WO2019107626A1 - Composition containing carbon-reduction type biomass polyethylene for stretch film and method for preparing same - Google Patents

Composition containing carbon-reduction type biomass polyethylene for stretch film and method for preparing same Download PDF

Info

Publication number
WO2019107626A1
WO2019107626A1 PCT/KR2017/013979 KR2017013979W WO2019107626A1 WO 2019107626 A1 WO2019107626 A1 WO 2019107626A1 KR 2017013979 W KR2017013979 W KR 2017013979W WO 2019107626 A1 WO2019107626 A1 WO 2019107626A1
Authority
WO
WIPO (PCT)
Prior art keywords
density polyethylene
polyethylene resin
low density
linear low
biomass
Prior art date
Application number
PCT/KR2017/013979
Other languages
French (fr)
Korean (ko)
Inventor
한아람
오수경
Original Assignee
(주) 화진산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 화진산업 filed Critical (주) 화진산업
Publication of WO2019107626A1 publication Critical patent/WO2019107626A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a carbon-reduced biomass stretch film composition having high strength and high extensibility, and more particularly, to a biomass stretch film composition having a low bioabsorbability and a high biodegradability under a metallocene catalyst containing biomass derived from sugarcane
  • a metallocene catalyst containing biomass derived from sugarcane Polymerized linear low density polyethylene resin and polymerized linear low density polyethylene resin polymerized under Ziegler-Natta catalyst catalyst have superior tensile strength through the design of the polymer matrix to reduce the cost of logistics by reducing the weight and volume of the package, Reduction type biomass stretch film improved in tensile strength, elongation and the like so that it can be used for packaging of a stretch film, and a stretch film produced thereby .
  • the packaging film market has rapidly developed along with the growth of high value-added industries such as pharmaceuticals, cosmetics, household goods, and food.
  • Industrial polyethylene packaging film consumes 4.1 billion pounds annually, accounting for 24% of total polyethylene film, 8% annual growth, and stretch film accounts for 34% of the polyethylene market.
  • Stretch film is used for the packaging of small products or for the external protection or fixing of products placed on a pallet for the purpose of packaging the goods.
  • the growth rate of this polyethylene-based packaging material industry is increasing due to the importance of the environment globally, It is emerging as the mainstream of packaging.
  • Such a packaging material film using a biodegradable plastic has disadvantages that it is difficult to circulate for a long time due to its weak biodegradability due to its heat and biodegradability, and it has a disadvantage that it is difficult to apply to stretch films such as cosmetics and parts packaging materials having a long distribution period.
  • Biobased plastic is a plastic containing biomass derived from plants such as corn, sugarcane and cellulose. It has the effect of inhibiting the increase of atmospheric carbon dioxide concentration, and it can reduce the consumption of petroleum, which is a limited resource. It can be used in production process as it is, and it plays a pivotal role in expanding the bioplastics market in recent years. Bio-based plastics are synthesized by using biomass as a raw material instead of using existing fossil fuel. Because biomass, which is a raw material, is produced by photosynthesis, it needs carbon dioxide in the air. It is very useful material in terms of reduction.
  • the biomass film using powdered agricultural products such as wheat husks, rice hulls, wheat bran, and starch has a problem in that the processability is very low due to moisture generation during processing, and the yield is low due to a large amount of gelation and carbide production.
  • the processability is very low due to moisture generation during processing, and the yield is low due to a large amount of gelation and carbide production.
  • it when it is used for the purpose of loading or packing a product such as a stretch film, it has a variety of problems such as being limited in stretching characteristics and being difficult to store for a long time due to lack of flexibility and the like.
  • the environmentally friendly element when added to the stretch film at present, the workability, the price, and the physical properties of the product are not satisfied, and therefore the interest in developing a general packaging material is poor.
  • the growth rate of the stretch film global market is expected to grow by more than 7% per year, and the demand is expected to reach 3 million tons. As the use of pallets in transportation and end-user industries grows rapidly, have.
  • the present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a bio-polyethylene resin containing biomass derived from corn, potatoes, sugarcane, etc. and a polymer matrix polymerized with polyethylene resins polymerized under different catalysts, And to provide a carbon-reduced biomass stretch film suitable for the packaging use of a stretch film because of its excellent tensile strength and elongation and carbon reduction effect.
  • a biosynthetic low density polyethylene resin containing biomass derived from a natural raw material such as corn, potato, sorghum and the like 10 to 50% by weight of a linear low density polyethylene resin polymerized under a Ziegler- And 20 to 60% by weight of a linear low-density polyethylene resin polymerized under a low-density polyethylene resin.
  • the biodegradable low-density polyethylene is preferably 20 to 70 wt% of a linear low density polyethylene resin composed of bio-olefin and having a density of 0.910 to 0.920 g / cm 3 and a melt index (190, 2.16 kg) of 0.8 to 2.5 g / 10 min, Is made of a copolymer of ethylene and an?
  • -Olefin having 4 or more carbon atoms, and has a density of 0.915 to 0.925 g / cm < 3 > And 10 to 50% by weight of a linear low density polyethylene resin having a melt index (190, 2.16 kg) of 2.0 to 4.5 g / 10 min, wherein the linear low density polyethylene resin polymerized under metallocene catalyst is a copolymer of ethylene and at least 6 carbon atoms and 20 to 60% by weight of a linear low-density polyethylene resin composed of a copolymer of?
  • the production of the biomass stretch film according to the present invention can be carried out by mixing a biodegradable low density polyethylene resin containing biomass derived from a natural material such as corn, potatoes and sugarcane, a linear low density polyethylene resin polymerized under a Ziegler- It is preferable to perform melt blending of an extruder at a melt temperature of 170 ° C to 230 ° C through a proper combination with a linear low density polyethylene resin polymerized under a curing catalyst and to melt the blended pellets in a film having a thickness of 10 ⁇ m to 200 ⁇ m It is preferable that the temperature of the extrusion die die block is between 180 ° C and 250 ° C and that the cooling roller having the cooling water circulating device therein is extruded at a temperature of 15 ° C to 30 ° C. It is more preferable to perform extrusion under the temperature condition of one process.
  • the carbon thin film has a physical property suitable for a stretch film which is conventionally insufficient despite containing biomass. Accordingly, the carbon-reduced, high-strength and high-elongation biomass stretch film composition according to the present invention can be used as a substitute for petrochemical-based polymers, and thus exhibits an excellent effect in that it can provide carbon-neutral eco-friendly products.
  • 1 to 5 are the results of measuring the biomass content of the biomass stretch film produced according to the method of the present invention.
  • FIG. 6 is a graph showing the tensile strength and elongation of the biomass stretch film produced according to the method of the present invention in longitudinal and transverse directions.
  • FIGS. 7 and 8 are graphs showing variations in the elongation according to the orientation characteristics of the biomass stretch film produced according to the method of the present invention.
  • FIG. 9 is a graph showing elongation and tensile strength according to orientation characteristics of the biomass stretch film produced according to the method of the present invention.
  • FIG. 10 is a graph showing the melt index of a biomass stretch film produced according to the method of the present invention.
  • stretch film in the present invention is a film having elasticity and tackiness, which is mainly used for packaging, and should have excellent durability, tackiness, moisture resistance, stretchability and the like.
  • the present invention relates to a technique for providing a biomass stretch film through a polymer matrix design with bio-polyethylene resins containing biomass, polyethylene resins polymerized under different catalysts.
  • the composition according to the present invention suitable for a stretch film satisfies workability, tensile strength, elongation, and the like.
  • the biosynthetic low density polyethylene resin containing the biomass, relative to 100 wt% of the total composition has a linear density of 0.910 to 0.920 g / cm 3 and a melt index (190, 2.16 kg) of 0.8 to 2.5 g / 20 to 70% by weight of a low-density polyethylene resin;
  • the linear low density polyethylene resin polymerized under a Ziegler-Natta catalyst is composed of a copolymer of ethylene and an?
  • a linear low density polyethylene resin polymerized under a metallocene catalyst are made of a copolymer of ethylene and an? -Olefin having 6 or more carbon atoms, and have a density of 0.905 to 0.920 g / cm 3 and a melt index (190, 2.16 kg) And 20 to 60% by weight of a linear low density polyethylene resin having a density of 4.2 g / 10 min.
  • the biosynthetic low-density polyethylene resin can be prepared by extracting sugar from corn, potatoes, sugar cane, etc., and polymerizing it by alcohol fermentation, using a biomass as a raw material.
  • the biodegradable low density polyethylene resin may contain biomass derived from sugarcane.
  • the present invention is advantageous in that it can be regenerated unlike a petroleum-based petroleum-based fuel producing carbon dioxide while it is possible to use carbon dioxide in the air.
  • The? -Olefin comonomer of the linear low density polyethylene resin polymerized under the Ziegler-Natta catalyst is 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene and 1-dodecene. More preferably at least 6 carbon atoms, more preferably at least 6 carbon atoms, and most preferably 1-hexene.
  • the Ziegler-Natta catalyst is a catalyst for olefin polymerization, which means a catalyst system comprising a combination of a main catalyst which is a main component of a transition metal compound, a promoter which is an organometallic compound, and an electron donor.
  • Catalysts known as catalysts can be used without limitation.
  • the alpha -olefin comonomer of the linear low density polyethylene resin polymerized under the metallocene catalyst is a copolymer of 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene and 1-dodecene More preferably at least 6 carbon atoms, more preferably at least 6 carbon atoms, and most preferably 1-hexene.
  • the metallocene catalyst is a catalyst having a structure in which a metal is sandwiched between two kinds of cyclopentadiene, and is a catalyst having a single active site. In the present invention, catalysts known as metallocene catalysts known in the present invention can be used without limitation.
  • the low-density polyethylene resin composition for a stretch film according to the present invention may further comprise additional additives necessary for the production of a known stretch film.
  • additional additives may include, but are not limited to, lubricants, plasticizers, fillers, waxes, tackifiers, antistatic agents, and the like.
  • the lubricant may be selected from the group consisting of zinc stearate, calcium stearate, magnesium stearate, and stearic acid. The lubricant is added in order to improve the flowability of the resin during film processing and to cause the extrusion process to occur smoothly.
  • the plasticizer may be selected from the group consisting of glycerol, propylene glycol, and sorbitol.
  • the plasticizer weakens the intermolecular force and lowers the glass transition temperature, thereby imparting flow properties, flexibility, extensibility, elasticity, adhesiveness, processability and the like and increasing compatibility.
  • the filler may be selected from the group consisting of calcium carbonate (CaCO), talc, ilite, clay mineral, and zeolite. The filler is added to improve the mechanical or thermal properties and processability of the film.
  • the pressure-sensitive adhesive may preferably be polyisobutylene .
  • the other additives may be selected from the group consisting of an oxidizing agent, an organic acid, a stabilizer and a coloring agent.
  • the wax may be at least one selected from the group consisting of paraffin wax, liquid paraffin wax, wax, mold wax, emulsifying wax, candelilla wax, PE wax and PP wax.
  • the low density polyethylene resin composition for a stretch film according to the present invention can be produced by a casting extrusion or the like, as a low density polyethylene film for a stretch film having a three-layer structure composed of an outer layer, an intermediate layer and an inner layer.
  • the present invention relates to a low-density polyethylene film for a biomass stretch film produced by the low-density polyethylene resin composition for a stretch film.
  • the film has a three-layer structure of an outer layer, an intermediate layer and an inner layer, and includes a blended resin in which the three resins described in the composition according to the present invention are kneaded, and the outer layer is polymerized under a Ziegler- A copolymer of ethylene and an?
  • the resin of the outer layer exhibits excellent processing characteristics and optical characteristics and is applied to the sealability and transparency characteristics when applied as an outer layer, in a linear low density polyethylene resin polymerized under a Ziegler-Natta catalyst.
  • the intermediate layer preferably comprises a biodegradable low density polyethylene resin and 20 to 70% by weight of a linear low density polyethylene resin having a density of 0.910 to 0.920 g / cm 3 and a melt index (190, 2.16 kg) of 0.8 to 2.5 g / 10 min.
  • the resin composition of the present invention has improved characteristics in terms of tensile strength in the machine direction and enhances color stability when a master batch which imparts color to the middle layer is contained.
  • the inner layer comprises a copolymer of ethylene polymerized with a metallocene catalyst and an alpha -olefin having 6 or more carbon atoms and has a density of 0.905 to 0.920 g / cm 3 and a melt index of 190 to 2.16 kg of 2.5 to 4.2 g / 10 min By weight of a linear low density polyethylene resin.
  • the resin of the inner layer is excellent in gloss and transparency, and particularly excellent in high-speed processability. It has high melt viscosity, thermal stability and high flexibility and is excellent in compatibility with various polymers.
  • an additive such as a pressure sensitive adhesive
  • the adhesive property is distributed throughout the film due to uniform mixture.
  • the main resin in the inner layer is poorly mixed with the pressure-sensitive adhesive, it migrates in the resin and tends to deteriorate its properties over time and may cause processing problems in processing.
  • the present invention solves this problem with the inner layer .
  • the resin formulation of the above-described biomass stretch film of the three-layer structure is carried out by mixing a linear low density polyethylene resin polymerized with a Ziegler-Natta catalyst and a linear low density polyethylene polymerized under a metallocene catalyst in order to supplement the characteristics of bio- It is necessary to formulate the resin within the above-mentioned range.
  • the metallocene linear low density polyethylene resin is polymerized under a metallocene catalyst and exhibits a narrow molecular weight distribution and exhibits excellent mechanical properties due to a uniform distribution of the comonomer.
  • the resin pressure excessively increases during cast extrusion molding, Necking occurs at the time of molding, and transparency is poor.
  • the linear low density polyethylene resin polymerized under the Ziegler-Natta catalyst has a lower mechanical strength than the metallocene linear low density polyethylene resin, but exhibits excellent processing characteristics and excellent optical characteristics with a wide molecular weight distribution.
  • the low density linear polyethylene film for a stretch film comprising the biomass of the present invention Accurate biomass content can be measured through experiments in accordance with ASTM D6866.
  • the regenerable carbon content of the film can be calculated from the total carbon, with the principle that the carbon isotope radioactive carbon (C14) is present in the biomass material, while the petrochemical polyethylene does not contain any C14.
  • Carbon dioxide emitted from burning biomass materials is called carbon-neutral carbon dioxide, and carbon-neutral carbon dioxide has zero carbon footprint because it has no effect on the global carbon dioxide concentration.
  • the plant emits the carbon dioxide absorbed in the air as it is, and the carbon dioxide absorbed by the plant is released into the air again for the photosynthesis, which is called carbon neutrality.
  • the concentration value of C14 is higher than 25 pCM (percent modern carbon) in the low density linear polyethylene film for stretch film including biomass, and the concentration value of C14 is more preferably 40 pCM or more for reducing the carbon dioxide emission.
  • the concentration of C14 is 25pCM, the reduction of carbon dioxide is about 47 tons when the daily production is 100 tons, and about 141 tons when the production is 300 tons.
  • the concentration of C14 is 40 pCM, the reduction of carbon dioxide is about 75 tons when the production is 100 tons per day, and about 225 tons when the production is 300 tons.
  • the three or more kneaded resins constituting the low density linear polyethylene film for a stretch film containing biomass have a melt index of 2.0 to 3.5 g / 10 min.
  • the melt index of the kneaded resin is 2.0 g / 10 min or less, the tensile strength is lowered in the transverse direction (TD) direction, and when the melt index is 1.0 g / min or less, the tensile strength is rapidly lowered, In addition, the elongation rate of the MD (Machine Direction) is also drastically decreased.
  • the melt index is 3.5 g / 10 min or more, the tensile strength is sharply decreased in the longitudinal direction, and is less than the level suitable for the physical properties of the stretch film.
  • the number average molecular weight (Mn) of the three or more kneaded resins constituting the low density linear polyethylene film for a stretch film containing biomass is 30,000 to 70,000, the weight average molecular weight , Mw) of 100,000 to 300,000, and a Z-average molecular weight (Mz) of 200,000 to 700,000.
  • the molecular weight distribution of the polymer sample can be judged through the Poly Disperse Index (PDI). If the polydispersity index is 1, it is monodisperse and if it is larger than 1, it is polydisperse . When the polydispersity index value is large, the molecular weight distribution is large and when the polydispersity index value is small, the molecular weight distribution is small.
  • PDI Poly Disperse Index
  • the polydispersity index of the kneaded resin of the present invention is most preferably from 1.5 to 5.0.
  • the low density linear polyethylene film for a stretch film containing biomass can measure tensile strength and elongation through an experiment according to the ASTM D882 standard.
  • Tensile strength and elongation, and physical properties to the most important should the preparation of the stretch film usually a tensile strength of the longitudinal direction, and 550kgf / cm 2 or more to the lateral direction more than 350kgf / cm 2, elongation longitudinally more than 500% and a transverse direction
  • a physical property of 700% or more is preferable.
  • the present invention relates to a method of making a low density linear polyethylene film for a stretch film comprising the steps of:
  • step (b) injecting the compound of step (a) into an extruder, melting it, and extruding it.
  • a linear low density polyethylene resin polymerized under a Ziegler-Natta catalyst forms an outer layer
  • a biosynthetic low density polyethylene resin containing biomass forms an intermediate layer
  • a linear low density polyethylene resin polymerized under a metallocene catalyst A film having a three-layer structure for forming an inner layer and having mechanical properties such as excellent gloss, transparency and tensile strength, processing characteristics, optical characteristics and the like is produced.
  • the Ziegler-Natta catalyst polymerized in a linear low density polyethylene (density: 0.920g / cm 3, melt index: 4.0g / 10min) 24 parts by weight of a linear low-density polyethylene polymerized with the metal under metallocene catalyst (density: 0.914g / cm 3, melt index: 4.0g / 10min) 50 parts by weight of a linear low-density polyethylene polymerized with the metal under metallocene catalyst (density: 0.915g / cm 3, melt index: 3.7g / 10min) as 25 parts by weight of the pressure-sensitive adhesive polyisobutylene 1
  • the polymer blend was melt-melted at a casting extruder melt temperature of 200 DEG C, and the molten blended resin was passed through a thermo-block temperature of 220 DEG C and passed through a cooling roller equipped with a cooling water circulating device at 25 DEG C, Layer stretch film was obtained.
  • the Ziegler-Natta catalyst polymerized in a linear low density polyethylene (density: 0.920g / cm 3, melt index: 4.0g / 10min) 24 parts by weight of linear low density polyethylene containing biomass (density: 0.916g / cm 3, a melt index (Density: 0.915 g / cm 3 , melt index: 3.7 g / 10 min) and 1 part by weight of polyisobutylene as a pressure-sensitive adhesive Casting extruder melting the polymer at a melting temperature of 200 ° C and passing the molten blended resin through a tie die block temperature of 220 ° C and a cooling roller equipped with a cooling water circulating device at 25 ° C to form a three- Of a stretch film.
  • Example 1 Example 2
  • a universal tensile tester (UTM SGS-X STD, SHIMADZU) was used in accordance with the standard of ASTM D882 for testing the mechanical properties of the films of Comparative Example 1, Example 1, Example 2 and Example 3, (MD) and transverse direction (TD), and the maximum load and elongation were measured for a certain area.
  • the biomass content of Comparative Example 1, Example 1, Example 2, and Example 3 is increased to 1.62pMC, 44.81pMC, 69.94pMC, and 91.70pMC.
  • the changes in tensile strength and elongation can be confirmed by the biomass content and the experimental results are compared in Table 2 below.
  • Example 1 Example 2
  • Example 3 Tensile strength (kgf / cm 2 ) Longitudinal direction 536.6043 602.1447 630.5849 644.5450 Lateral direction 404.8576 413.8186 378.0882 282.5422
  • Elongation (%) Longitudinal direction 625.1470 589.0218 520.4384 440.9382 Lateral direction 830.1468 845.0218 830.0218 859.8969
  • C14 pMC (%) 1.975 + 0.040 44.635 ⁇ 0.170 69.565 + 0.235 91.765 ⁇ 0.280
  • Table 2 shows values of tensile strength and elongation in the longitudinal and transverse directions of Comparative Examples 1 and 2, The mechanical properties in the machine direction (Machine Direction, MD) determine the quality of the product when the actual stretch film is used.
  • biomass content increases the tensile strength in the longitudinal direction (MD) and gradually increased from 536kgf / cm 2 to 644 kgf / cm 2 in accordance with the elongation gradually see, down from 625% to 440% .
  • the physical properties of Comparative Example 1 is its tensile strength Values are low, and Examples 2 and 3 show low values in elongation.
  • the pCM is 44% or more, and the stretch film shows a satisfactory level at the tensile strength and elongation. A graph of this is shown in Fig.
  • the gel permeation chromatography (Gel Permeation) of Comparative Example 1, Examples 1, 2, and 3 was carried out in the same manner as in Comparative Example 1 and Example 2, in anticipation of increasing the variation of elongation according to the content of the bio- Chromatograph, GPC) were measured and their molecular weight values and distribution were analyzed.
  • the temperature was measured using a high-temperature GPC test equipment (PL-GPC 220 system).
  • the solvent was set at a flow rate of 1.0 ml / min at a detection temperature of 160 trichlorobenzene.
  • Example 1 Mn Mw Mz Mw / Mn Comparative Example 1 56,062 164,422 356,413 2.933
  • Example 1 48,626 194,077 503,764 3.991
  • Example 2 52,556 209,148 554,272 3.980
  • Example 3 49,071 221,765 603,746 4.519
  • the polydispersity index is a measure for measuring the molecular weight distribution of a polymer film.
  • Monodisperse is a polydispersity index of 1
  • polydisperse is a polydispersity index. That is, when the polydispersity index is large, the molecular weight distribution is large, while when the polydispersity index is small, the molecular weight distribution is small. It was confirmed that the variation of the elongation according to the content of the bio resin was increased according to the results of Example 6, and the molecular weight distribution was expected to be larger. The results showed that the polydispersity index increased to 2.933, 3.991, 3.980 and 4.519 depending on the content of bio - resin.
  • Bio-polyethylene resins are synthesized from biomass, which is a renewable plant-derived resource, instead of using existing fossil raw materials. Since biomass, which is a raw material, is produced by photosynthesis, carbon dioxide is required in the air It is important in terms of carbon dioxide emission reduction.
  • the pMC value measured by the biobased testing of Beta analytic based on ASTM D6866 standard is the content of effective biocomponents.
  • the amount of carbon dioxide produced in the petrochemical polyethylene is 1,860 g per kg of polyethylene, The amount of carbon dioxide reduction in Example 1 is shown in Table 5 below.
  • Table 5 shows the carbon dioxide reduction amount according to the daily production amount.
  • Example 1 containing 44% of pCM, the carbon dioxide reduction effect of 148 ton per day of production 200 ton per day and about 300 ton per 400 ton production standard .
  • a graph of this is shown in Fig.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a composition for a carbon-reduction type biomass stretch film having high strength and high stretchability, and to a method for preparation the same and, more specifically, to a carbon-reduction type biomass stretch film, which has excellent tensile strength, leading to reductions in packaging weight and volume, thereby reducing logistic costs; is environmentally friendly due to a carbon dioxide reduction effect; and has improved tensile strength and stretching rates so as to be used for packaging by stretch films, by resolving the problems of conventional biomass-containing films, that is, the disadvantages that films are difficult to distribute for a long period of time due to weakness to heat and too fast biodegradation thereof, through a bio polyethylene resin containing biomass derived from a natural material, such as sugarcane, a linear low-density polyethylene resin obtained by polymerization under a Ziegler-Natta catalyst, and a linear low-density polyethylene resin obtained by polymerization under a metallocene catalyst, and the polymer matrix design.

Description

탄소저감형 바이오매스 폴리에틸렌을 함유하는 스트레치 필름용 조성물 및 이의 제조방법COMPOSITION FOR STRETCH FILM COMPRISING CO-REDUCING BIOMASS POLYETHYLENE AND METHOD FOR MANUFACTURING THE SAME
본 발명은 탄소저감형 고강도 고연신성을 갖는 바이오매스 스트레치 필름 조성물 및 제조방법에 관한 것으로, 보다 상세하게는 사탕수수에서 유래된 바이오매스를 함유한 바이오 폴리에틸렌 수지, 메탈로센 촉매(metallocene catalyst) 하에 중합된 선형 저밀도 폴리에틸렌 수지 및 지글러-나타(Ziegler-Natta catalyst) 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지와 고분자 매트릭스 설계를 통해 우수한 인장강도를 갖고 있어 포장의 중량, 부피 감량으로 물류 비용을 절감하고 이산화탄소 저감 효과로 인해 환경적이며 스트레치 필름의 포장용도로 사용될 수 있도록 인장강도, 연신율 등이 개선된 탄소 저감형 바이오매스 스트레치 필름을 제조할 수 있는 조성물 및 제조방법, 그리고 이에 의해 제조된 스트레치 필름에 관한 것이다.The present invention relates to a carbon-reduced biomass stretch film composition having high strength and high extensibility, and more particularly, to a biomass stretch film composition having a low bioabsorbability and a high biodegradability under a metallocene catalyst containing biomass derived from sugarcane Polymerized linear low density polyethylene resin and polymerized linear low density polyethylene resin polymerized under Ziegler-Natta catalyst catalyst have superior tensile strength through the design of the polymer matrix to reduce the cost of logistics by reducing the weight and volume of the package, Reduction type biomass stretch film improved in tensile strength, elongation and the like so that it can be used for packaging of a stretch film, and a stretch film produced thereby .
포장재 필름 시장은 주요 수요 산업인 제약, 화장품, 생활용품, 식품 등 고부가가치 산업의 성장과 함께 급속하게 발전하게 되었다. 산업용 폴리에틸렌 포장필름은 매년 41억 파운드가 소비되고, 전체 폴리에틸렌 필름의 24%를 차지하며 연 8%의 성장률을 기록하고 있으며 스트레치 필름의 경우 폴리에틸렌 시장 부문의 34%를 차지하고 있다. 스트레치 필름은 물품의 겉포장을 위한 목적으로 소규모 제품의 집합포장이나 팔레트 위에 적재된 제품의 외부 보호나 고정을 위해 사용되며, 이러한 폴리에틸렌 기반 포장재 산업의 성장률은 세계적으로 환경의 중요성이 높아져 포장도 친환경 포장의 주류로 등장하고 있다. 스트레치 필름과 같은 플라스틱 포장재에 사용되는 유해물질 함유량 규제 등 포장재에 대한 환경 규제가 강화되는 추세에 있으며 재활용, 생분해 등 친환경 포장재 소재 개발 활용으로 환경 보호 및 무역 장벽 극복하는 사례도 나타나고 있다. 폴리에틸렌 포장 필름의 생산 사용 폐기 과정에서의 자원 절감 노력을 통해 지속적으로 이용 가능한 포장, 생분해성 원료를 이용한 분해성 플라스틱 포장이나 친환경적인 포장재의 개발이 활발하며 현재 생분해성 플라스틱은 전분이나, 지방족 폴리에스터, 셀룰로오스와 같은 생분해 수지를 만든 제품으로 폐기 후 자연에서 분해되는 특성을 갖는다. 이러한 생분해성 플라스틱을 사용한 포장재 필름은 열에 약하고 너무 빠른 생분해 특성 때문에 장기간 유통하기 어려운 단점이 있으며 특히 유통기간이 긴 화장품, 부품 포장재 등의 스트레치 필름에는 적용하기 어려운 단점을 갖는다. The packaging film market has rapidly developed along with the growth of high value-added industries such as pharmaceuticals, cosmetics, household goods, and food. Industrial polyethylene packaging film consumes 4.1 billion pounds annually, accounting for 24% of total polyethylene film, 8% annual growth, and stretch film accounts for 34% of the polyethylene market. Stretch film is used for the packaging of small products or for the external protection or fixing of products placed on a pallet for the purpose of packaging the goods. The growth rate of this polyethylene-based packaging material industry is increasing due to the importance of the environment globally, It is emerging as the mainstream of packaging. Environmental regulations for packaging materials such as regulations on the content of harmful substances used in plastic packaging materials such as stretch film are being reinforced, and examples of overcoming environmental protection and trade barriers by utilizing eco-friendly packaging materials such as recycling and biodegradation are also emerging. Production of polyethylene packaging film Through the efforts to save resources in the process of disposal, the development of degradable plastic packaging and environmentally friendly packaging materials that are continuously available packaging, biodegradable raw materials, and biodegradable plastics have been actively developed. Currently, biodegradable plastics are used as starch, aliphatic polyester, It is a product made of biodegradable resin such as cellulose and has a characteristic of decomposing in nature after disposal. Such a packaging material film using a biodegradable plastic has disadvantages that it is difficult to circulate for a long time due to its weak biodegradability due to its heat and biodegradability, and it has a disadvantage that it is difficult to apply to stretch films such as cosmetics and parts packaging materials having a long distribution period.
바이오베이스 플라스틱(biobased plastic)이란 옥수수, 사탕수수, 셀룰로오스 등 식물에서 유래하는 바이오매스를 함유하는 플라스틱으로 대기중의 이산화탄소 농도가 증가되는 것을 억제하는 효과가 있고, 한정된 자원인 석유의 소비량을 줄일 수 있으며, 기존 설비를 그대로 생산 공정에 사용할 수 있어 최근 바이오 플라스틱 시장 확대의 중추적 역할을 하고 있다. 바이오베이스 플라스틱은 기존의 화석 연료를 활용하는 대신 식물유래 자원인 바이오매스를 원료로 하여 고분자를 합성한 것으로 그 원료인 바이오매스가 광합성에 의해 생성되는 과정에서 공기 중의 이산화탄소를 필요로 하기 때문에 탄소 배출 저감이라는 측면에서 매우 유용한 소재이다. Biobased plastic is a plastic containing biomass derived from plants such as corn, sugarcane and cellulose. It has the effect of inhibiting the increase of atmospheric carbon dioxide concentration, and it can reduce the consumption of petroleum, which is a limited resource. It can be used in production process as it is, and it plays a pivotal role in expanding the bioplastics market in recent years. Bio-based plastics are synthesized by using biomass as a raw material instead of using existing fossil fuel. Because biomass, which is a raw material, is produced by photosynthesis, it needs carbon dioxide in the air. It is very useful material in terms of reduction.
그러나 밀껍질, 왕겨, 소맥피, 전분 등의 농산물을 분말화하여 사용하는 바이오매스 필름의 경우 가공 시 수분 발생으로 인해 가공성이 매우 떨어지게 되는 문제가 있으며, 겔화 및 탄화물 생성이 많아 생산량을 떨어뜨린다. 또한 이를 스트레치 필름 등 물건을 적재하거나 포장하는 용도로 사용하게 될 경우 유연성 등이 부족하여 연신 특성에 제한적이며 장기간 보관이 어려운 점과 같은 다양한 문제를 가지고 있다. However, the biomass film using powdered agricultural products such as wheat husks, rice hulls, wheat bran, and starch has a problem in that the processability is very low due to moisture generation during processing, and the yield is low due to a large amount of gelation and carbide production. In addition, when it is used for the purpose of loading or packing a product such as a stretch film, it has a variety of problems such as being limited in stretching characteristics and being difficult to store for a long time due to lack of flexibility and the like.
이와 같이, 현재 스트레치 필름에 친환경적 요소를 가미할 경우 가공성, 가격, 제품의 물성이 만족되지 않으며, 그로 인해 범용적인 포장재로 개발하는 것에 대한 관심이 저조한 실정이다. 한편, 스트레치 필름 글로벌 시장의 성장률이 연간 7% 이상 성장하여 그 수요가 3백만톤 규모에 달할 것으로 예상되며 수송 및 엔드유저 산업에서의 파렛트 이용이 급속하게 커지면서 그의 환경적인 문제도 풀어야 할 숙제로 남아있다.In this way, when the environmentally friendly element is added to the stretch film at present, the workability, the price, and the physical properties of the product are not satisfied, and therefore the interest in developing a general packaging material is poor. On the other hand, the growth rate of the stretch film global market is expected to grow by more than 7% per year, and the demand is expected to reach 3 million tons. As the use of pallets in transportation and end-user industries grows rapidly, have.
본 발명은 상기한 문제점들을 해결하기 위하여 안출된 것으로 옥수수, 감자, 사탕수수 등에서 유래된 바이오매스를 함유한 바이오 폴리에틸렌 수지와, 상이한 촉매 하에 중합된 폴리에틸렌 수지들과의 고분자 매트릭스 설계를 통해 그의 물리적 특성을 파악하여 우수한 인장강도, 연신율을 가지며 탄소저감 효과로 인해 환경적이며 스트레치 필름의 포장용도에 적절한 탄소 저감형 바이오매스 스트레치 필름을 제공하는 것을 목적으로 한다.DISCLOSURE OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a bio-polyethylene resin containing biomass derived from corn, potatoes, sugarcane, etc. and a polymer matrix polymerized with polyethylene resins polymerized under different catalysts, And to provide a carbon-reduced biomass stretch film suitable for the packaging use of a stretch film because of its excellent tensile strength and elongation and carbon reduction effect.
상기 목적을 달성하기 위하여 본 발명은, 조성물 총 100 중량%에 대하여 옥수수, 감자, 사탕수수 등과 같은 천연 원료로부터 유래된 바이오매스를 함유한 바이오 선형 저밀도 폴리에틸렌 수지 20 내지 70 중량%, 지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지 10 내지 50 중량% 및 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지 20 내지 60 중량%를 포함하는 스트레치 필름용 저밀도폴리에틸렌 수지 조성물을 제공한다.In order to achieve the above object, 20 to 70% by weight of a biosynthetic low density polyethylene resin containing biomass derived from a natural raw material such as corn, potato, sorghum and the like, 10 to 50% by weight of a linear low density polyethylene resin polymerized under a Ziegler- And 20 to 60% by weight of a linear low-density polyethylene resin polymerized under a low-density polyethylene resin.
상기 목적을 달성하기 위해 더욱 바람직하게, 상기 바이오 선형 저밀도폴리에틸렌 수지는 바이오올레핀으로 이루어지고, 밀도가 0.910 ~ 0.920g/cm3 및 용융지수(190, 2.16kg) 0.8 ~ 2.5g/10min 인 선형 저밀도 폴리에틸렌 수지 20 내지 70 중량%가 바람직하며, 지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지는 에틸렌과 탄소 원자수 4이상의 α-올레핀의 공중합체로 이루어지고, 밀도가 0.915 ~ 0.925 g/cm3 및 용융지수 (190, 2.16kg) 2.0 ~ 4.5g/10min 인 선형 저밀도 폴리에틸렌 수지 10 내지 50 중량%가 바람직하며, 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지는 중합된 에틸렌과 탄소 원자수 6이상의 α-올레핀의 공중합체로 이루어지고, 밀도가 0.905 ~ 0.920g/cm3 및 용융지수(190, 2.16kg) 2.5 ~ 4.2g/10min인 선형저밀도 폴리에틸렌 수지 20 내지 60중량%가 바람직하며, 상기한 수지의 배합을 통한 다층 구조의 캐스팅을 이용한 스트레치 필름 제작이 가능하다.In order to achieve the above object, the biodegradable low-density polyethylene The resin is preferably 20 to 70 wt% of a linear low density polyethylene resin composed of bio-olefin and having a density of 0.910 to 0.920 g / cm 3 and a melt index (190, 2.16 kg) of 0.8 to 2.5 g / 10 min, Is made of a copolymer of ethylene and an? -Olefin having 4 or more carbon atoms, and has a density of 0.915 to 0.925 g / cm < 3 > And 10 to 50% by weight of a linear low density polyethylene resin having a melt index (190, 2.16 kg) of 2.0 to 4.5 g / 10 min, wherein the linear low density polyethylene resin polymerized under metallocene catalyst is a copolymer of ethylene and at least 6 carbon atoms and 20 to 60% by weight of a linear low-density polyethylene resin composed of a copolymer of? -olefin having a density of 0.905 to 0.920 g / cm 3 and a melt index (190, 2.16 kg) of 2.5 to 4.2 g / 10 min, It is possible to manufacture a stretch film using casting of a multilayer structure through mixing of resin.
본 발명에 따른 바이오매스 스트레치 필름의 제조는 상기 옥수수, 감자, 사탕수수 등의 천연재료에서 유래된 바이오매스를 함유한 바이오 선형 저밀도 폴리에틸렌 수지와 지글러-나타 촉매하에 중합된 선형 저밀도 폴리에틸렌 수지, 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지와의 적절한 배합을 통해 익스투루더 용융온도 170℃ 에서 230℃ 사이에서 고분자 멜팅을 함이 바람직하며, 상기 용융된 배합 펠릿을 10㎛ 내지 200㎛ 두께의 필름으로 압출하는 티다이 블록의 온도가 180℃에서 250℃ 사이가 바람직하며, 내부에 냉각수 순환장치가 구비된 냉각롤러가 15℃에서 30℃ 사이에서 압출하는 것이 바람직하며, 앞서 상기한 수지의 배합비에 상기한 공정의 온도 조건에서 압출하는 것이 더욱 바람직하다.The production of the biomass stretch film according to the present invention can be carried out by mixing a biodegradable low density polyethylene resin containing biomass derived from a natural material such as corn, potatoes and sugarcane, a linear low density polyethylene resin polymerized under a Ziegler- It is preferable to perform melt blending of an extruder at a melt temperature of 170 ° C to 230 ° C through a proper combination with a linear low density polyethylene resin polymerized under a curing catalyst and to melt the blended pellets in a film having a thickness of 10 μm to 200 μm It is preferable that the temperature of the extrusion die die block is between 180 ° C and 250 ° C and that the cooling roller having the cooling water circulating device therein is extruded at a temperature of 15 ° C to 30 ° C. It is more preferable to perform extrusion under the temperature condition of one process.
본 발명에 따른 탄소저감형 고강도 고연신성을 갖는 바이오매스 스트레치 필름 조성물 및 제조방법에 의하면, 바이오매스를 함유함에도 불구하고 종래 부족하였던 스트레치 필름에 적합한 물성을 갖는 것을 특징으로 한다. 이로 인해, 본 발명에 따른 탄소저감형 고강도 고연신성을 갖는 바이오매스 스트레치 필름 조성물은 석유화학계 고분자를 대체할 수 있는 소재로 사용되어 탄소중립의 친환경 제품을 제공할 수 있다는 점에서 탁월한 효과를 나타낸다.According to the carbon-reduced high strength and high-elongation biomass stretch film composition and the manufacturing method of the present invention, the carbon thin film has a physical property suitable for a stretch film which is conventionally insufficient despite containing biomass. Accordingly, the carbon-reduced, high-strength and high-elongation biomass stretch film composition according to the present invention can be used as a substitute for petrochemical-based polymers, and thus exhibits an excellent effect in that it can provide carbon-neutral eco-friendly products.
도 1 내지 5는 본 발명의 방법에 따라 제조된 바이오매스 스트레치 필름의 바이오매스 함유 비율을 측정한 결과이다.1 to 5 are the results of measuring the biomass content of the biomass stretch film produced according to the method of the present invention.
도 6은 본 발명의 방법에 따라 제조된 바이오매스 스트레치 필름의 인장강도와 연신율을 종방향, 횡방향에 따라 나타낸 그래프이다.6 is a graph showing the tensile strength and elongation of the biomass stretch film produced according to the method of the present invention in longitudinal and transverse directions.
도 7 및 8은 본 발명의 방법에 따라 제조된 바이오매스 스트레치 필름의 배향특성에 따른 연신율의 변화의 폭을 나타낸 그래프이다.FIGS. 7 and 8 are graphs showing variations in the elongation according to the orientation characteristics of the biomass stretch film produced according to the method of the present invention. FIG.
도 9는 본 발명의 방법에 따라 제조된 바이오매스 스트레치 필름의 배향특성에 따른 연신율 및 인장강도를 나타낸 그래프이다.9 is a graph showing elongation and tensile strength according to orientation characteristics of the biomass stretch film produced according to the method of the present invention.
도 10은 본 발명의 방법에 따라 제조된 바이오매스 스트레치 필름의 용융지수를 나타낸 그래프이다.10 is a graph showing the melt index of a biomass stretch film produced according to the method of the present invention.
이하 본 발명을 좀 더 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 발명에서 용어 "스트레치 필름(stretch film)"은 탄력성과 점착성을 가진 필름으로서, 주로 포장용으로 사용되고 있는 필름으로서 두께가 얇으면서도 잘 찢어지지 않는 내구성, 점착성, 방습성, 연신성 등이 우수하여야 한다.The term " stretch film " in the present invention is a film having elasticity and tackiness, which is mainly used for packaging, and should have excellent durability, tackiness, moisture resistance, stretchability and the like.
본 발명은 바이오매스를 함유한 바이오 폴리에틸렌 수지, 상이한 촉매 하에 중합된 폴리에틸렌 수지들과의 고분자 매트릭스 설계를 통해 바이오매스 스트레치 필름을 제공하는 기술에 관한 것이다. 통상적인 바이오매스 필름과 달리 스트레치 필름에 적합한 본 발명에 따른 조성물은 가공성, 인장강도, 연신율 등을 만족시킨다.The present invention relates to a technique for providing a biomass stretch film through a polymer matrix design with bio-polyethylene resins containing biomass, polyethylene resins polymerized under different catalysts. Unlike the conventional biomass film, the composition according to the present invention suitable for a stretch film satisfies workability, tensile strength, elongation, and the like.
본 발명에서, 조성물 총 100중량%에 대하여, 상기 바이오매스를 함유한 바이오 선형 저밀도 폴리에틸렌 수지는 밀도가 0.910 ~ 0.920g/cm3 및 용융지수(190, 2.16kg) 0.8 ~ 2.5g/10min 인 선형 저밀도 폴리에틸렌 수지 20 내지 70 중량%; 지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지는 에틸렌과 탄소 원자수 4 이상의 α-올레핀의 공중합체로 이루어지고, 밀도가 0.915 ~ 0.925 g/cm3 및 용융지수 (190, 2.16kg) 2.0 ~ 4.5g/10min 인 선형 저밀도 폴리에틸렌 수지 10 내지 50 중량%; 및 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지는 에틸렌과 탄소 원자수 6 이상의 α-올레핀의 공중합체로 이루어지고, 밀도가 0.905 ~ 0.920g/cm3 및 용융지수(190, 2.16kg) 2.5 ~ 4.2g/10min인 선형저밀도 폴리에틸렌 수지 20 내지 60 중량%을 포함하여 이루어진다.In the present invention, the biosynthetic low density polyethylene resin containing the biomass, relative to 100 wt% of the total composition, has a linear density of 0.910 to 0.920 g / cm 3 and a melt index (190, 2.16 kg) of 0.8 to 2.5 g / 20 to 70% by weight of a low-density polyethylene resin; The linear low density polyethylene resin polymerized under a Ziegler-Natta catalyst is composed of a copolymer of ethylene and an? -Olefin having 4 or more carbon atoms and has a density of 0.915 to 0.925 g / cm 3 And 10 to 50% by weight of a linear low density polyethylene resin having a melt index (190, 2.16 kg) of 2.0 to 4.5 g / 10 min; And a linear low density polyethylene resin polymerized under a metallocene catalyst are made of a copolymer of ethylene and an? -Olefin having 6 or more carbon atoms, and have a density of 0.905 to 0.920 g / cm 3 and a melt index (190, 2.16 kg) And 20 to 60% by weight of a linear low density polyethylene resin having a density of 4.2 g / 10 min.
상기 바이오 선형 저밀도 폴리에틸렌 수지는 바이오매스를 원료로 하여 제조된 수지로서 옥수수, 감자, 사탕수수 등에서 당을 추출하여 알코올 발효시켜 중합함으로써 바이오매스 유래 수지를 제조할 수 있다. 바람직하게 상기 바이오 선형 저밀도 폴리에틸렌 수지는 사탕수수에서 유래된 바이오매스를 함유한 것일 수 있다. 본 발명은 이산화탄소를 배출하면서 폴리에틸렌을 생산하는 석유계와 달리 재생이 가능하다는 점과 공기 중에 있는 이산화탄소를 사용할 수 있다는 점이 장점이다. The biosynthetic low-density polyethylene resin can be prepared by extracting sugar from corn, potatoes, sugar cane, etc., and polymerizing it by alcohol fermentation, using a biomass as a raw material. Preferably, the biodegradable low density polyethylene resin may contain biomass derived from sugarcane. The present invention is advantageous in that it can be regenerated unlike a petroleum-based petroleum-based fuel producing carbon dioxide while it is possible to use carbon dioxide in the air.
상기 지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지의 α-올레핀 공단량체는 1-부텐, 1-펜텐, 1-헥센, 1-옥텐, 1-데센 및 1-도데센으로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하며, 더욱 바람직하게는 탄소 원자수 6 이상의 것으로, 가장 바람직하게는 1-헥센을 사용하는 것이 좋다. 상기 지글러-나타 촉매는 올레핀 중합용 촉매의 하나로, 전이금속화합물이 주성분인 주촉매, 유기금속 화합물인 조촉매, 및 전자공여체의 조합으로 이루어지는 촉매계를 의미하는 것으로, 본 발명에서는 공지의 지글러-나타 촉매로 알려진 촉매는 제한없이 사용될 수 있다.The? -Olefin comonomer of the linear low density polyethylene resin polymerized under the Ziegler-Natta catalyst is 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene and 1-dodecene. More preferably at least 6 carbon atoms, more preferably at least 6 carbon atoms, and most preferably 1-hexene. The Ziegler-Natta catalyst is a catalyst for olefin polymerization, which means a catalyst system comprising a combination of a main catalyst which is a main component of a transition metal compound, a promoter which is an organometallic compound, and an electron donor. In the present invention, Catalysts known as catalysts can be used without limitation.
상기 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지의 α-올레핀 공단량체는 1-부텐, 1-펜텐, 1-헥센, 1-옥텐, 1-데센 및 1-도데센으로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하며, 더욱 바람직하게는 탄소 원자수 6 이상의 것으로, 가장 바람직하게는 1-헥센을 사용하는 것이 좋다. 상기 메탈로센 촉매는 2종의 사이클로펜타디엔 사이에 금속이 끼어있는 구조의 촉매를 말하며, 단일 활성점을 갖는 촉매이다. 본 발명에서는 본 발명에서는 공지의 메탈로센 촉매로 알려진 촉매는 제한없이 사용될 수 있다.The alpha -olefin comonomer of the linear low density polyethylene resin polymerized under the metallocene catalyst is a copolymer of 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene and 1-dodecene More preferably at least 6 carbon atoms, more preferably at least 6 carbon atoms, and most preferably 1-hexene. The metallocene catalyst is a catalyst having a structure in which a metal is sandwiched between two kinds of cyclopentadiene, and is a catalyst having a single active site. In the present invention, catalysts known as metallocene catalysts known in the present invention can be used without limitation.
추가적인 양태로서, 본 발명에 따른 스트레치 필름용 저밀도폴리에틸렌 수지 조성물은 공지의 스트레치 필름의 제조에 필요한 추가적인 첨가제를 더 포함할 수 있다. 예를 들어 이러한 추가의 첨가제는 활제, 가소제, 충진제, 왁스, 점착제 및 대전방지제 등일 수 있으나, 이에 한정되는 것은 아니다. 상기 활제는 스테아르산아연, 스테아르산칼슘, 스테아르산마그네슘 및 스테아르산으로 이루어진 군으로부터 1종 이상 선택될 수 있다. 상기 활제는 필름 가공시 상기 수지의 흐름성을 좋게 하고, 압출공정이 매끄럽게 일어나도록 하기 위해 첨가된다. 상기 가소제는 글리세롤, 프로필렌 글리콜 및 솔비톨(sorbitol)로 이루어진 군으로부터 1종 이상 선택될 수 있다. 상기 가소제는 분자간 힘을 약화하고, 유리 전이온도를 저하시켜 유동특성, 유연성, 신전성, 탄성, 접착성, 가공성 등을 부여하고 섞임성(compatibility)을 증가시킬 수 있다. 상기 충진제는 탄산칼슘(CaCO), 활석, 일라이트, 점토광물 및 제올라이트로 이루어진 군으로부터 1종 이상 선택될 수 있다. 상기 충진제는 필름의 기계적 또는 열적 성질 및 가공성을 개선하기 위해 첨가된다. 상기 점착제는 바람직하게, 폴리이소부틸렌일 수 있다. 상기 기타 첨가물은 산화제, 유기산, 안정제 및 착색제로 이루어진 군으로부터 1종 이상 선택될 수 있다. 또한, 상기 왁스는 파라핀 왁스, 유동 파라핀 왁스, 밀납, 몰다 왁스, 이멀시파잉 왁스, 칸데릴라 왁스, PE 왁스 및 PP 왁스로 이루어진 군으로부터 1종 이상 선택될 수 있다. As a further aspect, the low-density polyethylene resin composition for a stretch film according to the present invention may further comprise additional additives necessary for the production of a known stretch film. For example, such additional additives may include, but are not limited to, lubricants, plasticizers, fillers, waxes, tackifiers, antistatic agents, and the like. The lubricant may be selected from the group consisting of zinc stearate, calcium stearate, magnesium stearate, and stearic acid. The lubricant is added in order to improve the flowability of the resin during film processing and to cause the extrusion process to occur smoothly. The plasticizer may be selected from the group consisting of glycerol, propylene glycol, and sorbitol. The plasticizer weakens the intermolecular force and lowers the glass transition temperature, thereby imparting flow properties, flexibility, extensibility, elasticity, adhesiveness, processability and the like and increasing compatibility. The filler may be selected from the group consisting of calcium carbonate (CaCO), talc, ilite, clay mineral, and zeolite. The filler is added to improve the mechanical or thermal properties and processability of the film. The pressure-sensitive adhesive may preferably be polyisobutylene . The other additives may be selected from the group consisting of an oxidizing agent, an organic acid, a stabilizer and a coloring agent. The wax may be at least one selected from the group consisting of paraffin wax, liquid paraffin wax, wax, mold wax, emulsifying wax, candelilla wax, PE wax and PP wax.
이러한 본 발명에 따른 스트레치 필름용 저밀도폴리에틸렌 수지 조성물은 캐스팅 압출 등에 의해 외층, 중층, 내층으로 구성된 3층 구조를 갖는 스트레치 필름용 저밀도 폴리에틸렌 필름으로 제조될 수 있다.The low density polyethylene resin composition for a stretch film according to the present invention can be produced by a casting extrusion or the like, as a low density polyethylene film for a stretch film having a three-layer structure composed of an outer layer, an intermediate layer and an inner layer.
따라서, 또 다른 양태로서, 본 발명은 상기 스트레치 필름용 저밀도폴리에틸렌 수지 조성물에 의하여 제조되는 바이오매스 스트레치 필름용 저밀도 폴리에틸렌 필름에 관한 것이다. 바람직하게, 상기 필름은 외층, 중층 및 내층의 3층 구조를 갖는 것으로, 상기 본 발명에 따른 조성물에 기재된 3종의 수지가 혼련된 배합수지를 포함하며, 상기 외층이 지글러-나타 촉매 하에 중합된 에틸렌과 탄소 원자수 4 이상의 α-올레핀의 공중합체로 이루어지고 밀도가 0.915 ~ 0.925 g/cm3 및 용융지수 (190, 2.16kg) 2.0 ~ 4.5g/10min 인 선형 저밀도 폴리에틸렌 수지 10 내지 50 중량%을 포함하는 것이 바람직하다. 상기 외층의 수지는 지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지는 우수한 가공특성과 광학특성을 나타내며 외층으로 적용시에 밀봉성, 투명성 특성에 적용된다.Accordingly, in another aspect, the present invention relates to a low-density polyethylene film for a biomass stretch film produced by the low-density polyethylene resin composition for a stretch film. Preferably, the film has a three-layer structure of an outer layer, an intermediate layer and an inner layer, and includes a blended resin in which the three resins described in the composition according to the present invention are kneaded, and the outer layer is polymerized under a Ziegler- A copolymer of ethylene and an? -Olefin having 4 or more carbon atoms and having a density of 0.915 to 0.925 g / cm 3 And 10 to 50% by weight of a linear low density polyethylene resin having a melt index (190, 2.16 kg) of 2.0 to 4.5 g / 10 min. The resin of the outer layer exhibits excellent processing characteristics and optical characteristics and is applied to the sealability and transparency characteristics when applied as an outer layer, in a linear low density polyethylene resin polymerized under a Ziegler-Natta catalyst.
상기 중층은 바이오 선형저밀도 폴리에틸렌 수지를 포함하며, 밀도가 0.910 ~ 0.920g/cm3 및 용융지수(190, 2.16kg) 0.8 ~ 2.5g/10min 인 선형저밀도 폴리에틸렌 수지 20 내지 70 중량%가 바람직하다. 상기 바이오 선형저밀도 폴리에틸렌 수지를 중층에 적용함에 따라 본 발명의 수지 조성물은 기계방향의 인장강도 특성이 향상되며 중층에 색상을 부여하는 마스터 배치를 함유할 때 색상 안정성을 높여주는 특성을 갖는다.The intermediate layer preferably comprises a biodegradable low density polyethylene resin and 20 to 70% by weight of a linear low density polyethylene resin having a density of 0.910 to 0.920 g / cm 3 and a melt index (190, 2.16 kg) of 0.8 to 2.5 g / 10 min. When the biodegradable low density polyethylene resin is applied to the middle layer, the resin composition of the present invention has improved characteristics in terms of tensile strength in the machine direction and enhances color stability when a master batch which imparts color to the middle layer is contained.
상기 내층은 메탈로센 촉매 하에 중합된 에틸렌과 탄소 원자수 6이상의 α-올레핀의 공중합체로 이루어지고 밀도가 0.905 ~ 0.920g/cm3 및 용융지수(190, 2.16kg) 2.5 ~ 4.2g/10min인 선형저밀도 폴리에틸렌 수지 20 내지 60중량%를 포함하는 것이 바람직하다. 상기 내층의 수지는 광택도와 투명성이 우수하며 특히 고속 가공성이 뛰어나다. 높은 용융점도, 열적 안정성과 높은 유연성을 가지며 다양한 폴리머와의 상용성이 뛰어나 점착제 등의 첨가제와 혼합하였을 때 균일한 혼용성으로 인해 필름 전체적으로 점착 특성이 분배가 이루어진다. 내층의 주요 수지가 점착제와 혼용성이 떨어졌을 시에 수지 내에서 마이그레이션이 되어 시간이 지날수록 그의 특성이 떨어지는 경향이 있으며 가공 상 공정 문제가 발생할 수 있으나 본 발명은 상기 내층에 의해 이러한 문제를 해결하였다.Wherein the inner layer comprises a copolymer of ethylene polymerized with a metallocene catalyst and an alpha -olefin having 6 or more carbon atoms and has a density of 0.905 to 0.920 g / cm 3 and a melt index of 190 to 2.16 kg of 2.5 to 4.2 g / 10 min By weight of a linear low density polyethylene resin. The resin of the inner layer is excellent in gloss and transparency, and particularly excellent in high-speed processability. It has high melt viscosity, thermal stability and high flexibility and is excellent in compatibility with various polymers. When mixed with an additive such as a pressure sensitive adhesive, the adhesive property is distributed throughout the film due to uniform mixture. When the main resin in the inner layer is poorly mixed with the pressure-sensitive adhesive, it migrates in the resin and tends to deteriorate its properties over time and may cause processing problems in processing. However, the present invention solves this problem with the inner layer .
상기한 3층 구조의 바이오매스 스트레치 필름의 수지 배합은 바이오 폴리에틸렌이 스트레치 필름으로 적용하기 위한 특성을 보완하기 위해 지글러-나타 촉매하에 중합된 선형 저밀도 폴리에틸렌 수지와 메탈로센 촉매하에 중합된 선형 저밀도 폴리에틸렌 수지의 상기한 범위 내의 배합이 필수적이다. 메탈로센 선형 저밀도 폴리에틸렌 수지는 메탈로센 촉매 하에 중합된 것으로 좁은 분자량 분포를 나타내고 균일한 공단량체 분포로 인해 뛰어난 기계적 물성을 나타내지만 캐스팅 압출 성형시 수지압력이 과도하게 상승하는 문제점과 함께 캐스트 필름 성형 시 네크인이 발생하며, 투명성이 열세한 단점을 갖고 있다. 반면 지글러-나타 촉매하에 중합된 선형저밀도 폴리에틸렌 수지는 메탈로센 선형 저밀도 폴리에틸렌수지에 비해 기계적 강도가 낮지만 넓은 분자량 분포로 우수한 가공특성과 뛰어난 광학특성을 보인다. The resin formulation of the above-described biomass stretch film of the three-layer structure is carried out by mixing a linear low density polyethylene resin polymerized with a Ziegler-Natta catalyst and a linear low density polyethylene polymerized under a metallocene catalyst in order to supplement the characteristics of bio- It is necessary to formulate the resin within the above-mentioned range. The metallocene linear low density polyethylene resin is polymerized under a metallocene catalyst and exhibits a narrow molecular weight distribution and exhibits excellent mechanical properties due to a uniform distribution of the comonomer. However, the resin pressure excessively increases during cast extrusion molding, Necking occurs at the time of molding, and transparency is poor. On the other hand, the linear low density polyethylene resin polymerized under the Ziegler-Natta catalyst has a lower mechanical strength than the metallocene linear low density polyethylene resin, but exhibits excellent processing characteristics and excellent optical characteristics with a wide molecular weight distribution.
본 발명의 바이오매스를 포함하는 스트레치 필름용 저밀도 선형 폴리에틸렌 필름은 ASTM D6866 규격의 실험을 통해 정확한 바이오매스 함량을 측정할 수 있다. 탄소의 동위원소인 방사성 탄소(C14)가 바이오매스 물질에는 있는 반면 석유화학계 폴리에틸렌에는 C14을 전혀 가지고 있지 않다는 원리로 필름의 재생 가능한 탄소의 함량을 전체 탄소에서 계산해 낼 수 있다. 바이오매스 물질을 태워서 배출되는 이산화탄소를 탄소 중립 이산화탄소라고 하며 탄소중립 이산화탄소는 지구상의 이산화탄소 농도에 전혀 영향을 미치지 않기 때문에 탄소 발자국이 0이다. 바이오매스가 타면 식물이 공기 중에 흡수한 이산화탄소를 그대로 배출하며 광합성 작용을 하기 위해 흡수한 이산화탄소를 다시 공기 중에 배출하는 사이클이 만들어지며 이를 탄소 중립이라고 한다. 바이오매스를 포함하는 스트레치 필름용 저밀도 선형 폴리에틸렌 필름 내에 C14의 농도값이 25 pCM(percent modern Carbon) 이상인 것이 바람직하며 C14의 농도값이 40pCM 이상인 것이 이산화탄소 배출량을 감소시키는 효과에 더욱 바람직하다. 일반적으로 석유화학계 폴리에틸렌의 이산화탄소 발생량이 폴리에틸렌 1kg당 1,860g의 이산화탄소가 배출된다고 보고된 바가 있다. C14의 농도값이 25pCM의 경우, 하루 생산량이 100톤 일 때 이산화탄소 저감은 약 47톤, 300톤 일 때 약 141톤의 이산화탄소 저감효과를 갖는다. C14의 농도값이 40pCM인 경우, 하루 생산량이 100톤 일 때 이산화탄소 저감은 약 75톤, 300톤일 때 약 225톤의 이산화탄소 저감효과를 갖는다.The low density linear polyethylene film for a stretch film comprising the biomass of the present invention Accurate biomass content can be measured through experiments in accordance with ASTM D6866. The regenerable carbon content of the film can be calculated from the total carbon, with the principle that the carbon isotope radioactive carbon (C14) is present in the biomass material, while the petrochemical polyethylene does not contain any C14. Carbon dioxide emitted from burning biomass materials is called carbon-neutral carbon dioxide, and carbon-neutral carbon dioxide has zero carbon footprint because it has no effect on the global carbon dioxide concentration. When the biomass rises, the plant emits the carbon dioxide absorbed in the air as it is, and the carbon dioxide absorbed by the plant is released into the air again for the photosynthesis, which is called carbon neutrality. It is preferable that the concentration value of C14 is higher than 25 pCM (percent modern carbon) in the low density linear polyethylene film for stretch film including biomass, and the concentration value of C14 is more preferably 40 pCM or more for reducing the carbon dioxide emission. Generally, it has been reported that the amount of carbon dioxide produced in the petrochemical polyethylene discharges 1,860 g of carbon dioxide per kg of polyethylene. When the concentration of C14 is 25pCM, the reduction of carbon dioxide is about 47 tons when the daily production is 100 tons, and about 141 tons when the production is 300 tons. When the concentration of C14 is 40 pCM, the reduction of carbon dioxide is about 75 tons when the production is 100 tons per day, and about 225 tons when the production is 300 tons.
본 발명에 있어, 바이오매스를 포함하는 스트레치 필름용 저밀도 선형 폴리에틸렌 필름을 구성하는 3가지 이상의 혼련된 수지의 용융지수가 2.0 내지 3.5g/10min인 배합 구성이 가장 바람직하다. 혼련된 수지의 용융지수가 2.0 g/10min이하일 경우 TD(Transverse Direction) 횡방향으로 인장강도가 저하되고 1.0g/min 이하일 경우 인장강도의 급격한 저하로 스트레치 필름이 요구하는 물성에 적합하지 않는다. 또한 MD(Machine Direction) 종방향으로도 연신율이 급격하게 떨어지는 결과를 가진다. 반면에 용융지수가 3.5g/10min이상일 경우, 종방향으로 인장강도의 급격한 저하가 나타나며 스트레치 필름의 물성에 적합한 수준 이하가 된다.  In the present invention, it is most preferable that the three or more kneaded resins constituting the low density linear polyethylene film for a stretch film containing biomass have a melt index of 2.0 to 3.5 g / 10 min. When the melt index of the kneaded resin is 2.0 g / 10 min or less, the tensile strength is lowered in the transverse direction (TD) direction, and when the melt index is 1.0 g / min or less, the tensile strength is rapidly lowered, In addition, the elongation rate of the MD (Machine Direction) is also drastically decreased. On the other hand, when the melt index is 3.5 g / 10 min or more, the tensile strength is sharply decreased in the longitudinal direction, and is less than the level suitable for the physical properties of the stretch film.
본 발명에 있어 바이오매스를 포함하는 스트레치 필름용 저밀도 선형 폴리에틸렌 필름을 구성하는 3가지 이상의 혼련된 수지의 수평균분자량(Number average molecular weight, Mn)은 30,000 ~ 70,000, 중량평균분자량(Weight average molecular weight, Mw)은 100,000 ~ 300,000, Z-평균분자량(Z-average molecular weight, Mz)은 200,000 ~ 700,000의 범위에 있는 배합 구성이 가장 바람직하다. 중합체 샘플의 분자량 분포는 다분산성지수(Poly Disperse Index, PDI)를 통해 판단할 수 있으며, 다분산성지수가 1이면 단분산(monodisperse)하며, 1보다 크면 다분산(polydisperse) 하다 라고 판단할 수 있다. 다분산성지수 값이 크면 분자량 분포가 크며 다분산성지수 값이 작으면 분자량 분포가 작다. 이는 스트레치 필름의 기계적 물성에 관련한 값으로 다분산성지수 값이 작아질수록 MD 방향으로 연신율이 높아지고, TD 방향으로 인장강도가 높아진다. 본 발명의 혼련된 수지의 다분산성지수는 1.5 ~ 5.0가 가장 바람직하다. In the present invention, the number average molecular weight (Mn) of the three or more kneaded resins constituting the low density linear polyethylene film for a stretch film containing biomass is 30,000 to 70,000, the weight average molecular weight , Mw) of 100,000 to 300,000, and a Z-average molecular weight (Mz) of 200,000 to 700,000. The molecular weight distribution of the polymer sample can be judged through the Poly Disperse Index (PDI). If the polydispersity index is 1, it is monodisperse and if it is larger than 1, it is polydisperse . When the polydispersity index value is large, the molecular weight distribution is large and when the polydispersity index value is small, the molecular weight distribution is small. This value is related to the mechanical properties of the stretch film. As the polydispersity index value becomes smaller, the elongation in the MD direction increases and the tensile strength in the TD direction increases. The polydispersity index of the kneaded resin of the present invention is most preferably from 1.5 to 5.0.
본 발명에 있어 바이오매스를 포함하는 스트레치 필름용 저밀도 선형 폴리에틸렌 필름은 ASTM D882 규격의 실험을 통해 인장강도 및 연신율을 측정할 수 있다. 인장강도와 연신율은 스트레치 필름을 제조할 때 가장 중요하게 보아야 할 물성이며, 보통 인장강도는 종방향 550kgf/cm2 이상과 횡방향 350kgf/cm2 이상이며, 연신율은 종방향 500% 이상과 횡방향 700% 이상의 물성이 바람직하다. In the present invention, the low density linear polyethylene film for a stretch film containing biomass can measure tensile strength and elongation through an experiment according to the ASTM D882 standard. Tensile strength and elongation, and physical properties to the most important should the preparation of the stretch film, usually a tensile strength of the longitudinal direction, and 550kgf / cm 2 or more to the lateral direction more than 350kgf / cm 2, elongation longitudinally more than 500% and a transverse direction A physical property of 700% or more is preferable.
또 다른 양태로서, 본 발명은 다음과 같은 단계를 포함하는 스트레치 필름용 저밀도 선형 폴리에틸렌 필름의 제조방법에 관한 것이다:In another aspect, the present invention relates to a method of making a low density linear polyethylene film for a stretch film comprising the steps of:
(a) 조성물 총 100 중량%에 대하여, 바이오매스를 함유한 바이오 선형 저밀도 폴리에틸렌 수지 20 내지 70 중량%, 지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지 10 내지 50 중량% 및 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지 20 내지 60 중량%를 포함하는 스트레치 필름용 저밀도폴리에틸렌 수지 조성물을 배합하는 단계; 및(a) 20 to 70% by weight of a bi-linear low density polyethylene resin containing biomass, 10 to 50% by weight of a linear low density polyethylene resin polymerized under a Ziegler-Natta catalyst, and By weight of a low density polyethylene resin composition for a stretch film comprising 20 to 60% by weight of a linear low density polyethylene resin; And
(b) 상기 단계 (a)의 배합물을 압출기에 투입하여 용융시킨 후 압출하는 단계. (b) injecting the compound of step (a) into an extruder, melting it, and extruding it.
바람직한 양태에서, 상기 제조방법 중 단계 (b)는 압출기에 투입하여, 용용 온도 170℃ 내지 230℃에서 용융시킨 후, 온도가 180℃ 내지 250℃인 티다디 블록을 통과시킨 후, 온도가 15℃ 내지 30℃인 냉각롤러를 통해 압출시키는 것에 의해 수행되는 것을 특징으로 한다. 이와 같이 제조하는 경우 지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지가 외층을 형성하고, 바이오매스를 함유한 바이오 선형 저밀도 폴리에틸렌 수지가 중층을 형성하며, 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지가 내층을 형성하는 3층 구조를 가지며, 뛰어난 광택도, 투명성, 인장강도와 같은 기계적 특성, 가공특성, 광학특성 등을 갖는 필름이 제조된다.In a preferred embodiment, step (b) of the above production method is carried out in an extruder, melted at a melting temperature of 170 to 230 ° C, passed through a thermodiode block having a temperature of 180 to 250 ° C, ≪ / RTI > to < RTI ID = 0.0 > 30 C. < / RTI > In such a case, a linear low density polyethylene resin polymerized under a Ziegler-Natta catalyst forms an outer layer, a biosynthetic low density polyethylene resin containing biomass forms an intermediate layer, and a linear low density polyethylene resin polymerized under a metallocene catalyst A film having a three-layer structure for forming an inner layer and having mechanical properties such as excellent gloss, transparency and tensile strength, processing characteristics, optical characteristics and the like is produced.
본 발명은 이하 실시예를 통하여 좀 더 구체적으로 설명될 것이다. 이러한 실시예는 단지 본 발명이 좀 더 이해될 수 있도록 예시적으로 제시되는 것이므로, 이들 실시예로서 본 발명의 범위를 한정해서는 안 될 것이다.The present invention will be explained in more detail through the following examples. It is to be understood that these embodiments are provided by way of illustration only, and are not intended to limit the scope of the invention.
[실시예] [Example]
비교예 1Comparative Example 1
지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌(밀도: 0.920g/cm3, 용융지수: 4.0g/10min) 24 중량부, 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌(밀도: 0.914g/cm3, 용융지수: 4.0g/10min) 50 중량부, 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌(밀도: 0.915g/cm3, 용융지수: 3.7g/10min) 25 중량부 및 점착제로서 폴리이소부틸렌 1 중량부를 캐스팅 익스투루더 용융온도 200℃ 사이에서 고분자 멜팅하여 상기 용융된 배합 수지를 티다이 블록 온도 220℃를 통과하여 내부에 냉각수 순환장치가 구비된 냉각롤러 25℃에서 통과시켜 두께 25㎛의 3층 구조의 스트레치 필름을 얻었다.The Ziegler-Natta catalyst polymerized in a linear low density polyethylene (density: 0.920g / cm 3, melt index: 4.0g / 10min) 24 parts by weight of a linear low-density polyethylene polymerized with the metal under metallocene catalyst (density: 0.914g / cm 3, melt index: 4.0g / 10min) 50 parts by weight of a linear low-density polyethylene polymerized with the metal under metallocene catalyst (density: 0.915g / cm 3, melt index: 3.7g / 10min) as 25 parts by weight of the pressure-sensitive adhesive polyisobutylene 1 The polymer blend was melt-melted at a casting extruder melt temperature of 200 DEG C, and the molten blended resin was passed through a thermo-block temperature of 220 DEG C and passed through a cooling roller equipped with a cooling water circulating device at 25 DEG C, Layer stretch film was obtained.
실시예 1 Example 1
지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌(밀도: 0.920g/cm3, 용융지수: 4.0g/10min) 24 중량부, 바이오 매스를 포함하는 선형 저밀도 폴리에틸렌(밀도: 0.916g/cm3, 용융지수: 1.0g/10min) 50 중량부, 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌(밀도: 0.915g/cm3, 용융지수: 3.7g/10min) 25 중량부 및 점착제로서 폴리이소부틸렌 1 중량부를 캐스팅 익스투루더 용융온도 200℃ 사이에서 고분자 멜팅하여 상기 용융된 배합 수지를 티다이 블록 온도 220℃를 통과하여 내부에 냉각수 순환장치가 구비된 냉각롤러 25℃에서 통과시켜 두께 25㎛의 3층 구조의 스트레치 필름을 얻었다.The Ziegler-Natta catalyst polymerized in a linear low density polyethylene (density: 0.920g / cm 3, melt index: 4.0g / 10min) 24 parts by weight of linear low density polyethylene containing biomass (density: 0.916g / cm 3, a melt index (Density: 0.915 g / cm 3 , melt index: 3.7 g / 10 min) and 1 part by weight of polyisobutylene as a pressure-sensitive adhesive Casting extruder melting the polymer at a melting temperature of 200 ° C and passing the molten blended resin through a tie die block temperature of 220 ° C and a cooling roller equipped with a cooling water circulating device at 25 ° C to form a three- Of a stretch film.
실시예 2Example 2
바이오 선형 저밀도 폴리에틸렌(밀도: 0.916g/cm3, 용융지수: 1.0g/10min) 74 중량부, 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌(밀도: 0.915g/cm3, 용융지수: 3.7g/10min) 25 중량부 및 점착제로서 폴리이소부틸렌 1중량부를 캐스팅 익스투루더 용융온도 200℃ 사이에서 고분자 멜팅하여 상기 용융된 배합 수지를 티다이 블록 온도 220℃를 통과하여 내부에 냉각수 순환장치가 구비된 냉각롤러 25℃에서 통과시켜 두께 25㎛의 3층 구조의 스트레치 필름을 얻었다.Bio linear low density polyethylene (density: 0.916g / cm 3, melt index: 1.0g / 10min) 74 parts by weight of a linear low-density polyethylene polymerized with the metal under metallocene catalyst (density: 0.915g / cm 3, melt index: 3.7g / 10 min) and 1 part by weight of polyisobutylene as a pressure-sensitive adhesive were melt-melted at a casting extruder melting temperature of 200 ° C, and the molten compounded resin was passed through a thermo-block temperature of 220 ° C, Lt; RTI ID = 0.0 > 25 C < / RTI > to obtain a stretch film having a three-layer structure with a thickness of 25 mu m.
실시예 3Example 3
바이오 선형 저밀도 폴리에틸렌(밀도: 0.916g/cm3, 용융지수: 1.0g/10min) 99 중량부 및 점착제로서 폴리이소부틸렌 1중량부를 캐스팅 익스투루더 용융온도 200℃ 사이에서 고분자 멜팅하여 상기 용융된 배합 수지를 티다이 블록 온도 220℃를 통과하여 내부에 냉각수 순환장치가 구비된 냉각롤러 25℃에서 통과시켜 두께 25㎛의 3층 구조의 스트레치 필름을 얻었다.99 parts by weight of biodegradable low density polyethylene (density: 0.916 g / cm 3 , melt index: 1.0 g / 10 min) and 1 part by weight of polyisobutylene as a pressure-sensitive adhesive were melt-melted at a casting extruder melting temperature of 200 ° C, The compounded resin was passed through a Tie die block temperature of 220 占 폚 and passed through a cooling roller equipped with a cooling water circulating device at 25 占 폚 to obtain a stretch film having a three-layer structure with a thickness of 25 占 퐉.
실시예 4Example 4
비교예 1, 실시예 1, 실시예 2 및 실시예 3의 필름의 바이오매스 C14의 농도값을 측정하기 위하여 Beta analytic의 Biobased Testing을 ASTM D6866의 규격을 기준으로 측정하였다. 상기 ASTM D6866에 의한 pMC 값은 유효 바이오 성분의 함량을 의미한다고도 볼 수 있다. 이 실험 결과는 하기 표 1에 정리하였으며, 도 1 내지 5에 그 결과를 나타내었다.In order to measure the biomass C14 concentration values of the films of Comparative Example 1, Example 1, Example 2 and Example 3, the biobased testing of Beta analytic was measured based on the standard of ASTM D6866. The pMC value according to ASTM D6866 may also mean the content of effective biocomponents. The results of this experiment are summarized in the following Table 1, and the results are shown in FIGS. 1 to 5.
내용Contents 비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3
Percent Modern Carbon(pMC)Percent Modern Carbon (pMC) 1.62(+/- 0.04)1.62 (+/- 0.04) 44.81(+/- 0.17)44.81 (+/- 0.17) 69.94(+/- 0.23)69.94 (+/- 0.23) 91.70(+/- 0.28)91.70 (+/- 0.28)
Atmospheric Adjustment Factor (REF) 101.0; = pMC / 1.010Atmospheric Adjustment Factor (REF) 101.0; = pMC / 1.010
실시예 5 Example 5
비교예 1, 실시예 1, 실시예 2 및 실시예 3의 필름의 기계적 물성 테스트를 위해 ASTM D882의 규격에 따라 만능인장시험기(UTM SGS-X STD, SHIMADZU)를 이용하였으며, 시험속도 200mm/분의 속도로 실험하여 일정면적에 대한 최대하중 및 연신율을 종방향(MD), 횡방향(TD)에 따라 측정하였다. 실시예 4의 결과에 따라 비교예 1, 실시예 1, 실시예 2, 실시예 3의 바이오매스 함량은 1.62pMC, 44.81pMC, 69.94pMC, 91.70pMC로 증가함을 볼 수 있다. 바이오매스 함량에 따라 인장강도와 연신율의 변화를 확인할 수 있으며 이의 실험 결과를 하기 표 2에 비교하였다.A universal tensile tester (UTM SGS-X STD, SHIMADZU) was used in accordance with the standard of ASTM D882 for testing the mechanical properties of the films of Comparative Example 1, Example 1, Example 2 and Example 3, (MD) and transverse direction (TD), and the maximum load and elongation were measured for a certain area. According to the result of Example 4, the biomass content of Comparative Example 1, Example 1, Example 2, and Example 3 is increased to 1.62pMC, 44.81pMC, 69.94pMC, and 91.70pMC. The changes in tensile strength and elongation can be confirmed by the biomass content and the experimental results are compared in Table 2 below.
비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3
인장강도(kgf/cm2)Tensile strength (kgf / cm 2 ) 종방향Longitudinal direction 536.6043536.6043 602.1447602.1447 630.5849630.5849 644.5450644.5450
횡방향Lateral direction 404.8576404.8576 413.8186413.8186 378.0882378.0882 282.5422282.5422
연신율(%)Elongation (%) 종방향Longitudinal direction 625.1470625.1470 589.0218589.0218 520.4384520.4384 440.9382440.9382
횡방향Lateral direction 830.1468830.1468 845.0218845.0218 830.0218830.0218 859.8969859.8969
C14 pMC(%)C14 pMC (%) 1.975 ± 0.0401.975 + 0.040 44.635 ± 0.17044.635 ± 0.170 69.565 ± 0.23569.565 + 0.235 91.765 ± 0.28091.765 ± 0.280
상기 표 2는 비교예 1, 실시예1, 2 및 3의 종방향, 횡방향의 인장강도와 연신율을 나타낸 값이다. 종방향의 기계적 물성은 기계방향(Machine Direction, MD)으로 실제 스트레치 필름을 사용할 때 제품의 품질을 좌우한다. 상기 표의 결과를 보면 바이오매스 함량이 늘어남에 따라 종방향(MD)의 인장강도가 536kgf/cm2에서 644 kgf/cm2까지 점차적으로 증가하고, 연신율은 625%에서 440%로 점차적으로 낮아짐을 볼 수 있다. 보통 스트레치 필름의 인장강도는 종방향 550kgf/cm2 이상과 횡방향 350kgf/cm2 이상이며, 연신율은 종방향 500% 이상과 횡방향 700% 이상의 물성이 바람직하므로, 비교예 1은 인장강도에서 그의 값이 낮으며, 실시예 2, 3은 연신율에서 낮은 값을 보인다. 실시예 1의 경우, pCM이 44%이상이며 인장강도와 연신율에서 스트레치 필름으로서 만족하는 수준을 보인다. 이의 그래프를 도 6에 나타내었다.Table 2 shows values of tensile strength and elongation in the longitudinal and transverse directions of Comparative Examples 1 and 2, The mechanical properties in the machine direction (Machine Direction, MD) determine the quality of the product when the actual stretch film is used. In the above table results biomass content increases the tensile strength in the longitudinal direction (MD) and gradually increased from 536kgf / cm 2 to 644 kgf / cm 2 in accordance with the elongation gradually see, down from 625% to 440% . The tensile strength of the longitudinal 550kgf / cm 2 or more to the lateral direction more than 350kgf / cm 2 in usual stretch film, since the elongation is preferably the longitudinal direction over 500% and the transverse direction at least 700% The physical properties of Comparative Example 1 is its tensile strength Values are low, and Examples 2 and 3 show low values in elongation. In the case of Example 1, the pCM is 44% or more, and the stretch film shows a satisfactory level at the tensile strength and elongation. A graph of this is shown in Fig.
실시예 6 Example 6
고분자의 배향 방향에 따라 그의 기계적 물성이 변화한다. 바이오 선형 저밀도 폴리에틸렌의 함량에 따라 배향 특성에 따른 연신율의 변화를 확인하기 위해 비교예 1, 실시예 1, 2 및 3의 제조된 필름을 0°, 30°, 60°, 90°, 120°, 150°, 180°의 방향으로 시편을 제조하였다. 바이오 선형 저밀도 폴리에틸렌의 함량이 증가함에 따라 0°에서 90°, 즉 종방향에서 횡방향까지의 연신율의 변화의 폭이 커짐을 확인하였고 이의 그래프를 도 7 내지 9에 나타내었다.Its mechanical properties change depending on the orientation direction of the polymer. In order to confirm the change of the elongation according to the orientation characteristics according to the content of biosynthetic low density polyethylene, the prepared films of Comparative Example 1, Examples 1, 2 and 3 were stretched at 0 °, 30 °, 60 °, 90 °, 120 °, 150 ° and 180 °, respectively. As the content of bio-linear low-density polyethylene increases, it is confirmed that the range of the change of elongation from 0 ° to 90 °, that is, the longitudinal direction to the transverse direction increases, and the graphs thereof are shown in FIGS.
실시예 7Example 7
실시예 6의 결과에 따라 바이오 수지의 함량에 따른 연신율의 변화의 폭이 커짐을 확인하고 분자량 분포가 커짐을 예상하여, 비교예 1, 실시예 1, 2 및 3의 고온 겔크로마토그래피(Gel Permeation Chromatograph, GPC)를 측정하여 그의 분자량 값과 분포도를 분석하였다. 고온 GPC 시험장비(PL-GPC 220 system)을 이용하여 측정하였으며, 용매는 트리클로로벤젠(Trichlorobenzene), 160의 검출온도에서 1.0ml/min의 유속으로 조건을 지정하였다. 실험결과 비교예 1, 실시예 1, 2 및 3의 수평균분자량(Number average molecular weight, Mn), 중량평균분자량(Weight Average molecular weight, Mw), Z-평균분자량(Z-Average molecular weight, Mz)의 및 다분산성지수(Polymer Disperse Index, PDI) 값의 비교표를 하기 표 3에 나타내었다.The gel permeation chromatography (Gel Permeation) of Comparative Example 1, Examples 1, 2, and 3 was carried out in the same manner as in Comparative Example 1 and Example 2, in anticipation of increasing the variation of elongation according to the content of the bio- Chromatograph, GPC) were measured and their molecular weight values and distribution were analyzed. The temperature was measured using a high-temperature GPC test equipment (PL-GPC 220 system). The solvent was set at a flow rate of 1.0 ml / min at a detection temperature of 160 trichlorobenzene. The number average molecular weight (Mn), weight average molecular weight (Mw) and Z-average molecular weight (Mz) of Comparative Example 1, Examples 1, 2 and 3, ) And the polydispersity index (PDI) values of the polymer are shown in Table 3 below.
MnMn MwMw MzMz Mw/MnMw / Mn
비교예 1Comparative Example 1 56,06256,062 164,422164,422 356,413356,413 2.9332.933
실시예 1Example 1 48,62648,626 194,077194,077 503,764503,764 3.9913.991
실시예 2Example 2 52,55652,556 209,148209,148 554,272554,272 3.9803.980
실시예 3Example 3 49,07149,071 221,765221,765 603,746603,746 4.5194.519
다분산성지수(PDI)는 중합체 필름의 분자량 분포를 측정하는 척도로써 다분산성지수가 1이면 단분산(Monodisperse) 하며 1 보다 크면 다분산(Polydisperse)하다. 즉 다분산성지수가 크면 분자량 분포가 크며, 작으면 분자량 분포가 작다. 실시예 6의 결과에 따라 바이오 수지의 함량에 따른 연신율의 변화의 폭이 커짐을 확인하고 분자량 분포가 커짐을 예상하였다. 실험결과 다분산성 지수는 바이오수지의 함량에 따라 2.933, 3.991, 3.980, 4.519로 증가하는 경향을 보였다. The polydispersity index (PDI) is a measure for measuring the molecular weight distribution of a polymer film. Monodisperse is a polydispersity index of 1, and polydisperse is a polydispersity index. That is, when the polydispersity index is large, the molecular weight distribution is large, while when the polydispersity index is small, the molecular weight distribution is small. It was confirmed that the variation of the elongation according to the content of the bio resin was increased according to the results of Example 6, and the molecular weight distribution was expected to be larger. The results showed that the polydispersity index increased to 2.933, 3.991, 3.980 and 4.519 depending on the content of bio - resin.
실시예 8Example 8
용융지수 (Melt Index, MI)에 따른 인장강도 및 연신율의 변화를 보기 위해 비교예 1, 실시예 1, 2 및 3의 용융지수(용융점도 측정기, MWLD-600)를 측정하여 그의 상관관계를 파악하였다. 190℃의 온도에서 Cut-off time 30초, 예열시간 5분의 조건하에 하기 표 4와 같은 결과 값을 얻었다. Melt index (MWLD-600) of Comparative Example 1, Examples 1, 2 and 3 was measured to determine the change of tensile strength and elongation according to Melt Index (MI) Respectively. Under the conditions of a cut-off time of 30 seconds and a preheating time of 5 minutes at a temperature of 190 占 폚, the results shown in Table 4 were obtained.
용융지수 (g/10min)The melt index (g / 10 min)
비교예 1Comparative Example 1 2.960 ± 0.0482.960 + 0.048
실시예 1Example 1 2.606 ± 0.0402.606 + 0.040
실시예 2Example 2 1.440 ± 0.0441.440 + 0.044
실시예 3Example 3 1.006 ± 0.0181.006 + 0.018
바이오 수지의 함량이 증가함에 따라 용융지수가 낮아짐을 확인하였다. 이의 그래프를 도 10에 나타내었다. 용융지수가 높아질수록 종방향(MD)으로 인장강도의 급격한 저하를 보이고, 용융지수가 낮아질수록 횡방향(TD)으로 인장강도의 저하를 나타내었다. 앞서 언급한 고온 겔크로마토그래피에서 얻은 다분산성 지수 즉 분자량 분포와 용융지수는 상관관계가 있으며 분자량 분포가 넓고 다분산성(Polydisperse)일수록 용융지수는 감소함을 보인다. It was confirmed that as the content of bio resin increased, the melt index decreased. A graph of this is shown in Fig. As the melt index increased, the tensile strength decreased sharply in the longitudinal direction (MD) and the tensile strength decreased in the transverse direction (TD) as the melt index decreased. The polydispersity index obtained by the above-mentioned high temperature gel chromatography, that is, the molecular weight distribution and the melt index are correlated, the molecular weight distribution is wide, and the melt index is decreased as the polydisperse.
실시예 9 Example 9
바이오 폴리에틸렌 수지는 기존의 화석원료를 활용하는 대신 재생가능한 식물 유래 자원인 바이오매스를 원료로 하여 고분자를 합성한 것으로 그 원료인 바이오매스가 광합성에 의해 생성되는 과정에서 공기 중의 이산화탄소를 필요로 하기 때문에 이산화탄소 배출 저감이라는 측면에서 중요하다. Beta analytic의 Biobased Testing을 ASTM D6866의 규격을 기준으로 측정한 pMC 값은 유효 바이오 성분의 함량이며, 일반적으로 석유화학계 폴리에틸렌의 이산화탄소 발생량이 폴리에틸렌 1kg당 1,860g의 이산화탄소가 배출됨을 기준으로 비교예 1 과 실시예 1의 이산화탄소 저감량을 하기 표 5에 나타내었다.Bio-polyethylene resins are synthesized from biomass, which is a renewable plant-derived resource, instead of using existing fossil raw materials. Since biomass, which is a raw material, is produced by photosynthesis, carbon dioxide is required in the air It is important in terms of carbon dioxide emission reduction. The pMC value measured by the biobased testing of Beta analytic based on ASTM D6866 standard is the content of effective biocomponents. Generally, the amount of carbon dioxide produced in the petrochemical polyethylene is 1,860 g per kg of polyethylene, The amount of carbon dioxide reduction in Example 1 is shown in Table 5 below.
생산량(ton)Production (ton) 이산화탄소 발생량 (ton)Carbon dioxide Emission (ton) 이산화탄소 저감량 (ton)Carbon dioxide reduction (ton)
비교예 1Comparative Example 1 실시예 1Example 1
00 00 00 00
5050 9393 55.855.8 37.237.2
100100 186186 111.6111.6 74.474.4
150150 279279 167.4167.4 111.6111.6
200200 372372 223.2223.2 148.8148.8
250250 465465 279279 186186
300300 558558 334.8334.8 223.2223.2
350350 651651 390.6390.6 260.4260.4
400400 744744 446.4446.4 297.6297.6
상기 나타낸 표 5는 일일 생산량에 따른 이산화탄소 저감량이며, pCM 44% 함유된 실시예 1의 경우 비교예 1과 비교하여 하루 생산 200톤을 기준으로 148톤, 400톤 생산 기준 약300톤의 이산화탄소 저감효과를 갖는다. 이의 그래프를 도 10에 나타내었다.Table 5 shows the carbon dioxide reduction amount according to the daily production amount. In the case of Example 1 containing 44% of pCM, the carbon dioxide reduction effect of 148 ton per day of production 200 ton per day and about 300 ton per 400 ton production standard . A graph of this is shown in Fig.

Claims (16)

  1. 전체 조성물의 중량에 대하여, 바이오매스를 함유한 선형 저밀도 폴리에틸렌 수지 20 내지 70 중량%, 지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지 10 내지 50 중량% 및 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지 20 내지 60 중량% 를 포함하는 바이오매스 스트레치 필름용 저밀도 폴리에틸렌 수지 조성물.20 to 70 wt% of a linear low density polyethylene resin containing biomass, 10 to 50 wt% of a linear low density polyethylene resin polymerized under a Ziegler-Natta catalyst, and a linear low density polyethylene resin polymerized under a metallocene catalyst And 20 to 60% by weight of the low-density polyethylene resin composition for a biomass stretch film.
  2. 제 1항에 있어서, The method according to claim 1,
    상기 바이오매스를 함유한 선형 저밀도 폴리에틸렌 수지는 밀도가 0.910 ~ 0.920g/cm3 및 용융지수(190, 2.16kg) 0.8 ~ 2.5g/10min 인 선형 저밀도 폴리에틸렌 수지인 것을 특징으로 하는 바이오매스 스트레치 필름용 저밀도 폴리에틸렌 수지 조성물.Wherein the linear low density polyethylene resin containing the biomass is a linear low density polyethylene resin having a density of 0.910 to 0.920 g / cm 3 and a melt index (190, 2.16 kg) of 0.8 to 2.5 g / 10 min. Low density polyethylene resin composition.
  3. 제 1항에 있어서, The method according to claim 1,
    상기 지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지는, 지글러-나타 촉매하에 중합된, 에틸렌과 탄소 원자수 4이상의 α-올레핀의 공중합체로 이루어지고, 밀도가 0.915 ~ 0.925 g/cm3 및 용융지수 (190, 2.16kg) 2.0 ~ 4.5g/10min 인 선형 저밀도 폴리에틸렌 수지인 것을 특징으로 하는 바이오매스 스트레치 필름용 저밀도 폴리에틸렌 수지 조성물.The linear low density polyethylene resin polymerized under the above-mentioned Ziegler-Natta catalyst is composed of a copolymer of ethylene and an? -Olefin having 4 or more carbon atoms polymerized under a Ziegler-Natta catalyst and has a density of 0.915 to 0.925 g / cm 3 And a linear low density polyethylene resin having a melt index (190, 2.16 kg) of 2.0 to 4.5 g / 10 min. The low density polyethylene resin composition for a biomass stretch film according to claim 1,
  4. 제 1항에 있어서, The method according to claim 1,
    상기 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지는, 메탈로센 촉매 하에 중합된 에틸렌과 탄소 원자수 6이상의 α-올레핀의 공중합체로 이루어지고, 밀도가 0.905 ~ 0.920g/cm3 및 용융지수(190, 2.16kg) 2.5 ~ 4.2g/10min인 선형저밀도 폴리에틸렌 수지인 것을 특징으로 하는 바이오매스 스트레치 필름용 저밀도폴리에틸렌 수지 조성물.The linear low density polyethylene resin polymerized under the metallocene catalyst is a copolymer of ethylene and an? -Olefin having 6 or more carbon atoms polymerized under a metallocene catalyst and has a density of 0.905 to 0.920 g / cm 3 and a melt index (190, 2.16 kg) of 2.5 to 4.2 g / 10 min. The low-density polyethylene resin composition for a biomass stretch film according to claim 1, wherein the low-density polyethylene resin is a linear low-density polyethylene resin.
  5. 제 1항에 있어서, The method according to claim 1,
    상기 지글러-나타 촉매하에 중합된 선형 저밀도 폴리에틸렌 수지의 α-올레핀 공단량체는 1-부텐, 1-펜텐, 1-헥센, 1-옥텐, 1-데센 및 1-도데센으로 이루어진 군에서 선택되는 1종 또는 이상인 것을 특징으로 하는 바이오매스 스트레치 필름용 저밀도폴리에틸렌 수지 조성물.The? -Olefin comonomer of the linear low density polyethylene resin polymerized under the Ziegler-Natta catalyst is 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene and 1-dodecene. Or more of the total weight of the biomass stretch film.
  6. 제 1항에 있어서, The method according to claim 1,
    상기 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지의 α-올레핀 공단량체는 1-부텐, 1-펜텐, 1-헥센, 1-옥텐, 1-데센 및 1-도데센으로 이루어진 군에서 선택되는 1종 또는 이상인 것을 특징으로 하는 바이오매스 스트레치 필름용 저밀도폴리에틸렌 수지 조성물.The alpha -olefin comonomer of the linear low density polyethylene resin polymerized under the metallocene catalyst is a copolymer of 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene and 1-dodecene Or more of the total weight of the biomass stretch film.
  7. 전체 조성물의 중량에 대하여, 바이오매스를 함유한 선형 저밀도 폴리에틸렌 수지 20 내지 70 중량%, 지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지 10 내지 50 중량% 및 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지 20 내지 60 중량% 를 함유하는 혼련된 배합 수지를 포함하는 것을 특징으로 하는, 바이오매스 스트레치 필름용 저밀도 폴리에틸렌 필름.20 to 70 wt% of a linear low density polyethylene resin containing biomass, 10 to 50 wt% of a linear low density polyethylene resin polymerized under a Ziegler-Natta catalyst, and a linear low density polyethylene resin polymerized under a metallocene catalyst By weight, and 20 to 60% by weight, based on the total weight of the low-density polyethylene film and the low-density polyethylene film.
  8. 제7항에 있어서, 상기 필름은 지글러-나타 촉매 하에 중합된 선형 저밀로 폴리에틸렌 수지를 포함하는 외층, 바이오매스를 함유한 선형 저밀도 폴리에틸렌 수지를 포함하는 중층 및 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지를 포함하는 내층의 3층 구조를 갖는 것인, 바이오매스 스트레치 필름용 저밀도 폴리에틸렌 필름.8. The method of claim 7, wherein the film comprises an outer layer comprising a linear low density polyethylene resin polymerized under a Ziegler-Natta catalyst, an intermediate layer comprising a linear low density polyethylene resin containing biomass, and a linear low density polyethylene polymerized under a metallocene catalyst Layer structure of an inner layer containing a resin.
  9. 제7항에 있어서, 상기 필름은 상기 바이오매스를 함유한 선형 저밀도 폴리에틸렌 수지, 지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지 및 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지를 포함하는 배합 수지를 캐스팅 익스투루더에 투입하여, 용용 온도 170℃ 내지 230℃에서 용융시켜, 온도가 180℃ 내지 250℃인 티다디 블록을 통과시킨 후, 온도가 15℃ 내지 30℃인 냉각롤러를 통해 압출된 것을 특징으로 하는 바이오매스 스트레치 필름용 저밀도 폴리에틸렌 필름.8. The method of claim 7, wherein the film is formed by casting a blend resin comprising a linear low density polyethylene resin containing the biomass, a linear low density polyethylene resin polymerized under a Ziegler-Natta catalyst, and a linear low density polyethylene resin polymerized under a metallocene catalyst And then extruded through a cooling roller having a temperature of 15 ° C to 30 ° C after passing through a tidiadi block having a temperature of 180 ° C to 250 ° C by melting at a melting temperature of 170 ° C to 230 ° C A low density polyethylene film for a biomass stretch film.
  10. 제7항에 있어서, 8. The method of claim 7,
    바이오매스를 스트레치 필름용 저밀도 폴리에틸렌 필름 중의 C14의 농도값이 25 pCM(percent modern Carbon) 이상인 것을 특징으로 하는 바이오매스 스트레치 필름용 저밀도 폴리에틸렌 필름.Characterized in that the concentration of C14 in the low density polyethylene film for stretch film is not less than 25 pCM (percent modern carbon) in the biomass.
  11. 제7항에 있어서, 8. The method of claim 7,
    상기 혼련된 배합 수지의 용융지수가 2.0 ~ 3.5g/cm3 인 배합 구성을 특징으로 하는 바이오매스 스트레치 필름용 저밀도 폴리에틸렌 필름.And a melt index of the kneaded blended resin is 2.0 to 3.5 g / cm < 3 >. The low density polyethylene film for a biomass stretch film according to claim 1,
  12. 제 7항에 있어서 The method of claim 7, wherein
    상기 혼련된 배합 수지는 30,000 ~ 70,000의 수평균분자량(Number average molecular weight, Mn), 100,000 ~ 300,000의 중량평균분자량(Weight average molecular weight, Mw), 및 200,000 ~ 700,000의 Z-평균분자량(Z-average molecular weight, Mz)을 갖는 것인, 바이오매스 스트레치 필름용 저밀도 폴리에틸렌 필름.The kneaded compounding resin has a number average molecular weight (Mn) of 30,000 to 70,000, a weight average molecular weight (Mw) of 100,000 to 300,000 and a Z-average molecular weight (Z- average molecular weight, Mz). < / RTI >
  13. 제7항에 있어서 The method of claim 7, wherein
    상기 혼련된 배합 수지의 다분산성지수는 1.5 ~ 5.0인 것을 특징으로 하는 바이오매스 스트레치 필름용 저밀도 폴리에틸렌 필름.Wherein the blended resin blend has a polydispersity index of 1.5 to 5.0. ≪ RTI ID = 0.0 > 11. < / RTI >
  14. 제7항의 바이오매스 스트레치 필름용 저밀도 폴리에틸렌 필름을 포함하는 포장재.A packaging material comprising the low density polyethylene film for a biomass stretch film of claim 7.
  15. (a) 조성물 총 100 중량%에 대하여, 바이오매스를 함유한 바이오 선형 저밀도 폴리에틸렌 수지 20 내지 70 중량%, 지글러-나타 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지 10 내지 50 중량% 및 메탈로센 촉매 하에 중합된 선형 저밀도 폴리에틸렌 수지 20 내지 60 중량%를 포함하는 스트레치 필름용 저밀도폴리에틸렌 수지 조성물을 배합하는 단계; 및 (a) 20 to 70% by weight of a bi-linear low density polyethylene resin containing biomass, 10 to 50% by weight of a linear low density polyethylene resin polymerized under a Ziegler-Natta catalyst, and By weight of a low density polyethylene resin composition for a stretch film comprising 20 to 60% by weight of a linear low density polyethylene resin; And
    (b) 상기 단계 (a)의 배합물을 압출기에 투입하여 용융시킨 후 압출하는 단계를 포함하는, 스트레치 필름용 저밀도 선형 폴리에틸렌 필름의 제조방법.(b) introducing the compound of step (a) into an extruder, melting the extruder, and extruding the extruded product.
  16. 제15항에 있어서, 16. The method of claim 15,
    상기 단계 (b)는 압출기에 투입하여, 용용 온도 170℃ 내지 230℃에서 용융시킨 후, 온도가 180℃ 내지 250℃인 티다디 블록을 통과시킨 후, 온도가 15℃ 내지 30℃인 냉각롤러를 통해 압출시키는 것에 의해 수행되는 것인, 제조방법.The step (b) is carried out in an extruder, melted at a melting temperature of 170 to 230 ° C., passed through a tidadi block having a temperature of 180 to 250 ° C., and then cooled to a temperature of 15 ° C. to 30 ° C. Lt; RTI ID = 0.0 > of: < / RTI >
PCT/KR2017/013979 2017-11-28 2017-12-01 Composition containing carbon-reduction type biomass polyethylene for stretch film and method for preparing same WO2019107626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170160946A KR101986123B1 (en) 2017-11-28 2017-11-28 Composition for stretch film comprising low carbon-type biomass polyethylene and method for preparing the same
KR10-2017-0160946 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019107626A1 true WO2019107626A1 (en) 2019-06-06

Family

ID=66665019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013979 WO2019107626A1 (en) 2017-11-28 2017-12-01 Composition containing carbon-reduction type biomass polyethylene for stretch film and method for preparing same

Country Status (2)

Country Link
KR (1) KR101986123B1 (en)
WO (1) WO2019107626A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062987A (en) * 2020-07-30 2020-12-11 上海森韦得实业有限公司 Preparation method of biodegradable heat-shrinkable film
CN112063055A (en) * 2020-07-30 2020-12-11 上海森韦得实业有限公司 Preparation method of biodegradable heat-shrinkable film
CN112175285A (en) * 2020-07-30 2021-01-05 上海森韦得实业有限公司 Preparation method of heat-shrinkable film capable of reducing carbon emission
IT201900025171A1 (en) * 2019-12-20 2021-06-20 Basiliotti S R L BAG
WO2022112848A1 (en) * 2020-11-27 2022-06-02 Braskem S.A. Biocompatible low impact co2 emission polymer compositions, pharmaceutical articles and methods of preparing same
CN115556448A (en) * 2022-09-08 2023-01-03 上海乐纯生物技术有限公司 Multilayer film for bioprocess bag and application thereof
CN116003899A (en) * 2023-02-16 2023-04-25 广东安拓普聚合物科技有限公司 Composite material based on bio-based polyethylene and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234433A1 (en) * 2022-05-30 2023-12-07 (주)화진산업 Flexible thin film composition for packaging using linear low-density polyethylene containing biomass, and method for preparing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136689A (en) * 2011-12-28 2013-07-11 Dainippon Printing Co Ltd Polyethylene-based resin film for packaging material sealant
JP2013151623A (en) * 2012-01-26 2013-08-08 Dainippon Printing Co Ltd Film and packaging bag using polyethylene-based resin derived from plant
JP2013155343A (en) * 2012-01-31 2013-08-15 Dainippon Printing Co Ltd Polyethylene-based resin composition
JP2013177531A (en) * 2012-02-29 2013-09-09 Dainippon Printing Co Ltd Sealant film and packaging material using the same
KR20150090451A (en) * 2014-01-29 2015-08-06 주식회사 뉴랩 Manufacture method and development bio-thin-film about Climatechange correspondence fossil carbon reduction
KR20160060833A (en) * 2014-11-20 2016-05-31 롯데케미칼 주식회사 Polyethylene compositions and process for producing the same and polyethylene film having the same compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136689A (en) * 2011-12-28 2013-07-11 Dainippon Printing Co Ltd Polyethylene-based resin film for packaging material sealant
JP2013151623A (en) * 2012-01-26 2013-08-08 Dainippon Printing Co Ltd Film and packaging bag using polyethylene-based resin derived from plant
JP2013155343A (en) * 2012-01-31 2013-08-15 Dainippon Printing Co Ltd Polyethylene-based resin composition
JP2013177531A (en) * 2012-02-29 2013-09-09 Dainippon Printing Co Ltd Sealant film and packaging material using the same
KR20150090451A (en) * 2014-01-29 2015-08-06 주식회사 뉴랩 Manufacture method and development bio-thin-film about Climatechange correspondence fossil carbon reduction
KR20160060833A (en) * 2014-11-20 2016-05-31 롯데케미칼 주식회사 Polyethylene compositions and process for producing the same and polyethylene film having the same compositions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900025171A1 (en) * 2019-12-20 2021-06-20 Basiliotti S R L BAG
WO2021124243A1 (en) * 2019-12-20 2021-06-24 Basiliotti S.R.L. Bag
CN112062987A (en) * 2020-07-30 2020-12-11 上海森韦得实业有限公司 Preparation method of biodegradable heat-shrinkable film
CN112063055A (en) * 2020-07-30 2020-12-11 上海森韦得实业有限公司 Preparation method of biodegradable heat-shrinkable film
CN112175285A (en) * 2020-07-30 2021-01-05 上海森韦得实业有限公司 Preparation method of heat-shrinkable film capable of reducing carbon emission
WO2022112848A1 (en) * 2020-11-27 2022-06-02 Braskem S.A. Biocompatible low impact co2 emission polymer compositions, pharmaceutical articles and methods of preparing same
US11702534B2 (en) 2020-11-27 2023-07-18 Braskem S.A. Biocompatible low impact CO2 emission polymer compositions, pharmaceutical articles and methods of preparing same
CN115556448A (en) * 2022-09-08 2023-01-03 上海乐纯生物技术有限公司 Multilayer film for bioprocess bag and application thereof
CN116003899A (en) * 2023-02-16 2023-04-25 广东安拓普聚合物科技有限公司 Composite material based on bio-based polyethylene and preparation method thereof

Also Published As

Publication number Publication date
KR101986123B1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
WO2019107626A1 (en) Composition containing carbon-reduction type biomass polyethylene for stretch film and method for preparing same
US10184043B2 (en) Polypropylene film with improved balance of mechanical properties
US5500260A (en) Dispersible film
CN101087843B (en) Novel propylene polymer blends
CN102203178B (en) Tough composition for food applications
KR101256100B1 (en) Polymer blends for producing films with a reduced number of defects
JP5183455B2 (en) Resin composition for film and molded article obtained therefrom
CN103128956B (en) Cyclic olefin resin composition
CN102361925A (en) High-density polyethylene compositions, method of producing the same, closure devices made therefrom, and method of making such closure devices
MX2014004815A (en) Multi-layered shrink films.
WO2006119901A1 (en) Transparent easy tearable film
WO2018199494A1 (en) Multi-degradable polyolefin-based resin composition and method for preparing same
KR100889220B1 (en) High density polyethylene resin composition for chemical bottle
US11130259B1 (en) Device and method for online preparation of modified polylactic acid material with polylactic acid melt
CN103210038A (en) Polypropylene resin composition for thin wall injection molding, molded article and container
EP0755970A1 (en) Process for the extrusion of polyethylene
CN103261308A (en) Polypropylene resin composition for injection molding, molded article, container, and lid
JP4729998B2 (en) Multilayer film and bag
KR20210067265A (en) Composition of polypropylene resin for higher shrinkage film and shrinkage film prepared using the same
KR101487878B1 (en) Composition of heat-resistant polyolefine of nano-treatment for packaging new retort food and film for packaging of food therefrom
CN101378902A (en) Multilayer thermoshrinkable films
WO2023234433A1 (en) Flexible thin film composition for packaging using linear low-density polyethylene containing biomass, and method for preparing same
WO2016072579A1 (en) Polyethylene resin composition for plastic bottle lid, and molded product produced from the polyethylene resin composition
WO2024014878A1 (en) Bio-based plastic composite comprising bio-based polypropylene, manufacturing method therefor, and uses thereof
KR20230167171A (en) Flexible thin film composition for packagin using linear low-density polyethylene containing biomass and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933754

Country of ref document: EP

Kind code of ref document: A1