WO2019109405A1 - 一种lpcvd真空加热腔室 - Google Patents

一种lpcvd真空加热腔室 Download PDF

Info

Publication number
WO2019109405A1
WO2019109405A1 PCT/CN2017/117928 CN2017117928W WO2019109405A1 WO 2019109405 A1 WO2019109405 A1 WO 2019109405A1 CN 2017117928 W CN2017117928 W CN 2017117928W WO 2019109405 A1 WO2019109405 A1 WO 2019109405A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating chamber
lpcvd
heat
reflection plate
chamber
Prior art date
Application number
PCT/CN2017/117928
Other languages
English (en)
French (fr)
Inventor
袁建辉
Original Assignee
北京铂阳顶荣光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京铂阳顶荣光伏科技有限公司 filed Critical 北京铂阳顶荣光伏科技有限公司
Publication of WO2019109405A1 publication Critical patent/WO2019109405A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Definitions

  • the utility model relates to the technical field of low pressure chemical vapor deposition, in particular to a LPCVD vacuum heating chamber.
  • LPCVD is a device for depositing a CIGS film layer, and by depositing a CIGS film layer, the conversion efficiency of the battery can be effectively improved.
  • LPCVD mainly includes components such as a wafer stage, a vacuum heating chamber, a process chamber, a cooling chamber, and a discharge station.
  • the LPCVD process is as follows: the glass is loaded on the substrate through the upper stage, and then the glass enters the vacuum heating chamber through the glass substrate, and then the vacuum heating chamber starts to vacuum and heat the glass, and the vacuum heating chamber is heated to the set temperature. After that, the glass is automatically transferred to the process chamber for process film deposition. After the process is completed, it is cooled in the cooling chamber and then transferred from the unloading station.
  • the glass substrate is heated to a predetermined temperature, and the chamber wall of the vacuum heating chamber is prevented from being overheated. Therefore, a cooling water tank is arranged on the chamber wall, and the chamber wall is lowered by cooling the circulating water. Temperature, however, cooling the circulating water often generates excessive energy consumption when carrying away heat radiated to the walls of the chamber, so it is necessary to improve the existing LPCVD vacuum heating chamber to overcome the above drawbacks.
  • the purpose of the utility model is to provide an LPCVD vacuum heating chamber to solve the present problem.
  • the technical problem of the vacuum cooling chamber of the vacuum heating chamber takes away excessive heat, which can reflect the heat dissipated to the chamber wall back into the chamber, reducing the internal heat loss.
  • the present invention provides the following technical solutions:
  • a LPCVD vacuum heating chamber is provided with a heating device, a heat equalizing plate and a glass substrate from top to bottom in sequence, and a heat shielding device is arranged on the cavity wall of the heating chamber.
  • the heat shielding device comprises a diffuse reflection plate and a specular reflection plate, and the specular reflection plate is disposed between the diffuse reflection plate and a cavity wall of the heating chamber.
  • the diffuse reflection plate is a bent plate
  • the specular reflection plate is a flat plate
  • the diffuse reflection plate is a corrugated plate.
  • the corrugated plate includes arcuate convex plates that are sequentially connected, and the curved convex plates are convex toward the direction of the glass substrate.
  • the heat shielding device is disposed on a bottom wall and a side wall of the heating chamber.
  • a heat insulating material is disposed between the diffuse reflection plate and the specular reflection plate.
  • the heating device is a heating lamp tube, and the heating lamp tube is evenly disposed above the heat equalizing plate.
  • a temperature sensor is further disposed in the heating chamber, and the temperature sensor is connected to the glass substrate.
  • a rail is disposed on a sidewall of the heating chamber, and an edge of the glass substrate is provided with a slider matching the rail, and the slider is slidably connected to the rail.
  • the utility model provides an LPCVD vacuum heating chamber, the heating chamber A heating device, a heat equalizing plate and a glass substrate are sequentially arranged from top to bottom, and a heat shielding device is arranged on the cavity wall of the heating chamber; the utility model can ensure that a heat equalizing plate is arranged inside the heating chamber.
  • the glass on the glass substrate is heated uniformly to avoid heat concentration.
  • a heat shielding device is arranged on the wall of the heating chamber, so that the heat dissipated to the wall of the chamber can be reflected back into the chamber to reduce the heat loss in the heating chamber.
  • the LPCVD vacuum heating chamber of the present invention can effectively reduce heat loss, ensure that the heating chamber is at a suitable temperature, and reduce the heating cost of the heating chamber.
  • FIG. 1 is a schematic structural view of an LPCVD vacuum heating chamber according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a heat shielding device according to an embodiment of the present invention.
  • 1-heating chamber 2-heating device, 3-heating plate, 4-glass substrate, 5-heat shielding device, 6-diffuse reflector, 7-specular reflector, 8-arc convex plate.
  • an embodiment of the present invention provides an LPCVD vacuum heating chamber.
  • the heating chamber 1 is provided with a heating device 2, a heat equalizing plate 3 and a glass substrate from top to bottom. 4.
  • a heat shielding device 5 is disposed on the wall of the heating chamber 1.
  • the cavity wall of the heating chamber 1 is provided with a card slot, and both ends of the heat shielding device 5 are provided with a locking portion matching the card slot, and the carding portion is received in the Inside the card slot.
  • the heat equalizing plate 3 is preferably uniformly disposed in a longitudinal direction with a trapezoidal groove having a size larger than a size of the bottom of the trapezoidal groove to uniformly transfer heat to avoid heat concentration.
  • the LPCVD vacuum heating chamber preheats the glass substrate 4, firstly generates heat through the heating device 2, and then the heat is uniformly transmitted to the glass substrate 4 through the heat equalizing plate 3, so that the glass substrate 4 reaches the process.
  • the required temperature, in the process, the heating device 2 and the soaking plate 3 will have some heat dissipation to the cavity wall, and in the process of heating the glass substrate 4, some of the heat will continue to be transmitted through the infrared radiation.
  • the two kinds of heat are dissipated to the cavity wall, and the heat is lost through the cavity wall to the outside, and the cooling system load on the chamber wall is increased, and the heat shielding device 5 can block the heat.
  • the LPCVD vacuum heating chamber of the present invention can effectively reduce heat loss and ensure proper heating chamber 1 The temperature reduces the heating cost of the heating chamber 1.
  • the heat shielding device 5 includes a diffuse reflection plate 6 and a specular reflection plate 7 disposed between the diffuse reflection plate 6 and the cavity wall of the heating chamber 1.
  • the diffuse reflection plate 6 and the specular reflection plate 7 may be welded together, fixed to the cavity wall of the heating chamber 1, or may also be respectively fixed to the cavity wall of the heating chamber 1, and the distance between the two plates is not limited, Can be in contact with each other.
  • the heating device 2 and the glass substrate 4 dissipate infrared heat radiation When it is incident on the diffuse reflection plate 6, most of the heat is reflected back to the inside of the chamber through the diffuse reflection plate 6, and a small amount of heat is transmitted to the diffuse reflection plate 6 or through the diffuse reflection plate 6, and the diffuse reflection plate 6 is performed.
  • the heat is radiated or radiated outward, and then a part of the heat is radiated onto the specular reflector 7.
  • the specular reflector 7 reflects some of the heat radiation back onto the diffuse reflector 6, and some of the heat is heated by the specular reflector 7.
  • the specular reflector 7 is dissipated to the cavity wall to heat the cavity wall or dissipate to the outside. It can be seen that the diffuse reflector 6 and the specular reflector 7 are provided, which can effectively prevent heat dissipation and reduce the load on the cooling system on the cavity wall.
  • the diffuse reflection plate 6 and the specular reflection plate 7 are preferably one set, and of course, may be provided as a plurality of sheets as needed. Both the diffuse reflection plate 6 and the specular reflection plate 7 are preferably made of a stainless steel material to withstand a certain high temperature.
  • the diffuse reflection plate 6 In order to enhance the effect of the heat reflecting by the diffuse reflection plate 6, the heat passing through the diffuse reflection plate 6 is reduced, and the diffuse reflection plate 6 is a bent plate, and the specular reflection plate 7 is a flat plate.
  • the diffuse reflection plate 6 of the bent plate has a larger reflection area and can reflect or absorb more heat. The reflection effect of the flat mirror reflection plate 7 is better.
  • a heat insulating material is also preferably provided between the diffuse reflection plate 6 and the specular reflection plate 7.
  • a gap is preferably provided between the diffuse reflection plate 6 and the specular reflection plate 7, and the gap is filled with a heat insulating material to further reduce heat dissipation.
  • Insulation materials can be selected from materials such as glass fiber, asbestos, rock wool or silicate.
  • the diffuse reflection plate 6 is a corrugated plate.
  • the corrugated plate may be a longitudinal corrugated plate, a transverse corrugated plate or a diagonal corrugated plate.
  • the longitudinal corrugations, transverse corrugations or oblique corrugations on the corrugated plate are preferably arranged to be evenly distributed to achieve uniform heat transfer. By uniformly providing circular projections on the diffuse reflection plate 6, an effect of uniform heat transfer can also be obtained.
  • the corrugated plate includes arcuate convex plates 8 that are sequentially connected, and the curved convex plates 8 are convex toward the direction of the glass substrate 4.
  • the size of the curved convex plates 8 is preferably the same to facilitate processing and to ensure uniform heat transfer.
  • the heat shielding device 5 is disposed on the bottom wall and the side wall of the heating chamber 1.
  • a heat shield 5 is also preferably provided on the top wall of the heating chamber 1.
  • the diffuse reflection plate 6 and the specular reflection plate 7 are preferably disposed on the bottom cavity wall of the heating chamber 1 and the four side cavity walls, and heated.
  • a diffuse reflection plate 6 and a specular reflection plate 7 are also preferably provided to achieve the effect of blocking the dissipation of heat in all directions.
  • the heating device 2 is preferably a heating lamp tube, and the heating lamp tube is uniformly disposed above the heat equalizing plate 3.
  • the heating tube is preferably fixed to the wall of the heating chamber 1.
  • the number of the heating lamps is preferably set to six, and is evenly distributed along the longitudinal direction of the glass substrate 4.
  • the heating device 2 can also be arranged to heat the wire.
  • the heating device 2 can be provided as a device having a multi-stage heating intensity gear and adjustable.
  • a temperature sensor is preferably also provided in the heating chamber 1, and the temperature sensor is connected to the glass substrate 4.
  • the temperature sensor is preferably disposed at the bottom of the glass substrate 4.
  • the temperature of the glass substrate 4 can be monitored by the temperature sensor. When the temperature of the glass substrate 4 is higher than the predetermined temperature, the heating intensity of the heating device 2 is lowered, and when the temperature of the glass substrate 4 is lower than the predetermined temperature, the heating device 2 is turned up. The strength is increased to ensure that the heating chamber 1 heats the glass substrate 4 to a predetermined temperature.
  • the side wall of the heating chamber 1 is provided with a guide rail, and the edge of the glass substrate 4 is provided with the guide rail.
  • a matching slider that is slidably coupled to the rail.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种LPCVD真空加热腔室,所述加热腔室(1)内自上而下顺次设有加热装置(2)、均热板(3)和玻璃基板(4),所述加热腔室(1)的腔壁上设有热量屏蔽装置(5)。通过在加热腔室(1)的内部设置均热板(2),可以保证玻璃基板(4)上的玻璃受热均匀,避免热量集中,同时在加热腔室(1)的腔壁上设置热量屏蔽装置(5),可以将散逸到腔室壁上的热量反射回腔室(1)内部,降低加热腔室(1)内的热量损失,该LPCVD真空加热腔室可以有效降低热量损失,保证加热腔室(1)内处于合适的温度,降低加热腔室(1)的加热成本。

Description

一种LPCVD真空加热腔室 技术领域
本实用新型涉及低压化学气相沉积技术领域,特别是一种LPCVD真空加热腔室。
背景技术
LPCVD是用于沉积CIGS膜层的设备,通过沉积CIGS膜层,可以有效提高电池的转化效率。LPCVD主要包括上片台、真空加热腔室、工艺腔室、冷却腔室和卸片台等组件。
LPCVD工艺流程为:玻璃经上片台装载在基板上,然后玻璃借助玻璃基板进入真空加热腔室,接着真空加热腔室开始抽真空并对玻璃进行加热,待真空加热腔室加热到设定温度后,玻璃会被自动传输到工艺腔室,进行工艺膜层沉积,工艺完成后在冷却腔室内冷却,然后从卸片台传出。
在上述加热过程中,既要将玻璃基板加热到预定温度,又要避免真空加热腔室的腔室壁过热,故在腔室壁上设有冷却水槽,通过冷却循环水来降低腔室壁的温度,然而冷却循环水在带走辐射到腔室壁上的热量时,常常会产生过多的能量消耗,因此有必要对现有的LPCVD真空加热腔室改进,以克服上述缺陷。
实用新型内容
本实用新型的目的是提供一种LPCVD真空加热腔室,以解决现 有技术中的真空加热腔室的冷却水槽带走过多热量的技术问题,它能够将散逸到腔室壁上的热量反射回腔室内部,降低内部的热量损失。
为了实现上述目的,本实用新型提供了如下的技术方案:
一种LPCVD真空加热腔室,所述加热腔室内自上而下顺次设有加热装置、均热板和玻璃基板,所述加热腔室的腔壁上设有热量屏蔽装置。
优选地,所述热量屏蔽装置包括漫反射板和镜面反射板,所述镜面反射板设于所述漫反射板与所述加热腔室的腔壁之间。
优选地,所述漫反射板为弯折板,所述镜面反射板为平板。
优选地,所述漫反射板为波纹板。
优选地,所述波纹板包括顺次连接的弧形凸板,所述弧形凸板朝向所述玻璃基板的方向凸起。
优选地,所述热量屏蔽装置设置在所述加热腔室的底壁和侧壁上。
优选地,所述漫反射板与所述镜面反射板之间设有隔热材料。
优选地,所述加热装置为加热灯管,所述加热灯管均匀设置在所述均热板的上方。
优选地,所述加热腔室内还设有温度传感器,所述温度传感器与所述玻璃基板连接。
优选地,所述加热腔室的侧壁上设有导轨,所述玻璃基板的边缘设有与所述导轨匹配的滑块,所述滑块与所述导轨滑动连接。
本实用新型的有益效果在于:
本实用新型提供了一种LPCVD真空加热腔室,所述加热腔室内 自上而下顺次设有加热装置、均热板和玻璃基板,所述加热腔室的腔壁上设有热量屏蔽装置;本实用新型通过在加热腔室的内部设置均热板,可以保证玻玻璃基板上的玻璃受热均匀,避免热量集中,同时在加热腔室的腔壁上设置热量屏蔽装置,可以将散逸到腔室壁上的热量反射回腔室内部,降低加热腔室内的热量损失,与现有技术相比,本实用新型的LPCVD真空加热腔室可以有效降低热量损失,保证加热腔室内处于合适的温度,降低加热腔室的加热成本。
附图说明
图1是本实用新型实施例的LPCVD真空加热腔室的结构示意图;
图2是本实用新型实施例的热量屏蔽装置的结构示意图。
附图标记说明:
1-加热腔室,2-加热装置,3-均热板,4-玻璃基板,5-热量屏蔽装置,6-漫反射板,7-镜面反射板,8-弧形凸板。
具体实施方式
下面详细描述本实用新型的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本实用新型,而不能解释为对本实用新型的限制。
如图1和图2所示,本实用新型的实施例提供一种LPCVD真空加热腔室,所述加热腔室1内自上而下顺次设有加热装置2、均热板3和玻璃基板4,所述加热腔室1的腔壁上设有热量屏蔽装置5。优 选地,所述加热腔室1的腔壁上设有卡槽,所述热量屏蔽装置5的两端设有与所述卡槽匹配的卡接部,所述卡接部容置在所述卡槽内。通过卡槽和卡接部连接热量屏蔽装置5和加热腔室1,可以使整体结构的装拆更为方便。所述均热板3沿纵向优选均匀地设置有梯形槽,所述梯形槽开口的尺寸比所述梯形槽底部的尺寸大,以均匀地传递热量,避免热量集中。
本实用新型的使用方法:LPCVD真空加热腔室对玻璃基板4进行预热,是首先通过加热装置2产生热量,随后热量通过均热板3均匀传播到玻璃基板4上,使得玻璃基板4达到工艺所需要的温度,在此过程中,加热装置2和均热板3会有部分热量散逸到腔壁上,另外玻璃基板4在被加热的过程中,也会有部分热量通过红外线辐射不断地向外散逸,此两种热量散逸到腔壁上,通过腔壁散逸到外界,都会产生热量损失,并造成腔室壁上的冷却系统负荷增加,而热量屏蔽装置5的设置,可以阻止这些热量的散逸,可以有效地降低热量损失,减轻腔室壁上冷却系统的负荷,与现有技术相比,本实用新型的LPCVD真空加热腔室可以有效降低热量损失,保证加热腔室1内处于合适的温度,降低加热腔室1的加热成本。
进一步地,所述热量屏蔽装置5包括漫反射板6和镜面反射板7,所述镜面反射板7设于所述漫反射板6与所述加热腔室1的腔壁之间。漫反射板6与镜面反射板7可以焊接在一起,与加热腔室1的腔壁固接,也可也分别与加热腔室1的腔壁固接,两板之间的距离不限,也可以互相接触贴合。当加热装置2和玻璃基板4散逸的红外线热量辐 射到漫反射板6上时,大部分的热量会经漫反射板6反射回腔室内部,少部分热量会传到漫反射板6上或者穿过漫反射板6,对漫反射板6进行加热或者向外散发热量,接着其中一部分散发出的热量会辐射到镜面反射板7上面,镜面反射板7会将其中一些热量辐射反射回漫反射板6上,另外一些热量经过镜面反射板7加热镜面反射板7或者散逸到腔壁上,进而加热腔壁或者散逸到外部,可见设置漫反射板6和镜面反射板7,可以有效地阻止热量的散逸,降低腔壁上冷却系统的负荷。其中,漫反射板6和镜面反射板7均优选设置为1张,当然也可以根据需要设置为多张。漫反射板6和镜面反射板7均优选由不锈钢材料制成,以耐受一定的高温。
为了提高漫反射板6反射热量的效果,降低从漫反射板6中穿过的热量,所述漫反射板6为弯折板,所述镜面反射板7为平板。弯折板的漫反射板6的反射面积更大,可以反射或者吸收更多的热量。平板状的镜面反射板7的反射效果更佳。
所述漫反射板6与所述镜面反射板7之间还优选设有隔热材料。在漫反射板6与镜面反射板7之间优选设有间隙,并在该间隙中填充隔热材料,进一步减弱热量的散逸。隔热材料可以选择为玻璃纤维、石棉、岩棉或者硅酸盐等材料。
具体地,所述漫反射板6为波纹板。该波纹板可以为纵波纹板、横波纹板或者斜波纹班,波纹板上的纵波纹、横波纹或者斜波纹优选设置为均匀分布,以达到均匀地传递热量的目的。在漫反射板6上均匀设置圆形凸起,也可以获得均匀传热的效果。
更为具体地,所述波纹板包括顺次连接的弧形凸板8,所述弧形凸板8朝向所述玻璃基板4的方向凸起。弧形凸板8的尺寸优选为相同,以方便加工,保证热量均匀地传播。
为了保证热量屏蔽装置5对热量的阻挡效果,所述热量屏蔽装置5设置在所述加热腔室1的底壁和侧壁上。当然,在加热腔室1的顶壁上,也优选设置有热量屏蔽装置5。当热量屏蔽装置5选择为漫反射板6与镜面反射板7时,优选将漫反射板6与镜面反射板7覆设在加热腔室1的底部腔壁和4个侧腔壁上,在加热腔室1的顶部腔壁上,也优选设置有漫反射板6与镜面反射板7,以达到全方位地阻挡热量的散逸的效果。
如图1所示,所述加热装置2优选为加热灯管,所述加热灯管均匀设置在所述均热板3上方。加热灯管优选固定在加热腔室1的腔壁上。加热灯管优选设置为6个,沿玻璃基板4的长度方向均匀分布。当然,加热装置2也可以设置为加热金属丝。加热装置2可以设置为具有多级加热强度档位并且可调节的装置。
在加热装置2设置为具有多级加热强度档位并且可调节的装置时,所述加热腔室1内还优选设有温度传感器,所述温度传感器与所述玻璃基板4连接。温度传感器优选设置在玻璃基板4的底部。通过温度传感器可以监测玻璃基板4的温度,在玻璃基板4的温度高于预定温度时,调低加热装置2的加热强度,在玻璃基板4的温度低于预定温度时,调高加热装置2的加热强度,以确保加热腔室1将玻璃基板4加热到预定温度。
为了使玻璃基板4的位置更为灵活,更机动地对玻璃的不同位置处进行加热,所述加热腔室1的侧壁上设有导轨,所述玻璃基板4的边缘设有与所述导轨匹配的滑块,所述滑块与所述导轨滑动连接。此种结构可以通过移动玻璃基板4,对玻璃的不同部位进行加热,以保证玻璃受热均匀。
以上依据图式所示的实施例详细说明了本实用新型的构造、特征及作用效果,以上所述仅为本实用新型的较佳实施例,但本实用新型不以图面所示限定实施范围,凡是依照本实用新型的构想所作的改变,或修改为等同变化的等效实施例,仍未超出说明书与图示所涵盖的精神时,均应在本实用新型的保护范围内。

Claims (10)

  1. 一种LPCVD真空加热腔室,其特征在于,所述加热腔室(1)内自上而下顺次设有加热装置(2)、均热板(3)和玻璃基板(4),所述加热腔室(1)的腔壁上设有热量屏蔽装置(5)。
  2. 根据权利要求1所述的LPCVD真空加热腔室,其特征在于,所述热量屏蔽装置(5)包括漫反射板(6)和镜面反射板(7),所述镜面反射板(7)设于所述漫反射板(6)与所述加热腔室(1)的腔壁之间。
  3. 根据权利要求2所述的LPCVD真空加热腔室,其特征在于,所述漫反射板(6)为弯折板,所述镜面反射板(7)为平板。
  4. 根据权利要求2所述的LPCVD真空加热腔室,其特征在于,所述漫反射板(6)为波纹板。
  5. 根据权利要求4所述的LPCVD真空加热腔室,其特征在于,所述波纹板包括顺次连接的弧形凸板(8),所述弧形凸板(8)朝向所述玻璃基板(4)的方向凸起。
  6. 根据权利要求1所述的LPCVD真空加热腔室,其特征在于,所述热量屏蔽装置(5)设置在所述加热腔室(1)的底壁和侧壁上。
  7. 根据权利要求2所述的LPCVD真空加热腔室,其特征在于,所述漫反射板(6)与所述镜面反射板(7)之间设有隔热材料。
  8. 根据权利要求1所述的LPCVD真空加热腔室,其特征在于,所述加热装置(2)为加热灯管,所述加热灯管均匀设置在所述均热板(3)的上方。
  9. 根据权利要求1所述的LPCVD真空加热腔室,其特征在于,所述加热腔室(1)内还设有温度传感器,所述温度传感器与所述玻璃基板(4)连接。
  10. 根据权利要求1所述的LPCVD真空加热腔室,其特征在于,所述加热腔室(1)的侧壁上设有导轨,所述玻璃基板(4)的边缘设有与所述导轨匹配的滑块,所述滑块与所述导轨滑动连接。
PCT/CN2017/117928 2017-12-08 2017-12-22 一种lpcvd真空加热腔室 WO2019109405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721709152.4 2017-12-08
CN201721709152.4U CN207596957U (zh) 2017-12-08 2017-12-08 一种lpcvd真空加热腔室

Publications (1)

Publication Number Publication Date
WO2019109405A1 true WO2019109405A1 (zh) 2019-06-13

Family

ID=62764561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117928 WO2019109405A1 (zh) 2017-12-08 2017-12-22 一种lpcvd真空加热腔室

Country Status (2)

Country Link
CN (1) CN207596957U (zh)
WO (1) WO2019109405A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115547896B (zh) * 2022-11-29 2023-03-10 无锡邑文电子科技有限公司 一种无水冷的半导体晶圆低温处理设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102485935A (zh) * 2010-12-06 2012-06-06 北京北方微电子基地设备工艺研究中心有限责任公司 均热板及应用该均热板的基片处理设备
CN202380087U (zh) * 2011-12-19 2012-08-15 汉能科技有限公司 一种加热腔保温系统
CN103822462A (zh) * 2014-02-18 2014-05-28 深圳市新嘉拓自动化技术有限公司 烘箱的隔热保温结构
CN104213103A (zh) * 2014-09-24 2014-12-17 深圳市捷佳伟创新能源装备股份有限公司 一种mocvd反应室保温隔热装置
CN106033734A (zh) * 2015-03-12 2016-10-19 北京北方微电子基地设备工艺研究中心有限责任公司 加热腔室及半导体加工设备
US20170107619A1 (en) * 2015-10-14 2017-04-20 Taiwan Semiconductor Manufacturing Co., Ltd. Thermal chemical vapor deposition system and operating method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102485935A (zh) * 2010-12-06 2012-06-06 北京北方微电子基地设备工艺研究中心有限责任公司 均热板及应用该均热板的基片处理设备
CN202380087U (zh) * 2011-12-19 2012-08-15 汉能科技有限公司 一种加热腔保温系统
CN103822462A (zh) * 2014-02-18 2014-05-28 深圳市新嘉拓自动化技术有限公司 烘箱的隔热保温结构
CN104213103A (zh) * 2014-09-24 2014-12-17 深圳市捷佳伟创新能源装备股份有限公司 一种mocvd反应室保温隔热装置
CN106033734A (zh) * 2015-03-12 2016-10-19 北京北方微电子基地设备工艺研究中心有限责任公司 加热腔室及半导体加工设备
US20170107619A1 (en) * 2015-10-14 2017-04-20 Taiwan Semiconductor Manufacturing Co., Ltd. Thermal chemical vapor deposition system and operating method thereof

Also Published As

Publication number Publication date
CN207596957U (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
US8875696B2 (en) Vacuum solar thermal panel with radiative screen
TW303498B (zh)
CN106102189B (zh) 加热器单元和热处理装置
CN104329921A (zh) 一种红外烘干装置
WO2019109405A1 (zh) 一种lpcvd真空加热腔室
CN103968564A (zh) 一种平板聚光型太阳能无水箱热水器
CN202543323U (zh) 一种lpcvd预热腔控温系统
CN104342546A (zh) 一种锅炉膜式水冷壁局部焊后热处理的柔性加热装置及工艺
WO2019000484A1 (zh) 蒸发源加热系统
CN102563900A (zh) 塑料平板太阳能集热器
CN104456994A (zh) 一种太阳能真空集热管生产工艺
CN203534100U (zh) 一种红外烘干装置
JP7430469B2 (ja) 多層体を熱処理するための装置、設備及び方法
CN113039165B (zh) 玻璃物品的制造方法以及薄板玻璃的加热方法
CN105627728B (zh) 一种蒸汽循环利用装置
CN209982752U (zh) 均温加热板
CN204409396U (zh) 一种远红外反射装置
CN202837807U (zh) 感光版生产中涂布液烘干装置
CN206399149U (zh) 超薄反射镜的镀层烘烤固化装置
CN202562073U (zh) 平板太阳能集热器
CN111457445A (zh) 复合抛物锥面体反射导热节能罩
CN104964520A (zh) 高保温太阳能烘干房
CN215217060U (zh) 一种多热源快速转换系统
CN103928379A (zh) 基板装卸载单元及基板处理系统
JP3578405B2 (ja) 加熱炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934288

Country of ref document: EP

Kind code of ref document: A1