WO2019109791A1 - 一种可差动变距桨叶及直升机旋翼系统 - Google Patents

一种可差动变距桨叶及直升机旋翼系统 Download PDF

Info

Publication number
WO2019109791A1
WO2019109791A1 PCT/CN2018/115810 CN2018115810W WO2019109791A1 WO 2019109791 A1 WO2019109791 A1 WO 2019109791A1 CN 2018115810 W CN2018115810 W CN 2018115810W WO 2019109791 A1 WO2019109791 A1 WO 2019109791A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
airfoil
variable pitch
rotor
hole
Prior art date
Application number
PCT/CN2018/115810
Other languages
English (en)
French (fr)
Inventor
刘衍涛
Original Assignee
中国直升机设计研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国直升机设计研究所 filed Critical 中国直升机设计研究所
Publication of WO2019109791A1 publication Critical patent/WO2019109791A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/80Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement for differential adjustment of blade pitch between two or more lifting rotors

Definitions

  • the invention belongs to the technical field of rotor blade design, and particularly relates to a differential variable pitch blade and a helicopter rotor system.
  • the rotor of the rotorcraft generates aerodynamic force by rotation, provides lift for the flight, and has the ability to take off and land vertically.
  • the take-off and landing site is more flexible and has a wide operating range.
  • the rotor provides the lift and the various steering forces required for flight.
  • the conventional rotor device is composed of a rotor blade, a hub, and a rotor shaft.
  • the rotor blade is mounted on the hub, and the hub is connected to the transmission system through a central rotor shaft, and the driving force of the power system is decelerated by the transmission through a multi-stage gear transmission. It is then transmitted to the rotor shaft, which in turn drives the hub and rotor blades to rotate.
  • the power of the conventional rotor device is mechanically converted and transmitted by the engine and the transmission, and there is power loss and the system is complicated; the airflow convection above and below the blade profile exists at the tip of the rotor blade, and the blade profile is lowered.
  • the pressure difference affects the ability of the tip of the blade to generate lift.
  • the inconsistent airflow environment of the blade leads to uneven force in the blades, resulting in low fatigue life of the blade; and the blade is bare. It will collide with external objects and affect flight safety.
  • the noise generated by the rotor blades is not shielded and directly transmitted to the outside world, and the overall noise is large.
  • the lift force of the blade is at a position of about 70% of the blade radius from the blade rotation axis, that is, a position away from the rotor axis.
  • the bearing position of the conventional rotor device is at the center, that is, the rotor shaft, so the blade lift and the arm of the rotor shaft are longer, resulting in a larger bending moment of the blade, the hub and the rotor shaft, resulting in vibration. Large, low fatigue life.
  • this integral rail ring is not conducive to the installation of other devices such as handling equipment, additional mechanisms are required, and the structure is not compact, which will lead to an increase in the weight of the system and affect the transport efficiency of the aircraft, such as the variable pitch mechanism of the patent WO2005072233A2 (adjustment)
  • the blade angle of attack is used to adjust the rotor lift.
  • the installation mechanism is additionally required, resulting in a larger system size, a complicated mechanism, and a large weight.
  • the Chinese patent publication CN101693470B provides a magnetic suspension electric powered rotor flying saucer.
  • the Chinese patent publication CN102085912A provides a dish-shaped magnetic suspension toroidal aircraft.
  • Both of these patented rotor devices use a rotor inner ring and a rotor.
  • Two sets of magnetic suspension guides in the outer ring the system is more complicated, and the overall weight of the rotor device is too large.
  • the resulting blade has an inconsistent angular velocity at the root and end rotation, and there is a possibility that the blade will be displaced on the inner and outer ring guide rails, which will seriously cause the blade to be stuck.
  • the blade pitch changing mechanism described in the patent WO2005072233A2 can only adjust the blade angle of attack as a whole, can only change the magnitude of the lift, and can not meet the requirements of the rotor to maintain high efficiency at the same time.
  • the present application provides a differential variable pitch blade and a rotor having the differential variable pitch blade.
  • a first aspect of the present application provides a differential variable pitch blade comprising:
  • At least two airfoil segments a rotational connection between adjacent airfoil segments, each of the airfoil segments having a first through hole, and a second through hole;
  • a torsion bar extending through and rotating within the first through hole of all of the airfoil segments
  • variable pitch control cable is disposed in the second through hole of all the airfoil sections, and two ends of the variable distance control cable are respectively fixed on the airfoil section at the blade root and the tip of the blade;
  • first airfoil section at the root of the blade is connected with a first torsion mechanism for driving the first airfoil section to twist a first angle
  • second airfoil section at the tip of the blade is connected with a second torsion mechanism And driving the second airfoil section to twist the second angle
  • the first through hole of the first airfoil section is sleeved and fixed with a first torsion sleeve
  • the first through hole of the second airfoil section is sleeved and fixed a second torsion sleeve having a first output shaft rotatably coupled to the first torsion sleeve
  • the second torsion mechanism having a second output shaft rotatably coupled to the second Twist the sleeve.
  • the axes of the second through holes of each of the airfoil sections overlap, and the variable pitch control cables located in the second through holes of the plurality of airfoil sections are in a straightened state.
  • the second through hole of each of the airfoil segments has a plurality, and each of the second through holes is fitted with one of the variable pitch control cables.
  • variable pitch conduit is sleeved and fixedly connected to the second through hole of each of the airfoil segments, and the variable distance control cable is located in the variable pitch conduit.
  • variable pitch control cable tension adjustment mechanism mounted at an end of the variable pitch control cable for adjusting a length of the variable pitch control cable, Furthermore, the degree of tension of the variable pitch control cable in the second through hole is adjusted.
  • variable pitch control cable tension adjustment mechanism includes a rotating shaft and a driving mechanism for driving the rotating shaft, and the rotating shaft is disposed on the airfoil section at the blade root and/or the tip of the blade.
  • the variable pitch control cable is wound on the rotating shaft.
  • a deformable skin is further included, the deformable skin at least partially covering the junction of two adjacent airfoil segments.
  • a second aspect of the present application provides a helicopter rotor system including a rotor shaft connecting a blade root and a rotor ring connecting the tip of the blade, the blade employing a differential pitch blade as described above, wherein the first drive mechanism is disposed on a rotor shaft, the second drive mechanism is disposed on a rotor ring, the rotor ring rotates on an orbital ring, and the blade passes through at least one of a rotor shaft and an orbital ring The provided rotational force rotates about the rotor axis.
  • the orbital ring is provided with a driving guide rail in a direction toward the rotor ring
  • the rotor ring is provided with a plurality of permanent magnets in a circumferential direction to change the electromagnetic property of the driving guide rail to A permanent magnet acting on the rotor ring drives the rotor ring to rotate.
  • the present application transmits the torsional force at the root of the blade and the tip of the blade to the central portion of the blade through the variable pitch control cable and the torsion bar, so that the airfoil segment located at the central portion of the blade is synchronously twisted, instead of the prior art.
  • the complex structure of the plurality of airfoil segments of the blade twisted by the power and the transmission system reduces the overall weight of the aircraft and improves the system maintainability; reduces the power transmission link, avoids the friction loss, and improves the energy transfer efficiency; Reduce the bending moment of the blade and increase the fatigue life.
  • FIG. 1 is a schematic view of the structure of a preferred embodiment of a differential variable pitch blade of the present application.
  • FIG. 2 is a schematic view of another embodiment of a differential variable pitch blade of the present application.
  • FIG. 3 is a schematic structural view of a helicopter rotor system of the present application.
  • FIG. 4 is a schematic diagram of the principle of magnetic levitation control of the embodiment shown in FIG. 3 of the present application.
  • 1 is the orbital ring
  • 2 is the rotor ring
  • 3 is the blade
  • 4 is the central connector
  • 5 is the variable pitch joint
  • 6 is the drive rail
  • 7 is the permanent magnet
  • 8 is the upper permanent magnet group
  • 8a is the upper paddle Ye Yong magnet
  • 8b is the upper track permanent magnet
  • 9 is the lower permanent magnet group
  • 9a is the lower blade permanent magnet
  • 9b is the lower track permanent magnet
  • 10 is the culvert port
  • 11 is the position sensor
  • 12 is the phase sensor;
  • 301 is an airfoil section
  • 3011 is a first airfoil section
  • 3012 is a second airfoil section
  • 3013 is a third airfoil section
  • 302 is a torsion bar
  • 303 is a torsion sleeve
  • 3031 is a first torsion sleeve
  • 3032 For the second torsion sleeve
  • 3033 is the third torsion sleeve
  • 304 is the variable distance conduit
  • 305 is the variable pitch control cable
  • 306 is the deformable skin
  • 307 is the variable distance control cable tension adjustment mechanism
  • 3071 is the first The tension adjustment mechanism
  • 3072 is a second degree adjustment mechanism.
  • the first aspect of the present application provides a differential variable pitch blade. As shown in FIG. 1, a first embodiment is provided, which includes:
  • At least two airfoil segments 301 rotatably connected between adjacent airfoil segments, each airfoil segment having a first through hole, and a second through hole;
  • a torsion bar 302 extending through and rotating in a first through hole of all airfoil sections
  • variable distance control cable 305 is disposed in the second through hole of all the airfoil sections, and the two ends of the variable distance control cable 305 are respectively fixed on the airfoil section at the blade root and the tip of the blade;
  • first airfoil section at the root of the blade is connected with a first torsion mechanism for driving the first airfoil section to twist the first angle
  • second airfoil section of the blade tip is connected with the second torsion mechanism for The second airfoil section is driven to twist the second angle
  • FIG. 1 there is shown a schematic view of a blade structure having three airfoil sections, including a first airfoil section 3011, a second airfoil section 3012 and a third airfoil section 3013, wherein the first airfoil section 3011 For the blade root airfoil section, the second airfoil section 3012 is a blade tip airfoil section, and the third airfoil section 3013 is an intermediate airfoil section, a conventional blade deformation system, a third airfoil section and others
  • There is a power and transmission mechanism between the two airfoil sections to drive the deflection of the third airfoil section, and the third airfoil section 3013 of the present application is only rotatably connected with the other two airfoil sections, for example, by mutually splicing
  • the bearing connection is taken as an example.
  • the end of the first airfoil section 3011 near the third airfoil section 3013 is a "trapezoid-like" structure, and the upper edge of the trapezoid.
  • the end of the third airfoil section 3013 adjacent to the first airfoil section 3011 is also a "trapezoid-like" structure, the upper edge of the trapezoid is the inner ring of the bearing, and the outer ring of the bearing and the inner ring of the bearing form a common Bearing connection structure, the position of the skin 306 in the drawing is the bearing connection structure The location, about the skin will be introduced in the follow-up. This configuration is equally applicable to the connection between the second airfoil section 3012 and the third airfoil section 3013.
  • the embodiment is particularly suitable for the sleeve connection.
  • the first airfoil section 3011 and the third airfoil section 3013 are sleeved with the sleeves, and can be sleeved with each other, and the two sleeves are sleeved with each other. There is a certain gap between the cylinders.
  • the torsion bar 302 penetrates through the first through hole, including the bearing or the sleeve, and the torsion bar 302 itself does not need to have a twisting function, and only needs to have a certain elasticity, so
  • the material selection may be steel or composite material.
  • the first driving mechanism drives the first airfoil segment 3011 to twist the first angle ⁇ a
  • the second driving mechanism drives the second airfoil segment 3012 to twist the second angle ⁇ a+
  • the torsion bar 302 necessarily drives the third airfoil section 3013 to deflect due to penetrating the first through hole. It is foreseen that the degree of deflection of the third airfoil section 3013 is between the first Between the airfoil section 3011 and the second airfoil section 3012.
  • a second through hole for inserting the variable distance control cable 305 is further provided.
  • the first through hole is generally disposed on the paddle.
  • the leading edge (thicker portion) the second through hole is generally disposed at the trailing edge (thinner portion) of the blade, it being understood that when the leading edge of the blade is straightened by the torsion bar 302, it is inserted in the second pass
  • the variable pitch control cable 305 of the hole is capable of automatically straightening the trailing edge portion of the blade to form a state as shown in FIG.
  • variable pitch control cable 305 is particularly suitable for use with a steel cable.
  • variable pitch control cable 305 can limit the middle to a certain extent.
  • the free end of the airfoil section in addition to the skin covered by the airfoil section, ensures stability between the multi-segment airfoil sections.
  • first torsion mechanism and the second torsion mechanism twist the first airfoil section 3011 and the second airfoil section 3012, it may be a certain point of the fixed airfoil section, and drive another point to rotate around the first point.
  • the present invention can also be implemented by driving a shaft fixed on the airfoil section by a rotating mechanism.
  • the present application is particularly applicable to the second mode, that is, in some optional embodiments, as described in the second embodiment.
  • the first through hole of the first airfoil section is sleeved and fixed with a first torsion sleeve
  • the first through hole of the second airfoil section is sleeved and fixed with a second torsion sleeve.
  • the first torsion mechanism has a first output shaft rotatably coupled to the first torsion sleeve
  • the second torsion mechanism has a second output shaft rotatably coupled to the second torsion sleeve.
  • the first through hole of the first airfoil section 3011 has a first torsion sleeve 3031
  • the first through hole of the second airfoil section 3012 has a second torsion sleeve.
  • the cylinder 3032, the middle third airfoil section 3013 may not be provided with a torsion sleeve, and may also be provided with a third torsion sleeve 3033, wherein the torsion sleeve is sleeved in the first through hole, but it is associated with the airfoil section Fixedly connected, or integrated design, in this case, the torsion bar 302 is located in the torsion sleeve 303, the torsion sleeve belongs to a tubular structure, which can be connected at the end to the rotating shaft of the drive mechanism, such as a key connection or a flange connection Etc., or connect the variable pitch joint 5 at the end, extend the tension joint 5 to the rotor shaft, etc., and then connect the torsion mechanism. After the torsion mechanism drives the rotating shaft to rotate, the airfoil section follows the rotation (ie, twisting). Change the airfoil angle of attack.
  • variable pitch joint 5 has a rotating and positioning function, and can realize the pitch change function of the blade by the angle of attack change.
  • the first through hole is inserted with the torsion bar 302. Therefore, the first through holes of the plurality of airfoil segments are actually on the same axis, but the second through holes may not be on the same axis, considering the variable distance control cable and the torsion bar The difference is that the second through holes of the different airfoil sections can be slightly different in the axial direction, and it is only necessary to ensure that the inserted variable pitch control cable is not stuck when being stretched.
  • the axes of the second through holes of each of the airfoil segments overlap, and the variable pitch manipulation is located in the second through holes of the plurality of airfoil segments.
  • the cable is in a straightened state.
  • the second through holes of the three airfoil sections are ensured to be in a straight line as much as possible.
  • the axes of the three second through holes should be Located in the same plane and parallel to each other, the plane refers to the horizontal section of the blade in FIG.
  • each of the second through holes of the airfoil section has a plurality of, and each of the second through holes is fitted with one of the variable pitch control cables.
  • Figure 1 shows a second through hole and a variable pitch control cable.
  • there may be a plurality of second through holes, each of which is matched with a corresponding variable pitch control cable.
  • the second through hole of each of the airfoil segments is sleeved and fixedly connected with a variable distance conduit 304, and the variable distance control cable is located in the variable distance conduit, and the reference figure continues 1.
  • the relationship between the variable pitch conduit 304 and the airfoil section and the variable pitch control cable is equivalent to the relationship between the torsion sleeve 303 and the airfoil section and the torsion bar, and the variable distance conduit 304 is fixed in the second through hole, It is only provided to provide a passage through which the variable pitch control cable is inserted, and the second through hole is protected from being worn by the variable pitch control cable.
  • variable pitch cable tension adjustment mechanism 307 is further included, which is installed at an end of the variable distance control cable 305, and the variable distance control cable tension adjustment mechanism 307 is used to adjust the variable distance control cable.
  • the length adjusts the degree of tension of the variable pitch control cable in the second through hole.
  • variable pitch control cable tension adjustment mechanism 307 may be a contraction mechanism, a stretching mechanism, or the like, which tensions or loosens the variable distance control cable by stretching the variable length control cable end.
  • the variable pitch control cable tension adjustment mechanism 307 may specifically be a plurality of rotary positioning mechanisms such as a steering gear, a worm gear or a ratchet ratchet.
  • the variable distance control cable tension adjustment mechanism 307 includes a rotating shaft. And a driving mechanism for driving the rotating shaft, the rotating shaft is rotatably disposed on the airfoil section at the blade root and/or the tip of the blade, and the variable distance control cable is wound on the rotating shaft. The rotation of the rotary positioning mechanism in different directions can realize the adjustment of the tensioning cable tension.
  • variable pitch control cable tension adjustment mechanism 307 is mounted on the first airfoil section 3011 on the inner side of the blade or on the second airfoil section 3012 on the outer side of the blade.
  • the tension adjustment mechanism can adjust the tension of the variable-distance control cable 305, and different degrees of tension correspond to different blade torsion angle distribution curves, such as a variable-distance control cable
  • the tension of 305 is increased, that is, the torsion angle of each airfoil section of the blade is approximately linear, and the variation of the torsion angle of each airfoil of the blade is reduced when the tension of the variable-distance control cable 305 is reduced. Change the law.
  • the tension of the variable pitch control cable 305 can be fixed in advance by a predetermined degree, or can be adjusted in real time by the tensioning device such as a steering gear or a ratchet ratchet, and can be adjusted by the tension adjustment.
  • the linear adjustment and nonlinear adjustment of the airfoil torsion angle distribution further expands the range of application of the rotor.
  • a deformable skin 306 is also included, the deformable skin 306 at least partially covering the junction of adjacent two airfoil segments.
  • the deformable skin 306 is wrapped over the gap between the airfoil sections of the plurality of airfoil sections 301, and can change shape according to the shape and position of the adjacent two airfoil sections.
  • the overall shape of the blade protects the internal components of the blade, and the deformable skin 306 can be configured in multiple segments depending on the gap between the airfoil segments or can be configured to cover all of the voids throughout the segment.
  • the two ends of the differential variable pitch blade are driven to be twisted by different driving mechanisms to realize the synchronous variable pitch and the differential variable pitch function, and the lift 3 can be adjusted as a whole when the variable pitch is synchronously applied.
  • the lift is adjusted in the normal state and in the steady state of the airflow to adjust the flight demand.
  • the airfoil segment torsion angle distribution of the blade 3 can be adjusted, and the lift difference between the root portion and the end portion can be adjusted, for example, the portion where the rotational linear velocity is slow, that is, the root angle of attack is increased, and the portion where the rotational speed is fast is reduced.
  • the angle of attack at the end makes the lift of the blade more uniform, so that the blade is evenly stressed to improve the fatigue life; the angle of attack can also be reduced to avoid the local angle of attack of the blade is too large, which exceeds the range of use, resulting in a sudden drop in lift, ie stall. State, avoiding loss of lift, allowing the rotor to operate in complex airflow environments. Further, the variable airfoil torsion angle distribution allows the rotorcraft to maintain high efficiency in more inflow environments, expanding the application of the rotor Range and effect.
  • a second aspect of the present application provides a helicopter rotor system, with reference to Figures 3 and 4, including a rotor shaft connecting the roots of the blades, and a rotor ring 2 connecting the tips of the blades, the blades being of the above-described difference a variable pitch blade, wherein the first drive mechanism is disposed on a rotor shaft, the second drive mechanism is disposed on a rotor ring 2, the rotor ring 2 rotates on the orbital ring 1, and the blade passes A rotational force provided by at least one of the rotor shaft and the orbital ring rotates about the rotor axis.
  • the orbital ring is used to drive the rotation of the rotor ring.
  • the orbital ring is provided with a driving guide 6 in a direction toward the rotor ring 2, and the rotor ring 2 is disposed along the ring direction.
  • the plurality of permanent magnets 7 change the electromagnetic properties of the drive rails 6 to act on the permanent magnets 7 on the rotor rings 2 to drive the rotor rings to rotate.
  • the rotor ring 2 is suspended in the annular groove of the orbital ring 1.
  • the suspension mainly depends on the upper permanent magnet group 8 and the lower permanent magnet group 9.
  • the upper rail permanent magnet 8b and the rotor on the orbital ring 1 The upper blade permanent magnet 8a on the ring 1 is magnetically repelled.
  • the lower track permanent magnet 9b on the orbital ring 1 is magnetically repelled from the lower blade permanent magnet 9a on the rotor ring 1, thereby causing the rotor ring 1 to float.
  • the upper rail permanent magnet 8b on the orbital ring 1 is magnetically attracted to the upper blade permanent magnet 8a on the rotor ring 1, and the lower rail permanent magnet 9b on the orbital ring 1 and the lower blade on the rotor ring 1 are forever.
  • the magnet 9a is magnetically attracted, and the suspension of the rotor ring 1 can also be achieved.
  • the rotation of the rotor ring 2 is driven by the alternating change of the electromagnetic force in the orbital ring 1.
  • the blade 3 generates the lift function by the rotation of the rotor ring 3 to realize the flight function, and the lift is transmitted from the orbital ring 1 to the rotorcraft body by the magnetic suspension mode;
  • the rotor device can also be applied to application scenarios such as blowing, propulsion, and diversion.
  • the helicopter rotor system of the present application is applied to a rotor machine with an intermediate opening, and a hole opened in the middle of the rotorcraft constitutes a ducted port 10, and the blade 3 rotates in the duct to realize the take-off and landing of the aircraft.
  • the position sensor 11 and the phase sensor 12 are combined to realize the position sensing function and the rotation speed measuring function of the rotor ring.
  • the position sensor 11 and the segmented permanent magnet are alternately arranged and mounted on the rotor ring 2; the phase sensor 12 is mounted on the orbital ring 90 degrees.
  • the four phase points of the sub-segment can realize the detection of the blade azimuth, provide the azimuth information for the accurate pitch control adjustment of the blade 3 in each phase, and adjust the sensor according to the flight environment and the blade monitoring control requirements.
  • Installation quantity and position; the track ring is provided with a bypass port 10 to improve lift efficiency.
  • the number of paddle blades in this embodiment is k-piece, k ⁇ 2, and the blades may be evenly arranged or non-uniformly arranged; the number of the above-mentioned rail segments and the number of segmented permanent magnets may be set according to application conditions and structural features, and segmented arrangement is adopted.
  • the method is arranged in a staggered manner with the blades. In special cases, it can be integrated into a complete ring or form several main driving segments; the number of position sensors mentioned above is m, m ⁇ 1; the number of phase sensors mentioned above is n, n ⁇ 3; If the magnetic suspension rotor technology is applied to a small system, the rotation inertia of the rotor ring is small, and the rotational speed is adjusted quickly.
  • the adjustment of the lift force can be achieved by adjusting the speed of the rotor ring.
  • the above-mentioned variable pitch joint 5 can be eliminated, and the blade is directly fixed.
  • the structure is further simplified to reduce weight.
  • the working mode of the magnetic levitation rotor device is that the electromagnet of the driving guide rail in the orbital ring generates an electromagnetic field through the power input control, and the segmented permanent magnet group in the rotor ring is rotated to drive the blade to rotate, so that the air and the blade are generated.
  • the airfoil profile of the blade causes air to flow faster on the upper surface of the blade, so the pressure on the upper surface is lower than the pressure on the lower surface, and the pressure difference between the upper and lower surfaces causes the blade to generate lift.
  • the magnitude of the lift is related to the rotational linear velocity and the angle of attack of the airfoil.
  • the magnitude of the lift is linear with the angle of attack of the airfoil.
  • the greater the angle of attack the lift.
  • the larger, the negative lift or reverse force can also be generated to achieve the maneuvering flight of the aircraft; the roots of the blades are connected together through the central connector, and the torque and bending moment of the opposite blades are opposite to each other, which can cancel each other. It can reduce the load transfer and facilitate the reduction of weight of the rotor device.
  • the differential variable pitch blade and rotor system proposed by the present application integrates the rotor system, power system and transmission system of the conventional rotorcraft, reduces the overall weight of the aircraft and improves the system maintenance; reduces the power transmission link.
  • the friction loss is avoided, the energy transfer efficiency is improved, the bending moment of the blade is reduced, and the fatigue life is improved; the differential variable distance is introduced to expand the application range and use effect of the rotor; Integration with the drive mechanism to a rotor ring, streamlining the system structure, making the rotor system compact, reducing the size and weight of the rotor device, and improving the operating efficiency; reducing the lift loss of the tip of the blade and improving the lift efficiency; Provides protection for the rotor and improves flight safety; ducted to shield aerodynamic noise and improve flight quietness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种可差动变距桨叶,包括:至少两个翼型段(301),相邻翼型段(301)之间转动连接,每个翼型段(301)均具有第一通孔及第二通孔;扭转杆(302),贯穿并转动设置在所有翼型段(301)的第一通孔内;以及变距操纵索(305),贯穿设置在所有翼型段(301)的第二通孔内,变距操纵索(305)的两端分别固定在桨根及桨尖处的翼型段上,其中,位于桨根处的第一翼型段连接有第一扭转机构,用于驱动所述第一翼型段扭转第一角度,位于桨尖处的第二翼型段连接有第二扭转机构,用于驱动所述第二翼型段扭转第二角度。该技术方案通过变距操纵索(305)及扭转杆(302)将位于桨叶根部及桨叶尖部的扭转力传递给桨叶中心部分,以使位于桨叶中心部分的翼型段同步扭转,减少了动力传递环节,提高了能量传递效率。

Description

一种可差动变距桨叶及直升机旋翼系统 技术领域
本发明属于旋翼桨叶设计技术领域,特别涉及一种可差动变距桨叶及直升机旋翼系统。
背景技术
旋翼飞行器的旋翼通过旋转产生空气动力,为飞行提供升力,使其具有垂直起降的能力,起降场地选取更为灵活,作业范围广。旋翼在提供升力的同时,还能产生飞行所需的各向操纵力。
常规的旋翼装置由旋翼桨叶、桨毂、旋翼轴组成,旋翼叶片安装在桨毂上,桨毂通过中心的旋翼轴与传动系统相连,动力系统的驱动力通过传动装置经多级齿轮传动减速后传递给旋翼轴,进而带动桨毂和旋翼桨叶旋转。
常规旋翼装置的动力通过发动机和传动装置的机械转换和传递,存在着动力损失且系统复杂;旋翼桨叶的桨尖处存在着桨叶剖面上方和下方的气流对流,降低了桨叶剖面上下方的压力差,影响了桨尖部分产生升力的能力;同时,桨叶各段气流环境不一致带来了桨叶各段受力不均匀,导致桨叶疲劳寿命低的问题;并且桨叶是裸露的,会与外界物体发生碰撞,影响飞行安全,同时旋翼桨叶产生的噪音没有遮蔽,直接传播到外界,整体噪声大。
由于桨叶在半径越大的位置旋转线速度越快,该部位产生升力也大,一般桨叶的升力合力在距离桨叶旋转轴约70%桨叶半径的位置处,即远离旋翼轴的位置,而常规旋翼装置的承载位置在中心处即旋翼轴,故桨叶升力与旋翼轴承载位置的力臂较长,导致桨叶、桨毂和旋翼轴所需承受的弯矩较大,导致振动大,疲劳寿命低的问题。
为解决旋翼机构复杂,载荷大的问题,同时降低摩擦损耗,有通过磁悬浮方式支撑旋翼的专利提出,但也存在着结构不紧凑,机构复杂,桨叶迎角调整(桨叶迎角调整可改变旋翼的升力大小以及方向,进而调整飞行器整体的飞行速度、姿态等)能力不足等问题。
公开号为WO2015005776A1的世界知识产权局专利以及公开号为US7802755B2的美国专利中,均采用铺满承载单元的整条导轨环,而公开号为WO2005072233A2的专利中则采用现成的磁悬浮轴承,效果与前两个专利类似,这种整体式的导轨环不利于安装操纵设备等其他装置,需额外附加机构,结构不紧凑,会导致系统重量增加,影响飞行器运输效率,如专利WO2005072233A2的变距机构(调整桨叶迎角以调整旋翼升力)需额外设置安装机构,导致系统尺寸变大,机构复杂且重量大。
公开号为CN101693470B的中国专利提供了一种磁悬浮电动力旋翼飞碟,公开号为CN102085912A的中国专利提供了一种碟形磁悬浮环翼飞行器,这两篇专利的旋翼装置均采用了旋翼内环和旋翼外环两套磁悬浮导轨,系统较为复杂,旋翼装置整体重量过大;同时还存在着复杂气流环境下,旋翼桨叶的根部和端部由于气流环境差异所导致的空气动力载荷不一致的情况,由此产生的桨叶在根部和端部旋转运动角速度不一致的现象,存在桨叶在内外环导轨上发生错动现象的可能性,严重的将导致桨叶出现卡滞状况。
专利WO2005072233A2所述的桨叶变距机构仅能整体调节桨叶迎角,仅能改变升力的大小,无法同时满足多种来流速度下旋翼都要保持高效率的要求。
发明内容
为了解决上述技术问题至少之一,本申请提供了一种可差动变距桨叶及具有该可差动变距桨叶的旋翼。
本申请第一方面提供了一种可差动变距桨叶,包括:
至少两个翼型段,相邻翼型段之间转动连接,每个所述翼型段均具有第一通孔,以及第二通孔;
扭转杆,贯穿并转动设置在所有翼型段的所述第一通孔内;以及
变距操纵索,贯穿设置在所有翼型段的所述第二通孔内,所述变距操纵索的两端分别固定在桨根及桨尖处的翼型段上;
其中,位于桨根处的第一翼型段连接有第一扭转机构,用于驱动所述第一翼型段扭转第一角度,位于桨尖处的第二翼型段连接有第二扭转机构,用于驱动所述第二翼型段扭转第二角度。
根据本申请的至少一个实施方式,所述第一翼型段的第一通孔内套 设并固定有第一扭转套筒,所述第二翼型段的第一通孔内套设并固定有第二扭转套筒,所述第一扭转机构具有第一输出轴,转动连接在所述第一扭转套筒上,所述第二扭转机构具有第二输出轴,转动连接在所述第二扭转套筒上。
根据本申请的至少一个实施方式,每个所述翼型段的第二通孔的轴线重叠,位于多个所述翼型段的第二通孔内的变距操纵索处于拉直状态。
根据本申请的至少一个实施方式,每个所述翼型段的第二通孔具有多个,每个所述第二通孔适配安装有一个所述变距操纵索。
根据本申请的至少一个实施方式,每个所述翼型段的第二通孔内套设并固定连接有变距导管,所述变距操纵索位于所述变距导管内。
根据本申请的至少一个实施方式,还包括变距操纵索张度调节机构,安装在变距操纵索的端部,所述变距操纵索张度调节机构用于调节变距操纵索的长度,进而调节变距操纵索位于第二通孔内的张度。
根据本申请的至少一个实施方式,所述变距操纵索张度调节机构包括转轴及驱动所述转轴转动的驱动机构,所述转轴转动设置在桨根和/或桨尖处的翼型段上,所述变距操纵索缠绕在所述转轴上。
根据本申请的至少一个实施方式,还包括可变形蒙皮,所述可变形蒙皮至少部分覆盖在相邻两个翼型段的连接处。
本申请第二个方面提供了一种直升机旋翼系统,包括连接桨叶根部的旋翼轴,以及连接桨叶尖部的旋翼环,所述桨叶采用如上所述的可差动变距桨叶,其中,所述第一驱动机构设置在旋翼轴上,所述第二驱动机构设置在旋翼环上,所述旋翼环在轨道环上转动,所述桨叶通过旋翼轴与轨道环中的至少一个提供的旋转力绕所述旋翼轴转动。
根据本申请的至少一个实施方式,所述轨道环在朝向所述旋翼环的方向设置有驱动导轨,所述旋翼环上沿环向设置有多段永磁铁,改变所述驱动导轨的电磁性,以作用于所述旋翼环上的永磁铁,驱动所述旋翼环转动。
本申请通过变距操纵索及扭转杆将位于桨叶根部及桨叶尖部的扭转力传递给桨叶中心部分,以使位于桨叶中心部分的翼型段同步扭转,替代了现有技术中对桨叶的多个翼型段通过动力及传动系统来扭转的复杂结构,降低了飞行器整机重量并改善了系统维护性;减少了动力传递环节,避免了摩擦损耗,提高了能量传递效率;减小桨叶所承受的弯矩, 提高了疲劳寿命。
附图说明
图1是本申请可差动变距桨叶的一优选实施例的的结构示意图。
图2是本申请可差动变距桨叶的另一实施例示意图。
图3是本申请直升机旋翼系统结构示意图。
图4是本申请图3所示实施例的磁悬浮控制原理示意图。
其中,1为轨道环,2为旋翼环,3为桨叶,4为中央连接器,5为变距接头,6为驱动导轨,7为永磁铁,8为上永磁组,8a为上桨叶永磁铁,8b为上轨道永磁铁,9为下永磁组,9a为下桨叶永磁铁,9b为下轨道永磁铁,10为涵道口,11为位置传感器,12为相位感应器;
301为翼型段,3011为第一翼型段,3012为第二翼型段,3013为第三翼型段,302为扭转杆,303为扭转套筒,3031为第一扭转套筒,3032为第二扭转套筒,3033为第三扭转套筒,304为变距导管,305为变距操纵索,306为可变形蒙皮,307为变距操纵索张度调节机构,3071为第一张度调节机构,3072为第二张度调节机构。
具体实施方式
为使本申请实施的目的、技术方案和优点更加清楚,下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行更加详细的描述。在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。下面通过参考附图描述的实施方式是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。基于本申请中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。下面结合附图对本申请的实施方式进行详细说明。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗 示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
本申请第一方面提供了一种可差动变距桨叶,如图1所示,给出了第一实施例,其包括:
至少两个翼型段301,相邻翼型段之间转动连接,每个翼型段均具有第一通孔,以及第二通孔;
扭转杆302,贯穿并转动设置在所有翼型段的第一通孔内;以及
变距操纵索305,贯穿设置在所有翼型段的第二通孔内,变距操纵索305的两端分别固定在桨根及桨尖处的翼型段上;
其中,位于桨根处的第一翼型段连接有第一扭转机构,用于驱动第一翼型段扭转第一角度,位于桨尖处的第二翼型段连接有第二扭转机构,用于驱动第二翼型段扭转第二角度。
参考图1,给出了具有三个翼型段的桨叶结构示意图,分别包括第一翼型段3011,第二翼型段3012和第三翼型段3013,其中,第一翼型段3011为桨叶根部翼型段,第二翼型段3012为桨叶尖部翼型段,第三翼型段3013为中间翼型段,传统的桨叶变形系统中,第三翼型段与其它两个翼型段之间具有动力及传动机构,以便驱动第三翼型段偏转,而本申请第三翼型段3013与其它两个翼型段仅转动连接即可,例如通过相互套接的筒状结构,或者轴承结构等,以轴承连接为例,本实施例如图1所示,第一翼型段3011的靠近第三翼型段3013的一端为“类梯形”结构,梯形的上边缘为轴承外圈,同理第三翼型段3013的靠近第一翼型段3011的一端也为“类梯形”结构,梯形的上边缘为轴承内圈,轴承外圈与轴承内圈共同构成了轴承连接结构,附图中蒙皮306的位置即该轴承连接结构所在的位置,关于蒙皮将在后续介绍。该结构同样适用于第二翼型段3012与第三翼型段3013之间的连接。
采用轴承连接方式在一定程度上会对相邻翼型段之间的偏转产生干涉,因此可能需要对连接处的材料提出更高的要求,例如弹性更高的复合材料,为了使不同翼型段之间偏转时互不干扰,本实施例尤其适合采用套筒连接,第一翼型段3011与第三翼型段3013相向设置有套筒,且能够相互套接,相互套接的两段套筒之间具有一定的间隙。
继续参考图1,本实施例中,扭转杆302贯穿在第一通孔内,包括贯穿上述轴承或套筒,扭转杆302本身并不要求具有扭转功能,仅需要具有 一定的弹性即可,因此在材料选择上为钢材或复合材料均可,当第一驱动机构驱动第一翼型段3011扭转第一角度Δa时,同时,第二驱动机构驱动第二翼型段3012扭转第二角度Δa+Δb(图示中Δb<0°)时,扭转杆302由于贯穿第一通孔,其必然带动第三翼型段3013偏转,可以预见,第三翼型段3013的偏转程度是介于第一翼型段3011与第二翼型段3012之间的。
本实施例中,除上述用于穿插扭转杆302的第一通孔外,还具有用于穿插变距操纵索305的第二通孔,继续参考图1,第一通孔一般设置在桨叶的前缘(较厚的部分),第二通孔一般设置在桨叶的后缘(较薄的部分),可以理解,当桨叶前缘被扭转杆302拉直时,穿插在第二通孔的变距操纵索305能够自动拉直桨叶后缘部分,形成如图1所示的状态。
本实施例中,变距操纵索305尤其适合使用钢索。
另外需要说明的是,前文描述相邻翼型段之间套筒或轴承连接,必然会导致中间部分的翼型段具有较大的转动自由端,变距操纵索305能够在一定程度上限制中间翼型段的转动自由端,除此之外,则依靠覆盖在翼型段外的蒙皮来保证多段翼型段之间的稳定性。
本实施例中,第一扭转机构与第二扭转机构在扭动第一翼型段3011与第二翼型段3012时,可以是固定翼型段的某一点,驱动另一点绕第一点转动来实现,也可以是通过转动机构来驱动固定在翼型段上的轴来实现,本申请尤其适用于第二种方式,即在一些可选的实施方式中,如第二实施例中所描述的那样:所述第一翼型段的第一通孔内套设并固定有第一扭转套筒,所述第二翼型段的第一通孔内套设并固定有第二扭转套筒,所述第一扭转机构具有第一输出轴,转动连接在所述第一扭转套筒上,所述第二扭转机构具有第二输出轴,转动连接在所述第二扭转套筒上。
扭转套筒303的具体位置仍可以参考图1,第一翼型段3011的第一通孔内具有第一扭转套筒3031,第二翼型段3012的第一通孔内具有第二扭转套筒3032,中间的第三翼型段3013可以不设置扭转套筒,也可以设置第三扭转套筒3033,其中,扭转套筒虽然套接在第一通孔内,但其是与翼型段固定连接的,或者一体设计,此时,扭转杆302是位于扭转套筒303内的,扭转套筒属于管状结构,其可以在端部连接驱动机构的转动轴,例如键连接或者法兰盘连接等,或者在端部连接变距接头5,由变距接头 5延伸到旋翼轴处等之后再连接扭转机构,之后扭转机构驱动转动轴转动时,翼型段则跟随转动(即扭动),改变翼型迎角。
上述变距接头5具有旋转和定位功能,可完成桨叶的迎角变化实现变距功能。
第一通孔内穿插有扭转杆302,因此,多段翼型段的第一通孔实际上在同一条轴线上,但第二通孔可以不在同一轴线上,考虑到变距操纵索与扭转杆的差异性,不同翼型段的第二通孔可以在轴线方向上略有差异,只需保证穿插的变距操纵索在被拉伸时,不会卡死即可。
在一些可选的实施方式中,如第三实施例中,每个所述翼型段的第二通孔的轴线重叠,位于多个所述翼型段的第二通孔内的变距操纵索处于拉直状态。如图1所示,在自由状态下,三个翼型段的第二通孔尽量保证是成一条直线的,即便如前述实施例中不在一条直线上,三个第二通孔的轴线也应当位于同一平面内,且相互平行,该平面是指图1中的桨叶水平截面。
第四实施例中,每个所述翼型段的第二通孔具有多个,每个所述第二通孔适配安装有一个所述变距操纵索。图1给出的是一个第二通孔及一个变距操纵索,该实施例中,可以具有多个第二通孔,每个第二通孔匹配有相应的变距操纵索。
在一些可选的实施方式中,每个所述翼型段的第二通孔内套设并固定连接有变距导管304,所述变距操纵索位于所述变距导管内,继续参考图1,变距导管304与翼型段及变距操纵索之间的关系等同于扭转套筒303与翼型段及扭转杆之间的关系,变距导管304固定在第二通孔内,其仅在于提供变距操纵索穿插的通道,保护第二通孔不被变距操纵索磨损。
在一些可选的实施方式中,还包括变距操纵索张度调节机构307,安装在变距操纵索305的端部,所述变距操纵索张度调节机构307用于调节变距操纵索的长度,进而调节变距操纵索位于第二通孔内的张度。
该实施例中,变距操纵索张度调节机构307可以是收缩机构,拉伸机构等等,通过拉伸变距操纵索端部,使变距操纵索张紧或松弛。
变距操纵索张度调节机构307具体可以是舵机、蜗轮蜗杆或棘轮棘齿等多种旋转定位机构,在一些可选的实施方式中,所述变距操纵索张度调节机构307包括转轴及驱动所述转轴转动的驱动机构,所述转轴转动设置在桨根和/或桨尖处的翼型段上,所述变距操纵索缠绕在所述转轴上。 旋转定位机构不同方向的转动即可实现变距操纵索张度的调整。
本实施例中,变距操纵索张度调节机构307安装在桨叶内侧的第一翼型段3011上,或者安装在桨叶外侧的第二翼型段3012上,参考图2,分别为第一张度调节机构3071及第二张度调节机构3072,张度调节机构可以调节变距操纵索305的张度,不同的张度对应着不同的桨叶扭转角分布曲线,如变距操纵索305张度增加即张紧时,桨叶各翼型段的扭转角变化近似直线变化规律,而变距操纵索305张度减小即放松时,桨叶各翼型段的扭转角变化近似曲线变化规律。
本实施例中,变距操纵索305的张度可通过预设方式提前固定一个张度,也可通过舵机或棘轮棘齿等张紧装置在旋翼工作中实时调整,通过张度调节可实现翼型扭转角分布的线性调整和非线性调整,进一步扩大了旋翼的适用范围。
在一些可选的实施方式中,还包括可变形蒙皮306,可变形蒙皮306至少部分覆盖在相邻两个翼型段的连接处。具体的,可形变蒙皮306包覆在多段翼型段301的各段翼型段之间的空隙上,能随着相邻两段翼型的形状和位置的不同而改变形状,起到保持桨叶整体形状保护桨叶内部零件的作用,可形变蒙皮306可根据翼型段之间的空隙设置为多段也可设置为整段包覆所有空隙。
上述实施例中,可差动变距桨叶的两端通过不同驱动机构驱动扭转,看实现同步变距和差动变距功能,在同步变距时,可以整体调节桨叶3升力大小,适用于常规状态以及气流平稳状态下的升力调整飞行需求。在差动变距时,可以调节桨叶3的翼型段扭转角分布,调节根部与端部的升力差值,例如增加旋转线速度慢的部位即根部迎角,降低旋转速度快的部位即端部迎角,使桨叶各段产生升力更为平均,使桨叶均匀受力以提高疲劳寿命;还可降低迎角避免桨叶局部迎角过大超出使用范围导致升力突然大幅下降即失速状态,避免升力损失,使得旋翼可工作在复杂的气流环境中,进一步的,可变的翼型扭转角分布使得旋翼装置可以在更多的来流环境下保持高效率工作,扩大了旋翼的应用范围和使用效果。
本申请第二个方面提供了一种直升机旋翼系统,参考图3及图4,包括连接桨叶根部的旋翼轴,以及连接桨叶尖部的旋翼环2,所述桨叶采用上述的可差动变距桨叶,其中,所述第一驱动机构设置在旋翼轴上,所述第二驱动机构设置在旋翼环2上,所述旋翼环2在轨道环1上转动,所述 桨叶通过旋翼轴与轨道环中的至少一个提供的旋转力绕所述旋翼轴转动。
在一些可选的实施方式中,采用轨道环驱动旋翼环转动,具体的,所述轨道环在朝向所述旋翼环2的方向设置有驱动导轨6,所述旋翼环2上沿环向设置有多段永磁铁7,改变所述驱动导轨6的电磁性,以作用于所述旋翼环2上的永磁铁7,驱动所述旋翼环转动。
本实施例中,旋翼环2是悬浮在轨道环1的环槽内的,悬浮主要依靠上永磁组8及下永磁组9,参考图4,轨道环1上的上轨道永磁铁8b与旋翼环1上的上桨叶永磁铁8a磁性相斥,同理,轨道环1上的下轨道永磁铁9b与旋翼环1上的下桨叶永磁铁9a磁性相斥,从而使得旋翼环1悬浮,反之,轨道环1上的上轨道永磁铁8b与旋翼环1上的上桨叶永磁铁8a磁性相吸,同理,轨道环1上的下轨道永磁铁9b与旋翼环1上的下桨叶永磁铁9a磁性相吸,也能实现旋翼环1的悬浮。
本实施例通过轨道环1中电磁力的交替变化来驱动旋翼环2旋转,桨叶3随旋翼环3旋转产生升力来实现飞行功能,升力通过磁悬浮方式由轨道环1传递到旋翼飞行器机体;同时该旋翼装置也可应用到吹风、推进、导流等应用场景。
本申请直升机旋翼系统应用于中间开孔的旋翼机上,旋翼机中间开设的孔构成了涵道口10,桨叶3在涵道内转动,实现飞机的起降飞行。位置传感器11与相位感应器12组合实现旋翼环的位置感应功能和转速测定功能,位置传感器11与分段永磁铁交替排布安装在旋翼环2上;相位感应器12安装在轨道环90度均分的4个相位点上,可实现桨叶方位的检测,为桨叶3在每个相位的准确变距操纵调节提供方位信息,并可根据飞行环境和桨叶监测控制需求相应的调整感应器安装数量和位置;轨道环上设置有涵道口10以提高升力效率。
本实施例的桨叶片数为k片,k≥2,桨叶可以均匀布置也可非均匀布置;上述的导轨段数和分段永磁铁的数量可根据应用情况和结构特点设置,采用分段布置方式与桨叶交错布置,特殊情况下也可整合成一个整环或者组成几个主要驱动段;上述的位置传感器数量为m个,m≥1;上述的相位感应器数量为n个,n≥3;若磁悬浮旋翼技术应用于小型系统,旋翼环的转动惯性小,转速调节快,可通过调节旋翼环的转速快慢来实现升力大小的调节,上述的变距接头5可取消,桨叶直接固定在旋翼环和 中央连接器4上,以进一步简化结构减轻重量。
磁悬浮旋翼装置的工作模式是,通过电力输入控制,使轨道环中的驱动导轨的电磁铁产生电磁场,推动旋翼环中的分段永磁组旋转,从而带动桨叶旋转,使空气和桨叶产生相对运动,桨叶的翼型剖面使得空气在桨叶上表面流动更快,因此上表面的压力比下表面压力低,上下表面的压力差使桨叶产生了升力。升力的大小与旋转线速度和翼型的迎角有关,旋转速度越快,升力越大;在翼型使用迎角范围内,升力大小与翼型迎角成线性关系,迎角越大,升力越大,还可产生负升力即反向力以实现飞行器的机动飞行动作;桨叶根部通过中央连接器连接到一起,相对侧桨叶的扭矩和弯矩的方向相反,可以相互抵消掉部分载荷,能降低载荷传递量,便于旋翼装置减少重量。
本申请提出的可差动变距的桨叶及旋翼系统,综合了常规旋翼飞行器的旋翼系统、动力系统和传动系统,降低了飞行器整机重量并改善了系统维护性;减少了动力传递环节,避免了摩擦损耗,提高了能量传递效率;减小桨叶所承受的弯矩,提高了疲劳寿命;引入了差动变距的方式,扩大了旋翼的应用范围和使用效果;将旋翼变距机构和驱动机构整合到一个旋翼环上,精简了系统结构,使旋翼系统紧凑,减少了旋翼装置的尺寸和重量,并提高了运转效率;减少了桨尖部分升力损失,提高了升力效率;轨道环为旋翼提供了保护,提高了飞行安全性;涵道可遮蔽气动噪音,提高了飞行静音性。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种可差动变距桨叶,其特征在于,包括:
    至少两个翼型段(301),相邻翼型段之间转动连接,每个所述翼型段均具有第一通孔,以及第二通孔;
    扭转杆(302),贯穿并转动设置在所有翼型段的所述第一通孔内;以及
    变距操纵索(305),贯穿设置在所有翼型段的所述第二通孔内,所述变距操纵索(305)的两端分别固定在桨根及桨尖处的翼型段上;
    其中,位于桨根处的第一翼型段连接有第一扭转机构,用于驱动所述第一翼型段扭转第一角度,位于桨尖处的第二翼型段连接有第二扭转机构,用于驱动所述第二翼型段扭转第二角度。
  2. 如权利要求1所述的可差动变距桨叶,其特征在于,所述第一翼型段的第一通孔内套设并固定有第一扭转套筒,所述第二翼型段的第一通孔内套设并固定有第二扭转套筒,所述第一扭转机构具有第一输出轴,转动连接在所述第一扭转套筒上,所述第二扭转机构具有第二输出轴,转动连接在所述第二扭转套筒上。
  3. 如权利要求1所述的可差动变距桨叶,其特征在于,每个所述翼型段的第二通孔的轴线重叠,位于多个所述翼型段的第二通孔内的变距操纵索处于拉直状态。
  4. 如权利要求3所述的可差动变距桨叶,其特征在于,每个所述翼型段的第二通孔具有多个,每个所述第二通孔适配安装有一个所述变距操纵索。
  5. 如权利要求1所述的可差动变距桨叶,其特征在于,每个所述翼型段的第二通孔内套设并固定连接有变距导管(304),所述变距操纵索位于所述变距导管内。
  6. 如权利要求1所述的可差动变距桨叶,其特征在于,还包括变距操纵索张度调节机构(307),安装在变距操纵索(305)的端部,所述变距操纵索张度调节机构(307)用于调节变距操纵索的长度,进而调节变距操纵索位于第二通孔内的张度。
  7. 如权利要求6所述的可差动变距桨叶,其特征在于,所述变距操纵索张度调节机构(307)包括转轴及驱动所述转轴转动的驱动机构,所 述转轴转动设置在桨根和/或桨尖处的翼型段上,所述变距操纵索缠绕在所述转轴上。
  8. 如权利要求1所述的可差动变距桨叶,其特征在于,还包括可变形蒙皮(306),所述可变形蒙皮(306)至少部分覆盖在相邻两个翼型段的连接处。
  9. 一种直升机旋翼系统,其特征在于,包括连接桨叶根部的旋翼轴,以及连接桨叶尖部的旋翼环(2),所述桨叶采用如权利要求1-8任一项所述的可差动变距桨叶,其中,所述第一驱动机构设置在旋翼轴上,所述第二驱动机构设置在旋翼环(2)上,所述旋翼环(2)在轨道环(1)上转动,所述桨叶通过旋翼轴与轨道环中的至少一个提供的旋转力绕所述旋翼轴转动。
  10. 如权利要求9所述的直升机旋翼系统,其特征在于,所述轨道环在朝向所述旋翼环(2)的方向设置有驱动导轨(6),所述旋翼环(2)上沿环向设置有多段永磁铁,改变所述驱动导轨(6)的电磁性,以作用于所述旋翼环(2)上的永磁铁,驱动所述旋翼环转动。
PCT/CN2018/115810 2018-11-15 2018-11-16 一种可差动变距桨叶及直升机旋翼系统 WO2019109791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811361258.9A CN109533316B (zh) 2018-11-15 2018-11-15 一种可差动变距桨叶及直升机旋翼系统
CN201811361258.9 2018-11-15

Publications (1)

Publication Number Publication Date
WO2019109791A1 true WO2019109791A1 (zh) 2019-06-13

Family

ID=65847502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115810 WO2019109791A1 (zh) 2018-11-15 2018-11-16 一种可差动变距桨叶及直升机旋翼系统

Country Status (2)

Country Link
CN (1) CN109533316B (zh)
WO (1) WO2019109791A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111891337A (zh) * 2020-07-15 2020-11-06 浙江安浮航空科技有限公司 一种高速无轴涵道式旋翼
CN112429220A (zh) * 2020-11-26 2021-03-02 广东国士健科技发展有限公司 一种旋翼及具有该旋翼的飞行器
CN114030602B (zh) * 2021-11-19 2023-09-05 中国直升机设计研究所 一种主动调节同轴度的旋翼系统
CN116062163B (zh) * 2023-02-10 2024-03-12 南京航空航天大学 一种旋翼飞行器及其变负扭桨叶
CN116552781B (zh) * 2023-06-07 2024-02-20 北方工业大学 倾转旋翼螺旋桨桨叶自适应智能扭转变形机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167156A (zh) * 2010-02-26 2011-08-31 尤洛考普特公司 自适应扭转的桨叶和设有此种桨叶的旋翼
FR2957329A1 (fr) * 2010-03-15 2011-09-16 Snecma Mecanisme de calage variable de pales pour systeme d'helices contrarotatives et systeme d'helices contrarotatives comportant au moins un tel mecanisme
CA2864980A1 (fr) * 2013-10-11 2015-04-11 Airbus Helicopters Pale a vrillage adaptatif,et aeronef muni d`une telle pale
CN104973236A (zh) * 2015-06-24 2015-10-14 北京昶远科技有限公司 用于高空无人机的变距螺旋桨及无人机
CN207450223U (zh) * 2017-10-23 2018-06-05 南京航空航天大学 转动式旋翼变距装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR740873A (fr) * 1931-08-22 1933-02-02 Manganese Bronze And Brass Com Perfectionnements aux hélices et organes analogues
US4137010A (en) * 1977-07-25 1979-01-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Constant lift rotor for a heavier than air craft
US5263846A (en) * 1992-09-17 1993-11-23 The United States Of America As Represented By The Secretary Of The Army Self-actuated rotor system
JP2005170106A (ja) * 2003-12-08 2005-06-30 Mitsubishi Heavy Ind Ltd ヘリコプタブレード
CN102887222A (zh) * 2012-09-18 2013-01-23 北京理工大学 一种扭角分布可变的桨叶
CN106516127B (zh) * 2016-11-30 2019-01-22 中国直升机设计研究所 一种磁悬浮旋翼系统及具有其的直升机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167156A (zh) * 2010-02-26 2011-08-31 尤洛考普特公司 自适应扭转的桨叶和设有此种桨叶的旋翼
FR2957329A1 (fr) * 2010-03-15 2011-09-16 Snecma Mecanisme de calage variable de pales pour systeme d'helices contrarotatives et systeme d'helices contrarotatives comportant au moins un tel mecanisme
CA2864980A1 (fr) * 2013-10-11 2015-04-11 Airbus Helicopters Pale a vrillage adaptatif,et aeronef muni d`une telle pale
CN104973236A (zh) * 2015-06-24 2015-10-14 北京昶远科技有限公司 用于高空无人机的变距螺旋桨及无人机
CN207450223U (zh) * 2017-10-23 2018-06-05 南京航空航天大学 转动式旋翼变距装置

Also Published As

Publication number Publication date
CN109533316B (zh) 2020-08-14
CN109533316A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
WO2019109791A1 (zh) 一种可差动变距桨叶及直升机旋翼系统
US9409643B2 (en) Helicopter with cross-flow fan
US4619585A (en) Wind turbine apparatus
EP1888917B1 (en) Vertical axis wind turbine having an overspeeding regulator controlling multiple aerodynamic elements
US4545729A (en) Wind turbine apparatus
CN104129499B (zh) 用于飞行器的涵道旋翼以及旋翼飞行器
US9527578B2 (en) Propellers for aircraft
EP2383466A2 (en) Wind turbine with integrated design and controlling method
US20120133140A1 (en) Underwater power generator
MX2007016112A (es) Alabe con punta abisagrada de alabe.
JP6453866B2 (ja) 球形キャップの形状であるエアプロペラ羽根旋回軸
JP2015501751A5 (zh)
TW201610295A (zh) 用於控制一繫繩的轉動及扭轉之驅動機構
US11306696B2 (en) Wind turbine blade
CN109357879A (zh) 对转桨扇试验装置及系统
JP6952312B2 (ja) ピッチ制御システム
RU2392490C1 (ru) Ветросиловая установка (всу) карусельного типа с циклично плавно крутящимися, в противофазе ротору, симметричными лопастями
US20120328435A1 (en) Furling Mechanism for a Vertical Axis Turbine
US20200079496A1 (en) Pipe Props Rotary Wing
US20230175473A1 (en) Turbine with secondary rotors
CN112272737B (zh) 带有具有在叶片的内梢端和外梢端之间的铰链位置的铰接叶片的风轮机
HU231244B1 (hu) Javított tulajdonságú légcsavar légi járművekhez
RU2563558C2 (ru) Цилиндрическая ветротурбина
CN215672887U (zh) 一种进气导向器的导叶结构
CN206647206U (zh) 风力机风压变桨距全程控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885879

Country of ref document: EP

Kind code of ref document: A1