WO2019109586A1 - 用于电磁烹饪器具的加热控制电路及电磁烹饪器具 - Google Patents
用于电磁烹饪器具的加热控制电路及电磁烹饪器具 Download PDFInfo
- Publication number
- WO2019109586A1 WO2019109586A1 PCT/CN2018/085002 CN2018085002W WO2019109586A1 WO 2019109586 A1 WO2019109586 A1 WO 2019109586A1 CN 2018085002 W CN2018085002 W CN 2018085002W WO 2019109586 A1 WO2019109586 A1 WO 2019109586A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- switch
- coil disk
- series
- disk
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
- H05B6/44—Coil arrangements having more than one coil or coil segment
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0202—Switches
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/0252—Domestic applications
- H05B1/0258—For cooking
- H05B1/0261—For cooking of food
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
- H05B6/062—Control, e.g. of temperature, of power for cooking plates or the like
- H05B6/065—Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils
Definitions
- the present invention relates to the field of electrical appliances, and in particular to a heating control circuit and an electromagnetic cooking appliance for an electromagnetic cooking appliance.
- the induction cooker mainly drives a coil disk to generate an alternating magnetic field through a high-power switching device (such as an IGBT (Insulated Gate Bipolar Transistor)), so that the pot in which it is heated raises the temperature to achieve the purpose of heating.
- a high-power switching device such as an IGBT (Insulated Gate Bipolar Transistor)
- the control method does not have hardware for the circuit (for example, a resonant capacitor, a coil disk, a switching device). Etc.) to maximize utilization.
- embodiments of the present invention provide a heating control circuit for an electromagnetic cooking appliance, the heating control circuit comprising: two or more control circuits, wherein one of the two or more control circuits The control circuit includes two or more coil disks, each of the control circuits other than the one of the two or more control circuits including one or more coil disks, and Each of the two or more control circuits includes a voltage source, a power switch, and a capacitor; one or more switches coupled within the two or more control circuits and Between the two or more control circuits; and a controller for implementing by controlling a power switch tube and the one or more switches in each of the two or more control circuits Heating of a series combination of any two or more of the coil disks in the two or more control circuits.
- embodiments of the present invention also provide an electromagnetic cooking appliance including the above-described heating control circuit.
- the coil disks in different control circuits can be connected in series to achieve precise control of different heating positions in the same area.
- the full utilization of the hardware in the circuit can be achieved, and the power output performance of the induction cooker is improved.
- Figure 1 shows a combined schematic view of four coil disks
- FIG. 2 illustrates a heating control circuit for an electromagnetic cooking appliance in accordance with an embodiment of the present invention
- FIG. 3 illustrates a heating control circuit for an electromagnetic cooking appliance in accordance with an embodiment of the present invention
- FIG. 4 illustrates a heating control circuit for an electromagnetic cooking appliance in accordance with an embodiment of the present invention
- Figure 5 illustrates a heating control circuit for an electromagnetic cooking appliance in accordance with an embodiment of the present invention.
- Embodiments of the present invention provide a heating control circuit for an electromagnetic cooking appliance
- the heating control circuit may include: two or more control circuits, wherein one of the two or more control circuits may include two Or one or more coil disks, wherein the control circuit other than the one control circuit of the two or more control circuits may include one or more coil disks, and wherein the two or more control circuits are
- Each of the control circuits can include a voltage source, a power switch, and a capacitor; one or more switches coupled within the two or more control circuits and the two or more controls And between the circuits for implementing the two or more controls by controlling a power switch tube and the one or more switches in each of the two or more control circuits Heating of a series combination of any two or more of the coil disks in the circuit.
- the heating control circuit provided by the embodiment of the invention can perform time-series combined control of at least two coil disks at different positions in the same area, thereby accurately controlling the heating position.
- the voltage source included in each of the two or more control circuits may be a homogenous voltage source, wherein the negative terminals of each voltage source may be connected to a common ground.
- the voltage source can be a single phase voltage source or a multi-phase voltage source.
- each control circuit two power switch tubes and two capacitors may be included, wherein the two power switch tubes are connected in series and then connected in parallel at both ends of the voltage source, and the two capacitors are connected in series and then connected in parallel Both ends of the voltage source.
- the coil disks in each control circuit are connected in series, one end of the coil disk connected in series is connected to an end point between the two power switch tubes, and the other end is connected to an end point between the two capacitors.
- the heating control circuit for the electromagnetic cooking appliance provided by the embodiment of the invention may include a first control circuit and a second control circuit, and the first control circuit and the second control circuit may respectively comprise two coil disks.
- Figure 1 shows a combined schematic view of four coil disks. As shown in FIG. 1, the heating control circuit provided by the embodiment of the present invention can realize combined heating of any two or three coil disks, and can also realize combined heating of four coil disks.
- any combination heating may be achieved: combined heating of the coil disk 10 and the coil disk 20; combined heating of the coil disk 20 and the coil disk 30; combined heating of the coil disk 10 and the coil disk 40; coil disk 30 and coil disk Combined heating of 40; combined heating of coil disk 10, coil disk 20 and coil disk 30; combined heating of coil disk 20, coil disk 30 and coil disk 40; coil disk 10, coil disk 20, coil disk 30 and coil disk 40 The combination of heating and the like.
- the embodiment of the present invention is not limited thereto, and the first control circuit and the second control circuit may each include any number of coil disks according to control needs.
- the heating control circuit for the electromagnetic cooking appliance includes two control circuits, each of which includes two coil disks as an example, and further describes the embodiment of the present invention.
- Embodiments including more control circuits and/or more coil discs may be implemented with reasonable modifications on the basis of the embodiments described below, for example by rationally adding control circuitry and/or by adding switches This is achieved by reducing the switch or modifying the connection relationship of the switch.
- the heating control circuit for the electromagnetic cooking appliance may include a first control circuit, a second control circuit, and a controller (not shown).
- the first control circuit may include: a power switch tube SG1 and a power switch tube SG2, a coil disk 10 and a coil disk 20, a capacitor C1 and a capacitor C2, and a voltage source P1.
- the second control circuit may include: a power switch tube SG3 and power The switch tube SG4, the coil disk 30 and the coil disk 40, the capacitor C3 and the capacitor C4, and the voltage source P2.
- the voltage source P1 and the voltage source P2 are homogenous AC voltage sources, and the voltage source P1 and the cathode of the voltage source P2 are both connected to a common ground.
- the voltage source P1 and the voltage source P2 may be a single-phase voltage source or a multi-phase voltage source.
- the power switch tube SG1 and the power switch tube SG2 are connected in series and then connected in parallel at both ends of the voltage source P1.
- the capacitor C1 and the capacitor C2 are connected in series and then connected in parallel at both ends of the first voltage source P1.
- the disk 10 and the coil disk 20 are connected in series, and one end of the coil disk 10 and the coil disk 20 connected in series is connected to the end point 11 between the power switch tube SG1 and the power switch tube SG2, and the other end is connected to the capacitor C1 and the second capacitor.
- the endpoints 12 between C2 are connected.
- One end of the coil disk 10 is connected to the end point 11, the other end of the coil disk 20 is connected to one end of the coil disk 20, and the other end of the coil disk 20 is connected to the end point 12.
- the first control circuit may further include: a switch S1 connected in series between the end point 11 and one end of the coil disc 10 and the coil disc 20; the switch S2, the switch S2 is connected in series between the coil disc 10 and the coil disc 20; And a switch S3 connected in series between the terminal 12 and the coil disk 10 and the other end of the coil disk 20 in series.
- the power switch tube SG3 and the power switch tube SG4 are connected in series and then connected in parallel at both ends of the voltage source P2, and the capacitor C3 and the capacitor C4 are connected in series and then connected in parallel at both ends of the voltage source P2, the coil plate 30 and the coil plate 40.
- one end of the coil bobbin 30 and the coil disc 40 connected in series is connected to the end point 13 between the power switch tube SG3 and the power switch tube SG4 and the other end is connected to the end point 14 between the capacitor C3 and the capacitor C4.
- One end of the coil disk 30 is connected to the end point 13, the other end of the coil disk 30 is connected to one end of the coil disk 40, and the other end of the coil disk 40 is connected to the end point 14.
- the second control circuit may further include: a switch S7 connected in series between the end point 13 and one end of the coil disc 30 and the coil disc 40; the switch S8, the switch S8 is connected in series between the coil disc 30 and the coil disc 40; And switch S9, which is connected in series between the end point 14 and the coil disc 30 and the other end of the coil disc 40.
- the heating control circuit shown in FIG. 2 may further include: a switch S4 having one end connected between the terminal 11 and the switch S1, the other end of the switch S4 being connected between the terminal 13 and the switch S7; the switch S5, the switch S5 One end is connected between the other end of the coil disk 10 and the switch S2, the other end of the switch S5 is connected between the other end of the coil disk 30 and the switch S8; and the switch S6 is connected at one end of the switch S6 to the coil disk 20 Between one end and the switch S3, the other end of the switch S6 is connected between the other end of the coil disk 40 and the switch S9.
- the controller can achieve combined heating between the coil disk 10 and the coil disk 40 by controlling the power switch tube SG1 to the power switch tube SG4 and the switches S1 to S9.
- the power switch tube used in the embodiments of the present invention may be a high power switching device, such as an IGBT, or may be a high power relay or the like.
- the power switch tube is a one-way pass device.
- the controller can cause the coil disk 10 in the first control circuit and the coil disk 40 in the second control circuit to be connected in series by controlling the power switch tubes SG1 to SG4 and the switch S7 to the switch S9 to achieve both The combination is heated or the coil disk 20 in the first control circuit and the coil disk 30 in the second control circuit are connected in series to effect combined heating of the two.
- the controller may cause the coil disk 10 and the coil disk 20 in the first control circuit to be combinedly heated by controlling the power switch tubes SG1 to SG4 and the switch S7 to the switch S9 to be turned on and off, and/or may cause the second control circuit
- the coil disk 30 and the coil disk 40 in combination are heated.
- the controller can control the combined heating of the coil disk 20 and the coil disk 30.
- the controller in the first half of one cycle of the AC voltage, can control the switch S7, the switch S5, the switch S2, the switch S3, and the power switch tube SG3 to be turned on, and control the remaining switches and the power switch tube to be disconnected.
- the current flow direction in the first half cycle is: the positive pole of the voltage source P2 ⁇ the power switch tube SG3 ⁇ the switch S7 ⁇ the coil disk 30 ⁇ Switch S5 ⁇ Switch S2 ⁇ coil disk 20 ⁇ switch S3 ⁇ capacitor C2 ⁇ negative pole of voltage source P1.
- the controller may control the switch S7, the switch S5, the switch S2, the switch S6, the switch S9, and the power switch tube SG3 to be turned on, and control the remaining switches and power switches
- the tube is disconnected so that the coil disk 20, the coil disk 30, the power switch tube SG3 and the capacitor C4 are connected in series to form a resonant circuit.
- the current flows in the positive direction of the voltage source P2 ⁇ the power switch tube SG3 ⁇ the switch S7 ⁇ Coil disk 30 ⁇ switch S5 ⁇ switch S2 ⁇ coil disk 20 ⁇ switch S6 ⁇ switch S9 ⁇ capacitor C4 ⁇ negative pole of voltage source P2.
- the controller can control the switch S9, the switch S6, the switch S2, the switch S5, the switch S7, the switch S4, and the power switch tube SG2 to be turned on, and control the remaining switches and the power switch tube to be off.
- the current flow in the second half cycle is: positive electrode of the voltage source P2 ⁇ capacitor C3 ⁇ switch S9 ⁇ switch S6 ⁇ Coil disk 20 ⁇ switch S2 ⁇ switch S5 ⁇ coil disk 30 ⁇ switch S7 ⁇ switch S4 ⁇ power switch tube SG2 ⁇ negative electrode of voltage source P1.
- the controller may control the switch S9, the switch S6, the switch S2, the switch S5, the switch S7, and the power switch tube SG4 to be turned on, and control the remaining switches and the power switch tube to be disconnected.
- the current flow in the second half cycle is: positive pole of the voltage source P2 ⁇ capacitor C3 ⁇ switch S9 ⁇ switch S6 ⁇ coil Disk 20 ⁇ switch S2 ⁇ switch S5 ⁇ coil disk 30 ⁇ switch S7 ⁇ power switch tube SG4 ⁇ negative electrode of voltage source P2.
- the controller can also control the combined heating of the coil disk 10 and the coil disk 40.
- the controller in this case, in the first half of one cycle of the AC voltage, can control the switch S1, the switch S5, the switch S8, the switch S9, and the power switch tube SG1 to be turned on, and control the remaining switches. Disconnected from the power switch tube, so that the coil disk 10, the coil disk 40, the power switch tube SG1 and the capacitor C4 are connected in series to form a resonant circuit.
- the controller can control the switch S3, the switch S6, the switch S8, the switch S5, the switch S1, the switch S4, and the power switch tube SG4 to be turned on, and control the remaining switches and the power switch tube to be off.
- the current flow in the first half cycle is: positive electrode of the voltage source P1 ⁇ capacitor C1 ⁇ switch S3 ⁇ switch S6 ⁇ coil Disk 40 ⁇ switch S8 ⁇ switch S5 ⁇ coil disk 10 ⁇ switch S1 ⁇ switch S4 ⁇ power switch tube SG4.
- the controller can control the combined heating of the coil disk 10 and the coil disk 20.
- the controller can control the switches S1 to S3 to be turned on and the switches S4 to S9 to be turned off.
- the controller can control the power switch tube SG1 to be turned on so that the coil disk 10, the coil disk 20, the power switch tube SG1, and the capacitor C2 are connected in series to form a resonant circuit, and the current is in the first half cycle.
- the flow direction is: positive pole of voltage source P1 ⁇ power switch tube SG1 ⁇ switch S1 ⁇ coil disk 10 ⁇ switch S2 ⁇ coil disk 20 ⁇ switch S3 ⁇ capacitor C2 ⁇ negative pole of voltage source P1.
- the controller can control the power switch tube SG2 to be turned on so that the coil disk 10, the coil disk 20, the power switch tube SG2, and the capacitor C1 are connected in series to form a resonant circuit, in the second half cycle.
- the current flow direction is: positive pole of voltage source P1 ⁇ capacitor C1 ⁇ switch S3 ⁇ coil disk 20 ⁇ switch S2 ⁇ coil disk 10 ⁇ switch S1 ⁇ power switch tube SG2 ⁇ negative pole of voltage source P1.
- the controller can control the combined heating of the coil disk 30 and the coil disk 40.
- the controller can control the switch S7 to the switch S9 to be turned on and control the switches S1 to S6 to be turned off.
- the controller can control the power switch tube SG3 to be turned on so that the coil disk 30, the coil disk 40, the power switch tube SG3, and the capacitor C4 are connected in series to form a resonant circuit, and the current is in the first half cycle.
- the flow direction is: positive pole of voltage source P2 ⁇ power switch tube SG3 ⁇ switch S7 ⁇ coil disk 30 ⁇ switch S8 ⁇ coil disk 40 ⁇ switch S9 ⁇ capacitor C4 ⁇ negative pole of voltage source P2.
- the controller can control the power switch tube SG4 to be turned on so that the coil disk 30, the coil disk 40, the power switch tube SG4, and the capacitor C3 are connected in series to form a resonant circuit, in the second half cycle.
- the current flow direction is: positive pole of voltage source P2 ⁇ capacitor C3 ⁇ switch S9 ⁇ coil disk 40 ⁇ switch S8 ⁇ coil disk 30 ⁇ switch S7 ⁇ power switch tube SG4 ⁇ negative pole of voltage source P2.
- the controller can also implement combined heating of the coil disk 10, the coil disk 20, the coil disk 30, and the coil disk 40.
- the switch S4 to the switch S6 can be controlled to be turned off, and the control switch S1 to the switch S3 and the switch S7 to the switch S9 can be turned on.
- the power switch tube SG1 and the power switch tube SG3 can be controlled to be turned on, and the power switch tube SG2 and the power switch tube SG4 can be controlled to be disconnected.
- the control power switch tube SG2 and the power switch tube SG4 are turned on, and the power switch tube SG1 and the power switch tube SG3 are controlled to be disconnected, thereby realizing the coil disk 10, the coil disk 20, and the coil. Both the disk 30 and the coil disk 40 operate.
- FIG. 3 illustrates a heating control circuit for an electromagnetic cooking appliance in accordance with an embodiment of the present invention.
- the heating control circuit for the electromagnetic cooking appliance may include a first control circuit, a second control circuit, and a controller (not shown).
- the first control circuit may include: a power switch tube SG1 and a power switch tube SG2, a coil disk 10 and a coil disk 20, a capacitor C1 and a capacitor C2, and a voltage source P1.
- the second control circuit may include: a power switch tube SG3 and power The switch tube SG4, the coil disk 30 and the coil disk 40, the capacitor C3 and the capacitor C4, and the voltage source P2.
- the voltage source P1 and the voltage source P2 are homogenous AC voltage sources, and the voltage source P1 and the cathode of the voltage source P2 are both connected to a common ground.
- the voltage source P1 and the voltage source P2 may be a single-phase voltage source or a multi-phase voltage source.
- the power switch tube SG1 and the power switch tube SG2 are connected in series and then connected in parallel at both ends of the voltage source P1.
- the capacitor C1 and the capacitor C2 are connected in series and then connected in parallel at both ends of the first voltage source P1.
- the disk 10 and the coil disk 20 are connected in series, and one end of the coil disk 10 and the coil disk 20 connected in series is connected to the end point 11 between the power switch tube SG1 and the power switch tube SG2, and the other end is connected to the capacitor C1 and the second capacitor.
- the endpoints 12 between C2 are connected.
- One end of the coil disk 10 is connected to the end point 11, the other end of the coil disk 20 is connected to one end of the coil disk 20, and the other end of the coil disk 20 is connected to the end point 12.
- the power switch tube SG3 and the power switch tube SG4 are connected in series and then connected in parallel at both ends of the voltage source P2, and the capacitor C3 and the capacitor C4 are connected in series and then connected in parallel at both ends of the voltage source P2, the coil plate 30 and the coil plate 40.
- one end of the coil bobbin 30 and the coil disc 40 connected in series is connected to the end point 13 between the power switch tube SG3 and the power switch tube SG4 and the other end is connected to the end point 14 between the capacitor C3 and the capacitor C4.
- One end of the coil disk 30 is connected to the end point 13, the other end of the coil disk 30 is connected to one end of the coil disk 40, and the other end of the coil disk 40 is connected to the end point 14.
- the heating control circuit shown in FIG. 3 may further include: a single pole double throw switch S31 and a single pole double throw switch S32.
- the single-pole double-throw switch S31 is connected in series between the end point 11 and one end of the coil disc 10 and the coil disc 20, wherein the free end a of the single-pole double-throw switch S31 is connected to the end point 11, and the single-pole double-throw switch S31 A fixed end b is connected to the coil disc 10 and the coil disc 20 in series, and the other fixed end c of the single-pole double-throw switch S31 is connected to the end point 13 and the coil disc 30 and the coil disc 40 connected in series. Between one end.
- the single-pole double-throw switch S32 is connected in series between the coil disk 30 and the coil disk 40, wherein the free end a of the single-pole double-throw switch S32 is connected to the coil disk 30, and a fixed end b of the single-pole double-throw switch S32 and the coil
- the disk 40 is connected, and the other fixed end c of the single-pole double-throw switch S32 is connected between the coil disk 10 and the coil disk 20.
- the controller can achieve combined heating between the coil disk 10 and the coil disk 40 by controlling the power switch tube SG1 to the power switch tube SG4, the switch S31, and the switch S32.
- the power switch tube used in the embodiments of the present invention may be a high power switching device, such as an IGBT, or may be a high power relay or the like.
- the power switch tube is a one-way pass device.
- the controller can achieve combined heating of the coil disk 20 and the coil disk 30.
- the controller can control the free end a of the single-pole double-throw switch S31 to be connected to the fixed end c, and the free end a of the single-pole double-throw switch S32 to be connected to the fixed end b.
- the controller can control the power switch SG1 to be turned on so that the coil disk 30, the coil disk 20, the power switch tube SG1, and the capacitor C2 are connected in series to form a resonant circuit.
- the controller can control the power switch tube SG2 to be turned on such that the coil disk 30, the coil disk 20, the power switch tube SG2, and the capacitor C1 are connected in series to form a resonant circuit.
- the controller can also achieve combined heating of the coil disk 10 and the coil disk 20.
- the controller can control the free end a of the single-pole double-throw switch S31 to be connected to the fixed end b, and in the first half of one cycle of the alternating voltage, the controller can control the power switch tube SG1 to be turned on to make the coil disk 10.
- the coil disk 20, the power switch tube SG1 and the capacitor C2 are connected in series to form a resonant circuit.
- the controller can control the power switch tube SG2 to be turned on such that the coil disk 10, the coil disk 20, the power switch tube SG2, and the capacitor C1 are connected in series to form a resonant circuit.
- the controller can also implement combined heating of the coil disk 30 and the coil disk 40.
- the controller can control the free end a of the single-pole double-throw switch S32 to be connected to the fixed end c, and in the first half of one cycle of the alternating voltage, the controller can control the power switch tube SG3 to be turned on to make the coil disk 30
- the coil disk 40, the power switch tube SG3 and the capacitor C4 are connected in series to form a resonant circuit.
- the controller can control the power switch SG4 to be turned on such that the coil disk 30, the coil disk 40, the power switch tube SG4, and the capacitor C3 are connected in series to form a resonant circuit.
- the controller can also implement combined heating of the coil disk 10, the coil disk 20, the coil disk 30, and the coil disk 40.
- the free end a of the single-pole double-throw switch S31 can be controlled to be connected to the fixed end b
- the free end a of the single-pole double-throw switch S32 can be controlled to be connected to the fixed end c.
- the power switch tube SG1 and the power switch tube SG3 can be controlled to be turned on, and the power switch tube SG2 and the power switch tube SG4 can be controlled to be disconnected.
- the control power switch tube SG2 and the power switch tube SG4 are turned on, and the power switch tube SG1 and the power switch tube SG3 are controlled to be disconnected, thereby realizing the coil disk 10, the coil disk 20, and the coil. Both the disk 30 and the coil disk 40 operate.
- the heating control circuit for the electromagnetic cooking appliance may include a first control circuit, a second control circuit, and a controller (not shown).
- the first control circuit may include: a power switch tube SG1 and a power switch tube SG2, a coil disk 10 and a coil disk 20, a capacitor C1 and a capacitor C2, and a voltage source P1.
- the second control circuit may include: a power switch tube SG3 and power The switch tube SG4, the coil disk 30 and the coil disk 40, the capacitor C3 and the capacitor C4, and the voltage source P2.
- the voltage source P1 and the voltage source P2 are homogenous AC voltage sources, and the voltage source P1 and the cathode of the voltage source P2 are both connected to a common ground.
- the voltage source P1 and the voltage source P2 may be a single-phase voltage source or a multi-phase voltage source.
- the power switch tube SG1 and the power switch tube SG2 are connected in series and then connected in parallel at both ends of the voltage source P1.
- the capacitor C1 and the capacitor C2 are connected in series and then connected in parallel at both ends of the first voltage source P1.
- the disk 10 and the coil disk 20 are connected in series, and one end of the coil disk 10 and the coil disk 20 connected in series is connected to the end point 11 between the power switch tube SG1 and the power switch tube SG2, and the other end is connected to the capacitor C1 and the second capacitor.
- the endpoints 12 between C2 are connected.
- One end of the coil disk 20 is connected to the first end point 11, the other end of the coil disk 20 is connected to one end of the coil disk 10, and the other end of the coil disk 10 is connected to the end point 12.
- the power switch tube SG3 and the power switch tube SG4 are connected in series and then connected in parallel at both ends of the voltage source P2, and the capacitor C3 and the capacitor C4 are connected in series and then connected in parallel at both ends of the voltage source P2, the coil plate 30 and the coil plate 40.
- one end of the coil bobbin 30 and the coil disc 40 connected in series is connected to the end point 13 between the power switch tube SG3 and the power switch tube SG4 and the other end is connected to the end point 14 between the capacitor C3 and the capacitor C4.
- One end of the coil disk 30 is connected to the end point 13, the other end of the coil disk 30 is connected to one end of the coil disk 40, and the other end of the coil disk 40 is connected to the end point 14.
- One end of the coil disk 40 is connected to the end point 13, the other end of the coil disk 40 is connected to one end of the coil disk 30, and the other end of the coil disk 30 is connected to the end point 14.
- the switch S1 to the switch S4 may be further included in the heating control circuit.
- the switch S1 is connected in series between the coil disk 10 and the coil disk 20; one end of the switch S2 is connected between the switch S1 and the coil disk 20, and the other end of the switch S2 is connected between the coil disk 30 and the coil disk 40; the switch S3 One end is connected between the other end of the coil disk 10 and the end point 12, the other end of the switch S3 is connected between the other end of the coil disk 30 and the switch S4; and the switch S4 is connected in series to the coil disk 30 and the coil in series. Between the other end of the disk 40 and the end point 14.
- the controller can control the combined heating of the coil disk 20 and the coil disk 30.
- the controller can control the switch S2 and the switch S3 to be turned on, and control the switch S1 and the switch S4 to be turned off.
- the controller can control the power switch SG1 to be turned on so that the coil disk 30, the coil disk 20, the power switch tube SG1, and the capacitor C2 are connected in series to form a resonant circuit.
- the controller can control the power switch tube SG2 to be turned on such that the coil disk 30, the coil disk 20, the power switch tube SG2, and the capacitor C1 are connected in series to form a resonant circuit.
- the controller can also control the combined heating of the coil disk 10 and the coil disk 20.
- the controller can control the switch S1 to be turned on and control the switches S2 and S3 to open.
- the controller can control the power switch SG1 to be turned on such that the coil disk 10, the coil disk 20, the power switch tube SG1, and the capacitor C2 are connected in series to form a resonant circuit.
- the controller can control the power switch tube SG2 to be turned on such that the coil disk 10, the coil disk 20, the power switch tube SG2, and the capacitor C1 are connected in series to form a resonant circuit.
- the controller can also implement combined heating of the coil disk 30 and the coil disk 40.
- the controller can control the switch S4 to be turned on and control the switches S2 and S3 to be turned off.
- the controller can control the power switch tube SG3 to be turned on to make the coil disk 30 and the coil.
- the disk 40, the power switch tube SG3 and the capacitor C4 are connected in series to form a resonant circuit.
- the controller can control the power switch SG4 to be turned on such that the coil disk 30, the coil disk 40, the power switch tube SG4, and the capacitor C3 are connected in series to form a resonant circuit.
- the controller can also implement combined heating of the coil disk 10, the coil disk 20, the coil disk 30, and the coil disk 40. For example, it is possible to control the switch S1 and the switch S4 to be turned on, and to control the switch S2 and the switch S3 to be turned off. In the first half of one cycle of the AC voltage, the power switch tube SG1 and the power switch tube SG3 can be controlled to be turned on, and the power switch tube SG2 and the power switch tube SG4 can be controlled to be disconnected.
- the control power switch tube SG2 and the power switch tube SG4 are turned on, and the power switch tube SG1 and the power switch tube SG3 are controlled to be disconnected, thereby realizing the coil disk 10, the coil disk 20, and the coil. Both the disk 30 and the coil disk 40 operate.
- the switch S4 in the circuit shown in Fig. 4 can also be replaced with a wire.
- one end of the switch S3 is connected between the other end of the coil disk 10 and the end point 12, and the other end of the switch S3 is connected to the other end of the coil disk 30, as compared with the circuit shown in Fig. 4 before the replacement.
- the endpoint 14 and Figure 14 as shown in Figure 5.
- the controller can control the combined heating of the coil disk 20 and the coil disk 30.
- the controller can control the switch S2 to be turned on, and control the switch S1, the switch S3, and the switch S4 to be turned off.
- the controller can control the power switch SG1 to be turned on so that the coil disk 20, the coil disk 30, the power switch tube SG1, and the capacitor C4 are connected in series to form a resonant circuit.
- the controller can control the power switch tube SG2 to be turned on such that the coil disk 30, the coil disk 20, the power switch tube SG2, and the capacitor C3 are connected in series to form a resonant circuit.
- the controller can also control the combined heating of the coil disk 10 and the coil disk 20.
- the controller can control the switch S1 to be turned on and control the switches S2 and S3 to open.
- the controller can control the power switch SG1 to be turned on such that the coil disk 10, the coil disk 20, the power switch tube SG1, and the capacitor C2 are connected in series to form a resonant circuit.
- the controller can control the power switch tube SG2 to be turned on such that the coil disk 10, the coil disk 20, the power switch tube SG2, and the capacitor C1 are connected in series to form a resonant circuit.
- the controller can also implement combined heating of the coil disk 30 and the coil disk 40.
- the controller can control the switches S2 and S3 to be disconnected.
- the controller can control the power switch tube SG3 to be turned on to make the coil disk 30, the coil disk 40, and the power switch tube. SG3 and capacitor C4 are connected in series to form a resonant circuit.
- the controller can control the power switch SG4 to be turned on such that the coil disk 30, the coil disk 40, the power switch tube SG4, and the capacitor C3 are connected in series to form a resonant circuit.
- the controller can also implement combined heating of the coil disk 10, the coil disk 20, the coil disk 30, and the coil disk 40.
- the power switch tube SG1 and the power switch tube SG3 can be controlled to be turned on, and the power switch tube SG2 and the power switch tube SG4 can be controlled to be disconnected.
- the control power switch tube SG2 and the power switch tube SG4 are turned on, and the power switch tube SG1 and the power switch tube SG3 are controlled to be disconnected, thereby realizing the coil disk 10, the coil disk 20, and the coil. Both the disk 30 and the coil disk 40 operate.
- an embodiment of the present invention further provides an electromagnetic cooking appliance, which may be, for example, an induction cooker or the like, and the electromagnetic cooking appliance may include a heating control circuit according to any embodiment of the present invention.
- the electromagnetic cooking appliance can achieve precise control of the heating position.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Induction Heating Cooking Devices (AREA)
- General Induction Heating (AREA)
Abstract
本发明实施例提供一种用于电磁烹饪器具的加热控制电路及电磁烹饪器具,属于电器领域。所述加热控制电路包括:两个或多个控制电路,所述两个或多个控制电路中的一个控制电路包括两个或多个线圈盘且除所述一个控制电路之外的其它控制电路中的每一个控制电路包括一个或多个线圈盘,以及其中每一个控制电路均包括电压源、功率开关管和电容;一个或多个开关,连接在所述两个或多个控制电路内以及所述两个或多个控制电路之间;以及控制器,用于通过控制每一个控制电路中的功率开关管以及所述一个或多个开关来实现所述两个或多个控制电路中的线圈盘之间的任意两者或多者所构成的串联组合的加热。其可以实现对同一区域不同加热位置的精确控制。
Description
本发明涉及电器领域,具体地,涉及一种用于电磁烹饪器具的加热控制电路及电磁烹饪器具。
电磁炉主要通过大功率开关器件(如IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)等)来驱动线圈盘产生交变磁场,使处于其中的锅具升温而达到加热的目的。
相关技术中,加热电路中是采用一个或两个开关器件控制一个线圈盘来进行加热,本申请发明人发现这种控制方式并没有对电路中的硬件(例如,谐振电容、线圈盘、开关器件等)达到最大化利用。
发明内容
本发明实施例的目的是提供一种用于电磁烹饪器具的加热控制电路及电磁烹饪器具,用于解决或部分解决上述技术问题。
为了实现上述目的,本发明实施例提供一种用于电磁烹饪器具的加热控制电路,所述加热控制电路包括:两个或多个控制电路,其中所述两个或多个控制电路中的一个控制电路包括两个或多个线圈盘,所述两个或多个控制电路中除所述一个控制电路之外的其它控制电路中的每一个控制电路包括一个或多个线圈盘,以及其中所述两个或多个控制电路中的每一个控制电路均包括电压源、功率开关管和电容;一个或多个开关,该一个或多个开关连接在所述两个或多个控制电路内以及所述两个或多个控制电路之间;以及控制器,用于通过控制所述两个或多个控制电路中的每一个控制电路中的功率开关管以及所述一个或多个开关来实现所述两个或多个控制电路中的线圈盘之间的任意两者或多者所构成的串联组合的加热。
相应地,本发明实施例还提供一种电磁烹饪器具,所述电磁烹饪器具包括上述的加热控制电路。
通过上述技术方案,可以串联不同控制电路中的线圈盘,以实现对同一区域不同加热位置的精确控制。同时可以达到对电路中的硬件的充分利用,并改进了电磁炉的功 率输出性能。
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:
图1示出了四个线圈盘的组合示意图;
图2示出了根据本发明一实施例的用于电磁烹饪器具的加热控制电路;
图3示出了根据本发明一实施例的用于电磁烹饪器具的加热控制电路;
图4示出了根据本发明一实施例的用于电磁烹饪器具的加热控制电路;以及
图5示出了根据本发明一实施例的用于电磁烹饪器具的加热控制电路。
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
本发明中术语“第一”、“第二”、“第三”、……、“第九”等用于示例而非限制性说明。
本发明实施例提供一种用于电磁烹饪器具的加热控制电路,该加热控制电路可以包括:两个或多个控制电路,其中所述两个或多个控制电路中的一个控制电路可以包括两个或多个线圈盘,所述两个或多个控制电路中除所述一个控制电路之外的其它控制电路可以包括一个或多个线圈盘,以及其中所述两个或多个控制电路中的每一个控制电路均可以包括电压源、功率开关管和电容;一个或多个开关,该一个或多个开关连接在所述两个或多个控制电路内以及所述两个或多个控制电路之间;以及控制器,用于通过控制所述两个或多个控制电路中的每一个控制电路中的功率开关管以及所述一个或多个开关来实现所述两个或多个控制电路中的线圈盘之间的任意两者或多者所构成的串联组合的加热。本发明实施例提供的加热控制电路可以时间对同一区域不同位置的至少两个线圈盘进行串联组合控制,从而精确控制加热位置。
可选地,两个或多个控制电路中的每一控制电路所包括的电压源可以是同源电压 源,其中每一电压源的负极可以均连接在公共地线上。可选地,电压源可以是单相电压源或多相电压源。
可选地,在每一控制电路中,可以包括两个功率开关管和两个电容,其中所述两个功率开关管串联之后并联在电压源的两端,所述两个电容串联之后并联在所述电压源的两端。每一控制电路中的线圈盘串联连接,串联连接的线圈盘的一端与所述两个功率开关管之间的端点相连接且另一端与所述两个电容之间的端点相连接。
可选地,本发明实施例提供的用于电磁烹饪器具的加热控制电路可以包括第一控制电路和第二控制电路,该第一控制电路和第二控制电路可以分别包括两个线圈盘。图1示出了四个线圈盘的组合示意图。如图1所示,本发明实施例提供的加热控制电路可以实现其中任意两个或三个线圈盘的组合加热,也可以实现四个线圈盘的组合加热。例如,可以实现以下任意一种组合加热:线圈盘10和线圈盘20的组合加热;线圈盘20和线圈盘30的组合加热;线圈盘10和线圈盘40的组合加热;线圈盘30和线圈盘40的组合加热;线圈盘10、线圈盘20和线圈盘30的组合加热;线圈盘20、线圈盘30和线圈盘40的组合加热;线圈盘10、线圈盘20、线圈盘30和线圈盘40的组合加热等。可以理解,本发明实施例并不限制于此,第一控制电路和第二控制电路可以根据控制需要而各自包含任意数量的线圈盘。
下面将以用于电磁烹饪器具的加热控制电路包括两个控制电路,这两个控制电路分别包括两个线圈盘为例,对本发明实施例进行进一步说明。对于包括更多个控制电路和/或更多个线圈盘的实施例,可以在以下描述的实施例的基础上,通过合理的修改来实现,例如通过合理的增加控制电路和/或通过增加开关、减少开关或修改开关的连接关系的方式来实现。
图2示出了根据本发明一实施例的用于电磁烹饪器具的加热控制电路。如图2所示,用于电磁烹饪器具的加热控制电路可以包括:第一控制电路、第二控制电路和控制器(图中未示出)。其中,第一控制电路可以包括:功率开关管SG1和功率开关管SG2、线圈盘10和线圈盘20、电容C1和电容C2、电压源P1,第二控制电路可以包括:功率开关管SG3和功率开关管SG4、线圈盘30和线圈盘40、电容C3和电容C4、电压源P2。电压源P1和电压源P2为同源的交流电压源,并且电压源P1和电压源P2的负极均连接在公共地线上。可选地,电压源P1和电压源P2可以为单相电压源或多相电压源。
在第一控制电路中,功率开关管SG1和功率开关管SG2串联之后并联在所述电压源P1的两端,电容C1和电容C2串联之后并联在所述第一电压源P1的两端,线圈盘 10和线圈盘20相串联,相串联的线圈盘10和线圈盘20的一端与所述功率开关管SG1和功率开关管SG2之间的端点11相连接且另一端与电容C1和第二电容C2之间的端点12相连接。其中,线圈盘10的一端与端点11相连接,线圈盘20的另一端与线圈盘20的一端相连接,线圈盘20的另一端与端点12相连接。
第一控制电路还可以包括:开关S1,开关S1串联在端点11和相串联的线圈盘10和线圈盘20的一端之间;开关S2,开关S2串联在线圈盘10和线圈盘20之间;以及开关S3,开关S3串联在端点12和相串联的线圈盘10和线圈盘20的另一端之间。
在第二控制电路中,功率开关管SG3和功率开关管SG4串联之后并联在电压源P2的两端,电容C3和电容C4串联之后并联在电压源P2的两端,线圈盘30和线圈盘40相串联,相串联的线圈盘30和线圈盘40的一端与功率开关管SG3和功率开关管SG4之间的端点13相连接且另一端与电容C3和电容C4之间的端点14相连接。其中,线圈盘30的一端与端点13相连接,线圈盘30的另一端与线圈盘40的一端相连接,线圈盘40的另一端与端点14相连接。
第二控制电路还可以包括:开关S7,开关S7串联在端点13和相串联的线圈盘30和线圈盘40的一端之间;开关S8,开关S8串联在线圈盘30和线圈盘40之间;以及开关S9,开关S9串联在端点14和相串联的线圈盘30和线圈盘40的另一端之间。
图2所示的加热控制电路还可以包括:开关S4,该开关S4的一端连接在端点11和开关S1之间,开关S4的另一端连接在端点13和开关S7之间;开关S5,开关S5的一端连接在线圈盘10的另一端和开关S2之间,开关S5的另一端连接在线圈盘30的另一端和开关S8之间;以及开关S6,开关S6的一端连接在线圈盘20的另一端和开关S3之间,开关S6的另一端连接在线圈盘40的另一端和开关S9之间。
控制器可以通过控制功率开关管SG1至功率开关管SG4以及开关S1至S9来实现线圈盘10至线圈盘40之间的组合加热。
本发明实施例中所使用的功率开关管可以是大功率开关器件,例如可以是IGBT,或者可以是大功率继电器等。可选地,功率开关管为单向导通器件。
控制器可以通过控制功率开关管SG1至SG4和开关S7至开关S9的接通和断开来使得第一控制电路中的线圈盘10和第二控制电路中的线圈盘40串联连接以实现二者的组合加热,或者使得第一控制电路中的线圈盘20和第二控制电路中的线圈盘30串联连接以实现二者的组合加热。
控制器可以通过控制功率开关管SG1至SG4和开关S7至开关S9的接通和断开来 使得第一控制电路中的线圈盘10和线圈盘20组合加热,和/或可以使得第二控制电路中的线圈盘30和线圈盘40组合加热。
具体地,控制器可以控制线圈盘20和线圈盘30组合加热。在这种情况下,在交流电压的一个周期中的前半周期,控制器可以控制开关S7、开关S5、开关S2、开关S3及功率开关管SG3接通,并控制其余开关和功率开关管断开,以使得线圈盘20、线圈盘30、功率开关管SG3及电容C2串联组成谐振电路,则在前半周期中电流的流向为:电压源P2的正极→功率开关管SG3→开关S7→线圈盘30→开关S5→开关S2→线圈盘20→开关S3→电容C2→电压源P1的负极。或者,可选地,在交流电压的一个周期中的前半周期,控制器可以控制开关S7、开关S5、开关S2、开关S6、开关S9及功率开关管SG3接通,并控制其余开关和功率开关管断开,以使得线圈盘20、线圈盘30、功率开关管SG3及电容C4串联组成谐振电路,则在前半周期中电流的流向为:电压源P2的正极→功率开关管SG3→开关S7→线圈盘30→开关S5→开关S2→线圈盘20→开关S6→开关S9→电容C4→电压源P2的负极。在交流电压的一个周期中的后半周期,控制器可以控制开关S9、开关S6、开关S2、开关S5、开关S7、开关S4及功率开关管SG2接通,并控制其余开关和功率开关管断开,以使得线圈盘20、线圈盘30、功率开关管SG2及电容C3串联组成谐振电路,则在后半周期中电流的流向为:电压源P2的正极→电容C3→开关S9→开关S6→线圈盘20→开关S2→开关S5→线圈盘30→开关S7→开关S4→功率开关管SG2→电压源P1的负极。或者,在交流电压的一个周期中的后半周期,控制器可以控制开关S9、开关S6、开关S2、开关S5、开关S7及功率开关管SG4接通,并控制其余开关和功率开关管断开,以使得线圈盘20、线圈盘30、功率开关管SG4及电容C3串联组成谐振电路,则在后半周期中电流的流向为:电压源P2的正极→电容C3→开关S9→开关S6→线圈盘20→开关S2→开关S5→线圈盘30→开关S7→功率开关管SG4→电压源P2的负极。
控制器也可以控制线圈盘10和线圈盘40组合加热。在这种情况下,在这种情况下,在交流电压的一个周期中的前半周期,控制器可以控制开关S1、开关S5、开关S8、开关S9及功率开关管SG1接通,并控制其余开关和功率开关管断开,以使得线圈盘10、线圈盘40、功率开关管SG1及电容C4串联组成谐振电路,则在前半周期中电流的流向为:电压源P1的正极→功率开关管SG1→开关S1→线圈盘10→开关S5→开关S8→线圈盘40→开关S9→电容C4→电压源P2的负极。在交流电压的一个周期中的后半周期,控制器可以控制开关S3、开关S6、开关S8、开关S5、开关S1、开关S4及功率 开关管SG4接通,并控制其余开关和功率开关管断开,以使得线圈盘10、线圈盘40、功率开关管SG4及电容C1串联组成谐振电路,则在前半周期中电流的流向为:电压源P1的正极→电容C1→开关S3→开关S6→线圈盘40→开关S8→开关S5→线圈盘10→开关S1→开关S4→功率开关管SG4。
控制器可以控制线圈盘10和线圈盘20组合加热。在这种情况下,控制器可以控制开关S1至开关S3接通并控制开关S4至S9断开。在交流电压的一个周期中的前半周期,控制器可以控制功率开关管SG1导通以使得线圈盘10、线圈盘20、功率开关管SG1及电容C2串联组成谐振电路,则在前半周期中电流的流向为:电压源P1的正极→功率开关管SG1→开关S1→线圈盘10→开关S2→线圈盘20→开关S3→电容C2→电压源P1的负极。在交流电压的一个周期中的后半周期,控制器可以控制功率开关管SG2导通以使得线圈盘10、线圈盘20、功率开关管SG2及电容C1串联组成谐振电路,则在后半周期中的电流的流向为:电压源P1的正极→电容C1→开关S3→线圈盘20→开关S2→线圈盘10→开关S1→功率开关管SG2→电压源P1的负极。
控制器可以控制线圈盘30和线圈盘40组合加热。在这种情况下,控制器可以控制开关S7至开关S9接通并控制开关S1至S6断开。在交流电压的一个周期中的前半周期,控制器可以控制功率开关管SG3导通以使得线圈盘30、线圈盘40、功率开关管SG3及电容C4串联组成谐振电路,则在前半周期中电流的流向为:电压源P2的正极→功率开关管SG3→开关S7→线圈盘30→开关S8→线圈盘40→开关S9→电容C4→电压源P2的负极。在交流电压的一个周期中的后半周期,控制器可以控制功率开关管SG4导通以使得线圈盘30、线圈盘40、功率开关管SG4及电容C3串联组成谐振电路,则在后半周期中电流的流向为:电压源P2的正极→电容C3→开关S9→线圈盘40→开关S8→线圈盘30→开关S7→功率开关管SG4→电压源P2的负极。
控制器也可以实现线圈盘10、线圈盘20、线圈盘30及线圈盘40的组合加热。例如可以控制开关S4至开关S6断开,控制开关S1至开关S3及开关S7至开关S9接通。在交流电压的一个周期中的前半周期,可以控制功率开关管SG1和功率开关管SG3接通,并控制功率开关管SG2和功率开关管SG4断开。在交流电压的一个周期中的后半周期,控制功率开关管SG2和功率开关管SG4接通,并控制功率开关管SG1和功率开关管SG3断开,从而实现线圈盘10、线圈盘20、线圈盘30及线圈盘40均进行工作。
可以理解,本领域技术人员可以在图2所示的电路图的基础上进行简单的修改或者对控制器的控制方式进行修改,例如,可以通过增加或减少加热控制电路中的线圈盘、 或者增加或减少加热控制电路中的开关,以实现加热控制电路中任意两个线圈盘或任意多个线圈盘所构成的串联组合进行加热。
通过上述实施例可以通过控制线圈盘10至线圈盘40之间的多种串联方式的组合加热,可以精确控制加热位置,并实现对电路中硬件的充分利用。
图3示出了根据本发明一实施例的用于电磁烹饪器具的加热控制电路。如图3所示,用于电磁烹饪器具的加热控制电路可以包括:第一控制电路、第二控制电路和控制器(图中未示出)。其中,第一控制电路可以包括:功率开关管SG1和功率开关管SG2、线圈盘10和线圈盘20、电容C1和电容C2、电压源P1,第二控制电路可以包括:功率开关管SG3和功率开关管SG4、线圈盘30和线圈盘40、电容C3和电容C4、电压源P2。电压源P1和电压源P2为同源的交流电压源,并且电压源P1和电压源P2的负极均连接在公共地线上。可选地,电压源P1和电压源P2可以为单相电压源或多相电压源。
在第一控制电路中,功率开关管SG1和功率开关管SG2串联之后并联在所述电压源P1的两端,电容C1和电容C2串联之后并联在所述第一电压源P1的两端,线圈盘10和线圈盘20相串联,相串联的线圈盘10和线圈盘20的一端与所述功率开关管SG1和功率开关管SG2之间的端点11相连接且另一端与电容C1和第二电容C2之间的端点12相连接。其中,线圈盘10的一端与端点11相连接,线圈盘20的另一端与线圈盘20的一端相连接,线圈盘20的另一端与端点12相连接。
在第二控制电路中,功率开关管SG3和功率开关管SG4串联之后并联在电压源P2的两端,电容C3和电容C4串联之后并联在电压源P2的两端,线圈盘30和线圈盘40相串联,相串联的线圈盘30和线圈盘40的一端与功率开关管SG3和功率开关管SG4之间的端点13相连接且另一端与电容C3和电容C4之间的端点14相连接。其中,线圈盘30的一端与端点13相连接,线圈盘30的另一端与线圈盘40的一端相连接,线圈盘40的另一端与端点14相连接。
图3所示的加热控制电路还可以包括:单刀双掷开关S31和单刀双掷开关S32。单刀双掷开关S31串联在端点11和相串联的线圈盘10和线圈盘20的一端之间,其中所述单刀双掷开关S31的自由端a与端点11相连接,所述单刀双掷开关S31的一固定端b与相串联的线圈盘10和线圈盘20的一端相连接,所述单刀双掷开关S31的另一固定端c连接在端点13和相串联的线圈盘30和线圈盘40的一端之间。单刀双掷开关S32串联在线圈盘30和线圈盘40之间,其中所述单刀双掷开关S32的自由端a与线圈盘30相连接,所述单刀双掷开关S32的一固定端b与线圈盘40相连接,所述单刀双掷开关S32 的另一固定端c连接在线圈盘10和线圈盘20之间。
控制器可以通过控制功率开关管SG1至功率开关管SG4、开关S31以及开关S32来实现线圈盘10至线圈盘40之间的组合加热。
本发明实施例中所使用的功率开关管可以是大功率开关器件,例如可以是IGBT,或者可以是大功率继电器等。可选地,功率开关管为单向导通器件。
控制器可以实现线圈盘20和线圈盘30的组合加热。在这种情况下,控制器可以控制单刀双掷开关S31的自由端a连接至固定端c,以及控制单刀双掷开关S32的自由端a连接至固定端b。在交流电压的一个周期中的前半周期,控制器可以控制功率开关管SG1接通以使得线圈盘30、线圈盘20、功率开关管SG1及电容C2串联组成谐振电路。在交流电压的一个周期中的后半周期,控制器可以控制功率开关管SG2导通以使得线圈盘30、线圈盘20、功率开关管SG2及电容C1串联组成谐振电路。
控制器还可以实现线圈盘10和线圈盘20的组合加热。在这种情况下,控制器可以控制单刀双掷开关S31的自由端a连接至固定端b,在交流电压的一个周期中的前半周期,控制器可以控制功率开关管SG1导通以使得线圈盘10、线圈盘20、功率开关管SG1及电容C2串联组成谐振电路。在交流电压的一个周期中的后半周期,控制器可以控制功率开关管SG2导通以使得线圈盘10、线圈盘20、功率开关管SG2及电容C1串联组成谐振电路。
控制器也可以实现线圈盘30和线圈盘40的组合加热。这种情况下,控制器可以控制单刀双掷开关S32的自由端a连接至固定端c,在交流电压的一个周期中的前半周期,控制器可以控制功率开关管SG3导通以使得线圈盘30、线圈盘40、功率开关管SG3及电容C4串联组成谐振电路。在交流电压的一个周期中的后半周期,控制器可以控制功率开关管SG4导通以使得线圈盘30、线圈盘40、功率开关管SG4及电容C3串联组成谐振电路。
控制器也可以实现线圈盘10、线圈盘20、线圈盘30及线圈盘40的组合加热。例如可以控制单刀双掷开关S31的自由端a连接至固定端b,以及控制单刀双掷开关S32的自由端a连接至固定端c。在交流电压的一个周期中的前半周期,可以控制功率开关管SG1和功率开关管SG3接通,并控制功率开关管SG2和功率开关管SG4断开。在交流电压的一个周期中的后半周期,控制功率开关管SG2和功率开关管SG4接通,并控制功率开关管SG1和功率开关管SG3断开,从而实现线圈盘10、线圈盘20、线圈盘30及线圈盘40均进行工作。
可以理解,本领域技术人员可以在图3所示的电路图的基础上进行简单的修改或者对控制器的控制方式进行修改,例如,可以通过增加或减少加热控制电路中的线圈盘、或者增加或减少加热控制电路中的开关,以实现加热控制电路中任意两个线圈盘或任意多个线圈盘所构成的串联组合进行加热。
通过上述实施例可以通过控制线圈盘10至线圈盘40之间的多种串联方式的组合加热,可以精确控制加热位置,并在电路中减少了开关器件的数量,优化电路的同时节约了成本。
图4示出了根据本发明一实施例的用于电磁烹饪器具的加热控制电路。如图4所示,用于电磁烹饪器具的加热控制电路可以包括:第一控制电路、第二控制电路和控制器(图中未示出)。其中,第一控制电路可以包括:功率开关管SG1和功率开关管SG2、线圈盘10和线圈盘20、电容C1和电容C2、电压源P1,第二控制电路可以包括:功率开关管SG3和功率开关管SG4、线圈盘30和线圈盘40、电容C3和电容C4、电压源P2。电压源P1和电压源P2为同源的交流电压源,并且电压源P1和电压源P2的负极均连接在公共地线上。可选地,电压源P1和电压源P2可以为单相电压源或多相电压源。
在第一控制电路中,功率开关管SG1和功率开关管SG2串联之后并联在所述电压源P1的两端,电容C1和电容C2串联之后并联在所述第一电压源P1的两端,线圈盘10和线圈盘20相串联,相串联的线圈盘10和线圈盘20的一端与所述功率开关管SG1和功率开关管SG2之间的端点11相连接且另一端与电容C1和第二电容C2之间的端点12相连接。其中,线圈盘20的一端与第一端点11相连接,线圈盘20的另一端与线圈盘10的一端相连接,线圈盘10的另一端与端点12相连接。
在第二控制电路中,功率开关管SG3和功率开关管SG4串联之后并联在电压源P2的两端,电容C3和电容C4串联之后并联在电压源P2的两端,线圈盘30和线圈盘40相串联,相串联的线圈盘30和线圈盘40的一端与功率开关管SG3和功率开关管SG4之间的端点13相连接且另一端与电容C3和电容C4之间的端点14相连接。其中,线圈盘30的一端与端点13相连接,线圈盘30的另一端与线圈盘40的一端相连接,线圈盘40的另一端与端点14相连接。其中,线圈盘40的一端与端点13相连接,线圈盘40的另一端与线圈盘30的一端相连接,线圈盘30的另一端与端点14相连接。
如图4所示,在加热控制电路中还可以包括开关S1至开关S4。其中,开关S1串联在线圈盘10和线圈盘20之间;开关S2的一端连接在开关S1和线圈盘20之间,开关S2的另一端连接在线圈盘30和线圈盘40之间;开关S3的一端连接在线圈盘10的 另一端和端点12之间,开关S3的另一端连接在线圈盘30的另一端和开关S4之间;以及开关S4串联在所述相串联的线圈盘30和线圈盘40的另一端和端点14之间。
控制器可以控制线圈盘20和线圈盘30组合加热。这种情况下,控制器可以控制开关S2和开关S3接通,并控制开关S1和开关S4断开。在交流电压的一个周期中的前半周期,控制器可以控制功率开关管SG1接通以使得线圈盘30、线圈盘20、功率开关管SG1及电容C2串联组成谐振电路。在交流电压的一个周期中的后半周期,控制器可以控制功率开关管SG2导通以使得线圈盘30、线圈盘20、功率开关管SG2及电容C1串联组成谐振电路。
控制器还可以控制线圈盘10和线圈盘20组合加热。这种情况下,控制器可以控制开关S1接通并控制开关S2和S3断开。在交流电压的一个周期中的前半周期,控制器可以控制功率开关管SG1导通以使得线圈盘10、线圈盘20、功率开关管SG1及电容C2串联组成谐振电路。在交流电压的一个周期中的后半周期,控制器可以控制功率开关管SG2导通以使得线圈盘10、线圈盘20、功率开关管SG2及电容C1串联组成谐振电路。
控制器也可以实现线圈盘30和线圈盘40的组合加热。这种情况下,控制器可以控制开关S4接通并控制开关S2和S3断开,在交流电压的一个周期中的前半周期,控制器可以控制功率开关管SG3导通以使得线圈盘30、线圈盘40、功率开关管SG3及电容C4串联组成谐振电路。在交流电压的一个周期中的后半周期,控制器可以控制功率开关管SG4导通以使得线圈盘30、线圈盘40、功率开关管SG4及电容C3串联组成谐振电路。
控制器也可以实现线圈盘10、线圈盘20、线圈盘30及线圈盘40的组合加热。例如可以控制开关S1和开关S4接通,并控制开关S2和开关S3断开。在交流电压的一个周期中的前半周期,可以控制功率开关管SG1和功率开关管SG3接通,并控制功率开关管SG2和功率开关管SG4断开。在交流电压的一个周期中的后半周期,控制功率开关管SG2和功率开关管SG4接通,并控制功率开关管SG1和功率开关管SG3断开,从而实现线圈盘10、线圈盘20、线圈盘30及线圈盘40均进行工作。
通过上述实施例可以通过控制线圈盘10至线圈盘40之间的多种串联方式的组合加热,可以精确控制加热位置,并在电路中减少了开关器件的数量,优化电路的同时节约了成本。
可以理解,本领域技术人员可以在图4所示的电路图的基础上进行简单的修改或 者对控制器的控制方式进行修改,例如,可以通过增加或减少加热控制电路中的线圈盘、或者增加或减少加热控制电路中的开关,以实现加热控制电路中任意两个线圈盘或任意多个线圈盘所构成的串联组合进行加热。
可选地,在最小系统电路中,图4所示的电路中的开关S4也可以用导线代替。与替代前的图4所示的电路相比,在替代后的电路中开关S3的一端连接在线圈盘10的另一端和端点12之间,开关S3的另一端连接在线圈盘30的另一端和端点14之间,如图5所示。
在图5所示的加热控制电路中,控制器可以控制线圈盘20和线圈盘30组合加热。这种情况下,控制器可以控制开关S2接通,并控制开关S1、开关S3和开关S4断开。在交流电压的一个周期中的前半周期,控制器可以控制功率开关管SG1接通以使得线圈盘20、线圈盘30、功率开关管SG1及电容C4串联组成谐振电路。在交流电压的一个周期中的后半周期,控制器可以控制功率开关管SG2导通以使得线圈盘30、线圈盘20、功率开关管SG2及电容C3串联组成谐振电路。
控制器还可以控制线圈盘10和线圈盘20组合加热。这种情况下,控制器可以控制开关S1接通并控制开关S2和S3断开。在交流电压的一个周期中的前半周期,控制器可以控制功率开关管SG1导通以使得线圈盘10、线圈盘20、功率开关管SG1及电容C2串联组成谐振电路。在交流电压的一个周期中的后半周期,控制器可以控制功率开关管SG2导通以使得线圈盘10、线圈盘20、功率开关管SG2及电容C1串联组成谐振电路。
控制器也可以实现线圈盘30和线圈盘40的组合加热。这种情况下,控制器可以控制开关S2和S3断开,在交流电压的一个周期中的前半周期,控制器可以控制功率开关管SG3导通以使得线圈盘30、线圈盘40、功率开关管SG3及电容C4串联组成谐振电路。在交流电压的一个周期中的后半周期,控制器可以控制功率开关管SG4导通以使得线圈盘30、线圈盘40、功率开关管SG4及电容C3串联组成谐振电路。
控制器也可以实现线圈盘10、线圈盘20、线圈盘30及线圈盘40的组合加热。例如可以控制开关S1接通,并控制开关S2和开关S3断开。在交流电压的一个周期中的前半周期,可以控制功率开关管SG1和功率开关管SG3接通,并控制功率开关管SG2和功率开关管SG4断开。在交流电压的一个周期中的后半周期,控制功率开关管SG2和功率开关管SG4接通,并控制功率开关管SG1和功率开关管SG3断开,从而实现线圈盘10、线圈盘20、线圈盘30及线圈盘40均进行工作。
通过上述实施例可以通过控制线圈盘10至线圈盘40之间的多种串联方式的组合加热,可以精确控制加热位置,并在电路中减少了开关器件的数量,优化电路的同时节约了成本。
可以理解,本领域技术人员可以在图5所示的电路图的基础上进行简单的修改或者对控制器的控制方式进行修改,例如,可以通过增加或减少加热控制电路中的线圈盘、或者增加或减少加热控制电路中的开关,以实现加热控制电路中任意两个线圈盘或任意多个线圈盘所构成的串联组合进行加热。
相应地,本发明实施例还提供一种电磁烹饪器具,该电磁烹饪器具例如可以是电磁炉等,所述电磁烹饪器具可以包括本发明任一实施例所述的加热控制电路。所述电磁烹饪器具可以实现对加热位置的精确控制。
以上结合附图详细描述了本发明实施例的可选实施方式,但是,本发明实施例并不限于上述实施方式中的具体细节,在本发明实施例的技术构思范围内,可以对本发明实施例的技术方案进行多种简单变型,这些简单变型均属于本发明实施例的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施例对各种可能的组合方式不再另行说明。
本领域技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得单片机、芯片或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,本发明实施例的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明实施例的思想,其同样应当视为本发明实施例所公开的内容。
Claims (10)
- 一种用于电磁烹饪器具的加热控制电路,其特征在于,所述加热控制电路包括:两个或多个控制电路,其中所述两个或多个控制电路中的一个控制电路包括两个或多个线圈盘,所述两个或多个控制电路中除所述一个控制电路之外的其它控制电路中的每一个控制电路包括一个或多个线圈盘,以及其中所述两个或多个控制电路中的每一个控制电路均包括电压源、功率开关管和电容;一个或多个开关,该一个或多个开关连接在所述两个或多个控制电路内以及所述两个或多个控制电路之间;以及控制器,用于通过控制所述两个或多个控制电路中的每一个控制电路中的功率开关管以及所述一个或多个开关来实现所述两个或多个控制电路中的线圈盘之间的任意两者或多者所构成的串联组合的加热。
- 根据权利要求1所述的加热控制电路,其特征在于,所述两个或多个控制电路包括第一控制电路和第二控制电路,其中:所述第一控制电路包括:第一电压源、第一线圈盘、第二线圈盘、第一功率开关管、第二功率开关管、第一电容和第二电容,其中所述第一功率开关管和所述第二功率开关管串联之后并联在所述第一电压源的两端,所述第一电容和所述第二电容串联之后并联在所述第一电压源的两端,所述第一线圈盘和所述第二线圈盘相串联,相串联的所述第一线圈盘和所述第二线圈盘的一端与所述第一功率开关管和所述第二功率开关管之间的第一端点相连接且另一端与所述第一电容和所述第二电容之间的第二端点相连接;以及所述第二控制电路包括:第二电压源、第三线圈盘、第四线圈盘、第三功率开关管、第四功率开关管、第三电容和第四电容,其中所述第三功率开关管和所述第四功率开关管串联之后并联在所述第二电压源的两端,所述第三电容和所述第四电容串联之后并联在所述第二电压源的两端,所述第三线圈盘和所述第四线圈盘相串联,相串联的所述第三线圈盘和所述第四线圈盘的一端与所述第三功率开关管和所述第四功率开关管之间的第三端点相连接且另一端与所述第三电容和所述第四电容之间的第四端点相连接。
- 根据权利要求2所述的加热控制电路,其特征在于,所述第一线圈盘的一端与所述第一端点相连接,所述第一线圈盘的另一端与所述第二线圈盘的一端相连接,所述第二线圈盘的另一端与所述第二端点相连接;以及所述第三线圈盘的一端与所述第三端点相连接,所述第三线圈盘的另一端与所述第四线圈盘的一端相连接,所述第四线圈盘的另一端与所述第四端点相连接。
- 根据权利要求3所述的加热控制电路,其特征在于,所述一个或多个开关包括第一开关至第九开关,其中:所述第一开关串联在所述第一端点和所述相串联的所述第一线圈盘和所述第二线圈盘的一端之间;第二开关串联在所述第一线圈盘和所述第二线圈盘之间;第三开关串联在所述第二端点和所述相串联的所述第一线圈盘和所述第二线圈盘的另一端之间;第四开关的一端连接在所述第一端点和所述第一开关的一端之间,该第四开关的另一端连接在所述第三端点和所述第七开关之间;第五开关的一端连接在所述第一线圈盘的另一端和所述第二开关之间,所述第五开关的另一端连接在所述第三线圈盘的另一端和所述第八开关之间;第六开关的一端连接在所述第二线圈盘的另一端和所述第三开关之间,所述第六开关的另一端连接在所述第四线圈盘的另一端和所述第九开关之间;第七开关串联在所述第三端点和所述相串联的所述第三线圈盘和所述第四线圈盘的一端之间;第八开关串联在所述第三线圈盘和所述第四线圈盘之间;以及所述第九开关串联在所述第四端点和所述相串联的所述第三线圈盘和所述第四线圈盘的另一端之间。
- 根据权利要求3所述的加热控制电路,其特征在于,所述一个或多个开关包括:第一单刀双掷开关,该第一单刀双掷开关串联在所述第一端点和所述相串联的所述第一线圈盘和所述第二线圈盘的一端之间,其中所述第一单刀双掷开关的自由端与所述第一端点相连接,所述第一单刀双掷开关的一固定端与所述相串联的所述第一线圈盘和所述第二线圈盘的一端相连接,所述第一单刀双掷开关的另一固定端连接在所述第三 端点和所述相串联的所述第三线圈盘和所述第四线圈盘的一端之间;以及第二单刀双掷开关,该第二单刀双掷开关串联在所述第三线圈盘和所述第四线圈盘之间,其中所述第二单刀双掷开关的自由端与所述第三线圈盘相连接,所述第二单刀双掷开关的一固定端与所述第四线圈盘相连接,所述第二单刀双掷开关的另一固定端连接在所述第一线圈盘和所述第二线圈盘之间。
- 根据权利要求2所述的加热控制电路,其特征在于,所述第二线圈盘的一端与所述第一端点相连接,所述第二线圈盘的另一端与所述第一线圈盘的一端相连接,所述第一线圈盘的另一端与所述第二端点相连接;以及所述第四线圈盘的一端与所述第三端点相连接,所述第四线圈盘的另一端与所述第三线圈盘的一端相连接,所述第三线圈盘的另一端与所述第四端点相连接。
- 根据权利要求6所述的加热控制电路,其特征在于,所述一个或多个开关包括:第一开关至第四开关,其中:所述第一开关串联在所述第一线圈盘和所述第二线圈盘之间;第二开关的一端连接在所述第一开关和所述第二线圈盘之间,所述第二开关的另一端连接在所述第三线圈盘和所述第四线圈盘之间;第三开关的一端连接在所述第一线圈盘的另一端和所述第二端点之间,所述第三开关的另一端连接在所述第三线圈盘的另一端和所述第四开关之间;以及所述第四开关串联在所述相串联的所述第三线圈盘和所述第四线圈盘的另一端和所述第四端点之间。
- 根据权利要求6所述的加热控制电路,其特征在于,所述一个或多个开关包括:第一开关,该第一开关串联在所述第一线圈盘和所述第二线圈盘之间;第二开关,该第二开关的一端连接在所述第一开关和所述第二线圈盘之间,该第二开关的另一端连接在所述第三线圈盘和所述第四线圈盘之间;第三开关,该第三开关的一端连接在所述第一线圈盘的另一端和所述第二端点之间,该第三开关的另一端连接在所述第三线圈盘的另一端和所述第四端点之间。
- 根据权利要求1所述的加热控制电路,其特征在于,所述第一电压源和所述第 二电压源为同源的电压源。
- 一种电磁烹饪器具,其特征在于,所述电磁烹饪器具包括权利要求1至9中任意一项权利要求所述的加热控制电路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18885968.0A EP3678454A4 (en) | 2017-12-08 | 2018-04-28 | HEATING CONTROL CIRCUIT FOR INDUCTION COOKING APPLIANCES, AND INDUCTION COOKING APPLIANCES |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711297137.8A CN108156684B (zh) | 2017-12-08 | 2017-12-08 | 用于电磁烹饪器具的加热控制电路及电磁烹饪器具 |
CN201711297137.8 | 2017-12-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019109586A1 true WO2019109586A1 (zh) | 2019-06-13 |
Family
ID=62466893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/085002 WO2019109586A1 (zh) | 2017-12-08 | 2018-04-28 | 用于电磁烹饪器具的加热控制电路及电磁烹饪器具 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3678454A4 (zh) |
CN (1) | CN108156684B (zh) |
WO (1) | WO2019109586A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110099470A (zh) * | 2019-05-17 | 2019-08-06 | 佛山市顺德区天思电器有限公司 | 一种电磁炉线圈盘的控制装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101715256A (zh) * | 2008-09-29 | 2010-05-26 | 日立空调·家用电器株式会社 | 电磁感应加热装置 |
CN202818656U (zh) * | 2012-09-26 | 2013-03-20 | 张镇强 | 一种多段控制的电磁感应加热装置 |
CN203775445U (zh) * | 2013-11-15 | 2014-08-13 | 美的集团股份有限公司 | 电磁加热系统 |
CN105530719A (zh) * | 2014-09-30 | 2016-04-27 | 深圳市鑫汇科股份有限公司 | 一种半桥多炉头切换电磁感应加热控制装置及方法 |
CN106879095A (zh) * | 2015-12-11 | 2017-06-20 | 佛山市顺德区美的电热电器制造有限公司 | 电磁加热装置及其加热控制电路 |
CN206506730U (zh) * | 2016-12-28 | 2017-09-19 | 佛山市顺德区美的电热电器制造有限公司 | 电磁加热系统及电磁烹饪设备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0333993U (zh) * | 1989-08-11 | 1991-04-03 | ||
FR2902600B1 (fr) * | 2006-06-14 | 2008-09-05 | Brandt Ind Sas | Systeme a induction, procede d'alimentation d'un inducteur et table de cuisson comportant un tel systeme |
EP2515608B1 (de) * | 2011-04-19 | 2017-07-12 | BSH Hausgeräte GmbH | Hausgerätevorrichtung |
ITBA20150014U1 (it) * | 2014-04-02 | 2016-09-02 | Ribawood Sa | Pallet in struttura alleggerita e relativo connettore per traversa-pattino dotato di mezzi di facile estrazione |
-
2017
- 2017-12-08 CN CN201711297137.8A patent/CN108156684B/zh active Active
-
2018
- 2018-04-28 EP EP18885968.0A patent/EP3678454A4/en active Pending
- 2018-04-28 WO PCT/CN2018/085002 patent/WO2019109586A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101715256A (zh) * | 2008-09-29 | 2010-05-26 | 日立空调·家用电器株式会社 | 电磁感应加热装置 |
CN202818656U (zh) * | 2012-09-26 | 2013-03-20 | 张镇强 | 一种多段控制的电磁感应加热装置 |
CN203775445U (zh) * | 2013-11-15 | 2014-08-13 | 美的集团股份有限公司 | 电磁加热系统 |
CN105530719A (zh) * | 2014-09-30 | 2016-04-27 | 深圳市鑫汇科股份有限公司 | 一种半桥多炉头切换电磁感应加热控制装置及方法 |
CN106879095A (zh) * | 2015-12-11 | 2017-06-20 | 佛山市顺德区美的电热电器制造有限公司 | 电磁加热装置及其加热控制电路 |
CN206506730U (zh) * | 2016-12-28 | 2017-09-19 | 佛山市顺德区美的电热电器制造有限公司 | 电磁加热系统及电磁烹饪设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3678454A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3678454A4 (en) | 2020-11-18 |
CN108156684B (zh) | 2019-07-05 |
CN108156684A (zh) | 2018-06-12 |
EP3678454A1 (en) | 2020-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6551233B2 (en) | Magnetic stimulator power and control circuit | |
TW200849794A (en) | Interleaved soft switching bridge power converter | |
KR102101736B1 (ko) | 전자기 조리 기구 및 그의 전력 제어 방법 | |
KR102326999B1 (ko) | 전자 유도 가열 조리기 및 이의 구동 방법 | |
KR20140088324A (ko) | 전자 유도 가열 조리기 및 이의 구동 방법 | |
KR102031907B1 (ko) | 전자 유도 가열 조리기 및 이의 구동 방법 | |
WO2019109586A1 (zh) | 用于电磁烹饪器具的加热控制电路及电磁烹饪器具 | |
JP6694958B2 (ja) | 電気自動車及び車載充電器、並びにそれを制御する方法 | |
US10667332B2 (en) | Induction heat cooking apparatus | |
TWM648012U (zh) | 電池自加熱裝置和具有其的車輛 | |
WO2018129975A1 (zh) | 并网逆变器和逆变系统 | |
CN206176478U (zh) | 电磁炉 | |
JP6371128B2 (ja) | インバータ装置、このインバータ装置を備えた誘導加熱装置およびワイヤレス給電装置 | |
TW200828768A (en) | Inverter circuit | |
CN109511189A (zh) | 加热电路、电磁炉及驱动电压的调节方法 | |
KR102306811B1 (ko) | 전자 유도 가열 조리기 및 이의 구동 방법 | |
WO2017101830A1 (zh) | 电动汽车及其车载充电器和车载充电器的控制方法 | |
JP7421444B2 (ja) | 電磁誘導加熱装置 | |
JP2019067690A (ja) | 電磁誘導加熱装置 | |
JP7222806B2 (ja) | 電磁誘導加熱装置 | |
CN209497623U (zh) | 一种igbt控制电路、加热电器的控制电路、加热电器 | |
CN209120505U (zh) | 加热电路及电磁炉 | |
CN106162969B (zh) | 电磁加热装置及其的谐振电路 | |
CN109195240A (zh) | Igbt控制电路、控制方法、加热电器的控制电路、加热电器 | |
WO2017101835A1 (zh) | 电动汽车及其车载充电器和车载充电器的控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18885968 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018885968 Country of ref document: EP Effective date: 20200331 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |