the objective.
Alternativamente, el método propuesto por el primer aspecto de la invención comprende disponer la lente de Stokes en otra ubicación, siempre que se cumplan las condiciones que se exponen a continuación. Alternatively, the method proposed by the first aspect of the invention comprises arranging the Stokes lens in another location, provided that the conditions set out below are met.
La lente de Stokes se puede colocar en cualquier parte en el esquema de frontofocómetro porque no introduce potencia esférica que desajuste la medida con la rueda de potencia del frontofocómetro. Ahora bien, hay que tener en cuenta dos cosas. Por un lado, la facilidad de inserción de la lente de Stokes. En este sentido, lo más fácil es introducirla en el camino abierto libre que el frontofocómetro proporciona. Y por otro lado, hay que respetar la distancia entre la lente colimadora y la concha de apoyo de la lente a medir. Es decir, la lente a medir debe estar apoyada en la concha de apoyo porque es ahí donde se mide la focal de vértice posterior (si se mueve axialmente la lente a medir, la lectura cambia y ya no se está midiendo potencia de vértice posterior). The Stokes lens can be placed anywhere in the frontofocometer scheme because it does not introduce spherical power that misaligns the measurement with the power wheel of the frontofocometer. Now, two things have to be taken into account. On the one hand, the ease of insertion of the Stokes lens. In this sense, the easiest thing is to introduce it in the free open path that the frontofocometer provides. And on the other hand, it is necessary to respect the distance between the collimator lens and the supporting shell of the lens to be measured. That is, the lens to be measured must be supported on the support shell because that is where the posterior vertex focal is measured (if the lens to be measured moves axially, the reading changes and no later vertex power is being measured) .
De cara a un diseño de frontofocómetro desde cero, se puede colocar la lente de Stokes donde se desee, bien detrás de la lente colimadora (en las proximidades del test del frontofocómetro), bien entre la lente colimadora y la lente a medir (es cuestión de calibrarlo debidamente), bien entre la lente a medir y el objetivo, o bien entre el objetivo y el ocular. Cada posición tiene sus peculiaridades y habría que realizar una calibración adecuada. Eso sí, donde resulta más fácil ubicar la lente de Stokes es en la zona abierta porque allí los haces están colimados. In order to design a frontofocometer from scratch, you can place the Stokes lens where you want, either behind the collimator lens (in the vicinity of the frontofocometer test), or between the collimator lens and the lens to be measured (it is a matter calibrate it properly), either between the lens to be measured and the objective, or between the objective and the eyepiece. Each position has its peculiarities and an adequate calibration should be carried out. Of course, where it is easier to locate the Stokes lens is in the open area because there the beams are collimated.
Y pensando en un sistema de acople de la lente de Stokes a frontofocómetro convencional manual, hay que respetar la distancia existente entre la lente colimadora y la concha de apoyo. Por lo demás, podría ponerse en cualquiera de los sitios mencionados anteriormente salvo entre la lente colimadora y la concha de apoyo. No obstante, el sitio más apropiado sigue siendo en el espacio abierto donde el haz está colimado. And thinking of a system of coupling of the Stokes lens to a conventional manual frontofocometer, it is necessary to respect the distance between the collimator lens and the support shell. Otherwise, it could be placed in any of the aforementioned sites except between the collimator lens and the support shell. However, the most appropriate site remains in the open space where the beam is collimated.
De acuerdo a un ejemplo de realización preferido del método propuesto por el primer aspecto de la invención, la etapa c) comprende obtener la medida de la potencia dióptrica de vértice posterior de la lente astigmática en notación polar de Fourier, en la forma de [M, Jxp], donde: M (tal y como se ha definida arriba, como M = S + C/2) corresponde al valor de una escala de potencia del frontofocómetro que es función de la magnitud del único desplazamiento del test y corresponde al equivalente esférico de la lente astigmática, J = C sen(20) es el valor del cilindro cruzado de Jackson que se obtiene a partir de los valores de potencia cilindrica C de la lente de Stokes y del ángulo relativo Q que se gira cada uno, y b+45° es la posición angular global, u orientación global, de la lente de Stokes que permite generar componente astigmática pura en forma de cilindro cruzado de Jackson variable con los meridianos principales de la lente astigmática en b y b+90. According to a preferred embodiment of the method proposed by the first aspect of the invention, step c) comprises obtaining the measurement of the posterior vertex diopter power of the astigmatic lens in Fourier polar notation, in the form of [M , Jxp], where: M (as defined above, as M = S + C / 2) corresponds to the value of a power scale of the frontofocometer that is a function of the magnitude of the single displacement of the test and corresponds to the spherical equivalent of the astigmatic lens, J = C sin (20) is the value of the crossed cylinder of Jackson that is obtained from the values of cylindrical power C of the Stokes lens and of the relative angle Q that is rotated each one, and b + 45 ° is the global angular position, or global orientation, of the Stokes lens that allows to generate pure astigmatic component in the form of a variable Jackson crossover with the main meridians of the astigmatic lens in b and b + 90.
De acuerdo a un ejemplo de realización, el método propuesto por el primer aspecto de la invención comprende realizar una conversión, preferentemente automática, de la medida de la potencia dióptrica de vértice posterior de la lente astigmática obtenida, desde la citada notación polar de Fourier a una notación esfero-cilíndrica, directa o traspuesta. According to an example of embodiment, the method proposed by the first aspect of the invention comprises performing a conversion, preferably automatic, of the measurement of the posterior vertex diopter power of the obtained astigmatic lens, from said polar Fourier notation to a spherical-cylindrical notation, direct or transposed.
El método propuesto por el primer aspecto de la invención comprende realizar la citada conversión para una notación esfero-cilíndrica directa expresada en la forma de (S, Ocb), donde S = M + J, C = -2J, y b = b. The method proposed by the first aspect of the invention comprises performing said conversion for a direct sphero-cylindrical notation expressed in the form of (S, Ocb), where S = M + J, C = -2J, and b = b.
El citado método de conversión entre los valores de la medida realizada (magnitud del único desplazamiento del test, ángulo Q y posición angular global de la lente de Stokes) en notación polar de Fourier a la notación esfero-cilíndrica estándar, también resulta relevante a la hora de cumplir los tres objetivos indicados arriba, es decir en el de simplicidad y rapidez en la obtención de la medida y, sobre todo, el de eliminar los errores en la medida que se pueden producir con el método estándar. The mentioned method of conversion between the values of the realized measurement (magnitude of the only displacement of the test, angle Q and global angular position of the Stokes lens) in polar Fourier notation to the standard sphero-cylindrical notation, is also relevant to the time to meet the three objectives indicated above, ie the simplicity and speed in obtaining the measure and, above all, to eliminate errors to the extent that they can be produced with the standard method.
De acuerdo a un ejemplo de realización, el método propuesto por el primer aspecto de la invención comprende también detectar automáticamente, mediante unos sensores de posición, la magnitud del único desplazamiento del test (por ejemplo, indirectamente a través de la detección de la posición de la rueda de enfoque esférico del frontofocómetro), las posiciones angulares relativas de las lentes de la lente de Stokes y la posición angular global de la lente de Stokes. According to an example of embodiment, the method proposed by the first aspect of the invention also comprises automatically detecting, by means of position sensors, the magnitude of the single displacement of the test (for example, indirectly through the detection of the position of the test). the spherical focusing wheel of the frontofocometer), the relative angular positions of the Stokes lens lenses and the overall angular position of the Stokes lens.
Ventajosamente, el método propuesto por el primer aspecto de la invención comprende obtener la medida de la potencia dióptrica de vértice posterior de la lente astigmática calculándola automáticamente procesando los valores obtenidos mediante la detección automática indicada en el párrafo anterior o procesando unos valores suministrados por parte de un usuario a un dispositivo de computación encargado de llevar a cabo el mencionado calculo automático. La expresiones o ecuaciones indicadas arriba, que definen S, C y b para una notación esfero- cilíndrica directa, se implementan, para el caso de que la conversión de notaciones sea automática, mediante un algoritmo incluido en una aplicación de software instalada en un dispositivo de computación externo o incluido en el propio frontofocómetro modificado, que se ejecuta tomando como entrada los valores de [M, Jxp] ya sea introducidos a mano por un usuario (a través de unos correspondientes medios de entrada asociados al dispositivo de computación), u obtenidos directamente por el propio dispositivo de computación, al haberlos calculado automáticamente éste u otro dispositivo de computación en comunicación con el mismo. Advantageously, the method proposed by the first aspect of the invention comprises obtaining the measurement of the posterior vertex diopter power of the astigmatic lens by calculating it automatically by processing the values obtained by means of the automatic detection indicated in the previous paragraph or by processing some values supplied by the a user to a computing device responsible for carrying out the aforementioned automatic calculation. The expressions or equations indicated above, which define S, C and b for direct spherical-cylindrical notation, are implemented, in the case that the conversion of notations is automatic, by means of an algorithm included in a software application installed in a device. external computation or included in the modified front-opener itself, which is executed taking as input the values of [M, Jxp] either entered by hand by a user (through corresponding input means associated with the computing device), or obtained directly by the computer device itself, having automatically calculated this or another computing device in communication with it.
Si bien para un ejemplo de realización del método propuesto por el primer aspecto de la invención es un usuario el que a través de un ocular del frontofocómetro determina cuándo la imagen de test está enfocada sobre el retículo, alternativamente, para otro ejemplo de realización, el método del primer aspecto de la invención comprende determinar automáticamente cuándo la imagen de test está enfocada sobre el retículo, captando imágenes superpuestas del retículo y del test mediante unos medios de adquisición de imágenes (que incluya uno o más sensores de imagen, elementos ópticos asociados, y componentes y circuitería eléctrica y electrónica asociada) y procesándolas mediante un software de reconocimiento de imágenes. Although for an example of embodiment of the method proposed by the first aspect of the invention is a user who through an eyepiece of the frontofocómetro determines when the test image is focused on the reticle, alternatively, for another example of embodiment, the The method of the first aspect of the invention comprises automatically determining when the test image is focused on the reticle, capturing superimposed images of the reticle and the test by means of image acquisition (including one or more image sensors, associated optical elements, and components and associated electrical and electronic circuitry) and processing them by means of image recognition software.
De acuerdo a un ejemplo de realización, el método propuesto por el primer aspecto de la invención comprende realizar automáticamente y de manera controlada el desplazamiento del test y los giros relativo y global de la lente de Stokes, hasta alcanzar unas posiciones para las que se obtenga la citada determinación de que la imagen de test está enfocada sobre el retículo, ya sea tal determinación realizada, preferentemente, de manera automática (mediante el mencionado reconocimiento de imágenes) o llevada a cabo por parte de un usuario mirando a través del ocular del frontofocómetro. According to an example of embodiment, the method proposed by the first aspect of the invention comprises automatically and in a controlled manner the displacement of the test and the relative and global turns of the Stokes lens, until reaching positions for which it is obtained said determination that the test image is focused on the reticle, either such determination made, preferably, automatically (through the aforementioned image recognition) or carried out by a user looking through the eyepiece of the frontofocometer .
Para una primera implementación, la lente de Stokes está formada por dos lentes cilindricas de igual potencia en módulo pero de signo contrario, mientras que para una segunda implementación la lente de Stokes está formada por dos lentes esfero-cilíndricas iguales con equivalente esférico nulo (no introduce componente esférica) de valores contrarios de esfera y cilindro. En ambo casos, el equivalente esférico de la combinación de ambas lentes (ya sean cilindricas o esfero-cilíndricas) en la lente de Stokes es nulo. For a first implementation, the Stokes lens is formed by two cylindrical lenses of equal power in module but of opposite sign, while for a second implementation the Stokes lens is formed by two equal sphero-cylindrical lenses with zero spherical equivalent (no introduces spherical component) of opposite values of sphere and cylinder. In both cases, the spherical equivalent of the combination of both lenses (either cylindrical or sphero-cylindrical) in the Stokes lens is zero.
Para un ejemplo de realización del método propuesto por el primer aspecto de la invención, éste comprende posicionar y marcar apropiadamente, previo paso al biselado y montaje en gafa, una lente astigmática fabricada con la potencia dióptrica medida en la etapa c), alineándola previamente al marcado con la orientación global de la lente de Stokes determinada al realizar la medida. For an example of embodiment of the method proposed by the first aspect of the invention, it comprises properly positioning and marking, prior to beveling and goggle assembly, an astigmatic lens manufactured with the dioptric power measured in step c), Aligning it previously to the marking with the global orientation of the Stokes lens determined when making the measurement.
El citado posicionamiento/marcaje de una lente astigmática en la orientación apropiada para compensar un determinado error refractivo de un paciente en gafa, sigue un proceso inverso al de medida de la potencia dióptrica frontal. Conocida la refracción esfero-cilíndrica, se realiza una conversión de notaciones inversa a la explicada anteriormente, es decir a notación polar de Fourier y se obtienen los valores pertinentes (magnitud del único desplazamiento del test, ángulo Q y posición angular global de la lente de Stokes), los cuales se introducen en el frontofocómetro modificado, es decir se aplican al desplazamiento del test y a la lente de Stokes. The aforementioned positioning / marking of an astigmatic lens in the appropriate orientation to compensate for a certain refractive error of a patient in glasses, follows a process inverse to the measurement of the frontal dioptric power. Once the sphero-cylindrical refraction is known, an inverse notation conversion is made to the one explained above, that is to say Fourier polar notation and the pertinent values are obtained (magnitude of the single displacement of the test, angle Q and global angular position of the Stokes), which are introduced in the modified frontofocometer, that is, they are applied to the displacement of the test and to the Stokes lens.
Posteriormente, se inserta la lente astigmática a posicionar en su lugar habilitado del frontofocómetro (concha de apoyo) y se gira la lente astigmática, sin tocar ningún control del frontofocómetro, hasta ver nítida la imagen del test. El giro es alrededor del eje óptico y lo que se está haciendo es posicionar los meridianos principales de la lente astigmática según la orientación deseada. De este modo, cuando todo el test aparezca nítidamente en la retina del observador (o en una imagen adquirida por unos medios de adquisición de imágenes), es decir cuando se hayan enfocado sobre el retículo la imagen del test simultáneamente para ambos de los dos meridianos perpendiculares, se habrá posicionado la lente astigmática correctamente, es decir se habrá determinado que se encuentra en una posición adecuada para el mareaje. Entonces se marca la lente astigmática con el sistema habitual del frontofocómetro y se lleva a biselado y montaje en gafa. Subsequently, the astigmatic lens is inserted to position it in its place enabled of the frontofocometer (support shell) and the astigmatic lens is rotated, without touching any control of the frontofocometer, until the test image is seen clearly. The rotation is around the optical axis and what is being done is to position the main meridians of the astigmatic lens according to the desired orientation. In this way, when the entire test appears clearly on the observer's retina (or in an image acquired by means of image acquisition), that is, when the image of the test has been focused on the reticle simultaneously for both of the two meridians perpendicular, the astigmatic lens will have been correctly positioned, that is, it will have been determined that it is in a suitable position for the marking. The astigmatic lens is then marked with the usual system of the frontofocometer and is worn with beveling and assembly in glasses.
El proceso de posicionamiento proporciona las mismas ventajas que el proceso de medida, es decir: i) ahorra tiempo puesto que no hay que comprobar ambos meridianos (todo aparece nítido a la vez) y, más importante, ii) reduce a cero el error del posicionamiento asociado a los métodos convencionales, puesto que no hay posibilidad de equivocarse con lecturas inversas en los meridianos principales. The positioning process provides the same advantages as the measurement process, ie: i) it saves time since you do not have to check both meridians (everything appears sharp at the same time) and, more importantly, ii) reduces the error of the positioning associated with conventional methods, since there is no possibility of being wrong with inverse readings in the main meridians.
Aunque en el presente documento, el mencionado proceso de posicionado y mareaje se ha descrito como dependiente del método de medida del primer aspecto de la presente invención, alternativamente podría ser objeto de protección independiente. Although in the present document, said positioning and marking process has been described as dependent on the measurement method of the first aspect of the present invention, it could alternatively be the object of independent protection.
Un segundo aspecto de la presente invención concierne a un sistema para medir la potencia dióptrica de vértice posterior de una lente astigmática, que comprende un frontofocómetro modificado que incorpora una lente de Stokes con un eje de giro que está alineado con el eje óptico del frontofocómetro y que es común tanto para un giro relativo, contrario en signo, de cada una de las lentes que conforman la lente de Stokes como para un giro global de toda la lente de Stokes, y que está configurado para implementar el método del primer aspecto de la presente invención. A second aspect of the present invention concerns a system for measuring the posterior vertex diopter power of an astigmatic lens, comprising a modified frontofocometer incorporating a Stokes lens with a rotation axis that is aligned with the optical axis of the frontofocometer and which is common both for a relative turn, opposite in sign, of each of the lenses that make up the Stokes lens and for a global turn of the whole Stokes lens, and which is configured to implement the method of the first aspect of the present invention.
Para un ejemplo de realización, el sistema del segundo aspecto de la presente invención comprende al menos un procesador configurado para procesar unos valores de magnitud del único desplazamiento del test, de las posiciones angulares relativas de las lentes de la lente de Stokes y de la posición angular global de la lente de Stokes, para calcular automáticamente la medida de la potencia dióptrica de vértice posterior de la lente astigmática para implementar la etapa c) del método del primer aspecto de la presente invención para implementar los ejemplos de realización descritos arriba y referidos a dicho cálculo automático. For an example of embodiment, the system of the second aspect of the present invention comprises at least one processor configured to process values of magnitude of the single displacement of the test, of the relative angular positions of the lens of the Stokes lens and of the position overall angle of the Stokes lens, to automatically calculate the measurement of the posterior vertex diopter power of the astigmatic lens to implement step c) of the method of the first aspect of the present invention to implement the embodiments described above and referred to said automatic calculation.
Según otro ejemplo de realización, el sistema del segundo aspecto de la presente invención comprende al menos un procesador configurado para procesar, según un algoritmo de conversión, los valores obtenidos en notación polar de Fourier para la medida de la potencia dióptrica de vértice posterior de la lente astigmática, para convertirlos automáticamente en valores de una notación esfero-cilíndrica, implementando así los ejemplos de realización del método del primer aspecto de la presente invención descritos arriba y referidos a dicha conversión automática de notaciones. According to another embodiment, the system of the second aspect of the present invention comprises at least one processor configured to process, according to a conversion algorithm, the values obtained in polar Fourier notation for the measurement of the posterior vertex diopter power of the astigmatic lens, to automatically convert them into values of a sphero-cylindrical notation, thus implementing the embodiments of the method of the first aspect of the present invention described above and referred to said automatic notation conversion.
De acuerdo con otro ejemplo de realización, el sistema del segundo aspecto de la presente invención está configurado para implementar los ejemplos de realización del método del primer aspecto de la presente invención descritos arriba y referidos a las detecciones posicionales automáticas y cálculo automático de la medida de la potencia dióptrica de vértice posterior de la lente astigmática a partir de dichas detecciones posicionales. Con tal fin, el sistema comprende: According to another embodiment, the system of the second aspect of the present invention is configured to implement the embodiments of the method of the first aspect of the present invention described above and referred to automatic positional detections and automatic calculation of the measurement of the posterior vertex diopter power of the astigmatic lens from said positional detections. For this purpose, the system comprises:
- unos sensores de posición configurados y dispuestos para detectar la posición de dicho test, y por ende la magnitud de su desplazamiento, las posiciones angulares relativas de las lentes de la lente de Stokes y la posición angular global de la lente de Stokes; y - position sensors configured and arranged to detect the position of said test, and therefore the magnitude of its displacement, the relative angular positions of the Stokes lens lenses and the overall angular position of the Stokes lens; Y
- un sistema electrónico de control conectado operativamente con dichos sensores de posición para recibir unas señales de salida de los mismos que son indicativas de las detecciones de posición realizadas, y que incluye al menos un procesador configurado para procesar unos datos contenidos en dichas señales de salida para calcular automáticamente la medida de la potencia dióptrica de vértice posterior de la lente astigmática. - an electronic control system operatively connected to said position sensors to receive output signals thereof which are indicative of the position detections made, and which includes at least one processor configured to process data contained in said output signals to automatically calculate the measurement of the posterior vertex diopter power of the astigmatic lens.
Para otro ejemplo de realización más del sistema propuesto por el segundo aspecto de la presente invención, éste está configurado para implementar los ejemplos de realización del método del primer aspecto de la presente invención descritos arriba y referidos a la determinación automática de cuándo la imagen de test está enfocada sobre el retículo, para lo cual el sistema comprende un sistema de adquisición y reconocimiento de imágenes que a su vez comprende unos medios de adquisición de imágenes (que incluye uno o más sensores de imagen, elementos ópticos asociados, y componentes y circuitería eléctrica y electrónica asociada) que están configurados y dispuestos para adquirir imágenes superpuestas del retículo y del test, y un software de reconocimiento de imágenes para procesar las imágenes adquiridas para determinar automáticamente cuándo la imagen de test está enfocada sobre el retículo. For yet another embodiment of the system proposed by the second aspect of the present invention, it is configured to implement the embodiments of the method of the first aspect of the present invention described above and referred to the automatic determination of when the test image is focused on the reticle, for which system comprises a system for acquiring and recognizing images which in turn comprises means for acquiring images (including one or more image sensors, associated optical elements, and components and associated electrical and electronic circuitry) that are configured and arranged to acquire superimposed images of the reticle and the test, and an image recognition software to process the acquired images to automatically determine when the test image is focused on the reticle.
Adicionalmente, para otro ejemplo de realización, el sistema del segundo aspecto de la presente invención está configurado para implementar los ejemplos de realización del método del primer aspecto de la presente invención descritos arriba y referidos a la realización automática y controlada del desplazamiento del test y de los giros relativo y global de la lente de Stokes, para lo cual el sistema comprende unos medios de accionamiento conectados cinemáticamente (directa o indirectamente a través de soportes o monturas de los mismos) al test, a las lentes de la lente de Stokes y a la lente de Stokes, y que están conectados operativamente al citado sistema electrónico de control para recibir unas correspondientes ordenes de control generadas por el mismo, y en respuesta a las mismas llevar a cabo, de manera automática y controlada, el desplazamiento del test y los giros relativo y global de la lente de Stokes. Additionally, for another example of embodiment, the system of the second aspect of the present invention is configured to implement the embodiments of the method of the first aspect of the present invention described above and referred to the automatic and controlled realization of the displacement of the test and the relative and global turns of the Stokes lens, for which the system comprises actuating means kinematically connected (directly or indirectly through supports or mounts thereof) to the test, to the lens lenses of Stokes and to the Stokes lens, and which are operatively connected to said electronic control system to receive corresponding control commands generated by it, and in response to them carry out, automatically and controlled, the displacement of the test and the turns relative and global of the Stokes lens.
En cuanto al frontofocómetro modificado, la presente invención contempla que éste sea fabricado con la modificación descrita arriba, es decir con la incorporación de la lente de Stokes, ya sea manual, semi-automático o automático, o proporcionar un accesorio que incorpore la lente de Stokes y que sea directamente acoplable a los frontofocómetros existentes. As for the modified frontofocometer, the present invention contemplates that this is manufactured with the modification described above, that is with the incorporation of the Stokes lens, whether manual, semi-automatic or automatic, or provide an accessory that incorporates the lens of Stokes and that is directly coupled to the existing frontofocómetros.
Un kit que incluya tal accesorio y los elementos necesarios para implementar el método del primer aspecto de la presente invención, se encuentra propuesto por un aspecto adicional de la presente invención. A kit including such an accessory and the elements necessary to implement the method of the first aspect of the present invention is proposed by a further aspect of the present invention.
La presente invención también concierne, en un tercer aspecto, a un programa de ordenador que incluye instrucciones de código de programa que cuando se ejecutan en un procesador implementan la etapa c) del método del primer aspecto de la invención calculando automáticamente la medida de la potencia dióptrica de vértice posterior de la lente astigmática. The present invention also concerns, in a third aspect, a computer program including program code instructions that when executed in a processor implements step c) of the method of the first aspect of the invention by automatically calculating the power measurement posterior vertex of the astigmatic lens.
De acuerdo con un ejemplo de realización, el programa de ordenador de acuerdo con el tercer aspecto de la presente invención incluye instrucciones de código de programa que cuando se ejecutan en un procesador llevan a cabo la conversión automática de la medida de la potencia dióptrica de vértice posterior de la lente astigmática obtenida, desde la notación polar de Fourier a una notación esfero-cilíndrica, implementando aquellos ejemplos de realización del método del primer aspecto de la invención explicados arriba y referidos a tal conversión automática de notaciones. According to an embodiment, the computer program according to the third aspect of the present invention includes program code instructions that when executed in a processor carry out the automatic conversion of the power measurement posterior vertex diopter of the obtained astigmatic lens, from the Fourier polar notation to a sphero-cylindrical notation, implementing those embodiments of the method of the first aspect of the invention explained above and referred to such automatic conversion of notations.
Para otro ejemplo de realización, el programa de ordenador de acuerdo con el tercer aspecto de la presente invención incluye instrucciones de código de programa que cuando se ejecutan en un procesador llevan a cabo de manera automática la conversión inversa de notaciones, desde la notación esfero-cilíndrica a la notación polar de Fourier, de la medida de la potencia dióptrica de vértice posterior de la lente astigmática a posicionar y marcar, del ejemplo de realización del método del primer aspecto de la invención explicado arriba y referidos al posicionamiento y mareaje de una lente astigmática. For another embodiment, the computer program according to the third aspect of the present invention includes program code instructions that when executed in a processor automatically carry out the inverse conversion of notations, from the spherical notation to the cylindrical to the Fourier polar notation, of the measurement of the posterior vertex diopter power of the astigmatic lens to be positioned and marked, of the embodiment of the method of the first aspect of the invention explained above and referred to the positioning and marking of a lens astigmatic
Breve descripción de los dibujos BRIEF DESCRIPTION OF THE DRAWINGS
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de la siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, que deben tomarse a título ilustrativo y no limitativo, en los que: The foregoing and other advantages and features will be more fully understood from the following detailed description of exemplary embodiments with reference to the accompanying drawings, which should be taken by way of illustration and not limitation, in which:
La Figura 1 el esquema de un frontofocómetro manual, utilizado para la aplicación del procedimiento estándar de medida, según se ha descrito anteriormente con referencia a dicha figura en el apartado de estado de la técnica; Figure 1 shows the diagram of a manual front-opener, used for the application of the standard measurement procedure, as described above with reference to said figure in the section of prior art;
La Figura 2 muestra el desenfoque del test T para: (a) lente esférica, y (b)-(c) lentes astigmáticas aplicando el procedimiento estándar de medida; Figure 2 shows the defocusing of the T test for: (a) spherical lens, and (b) - (c) astigmatic lenses applying the standard measurement procedure;
La Figura 3 muestra un esquema simplificado de un frontofocómetro manual modificado a utilizar por el método del primer aspecto de la invención y que forma parte del sistema propuesto por el segundo aspecto de la invención, para un ejemplo de realización; Figure 3 shows a simplified diagram of a modified manual front-opener to be used by the method of the first aspect of the invention and forming part of the system proposed by the second aspect of the invention, for an example of embodiment;
La Figura 4 muestra una serie de vistas esquemáticas de la lente de Stokes del frontofocómetro de la Figura 3, para diferentes posiciones angulares relativas de las dos lentes LS+ y LS- que la conforman, y diferentes posiciones angulares globales de la lente de Stokes. En particular se ilustra un doble ejemplo de utilización de la lente de Stokes LS. Por filas: (a)- (b)-(c) y (d)-(e)-(f) son para el caso particular de generación de potencia astigmática pura a 0°/90° y para el caso genérico de b/(b+90°), respectivamente. Por columnas: (a) y (d) representan el paso inicial con los ejes de los cilindros puros alineados, (b) y (e) para un giro arbitrario de Q0, y (c) y (f) para el giro máximo de 45°. Figure 4 shows a series of schematic views of the Stokes lens of the frontofocometer of Figure 3, for different relative angular positions of the two lenses LS + and LS- that make it, and different global angular positions of the Stokes lens. In particular, a double example of the use of the Stokes LS lens is illustrated. By rows: (a) - (b) - (c) and (d) - (e) - (f) are for the particular case of generation of pure astigmatic power at 0 ° / 90 ° and for the generic case of b / (b + 90 °), respectively. By columns: (a) and (d) represent the initial step with the axes of the pure cylinders aligned, (b) and (e) for an arbitrary rotation of Q 0 , and (c) and (f) for the maximum rotation of 45 °.
La figura 5 muestra una gráfica relativa a una calibración realizada con una lente de Stokes construida por el presente inventor a partir de dos cilindros puros, e incorporada a un frontofocó metro manual, obteniendo así el frontofocó etro modificado según la presente invención, utilizado para llevar cabo una validación experimental del método y sistema de la presente invención. Figure 5 shows a graph relating to a calibration performed with a Stokes lens constructed by the present inventor from two pure cylinders, and incorporated into a frontofocó manual meter, thus obtaining the modified front electrode according to the present invention, used to carry out an experimental validation of the method and system of the present invention.
La Figura 6 muestra una serie de ilustraciones correspondientes a imágenes obtenidas mediante el método estándar de medida (columnas izquierda y central) y el método propuesto por el primer aspecto de la invención (columna derecha), para la medida de diferentes lentes astigmáticas. Figure 6 shows a series of illustrations corresponding to images obtained by the standard measurement method (left and center columns) and the method proposed by the first aspect of the invention (right column), for the measurement of different astigmatic lenses.
Descripción detallada de unos
Figure imgf000017_0001
de realización
Detailed description of ones
Figure imgf000017_0001
of realization
En la Figura 3 se ilustra un posible esquema de frontofocó metro modificado según la presente invención, donde se han reducido los elementos del mismo a los indispensables. De izquierda a derecha se ilustra: la fuente de luz F (en forma de bombilla o LED), una lente condensadora C, el test en cruz T, un sistema de lentes colimadoras Le, la lente astigmática a medir L apoyada en la concha de apoyo del frontofocómetro, la lente de Stokes LS, el objetivo OB del ocular, el retículo R y el ocular OC. In Figure 3 a possible scheme of frontofocómetro modified according to the present invention is illustrated, where the elements of the same have been reduced to the indispensable ones. From left to right it is illustrated: the light source F (in the form of a bulb or LED), a condensing lens C, the cross-T test, a system of lenses colimagers Le, the astigmatic lens to measure L supported on the shell of support of the frontofocómetro, the lens of Stokes LS, the objective OB of the eyepiece, the reticle R and the ocular OC.
Para el ejemplo de realización ilustrado, la lente de Stokes LS está compuesta por dos lentes cilindricas de igual valor y signo contrario. Dichas lentes se han identificado en la Figura 3 como LS+ y LS- para designar, respectivamente, las lentes cilindricas positiva y negativa. For the illustrated embodiment, the Stokes LS lens is composed of two cylindrical lenses of equal value and opposite sign. Said lenses have been identified in Figure 3 as LS + and LS- to designate, respectively, the positive and negative cylindrical lenses.
Es decir que para el ejemplo de realización ilustrado en la Figura 3, se ha escogido la primera implementación indicada en un apartado anterior, para la cual la lente de Stokes está formada por dos lentes cilindricas de igual potencia en módulo pero de signo contrario. That is to say that for the example of embodiment illustrated in Figure 3, the first implementation indicated in a previous section has been chosen, for which the Stokes lens is formed by two cylindrical lenses of equal power in module but of opposite sign.
Dicha primera implementación significa que se está acoplando un cilindro puro positivo con eje arbitrario en 45° (nótese que el eje es irrelevante pero para entender el ejemplo es mejor fijar un valor) con un cilindro puro negativo de la misma potencia en módulo con eje en 45°, es decir: (Cx45°) + (-Cx45°). En esa situación, la potencia resultante es nula (tanto de cilindro como de esfera) y por tanto no se actúa sobre la lente astigmática a medir. Pero la lente de Stokes permite girar por igual pero en sentido contrario ambas lentes cilindricas puras hasta llegar a la situación de ortogonalidad tras haber girado ±45° ambas lentes, situación que viene descrita por (Cx90°) + (-Cx0°). En ese momento, la lente resultante de la suma de ambos cilindros puede escribirse como un cilindro cruzado de Jackson de potencia J = C y eje a 0o que en notación polar de Fourier se escribe como [Cx0°] mientras que en notación esfero- cilíndrica se formula como (C, -2CxO°). Nótese que si el giro hubiese sido de +45°, se hubiese llegado a las notaciones [-Cx0°] o (C, -2Cx90°). Esto quiere decir, que la lente de Stokes generada al variar desde 0o a 45° las orientaciones de los cilindros puros genera un astigmatismo variable en potencia hasta un valor máximo de |2C| en módulo con unos meridianos principales de 0-90°. Esta lente de Stokes sería perfecta para poder compensar el astigmatismo de una lente L que genere el desenfoque representado en la Figura 2. Said first implementation means that a pure positive cylinder with an arbitrary axis is being coupled at 45 ° (note that the axis is irrelevant but to understand the example it is better to fix a value) with a pure negative cylinder of the same power in module with axis in 45 °, that is: (Cx45 °) + (-Cx45 °). In this situation, the resulting power is zero (both cylinder and sphere) and therefore not act on the astigmatic lens to be measured. But the Stokes lens allows to rotate equally but in the opposite direction both pure cylindrical lenses until reaching the orthogonality situation after having rotated ± 45 ° both lenses, a situation that is described by (Cx90 °) + (-Cx0 °). At that time, the lens resulting from the sum of both cylinders can be written as a cross cylinder of Jackson of power J = C and axis a 0 or that in Fourier polar notation is written as [Cx0 °] while in spherical notation Cylindrical is formulated as (C, -2CxO °). Note that if the rotation had been + 45 °, the notations [-Cx0 °] or (C, -2Cx90 °) would have been reached. This means that the lens Stokes generated to vary from 0 to 45 ° or orientations pure astigmatism cylinders generates a varying potential to a maximum value of | 2C | in module with some Main meridians of 0-90 °. This Stokes lens would be perfect to compensate for the astigmatism of an L lens that generates the blur shown in Figure 2.
Para cualquier otra orientación de los meridianos principales de la lente astigmática L a medir, la lente de Stokes LS puede girarse globalmente desde 0 hasta 180° (no hace falta más) para generar la potencia astigmática alineada con dichos meridianos y poder obtener la imagen del test T enfocada simultáneamente en todas direcciones. For any other orientation of the main meridians of the astigmatic lens L to be measured, the Stokes LS lens can be rotated globally from 0 to 180 ° (no more needed) to generate the astigmatic power aligned with said meridians and to obtain the image of the T test focused simultaneously in all directions.
Asimismo, si la lente astigmática L además de astigmatismo posee una componente esférica, dicha componente se compensa con la propia rueda de potencia esférica del frontofocómetro para poder tener todo el test enfocado simultáneamente. La potencia esférica leída del dial circular del frontofocómetro no es propiamente una potencia esférica sino un equivalente esférico de la lente L. Esto se debe a que, de acuerdo a la presente invención, se está realizando la medida en la notación polar de Fourier de la potencia dióptrica. Likewise, if the astigmatic lens L in addition to astigmatism has a spherical component, this component is compensated with the own spherical power wheel of the frontofocometer to be able to have the entire test focused simultaneously. The spherical power read from the circular dial of the frontofocometer is not properly a spherical power but a spherical equivalent of the L lens. This is because, according to the present invention, the measurement is being made in the Fourier polar notation of the dioptric power.
Por tanto, las lecturas totales obtenidas para una lente L, que en notación esfero-cilíndrica se representa como (S, Ocb), son, tal y como se ha indicado en un apartado anterior: [M, Jxp] donde M se lee directamente de la escala de potencia del frontofocómetro y resulta valer M = S + C/2, J que es el valor del cilindro cruzado de Jackson que se obtiene a partir de los valores de potencia cilindrica C de la lente de Stokes y del ángulo relativo Q que se han girado ambas lentes, y p que es la orientación global de la lente de Stokes. Therefore, the total readings obtained for an L lens, which in sphero-cylindrical notation is represented as (S, Ocb), are, as indicated in a previous section: [M, Jxp] where M is read directly of the power scale of the frontofocometer and it turns out to be M = S + C / 2, J which is the value of the crossed cylinder of Jackson that is obtained from the cylindrical power values C of the Stokes lens and of the relative angle Q that both lenses have been rotated, and p that is the overall orientation of the Stokes lens.
Siguiendo con la descripción del esquema ilustrado en la Figura 3, en éste ambas lentes LS+, LS- van sujetas por una montura (no ilustrada) que permite girar las lentes el mismo ángulo pero en sentido contrario. Además, la montura puede girar globalmente toda la lente de Stokes LS para cubrir todo el intervalo angular de orientaciones de astigmatismo. De este modo, se parte de una posición en la que los ejes de las lentes LS+, LS- están alineados y, por tanto, no existe componente astigmática resultante. Esta situación se ha representado en la Figura 4a en la que se ha elegido por simplicidad que el ángulo global de la lente de Stokes LS sea de 45°. Nótese que esta situación (ejes de las lentes LS+ y LS- coincidentes) sería la elegida para la medida de la potencia dióptrica en lentes esféricas ya que la medida correspondería a la lectura originada por la rueda de potencias del frontofocómetro al no inducirse componente astigmática (caso de la Figura 2a). Following the description of the scheme illustrated in Figure 3, in this both lenses LS +, LS- are held by a mount (not shown) that allows the lenses to rotate at the same angle but in the opposite direction. In addition, the frame can globally rotate the entire Stokes LS lens to cover the entire angular range of astigmatism orientations. In this way, we start from a position in which the axes of the lenses LS +, LS- are aligned and, therefore, there is no resultant astigmatic component. This situation is represented in Figure 4a in which it has been chosen for simplicity that the overall angle of the Stokes LS lens is 45 °. Note that this situation (axes of the matching LS + and LS-lenses) would be the one chosen for the measurement of the dioptric power in spherical lenses since the measurement would correspond to the reading originated by the power wheel of the frontofocometer when no astigmatic component was induced ( case of Figure 2a).
Sin embargo, para el caso en el que la lente L sea una lente astigmática con meridianos principales a 0o y 90°, con la posición de la Figura 4a de las lentes cilindricas LS+, LS- de la lente de Stokes LS no se compensa la componente astigmática, por lo que el test T se verá desenfocado en uno de sus meridianos principales (casos de las Figs. 2b-c) pudiendo alternar entre ellos actuando sobre la rueda de potencia esférica. Ahora bien, si se varía el ángulo Q entre los ejes de las lentes cilindricas LS+, LS- de la lente de Stokes LS (Q perteneciente al intervalo angular de ±45° del ángulo global de 45°), se genera una potencia astigmática pura en la forma de un cilindro cruzado de Jackson de potencia“C sen(20)” y“-C sen(20)” en los meridianos horizontal (0o) y vertical (90°). Esta situación se corresponde con la Figura 4b en la que, como ejemplo, se han girado ±20° las lentes cilindricas puras. Esa potencia astigmática pura (en la forma de un cilindro cruzado de Jackson) será máxima cuando el ángulo de giro Q sea igual a +45° (o -45°), en cuyo caso las potencias horizontal y vertical son de +C (o -C) y - C (o +C), respectivamente. Esta situación se corresponde con el diagrama de la Figura 4c. Nótese que, independientemente del ángulo Q, los meridianos principales de la potencia astigmática pura siempre salen a ±45° de la orientación global de la lente de Stokes LS (en este caso particular, meridianos horizontal y vertical). En este caso particular, estas potencias generan una componente astigmática pura en la forma de un cilindro cruzado de Jackson de potencia [Cx0°] (o [-CxO0]) que forma parte de la notación polar de Fourier de la potencia dióptrica. However, for the case in which the lens L is an astigmatic lens with main meridians at 0 o and 90 °, with the position of Figure 4a of the cylindrical lenses LS +, LS- of the Stokes LS lens does not compensate the astigmatic component, so that the T test will be defocused in one of its main meridians (cases of Figs 2b-c) being able to alternate between them acting on the spherical power wheel. Now, if the Q angle is varied between the axes of the cylindrical lenses LS +, LS- of the Stokes LS lens (Q belonging to the angular range of ± 45 ° of the global angle of 45 °), a pure astigmatic power is generated in the shape of a crossed cylinder of Jackson of power "C sin (20)" and "-C sin (20)" in the meridians horizontal (0 o ) and vertical (90 °). This situation corresponds to Figure 4b in which, as an example, pure cylindrical lenses have been rotated ± 20 °. That pure astigmatic power (in the form of a crossed cylinder of Jackson) will be maximum when the angle of turn Q is equal to + 45 ° (or -45 °), in which case the horizontal and vertical powers are + C (or -C) and - C (or + C), respectively. This situation corresponds to the diagram of Figure 4c. Note that, independently of the angle Q, the main meridians of the pure astigmatic power always leave ± 45 ° from the global orientation of the Stokes LS lens (in this particular case, horizontal and vertical meridians). In this particular case, these powers generate a pure astigmatic component in the form of a Jackson cross cylinder of power [Cx0 °] (or [-CxO 0 ]) that is part of the Fourier polar notation of the dioptric power.
Para cualquier otra orientación global (Figs. 4d-e-f), las potencias máximas de ±C se obtienen en otros meridianos principales situados a ±45° de la orientación o ángulo global“b+45°”. Por lo tanto, cuando se quiere medir la potencia de una lente astigmática cuyos meridianos principales están en un valor arbitrario de“b” y“b+90°”, respectivamente, hay que partir de una posición global de la lente de Stokes de“b+45°” o“b-45°” para que la potencia astigmática se genere precisamente en“b” y“b+90°”. For any other global orientation (Figs 4d-e-f), the maximum powers of ± C are obtained in other principal meridians located at ± 45 ° of the global orientation or angle "b + 45 °". Therefore, when we want to measure the power of an astigmatic lens whose main meridians are at an arbitrary value of "b" and "b + 90 °", respectively, we must start from an overall position of the Stokes lens " b + 45 ° "or" b-45 ° "so that the astigmatic power is generated precisely in" b "and" b + 90 ° ".
Los valores siguientes son los que hay que ajustar experimentalmente para determinar la potencia de la lente L que se pretende medir: The following values are those that must be adjusted experimentally to determine the power of the L lens that is intended to be measured:
1. El valor de la posición angular global de la lente de Stokes LS (o ángulo llamado “b+45°”) que permite generar componente astigmática pura en forma de cilindro cruzado de Jackson variable con los meridianos principales en“b” y“b+90°”. 1. The value of the overall angular position of the Stokes LS lens (or angle called "b + 45 °") that allows to generate pure astigmatic component in the form of a variable cross cylinder of Jackson with the main meridians in "b" and " b + 90 °. "
2. El valor del ángulo que hay que girar las lentes cilindricas puras en sentido contrario (o ángulo Q) para generar la componente astigmática de potencia J = C sen(20) que es igual pero cambiada de signo al del cilindro de la lente astigmática L.  2. The value of the angle that the pure cylindrical lenses must rotate in the opposite direction (or angle Q) to generate the astigmatic component of power J = C sin (20) which is equal but changed in sign to the cylinder of the astigmatic lens L.
3. El valor de la componente de equivalente esférico (M) proporcionado por la rueda de potencia dióptrica esférica del frontofocómetro.  3. The value of the spherical equivalent component (M) provided by the spherical diopter power wheel of the frontofocometer.
Con estos tres valores ajustados experimentalmente se tiene toda la información necesaria para determinar la potencia astigmática según la notación polar de Fourier [M, Jxb] de la lente L propuesta por la presente invención, sin margen de equivocación en el manejo y anotación de los resultados porque se produce una imagen del test T del frontofocó etro completamente nítida en todas sus orientaciones. With these three experimentally adjusted values we have all the necessary information to determine the astigmatic power according to the Fourier polar notation [M, Jxb] of the L lens proposed by the present invention, without margin of error in the handling and annotation of the results because an image of the T test of the frontofocó etro completely clear in all its orientations.
Alternativamente, para la segunda implementación de la lente de Stokes descrita en un apartado anterior, ésta se realiza con dos lentes esfero-cilíndricas iguales pero con valores contrarios de esfera y cilindro. Esto significa que si una lente posee una notación (C, -2Cxa°), la otra lente debe tener (-C, 2Cxa°) siendo a arbitrario e igual la posición global de (“b+45°” o “b-45°”). Todo lo anteriormente dicho para el caso de las lentes cilindricas puras, sirve también para el caso de estas lentes esfero-cilíndricas con equivalente esférico nulo. Alternatively, for the second implementation of the Stokes lens described in a previous section, this is done with two identical sphero-cylindrical lenses but with opposite values of sphere and cylinder. This means that if a lens has a notation (C, -2Cxa °), the other lens must have (-C, 2Cxa °) being arbitrary and equal the global position of ("b + 45 °" or "b-45 ° "). All of the above for the case of pure cylindrical lenses, also serves for the case of these sphero-cylindrical lenses with zero spherical equivalent.
Para validar experimentalmente a modo de demostrador de laboratorio el método propuesto por la presente invención, el presente inventor ha construido una lente de Stokes tomando un soporte de prismas de Risley existente en un foróptero antiguo y reemplazando los prismas por dos lentes cilindricas de ±1.50D de potencia, y han introducido la lente de Stokes así construida en un frontofocómetro manual para modificarlo de acuerdo con la presente invención. La Figura 5 muestra una gráfica relativa a una calibración, realizada con el propio frontofocómetro manual en el que se ha implementado la técnica propuesta por el método del primer aspecto de la presente invención, de potencias generadas (eje de ordenadas) a medida que las lentes cilindricas se van girando (eje de abscisas). Antes que nada, decir que el ángulo de giro no está en grados sino en dioptrías prismáticas (D) dado que el dial del soporte de prismas de Risley está en dichas unidades; por tanto, se he tenido que realizar un paso de D a ángulo (°) con el fin de saber qué ángulo se corresponde con las lecturas dadas por la escala de D. Nótese que en la invención propuesta, en general el dial de lectura se encuentra en grados facilitando el procedimiento de medida. Se puede ver en la Figura 5 cómo se va generando componente cilindrica desde una posición 0 equivalente a ambos cilindros con los ejes alineados (posición en torno a 10D) para alcanzar su valor máximo de -3D a 45° de giro de cada lente (posición en torno a 0D). Además del cilindro generado, la lente también genera valor de S por lo que el M total resulta siempre nulo (M =0D). To validate experimentally as a laboratory demonstrator the method proposed by the present invention, the present inventor has constructed a Stokes lens by taking a Risley prism support existing in an ancient phoropter and replacing the prisms by two cylindrical lenses of ± 1.50D of power, and have introduced the Stokes lens thus constructed in a manual front-opener to modify it in accordance with the present invention. Figure 5 shows a graph relating to a calibration, performed with the manual front-scope meter itself, in which the technique proposed by the method of the first aspect of the present invention has been implemented, of generated powers (ordinate axis) as the lenses cylindrical rotating (abscissa axis). First of all, to say that the angle of rotation is not in degrees but in prismatic diopters (D) since the dial of the Risley prism support is in said units; therefore, I had to perform a step from D to angle (°) in order to know which angle corresponds to the readings given by the scale of D. Note that in the proposed invention, in general the reading dial is find in degrees facilitating the measurement procedure. It can be seen in Figure 5 how the cylindrical component is generated from a position 0 equivalent to both cylinders with the axes aligned (position around 10D) to reach its maximum value of -3D at 45 ° of rotation of each lens (position around 0D). In addition to the generated cylinder, the lens also generates a value of S so that the total M is always zero (M = 0D).
En la calibración de la Figura 5 puede verse cómo las componentes C y S se ajustan perfectamente a los valores esperados (valores teóricos) y ambas componentes se generan en la proporción S = -C/2 haciendo que el valor total de M siempre sea nulo. In the calibration of Figure 5 it can be seen how the components C and S fit perfectly to the expected values (theoretical values) and both components are generated in the proportion S = -C / 2 making the total value of M always zero .
Adicionalmente al giro opuesto de ambas lentes cilindricas, el soporte de prismas de Risley permite girar globalmente ambas lentes la misma cantidad. Este hecho es vital bien para poder alinear la lente de Stokes con los meridianos principales de la lente a medir (proceso de medida de la lente) o bien para fijar una orientación dada y alinear la lente con dicha orientación (proceso de mareaje y montaje de la lente en gafa). De este modo, sea cual sea la componente astigmática de la lente (valor y orientación) se puede compensar con la lente de Stokes mientras que la componente esférica de dicha lente se ajusta con la rueda de potencia esférica del propio frontofocó metro. Esto se basa en un procedimiento de medida, propuesto por la presente invención, que incluye un doble proceso en el que se gira la rueda de potencia esférica del frontofocó metro a la vez que se va variando la orientación de la lente de Stokes para posicionarse sobre los meridianos principales de la lente. Posteriormente, solo hay que retocar el ángulo entre los cilindros para conseguir una imagen nítida del test donde todas sus líneas se ven enfocadas a la vez. In addition to the opposite rotation of both cylindrical lenses, the Risley prism support allows both lenses to rotate the same amount globally. This fact is vital either to be able to align the Stokes lens with the main meridians of the lens to be measured (measurement process of the lens) or to fix a given orientation and align the lens with this orientation (process of marking and assembly of the lens). the lens in glasses). In this way, whatever the astigmatic component of the lens (value and orientation) can be compensated with the Stokes lens while the spherical component of said lens is adjusted with the spherical power wheel of the frontofocómetro itself. This is based on a measurement procedure, proposed by the present invention, which includes a double process in which the spherical power wheel of the frontofocómetro is rotated while the orientation of the Stokes lens is varied to position on The main meridians of the lens. Afterwards, you only have to retouch the angle between the cylinders to get a clear image of the test where all your lines are focused at the same time.
Con el frontofocómetro modificado con la lente de Stokes construida por los presentes inventores, se ha realizado la medida de una lente astigmática como la descrita anteriormente en un ejemplo, es decir una lente de (-0. 25, -1.00x0°) en notación esfero-cilíndrica, y se ha validado el resultado de medición obtenido, que ha ofrecido unos valores de M = -0.75D, J = +0.50D Y b = 0o, que se expresan en notación polar de Fourier como [-0.75, +0.50x0°], los cuales se han convertido a notación esfero-cilíndrica a través de las expresiones indicadas anteriormente en el presente documento. With the modified front endoscope with the Stokes lens constructed by the present inventors, the measurement of an astigmatic lens as described above has been carried out in an example, that is to say a lens of (-0.25, -1.00x0 °) in notation spheron-cylindrical, and the obtained measurement result has been validated, which has offered values of M = -0.75D, J = + 0.50DY b = 0 or , which are expressed in Fourier polar notation as [-0.75, + 0.50x0 °], which have been converted to sphero-cylindrical notation through the expressions indicated above in this document.
Además del experimento arriba explicado, el presente inventor ha realizado pruebas con diferentes lentes astigmáticas, positivas y negativas, medidas con el método estándar y con el método propuesto por el primer aspecto de la presente invención. Las pruebas se han realizado hasta una potencia de |3|D de astigmatismo (en módulo) que se corresponde con la máxima potencia de la lente de Stokes generada; no obstante, se puede extender este rango hasta potencias mucho más altas sin más que tener en cuentas otros cilindros y un paso más fino del dial en la lente de Stokes. Además, se han hecho pruebas en diferentes orientaciones y con diferentes fuentes de iluminación (los frontofocómetros manuales llevan dos tipos de iluminaciones: luz blanca y con filtro verde). In addition to the above-explained experiment, the present inventor has performed tests with different astigmatic, positive and negative lenses, measured with the standard method and with the method proposed by the first aspect of the present invention. The tests have been performed up to a power of | 3 | D of astigmatism (in module) that corresponds to the maximum power of the Stokes lens generated; however, this range can be extended to much higher powers without having to account for other cylinders and a finer pitch of the dial in the Stokes lens. In addition, tests have been done in different orientations and with different lighting sources (the manual frontofocómetros have two types of illuminations: white light and green filter).
En la Figura 6 y a modo de mosaico se incluyen ilustraciones de algunas (no todas, las más representativas) de las medidas realizadas. Se trata de esquemas representativos de algunas medidas hechas. En las dos primeras columnas se han incluido ilustraciones correspondiente a las imágenes procedentes del método estándar donde se pueden ver, por separado, nítidas ambas direcciones o meridianos del test del frontofocómetro junto con las lecturas de potencia (dial circular en cada imagen) de ambas medidas. Estas potencias son anotadas por separado (texto blanco en la parte superior de las ilustraciones) para obtener la notación esfero- cilíndrica de la potencia dióptrica de vértice posterior de la lente medida (texto en negrita en la parte inferior de ambas ilustraciones). Por otro lado, la columna de la derecha incluye una ilustración correspondiente a la imagen obtenida a partir del método propuesto por la presente invención, en la que puede verse cómo el test del frontofocó metro aparece nítido en todas sus direcciones simultáneamente. Anotando los valores de potencia esférica M dados por la rueda de ajuste de esfera del frontofocó metro (dial circular de las ilustraciones) y los valores dados por la lente de Stokes en potencia y orientación, se obtiene la notación polar de Fourier [M, ύcb] (incluida en blanco en la parte superior de las ilustraciones) a partir de la cual se deriva la notación esfero- cilíndrica y que coincide exactamente con la obtenida por el método clásico. In Figure 6 and as a mosaic, illustrations of some (not all, the most representative) of the measurements made are included. These are representative schemes of some measures taken. In the first two columns have been included illustrations corresponding to the images from the standard method where you can see, separately, clear both directions or meridians of the frontofocometer test along with the power readings (circular dial in each image) of both measurements . These powers are annotated separately (white text at the top of the illustrations) to obtain the spheroidal-cylindrical notation of the posterior vertex diopter power of the measured lens (bold text at the bottom of both illustrations). On the other hand, the column on the right includes an illustration corresponding to the image obtained from the method proposed by the present invention, in which it can be seen how the test of the frontofocó meter appears clear in all its directions simultaneously. Noting the spherical power values M given by the dial adjustment wheel of the frontofocómetro (circular dial of the illustrations) and the values given by the Stokes lens in power and orientation, we obtain the Fourier polar notation [M, ύcb ] (included in white at the top of the illustrations) from which the spherical-cylindrical notation is derived and which coincides exactly with that obtained by the classical method.
Un experto en la materia podría introducir cambios y modificaciones en los ejemplos de realización descritos sin salirse del alcance de la invención según está definido en las reivindicaciones adjuntas. A person skilled in the art could introduce changes and modifications to the described embodiments without departing from the scope of the invention as defined in the appended claims.

Claims

REIVINDICACIONES
1 Método para medir la potencia dióptrica de vértice posterior de una lente astigmática, que comprende: a) disponer una lente astigmática sobre una concha de apoyo de un frontofocómetro, entre un colimador y un objetivo del mismo; b) iluminar y desplazar un test del frontofocómetro para colimar un haz de luz, que contiene una imagen de dicho test, sobre dicho objetivo, tras pasar por dicho colimador y dicha lente astigmática, y enfocar sobre un retículo del frontofocómetro al menos una porción de dicha imagen correspondiente a al menos un meridiano de dos meridianos perpendiculares en los cuales la lente astigmática tiene dos respectivas potencias maximales; y c) medir la potencia dióptrica de vértice posterior de la lente astigmática a partir al menos de la magnitud de dicho desplazamiento del test; caracterizado porque comprende proporcionar, como dicho frontofocómetro, un frontofocómetro modificado que incorpora una lente de Stokes con un eje de giro que está alineado con el eje óptico del frontofocómetro y que es común tanto para un giro relativo, contrario en signo, de cada una de las lentes que conforman la lente de Stokes como para un giro global de toda la lente de Stokes, y porque: dicha etapa b) comprende enfocar sobre dicho retículo la imagen del test simultáneamente para ambos de dichos dos meridianos perpendiculares, mediante un único desplazamiento del test y actuando sobre dicha lente de Stokes para realizar dicho giro global y/o dicho giro relativo, para que adopte una posición angular global determinada y unas posiciones angulares relativas determinadas, para cada lente de la lente de Stokes, y dicha etapa c) comprende obtener la medida de la potencia dióptrica de vértice posterior de la lente astigmática simultáneamente para ambos de dichos dos meridianos perpendiculares a partir de la magnitud de dicho único desplazamiento del test, del ángulo relativo Q que se ha girado cada una de las lentes que conforman la lente de Stokes, y de la posición angular global de la lente de Stokes. A method for measuring the posterior apex diopter power of an astigmatic lens, comprising: a) disposing an astigmatic lens on a support shell of a front-opener, between a collimator and a lens thereof; b) illuminating and displacing a test of the frontofocometer to collimate a beam of light, containing an image of said test, on said objective, after passing said collimator and said astigmatic lens, and focusing on a lattice of the frontofocometer at least a portion of said image corresponding to at least one meridian of two perpendicular meridians in which the astigmatic lens has two respective maximum powers; and c) measuring the posterior apex diopter power of the astigmatic lens from at least the magnitude of said test displacement; characterized in that it comprises providing, as said frontofocometer, a modified frontofocometer that incorporates a Stokes lens with a rotation axis that is aligned with the optical axis of the frontofocometer and that is common both for a relative turn, opposite in sign, of each of the lenses that make up the Stokes lens as for a global rotation of the entire Stokes lens, and because: said step b) comprises focusing on said network the image of the test simultaneously for both of said two perpendicular meridians, by a single displacement of the testing and acting on said Stokes lens to perform said overall rotation and / or said relative rotation, so that it adopts a given overall angular position and certain relative angular positions, for each lens of the Stokes lens, and said step c) comprises obtain the measurement of the posterior vertex diopter power of the astigmatic lens simultaneously for both of said two merid perpendicular from the magnitude of said single displacement of the test, from the relative angle Q that has been rotated each of the lenses that make up the Stokes lens, and from the overall angular position of the Stokes lens.
2.- Método de acuerdo con la reivindicación 1 , caracterizado porque comprende proporcionar dicho frontofocómetro modificado con la lente de Stokes dispuesta entre dicha lente astigmática y dicho objetivo. 2. Method according to claim 1, characterized in that it comprises providing said modified frontofocometer with the Stokes lens disposed between said astigmatic lens and said objective.
3.- Método de acuerdo con la reivindicación 1 ó 2, caracterizado porque la etapa c) comprende obtener la medida de la potencia dióptrica de vértice posterior de la lente astigmática en notación polar de Fourier, en la forma de [M, cb], donde: 3. Method according to claim 1 or 2, characterized in that step c) comprises obtaining the measurement of the posterior vertex diopter power of the astigmatic lens in Fourier polar notation, in the form of [M, cb], where:
M corresponde al valor de una escala de potencia del frontofocómetro que es función de la magnitud del único desplazamiento del test y corresponde al equivalente esférico de la lente astigmática, M corresponds to the value of a power scale of the frontofocometer that is a function of the magnitude of the single displacement of the test and corresponds to the spherical equivalent of the astigmatic lens,
J = C sen(20), es el valor del cilindro cruzado de Jackson que se obtiene a partir de los valores de potencia cilindrica C de la lente de Stokes y del ángulo relativo Q, y b+45° es la posición angular global, u orientación global, de la lente de Stokes que permite generar componente astigmática pura en forma de cilindro cruzado de Jackson variable con los meridianos principales de la lente astigmática en b y b+90. J = C sin (20), is the value of the crossed cylinder of Jackson that is obtained from the values of cylindrical power C of the Stokes lens and of the relative angle Q, and b + 45 ° is the global angular position, or global orientation, of the Stokes lens that allows to generate pure astigmatic component in the form of a variable Jackson crossover with the main meridians of the astigmatic lens in b and b + 90.
4 Método de acuerdo con la reivindicación 3, caracterizado porque comprende realizar una conversión de la medida de la potencia dióptrica de vértice posterior de la lente astigmática obtenida, desde dicha notación polar de Fourier a una notación esfero-cilíndrica, directa o traspuesta. Method according to claim 3, characterized in that it comprises carrying out a conversion of the measurement of the posterior vertex diopter power of the obtained astigmatic lens, from said polar Fourier notation to a sphero-cylindrical notation, direct or transposed.
5.- Método de acuerdo con la reivindicación 4, caracterizado porque comprende realizar dicha conversión para una notación esfero-cilíndrica directa expresada en la forma de (S, Ocb), donde S = M + J, C = -2J, y b = b. 5. Method according to claim 4, characterized in that it comprises performing said conversion for a direct sphero-cylindrical notation expressed in the form of (S, Ocb), where S = M + J, C = -2J, and b = b .
6.- Método de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende detectar automáticamente, mediante unos sensores de posición, dicha magnitud del único desplazamiento del test, dichas posiciones angulares relativas de las lentes de la lente de Stokes y dicha posición angular global de la lente de Stokes. 6. Method according to any one of the preceding claims, characterized in that it comprises automatically detecting, by means of position sensors, said magnitude of the single displacement of the test, said relative angular positions of the lens of the Stokes lens and said angular position. of the Stokes lens.
7.- Método de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende realizar la etapa c) de obtención de la medida de la potencia dióptrica de vértice posterior de la lente astigmática calculándola automáticamente. 7. Method according to any one of the preceding claims, characterized in that it comprises performing step c) of obtaining the measurement of the posterior vertex diopter power of the astigmatic lens by calculating it automatically.
8.- Método de acuerdo con la reivindicación 7 cuando depende de la 6, caracterizado porque comprende llevar a cabo dicho cálculo automático procesando los valores obtenidos mediante dicha detección automática. 8. Method according to claim 7 when dependent on the 6, characterized in that it comprises carrying out said automatic calculation by processing the values obtained by said automatic detection.
9.- Método de acuerdo con la reivindicación 6, 7 u 8, caracterizado porque comprende determinar automáticamente cuándo la imagen de test está enfocada sobre el retículo, captando imágenes superpuestas del retículo y del test mediante unos medios de adquisición de imágenes y procesándolas mediante un software de reconocimiento de imágenes. 9. Method according to claim 6, 7 or 8, characterized in that it comprises automatically determining when the test image is focused on the reticle, capturing superimposed images of the reticle and the test by means of image acquisition and processing them by means of a image recognition software.
10.- Método de acuerdo con la reivindicación 9, caracterizado porque comprende realizar automáticamente y de manera controlada dicho desplazamiento del test y dichos giros relativo y global de la lente de Stokes, hasta alcanzar unas posiciones para las que se obtenga dicha determinación automática de que la imagen de test está enfocada sobre el retículo. 10. Method according to claim 9, characterized in that it comprises performing automatically and in a controlled manner said test displacement and said relative and global turns of the Stokes lens, until reaching positions for which said automatic determination is obtained. the test image is focused on the reticle.
1 1.- Método de acuerdo con la reivindicación 4 ó 5, o cualquiera de las reivindicaciones 6 a 10 cuando dependen de la 4 ó la 5, caracterizado porque comprende llevar cabo dicha conversión de manera automática. 1. Method according to claim 4 or 5, or any of claims 6 to 10 when depending on the 4 or 5, characterized in that it comprises carrying out said conversion automatically.
12.- Método de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende realizar, mediante dicho frontofocómetro modificado, un proceso de posicionamiento y mareaje de una lente astigmática fabricada a partir de la medida obtenida en la etapa c). 12. Method according to any one of the preceding claims, characterized in that it comprises performing, by means of said modified frontofocometer, a positioning and marking process of an astigmatic lens manufactured from the measurement obtained in step c).
13.- Método de acuerdo con la reivindicación 12 cuando depende de la 4 ó la 5, caracterizado porque dicho proceso de posicionamiento y mareaje comprende: 13. Method according to claim 12 when it depends on the 4 or 5, characterized in that said positioning and marking process comprises:
- realizar una conversión inversa de notaciones, desde la notación esfero-cilíndrica a la notación polar de Fourier; - perform an inverse conversion of notations, from the sphero-cylindrical notation to the polar Fourier notation;
- obtener, a partir de la notación polar de Fourier, los valores de la magnitud del único desplazamiento del test, del ángulo relativo Q y de la posición angular global de la lente de Stokes, y aplicar los desplazamientos asociados a los valores obtenidos, tanto al desplazamiento del test como a los giros, relativos y global, de la lente de Stokes; - obtain, from the polar Fourier notation, the values of the magnitude of the single displacement of the test, of the relative angle Q and of the overall angular position of the Stokes lens, and apply the displacements associated with the obtained values, both to the displacement of the test as to the turns, relative and global, of the Stokes lens;
- insertar la lente astigmática en la concha de apoyo del frontofocómetro modificado, girarla hasta enfocar sobre el retículo la imagen del test simultáneamente para ambos de los dos meridianos perpendiculares, y determinar entonces que se encuentra en una posición adecuada para el mareaje; y - insert the astigmatic lens into the support shell of the modified front-opener, rotate it until focusing on the reticle the test image simultaneously for both of the two perpendicular meridians, and then determine that it is in a suitable position for the labeling; Y
- marcar la lente astigmática cuando se encuentra en dicha posición adecuada para el mareaje. - mark the astigmatic lens when it is in that position suitable for marking.
14.- Sistema para medir la potencia dióptrica de vértice posterior de una lente astigmática, caracterizado porque comprende un frontofocómetro modificado que incorpora una lente de Stokes con un eje de giro que está alineado con el eje óptico del frontofocómetro y que es común tanto para un giro relativo, contrario en signo, de cada una de las lentes que conforman la lente de Stokes como para un giro global de toda la lente de Stokes, y que está configurado para implementar el método según una cualquiera de las reivindicaciones 1 a 13. 14. System for measuring the posterior vertex diopter power of an astigmatic lens, characterized in that it comprises a modified frontofocometer that incorporates a Stokes lens with a rotation axis that is aligned with the optical axis of the frontofocometer and is common for both relative rotation, opposite in sign, of each of the lenses that make up the Stokes lens as for a global rotation of the entire Stokes lens, and which is configured to implement the method according to any one of claims 1 to 13.
15.- Sistema de acuerdo con la reivindicación 14, caracterizado porque comprende al menos un procesador configurado para procesar unos valores de magnitud del único desplazamiento del test, de las posiciones angulares relativas de las lentes de la lente de Stokes y de la posición angular global de la lente de Stokes, para calcular automáticamente la medida de la potencia dióptrica de vértice posterior de la lente astigmática para implementar la etapa c) del método según la reivindicación 7 u 8. 15. System according to claim 14, characterized in that it comprises at least one processor configured to process values of magnitude of the single displacement of the test, of the relative angular positions of the lenses of the Stokes lens and of the overall angular position. of the Stokes lens, to automatically calculate the measurement of the posterior vertex diopter power of the astigmatic lens to implement step c) of the method according to claim 7 or 8.
16.- Sistema de acuerdo con la reivindicación 14 ó 15, caracterizado porque está configurado para implementar el método según la reivindicación 1 1 , para lo cual comprende al menos un procesador configurado para procesar, según un algoritmo de conversión, los valores obtenidos en notación polar de Fourier para la medida de la potencia dióptrica de vértice posterior de la lente astigmática, para convertirlos automáticamente en valores de una notación esfero-cilíndrica. 16. System according to claim 14 or 15, characterized in that it is configured to implement the method according to claim 1, for which it comprises at least one processor configured to process, according to a conversion algorithm, the values obtained in notation Fourier polar for the measurement of the posterior vertex diopter power of the astigmatic lens, to automatically convert them into values of a sphero-cylindrical notation.
17.- Sistema de acuerdo con una cualquiera de las reivindicaciones 14 a 16, caracterizado porque está configurado para implementar el método según la reivindicación 8, para lo cual comprende: 17. System according to any one of claims 14 to 16, characterized in that it is configured to implement the method according to claim 8, for which it comprises:
- unos sensores de posición configurados y dispuestos para detectar la posición de dicho test, y por ende la magnitud de su desplazamiento, las posiciones angulares relativas de las lentes de la lente de Stokes y la posición angular global de la lente de Stokes; y - position sensors configured and arranged to detect the position of said test, and therefore the magnitude of its displacement, the relative angular positions of the Stokes lens lenses and the overall angular position of the Stokes lens; Y
- un sistema electrónico de control conectado operativamente con dichos sensores de posición para recibir unas señales de salida de los mismos que son indicativas de las detecciones de posición realizadas, y que incluye al menos un procesador configurado para procesar unos datos contenidos en dichas señales de salida para calcular automáticamente la medida de la potencia dióptrica de vértice posterior de la lente astigmática. - an electronic control system operatively connected to said position sensors to receive output signals thereof which are indicative of the position detections made, and which includes at least one processor configured to process data contained in said output signals to automatically calculate the measurement of the posterior vertex diopter power of the astigmatic lens.
18.- Sistema de acuerdo con la reivindicación 17, caracterizado porque está configurado para implementar el método según la reivindicación 10, para lo cual también comprende un sistema de adquisición y reconocimiento de imágenes que comprende unos medios de adquisición de imágenes configurados y dispuestos para adquirir imágenes superpuestas del retículo y del test, y un software de reconocimiento de imágenes para procesar las imágenes adquiridas para determinar automáticamente cuándo la imagen de test está enfocada sobre el retículo. 18. System according to claim 17, characterized in that it is configured to implement the method according to claim 10, for which it also comprises an image acquisition and recognition system comprising an image acquisition means configured and arranged to acquire superimposed images of the reticle and the test, and an image recognition software to process the acquired images to automatically determine when the test image is focused on the reticle.
19.- Sistema de acuerdo con la reivindicación 18, caracterizado porque está configurado para implementar el método según la reivindicación 10, para lo cual comprende unos medios de accionamiento conectados cinemáticamente al test, a las lentes de la lente de Stokes y a la lente de Stokes, y que están conectados operativamente a dicho sistema electrónico de control para recibir unas correspondientes ordenes de control generadas por el mismo, y en respuesta a las mismas llevar a cabo, de manera automática y controlada, dicho desplazamiento del test y dichos giros relativo y global de la lente de Stokes. 19. System according to claim 18, characterized in that it is configured to implement the method according to claim 10, for which it comprises drive means connected kinematically to the test, to the lenses of the Stokes lens and to the Stokes lens. , and which are operatively connected to said electronic control system to receive corresponding control commands generated by it, and in response to them carry out, automatically and controlled, said test displacement and said relative and global turns of the Stokes lens.
20.- Programa de ordenador, que incluye instrucciones de código de programa que cuando se ejecutan en un procesador implementan la etapa c) del método según la reivindicación 7 u 8, calculando automáticamente la medida de la potencia dióptrica de vértice posterior de la lente astigmática. 20.- Computer program, including program code instructions that when executed in a processor implement step c) of the method according to claim 7 or 8, automatically calculating the measurement of the posterior vertex diopter power of the astigmatic lens .
21.- Programa de ordenador de acuerdo con la reivindicación 20, que incluye instrucciones de código de programa que cuando se ejecutan en un procesador llevan a cabo la conversión automática de la medida de la potencia dióptrica de vértice posterior de la lente astigmática obtenida, desde la notación polar de Fourier a una notación esfero-cilíndrica, implementando el método de la reivindicación 11. 21. Computer program according to claim 20, which includes program code instructions that when executed in a processor carry out the automatic conversion of the measure of the posterior vertex diopter power of the obtained astigmatic lens, from the Fourier polar notation to a sphero-cylindrical notation, implementing the method of claim 11.
22.- Programa de ordenador de acuerdo con la reivindicación 20 ó 21 , que incluye instrucciones de código de programa que cuando se ejecutan en un procesador llevan a cabo de manera automática la conversión inversa de notaciones, desde la notación esfero-cilíndrica a la notación polar de Fourier, de la medida de la potencia dióptrica de vértice posterior de la lente astigmática a posicionar y marcar, del método de la reivindicación 13. 22. Computer program according to claim 20 or 21, which includes program code instructions that when executed in a processor automatically perform the inverse conversion of notations, from the spherical-cylindrical notation to the notation. Fourier polar, of the measurement of the posterior vertex diopter power of the astigmatic lens to position and mark, of the method of claim 13.
PCT/ES2018/070774 2017-12-04 2018-12-04 Method, system and computer program for measuring the posterior vertex diopter power of an astigmatism lens WO2019110858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201731384 2017-12-04
ES201731384A ES2715510A1 (en) 2017-12-04 2017-12-04 METHOD, SYSTEM AND COMPUTER PROGRAM TO MEASURE THE DIOPRICAL POWER OF POSTERIOR VORTEX OF AN ASTIGMATIC LENS (Machine-translation by Google Translate, not legally binding)

Publications (1)

Publication Number Publication Date
WO2019110858A1 true WO2019110858A1 (en) 2019-06-13

Family

ID=66649123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070774 WO2019110858A1 (en) 2017-12-04 2018-12-04 Method, system and computer program for measuring the posterior vertex diopter power of an astigmatism lens

Country Status (2)

Country Link
ES (1) ES2715510A1 (en)
WO (1) WO2019110858A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841760A (en) * 1973-02-27 1974-10-15 D Guyton Zonal focus method for determining the amount of astigmatic correction for an optical system
US4943162A (en) * 1984-11-09 1990-07-24 Sims Clinton N Astigmatic self-refractor and method of use
JPH04301535A (en) * 1991-03-28 1992-10-26 Nidek Co Ltd Lens meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841760A (en) * 1973-02-27 1974-10-15 D Guyton Zonal focus method for determining the amount of astigmatic correction for an optical system
US4943162A (en) * 1984-11-09 1990-07-24 Sims Clinton N Astigmatic self-refractor and method of use
JPH04301535A (en) * 1991-03-28 1992-10-26 Nidek Co Ltd Lens meter

Also Published As

Publication number Publication date
ES2715510A1 (en) 2019-06-04

Similar Documents

Publication Publication Date Title
US8550624B2 (en) Optical angular measurement system for ophthalmic applications and method for positioning of a toric intraocular lens with increased accuracy
CN107951465A (en) Optical means for the dioptric performance for assessing optical system
ES2346175B1 (en) INSTRUMENT FOR THE SIMULATION OF MULTIFOCAL OPHTHALM CORRECTIONS.
US20080018855A1 (en) Aberrometer Provided with a Visual Acuity Testing System
US5455645A (en) Refractometer for measuring spherical refractive errors
CN103300813B (en) Subjective optometry instrument and optometry method
JP2015502765A (en) Optical arrangement and method for detecting the orientation of an artificial lens
ES2910013T3 (en) Ophthalmic lens and procedure for designing ophthalmic lenses
ES2942984T3 (en) Optimization of an ophthalmic lens taking into account a visual acuity model
CN203000895U (en) Ocular error detection device
US20130135581A1 (en) Integrated Refractor
ES2632108A1 (en) Procedure for the design of a pair of ophthalmic lenses and device for optical measurements (Machine-translation by Google Translate, not legally binding)
WO2019110858A1 (en) Method, system and computer program for measuring the posterior vertex diopter power of an astigmatism lens
ES2718501T3 (en) Instrument for rapid measurement of the optical properties of the eye throughout the visual field
US2114282A (en) Testing ophthalmic lenses
US1337265A (en) Ophthalmic-test-lens frame
US3669530A (en) Lens for target image displacement in a lens measuring instrument
US3947186A (en) Eye-test lens and method
JP3114819B2 (en) Ophthalmic measurement device
ES2310128B2 (en) DEVICE FOR THE STUDY OF RADIOS AND CHERATOMETRIC POWERS.
US1613658A (en) Apparatus for the objective measurement of the refractive value of the principal point of the eye
CN103512731B (en) The measuring method of vertex lens power after a kind of eyeglass
US941581A (en) Optometer.
US550747A (en) Refractometer
GB2059623A (en) Instrument for the subjective determination of the refraction of an eye

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886365

Country of ref document: EP

Kind code of ref document: A1