WO2019109510A1 - 投影设备 - Google Patents

投影设备 Download PDF

Info

Publication number
WO2019109510A1
WO2019109510A1 PCT/CN2018/074728 CN2018074728W WO2019109510A1 WO 2019109510 A1 WO2019109510 A1 WO 2019109510A1 CN 2018074728 W CN2018074728 W CN 2018074728W WO 2019109510 A1 WO2019109510 A1 WO 2019109510A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
laser
conversion device
light source
Prior art date
Application number
PCT/CN2018/074728
Other languages
English (en)
French (fr)
Inventor
杨佳翼
陈红运
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019109510A1 publication Critical patent/WO2019109510A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present invention relates to the field of projection display technologies, and in particular, to a projection device.
  • blue light may have an effect on the human eye. If the blue content is too high, it will cause an increase in visual fatigue. Second, it will affect the physiological development of the eye. 3. Long-term exposure in such a light environment. The possibility of macular degeneration in the human eye will increase. In view of this, how to improve the damage of blue light to the human eye is an important issue in the field of projection display. As today's Blu-ray hazards become more and more important, countries have begun to develop relevant safety standards for Blu-ray hazards to reduce the blue light hazard in products.
  • the current excitation projection light source generally uses a blue laser light source to provide a blue light source.
  • the technique of exciting the wavelength converting material with a blue laser produces the light of other colors required, for example, using a blue laser to excite the green wavelength converting material to produce the desired green light, exciting the red wavelength converting material to produce the desired red light, and exciting The yellow wavelength converting material generates red light, green light, and the like.
  • the bandwidth of the blue light is narrow and the blue light power may be higher in the entire visible light spectral range, and the ratio of the peak value of the non-blue light spectrum to the peak of the blue light spectrum may also be small, resulting in damage to the human eye. It may be larger and it is necessary to improve.
  • the present invention provides a projection device that can improve the damage caused by blue light to the human eye. ⁇ 0 2019/109510 ⁇ (:17 ⁇ 2018/074728
  • a projection device the projection device having a first mode and a second mode, the projection device comprising: [0009] a light source device, configured to emit first light and second light, wherein the second light is Blue light
  • a wavelength conversion device configured to receive the first light to generate a laser light different from the second light color
  • a spatial light modulator configured to modulate the laser light according to image data and a second light or the converted light of the laser and the second light to generate image light, the converted light being blue light
  • the ratio of the power of the second light to the laser-receiving is compared to the second light and the receiving when the projection device is in the first mode.
  • the power ratio of the laser is small, or the ratio of the converted light to the laser-receiving power when the projection device is in the second mode is compared to the converted light and the received by the projection device when in the first mode
  • the power ratio of the laser is small.
  • the projection apparatus has two modes of a second mode and a first mode, and in the second mode, by making the second light and the laser-receiving
  • the power ratio is smaller than a ratio of the power of the second light to the laser-receiving when the projection device is in the first mode; or by comparing the power ratio of the converted light to the laser-receiving When the projection device is in the first mode, the ratio of the converted light to the laser-receiving power is small, so that the ratio of the blue image light can be reduced in the second mode, thereby reducing the blue light pair.
  • the harm of the human eye to achieve the purpose of eye protection.
  • FIG. 1 is a schematic structural view of a projection apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a projection apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a projection apparatus according to a third embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a light combining and combining element of the projection apparatus shown in FIG. 3.
  • FIG. 5 is a schematic structural diagram of a projection apparatus according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a projection apparatus according to a fifth embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a projection apparatus according to a sixth embodiment of the present invention. ⁇ 0 2019/109510 ⁇ (:17 ⁇ 2018/074728
  • FIG. 8 is a schematic structural diagram of a projection apparatus according to a seventh embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a projection apparatus 100 according to a first embodiment of the present invention.
  • the projection device 100 includes a light source device 110, a wavelength conversion device 120, a spatial light modulator 130, and a lens 140.
  • the projection device 100 has two modes, a first mode and a second mode, during operation. It can be understood that the switching between the first mode and the second mode can be implemented by the user operating the mechanical button or the interface operation menu displayed by the projection device 100, and details are not described herein.
  • the first mode may be a normal mode, that is, a normal display mode
  • the second mode is an eye protection mode, that is, a mode different from the normal mode and beneficial to human eye protection.
  • the light source device 110 is configured to emit light source light, the light source light includes first light and second light, and the second light is blue light.
  • the wavelength conversion device 120 is configured to receive the received light of the first light different from the second light color.
  • the spatial light modulator 130 is configured to modulate the received laser light and the second light in accordance with the image data to generate image light.
  • the lens 140 receives the image light generated by the spatial light modulator 130 and projects the image light to a predetermined position or a predetermined element such as a projection screen or a wall or the like to display the projected image.
  • the power ratio of the second light to the laser light when the projection device 100 is in the second mode is smaller than the power ratio of the second light to the laser light when the projection device 100 is in the first mode. ⁇ 0 2019/109510 ⁇ (:17 ⁇ 2018/074728
  • the light source device 110 includes a first light source 111, a second light source 112, and a light source driver 113.
  • the light source driver 113 electrically connects the first light source 111 and the second light source 112.
  • the first light source 111 is used to emit the first light
  • the second light source 112 is used to emit the second light
  • the light source driver 113 is configured to emit a driving signal to control the driving currents of the first light source 111 and the second light source 112 to control the first light source 111 and The power of the first light and the second light emitted by the second light source 11 2 .
  • the first light source 111 is a blue laser light source
  • the second light source 112 is also a blue laser light source.
  • the first light source 111 can also adopt 11 light or the like.
  • the light source driver 113 controls the driving current of the second light source 112 when the projection device 100 is in the second mode, and the driving current when the second light source 112 is in the first mode when the projection device 100 is in the first mode.
  • the power ratio of the second light to the laser light when the projection device 100 is in the second mode is smaller than the power ratio of the second light to the laser light when the projection device 100 is in the first mode.
  • the light source driver 113 can control the driving current of the first light source 111 when the projection device is in the second mode and the driving current of the first light source 111 when the projection device is in the first mode.
  • the power of the second light is in the second light and
  • the ratio of the sum of the powers of the lasers is less than 20%, and the ratio of the peak value of the laser light to the peak value of the second light is 50% or more to reduce the blue light and achieve a better effect of protecting the human eye.
  • the wavelength conversion device 120 is a reflective wavelength conversion device
  • the projection device 100 further includes a first beam splitting unit 150 and a second beam combining unit 160, and the first beam combining unit
  • the 150 is configured to receive the first light emitted by the first light source 111 and direct the first light to the wavelength conversion device 120.
  • the wavelength conversion device 120 is configured to receive the first light generating laser and reflect the laser light and pass the first photosynthetic unit.
  • the light element 150 is guided to the second beam splitting light element 160, the second light source 112 is for emitting the second light to the second beam splitting light element 160, and the second beam splitting light element 160 is for guiding the laser light and the second light to Spatial light modulator 130.
  • the second beam splitting light element 160 may reflect the laser light to the spatial light modulator 130 and transmit the second light to the spatial light modulator 130.
  • the first beam splitting light element 150 can reflect the first light, that is, the first light is guided to the wavelength conversion device 120, and the received laser light generated by the wavelength conversion device 120 can be further transmitted by the first beam splitting light element 150.
  • the second splitting light combining element 160 further reflects the laser light to the spatial light modulator 130. ⁇ 0 2019/109510 ⁇ (:17 ⁇ 2018/074728
  • the wavelength conversion device 120 is provided with a wavelength conversion material, and the first light excitation wavelength conversion material generates a laser beam.
  • the wavelength conversion material may be a yellow wavelength conversion material or a red and green wavelength conversion material, etc.
  • a yellow light or a red light, a green light, or the like is generated as the received laser light, wherein it can be understood that the color of the laser light and the second light are different, and the color is different, and the mixed light of the laser light and the second light (which may be white light) includes red.
  • the green-blue trichromatic light allows the spatial light modulator 130 to modulate the image light required to project the display image by the laser and the second light in accordance with the image data.
  • the spatial light modulator 130 can be monolithic, two-piece or three-chip. When it is a monolithic spatial light modulator, the red, green and blue light timings enter the spatial light modulator.
  • the spatial light modulator temporally modulates and emits three colors of light; when it is a two-chip spatial light modulator, one spatial light modulator can modulate blue light and green light, and the other spatial light modulator modulates red light. It can also be a spatial light modulator modulating blue light and red light, and another spatial light modulator modulating green light; when it is a three-chip spatial light modulator, red, green and blue light respectively enter three spatial light Modulator, three colors of light do not need to be time-series modulated.
  • the spatial light modulator 130 can be DMD, 1X0, and the like.
  • the projection apparatus 100 has two modes of the second mode and the first mode, by making the ratio of the power of the second light to the laser light compared to the projection apparatus 100.
  • the ratio of the power of the second light to the laser light in the first mode is small, the ratio of the blue image light can be reduced in the second mode of the projection device 100, thereby reducing the harm of the blue light to the human eye and achieving the eye protection. the goal of.
  • the power of the second light is less than 20% in the sum of the power of the second light and the laser light, and the ratio of the peak value of the laser light to the peak value of the second light is 50% or more. Effectively improve the damage caused by blue to the human eye and achieve the purpose of eye protection.
  • the light source driver 113 controls the first light source 111 to have a larger driving current when the projection device 100 is in the second mode than the first light source 111 is projected.
  • the driving current when the device 100 is in the first mode the ratio of the second light to the laser-receiving power when the projection device 100 is in the second mode is compared to the second light and the received laser when the projection device 100 is in the first mode.
  • the power ratio is small.
  • the light source driver 113 can control the driving current of the second light source 112 when the projection device 100 is in the second mode and the driving of the second light source 112 when the projection device 100 is in the first mode.
  • the currents are equal. ⁇ 0 2019/109510 ⁇ (:17 ⁇ 2018/074728
  • the driving current of the light source 112 when the projection device 100 is in the second mode is smaller than the driving current when the second light source 112 is in the first mode, and the light source driver 113 also controls the first light source 111 to be in the second mode when the projection device 100 is in the second mode.
  • the driving current at the time is greater than the driving current of the first light source 111 when the projection device 100 is in the first mode, and the ratio of the second light to the laser-receiving power when the projection device 100 is in the second mode is compared with the projection device 100 The ratio of the power of the second light to the laser light in the first mode is small.
  • the second light source 112 may be blue.
  • the blue light emitted by the light source has a wider wavelength range and a lower peak value than the blue light emitted by the blue laser light source, and it is easier to reduce the blue light and protect the human eye.
  • FIG. 2 is a block diagram showing the structure of a projection apparatus 200 according to a second embodiment of the present invention.
  • the projection apparatus 200 of the second embodiment is substantially the same as the projection apparatus 100 of the first embodiment, that is, the description of the projection apparatus 100 described above with respect to the first embodiment is basically applicable to the projection apparatus 200 of the second embodiment,
  • the main difference between the two is mainly: the position of the second light source 212, the structure of the wavelength conversion device 220, the number of the light combining and combining elements 250, and the optical path of the projection device 200 are different from those in the first embodiment.
  • the wavelength conversion device 220 is a transmissive wavelength conversion device
  • the first light source 211 is configured to emit a first light to the wavelength conversion device 220
  • the wavelength conversion device 220 is configured to receive the first light generation device.
  • the second light source 212 is for emitting a second light to the light splitting light combining element 250
  • the light splitting light combining element 250 is for guiding the laser light and the second light to the spatial light.
  • Modulator 230 is a transmissive wavelength conversion device
  • the first light source 211 is configured to emit a first light to the wavelength conversion device 220
  • the wavelength conversion device 220 is configured to receive the first light generation device.
  • the second light source 212 is for emitting a second light to the light splitting light combining element 250
  • the light splitting light combining element 250 is for guiding the laser light and the second light to the spatial light
  • the projection apparatus 200 of the second embodiment can also make the power ratio of the second light to the laser light to be compared with the second light and the light when the projection apparatus 200 is in the first mode by different structures and optical paths.
  • the power ratio of the laser is small, so that the ratio of the blue image light can be reduced in the second mode of the projection device 200, thereby reducing the harm of the blue light to the human eye and achieving the purpose of eye protection.
  • FIG. 3 is a block diagram showing the structure of a projection apparatus 300 according to a third embodiment of the present invention.
  • the projection apparatus 300 of the third embodiment is substantially the same as the projection apparatus 100 of the first embodiment, that is, the description of the projection apparatus 100 described above with respect to the first embodiment is basically applicable to the projection apparatus 300 of the third embodiment,
  • the difference between the two mainly lies in: the position of the first light source 311, the second light source 312, the structure of the wavelength conversion device 320, the number and structure of the light combining and combining elements 350, and the optical path of the projection device 300.
  • ⁇ 0 2019/109510 ⁇ (:17 ⁇ 2018/074728
  • the first embodiment differs.
  • the wavelength conversion device 320 is a reflective wavelength conversion device, and the wavelength conversion device 320 is provided with a first wavelength conversion material for receiving the first light-generating laser light and for receiving the second The light produces a second wavelength converting material that converts light, and the first wavelength converting material and the second wavelength converting material may be disposed in different regions of the wavelength conversion device 320.
  • FIG. 4 is a schematic structural diagram of the light combining and combining element 350 of the projection apparatus 300 shown in FIG.
  • the split photosynthetic element 350 includes a first region 351 and a second region 352.
  • the first area 351 may be located at the periphery of the second area 352, the second area 352 may be located at a central position of the first area 351, the first area 351 may be a reflective area for reflecting laser light and converting light, and the second area 352 may be An area that reflects yellow light (including red and green light) through blue light.
  • the first light is directed to the wavelength conversion device 320 via the second region 352
  • the second light is directed to the wavelength conversion device 320 via the second region 352
  • the wavelength conversion device 320 receives the first light-generating laser And being guided by the laser to the first region 351 of the light combining and combining light element 350
  • the wavelength converting device 320 further receives the second light generating converted light, and directs the converted light to the first region 351 of the light combining and combining light element 350, and splits the photosynthetic unit
  • the first region 351 of the optical element 350 is configured to direct the laser light and the converted light to the spatial light modulator 330, wherein the converted light is blue light, and the converted light has a wavelength range smaller than the second light width and the peak value is smaller than the second light.
  • the spatial light modulator 330 is configured to modulate the converted light of the laser light and the second light in accordance with the image data to generate image light.
  • the second region 352 can transmit the first light and the second light, that is, the first light and the second light are guided to the wavelength conversion device 320, and the wavelength conversion device 320 can reflect the generated converted light to the first.
  • is guided to the first region 351.
  • the ratio of the converted light to the laser-receiving power when the projection device 300 is in the second mode is smaller than the ratio of the converted light to the laser-receiving power when the projection device is in the first mode. Further, when the projection device 300 is in the second mode, the power of the converted light is less than 20% in the sum of the converted light and the received laser power, and the ratio of the peak value of the laser light to the peak value of the converted light is greater than or equal to 50%. .
  • the converted light may have a longer wavelength range than the second light and the second light is higher than the second light. Small, so it is easier to achieve the purpose of reducing blue light and protecting the human eye.
  • FIG. 5 is a block diagram showing the structure of a projection apparatus 400 according to a fourth embodiment of the present invention.
  • First ⁇ 0 2019/109510 ⁇ (: 17 ⁇ 2018/074728
  • the projection apparatus 400 of the fourth embodiment is substantially the same as the projection apparatus 300 of the third embodiment, that is, the description of the projection apparatus 300 described above with respect to the third embodiment is basically The above can be applied to the projection apparatus 400 of the fourth embodiment, and the main difference between the two is mainly that the number of the light sources 411 of the light source device 410 is different.
  • the light source device 410 includes a light source 411, and the light source 411 may be a blue laser light source or blue. light source.
  • the light source 411 can emit the first light and the second light in a time division manner, such as emitting the first light in the first time period, emitting the second light in the second time period different from the first time period, and the light source driver 413 is in the first time period and the second time period
  • the different driving currents of the light source 411 are provided such that the ratio of the converted light to the laser-receiving power when the projection device 400 is in the second mode is smaller than the ratio of the converted light to the laser-receiving power when the projection device 400 is in the first mode.
  • the light source device 410 may include a light source 411, which contributes to miniaturization, weight reduction, cost reduction, and the like of the light source device 410 and the projection device 400.
  • FIG. 6 is a block diagram showing the structure of a projection apparatus 500 according to a fifth embodiment of the present invention.
  • the projection apparatus 500 of the fifth embodiment is substantially the same as the projection apparatus 300 of the third embodiment, that is, the description of the projection apparatus 300 described above with respect to the third embodiment is basically applicable to the projection apparatus 500 of the fifth embodiment.
  • the difference between the two is mainly in that the number of the light sources 511 of the light source device 510 and the structure of the wavelength conversion device 520 are different.
  • the light source device 510 includes a light source 511, and the first light source 511 can emit the first light and the second light in a time-sharing manner, such as emitting the first light in the first time period, different from the first time period.
  • the second time emits a second light. light source.
  • the first wavelength converting material that generates the laser light may be disposed on the wavelength converting device 520, and the first light is guided (eg, reflected) to the wavelength converting device 520 via the second region of the light combining and combining light element 550, and the second light is split by photo.
  • the second region of the optical element 550 is guided (e.g., reflected) to the wavelength conversion device 520, and the wavelength conversion device 520 receives the first light-generating laser light and directs the laser light to the first region of the spectral light combining element 550, the wavelength conversion device 520 also receives the second light and directs (eg, reflects) the second light to a first region of the beam splitting light element 550, the first region of the light splitting light element 550 directing the laser and the second light to the spatial light modulator 530 . Further, the spatial light modulator 530 is configured to modulate the received laser light and the second light according to the image data to generate image light.
  • the wavelength conversion device 520 may be provided with a scattering material for scattering the second light to guide the scattered second light to the first region of the beam splitting light element 550. ⁇ 0 2019/109510 ⁇ (:17 ⁇ 2018/074728
  • the light source driver 513 provides a different driving current of the light source 511 in the first period and the second period, so that the ratio of the second light to the laser-receiving power when the projection apparatus 500 is in the second mode is compared with The ratio of the power of the second light to the laser-receiving when the projection device 500 is in the first mode is small.
  • the power of the second light is less than 20% in the sum of the powers of the second light and the laser light, and the ratio of the peak value of the laser light to the peak value of the second light is 50% or more. It can also effectively improve the damage caused by blue to the human eye and achieve the purpose of eye protection.
  • FIG. 7 is a block diagram showing the structure of a projection apparatus 600 according to a sixth embodiment of the present invention.
  • the projection apparatus 600 of the sixth embodiment is substantially the same as the projection apparatus 100 of the first embodiment, that is, the description of the projection apparatus 100 described above with respect to the first embodiment is basically applicable to the projection apparatus 600 of the sixth embodiment,
  • the main difference between the two is mainly: the position of the first light source 611, the position of the second light source 612, the structure of the wavelength conversion device 620, the number of the light combining and combining elements 650, and the optical path of the projection device 600 are both in the first embodiment. Different.
  • the wavelength conversion device 620 is a transmissive and reflective combination wavelength conversion device, and the first light source 611 is configured to emit the first light to be guided to the wavelength conversion device 6 via the spectroscopic light combining element 650.
  • the wavelength conversion device 620 is configured to receive the first light-generating laser and reflect the laser light to the spectral light combining element 650, the second light source 612 to emit the second light to the wavelength conversion device 620, and the wavelength conversion device 620 to the second Light is transmitted to the beam splitting light element 650, and the light splitting light combining element 650 is used to direct the laser light and the second light to the spatial light modulator 630.
  • the projection apparatus 600 of the sixth embodiment can also make the power ratio of the second light to the laser light to be compared with the second light and the receiving time when the projection apparatus 600 is in the first mode by different structures and optical paths.
  • the power ratio of the laser is small, so that the ratio of the blue image light can be reduced in the second mode of the projection device 600, thereby reducing the harm of the blue light to the human eye and achieving the purpose of eye protection.
  • FIG. 8 is a block diagram showing the structure of a projection apparatus 700 according to a seventh embodiment of the present invention.
  • the projection apparatus 700 of the seventh embodiment is substantially the same as the projection apparatus 100 of the first embodiment, that is, the description of the projection apparatus 100 described above with respect to the first embodiment is basically applicable to the projection apparatus 700 of the seventh embodiment,
  • the main difference between the two is mainly: the position of the first light source 711, the position of the second light source 712, the structure of the wavelength conversion device 720, the number of the light combining and combining elements 750, and the optical path of the projection device 700 are both in the first embodiment.
  • Different. ⁇ 0 2019/109510 ⁇ (:17 ⁇ 2018/074728
  • the wavelength conversion device 720 is a reflection type wavelength conversion device, and the first light source 711 is configured to emit the first light to the wavelength conversion device 720 via the beam splitting and light combining element 750, and the wavelength conversion device 720 is for receiving the first light generating laser and reflecting the laser light to the beam splitting light element 750 for directing the laser light to the spatial light modulator 730.
  • a second source 712 is used to emit a second light to spatial light modulator 730.
  • the projection device 70 0 of the seventh embodiment can also make the power ratio of the second light to the laser light compared to the second light when the projection device 700 is in the first mode by different structures and optical paths. The ratio of the power of the laser light is small, so that the ratio of the blue image light can be reduced in the second mode of the projection device 700, thereby reducing the harm of the blue light to the human eye and achieving the purpose of eye protection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种投影设备(100),具有第一模式与第二模式;投影设备(100)包括光源装置(110)、波长转换装置(120)及空间光调制器(130),光源装置(110)用于发出第一光与第二光,第二光为蓝色光;波长转换装置(120)用于接收第一光产生与第二光颜色不同的受激光;空间光调制器(130)用于依据图像数据调制受激光及第二光或者受激光及第二光的转换光以产生图像光,转换光为蓝色光。投影设备(100)处于第二模式时的第二光或其转换光与受激光的功率比值相较于投影设备(100)处于第一模式时的第二光或其转换光与受激光的功率比值小。

Description

\¥0 2019/109510 卩(:17 \2018/074728
投影设备
技术领域
[0001] 本发明涉及投影显示技术领域, 尤其涉及一种投影设备。
[0002]
背景技术
[0003] 据研究表明, 蓝光有可能对人眼造成的影响有 蓝光含量过高会引起视觉 疲劳增加, 二、 对眼生理发育产生影响; 三、 长期在此类光环境下, 年老时诱 发人眼黄斑变性的可能性会增加。 鉴于此, 如何改善蓝光对人眼的伤害是投影 显示领域的一项重要课题。 随着当今蓝光危害越来越受到重视, 各国也开始针 对蓝光危害制定相关安全标准来降低产品中的蓝光危害。
[0004]
发明概述
技术问题
[0005] 特别是, 在激光投影领域中, 激光投影由于其寿命长和亮度高等优点, 越来越 受到人们的喜爱, 然而, 目前的激发投影的光源一般采用蓝色激光光源提供蓝 光光源, 同时采用蓝色激光激发波长转换材料的技术产生所需的其它颜色的光 , 比如, 采用蓝色激光激发绿色波长转换材料产生所需的绿光、 激发红色波长 转换材料产生所需的红光、 激发黄色波长转换材料产生所需要红光和绿光等。 因此, 在激光加荧光混合成的白色光源中, 蓝光的带宽窄且蓝光功率占整个可 见光光谱范围可能较高, 且非蓝光光谱峰值与蓝光光谱峰值比值也可能较小, 导致对人眼的伤害可能较大, 有必要改善。
[0006]
问题的解决方案
技术解决方案
[0007] 为解决现有投影设备蓝光对人眼造成伤害的技术问题, 本发明提供一种可改善 蓝光对人眼造成的伤害的投影设备。 \¥0 2019/109510 卩(:17 \2018/074728
[0008] 一种投影设备, 所述投影设备具有第一模式与第二模式, 所述投影设备包括: [0009] 光源装置, 用于发出第一光与第二光, 所述第二光为蓝色光;
[0010] 波长转换装置, 用于接收所述第一光产生与所述第二光颜色不同的受激光; 及 [0011] 空间光调制器, 用于依据图像数据调制所述受激光及所述第二光或者所述受激 光与所述第二光的转换光以产生图像光, 所述转换光为蓝色光;
[0012] 其中, 所述投影设备处于第二模式时的所述第二光与所述受激光的功率比值相 较于所述投影设备处于第一模式时的所述第二光与所述受激光的功率比值小, 或者所述投影设备处于第二模式时的所述转换光与所述受激光的功率比值相较 于所述投影设备处于第一模式时的所述转换光与所述受激光的功率比值小。 发明的有益效果
有益效果
[0013] 与现有技术相比较, 本发明的投影设备中, 投影设备具有第二模式和第一模式 两种模式, 在第二模式下, 通过使得所述第二光与所述受激光的功率比值相较 于所述投影设备处于第一模式时的所述第二光与所述受激光的功率比值小; 或 者通过使得所述转换光与所述受激光的功率比值相较于所述投影设备处于第一 模式时的所述转换光与所述受激光的功率比值小, 可以使得所述投影设备在第 二模式下, 所述蓝色图像光的占比可以降低, 进而减少蓝光对人眼的危害, 达 到护眼的目的。
[0014]
对附图的简要说明
附图说明
[0015] 图 1是本发明第一实施方式的投影设备的结构示意图。
[0016] 图 2是本发明第二实施方式的投影设备的结构示意图。
[0017] 图 3是本发明第三实施方式的投影设备的结构示意图。
[0018] 图 4是图 3所示投影设备的分光合光元件的结构示意图。
[0019] 图 5是本发明第四实施方式的投影设备的结构示意图。
[0020] 图 6是本发明第五实施方式的投影设备的结构示意图。
[0021] 图 7是本发明第六实施方式的投影设备的结构示意图。 \¥0 2019/109510 卩(:17 \2018/074728
[0022] 图 8是本发明第七实施方式的投影设备的结构示意图。
[0023] 主要元件符号说明
[0024] 投影设备 100、 200、 300、 400、 500、 600、 700
[0025] 光源装置 110、 410、 510
[0026] 波长转换装置 120、 220、 320、 520、 620、 720
[0027] 空间光调制器 130、 230、 330、 530、 630、 730
[0028] 镜头 140
[0029] 分光合光元件 150、 160、 250、 350、 550、 650、 750
[0030] 光源 111、 311、 112、 211、 212、 312、 411、 511、 611、 711、 612、 712
[0031] 光源驱动器 113、 413、 513
[0032] 第一区域 351
[0033] 第二区域 352
[0034] 如下具体实施方式将结合上述附图进一步说明本发明。
发明实施例
本发明的实施方式
[0035] 请参阅图 1, 图 1是本发明第一实施方式的投影设备 100的结构示意图。 投影设 备 100包括光源装置 110、 波长转换装置 120、 空间光调制器 130、 及镜头 140。 投 影设备 100在工作时具有第一模式与第二模式两种模式。 可以理解, 第一模式和 第二模式的切换可以通过使用者操作机械按键或者投影设备 100显示的界面操作 菜单来实现, 此处不进行赘述。 其中, 第一模式可以为正常模式, 即普通显示 模式, 第二模式为护眼模式, 即不同于正常模式且有利于人眼保护的模式。
[0036] 光源装置 110用于发出光源光, 光源光包括第一光与第二光, 第二光为蓝色光 。 波长转换装置 120用于接收第一光产生与第二光颜色不同的受激光。 空间光调 制器 130用于依据图像数据调制受激光及第二光以产生图像光。 镜头 140接收空 间光调制器 130产生的图像光并将图像光投影至预定位置或预定元件 (如投影屏 幕或墙壁等) 来显示投影图像。 其中, 投影设备 100处于第二模式时的第二光与 受激光的功率比值相较于投影设备 100处于第一模式时的第二光与受激光的功率 比值小。 \¥0 2019/109510 卩(:17 \2018/074728
[0037] 具体地, 本实施方式中, 光源装置 110包括第一光源 111、 第二光源 112及光源 驱动器 113。 光源驱动器 113电连接第一光源 111及第二光源 112。 第一光源 111用 于发出第一光, 第二光源 112用于发出第二光, 光源驱动器 113用于发出驱动信 号控制第一光源 111及第二光源 112的驱动电流以控制第一光源 111及第二光源 11 2发出的第一光及第二光的功率。 在本实施方式中, 第一光源 111为蓝色激光光 源, 第二光源 112也为蓝色激光光源。 当然, 在其它的实施例中, 第一光源 111 也可以采用11 光等。
[0038] 进一步地, 本实施方式中, 光源驱动器 113控制第二光源 112在投影设备 100处 于第二模式时的驱动电流小于第二光源 112在投影设备 100处于第一模式时的驱 动电流, 使得投影设备 100处于第二模式时的第二光与受激光的功率比值相较于 投影设备 100处于第一模式时的第二光与受激光的功率比值小。 具体地, 可以理 解, 光源驱动器 113可以控制第一光源 111在投影设备处于第二模式时的驱动电 流与第一光源 111在投影设备处于第一模式时的驱动电流相等。
[0039] 更进一步地, 本实施方式中, 通过光源驱动器 113对第一光源 111及第二光源 11 2的控制, 投影设备 100处于第二模式时, 第二光的功率在第二光及受激光的功 率之和中的占比小于 20%, 且受激光的峰值与第二光的峰值的比值大于等于 50% , 以减少蓝光并达到较好的保护人眼的效果。
[0040] 再进一步地, 本实施方式中, 波长转换装置 120为反射式波长转换装置, 投影 设备 100还包括第一分光合光元件 150及第二分光合光元件 160, 第一分光合光元 件 150用于接收第一光源 111发出的第一光并将第一光引导至波长转换装置 120, 波长转换装置 120用于接收第一光产生受激光, 并将受激光反射并经由第一分光 合光元件 150引导至第二分光合光元件 160, 第二光源 112用于发出第二光至第二 分光合光元件 160, 第二分光合光元件 160用于将受激光及第二光引导至空间光 调制器 130。 具体地, 第二分光合光元件 160可以将受激光反射至空间光调制器 1 30并且将第二光透射至空间光调制器 130。 其中, 可以理解, 第一分光合光元件 150可以对第一光进行反射, 即将第一光引导至波长转换装置 120, 波长转换装 置 120产生的受激光可以进一步被第一分光合光元件 150透射至第二分光合光元 件 160, 第二分光合光元件 160进一步将受激光反射至空间光调制器 130。 \¥0 2019/109510 卩(:17 \2018/074728
[0041] 可以理解, 波长转换装置 120上设置有波长转换材料, 第一光激发波长转换材 料产生受激光, 具体地, 波长转换材料可以为黄色波长转换材料或者红色及绿 色波长转换材料等, 用于产生黄色光或红色光及绿色光等作为受激光, 其中, 可以理解, 受激光与第二光的波长不同从而颜色不同, 且受激光及第二光的混 合光 (可以为白光) 包括红绿蓝三基色光, 使得空间光调制器 130可以依据图像 数据调制受激光及第二光产生投影显示图像所需的图像光。
[0042] 空间光调制器 130可以是单片式的、 两片式的或三片式的, 当为单片式的空间 光调制器时, 红、 绿、 蓝三色光时序进入空间光调制器, 空间光调制器时序调 制出射三种颜色的光; 当为两片式的空间光调制器时, 可以是一个空间光调制 器调制蓝色光和绿色光, 另一个空间光调制器调制红色光, 也可以是一个空间 光调制器调制蓝色光和红色光, 另一个空间光调制器调制绿色光; 当为三片式 的空间光调制器时, 红、 绿、 蓝三色光分别进入三个空间光调制器, 三种颜色 的光不需要分时序调制。 空间光调制器 130可以是 DMD、 1X0等。
[0043] 与现有技术相比较, 本发明的投影设备 100中, 投影设备 100具有第二模式和第 一模式两种模式, 通过使得第二光与受激光的功率比值相较于投影设备 100处于 第一模式时的第二光与受激光的功率比值小, 可以使得投影设备 100在第二模式 下, 蓝色图像光的占比可以降低, 进而减少蓝光对人眼的危害, 达到护眼的目 的。
[0044] 进一步地, 第二光的功率在第二光及受激光的功率之和中的占比小于 20%, 且 受激光的峰值与第二光的峰值的比值大于等于 50%, 也可以有效改善蓝色对人眼 造成的伤害, 达到护眼的目的。
[0045] 此外, 请参阅图 1, 在第一实施方式的第一变更实施方式中, 光源驱动器 113控 制第一光源 111在投影设备 100处于第二模式时的驱动电流大于第一光源 111在投 影设备 100处于第一模式时的驱动电流, 用于使得投影设备 100处于第二模式时 的第二光与受激光的功率比值相较于投影设备 100处于第一模式时的第二光与受 激光的功率比值小。 具体地, 可以理解, 第一变更实施方式中, 光源驱动器 113 可以控制第二光源 112在投影设备 100处于第二模式时的驱动电流与第二光源 112 在投影设备 100处于第一模式时的驱动电流相等。 \¥0 2019/109510 卩(:17 \2018/074728
Figure imgf000007_0001
光源 112在投影设备 100处于第二模式时的驱动电流小于第二光源 112在投影设备 100处于第一模式时的驱动电流, 并且光源驱动器 113还控制第一光源 111在投影 设备 100处于第二模式时的驱动电流大于第一光源 111在投影设备 100处于第一模 式时的驱动电流, 用于使得投影设备 100处于第二模式时的第二光与受激光的功 率比值相较于投影设备 100处于第一模式时的第二光与受激光的功率比值小。
[0047] 请参阅图 1, 在第一实施方式的第三变更实施方式中, 第二光源 112可以为蓝色
Figure imgf000007_0002
, 光源发出的蓝色光较蓝色激光光源发出的蓝色光的波长 范围宽、 峰值也较低, 更容易达到减小蓝色光、 保护人眼的目的。
[0048] 请参阅图 2, 图 2是本发明第二实施方式的投影设备 200的方框结构示意图。 第 二实施方式的投影设备 200与第一实施方式的投影设备 100基本相同, 也就是说 , 上述关于第一实施方式的投影设备 100的描述基本上可以适用于第二实施方式 的投影设备 200, 二者的主要差别主要在于: 第二光源 212的位置、 波长转换装 置 220的结构、 分光合光元件 250的数量及投影设备 200的光路与第一实施方式中 有所不同
[0049] 具体地, 第二实施方式中, 波长转换装置 220为透射式波长转换装置, 第一光 源 211用于发出第一光至波长转换装置 220, 波长转换装置 220用于接收第一光产 生受激光、 并将受激光透射至分光合光元件 250, 第二光源 212用于发出第二光 至分光合光元件 250, 分光合光元件 250用于将受激光及第二光引导至空间光调 制器 230。 相较于第一实施方式, 第二实施方式的投影设备 200通过不同结构及 光路同样可以使得第二光与受激光的功率比值相较于投影设备 200处于第一模式 时的第二光与受激光的功率比值小, 可以使得投影设备 200在第二模式下, 蓝色 图像光的占比可以降低, 进而减少蓝光对人眼的危害, 达到护眼的目的。
[0050] 请参阅图 3, 图 3是本发明第三实施方式的投影设备 300的方框结构示意图。 第 三实施方式的投影设备 300与第一实施方式的投影设备 100基本相同, 也就是说 , 上述关于第一实施方式的投影设备 100的描述基本上可以适用于第三实施方式 的投影设备 300, 二者的差别主要在于: 第一光源 311、 第二光源 312的位置、 波 长转换装置 320的结构、 分光合光元件 350的数量与结构及投影设备 300的光路与 \¥0 2019/109510 卩(:17 \2018/074728 第一实施方式中有所不同。
[0051] 具体地, 第三实施方式中, 波长转换装置 320为反射式波长转换装置, 波长转 换装置 320上设置有用于接收第一光产生受激光的第一波长转换材料及用于接收 第二光产生转换光的第二波长转换材料, 第一波长转换材料与第二波长转换材 料可以设置于波长转换装置 320的不同区域。
[0052] 请参阅图 4, 图 4是图 3所示投影设备 300的分光合光元件 350的结构示意图。 分 光合光元件 350包括第一区域 351及第二区域 352。 第一区域 351可以位于第二区 域 352外围, 第二区域 352可以位于第一区域 351的中央位置, 第一区域 351可以 为反射区域, 用于反射受激光及转换光, 第二区域 352可以为透蓝光反射黄光 ( 包括红色光及绿色光) 的区域。
[0053] 第三实施方式中, 第一光经由第二区域 352引导至波长转换装置 320, 第二光经 由第二区域 352引导至波长转换装置 320, 波长转换装置 320接收第一光产生受激 光、 并将受激光引导至分光合光元件 350的第一区域 351, 波长转换装置 320还接 收第二光产生转换光、 并将转换光引导至分光合光元件 350的第一区域 351, 分 光合光元件 350的第一区域 351用于将受激光及转换光引导至空间光调制器 330, 其中, 转换光为蓝色光, 且转换光的波长范围较第二光宽且峰值较第二光小。 进一步地, 空间光调制器 330用于依据图像数据调制受激光与第二光的转换光以 产生图像光。 其中, 可以理解, 第二区域 352可以对第一光及第二光进行透射, 即将第一光及第二光引导至波长转换装置 320, 波长转换装置 320可以将产生的 转换光反射至第一区域 351, 即将转换光弓 |导至第一区域 351。
[0054] 第三实施方式中, 投影设备 300处于第二模式时的转换光与受激光的功率比值 相较于投影设备处于第一模式时的转换光与受激光的功率比值小。 进一步地, 投影设备 300处于第二模式时, 转换光的功率在转换光及受激光的功率之和中的 占比小于 20%, 且受激光的峰值与转换光的峰值的比值大于等于 50%。
[0055] 第三实施方式中, 通过将第二光转换为转换光, 虽然第二光与转换光可以均为 蓝色光, 但转换光的波长范围可以较第二光宽且峰值较第二光小, 从而更容易 达到减小蓝色光、 保护人眼的目的。
[0056] 请参阅图 5, 图 5是本发明第四实施方式的投影设备 400的方框结构示意图。 第 \¥0 2019/109510 卩(:17 \2018/074728 四实施方式的投影设备 400与第三实施方式的投影设备 300基本相同, 也就是说 , 上述关于第三实施方式的投影设备 300的描述基本上可以适用于第四实施方式 的投影设备 400, 二者的主要差别主要在于: 光源装置 410的光源 411的数量有所 不同。
[0057] 第四实施方式中, 光源装置 410包括一个光源 411, 光源 411可以为蓝色激光光 源或蓝色
Figure imgf000009_0001
光源。 光源 411可以分时发出第一光及第二光, 如在第一时段发出 第一光, 在不同于第一时段的第二时段发出第二光, 光源驱动器 413在第一时段 与第二时段提供光源 411不同的驱动电流, 使得投影设备 400处于第二模式时的 转换光与受激光的功率比值相较于投影设备 400处于第一模式时的转换光与受激 光的功率比值小。 第四实施方式中, 光源装置 410可以包括一个光源 411, 有助 于光源装置 410及投影设备 400的小型化、 轻量化、 降低成本等。
[0058] 请参阅图 6, 图 6是本发明第五实施方式的投影设备 500的方框结构示意图。 在 第五实施方式的投影设备 500与第三实施方式的投影设备 300基本相同, 也就是 说, 上述关于第三实施方式的投影设备 300的描述基本上可以适用于第五实施方 式的投影设备 500, 二者的差别主要在于: 光源装置 510的光源 511的数量、 波长 转换装置 520的结构有所不同。
[0059] 第五实施方式中, 光源装置 510包括一个光源 511, 第一光源 511可以分时发出 第一光及第二光, 如在第一时段发出第一光, 在不同于第一时段的第二时段发 出第二光。
Figure imgf000009_0002
光源。
[0060] 波长转换装置 520上可以设置产生受激光的第一波长转换材料, 第一光经由分 光合光元件 550的第二区域引导 (如反射) 至波长转换装置 520, 第二光经由分 光合光元件 550的第二区域引导 (如反射) 至波长转换装置 520, 波长转换装置 5 20接收第一光产生受激光、 并将受激光引导至分光合光元件 550的第一区域, 波 长转换装置 520还接收第二光并将第二光引导 (如反射) 至分光合光元件 550的 第一区域, 分光合光元件 550的第一区域将受激光及第二光引导至空间光调制器 530。 进一步地, 空间光调制器 530用于依据图像数据调制受激光与第二光以产 生图像光。 其中, 波长转换装置 520上可以设置有散射材料, 用于将第二光进行 散射从而将散射后的第二光引导至分光合光元件 550的第一区域。 \¥0 2019/109510 卩(:17 \2018/074728
[0061] 第五实施方式中, 光源驱动器 513在第一时段与第二时段提供光源 511不同的驱 动电流, 使得投影设备 500处于第二模式时的第二光与受激光的功率比值相较于 投影设备 500处于第一模式时的第二光与受激光的功率比值小。 进一步地, 第五 实施方式中, 第二光的功率在第二光及受激光的功率之和中的占比小于 20%, 且 受激光的峰值与第二光的峰值的比值大于等于 50%, 也可以有效改善蓝色对人眼 造成的伤害, 达到护眼的目的。
[0062] 请参阅图 7, 图 7是本发明第六实施方式的投影设备 600的方框结构示意图。 第 六实施方式的投影设备 600与第一实施方式的投影设备 100基本相同, 也就是说 , 上述关于第一实施方式的投影设备 100的描述基本上可以适用于第六实施方式 的投影设备 600, 二者的主要差别主要在于: 第一光源 611的位置、 第二光源 612 的位置、 波长转换装置 620的结构、 分光合光元件 650的数量及投影设备 600的光 路与第一实施方式中均有所不同。
[0063] 具体地, 第六实施方式中, 波长转换装置 620为透射与反射结合式的波长转换 装置, 第一光源 611用于发出第一光经由分光合光元件 650引导至波长转换装置 6 20, 波长转换装置 620用于接收第一光产生受激光、 并将受激光反射至分光合光 元件 650, 第二光源 612用于发出第二光至波长转换装置 620, 波长转换装置 620 将第二光透射至分光合光元件 650, 分光合光元件 650用于将受激光及第二光引 导至空间光调制器 630。 相较于第一实施方式, 第六实施方式的投影设备 600通 过不同结构及光路同样可以使得第二光与受激光的功率比值相较于投影设备 600 处于第一模式时的第二光与受激光的功率比值小, 可以使得投影设备 600在第二 模式下, 蓝色图像光的占比可以降低, 进而减少蓝光对人眼的危害, 达到护眼 的目的。
[0064] 请参阅图 8, 图 8是本发明第七实施方式的投影设备 700的方框结构示意图。 第 七实施方式的投影设备 700与第一实施方式的投影设备 100基本相同, 也就是说 , 上述关于第一实施方式的投影设备 100的描述基本上可以适用于第七实施方式 的投影设备 700, 二者的主要差别主要在于: 第一光源 711的位置、 第二光源 712 的位置、 波长转换装置 720的结构、 分光合光元件 750的数量及投影设备 700的光 路与第一实施方式中均有所不同。 \¥0 2019/109510 卩(:17 \2018/074728
[0065] 具体地, 第七实施方式中, 波长转换装置 720为反射式的波长转换装置, 第一 光源 711用于发出第一光经由分光合光元件 750引导至波长转换装置 720, 波长转 换装置 720用于接收第一光产生受激光、 并将受激光反射至分光合光元件 750, 分光合光元件 750用于将受激光引导至空间光调制器 730。 第二光源 712用于发出 第二光至空间光调制器 730。 相较于第一实施方式, 第七实施方式的投影设备 70 0通过不同结构及光路同样可以使得第二光与受激光的功率比值相较于投影设备 700处于第一模式时的第二光与受激光的功率比值小, 可以使得投影设备 700在 第二模式下, 蓝色图像光的占比可以降低, 进而减少蓝光对人眼的危害, 达到 护眼的目的。
[0066] 以上仅为本发明的实施方式, 并非因此限制本发明的专利范围, 凡是利用本发 明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在其 它相关的技术领域, 均同理包括在本发明的专利保护范围内。
[0067]

Claims

\¥0 2019/109510 卩(:17 \2018/074728 权利要求书
[权利要求 1] 1.一种投影设备, 其特征在于, 所述投影设备具有第一模式与第二模 式, 所述投影设备包括:
光源装置, 用于发出第一光与第二光, 所述第二光为蓝色光; 波长转换装置, 用于接收所述第一光产生与所述第二光颜色不同的受 激光; 及
空间光调制器, 用于依据图像数据调制所述受激光及所述第二光或者 所述受激光与所述第二光的转换光以产生图像光, 所述转换光为蓝色 光;
其中, 所述投影设备处于第二模式时的所述第二光与所述受激光的功 率比值相较于所述投影设备处于第一模式时的所述第二光与所述受激 光的功率比值小, 或者所述投影设备处于第二模式时的所述转换光与 所述受激光的功率比值相较于所述投影设备处于第一模式时的所述转 换光与所述受激光的功率比值小。
[权利要求 2] 2.如权利要求 1所述的投影设备, 其特征在于: 所述光源装置包括第 一光源、 第二光源及光源驱动器, 所述第一光源用于发出所述第一光 , 所述第二光源用于发出所述第二光, 所述光源驱动器用于发出驱动 信号控制所述第一光源及所述第二光源的驱动电流以控制所述第一光 源及所述第二光源发出的所述第一光及所述第二光。
[权利要求 3] 3.如权利要求 2所述的投影设备, 其特征在于: 所述光源驱动器控制 所述第一光源在所述投影设备处于第二模式时的驱动电流大于所述第 一光源在所述投影设备处于第一模式时的驱动电流。
[权利要求 4] 4.如权利要求 2或 3所述的投影设备, 其特征在于: 所述光源驱动器控 制所述第二光源在所述投影设备处于第二模式时的驱动电流小于所述 第二光源在所述投影设备处于第一模式时的驱动电流。
[权利要求 5] 5.如权利要求 2所述的投影设备, 其特征在于: 所述第一光源为蓝色 激光光源, 所述第二光源为蓝色激光光源或蓝色
Figure imgf000012_0001
光源。
[权利要求 6] 6.如权利要求 2所述的投影设备, 其特征在于: 所述波长转换装置为 \¥0 2019/109510 卩(:17 \2018/074728 反射式波长转换装置, 所述投影设备还包括第一分光合光元件及第二 分光合光元件, 所述第一分光合光元件用于接收所述第一光源发出的 第一光并将所述第一光引导至所述波长转换装置, 所述波长转换装置 用于接收所述第一光产生所述受激光, 并将所述受激光经由所述第一 分光合光元件引导至所述第二分光合光元件, 所述第二光源用于发出 所述第二光至所述第二分光合光元件, 所述第二分光合光元件用于将 所述受激光及所述第二光引导至所述空间光调制器。
[权利要求 7] 7.如权利要求 2所述的投影设备, 其特征在于: 所述波长转换装置为 透射式波长转换装置, 所述投影设备还包括分光合光元件, 所述第一 光源用于发出所述第一光至所述波长转换装置, 所述波长转换装置用 于接收所述第一光产生所述受激光、 并将所述受激光引导至所述分光 合光元件, 所述第二光源用于发出所述第二光至所述分光合光元件, 所述分光合光元件用于将所述受激光及所述第二光引导至所述空间光 调制器。
[权利要求 8] 8.如权利要求 1所述的投影设备, 其特征在于:
所述波长转换装置为反射式波长转换装置, 所述投影设备还包括具有 第一区域及第二区域的分光合光元件, 所述第一光经由所述第二区域 引导至所述波长转换装置, 所述第二光经由所述第二区域引导至所述 波长转换装置, 所述波长转换装置用于接收所述第一光产生所述受激 光、 并将所述受激光引导至所述分光合光元件的第一区域, 所述波长 转换装置还用于接收所述第二光产生所述转换光、 并将所述转换光引 导至所述分光合光元件的第一区域, 所述分光合光元件用于将所述受 激光及所述转换光引导至所述空间光调制器, 所述转换光的波长范围 较所述第二光宽且峰值较所述第二光小; 或者
所述波长转换装置为反射式波长转换装置, 所述投影设备还包括具有 第一区域及第二区域的分光合光元件, 所述第一光经由所述第二区域 引导至所述波长转换装置, 所述第二光经由所述第二区域引导至所述 波长转换装置, 所述波长转换装置用于接收所述第一光产生所述受激 \¥0 2019/109510 卩(:17 \2018/074728 光、 并将所述受激光引导至所述分光合光元件的第一区域, 所述波长 转换装置还用于接收所述第二光引导至所述分光合光元件的第一区域 , 所述分光合光元件用于将所述受激光及所述第二光引导至所述空间 光调制器。
[权利要求 9] 9.如权利要求 1或 8所述的投影设备, 其特征在于: 所述光源装置包括 光源及光源驱动器, 所述光源在第一时段发出所述第一光以及在不同 于所述第一时段的第二时段发出所述第二光, 所述光源驱动器在所述 第一时段与所述第二时段提供所述光源不同的驱动电流。
[权利要求 10] 10.如权利要求 1所述的投影设备, 其特征在于: 所述波长转换装置为 透射与反射结合式的波长转换装置, 所述投影设备还包括分光合光元 件, 所述第一光源用于发出所述第一光经由所述分光合光元件引导至 所述波长转换装置, 所述波长转换装置用于接收所述第一光产生所述 受激光、 并将所述受激光反射至所述分光合光元件, 所述第二光源用 于发出第二光至所述波长转换装置, 所述波长转换装置将所述第二光 透射至所述分光合光元件, 所述分光合光元件用于将所述受激光及所 述第二光引导至所述空间光调制器。
[权利要求 11] 11.如权利要求 1所述的投影设备, 其特征在于: 所述波长转换装置为 反射式的波长转换装置, 所述投影设备还包括分光合光元件, 所述第 一光源用于发出所述第一光经由所述分光合光元件引导至所述波长转 换装置, 所述波长转换装置用于接收所述第一光产生所述受激光、 并 将所述受激光反射至所述分光合光元件, 所述分光合光元件用于将所 述受激光引导至所述空间光调制器, 所述第二光源用于发出所述第二 光至所述空间光调制器。
[权利要求 12] 12.如权利要求 1所述的投影设备, 其特征在于: 所述投影设备处于第 二模式时, 所述第二光的功率在所述第二光及所述受激光的功率之和 中的占比小于 20%或者所述转换光的功率在所述转换光及所述受激光 的功率之和中的占比小于 20%。
[权利要求 13] 13.如权利要求 1所述的投影设备, 其特征在于: 在所述投影设备处于 \¥0 2019/109510 卩(:17 \2018/074728 第二模式时, 所述受激光的峰值与所述第二光的峰值的比值大于等于 50%或者所述受激光的峰值与所述转换光的峰值的比值大于等于 50%
PCT/CN2018/074728 2017-12-06 2018-01-31 投影设备 WO2019109510A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711276725.3A CN109884846B (zh) 2017-12-06 2017-12-06 投影设备
CN201711276725.3 2017-12-06

Publications (1)

Publication Number Publication Date
WO2019109510A1 true WO2019109510A1 (zh) 2019-06-13

Family

ID=66750062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074728 WO2019109510A1 (zh) 2017-12-06 2018-01-31 投影设备

Country Status (2)

Country Link
CN (1) CN109884846B (zh)
WO (1) WO2019109510A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001921A1 (zh) * 2022-06-30 2024-01-04 青岛海信激光显示股份有限公司 投影设备及其光源的驱动方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330447A (ja) * 2005-05-27 2006-12-07 Mitsubishi Electric Corp フロントプロジェクタ装置
CN103369278A (zh) * 2012-04-05 2013-10-23 三菱电机株式会社 投射型投影仪
CN103379345A (zh) * 2012-04-26 2013-10-30 三菱电机株式会社 投射型投影仪
CN204389864U (zh) * 2015-01-20 2015-06-10 深圳市绎立锐光科技开发有限公司 光源系统和投影系统
CN206321932U (zh) * 2016-12-21 2017-07-11 深圳市绎立锐光科技开发有限公司 一种投影显示系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3921302B2 (ja) * 1998-11-11 2007-05-30 松下電器産業株式会社 カラーフィルタとそれを用いた時分割カラー表示ディスプレイ
TW566573U (en) * 2003-04-09 2003-12-11 Coretronic Corp Color temperature adjustable projection apparatus
KR101099327B1 (ko) * 2005-01-04 2011-12-26 엘지전자 주식회사 레이저광원 및 이를 갖는 레이저스캐닝 디스플레이 장치
JP2009053452A (ja) * 2007-08-28 2009-03-12 Panasonic Electric Works Co Ltd 画像投影装置
JP6051605B2 (ja) * 2012-06-13 2016-12-27 ソニー株式会社 表示装置、および表示制御方法、並びにプログラム
CN103411145B (zh) * 2013-08-08 2018-07-27 复旦大学 一种四通道健康led照明系统的设计方法
CN203404652U (zh) * 2013-08-08 2014-01-22 复旦大学 一种四通道健康led照明装置
CN105889812A (zh) * 2014-12-09 2016-08-24 林伯刚 黄色背光系统及黄色背光方法
CN104638092A (zh) * 2015-01-27 2015-05-20 易美芯光(北京)科技有限公司 一种降低蓝光危害的led封装结构
CN105848003A (zh) * 2016-03-29 2016-08-10 乐视控股(北京)有限公司 一种适用于显示屏的护眼方法及装置
CN106131705A (zh) * 2016-07-15 2016-11-16 乐视控股(北京)有限公司 控制电子设备的显示屏的图像模式的系统和方法
CN106873296B (zh) * 2017-04-05 2020-03-31 苏州佳世达光电有限公司 投影系统
CN107229174A (zh) * 2017-07-14 2017-10-03 桂林电子科技大学 一种手机投影灯的健康照明方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330447A (ja) * 2005-05-27 2006-12-07 Mitsubishi Electric Corp フロントプロジェクタ装置
CN103369278A (zh) * 2012-04-05 2013-10-23 三菱电机株式会社 投射型投影仪
CN103379345A (zh) * 2012-04-26 2013-10-30 三菱电机株式会社 投射型投影仪
CN204389864U (zh) * 2015-01-20 2015-06-10 深圳市绎立锐光科技开发有限公司 光源系统和投影系统
CN206321932U (zh) * 2016-12-21 2017-07-11 深圳市绎立锐光科技开发有限公司 一种投影显示系统

Also Published As

Publication number Publication date
CN109884846B (zh) 2021-10-26
CN109884846A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
EP2271120B1 (en) Light source device, video projector and video projection method
KR101502679B1 (ko) 광원 장치 및 프로젝터
US8427731B2 (en) Display apparatus, method and light source
EP2290443B1 (en) Light source device, projection apparatus, and projection method
JP5958000B2 (ja) 光源装置及びプロジェクタ
US10133164B2 (en) Projection display apparatus for improving the chromaticity of blue light
TWI584049B (zh) 合光控制系統
EP2811342A1 (en) Light source module and projection apparatus
JP2018513412A (ja) 光源システム及び投影システム
JP2015166787A (ja) 光源装置及び投影装置
US20170357151A1 (en) Projection display apparatus
US9910347B2 (en) Image display apparatus and image generation method
CN109884850B (zh) 投影设备
WO2019109506A1 (zh) 投影设备
WO2019109510A1 (zh) 投影设备
JP6820703B2 (ja) 光源装置及び投影装置
KR20080077629A (ko) 레이저 피코-빔머에 대한 최적 칼라
JP6928780B2 (ja) 投写型映像表示装置
CN109884848B (zh) 投影设备
JP6928781B2 (ja) 投写型映像表示装置
WO2013132634A1 (ja) プロジェクタ
CN116165833A (zh) 光源系统及投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885350

Country of ref document: EP

Kind code of ref document: A1