WO2019109283A1 - 修正弥补电压的锂离子电池充电方法 - Google Patents

修正弥补电压的锂离子电池充电方法 Download PDF

Info

Publication number
WO2019109283A1
WO2019109283A1 PCT/CN2017/114911 CN2017114911W WO2019109283A1 WO 2019109283 A1 WO2019109283 A1 WO 2019109283A1 CN 2017114911 W CN2017114911 W CN 2017114911W WO 2019109283 A1 WO2019109283 A1 WO 2019109283A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
voltage
battery
current
constant
Prior art date
Application number
PCT/CN2017/114911
Other languages
English (en)
French (fr)
Inventor
唐胜成
李利
易世明
曾石华
Original Assignee
广州丰江电池新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州丰江电池新技术股份有限公司 filed Critical 广州丰江电池新技术股份有限公司
Priority to CN201780002550.9A priority Critical patent/CN108235791A/zh
Priority to PCT/CN2017/114911 priority patent/WO2019109283A1/zh
Priority to EP18152564.3A priority patent/EP3467933A1/en
Priority to KR1020180009338A priority patent/KR102185010B1/ko
Priority to JP2018056321A priority patent/JP6694463B2/ja
Publication of WO2019109283A1 publication Critical patent/WO2019109283A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of battery charging methods, and in particular relates to a charging method of a lithium ion battery and a polymer lithium ion battery.
  • Cide CN101388477B discloses a fast charging method, which is a lithium ion battery charging method for increasing the internal limiting voltage of the battery by increasing the charging limit voltage.
  • a fast charging method which is a lithium ion battery charging method for increasing the internal limiting voltage of the battery by increasing the charging limit voltage.
  • Us is the stable voltage of the battery voltage falling after constant current charging to Uo
  • Uo is the standard charging cut-off voltage
  • Uo is generally accepted by the industry.
  • the standard charge cut-off voltage used in the small-rate constant-current constant-charge charging mode.
  • the selection of the stable voltage Us is timed from the time when the battery stops the constant-current charging, and the battery starts from a certain period of time, and the battery is in a certain period of time.
  • the voltage drop of the open circuit voltage is less than a certain value, and the voltage of the battery has reached a stable state.
  • the voltage corresponding to the first time point of the time period is the stable voltage Us of the battery.
  • Ideal charging The lithium ion battery is charged by the constant current and constant voltage charging method. After the charging circuit is disconnected, the open circuit stable voltage of the lithium ion battery reaches the constant voltage charging voltage. Theoretically, the constant current constant voltage charging method is used to charge the lithium ion battery. When the constant voltage is charged to an infinitesimal current, the open circuit stable voltage of the lithium ion battery can reach the constant voltage charging voltage after the charging circuit is disconnected.
  • the constant current constant voltage charging method is used to charge the lithium ion battery, and when the constant voltage is charged to the self-consumption current of the lithium ion battery, the charging current and the self-consumption current of the lithium ion battery are in a dynamic equilibrium state, after the charging circuit is disconnected,
  • the open-circuit stable voltage of a lithium-ion battery can be very close to the constant voltage charging voltage.
  • Standard stable voltage charge with constant current from the standard or supplier's agreed constant current to Uo and then charge to the standard specified or supplier-defined cut-off current to stop charging; stop when the battery stops constant current and constant voltage charging.
  • the battery starts from a certain period of time, the voltage drop of the open circuit voltage is less than a certain value in a certain period of time, the voltage of the battery has reached a stable state, and the voltage corresponding to the first time point of the time period is the battery.
  • Standard stable voltage Uso
  • Lithium ion degree of freedom the degree to which lithium ions are free to move in the positive electrode.
  • lithium ions are deintercalated from the positive electrode, passed through the electrolyte, and embedded in the negative electrode. Lithium ions are freely distributed in the positive crystal lattice, and each finds its own proper position.
  • the lithium ions with close proximity and large degree of freedom are first deintercalated, and the lithium ions after long distance and low degree of freedom are Deintercalation, the lithium ion density of the positive beam is very low, it is difficult to deintercalate, or more charging energy is required to deintercalate lithium ions with low degree of freedom.
  • the charging method of CN101388477B does not consider the influence of equipment error and measurement error. 100% saturation is charged by the standard specified or supplier-constant current constant current to Uo and then constant voltage charging to the standard specified or supplier-defined cut-off current, stop charging, using standard current or supplier-supplied current constant current Discharge to the discharge voltage specified by the standard or agreed by the supplier, the discharged capacity is 100%, and the state of charge before discharge is 100% saturation.
  • the battery is fully charged and the circuit is left open. It is found that the standard stable voltage of the lithium iron phosphate battery is quite different from the standard charging cutoff voltage.
  • the standard stable voltage of the lithium cobaltate battery is different from the standard charging cutoff voltage. Smaller, this is directly related to the low degree of fullness of lithium iron phosphate battery and the high degree of fullness of lithium cobalt oxide battery.
  • the lithium iron phosphate battery and the lithium cobalt oxide battery are charged, and the battery can be charged to be closer to 100% saturation by correcting the voltage.
  • the ternary lithium ion battery, the lithium manganate battery, and the lithium titanate battery were verified to have the same effects.
  • Uso is the standard stable voltage for the battery voltage to fall after constant current and constant voltage charging to Uo;
  • Us is a stable voltage at which the battery voltage drops after constant current charging to Uo;
  • Uo is the standard charge cut-off voltage.
  • Uso is the standard stable voltage for the battery voltage to fall after constant current and constant voltage charging to Uo.
  • the value is selected as follows: when the battery stops from constant current and constant voltage charging, the battery is started from a certain time period T Uso .
  • the voltage drop of the open circuit voltage of the battery in a certain period of time T Uso is less than a certain value, and the voltage of the battery has stabilized.
  • the voltage corresponding to the first time point of the time period T Uso is the standard stable voltage Uso of the battery.
  • the battery is stopped by charging with a current constant current specified by the standard or by the supplier to Uo and then constant voltage charging to a standard specified or supplier-defined cutoff current; timing is stopped when the battery stops from constant current and constant voltage charging.
  • a period of time from the battery begins T Uso, within a certain time period the battery T Uso open-circuit voltage drop is less than a certain value, the battery voltage has reached a stable, corresponding to the first time point of this time period of T Uso
  • the voltage is the standard stable voltage Uso of the battery.
  • Us is the stable voltage of the battery voltage falling after constant current charging to Uo.
  • the value is selected as follows: when the battery stops from constant current charging and starts to be set, the battery starts from a certain time period T Us and the battery is at a certain time.
  • the voltage drop of the open circuit voltage in the segment T Us is less than a certain value, and the voltage of the battery has reached a stable state.
  • the voltage corresponding to the first time point of the time period T Us is the stable voltage Us of the battery.
  • Uo is the standard charge cut-off voltage, and Uo is the charge cut-off voltage used in the small-rate constant current-constant voltage charging mode generally accepted by the industry.
  • the charging method of the lithium ion battery that compensates for the voltage is corrected, and the battery stops when the constant current constant voltage charging starts to be set, and every 5 minutes is used as a time period, when the battery starts from a certain time period T 5 .
  • the open circuit voltage drop is less than 2mV in the 5 minute period T 5 , the battery voltage can be regarded as stable.
  • the voltage corresponding to the first time point of the time period T 5 is the standard stable voltage of the battery. Uso.
  • the lithium ion battery charging method for correcting the voltage is corrected, and the battery stops when the constant current constant voltage charging starts to be set, and every 10 minutes is used as a time period, when the battery starts from a certain time period T 10
  • the battery voltage is considered to be stable after the voltage drop of the open circuit voltage is less than 1mV in the 10-minute period T 10 , and the voltage corresponding to the first time point of the time period T 10 is the standard stability of the battery.
  • the value of Us is selected as follows: when the battery stops from constant current charging and starts to be set, the battery starts from a certain time period T Us' , and the battery is within a certain period of time T Us' The open circuit voltage drop is less than a certain value, and the voltage of the battery has stabilized. The voltage corresponding to the first time point of the time period T Us' is the stable voltage Us of the battery.
  • Uo is the charge cut-off voltage used by the small-rate constant current-constant voltage charging method generally accepted by the industry.
  • the standard stable voltage Uso is related to the standard charge cut-off voltage Uo and the standard charge cut-off current, and has little to do with the charge rate, or has little to do with it.
  • the standard charge cutoff voltage Uo can be 3.5V, 3.6V, 3.65V, 3.7V, and different standard capacities C 0 can be obtained corresponding to different Uo.
  • Standard capacity definition charge current to the Uo and then constant voltage to the standard specified or supplier-defined cut-off current according to the standard or supplier-supplied current constant current, and then discharge according to the discharge current specified by the standard or the supplier.
  • the discharge voltage specified by the standard or agreed by the supplier, the capacity released is the standard capacity C 0 .
  • the standard charging cut-off voltage Uo of the lithium iron phosphate battery can be selected from any known value.
  • the standard conventional lithium cobalt oxide battery has a standard charge cut-off voltage Uo of 4.2V, and a lithium cobalt oxide battery of 4.3V and 4.35V high voltage has been developed, and 4.4V and 4.5V are being developed.
  • the high-voltage lithium cobalt oxide battery has a corresponding standard charge cut-off voltage Uo of 4.3V, 4.35V, 4.4V, and 4.5V, and different standard capacities C 0 are obtained for different Uo.
  • the standard conventional ternary lithium battery has a standard charge cutoff voltage Uo of 4.2V, and is currently developing a ternary lithium battery of 4.3V and 4.35V high voltage.
  • the corresponding standard charge cut-off voltage Uo is 4.3V, 4.35V, corresponding to different Uo, will get different standard capacity C 0 .
  • Lithium-ion battery is fast charging and can be charged with nearly saturated power
  • the charging method of the present invention is suitable for charging various lithium ion batteries, and can charge the battery more closely to 100% saturation, and can fully exert the performance of the battery;
  • Charging a lithium ion battery by the method of the present invention discharging in a standard or user manner, having a longer cycle life, or the same number of cycles, compared to current constant current constant voltage charging at the same rate.
  • the method of the invention is charged, and the discharge discharge capacity is higher;
  • the charging circuit can be designed by using the method of the invention to form a charger
  • the electronic component can be fabricated by the method of the invention and used together with the battery core assembly;
  • the method of the invention can adopt the constant voltage charging mode, and is more suitable for the charging habit of the lithium ion battery user and the selection of the charging integrated circuit;
  • the method of the present invention can be charged in a constant voltage mode until a certain current value is cut off, which is easier to implement.
  • 1 is a steady-state constant voltage Uso curve after constant current and constant voltage charging to Uo, and a steady voltage Us curve after constant current charging to Uo.
  • Comparative Example 1.1 Lithium iron phosphate battery, standard charging method
  • Comparative Example 1.2 Lithium iron phosphate battery, CN101388477B charging method
  • Example 1 Lithium iron phosphate battery, method of the present invention
  • Test standard stable voltage charge with constant current of 38mA (0.2C) to 3.6V, turn constant voltage 3.6V to reduce current to 3.8mA (0.02C), stop, test open circuit voltage, measure standard stable voltage Uso
  • the standard stable voltage Uso curve is shown in Figure 1.
  • the battery stops when the constant current and constant voltage charging starts to be set. Every 10 minutes as a time period, when the battery starts from a certain time period, the battery opens in a 10 minute period. After the voltage drop is less than 1mV, the voltage of the battery has been stabilized.
  • the voltage corresponding to the first time point of the time period is the standard stable voltage Uso of the battery;
  • Charging saturation charged by standard charging method, discharged by standard discharge method, the discharged capacity is 100%; non-standard charging method is charged, standard discharge method is discharged, and the percentage of discharged capacity and standard discharge capacity is charging saturation.
  • Comparative Example 2.1 Lithium cobaltate battery, standard charging method
  • 703048H10C is a high-magnification 3.7V800mAh polymer lithium-ion battery.
  • Comparative Example 2.2 Lithium cobaltate battery, CN101388477B charging method
  • Example 2 Lithium cobaltate battery, method of the invention
  • 601250HV10C is a 4.35V high voltage type 235mAh polymer lithium ion battery.
  • Comparative Example 3.2 4.35V high voltage lithium cobalt oxide battery, CN101388477B charging method
  • Example 3 4.35V high voltage lithium cobalt oxide battery, method of the invention
  • the lithium ion battery it is not necessary to wait for the lithium ion battery to be fully discharged and then charged, and the lithium ion battery can be charged by using the method of the invention in the case of empty, semi-electric or large semi-electricity; There is no need to charge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种修正弥补电压的锂离子电池充电方法,充电时当充电至电压达到充电限制电压U则转恒压充电,直至充电电流减小至恒压前充电电流的5%至99.99%截止,优选为充电电流减小至恒压前充电电流的50%至99.99%截止,在电池两极之间的充电限制电压U=3Uo-Us-Uso;Uso是恒流恒压充电到Uo后电池电压回落的标准稳定电压,Us是恒流充电到Uo后电池电压回落的稳定电压,Uo是标准充电截止电压。所述充电方法具有以下优点:充电快且能充进接近饱和的电量;以标准的或用户的方法放电,具有更长的循环寿命或相同的循环次数;放电放出的容量更高;可以采用恒压充电方式,更符合锂离子电池用户的充电习惯与充电IC的选用;可以恒压方式充电至某一电流值截止,更易于实现。

Description

修正弥补电压的锂离子电池充电方法 技术领域
本发明属于电池充电方法技术领域,特别是涉及锂离子电池和聚合物锂离子电池的充电方法。
背景技术
中国专利CN101388477B公开了一种快速充电方法,是增加充电限制电压弥补电池内部压降的锂离子电池充电方法,锂离子电池或聚合物锂离子电池在充电时,当充电至电压达到充电限制电压则停止充电,在电池两极之间的电池充电限制电压设为U=2Uo-Us,Us是恒流充电到Uo后电池电压回落的稳定电压,Uo是标准充电截止电压,Uo为行业所普遍接受的小倍率恒流-恒压充电方式所使用的标准充电截止电压,稳定电压Us的选取是从电池停止恒流充电开始搁置时进行计时,电池从某个时间段开始,电池在某个时间段内开路电压压降小于某一数值,电池的电压已达到稳定,取此时间段的第一个时间点所对应的电压为电池的稳定电压Us。
该方法应用于磷酸铁锂电池时,Uo为行业所普遍接受的小倍率恒流-恒压充电方式所使用的标准充电截止电压3.60V,充电到电池充电限制电压U=2Uo-Us,未能将电池完全充饱,充饱程度只达到88%左右,未能充分发挥电池的效能。磷酸铁锂电池行业所普遍接受的小倍率恒流-恒压充电方式所使用的标准充电截止电压Uo还有3.50V、3.65V、3.7V,充电到电池充电限制电压U=2Uo-Us,均未能将电池完全充饱,未能充分发挥电池的效能。
该方法应用于钴酸锂电池时,Uo为行业所普遍接受的小倍率恒流-恒压充电方式所使用的标准充电截止电压4.20V,充电到电池充电限制电压U=2Uo-Us,未能将电池完全充饱,充饱程度只达到97%左右,未能完全发挥电池的效能。
为了充分发挥电池的效能,需要对电池充电限制电压进行适当的修正。
发明内容
本发明的目的在于为了充分发挥电池的效能,提供一种修正弥补电压的锂离子电池充电方法。
定义
理想充电:采用恒流恒压充电方法对锂离子电池充电,断开充电电路后,锂离子电池的开路稳定电压达到恒压充电电压。理论上采用恒流恒压充电方法对锂离子电池充电,恒压充电至无限小的电流时,断开充电电路后,锂离子电池的开路稳定电压可以达到恒压充电电压。实践上采用恒流恒压充电方法对锂离子电池充电,恒压充电至锂离子电池的自耗 电流时,锂离子电池充电电流与自耗电流处于动态均衡状态,断开充电电路后,锂离子电池的开路稳定电压可以非常接近恒压充电电压。标准稳定电压:采用标准规定的或供应商约定的电流恒流充电到Uo再恒压充电到标准规定的或供应商约定的截止电流,停止充电;从电池停止恒流恒压充电开始搁置时进行计时,电池从某个时间段开始,电池在某个时间段内开路电压压降小于某一数值,电池的电压已达到稳定,取此时间段的第一个时间点所对应的电压为电池的标准稳定电压Uso。
锂离子自由度:是锂离子在正极中自由活动的程度。锂离子电池在充电过程中,锂离子从正极脱嵌,经过电解质,嵌入到负极中。锂离子在正极晶格中是自由分布的,各自找到自己的合适位置,在脱嵌过程中,路途近的、自由度大的锂离子先脱嵌,路途远的、自由度小的锂离子后脱嵌,受到正极严格束搏的锂离子自由度很低,难以脱嵌,或者需要更大的充电能量才能使自由度很低的锂离子脱嵌。
原理
CN101388477B的充电方法充电到U=2Uo-Us=Uo+(Uo-Us)即停,弥补了电池内部压降(Uo-Us),该压降(Uo-Us)是恒流I充电到Uo后开路搁置产生的;只弥补了对应电流I的欧姆压降、浓差极化压降、电化学极化压降和其他阻抗压降,未有考虑恒流I充电到Uo并没有充饱,未有考虑锂离子自由度很低的部分锂离子的脱嵌,所弥补的压降不足以将电池充到100%饱和,不能达到理想充电状态;CN101388477B的充电方法没有考虑设备误差与测量误差的影响。100%饱和是采用标准规定的或供应商约定的电流恒流充电到Uo再恒压充电到标准规定的或供应商约定的截止电流,停止充电,采用标准规定的或供应商约定的电流恒流放电到标准规定的或供应商约定的放电截止电压,所放出的容量为100%,其放电前所处的充电状态就是100%饱和。在U=2Uo-Us=Uo+(Uo-Us)的基础上增加(Uo-Uso),用电流I充电到U=Uo+(Uo-Us)+(Uo-Uso)=3Uo-Us-Uso,考虑了锂离子自由度很低的部分锂离子的脱嵌,才能将电池充到更接近100%饱和,减少了设备误差与测量误差的影响,更接近理想充电状态。
本发明解决上述问题的方案如下:
使用标准的恒流恒压充电方法,将电池充饱,开路搁置,发现磷酸铁锂电池的标准稳定电压跟标准充电截止电压相差较大,钴酸锂电池的标准稳定电压跟标准充电截止电压相差较小,这跟磷酸铁锂电池充饱程度低、钴酸锂电池充饱程度高直接相关。
为了充分发挥电池的效能,使电池每次充饱,需要在原有U=Uo+(Uo-Us)的基础上增加(Uo-Uso)修正值,修正弥补电压为:
U=Uo+(Uo-Us)+(Uo-Uso)=3Uo-Us-Uso
据此给磷酸铁锂电池和钴酸锂电池充电,通过修正弥补电压,能够将电池充得更接近100%饱和。
按照同样的方法,对三元锂离子电池、锰酸锂电池、钛酸锂电池进行了验证,具有相 同的效果。
修正弥补电压的锂离子电池充电方法,电池在充电时,当充电至电压达到电池充电限制电压U则转恒压充电,直至充电电流减小至恒压前充电电流的5%至99.99%时截止,电池充电限制电压U=3Uo-Us-Uso。
修正弥补电压的锂离子电池充电方法,电池在充电时,当充电至电压达到电池充电限制电压U则转恒压充电,直至充电电流减小至恒压前充电电流的50%至99.99%截止,在电池两极之间的电池充电限制电压U=3Uo-Us-Uso。
Uso是恒流恒压充电到Uo后电池电压回落的标准稳定电压;
Us是恒流充电到Uo后电池电压回落的稳定电压;
Uo是标准充电截止电压。
Uso是恒流恒压充电到Uo后电池电压回落的标准稳定电压,其值的选取采用如下方式:从电池停止恒流恒压充电开始搁置时进行计时,电池从某个时间段T Uso开始,电池在某个时间段T Uso内开路电压压降小于某一数值,电池的电压已达到稳定,取此时间段T Uso的第一个时间点所对应的电压为电池的标准稳定电压Uso。
具体地,采用标准规定的或供应商约定的电流恒流充电到Uo再恒压充电到标准规定的或供应商约定的截止电流,停止充电;从电池停止恒流恒压充电开始搁置时进行计时,电池从某个时间段T Uso开始,电池在某个时间段T Uso内开路电压压降小于某一数值,电池的电压已达到稳定,取此时间段T Uso的第一个时间点所对应的电压为电池的标准稳定电压Uso。
Us是恒流充电到Uo后电池电压回落的稳定电压,其值的选取采用如下方式:从电池停止恒流充电开始搁置时进行计时,电池从某个时间段T Us开始,电池在某个时间段T Us内开路电压压降小于某一数值,电池的电压已达到稳定,取此时间段T Us的第一个时间点所对应的电压为电池的稳定电压Us。
Uo是标准充电截止电压,Uo为行业所普遍接受的小倍率恒流-恒压充电方式所使用的充电截止电压。
作为一种改进方案,本发明的修正弥补电压的锂离子电池充电方法,电池可以电流恒流方式充至U=3Uo-Us-Uso,即停止充电。
作为另一种改进方案,本发明的修正弥补电压的锂离子电池非恒压充电方法,电池可以电流分段恒流方式充至U=3Uo-Us-Uso转恒压充电,直至充电电流减小至恒压前充电电流的50%至99.99%截止,Us是用停止充电前的末段电流测量确定的。
作为另一种改进方案,本发明的修正弥补电压的锂离子电池非恒压充电方法,电池可以电流非恒流方式充至U=3Uo-Us-Uso转恒压充电,直至充电电流减小至恒压前充电电流的50%至99.99%截止,Us是用停止充电前的末端电流测量确定的。
作为一种Uso的测量方式,修正弥补电压的锂离子电池充电方法,电池停止恒流恒压充电开始搁置时进行计时,每5分钟作为一个时间段,当电池从某个时间段T 5开始,电池在5分钟的时间段T 5内开路电压压降小于2mV后即可视为电池的电压已达到稳定,取此时间段T 5的第一个时间点所对应的电压为电池的标准稳定电压Uso。
作为另一种Uso的测量方式,修正弥补电压的锂离子电池充电方法,电池停止恒流恒压充电开始搁置时进行计时,每10分钟作为一个时间段,当电池从某个时间段T 10开始,电池在10分钟的时间段T 10内开路电压压降小于1mV后即可视为电池的电压已达到稳定,取此时间段T 10的第一个时间点所对应的电压为电池的标准稳定电压Uso。
作为另一种Us的测量方式,Us值的选取采用如下方式:从电池停止恒流充电开始搁置时进行计时,电池从某个时间段T Us’开始,电池在某个时间段T Us’内开路电压压降小于某一数值,电池的电压已达到稳定,取此时间段T Us’的第一个时间点所对应的电压为电池的稳定电压Us。
Uo为行业所普遍接受的小倍率恒流-恒压充电方式所使用的充电截止电压。
当电池是钴酸锂电池且取Uo=4.2V时,Uo≈Uso,充电到U≈Uo+(Uo-Us)则停止充电。
需要明确的是,标准稳定电压Uso跟标准充电截止电压Uo和标准充电截止电流有关,跟充电倍率关系不大,或几乎没有关系。
公知的,对于磷酸铁锂电池,标准充电截止电压Uo可以是3.5V、3.6V、3.65V、3.7V,对应不同的Uo,会得到不同的标准容量C 0。标准容量的定义:采用标准规定的或供应商约定的电流恒流充电到Uo再恒压充电到标准规定的或供应商约定的截止电流,然后按标准规定的或供应商约定的放电电流放电到标准规定的或供应商约定的放电截止电压,所释放的容量即为标准容量C 0。磷酸铁锂电池的标准充电截止电压Uo可以选取任一公知值,快充时想要快速充入接近对应标准容量C 0的容量,全部适用修正弥补电压为U=Uo+(Uo-Us)+(Uo-Uso)=3Uo-Us-Uso的充电方法。
公知的,对于钴酸锂电池,经典的常规的钴酸锂电池标准充电截止电压Uo是4.2V,现在开发出了4.3V和4.35V高电压的钴酸锂电池,正在开发4.4V和4.5V高电压的钴酸锂电池,其对应的标准充电截止电压Uo就是4.3V、4.35V、4.4V、4.5V,对应不同的Uo,会得到不同的标准容量C 0。不同电压的钴酸锂电池的标准充电截止电压Uo可以选取其对应公知值,快充时想要快速充入接近对应标准容量C 0的容量,全部适用修正弥补电压为U=Uo+(Uo-Us)+(Uo-Uso)=3Uo-Us-Uso的充电方法。
公知的,对于三元锂电池(镍锰钴酸锂电池),经典的常规的三元锂电池标准充电截止电压Uo是4.2V,现在正在开发4.3V和4.35V高电压的三元锂电池,其对应的标准充电截止电压Uo就是4.3V、4.35V,对应不同的Uo,会得到不同的标准容量C 0。不同电压的三元锂电池的标准充电截止电压Uo可以选取其对应公知值,快充时想要快速充入接近对应标准 容量C 0的容量,全部适用修正弥补电压为U=Uo+(Uo-Us)+(Uo-Uso)=3Uo-Us-Uso的充电方法。
特例情况,当钴酸锂电池取Uo=4.2V时(如图2所示),Uo≈Uso,充电到U≈Uo+(Uo-Us)则停止充电,就能得到跟恒流恒压充电到4.2V几乎相同的效果,即对于钴酸锂电池Uo=4.2V时,可以忽略(Uo-Uso)修正值。但是,在其它的标准充电截止电压Uo时,如图3所示的Uo=4.35V的情况,Uo与Uso的偏差较大,需要考虑(Uo-Uso)修正值才能让电池充电接近100%。
相对现有的充电方法,本发明的有益效果如下:
1、锂离子电池充电快且能充进接近饱和的电量;
2、本发明的充电方法适用于各种锂离子电池的充电,能够将电池充得更接近100%饱和,能够充分发挥电池的效能;
3.以本发明的方法对锂离子电池充电,以标准的或用户的方法放电,跟以相同倍率的电流恒流恒压充电相比,具有更长的循环寿命,或相同的循环次数,以本发明的方法充电,放电放出的容量更高;
4.利用本发明方法可以设计充电电路,制成充电器;
5.利用本发明方法可以制成电子元器件,与电芯组装一起使用;
6.本发明方法可以采用恒压充电方式,更符合锂离子电池用户的充电习惯与充电集成电路的选用;
7.本发明方法可以恒压方式充电至某一电流值截止,更易于实现。
附图说明
附图1是磷酸铁锂电池恒流恒压充电到Uo后标准稳定电压Uso曲线与恒流充电到Uo后稳定电压Us曲线。
附图2是钴酸锂电池恒流恒压充电到Uo后标准稳定电压Uso曲线与恒流充电到Uo后稳定电压Us曲线。
附图3是4.35V高电压型钴酸锂电池恒流恒压充电到Uo后标准稳定电压Uso曲线与恒流充电到Uo后稳定电压Us曲线。
具体实施方式
下面结合比较例与实施例对本发明做进一步说明,从而体现本发明的具体实施方式和优点。
比较例1.1:磷酸铁锂电池,标准充电方法
402045Fe15C是高倍率型3.2V190mAh磷酸铁锂电池,电池体系为LiFePO4/C系单体电池(Uo=3.6V),额定容量Cr=190mAh,参照GB/T18287-2013标准充电方法,
1.用38mA(0.2C)恒流充电到3.6V,转恒压3.6V充电至电流减小到3.8mA(0.02C), 停止充电,记录充电时间Tc与充电容量Cc;
2.用38mA(0.2C)恒流放电到2.0V,记录放电容量Cd。(此步评估充电可释放的容量,不是充电方法所必须。)
3.循环:
3.1用1140mA恒流充电到3.6V,转恒压3.6V充电至电流减小到3.8mA
3.2搁置5min
3.3用1140mA恒流放电到2.0V
3.4搁置5min
3.5循环3.1步至3.4步1000次
3.6结束
比较例1.2:磷酸铁锂电池,CN101388477B充电方法
同比较例1.1的电池,期望将电池在t=10min的时间内充满电,根据CN101388477B公开的一种快速充电方法,所需的恒流充电电流I=Cr/t*60=190/10*60=1140mA(6C倍率)。
1.测稳定电压:用1140mA恒流充电到3.6V,停止,测试开路电压,测出稳定电压Us,稳定电压Us曲线见附图1;从电池停止恒流充电开始搁置时进行计时,每10分钟作为一个时间段,当电池从某个时间段开始,电池在10分钟的时间段内开路电压压降小于1mV后即可视为电池的电压已达到稳定,取此时间段的第一个时间点所对应的电压为电池的稳定电压Us;
2.用38mA(0.2C)恒流放电到2.0V(此步是释放出上步充入的容量,使电池处于待充状态,不是充电方法所必须);
3.用1140mA恒流充电到2Uo-Us,停止充电,记录充电时间Tc与充电容量Cc;
4.用38mA(0.2C)恒流放电到2.0V,记录放电容量Cd(此步评估充电可释放的容量,不是充电方法所必须);
5.循环:
5.1用1140mA恒流充电到2Uo-Us
5.2搁置5min
5.3用1140mA恒流放电到2.0V
5.4搁置5min
5.5循环5.1步至5.4步1000次
5.6结束
实施例1:磷酸铁锂电池,本发明方法
同比较例1.1的电池,使用比较例1.2测出的稳定电压Us;
1.测标准稳定电压:用38mA(0.2C)恒流充电到3.6V,转恒压3.6V充电至电流减小到3.8mA(0.02C),停止,测试开路电压,测出标准稳定电压Uso,标准稳定电压Uso曲线 见附图1;电池停止恒流恒压充电开始搁置时进行计时,每10分钟作为一个时间段,当电池从某个时间段开始,电池在10分钟的时间段内开路电压压降小于1mV后即可视为电池的电压已达到稳定,取此时间段的第一个时间点所对应的电压为电池的标准稳定电压Uso;
2.用38mA(0.2C)恒流放电到2.0V;(此步是释放出上步充入的容量,使电池处于待充状态,不是充电方法所必须);
3.期望将电池在10min的时间内充满电,根据本发明的修正弥补电压的锂离子电池充电方法,所需的恒流充电电流为1140mA(6C倍率),充电到U=3Uo-Us-Uso转恒压充电,直至充电电流减小至恒压前充电电流的95%截止记录充电时间Tc与充电容量Cc;
4.用38mA(0.2C)恒流放电到2.0V,记录放电容量Cd(此步评估充电可释放的容量,不是充电方法所必须);
5.循环:
5.1用1140mA恒流充电到3Uo-Us-Uso转恒压充电,直至充电电流减小至1083mA(恒压前充电电流的95%)截止
5.2搁置5min
5.3用1140mA恒流放电到2.0V
5.4搁置5min
5.5循环5.1步至5.4步1000次
5.6结束
比较例1.1、比较例1.2、实施例1试验结果列于表1。
表1比较例1.1、比较例1.2、实施例1试验结果
  比较例1.1 比较例1.2 实施例1
Uo(V) 3.6 3.6 3.6
Us(V) —— 3.312 3.312
Uso(V) —— —— 3.340
充电电流(mA) 38 1140 1140
充电截止电流(mA) 3.8 1140 1083
充电限制电压(V) 3.6 3.888 4.148
充电时间Tc(min) 338 9.2 10.6
充电容量Cc(mAh) 198 175 200
放电容量Cd(mAh) 197 174 199
充电饱和度 100% 88.3% 101.0%
循环1000周容量保 85.2% 88.4% 88.2%
持率      
充电饱和度:以标准充电方法充电,标准放电方法放电,所放出的容量为100%;非标准充电方法充电,标准放电方法放电,所放出的容量跟标准放电容量的百分比为充电饱和度。
比较例2.1:钴酸锂电池,标准充电方法
703048H10C是高倍率型3.7V800mAh聚合物锂离子电池,电池体系为LiCoO 2/C系单体电池(Uo=4.2V),额定容量Cr=800mAh,参照GB/T18287-2013标准充电方法,
1.用160mA(0.2C)恒流充电到4.2V,转恒压4.2V充电至电流减小到16mA(0.02C),记录充电时间Tc与充电容量Cc;
2.用160mA(0.2C)恒流放电到3.0V,记录放电容量Cd(此步评估充电可释放的容量,不是充电方法所必须);
3.循环:
3.1用4800mA恒流充电到4.2V,转恒压4.2V充电至电流减小到16mA
3.2搁置5min
3.3用4800mA恒流放电到3.0V
3.4搁置5min
3.5循环3.1步至3.4步500次
3.6结束
比较例2.2:钴酸锂电池,CN101388477B充电方法
同比较例2.1的电池,期望将电池在t=10min的时间内充满电,根据CN101388477B公开的一种快速充电方法,所需的恒流充电电流I=Cr/t*60=800/10*60=4800mA(6C倍率),
1.测稳定电压:用4800mA恒流充电到4.2V,停止,测试开路电压,测出稳定电压Us,稳定电压Us曲线见附图2;从电池停止恒流充电开始搁置时进行计时,每10分钟作为一个时间段,当电池从某个时间段开始,电池在10分钟的时间段内开路电压压降小于1mV后即可视为电池的电压已达到稳定,取此时间段的第一个时间点所对应的电压为电池的稳定电压Us;
2.用160mA(0.2C)恒流放电到3.0V;(此步是释放出上步充入的容量,使电池处于待充状态,不是充电方法所必须)
3.用4800mA恒流充电到2Uo-Us,停止充电,记录充电时间Tc与充电容量Cc;
4.用160mA(0.2C)恒流放电到3.0V,记录放电容量Cd(此步评估充电可释放的容量,不是充电方法所必须);
5.循环
5.1用4800mA恒流充电到2Uo-Us
5.2搁置5min
5.3用4800mA恒流放电到3.0V
5.4搁置5min
5.5循环5.1步至5.4步500次
5.6结束
实施例2:钴酸锂电池,本发明方法
同比较例2.1的电池,使用比较例2.2测出的稳定电压Us;
1.测标准稳定电压:用160mA(0.2C)恒流充电到4.2V,转恒压4.2V充电至电流减小到16mA(0.02C),停止,测试开路电压,测出标准稳定电压Uso,标准稳定电压Uso曲线见附图2;电池停止恒流恒压充电开始搁置时进行计时,每10分钟作为一个时间段,当电池从某个时间段开始,电池在10分钟的时间段内开路电压压降小于1mV后即可视为电池的电压已达到稳定,取此时间段的第一个时间点所对应的电压为电池的标准稳定电压Uso;
2.用160mA(0.2C)恒流放电到3.0V;(此步是释放出上步充入的容量,使电池处于待充状态,不是充电方法所必须)
3.期望将电池在10min的时间内充满电,根据本发明的修正弥补电压的锂离子电池充电方法,所需的恒流充电电流为4800mA(6C倍率),充电到U=3Uo-Us-Uso转恒压充电,直至充电电流减小至恒压前充电电流的95%)截止记录充电时间Tc与充电容量Cc;
4.用160mA(0.2C)恒流放电到3.0V,记录放电容量Cd(此步评估充电可释放的容量,不是充电方法所必须);
5.循环
5.1用4800mA恒流充电到3Uo-Us-Uso转恒压充电,直至充电电流减小至4560mA(恒压前充电电流的95%)截止
5.2搁置5min
5.3用4800mA恒流放电到3.0V
5.4搁置5min
5.5循环5.1步至5.4步500次
5.6结束
比较例2.1、比较例2.2、实施例2试验结果列于表2。
表2比较例2.1、比较例2.2、实施例2试验结果
Figure PCTCN2017114911-appb-000001
Figure PCTCN2017114911-appb-000002
比较例3.1:4.35V高电压钴酸锂电池,标准充电方法
601250HV10C是4.35V高电压型235mAh聚合物锂离子电池,电池体系为4.35V高电压LiCoO 2/C系,单体电池(Uo=4.35V),额定容量Cr=235mAh,参照GB/T18287-2013标准充电方法,
1.用47mA(0.2C)恒流充电到4.35V,转恒压4.2V充电至电流减小到4.7mA(0.02C),记录充电时间Tc与充电容量Cc;
2.用47mA(0.2C)恒流放电到3.0V,记录放电容量Cd(此步评估充电可释放的容量,不是充电方法所必须);
3.循环:
3.1用470mA恒流充电到4.35V,转恒压4.35V充电至电流减小到4.7mA
3.2搁置5min
3.3用470mA恒流放电到3.0V
3.4搁置5min
3.5循环3.1步至3.4步500次
3.6结束
比较例3.2:4.35V高电压钴酸锂电池,CN101388477B充电方法
同比较例3.1的电池,期望将电池在t=30min的时间内充满电,根据CN101388477B公开的一种快速充电方法,所需的恒流充电电流I=Cr/t*60=235/30*60=470mA(2C倍率),
1.测稳定电压:用470mA恒流充电到4.35V,停止,测试开路电压,测出稳定电压Us,稳定电压Us曲线见附图3;从电池停止恒流充电开始搁置时进行计时,每5分钟作为一个时间段,当电池从某个时间段开始,电池在5分钟的时间段内开路电压压降小于2mV后即可视为电池的电压已达到稳定,取此时间段的第一个时间点所对应的电压为电池的稳定电压Us;
2.用47mA(0.2C)恒流放电到3.0V;(此步是释放出上步充入的容量,使电池处于待充状态,不是充电方法所必须)
3.用470mA恒流充电到2Uo-Us,停止充电,记录充电时间Tc与充电容量Cc;
4.用47mA(0.2C)恒流放电到3.0V,记录放电容量Cd(此步评估充电可释放的容量,不是充电方法所必须);
5.循环
5.1用470mA恒流充电到2Uo-Us
5.2搁置5min
5.3用470mA恒流放电到3.0V
5.4搁置5min
5.5循环5.1步至5.4步500次
5.6结束
实施例3:4.35V高电压钴酸锂电池,本发明方法
同比较例3.1的电池,使用比较例3.2测出的稳定电压Us;
1.测标准稳定电压:用47mA(0.2C)恒流充电到4.35V,转恒压4.35V充电至电流减小到4.7mA(0.02C),停止,测试开路电压,测出标准稳定电压Uso,标准稳定电压Uso曲线见附图3;电池停止恒流恒压充电开始搁置时进行计时,每5分钟作为一个时间段,当电池从某个时间段开始,电池在5分钟的时间段内开路电压压降小于2mV后即可视为电池的电压已达到稳定,取此时间段的第一个时间点所对应的电压为电池的标准稳定电压Uso;
2.用47mA(0.2C)恒流放电到3.0V;(此步是释放出上步充入的容量,使电池处于待充状态,不是充电方法所必须)
3.期望将电池在30min的时间内充满电,根据本发明的修正弥补电压的锂离子电池充电方法,所需的恒流充电电流为470mA(2C倍率),充电到U=3Uo-Us-Uso转恒压充电,直至充电电流减小至恒压前充电电流的95%截止,记录充电时间Tc与充电容量Cc;
4.用47mA(0.2C)恒流放电到3.0V,记录放电容量Cd;(此步评估充电可释放的容量,不是充电方法所必须)
5.循环
5.1用470mA恒流充电到3Uo-Us-Uso转恒压充电,直至充电电流减小至446.5mA(恒压前充电电流的95%)截止
5.2搁置5min
5.3用470mA恒流放电到3.0V
5.4搁置5min
5.5循环5.1步至5.4步500次
5.6结束
比较例3.1、比较例3.2、实施例3试验结果列于表3。
表3比较例3.1、比较例3.2、实施例3试验结果
Figure PCTCN2017114911-appb-000003
Figure PCTCN2017114911-appb-000004
具体实施过程中,可选择地,1.可以每只电池每次充电前测量Us、Uso,然后按本发明(或CN101388477B)的方法充电,显然这样很麻烦;2.可以每只电池充电前测量Us、Uso,然后每次充电按本发明(或CN101388477B)的方法充电,这样仍很麻烦;3.可以每种型号电池充电前测量Us、Uso,然后该种型号电池每只电池每次充电按本发明(或CN101388477B)的方法充电,这样就很便捷。虽然同种型号不同个体电池之间存在微小差异,或每只电池不同次数充电前存在微小差异,不影响专利的实施;本专利的实施可以使充电接近饱和,不保证每只电池每次充电100%饱和。
具体实施过程中,不一定需要等锂离子电池完全放完电再来充电,锂离子电池处于空电、半电或大半电的情况下,均可使用本发明的方法来充电;满电的情况下则无需充电。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改,例如应用于各种锂离子电池、电池组、充电电路、充电器、充电控制元件等产品中。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。

Claims (12)

  1. 修正弥补电压的锂离子电池充电方法,电池在充电时,其特征在于:当充电至电压达到电池充电限制电压U则转恒压充电,直至充电电流减小至恒压前充电电流的5%至99.99%时截止,电池充电限制电压U=3Uo-Us-Uso。
  2. 根据权利要求1所述的修正弥补电压的锂离子电池充电方法,其特征在于:当充电至电压达到电池充电限制电压U则转恒压充电,直至充电电流减小至恒压前充电电流的50%至99.99%时截止,电池充电限制电压U=3Uo-Us-Uso;
  3. 根据权利要求1或2所述的修正弥补电压的锂离子电池充电方法,其特征在于:Us值的选取采用如下方式:从电池停止恒流充电开始搁置时进行计时,电池从某个时间段T Us开始,电池在某个时间段T Us内开路电压压降小于某一数值,电池的电压已达到稳定,取此时间段T Us的第一个时间点所对应的电压为电池的稳定电压Us。
  4. 根据权利要求1或2所述的修正弥补电压的锂离子电池充电方法,其特征在于:电池以电流恒流方式充至电池限制电压U。
  5. 根据权利要求1或2所述的修正弥补电压的锂离子电池充电方法,其特征在于:电池以电流分段恒流方式充至电池限制电压U,Us是用停止充电前的末段电流测量确定的。
  6. 根据权利要求1或2所述的修正弥补电压的锂离子电池充电方法,其特征在于:电池以电流非恒流方式充至电池限制电压U,Us是用停止充电前的末端电流测量确定的。
  7. 根据权利要求1或2所述的修正弥补电压的锂离子电池充电方法,其特征在于:Uso是恒流恒压充电到Uo后电池电压回落的标准稳定电压从电池停止恒流恒压充电开始搁置时进行计时,电池从某个时间段T Uso开始,电池在某个时间段T Uso内开路电压压降小于某一数值,电池的电压已达到稳定,取此时间段T Uso的第一个时间点所对应的电压为电池的标准稳定电压Uso。
  8. 根据权利要求7所述的修正弥补电压的锂离子电池充电方法,其特征在于:电池停止恒流恒压充电开始搁置时进行计时,每5分钟作为一个时间段,当电池从某个5分钟时间段T 5开始,电池在5分钟的时间段T 5内开路电压压降小于2mV后即可视为电池的电压已达到稳定,取此时间段T 5的第一个时间点所对应的电压为电池的标准稳定电压Uso。
  9. 根据权利要求7所述的修正弥补电压的锂离子电池充电方法,其特征在于:电池停止恒流恒压充电开始搁置时进行计时,每10分钟作为一个时间段,当电池从某个10分钟时间段T 10开始,电池在10分钟的时间段T 10内开路电压压降小于1mV后即可视为电池的电压已达到稳定,取此时间段T 10的第一个时间点所对应的电压为电池的标准稳定电压Uso。
  10. 根据权利要求7所述的修正弥补电压的锂离子电池充电方法,其特征在于:Us值的选取采用如下方式:从电池停止恒流充电开始搁置时进行计时,电池从某个时间段T Us’ 开始,电池在某个时间段T Us’内开路电压压降小于某一数值,电池的电压已达到稳定,取此时间段T Us’的第一个时间点所对应的电压为电池的稳定电压Us。
  11. 根据权利要求1或2所述的修正弥补电压的锂离子电池充电方法,其特征在于:Uo为行业所普遍接受的小倍率恒流-恒压充电方式所使用的充电截止电压。
  12. 根据权利要求1或2所述的修正弥补电压的锂离子电池电方法,其特征在于:当电池是钴酸锂电池且取Uo=4.2V时,Uo≈Uso,充电到U≈Uo+(Uo-Us)则停止充电。
PCT/CN2017/114911 2017-10-03 2017-12-07 修正弥补电压的锂离子电池充电方法 WO2019109283A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780002550.9A CN108235791A (zh) 2017-12-07 2017-12-07 修正弥补电压的锂离子电池充电方法
PCT/CN2017/114911 WO2019109283A1 (zh) 2017-12-07 2017-12-07 修正弥补电压的锂离子电池充电方法
EP18152564.3A EP3467933A1 (en) 2017-10-03 2018-01-19 Lithium-ion battery charging method for correcting and compensating voltage
KR1020180009338A KR102185010B1 (ko) 2017-10-03 2018-01-25 전압의 보정 및 보상을 위한 리튬이온 전지의 충전방법
JP2018056321A JP6694463B2 (ja) 2017-10-03 2018-03-23 電圧を修正・補償するリチウムイオン電池の充電方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/114911 WO2019109283A1 (zh) 2017-12-07 2017-12-07 修正弥补电压的锂离子电池充电方法

Publications (1)

Publication Number Publication Date
WO2019109283A1 true WO2019109283A1 (zh) 2019-06-13

Family

ID=62643261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114911 WO2019109283A1 (zh) 2017-10-03 2017-12-07 修正弥补电压的锂离子电池充电方法

Country Status (4)

Country Link
JP (1) JP6694463B2 (zh)
KR (1) KR102185010B1 (zh)
CN (1) CN108235791A (zh)
WO (1) WO2019109283A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112005426A (zh) * 2019-10-21 2020-11-27 宁德新能源科技有限公司 充电方法、电子装置以及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448050B (zh) 2019-08-28 2022-06-24 北京小米移动软件有限公司 锂离子电池的充电方法和锂离子电池的充电装置
CN112448434B (zh) * 2019-09-03 2024-01-30 华为技术有限公司 一种充电控制方法及充电控制装置
CN114362301A (zh) * 2021-12-27 2022-04-15 厦门芯阳科技股份有限公司 一种锂电池充电电压控制方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282881A (ja) * 2003-03-14 2004-10-07 Mitsumi Electric Co Ltd 二次電池の充電装置および充電方法
CN101635376A (zh) * 2009-05-28 2010-01-27 广州丰江电池新技术股份有限公司 软包装磷酸铁锂水性正极锂电池的预化成方法
CN101640296A (zh) * 2009-08-28 2010-02-03 广州丰江电池新技术股份有限公司 一种提高蓄电池比容量的快速充电方法
CN105609890A (zh) * 2015-12-31 2016-05-25 广州丰江电池新技术股份有限公司 修正弥补电压的锂离子电池非恒压充电方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101779949B1 (ko) * 2014-11-05 2017-09-19 주식회사 엘지화학 전지팩 내의 배터리 유닛들을 밸런싱하기 위한 전지팩 충전기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282881A (ja) * 2003-03-14 2004-10-07 Mitsumi Electric Co Ltd 二次電池の充電装置および充電方法
CN101635376A (zh) * 2009-05-28 2010-01-27 广州丰江电池新技术股份有限公司 软包装磷酸铁锂水性正极锂电池的预化成方法
CN101640296A (zh) * 2009-08-28 2010-02-03 广州丰江电池新技术股份有限公司 一种提高蓄电池比容量的快速充电方法
CN105609890A (zh) * 2015-12-31 2016-05-25 广州丰江电池新技术股份有限公司 修正弥补电压的锂离子电池非恒压充电方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112005426A (zh) * 2019-10-21 2020-11-27 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
CN112005426B (zh) * 2019-10-21 2023-03-10 宁德新能源科技有限公司 充电方法、电子装置以及存储介质

Also Published As

Publication number Publication date
CN108235791A (zh) 2018-06-29
KR102185010B1 (ko) 2020-12-01
KR20190039372A (ko) 2019-04-11
JP2019068708A (ja) 2019-04-25
JP6694463B2 (ja) 2020-05-13

Similar Documents

Publication Publication Date Title
WO2017113994A1 (zh) 修正弥补电压的锂离子电池非恒压充电方法
CN112366375B (zh) 一种锂离子动力电池快速充电方法
WO2019109283A1 (zh) 修正弥补电压的锂离子电池充电方法
CN105633472B (zh) 一种锂离子电池自放电率一致性配组筛选方法
KR101671774B1 (ko) 충전 방법
CN101640296B (zh) 一种提高蓄电池比容量的快速充电方法
WO2012129974A1 (zh) 可充电电池的一种快速充电方法
CN107808987A (zh) 二次电池充电方法
CN113533981B (zh) 锂离子电池自放电检测方法、设备及计算机可读存储介质
CN111697271A (zh) 一种锂离子电池化成分容方法
CN110323506B (zh) 一种锂离子电池存储前的化成稳定方法
CN101388562B (zh) 快速充电方法
US20150188330A1 (en) Assembled battery, method of charging an assembled battery, and charging circuit which charges an assembled battery
EP3467933A1 (en) Lithium-ion battery charging method for correcting and compensating voltage
CN113991197B (zh) 一种锂离子电池及其充电方法
CN110048180B (zh) 一种镍钴锰三元锂离子电池的充电方法
CN110676514A (zh) 锂离子电池单体及其化成方法
TWI816487B (zh) 一種平衡電池狀態方法及其裝置
WO2024098271A1 (zh) 应用磷酸铁锂掺混三元混合体系材料的电池的充电方法
CN219609172U (zh) 一种用于锂离子电池的自放电检测系统
CN115149127A (zh) 电池的充放电方法、电子装置以及存储介质
CN114487854A (zh) 一种电池低温性能评估方法
CN114814614A (zh) 锂离子电池容量预测的方法
CN114497691A (zh) 锂离子电池分容优化方法
CN117310524A (zh) 一种锂离子电池快充策略的筛选制定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933879

Country of ref document: EP

Kind code of ref document: A1