WO2019109688A1 - 一种聚焦放疗装置及设备 - Google Patents

一种聚焦放疗装置及设备 Download PDF

Info

Publication number
WO2019109688A1
WO2019109688A1 PCT/CN2018/104089 CN2018104089W WO2019109688A1 WO 2019109688 A1 WO2019109688 A1 WO 2019109688A1 CN 2018104089 W CN2018104089 W CN 2018104089W WO 2019109688 A1 WO2019109688 A1 WO 2019109688A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
block
radiation
radiotherapy apparatus
focused
Prior art date
Application number
PCT/CN2018/104089
Other languages
English (en)
French (fr)
Inventor
陈方正
杨华
Original Assignee
西安大医集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团有限公司 filed Critical 西安大医集团有限公司
Publication of WO2019109688A1 publication Critical patent/WO2019109688A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N2005/1019Sources therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation

Definitions

  • the present invention relates to the field of medical device technology, and in particular, to a focus radiotherapy device and device.
  • the radiation from the radioactive source in the focused radiotherapy head is pre-collimated and collimated to focus on the patient's lesion and destroy the tumor tissue.
  • the material of the pre-collimator and collimator in the focused radiotherapy head is tungsten.
  • the density and weight of the tungsten material are large, which affects the balance and stability of the entire focus radiotherapy apparatus, and the hardness of the tungsten material is high. It is not easy to process, which makes the production cost of pre-collimation and collimator processing high.
  • the pre-collimated and collimated materials are replaced by lightweight materials that are easy to process, the dose characteristics of the field will be reduced, the penumbra will increase, and the radiation of the source rays will not be effectively prevented. .
  • an embodiment of the present invention provides a focus radiotherapy apparatus and device, which can reduce the weight of the focus radiotherapy apparatus, low production cost, and effectively prevent leakage of radioactive source rays while ensuring the dose characteristics of the field. .
  • an embodiment of the present invention provides a focusing radiotherapy apparatus, the apparatus comprising: a radioactive source; a pre-collimating body provided with a first collimating hole; a collimating body including a base body and a source body, Wherein: the base body is provided with a second collimating hole for coaxially communicating with the first collimating hole; the source body is embedded in a portion of the base body where the second collimating hole is not disposed And for blocking radiation emitted by the radiation source passing through the first collimating hole, and the material density of the source body is greater than the material density of the substrate.
  • the thickness of the source body is smaller than the substrate or equal to the thickness of the substrate.
  • the material of the source body is: tungsten, lead, a tungsten alloy, a composite shielding material containing tungsten or a composite shielding material containing lead, and/or the material of the substrate is an iron-carbon alloy.
  • the pre-collimator includes: a base block and a shielding block, wherein: the first collimating hole is disposed on the base block; the shielding block is embedded on the base block The periphery of the first collimating hole is for blocking radiation leakage from the radiation source, and the material density of the shielding block is greater than the material density of the base block.
  • the thickness of the shielding block is smaller than the base block or equal to the thickness of the base block.
  • the shielding block is an annular shielding block.
  • the material of the shielding block is: tungsten, lead, tungsten alloy, composite shielding material containing tungsten or composite shielding material containing lead, and/or the material of the base block is iron-carbon alloy.
  • the apparatus further includes: a switch body for turning the radiation source on or off.
  • the apparatus further includes: a shielding ring disposed on a sidewall of the carrier chamber on which the radiation source is loaded.
  • the shielding ring includes: a first shielding segment and a second shielding segment, and an end surface of the first shielding segment and the second shielding segment is stepped.
  • Embodiments of the present invention also provide a focused radiotherapy apparatus, including any of the above-described focus radiotherapy devices.
  • the focused radiotherapy apparatus includes: a radioactive source, a pre-collimator, and a collimating body, wherein the pre-collimator is provided with a first collimating hole;
  • the straight body includes a base body and a source body, wherein the base body is provided with a second collimating hole for coaxially communicating with the first collimating hole; the source body is embedded on the base body and the a portion of the second collimating hole for blocking radiation emitted from the radiation source through the first collimating hole, and the material density of the source body is greater than a material density of the substrate.
  • the dense source body can ensure that the radiation emitted by the radiation source is blocked, and the radiation of the radiation source is prevented, and the substrate with a lower density can reduce the weight of the collimator on the one hand. Therefore, the weight of the focus radiotherapy apparatus is also reduced, which is advantageous for ensuring the balance and stability of the focus radiotherapy apparatus in which the focus radiotherapy apparatus is mounted.
  • the substrate having a small density is relatively easy to process and is not easily deformed. At the same time as the wild dose characteristics, the cost of production is reduced.
  • FIG. 1A and 1B are cross-sectional views 1 of a focus radiotherapy apparatus according to an embodiment of the present invention
  • FIG. 2 is a top view of a collimator according to an embodiment of the present invention.
  • 3A and 3B are side cross-sectional views of a collimator according to an embodiment of the present invention.
  • FIG. 4 is a top view of another collimator according to an embodiment of the present invention.
  • Figure 5 is a cross-sectional view 2 of a focus radiotherapy apparatus according to an embodiment of the present invention.
  • FIG. 6 is a side cross-sectional view of a pre-collimator according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram 3 of a focus radiotherapy apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram 4 of a focus radiotherapy apparatus according to an embodiment of the present invention.
  • FIG. 9A is a top view of a shield ring according to an embodiment of the present invention.
  • FIG. 9B is a side view of a shield ring according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a focus radiotherapy apparatus according to an embodiment of the present invention.
  • 1-focus radiotherapy device 11-radiation source; 12-pre-collimation body; 121-first collimation hole; 122-base block; 123-shield block; 13-collimator; 131-matrix; Body; 133-second collimating hole; 14-switch body; 141-eccentric hole; 15-shield ring; 151-first shield segment; 152-second shield segment; 16-load source cavity; 2-frame.
  • the focus radiotherapy apparatus 1 includes a radiation source 11, a pre-collimator 12, and a collimator 13, wherein The collimating body 12 is provided with a first collimating hole 121 for the passage of the radiation emitted by the radiation source 11; the collimating body 13 includes the base body 131 and the source body 132, where the base body 131 is provided for use with the first a second collimating hole 133 coaxially communicating with the straight hole 121, the second collimating hole 133 is configured to pass through the first collimating hole 121 and the radiation source 11; in combination with FIG.
  • the material density of the source body 132 is greater than the material density of the substrate 131.
  • the radiation emitted by the radiation source 11 in the focused radiotherapy apparatus 1 passes through the first standard on the pre-collimation body 12.
  • the straight hole 121 and the second collimating hole 133 on the base 131 of the collimator 13 are focused on the target tumor tissue S to treat the tumor tissue.
  • the position of the collimator 13 is adjusted so that the radiation source 11 is aligned with the source body 132, thereby shielding the radiation emitted from the radiation source and preventing the leakage of the radiation from the radiation source 11.
  • the collimating body 13 in the focusing radiotherapy apparatus 1 of the embodiment of the present invention includes materials made of different densities.
  • the two parts are: a base body 131 and a source body 132, wherein the base body 131 is provided with a second collimating hole 133 coaxially communicating with the first collimating hole 121 of the pre-collimation body 12, and the source body 132 is provided.
  • the dense source body 132 can ensure that the radiation emitted by the radiation source 11 is completely blocked, preventing the radiation of the radiation source 11 from being leaked, and at the same time, the density is small.
  • the weight of the collimator 13 is significantly reduced compared with the prior art, and the weight of the focus radiotherapy apparatus 1 is also reduced.
  • the substrate 131 having a lower density is easier to process. It is not easy to be deformed, and the production cost is reduced while ensuring the dose characteristics of the field.
  • the base 131 includes a portion where the second collimation hole 133 is provided, and a portion where the second collimation hole 133 is not provided.
  • the upper end surface of the base 131 ie, the end closer to the radiation source 11
  • the source body 132 is required to be secured.
  • the use of the second collimation hole 133 is not affected.
  • the second collimating holes 133 in FIG. 2 are a group, which is only an example. Of course, the second collimating holes 133 may also be in multiple groups.
  • the base body 131 can be configured as a plurality of structures, for example, a square block (as shown in FIG. 2), an arcuate body, a columnar body, or other structures.
  • the embodiment of the present invention does not specifically limit the structure of the base 131, and can be focused.
  • the radiation source 11 and the pre-collimator 12 of the radiotherapy apparatus 1 may be adapted.
  • the source body 132 embedded in the base 131 may also be provided in various structures as needed, for example, a columnar body (as shown in FIG. 2), a square block body, a trapezoidal block body or the like, and the source body
  • the thickness of 132 may be equal to the thickness of the base 131, as shown in Fig. 3A, or may be smaller than the base 131, as shown in Fig. 3B.
  • the embodiment of the present invention does not specifically limit the structure, thickness, and the like of the source body 132, and can block or shield the radiation emitted by the radiation source 11.
  • the source body 132 can be set to one while blocking the radiation emitted by each source, as shown in FIGS. 1A and 2, the source body disposed in this manner. 132 is a whole, easy to process and assemble; the source body 132 can also be set to multiple, exemplary, as shown in FIG. 4, the number of the source body 132 is the same as the number of multiple sources, and the arrangement and the number of The source is arranged in the same manner, and each of the source bodies 132 can block the radiation emitted by one of the radiation sources 11, so that the set source body 132 is saved relative to the entire source body 132, thereby saving material cost, but at the same time increasing processing. And assembly difficulty.
  • the number of the source bodies 132 may be different from the number of sources in the radiation source 11, which is not specifically limited in the embodiment of the present invention.
  • the material density of the source body 132 needs to be greater than the material density of the substrate 131.
  • the material of the source body 132 may be tungsten, lead, tungsten alloy, composite shielding material containing tungsten, and lead composite. Shielding materials or other materials with good shielding properties.
  • the material of the base 131 has poorer shielding ray performance than the material used for the source body 132, but the density is small, the weight is light, the cost is low, and the processing is easy.
  • the material of the base 131 may be an iron-carbon alloy, such as cast iron. Steel, etc., may also be metal materials such as aluminum or aluminum alloy, or other composite materials.
  • the pre-collimator 12 may be a pre-collimator.
  • the pre-collimator is also one, and the source may be pre-collimated.
  • the source 11 includes multiple At the source, the pre-collimator is the same number as the source, and a pre-collimator pre-aligns a source.
  • the pre-collimation body 12 may also include a base block 122 and a shielding block 123, as shown in FIG. 5, wherein the first collimating hole 121 is disposed on the base block 122; the shielding block 123 is embedded in the base block 122.
  • the shielding block 123 serves to block radiation emitted from the radiation source 11 from leaking out, and the material density of the shielding block 123 is greater than the material density of the base block 122.
  • the radiation emitted by the radiation source 11 may leak from the gap between the components, the set aperture or the weakly shielded portion, for example, may be approved.
  • the second collimating hole 133 of the straight body 13 is leaked out, and may also leak out through the base block 122 itself.
  • a material having a lower density is used as the base block 122.
  • the weight of the pre-collimator 13 is lowered, the weight of the entire focus radiotherapy apparatus 1 is further reduced, and on the other hand, the base block having a lower density is used.
  • 122 is relatively easy to process, not easy to deform, and reduces the production cost while ensuring the dose characteristics of the field.
  • the use of a material having a relatively high density as the shielding block 123 can effectively block the radiation emitted by the radiation source 11 from passing through the substrate 122 having a lower density or other apertures or gaps, either during radiotherapy or after stopping the radiation treatment. Leak out.
  • the base block 122 includes a portion where the first collimating hole 121 is provided, and a portion where the first collimating hole 121 is not provided.
  • the upper end surface of the base block 122 ie, the end closer to the radiation source 11
  • the shield block 123 is not required to be ensured. Affecting the use of the first collimating aperture 121.
  • the base block 122 can be configured as a plurality of structures, for example, a square block, an arcuate body, or a columnar body or other structures.
  • the embodiment of the present invention does not specifically limit the structure of the base block 122, and can be radiated with the focus radiotherapy apparatus 1.
  • the source 11 and the collimator 13 can be adapted.
  • the position, structure, and thickness of the shield block 123 embedded in the base block 122 can be determined according to the second collimation hole 133 on the base body 131 of the collimator body 13.
  • the second collimating hole 133 is leaked out, and the shielding block 123 can be disposed at a position opposite to the position of the second collimating hole 133, that is, the shielding block 123 is aligned with the second collimating hole 13.
  • the structure of the shielding block 123 may be an irregular annular shielding block.
  • the shielding block 122 may be a regular annular shielding block, or a shielding block of other structures, such as a square block body, a trapezoidal block body, or the like, distributed around the base block 122, and, as shown in FIG. 6,
  • the thickness of the shielding block 123 may be smaller than the base block 122 or may be equal to the thickness of the base block 122, as shown in FIG.
  • the position, structure, thickness and the like of the shielding block 123 are not specifically limited in the embodiment of the present invention, and the radiation emitted by the radiation source 11 can be blocked or shielded.
  • the material density of the shielding block 123 needs to be greater than the material density of the base block 122.
  • the material of the shielding block 123 is: tungsten, lead, tungsten alloy, composite shielding material containing tungsten or composite containing lead. Shielding materials or other materials with good shielding properties.
  • the material of the base block 122 has poorer shielding ray performance than the material used for the shielding block 123, but the density is small, the weight is light, the cost is low, and the processing is easy.
  • the material of the base block 122 is iron-carbon alloy, such as cast iron and steel. Etc., it can also be a metal material such as aluminum or aluminum alloy, or other composite materials.
  • the focus radiotherapy apparatus 1 further includes: a switch body 14 for turning on or off the radiation source 11.
  • the radiation source 11 When the switch body 14 is opened, the radiation source 11 is in an open state, and the radiation emitted from the radiation source 11 can pass through the first collimation hole 121 on the pre-collimation body 12 (base block 122), and the base body 131 of the collimator body 13.
  • the second alignment hole 133 is focused on the target tumor tissue to treat the tumor tissue.
  • the switch body 14 When the switch body 14 is closed, the radiation source 11 is in a closed state, the treatment is stopped, and the position of the collimator 13 is adjusted to align the radiation source 11 with the source body 132, so that the switch body 14 and the source body can be passed. 132 better shields the radiation of the radiation source 11 from radiation leakage.
  • the switch body 14 may be a cylinder having an eccentric hole 141, and the switch body 14 rotates around a central axis of the cylinder.
  • the switch body 14 can also be a switch body of other structure, for example, an annular cylinder, the annular side wall is provided with a ray hole through which the radiation source passes, and the radiation source 11 is mounted on the annular through hole of the annular cylinder. Inside, the switch body 14 rotates about the central axis of the annular cylinder.
  • the radiation source 11 When the ray hole is aligned with the radiation source 11, the radiation source 11 is in an open state, and when the ray hole is displaced from the radiation source 11, the radiation source 11 is in a closed state.
  • the structure of the switch body 14 is not specifically limited in the present invention.
  • the focus radiotherapy apparatus 1 further includes a shield ring 15 disposed on a sidewall of the carrier chamber 16 on which the radiation source 11 is mounted, the shield ring 15 being used for shielding radiation.
  • the radiation source 11 When the radiation source 11 is loaded, as shown in FIG. 8, the radiation source 11 is placed in the carrier chamber 16 from the tip end of the focus radiation therapy device 1.
  • the switch body 14 When performing radiation therapy using the focus radiotherapy apparatus 1, the switch body 14 is rotated, and the collimator 13 is adjusted so that the eccentric hole 141 of the switch body 14 is aligned with the radiation source 11, and the second collimation hole on the base body 131 of the collimator 13 133 is aligned with the first collimating hole 121 on the pre-collimator 12 (base block 122), so that the radiation emitted by the radiation source 11 can pass through the eccentric hole 141 of the switch body 14, the first standard of the pre-collimation body 12.
  • the straight hole 121, and the second collimating hole 133 of the collimator 13, are focused at the target tumor tissue to treat the tumor tissue.
  • the switch body 14 is rotated, and the collimator 13 is adjusted so that the eccentric hole 141 of the switch body 14 is displaced from the radiation source 11, and the source body on the base body 131 of the collimator 13 132 is aligned with the first collimating hole 121 on the pre-collimator 12 (base block 122), so that the light-emitting source 11 is shielded by the switch body 14 and the source body 132 while the radiation is pre-collimated by the body 12.
  • the shielding block 123 blocks and avoids leaking from the second collimating hole 133 of the collimating body 13.
  • the shielding ring 15 blocks the radiation leaking from the gap between the radiation source 11 and the carrier source chamber 16, thereby better preventing the shielding ring 15 from leaking.
  • the leakage of the rays has achieved a good shielding effect.
  • the radiation source 11 can also be placed from the side of the focusing radiation therapy device 1.
  • the radiation source 11 is laterally inserted into the switch body 14 of the annular cylindrical body.
  • the carrier cavity 16 is annular. a cavity formed by the annular inner wall of the cylinder.
  • the radiation source 11 can be placed in the carrier chamber 16 by other means, which is not specifically limited in the embodiment of the present invention.
  • the shield ring 15 is composed of two or more sub-shield segments, and the end faces of any two joined shield segments are stepped or toothed. That is, as shown in FIG. 9B, the shield ring 15 includes a first shield segment 151 and a second shield segment 152. The end faces of the first shield segment 151 and the second shield segment 152 are stepped or toothed. In this way, it is better to shield the leaked rays between the carrier chamber 16 and the radiation source 11.
  • FIG. 10 is a schematic structural diagram of a focus radiotherapy apparatus according to an embodiment of the present invention.
  • the focus radiotherapy apparatus includes the focus radiotherapy apparatus 1 of any of the above embodiments.
  • the focus radiotherapy apparatus 1 is mounted on the frame 2 of the focus radiotherapy apparatus. The following is a detailed description of the treatment of tumor tissue with this focused radiotherapy device:
  • the radiation from the radiation source 11 in the focused radiotherapy apparatus 1 passes through the first collimating hole 121 on the pre-collimator 12 (base block 122), and the collimating body.
  • a second collimating aperture 133 on the substrate 131 is focused at the target tumor tissue to treat the tumor tissue.
  • the position of the collimator 13 is adjusted to align the radiation source 11 with the source body 132 to shield the radiation emitted by the source.
  • the dense source body 132 can ensure that the radiation emitted by the radiation source 11 is completely blocked, preventing the radiation of the radiation source 11 from being leaked, and at the same time, the density is small.
  • the weight of the collimator 13 is significantly reduced compared with the prior art, and the weight of the focus radiotherapy apparatus 1 is also reduced, which is advantageous for ensuring the overall focus of the radiotherapy apparatus for mounting the focus radiotherapy apparatus 1.
  • the substrate 131 having a small density is relatively easy to process and is not easily deformed, and the production cost is reduced while ensuring the dose characteristics of the field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种聚焦放疗装置及设备,属于医疗器械技术领域。聚焦放疗装置包括放射源(11),设置有第一准直孔(121)的预准直体(12)以及包括基体(131)和关源体(132)的准直体(13);其中,基体(131)设置有用于与第一准直孔(121)同轴连通的第二准直孔(133);关源体(132)嵌于基体(131)上未设置第二准直孔(133)的部位,用于阻挡穿过第一准直孔(121)放射源(11)发出的射线,并且关源体(132)的材料密度大于基体(131)的材料密度;这样,可以减轻聚焦放疗装置的重量、降低生产成本、在保证射野的剂量特性的同时有效地阻止了放射源(11)射线的漏泄。

Description

一种聚焦放疗装置及设备
本申请要求于2017年12月05日提交中国国家知识产权局、申请号为201711268150.0、发明名称为“一种聚焦放疗装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗器械技术领域,特别涉及一种聚焦放疗装置及设备。
背景技术
在放射治疗行业,聚焦放射治疗技术已经相当成熟,聚焦放疗头中放射源发出的射线经预准直体、准直体聚焦于患者的病灶,摧毁肿瘤组织。
通常,聚焦放疗头中的预准直体、准直体的材料为钨,然而,钨材料的密度大,重量大,影响聚焦放疗设备整体的平衡性及稳定性,并且,钨材料的硬度高,不易加工,使得预准直体、准直体加工的生产成本高。但是,如果将预准直体、准直体的材料换做容易加工的轻质材料,就会降低射野的剂量特性,射野半影增大,并且不能有效的阻止放射源射线的漏射。
发明内容
为解决上述技术问题,本发明实施例提供一种聚焦放疗装置及设备,可以降减轻聚焦放疗装置的重量、低生产成本、在保证射野的剂量特性的同时有效地阻止了放射源射线的漏泄。
为了达到本发明目的,本发明实施例提供了一种聚焦放疗装置,所述装置包括:放射源;预准直体,设置有第一准直孔;准直体,包括基体和关源体,其中:所述基体,设置有用于与所述第一准直孔同轴连通的第二准直孔;所述关源体,嵌于所述基体上未设置所述第二准直孔的部位,用于阻挡穿过所述第一准直孔所述放射源发出的射线,并且所述关源体的材料密度大 于所述基体的材料密度。
在一实施例中,所述关源体的厚度比所述基体小,或者与所述基体的厚度相等。
在一实施例中,所述关源体的材料为:钨、铅、钨合金、含钨的复合屏蔽材料或者含铅的复合屏蔽材料,和/或,所述基体的材料为铁碳合金。
在一实施例中,所述预准直体包括:基块和屏蔽块,其中:所述第一准直孔设置在所述基块上;所述屏蔽块嵌于所述基块上所述第一准直孔的周围,用于阻挡所述放射源发出的射线漏射,并且所述屏蔽块的材料密度大于所述基块的材料密度。
在一实施例中,所述屏蔽块的厚度比所述基块小,或者与所述基块的厚度相等。
在一实施例中,所述屏蔽块为环形屏蔽块。
在一实施例中,所述屏蔽块的材料为:钨、铅、钨合金、含钨的复合屏蔽材料或者含铅的复合屏蔽材料,和/或,所述基块的材料为铁碳合金。
在一实施例中,所述装置还包括:用于开启或者关闭所述放射源的开关体。
在一实施例中,所述装置还包括:屏蔽环,设置在装载放射源的载源腔的侧壁上。
在一实施例中,所述屏蔽环包括:第一屏蔽段和第二屏蔽段,所述第一屏蔽段与所述第二屏蔽段接合的端面呈阶梯状。
本发明实施例还提供了一种聚焦放疗设备,包括上述任一聚焦放疗装置。
与现有技术相比,本发明实施例中的聚焦放疗装置,包括:放射源、预准直体和准直体,其中,所述预准直体设置有第一准直孔;所述准直体包括基体和关源体,其中,所述基体设置有用于与所述第一准直孔同轴连通的第二准直孔;所述关源体嵌于所述基体上未设置所述第二准直孔的部位,用于阻挡穿过所述第一准直孔所述放射源发出的射线,并且所述关源体的材料密度大于所述基体的材料密度。与现有技术相比,密度较大的关源体可以保证放射源发出的射线被完成阻挡,阻止了放射源射线的泄露,同时,密度较小的基体一方面可以降低准直体的重量,从而聚焦放疗装置整体的重量也随之降低,有利于确保 安装聚焦放疗装置的聚焦放疗设备整体的平衡性及稳定性,另一方面,密度较小的基体比较容易加工,不易变形,在保证射野的剂量特征的同时,降低了生成成本。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1A和1B为本发明实施例提供的一种聚焦放疗装置的剖视图一;
图2为本发明实施例提供的一种准直体的俯视图;
图3A和3B为本发明实施例提供的一种准直体的侧视剖视图;
图4为本发明实施例提供的另一种准直体的俯视图;
图5为本发明实施例提供的一种聚焦放疗装置的剖视图二;
图6为本发明实施例提供的一种预准直器的侧视剖视图;
图7为本发明实施例提供的一种聚焦放疗装置的结构示意图三;
图8为本发明实施例提供的一种聚焦放疗装置的结构示意图四;
图9A为本发明实施例提供的一种屏蔽环的俯视图;
图9B为本发明实施例提供的一种屏蔽环的侧视图;
图10为本发明实施例提供的一种聚焦放疗设备的结构示意图;
图中的附图标记分别表示:
1-聚焦放疗装置;11-放射源;12-预准直体;121-第一准直孔;122-基块;123-屏蔽块;13-准直体;131-基体;132-关源体;133-第二准直孔;14-开关体;141-偏心孔;15-屏蔽环;151-第一屏蔽段;152-第二屏蔽段;16-载源腔;2-机架。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1A和1B为本发明实施例提供的一种聚焦放疗装置的剖视图,如图1A所示,该聚焦放疗装置1包括:放射源11、预准直体12和准直体13,其中,预准直体12上设置有第一准直孔121,用于供放射源11发出的射线穿过;准直体13包括基体131和关源体132,这里,基体131设置有用于与第一准直孔121同轴连通的第二准直孔133,该第二准直孔133用于供经第一准直孔121、放射源11发出的射线穿过;结合图2所示,关源体132嵌于基体131上未设置第二准直孔133的部位,用于阻挡穿过第一准直孔121、放射源11发出的射线,并且关源体132的材料密度大于基体131的材料密度。
如图1B所示,在使用本发明实施例提供的聚焦放疗装置1对肿瘤组织进行放射治疗时,聚焦放疗装置1中的放射源11发射的射线穿过预准直体12上的第一准直孔121、以及准直体13基体131上的第二准直孔133,聚焦在目标肿瘤组织S处,以治疗肿瘤组织。当停止治疗时,如图1A所示,调整准直体13的位置,以使放射源11与关源体132对齐,从而屏蔽放射源发出的射线,阻止放射源11射线的外泄。
与现有的聚焦放疗装置1中由同一种屏蔽材料(例如:钨)制成的准直体相比,本发明实施例中聚焦放疗装置1中的准直体13包括采用不同密度的材料制成的两个部分:基体131和关源体132,其中,基体131上设置有可与预准直体12的第一准直孔121同轴连通的第二准直孔133,关源体132嵌于基体131上未设置第二准直孔133的部位,用于阻挡穿过第一准直孔121放射源11发出的射线。由于基体131的密度小于关源体132的密度,这样,密度较大的关源体132可以保证放射源11发出的射线被完成阻挡,阻止了放射源11射线的泄露,同时,采用密度较小的材料作为基体131,一方面,相比于现有技术,准直体13的重量明显减轻,聚焦放疗装置1整体的重量也随之降低,另一方面,密度较小的基体131比较容易加工,不易变形,在保证射野的剂量特征的同时,降低了生成成本。
这里需要说明的是,基体131包括设置有第二准直孔133的部位、以及未设置第二准直孔133的部位。以基体131的上端面(即距离放射源11近的一 端)为例,关源体132可以由基体131上端面没有设置第二准直孔133的部位嵌入基体131,且需保证关源体132不影响第二准直孔133的使用。这里还需要说明的是,图2中的第二准直孔133为一组,仅是一种示例,当然,第二准直孔133也可以多组。
基体131可以根据需要设置为多种结构,例如:方形块体(如图2所示)、弧形体、柱状体或者其他结构,本发明实施例对于基体131的结构不作具体限定,能够与聚焦放疗装置1的放射源11、预准直体12相适配即可。
嵌于基体131上的关源体132也可以根据需要设置为多种结构,例如:柱状体(如图2所示)、方形块状体、梯形块状体或者其他结构,并且,关源体132的厚度可以与基体131的厚度相等,如图3A所示,也可以比基体131小,如图3B所示。本发明实施例对于关源体132的结构、厚度等不作具体限定,可阻挡或屏蔽放射源11发出的射线即可。
这里还需要说明的是,当放射源11包括多颗源时,关源体132可以设置为一个,同时阻挡每颗源发出的射线,如图1A和2,以这样的方式设置的关源体132为一个整体,容易加工和装配;关源体132也可以设置为多个,示例性的,如图4所示,关源体132的数目与多颗源数目相同,排布方式与多颗源的排布方式相同,每个关源体132可阻挡一颗放射源11发出的射线,这样设置的关源体132相对于一个整体关源体132,节约了材料成本,但同时增加了加工和装配难度。当然,关源体132的数目可以与放射源11中源的数目不同,本发明实施例对此不作具体限定。
在本发明实施例中,关源体132的材料密度需要大于基体131的材料密度,这里,关源体132的材料可以为钨、铅、钨合金、含钨的复合屏蔽材料、含铅的复合屏蔽材料或者其他屏蔽性能良好的材料。基体131的材料与关源体132所用材料相比,屏蔽射线的性能较差,但是密度较小、重量较轻、成本较低并且容易加工,基体131的材料可以为铁碳合金,例如铸铁、钢等,也可以为铝、铝合金等金属材料,或者其他复合材料。
进一步的,预准直体12可以为预准直器,当放射源11为一颗源时,预准直器也为一个,可以对该颗源进行预准直,当放射源11包括多颗源时,预准直器与源的数目相同,一个预准直器对一颗源进行预准直。
预准直体12也可以包括:基块122和屏蔽块123,如图5所示,其中,上 述第一准直孔121设置在基块122上;屏蔽块123嵌于基块122上第一准直孔121的周围,屏蔽块123用于阻挡放射源11发出的射线漏射出去,并且屏蔽块123的材料密度大于基块122的材料密度。
这里需要说明的是,在未设置屏蔽块123的情况下,放射源11发出的射线可能从部件之间的缝隙、设置的孔径或者屏蔽性能较弱的部位等漏射出去,例如:可能经准直体13的第二准直孔133漏射出去,也可能是穿过基块122自身漏射出去。
与现有技术相比,采用密度较小的材料作为基块122,一方面,预准直体13的重量降低,聚焦放疗装置1整体的重量进一步降低,另一方面,密度较小的基块122比较容易加工,不易变形,在保证射野的剂量特征的同时,降低了生产成本。而采用密度较大的材料作为屏蔽块123,不论在放射治疗过程中还是停止放射治疗之后,均可以有效地阻挡放射源11发出的射线经密度较小的基块122、或者其他孔径或缝隙外泄出去。
这里需要说明的是,基块122包括设置有第一准直孔121的部位、以及未设置第一准直孔121的部位。以基块122的上端面(即距离放射源11近的一端)为例,屏蔽块123可以由基块122上端面第一准直孔121的周围嵌入基块122,且需保证屏蔽块123不影响第一准直孔121的使用。
基块122可以根据需要设置为多种结构,例如:方形块体、弧形体或柱状体或者其他结构,本发明实施例对于基块122的结构不作具体限定,能够与聚焦放疗装置1的放射源11、准直体13相适配即可。
嵌于基块122上的屏蔽块123位置、的结构、厚度可以根据准直体13基体131上的第二准直孔133来确定。如图5所示,放射源11发出的射线经第一准直孔121被关源体132屏蔽的情况下,为了避免放射源11发出的射线经基块122从准直体13基体131上的第二准直孔133外泄出去,可以将屏蔽块123设置在与第二准直孔133的位置相对的位置,即屏蔽块123与第二准直孔13对齐。当第二准直孔133为多组时,基块123需要屏蔽射线以避免其穿过所有第二准直孔133中的任意一个,这样,屏蔽块123的结构可能为不规则的环形屏蔽块,当然,屏蔽块122可以为规则的环形屏蔽块,或其他结构的屏蔽块,例如:方形块状体、梯形块状体等,分布在基块122的周围,并且,如图6所示,屏蔽块123的厚度可以比基块122小,也可以与基块122的厚度相等,如 图5所示。本发明实施例对于屏蔽块123的位置、结构、厚度等不作具体限定,可阻挡或屏蔽放射源11发出的射线外泄即可。
在本实用新实施例中,屏蔽块123的材料密度需要大于基块122的材料密度,这里,屏蔽块123的材料为:钨、铅、钨合金、含钨的复合屏蔽材料或者含铅的复合屏蔽材料或者其他屏蔽性能良好的材料。基块122的材料与屏蔽块123所用材料相比,屏蔽射线的性能较差,但是密度较小、重量轻、成本较低并且容易加工,基块122的材料为铁碳合金,例如铸铁、钢等,也可以为铝、铝合金等金属材料,或者其他复合材料。
作为一种可选的方式,如图7所示,聚焦放疗装置1还包括:用于开启或者关闭放射源11的开关体14。
当打开开关体14时,放射源11为打开状态,放射源11发出的射线就可以穿过预准直体12(基块122)上的第一准直孔121、以及准直体13基体131上的第二准直孔133,聚焦在目标肿瘤组织处,以治疗肿瘤组织。当关闭开关体14时,放射源11为关闭状态,停止治疗,并调整准直体13的位置,以使放射源11与关源体132对齐,这样,就可以通过开关体14、关源体132更好地屏蔽放射源11的射线,防止射线泄露。
这里需要说明的是,如图7所示,开关体14结构可以为具有偏心孔141的圆柱体,开关体14绕圆柱体的中心轴旋转,当偏心孔141与放射源11对齐时,放射源11为打开状态,当偏心孔141与放射源11错开时,放射源11为关闭状态。当然,开关体14也可以为其他结构的开关体,例如:环形圆柱体,其环形侧壁上开设有供放射源射线穿过的射线孔,放射源11安装在该环形圆柱体的环形通孔内,开关体14绕环形圆柱体的中心轴旋转,当射线孔与放射源11对齐时,放射源11为打开状态,当射线孔与放射源11错开时,放射源11为关闭状态。本发明对开关体14的结构不作具体限定。
作为另一种可选的方式,如图8所示,聚焦放疗装置1还包括:屏蔽环15,设置在装载放射源11的载源腔16的侧壁上,该屏蔽环15用于屏蔽放射源11发出的射线,特别是装载放射源11的载源腔16和放射源11之间的缝隙泄露的射线。
在装载放射源11时,如图8所示,放射源11从聚焦放疗装置1的顶端放入的方式放入载源腔16。在使用聚焦放疗装置1进行放射治疗时,旋转开关体 14、调整准直体13,以使开关体14的偏心孔141与放射源11对齐,准直体13基体131上的第二准直孔133与预准直体12(基块122)上的第一准直孔121对齐,从而放射源11发出的射线就可以穿过开关体14的偏心孔141、预准直体12的第一准直孔121、以及准直体13的第二准直孔133,聚焦在目标肿瘤组织处,以治疗肿瘤组织。在不需要使用聚焦放疗装置1进行放射治疗时,旋转开关体14、调整准直体13,以使开关体14的偏心孔141与放射源11错开,准直体13基体131上的关源体132与预准直体12(基块122)上的第一准直孔121对齐,从而放射源11发出的射线的被开关体14、关源体132屏蔽,同时射线被预准直体12的屏蔽块123阻挡,避免从准直体13的第二准直孔133泄露出去,除此,屏蔽环15阻挡了放射源11与载源腔16缝隙泄露的射线,由此,更好的防止了射线的外泄,达到了很好的屏蔽效果。
这里需要说明的是,放射源11也可以从聚焦放疗装置1的侧边放入,示例性的,放射源11横向插入结构为环形圆柱体的开关体14,这时,载源腔16为环形圆柱体的环形内壁所形成的腔体。当然,放射源11还可以通过其他方式放入载源腔16,本实施新型实施例对此不作具体限定。
进一步的,如图9A所示,上述屏蔽环15由两个或两个以上的子屏蔽段组成,任意两个接合的屏蔽段的端面呈阶梯状或齿状。也就是说,如图9B所示,上述屏蔽环15包括:第一屏蔽段151和第二屏蔽段152,第一屏蔽段151与第二屏蔽段152接合的端面呈阶梯状或齿状。这样,更好的屏蔽载源腔16和放射源11之间的缝隙泄露的射线。
图10为本发明实施例还提供的一种聚焦放疗设备的结构示意图,如图10所示,该聚焦放疗设备包括上述实施例中任一的聚焦放疗装置1。其中,聚焦放疗装置1安装在聚焦放疗设备的机架2上。以下对于采用该聚焦放疗设备对肿瘤组织进行治疗给予详细描述:
在使用聚焦放疗设备对肿瘤组织进行放射治疗时,聚焦放疗装置1中的放射源11发出的射线穿过预准直体12(基块122)上的第一准直孔121、以及准直体13基体131上的第二准直孔133,聚焦在目标肿瘤组织处,以治疗肿瘤组织。当停止治疗时,调整准直体13的位置,以使放射源11与关源体132对齐,以屏蔽发射源发出的射线。
由于基体131的密度小于关源体132的密度,这样,密度较大的关源体 132可以保证放射源11发出的射线被完成阻挡,阻止了放射源11射线的泄露,同时,采用密度较小的材料作为基体131,一方面,相比于现有技术,准直体13的重量明显减轻,聚焦放疗装置1整体的重量也随之降低,有利于确保安装聚焦放疗装置1的聚焦放疗设备整体的平衡性及稳定性,另一方面,密度较小的基体131比较容易加工,不易变形,在保证射野的剂量特征的同时,降低了生产成本。
以上所述仅是为了便于本领域的技术人员理解本发明的技术方案,并不用以限制本发明。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种聚焦放疗装置,其特征在于,包括:
    放射源(11);
    预准直体(12),设置有第一准直孔(121);
    准直体(13),包括基体(131)和关源体(132),其中:
    所述基体(131),设置有用于与所述第一准直孔(121)同轴连通的第二准直孔(133);
    所述关源体(132),嵌于所述基体(131)上未设置所述第二准直孔(133)的部位,用于阻挡穿过所述第一准直孔(121)所述放射源(11)发出的射线,并且所述关源体(132)的材料密度大于所述基体(131)的材料密度。
  2. 根据权利要求1所述的聚焦放疗装置,其特征在于,所述关源体(132)的厚度比所述基体(131)小,或者与所述基体(131)的厚度相等。
  3. 根据权利要求1所述的聚焦放疗装置,其特征在于,所述关源体(132)的材料为:钨、铅、钨合金、含钨的复合屏蔽材料或者含铅的复合屏蔽材料,和/或,所述基体(131)的材料为铁碳合金。
  4. 根据权利要求1所述的聚焦放疗装置,其特征在于,所述预准直体(12)包括:基块(122)和屏蔽块(123),其中:
    所述第一准直孔(121)设置在所述基块(122)上;
    所述屏蔽块(123)嵌于所述基块(122)上所述第一准直孔(121)的周围,用于阻挡所述放射源(11)发出的射线漏射,并且所述屏蔽块(123)的材料密度大于所述基块(122)的材料密度。
  5. 根据权利要求4所述的聚焦放疗装置,其特征在于,所述屏蔽块(123)的厚度比所述基块(122)小,或者与所述基块(122)的厚度相等。
  6. 根据权利要求4所述的聚焦放疗装置,其特征在于,所述屏蔽块(123)为环形屏蔽块(123)。
  7. 根据权利要求4所述的聚焦放疗装置,其特征在于,所述屏蔽块(123)的材料为:钨、铅、钨合金、含钨的复合屏蔽材料或者含铅的复合屏蔽材料, 和/或,所述基块(122)的材料为铁碳合金。
  8. 根据权利要求1所述的聚焦放疗装置,其特征在于,所述装置还包括:用于开启或者关闭所述放射源(11)的开关体(14)。
  9. 根据权利要求1所述的聚焦放疗装置,其特征在于,所述装置还包括:屏蔽环(15),设置在装载放射源(11)的载源腔(16)的侧壁上。
  10. 根据权利要求9所述的聚焦放疗装置,其特征在于,所述屏蔽环(15)包括:第一屏蔽段(151)和第二屏蔽段(152),所述第一屏蔽段(151)与所述第二屏蔽段(152)接合的端面呈阶梯状。
  11. 一种聚焦放疗设备,其特征在于,包括:权利要求1-10任一项所述的聚焦放疗装置(1),所述聚焦放疗装置(1)安装在所述放疗设备的机架(2)上。
PCT/CN2018/104089 2017-12-05 2018-09-05 一种聚焦放疗装置及设备 WO2019109688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711268150.0A CN107890612A (zh) 2017-12-05 2017-12-05 一种聚焦放疗装置及设备
CN201711268150.0 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019109688A1 true WO2019109688A1 (zh) 2019-06-13

Family

ID=61806992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104089 WO2019109688A1 (zh) 2017-12-05 2018-09-05 一种聚焦放疗装置及设备

Country Status (2)

Country Link
CN (1) CN107890612A (zh)
WO (1) WO2019109688A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108744315A (zh) * 2018-06-25 2018-11-06 西安大医数码科技有限公司 准直器及放疗设备
CN208990092U (zh) * 2018-06-29 2019-06-18 西安大医集团有限公司 一种聚焦头及放疗设备
CN113884520A (zh) * 2021-09-24 2022-01-04 中国原子能科学研究院 一种用于中子散射测试样品的储存测试装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144647A (en) * 1990-07-09 1992-09-01 Mitsubishi Denki Kabushiki Kaisha Radiation exposure field limiting apparatus
CN2676951Y (zh) * 2003-12-31 2005-02-09 深圳市尊瑞科技有限公司 放射治疗辐射装置
CN203870263U (zh) * 2014-04-28 2014-10-08 辽宁省计量科学研究院 一种辐射安全监测设备检测系统
CN105031832A (zh) * 2015-08-27 2015-11-11 西安大医数码技术有限公司 适形调强放疗装置
CN106456991A (zh) * 2015-08-04 2017-02-22 西安大医数码技术有限公司 聚焦放疗装置及放射治疗设备
CN206183816U (zh) * 2016-06-17 2017-05-24 深圳市奥沃医学新技术发展有限公司 一种成像准直体、治疗头及治疗设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1050062C (zh) * 1996-12-17 2000-03-08 深圳奥沃国际科技发展有限公司 旋转式伽玛射线辐射单元
US6528797B1 (en) * 1999-04-16 2003-03-04 The Regents Of The University Of Michigan Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein
JP3902048B2 (ja) * 2002-03-29 2007-04-04 株式会社東芝 放射線検査装置
RU2310189C2 (ru) * 2003-06-27 2007-11-10 Университет Тсингхуа Система досмотра багажа с использованием гамма-излучения
CN100512906C (zh) * 2003-12-31 2009-07-15 深圳市尊瑞科技有限公司 变准直孔径的准直装置及其变换方法
CN1586670A (zh) * 2004-09-15 2005-03-02 杭州华源伽玛医疗设备投资有限公司 旋转关闭式伽玛射线辐射装置
CN201725599U (zh) * 2010-08-04 2011-01-26 北华大学 医疗x射线相干散射组合式多级准直器
AU2012330895B2 (en) * 2011-11-02 2016-03-10 Tracerco Limited Scanning method and apparatus
CN203609769U (zh) * 2013-10-31 2014-05-28 李海鹰 一种头部伽玛刀装置
CN106163613B (zh) * 2014-05-22 2019-01-08 深圳市奥沃医学新技术发展有限公司 多源聚焦治疗和适形调强治疗放疗设备及其准直器组合
CN106110516A (zh) * 2016-06-17 2016-11-16 深圳市奥沃医学新技术发展有限公司 一种成像准直体、治疗头及治疗设备
CN208493020U (zh) * 2017-12-05 2019-02-15 西安大医数码科技有限公司 一种聚焦放疗装置及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144647A (en) * 1990-07-09 1992-09-01 Mitsubishi Denki Kabushiki Kaisha Radiation exposure field limiting apparatus
CN2676951Y (zh) * 2003-12-31 2005-02-09 深圳市尊瑞科技有限公司 放射治疗辐射装置
CN203870263U (zh) * 2014-04-28 2014-10-08 辽宁省计量科学研究院 一种辐射安全监测设备检测系统
CN106456991A (zh) * 2015-08-04 2017-02-22 西安大医数码技术有限公司 聚焦放疗装置及放射治疗设备
CN105031832A (zh) * 2015-08-27 2015-11-11 西安大医数码技术有限公司 适形调强放疗装置
CN206183816U (zh) * 2016-06-17 2017-05-24 深圳市奥沃医学新技术发展有限公司 一种成像准直体、治疗头及治疗设备

Also Published As

Publication number Publication date
CN107890612A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
WO2019109688A1 (zh) 一种聚焦放疗装置及设备
CN107485801B (zh) 一种准直体和治疗头
US20240165427A1 (en) Radiation therapy systems and methods
US7826593B2 (en) Collimator
US7295648B2 (en) Method and apparatus for treatment by ionizing radiation
US10653896B2 (en) Radiotherapy apparatus incorporating multi-source focusing therapy and conformal and intensity-modulated therapy
WO2018223487A1 (zh) 用于中子捕获治疗的射束整形体
WO2017219291A1 (zh) 一种准直器、治疗头及治疗设备
EP3808409A1 (en) Radiotherapy apparatus
US10143076B2 (en) Shielding structures for linear accelerators
US7486775B2 (en) Tissue irradiation device with at least one electron source and numerous radiation heads
Serizawa Radiosurgery for metastatic brain tumors
CN105705201B (zh) 放射源组件及具有该放射源组件的治疗头及伽玛刀
WO2017215659A1 (zh) 一种成像准直体、治疗头及治疗设备
Bhatnagar et al. First year experience with newly developed Leksell Gamma Knife® Perfexion™
CN208493020U (zh) 一种聚焦放疗装置及设备
US10720255B2 (en) Radiation delivery devices and applications thereof
US11185713B2 (en) IORT device for radiotherapy treatment of cancer patients
CN208464996U (zh) 一种准直体和治疗头
KR102158861B1 (ko) 자기장 생성 장치 및 이를 구비하는 체내 선량 제어 방사선 치료 장치
CN208405802U (zh) 一种用于中子俘获治疗的射束整形体
JP2013520255A (ja) X線で動作する医療機器並びに当該医療機器の作動方法
US20210178186A1 (en) Focusing head and radiotherapy equipment
KR20230072718A (ko) 방사선치료용 선형가속기에서 방사선 조사야 확인을 위한 광조사 시스템
KR20190000454A (ko) 피부질환치료용 전자선 산란장치, 이를 포함하는 피부질환치료용 방사선치료시스템 및 이를 이용한 피부표면에 대한 호형 전자선 조사방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884980

Country of ref document: EP

Kind code of ref document: A1