WO2019107481A1 - Method for evaluating cell hyperstimulation toxicity - Google Patents

Method for evaluating cell hyperstimulation toxicity Download PDF

Info

Publication number
WO2019107481A1
WO2019107481A1 PCT/JP2018/043917 JP2018043917W WO2019107481A1 WO 2019107481 A1 WO2019107481 A1 WO 2019107481A1 JP 2018043917 W JP2018043917 W JP 2018043917W WO 2019107481 A1 WO2019107481 A1 WO 2019107481A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
human
cell
test substance
excitotoxicity
Prior art date
Application number
PCT/JP2018/043917
Other languages
French (fr)
Japanese (ja)
Inventor
治久 井上
孝之 近藤
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2019557314A priority Critical patent/JP7274216B2/en
Publication of WO2019107481A1 publication Critical patent/WO2019107481A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a method of evaluating excitotoxicity to human neurons.
  • Priority is claimed on Japanese Patent Application No. 2017-230610, filed Nov. 30, 2017, the content of which is incorporated herein by reference.
  • Patent Document 1 discloses a method of rapidly and synchronously differentiating pluripotent stem cells into neurons.
  • an object of the present invention is to provide a method for evaluating excitotoxicity of a test substance to human neurons, which can respond to stable and high-throughput evaluation.
  • the present invention includes the following aspects.
  • a method for evaluating the excitotoxicity of a test substance to human neurons (1) bringing a test substance into contact with human neurons produced by inducing differentiation of pluripotent stem cells; (2) a step of stimulating the human neural cell, (3) measuring the degree of excitation of the human nerve cell, and (4) if the excitation of the human nerve cell is enhanced in the presence of the test substance, the test substance is excitotoxic to the human nerve cell
  • a method for evaluating excitotoxicity of a test substance on human neurons which comprises the step of evaluating the presence of the compound.
  • the method according to [1] wherein the human neural cell is a cell that has been passaged once after differentiating pluripotent stem cells into neural cells.
  • the electrical stimulation is performed at a voltage of 10 to 15 V and a stimulation frequency of 8 to 30 Hz.
  • the step of measuring the degree of excitation of the human nerve cell is the measurement of calcium dynamics in the human nerve cell.
  • the human neuronal cell is a cerebral cortical neuronal cell.
  • the present invention it is possible to provide a method for evaluating the excitotoxicity of a test substance on human neural cells, which can predict in vitro nervous system side effects that can respond to stable and high-throughput evaluation.
  • Example 1 it is the figure which showed the change of the intracellular calcium at the time of Bepridil addition.
  • Example 2 it is the figure which showed the change of the intracellular calcium at the time of adding Amoxapin, Chlorpromazine, and Linopirdin, respectively.
  • the present invention is a method for evaluating excitotoxicity of a test substance on human neurons, (1) bringing a test substance into contact with human neurons produced by inducing differentiation of pluripotent stem cells; (2) a step of stimulating the human neural cell, (3) measuring the degree of excitation of the human nerve cell, and (4) if the excitation of the human nerve cell is enhanced in the presence of the test substance, the test substance is excitotoxic to the human nerve cell
  • the present invention provides a method for evaluating the excitotoxicity of a test substance to human neurons, which comprises the step of evaluating the presence. The present embodiment will be described in detail below.
  • Human neural cells used in the method for evaluating excitotoxicity of the present embodiment can be produced from pluripotent stem cells by differentiation induction according to the method described in Patent Document 1. Specifically, human neural cells can be prepared from pluripotent stem cells as follows.
  • a neuron used in the method of evaluating excitotoxicity according to the present invention may be called iN in order to distinguish it from an original (that is, natural) neuron.
  • the Ngn2 gene may be referred to as a neurogenic factor (or N-factor).
  • a nucleic acid encoding Ngn2 is introduced into pluripotent stem cells using a transposon, and the expression of the gene can be maintained for 3 days or more to allow rapid and synchronized differentiation into neural cells.
  • the expression induction of the Ngn2 gene can be performed either in culture or in an animal. Below, the technology which comprises these methods is explained in full detail.
  • the pluripotent stem cells used in the method for evaluating excitotoxicity according to the present embodiment are stem cells having pluripotency capable of differentiating into all cells present in a living body and also having proliferation ability.
  • Examples include, but are not limited to, embryonic stem (ES) cells, cloned embryonic derived embryonic stem (ntES) cells obtained by nuclear transfer, spermatogonia stem cells (GS cells), embryonic germ cells (EG) Cells), induced pluripotent stem (iPS) cells, cultured fibroblasts and pluripotent cells derived from bone marrow stem cells (Muse cells).
  • pluripotent stem cells preferable for use in the excitotoxicity evaluation method of the present embodiment are ES cells, nt ES cells, and iPS cells. Each stem cell is described below.
  • Embryonic Stem Cell ES cell is a stem cell having pluripotency and proliferation ability by self-replication established from the inner cell mass of a mammalian early embryo (eg, blastocyst) such as human and mouse.
  • ES cells are embryonic stem cells derived from the inner cell mass of the blastocyst, which is the 8-cell stage of fertilized eggs and embryos after morula, and have the ability to differentiate into any cells that constitute an adult, so-called highly differentiated cells. It has the ability to grow by self-replication.
  • Human ES cell lines such as WA01 (H1) and WA09 (H9) are obtained from the WiCell Research Institute, and KhES-1, KhES-2 and KhES-3 are obtained from the Research Institute for Regenerative Medicine (Kyoto, Japan) It is possible.
  • sperm stem cells are testis-derived pluripotent stem cells, and are cells serving as a source for spermatogenesis. These cells, like ES cells, can be induced to differentiate into cells of various lineages, and for example, have the property of being able to produce chimeric mice when transplanted into mouse blastocysts. It is capable of self-replication in a culture solution containing glial cell line-derived neurotrophic factor (GDNF), and spermatozoa by repeating passaging under culture conditions similar to ES cells. Stem cells can be obtained.
  • GDNF glial cell line-derived neurotrophic factor
  • Embryonic germ cells are cells with pluripotency similar to ES cells, established from embryonic primordial germ cells, such as LIF, bFGF, stem cell factor, etc. It can be established by culturing primordial germ cells in the presence of
  • Artificial pluripotent stem cells Artificial pluripotent stem (iPS) cells can be prepared by introducing specific reprogramming factors in the form of DNA or protein into somatic cells, and are almost equivalent to ES cells Artificial stem cells derived from somatic cells, which have the following characteristics: pluripotency of differentiation and proliferation ability by self-replication.
  • the reprogramming factor is a gene specifically expressed in ES cells, its gene product or non-cording RNA, or a gene that plays an important role in the maintenance of undifferentiated ES cells, its gene product or non-cording RNA, or You may be comprised by the low molecular weight compound.
  • genes included in the reprogramming factor for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15 -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1 etc. are exemplified, and these reprogramming factors may be used alone or in combination.
  • the reprogramming factors include histone deacetylase (HDAC) inhibitors [eg, valproic acid (VPA), trichostatin A, sodium butyrate, small molecule inhibitors such as MC 1293, M344, siRNA for HDAC and shRNA (eg, Nucleic acid expression inhibitors such as HDAC1 siRNA Smartpool (trademark) (Millipore), HuSH 29mer shRNA Constructs against HDAC1 (OriGene), etc.], MEK inhibitors (eg PD184352, PD98059, U0126, SL327 and PD0325901), Glycogen Synthase kinase-3 inhibitor (eg, Bio and CHIR99021), DNA methyltransferase inhibitor For example, 5-azacytidine), histone methyltransferase inhibitors (for example, small molecule inhibitors such as BIX-01294, nucleic acid expression inhibitors such as Suv39hl, Suv39h2, SetDB1 and G9
  • the reprogramming factor may be introduced into somatic cells in the form of a protein, for example, by lipofection, fusion with a cell membrane permeable peptide (eg, TAT and polyarginine derived from HIV), microinjection and the like.
  • a cell membrane permeable peptide eg, TAT and polyarginine derived from HIV
  • DNA in the case of the form of DNA, it can be introduced into somatic cells by techniques such as viruses, plasmids, vectors such as artificial chromosomes, lipofection, liposomes, microinjection and the like.
  • RNA in the case of the form of RNA, for example, it may be introduced into somatic cells by a technique such as lipofection, microinjection or the like, and RNA in which 5-methylcytidine and pseudouridine have been incorporated may be used to suppress degradation.
  • a culture medium for iPS cell induction for example, DMEM, DMEM / F12 or DME culture medium containing 10 to 15% FBS (LIF, penicillin / streptomycin, puromycin, L-glutamine are further added to these cultures.
  • FBS penicillin / streptomycin, puromycin, L-glutamine
  • Non-essential amino acids, ⁇ -mercaptoethanol, etc. can be suitably included
  • commercially available culture fluid eg, culture fluid for culturing mouse ES cell (TX-WES culture fluid, Thrombox X), primate ES cell Culture media (culture fluid for primate ES / iPS cells, Reprocel), serum-free medium (mTESR, Stemcell Technology), and the like are included.
  • a somatic cell is contacted with a reprogramming factor on DMEM or DMEM / F12 culture medium at 10% FBS in the presence of 5% CO 2 at 37 ° C. and cultured for about 4 to 7 days
  • the cells are then replated on feeder cells (eg, mitomycin C-treated STO cells, SNL cells, etc.), and after about 10 days after contact of somatic cells with the reprogramming factor, using a culture medium for culturing bFGF-containing primate ES cells
  • feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • DMEM culture solution containing 10% FBS on feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • 5% CO 2 in addition, LIF, penicillin / streptomycin, Puromycin, L-glutamine, non-essential amino acids, ⁇ -mercaptoethanol, etc. may optionally be included
  • LIF penicillin / streptomycin
  • Puromycin, L-glutamine, non-essential amino acids, ⁇ -mercaptoethanol, etc. may optionally be included
  • ES-like colonies after about 25 to about 30 days or more .
  • a method using a somatic cell to be initialized itself or an extracellular matrix for example, Laminin-5 and Matrigel (BD)
  • iPS cells may be established under hypoxic conditions (oxygen concentration of 0.1% or more and 15% or less).
  • hypoxic conditions oxygen concentration of 0.1% or more and 15% or less.
  • culture medium exchange with fresh culture medium is performed once daily from the second day after the culture start.
  • the number of somatic cells used for nuclear reprogramming is not limited, but is in the range of about 5 ⁇ 10 3 to about 5 ⁇ 10 6 cells per 100 cm 2 of culture dish.
  • IPS cells can be selected by the shape of the formed colony.
  • a drug resistance gene that is expressed in conjunction with a gene for example, Oct3 / 4, Nanog
  • a culture solution containing the corresponding drug selection The established iPS cells can be selected by culturing in a culture solution).
  • the marker gene is a fluorescent protein gene
  • iPS cells are selected by observing with a fluorescent microscope, by adding a luminescent substrate in the case of a luminescent enzyme gene, or by adding a chromogenic substrate in the case of a chromogenic enzyme gene. can do.
  • Somatic cell refers to any animal cell except germline cells such as oocytes, oocytes and ES cells or totipotent cells (preferably mammalian cells including human) Say). Somatic cells include, but are not limited to, fetal (child) somatic cells, neonatal (child) somatic cells, and any mature healthy or diseased somatic cells, and also primary culture cells. Also included are passage cells and cell lines.
  • somatic cells include, for example, (1) tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, dental pulp stem cells, (2) tissue precursor cells, (3) lymphocytes, epithelium Cells, endothelial cells, muscle cells, fibroblasts (skin cells etc.), hair cells, hepatocytes, gastric mucous cells, enterocytes, spleen cells, pancreatic cells (pancreatic exocrine cells etc.), brain cells, lung cells, kidney cells And differentiated cells such as adipocytes.
  • tissue stem cells such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, dental pulp stem cells
  • tissue precursor cells such as lymphocytes, epithelium Cells, endothelial cells, muscle cells, fibroblasts (skin cells etc.), hair cells, hepatocytes, gastric mucous cells, enterocytes, spleen cells, pancreatic cells (pancreatic
  • a diseased somatic cell may be used.
  • the disease is exemplified by neurodegenerative diseases.
  • iPS cells may be produced using somatic cells derived from patients with neurodegenerative diseases.
  • neurodegenerative disease is a disease caused by degeneration or loss of nerve cells, and exemplified by Alzheimer's disease, Parkinson's disease, Lewy body disease, Huntington's disease, spinocerebellar degeneration, etc. Be done.
  • somatic cells of patients with Alzheimer's disease are exemplified by somatic cells having mutations in the presenilin 1 gene or the preselinin 2 gene, and more than 30 mutations have been reported for presenilin 1 mutations so far, for example, It includes mutations in which D257 or D385 is substituted with alanine or glutamic acid, but is not particularly limited thereto.
  • nt ES cells are cloned embryo-derived ES cells prepared by nuclear transfer technology and have almost the same characteristics as fertilized egg-derived ES cells There is. That is, ES cells established from the inner cell mass of blastocysts derived from cloned embryos obtained by replacing unfertilized egg nuclei with somatic cell nuclei are nt ES (nuclear transfer ES) cells.
  • nt ES nuclear transfer technology
  • ES cell generation technology described above. In nuclear transfer, the nucleus of a somatic cell can be injected into an enucleated unfertilized egg of a mammal, and reprogramming can be performed by culturing for several hours.
  • Muse cells are pluripotent cells obtained by subjecting fibroblasts or bone marrow stromal cells to trypsin treatment for a long time, preferably for 8 hours or 16 hours, and then suspension culture; And CD105 is positive.
  • pluripotent stem cells into which a gene causing a disease is introduced can be used from the viewpoint of producing a model cell of a pathological condition.
  • pluripotent stem cells having a mutated gene include iPS cells produced by isolating somatic cells of patients with Alzheimer's disease and the like.
  • the Alzheimer's disease model cells of dementia include nerve cells obtained from the pluripotent stem cells by the method described above.
  • model cells of a preferable pathological condition are human cells.
  • a neuron is defined as a cell that expresses one or more marker genes of a neuron such as ⁇ -III tubulin, NCAM, and MAP2 and has a neurite.
  • the criteria for the neural cells (ie, iN) produced by the method according to the invention also follow this.
  • the neurons produced in the present invention are preferably glutamatergic.
  • producing nerve cells means obtaining a cell population containing cells satisfying the above definition, preferably, 50%, 60%, 70%, 80% or 90% of the cells. It is to obtain a cell population containing the above. Since Tuj1 is an anti- ⁇ -III tubulin, cells expressing the ⁇ -III tubulin may be referred to as Tuj1-positive cells.
  • the nucleic acid encoding Ngn2 may be DNA, RNA, or DNA / RNA chimera.
  • the nucleic acid may be double stranded or single stranded. When double stranded, it may be either double stranded DNA, double stranded RNA or a DNA: RNA hybrid. Preferably, it is double stranded DNA or single stranded RNA.
  • the nucleic acid encoding Ngn2 when the nucleic acid encoding Ngn2 is a double-stranded DNA (sometimes referred to herein as the Ngn2 gene), the nucleic acid can be introduced into pluripotent stem cells in a form inserted into an appropriate expression vector.
  • the RNA when the nucleic acid encoding Ngn2 is a single-stranded RNA, the RNA may be an RNA into which 5-methylcytidine and pseudouridine have been incorporated in order to suppress degradation, and may be a modified RNA by phosphatase treatment, It is also good.
  • the RNA encoding Ngn2 and the Ngn2 protein may be collectively referred to as the Ngn2 gene product.
  • nucleic acid encoding a transcription factor involved in other neurogenesis is pluripotent together with N-factor, as long as the nerve cell induction by N-factor is not inhibited. It may be introduced into sexual stem cells.
  • transcription factors include, for example, a nucleic acid encoding Ascl1, a nucleic acid encoding Brn2, a nucleic acid encoding Myt1l, and a nucleic acid encoding HB9.
  • Method of introducing nucleic acid encoding Ngn2 into pluripotent stem cells is not particularly limited, for example, the following method can be used.
  • the nucleic acid When the nucleic acid is in the form of DNA, it can be introduced into pluripotent stem cells by a method such as lipofection, liposome, microinjection or the like in a form introduced into a vector such as virus, plasmid, artificial chromosome or the like.
  • a vector such as virus, plasmid, artificial chromosome or the like.
  • viral vectors include retrovirus vectors, lentivirus vectors, adenovirus vectors, adeno-associated virus vectors, Sendai virus vectors and the like.
  • a plasmid vector a mammalian cell plasmid can be used as a plasmid vector.
  • an artificial chromosome vector a human artificial chromosome (HAC), a yeast artificial chromosome (YAC), a bacterial artificial chromosome (BAC, PAC) etc. are mentioned, for example.
  • a plasmid vector and an artificial chromosome vector are preferable, and a plasmid vector is most preferable.
  • These vectors can contain control sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc., so that the Ngn2 gene can be expressed, and further, if necessary, drug resistance genes (eg, for example) , Kanamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.), thymidine kinase gene, selectable marker sequence such as diphtheria toxin gene, etc., fluorescent protein, reporter gene sequence such as ⁇ -glucuronidase (GUS), FLAG etc. .
  • drug resistance genes eg, for example
  • Kanamycin resistance gene e.g., ampicillin resistance gene, puromycin resistance gene, etc.
  • thymidine kinase gene eg., selectable marker sequence such as diphtheria toxin gene, etc.
  • fluorescent protein e.g., fluorescent protein
  • reporter gene sequence such as ⁇ -glucuronidase (GUS), FLAG etc.
  • the expression cassette (promoter, gene sequence) is inserted into the above-mentioned vector in order to insert the nucleic acid encoding the gene into the chromosome, or to excise the nucleic acid inserted into the chromosome as required.
  • transposon sequences may be included before and after the gene expression unit containing the Although it does not specifically limit as a transposon sequence, piggyBac is illustrated. In order to introduce an expression cassette into a chromosome using a transposon, it is desirable to introduce transposase into the same cell together with a vector having the expression cassette.
  • the aforementioned vector in order to introduce transposase, may contain the nucleic acid encoding the transposase, and another vector may contain the nucleic acid encoding the transposase, and simultaneously introduced into cells. It is good. Furthermore, the gene product encoding the transposase may be directly introduced.
  • preferred transposases are transposases corresponding to the transposon sequences described above, preferably piggyBac transposases.
  • the nerve induction factor when in the form of RNA, it may be introduced into pluripotent stem cells by techniques such as electroporation, lipofection, microinjection, and the like.
  • the nerve induction factor when in the form of a protein, it may be introduced into pluripotent stem cells by a technique such as lipofection, fusion with cell membrane permeable peptides (eg, TAT and polyarginine derived from HIV), microinjection and the like.
  • a technique such as lipofection, fusion with cell membrane permeable peptides (eg, TAT and polyarginine derived from HIV), microinjection and the like.
  • a nucleic acid encoding Ngn2 can induce expression of Ngn2 at a desired time by functionally joining to an inducible promoter.
  • an inducible promoter mention may be made of a drug responsive promoter, and a preferred example thereof is a tetracycline responsive promoter (a CMV minimal promoter having a tetracycline response element (TRE) having seven consecutive tetO sequences) Can be mentioned.
  • the promoter is a promoter activated by supplying tetracycline or its derivative under expression of reverse tetracycline-regulated transactivator (rtTA; a fusion protein composed of reverse tetR (rTetR) and VP16AD).
  • doxycycline doxycycline, hereinafter abbreviated as DOX
  • DOX doxycycline
  • an expression induction system using a drug responsive promoter other than the above an expression induction system using an estrogen responsive promoter, a RheoSwitch mammalian inducible expression system using a promoter induced by RSL1 (New England Biolabs) , Q-mate system (Krackeler Scientific) or Cumate inducible expression system (National Research Council (NRC)) using a promoter induced by cumate, and GenoStat inducible expression using a promoter having an ecdysone responsive sequence Systems (Upstate cell signaling solutions) and the like.
  • RSL1 New England Biolabs
  • Q-mate system Kerr Scientific
  • Cumate inducible expression system National Research Council (NRC)
  • GenoStat inducible expression using a promoter having an ecdysone responsive sequence Systems (Upstate cell signaling solutions) and the like.
  • an agent capable of inducing activation of the promoter eg, the tetracycline responsive agent
  • expression of Ngn2 can be maintained by continuing to add tetracycline or DOX) to the medium for a desired period of time. Then, expression of the gene can be stopped by removing the drug from the culture medium (for example, replacing it with a culture medium not containing the drug).
  • expression induction of Ngn2 may be induced by bringing the gene into non-functional form into a constitutive promoter and converting the state of conjugation into a functional state of conjugation at a desired time.
  • a specific sequence for example, a sequence encoding a drug resistance gene or a sequence inducing transcription termination
  • LoxP sequences flanked by LoxP sequences may be inserted between the constitutive promoter and the sequence encoding the gene.
  • a method of converting the bonding state into a functional bonding state, etc. may be mentioned by arranging it and acting Cre at a desired time to remove the sequence sandwiched between the LoxP sequences.
  • FRT sequence or transposon sequence may be used, and FLP (flipase) or the transposon may be used instead of the Cre.
  • FLP flipase
  • transposon may be used instead of the Cre.
  • piggyBac transposon is mentioned as a transposon which can be used suitably for this purpose.
  • Constitutive promoters that can be used for the above purpose include SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcoma virus) promoter, MoMuLV (Moloney murine leukemia virus) LTR, HSV-TK (herpes simplex virus thymidine) kinase) promoter, EF- ⁇ promoter, CAG promoter and the like.
  • Cre, FLP, and transposon are allowed to act again after the desired period has elapsed, and the above sequence (LoxP sequence, FRT)
  • the expression of the gene can also be stopped by removing the sequence or the sequence flanked by the transposon sequences).
  • the expression period of the gene is controlled by using a vector that can be easily eliminated from the cell, such as an adenovirus vector, an adeno-associated virus vector, a Sendai virus vector, a plasmid, an episomal vector, etc. Is also possible.
  • the expression of introduced Ngn2 can exert the effects of the present invention in any of 3 days, 4 days, 5 days, 6 days, and 7 days, and the production of nerve cells is prolonged by becoming long. There is no disadvantage, but it is preferably 3 to 14 days, particularly preferably 7 to 14 days.
  • a culture medium used to induce differentiation of pluripotent stem cells into which the nucleic acid encoding Ngn2 has been introduced into nerve cells in culture is basically used.
  • a medium alone or a basal medium supplemented with a neurotrophic factor can be used.
  • a basic medium for example, Glasgow's Minimal Essential Medium (GMEM) medium, IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) Medium, Ham's F12 medium, RPMI 1640 medium, Fischer's medium, Neurobasal Medium (Life Technologies), and a mixed medium thereof are included.
  • the basal medium may contain serum or may be serum free.
  • the medium is, for example, Knockout Serum Replacement (KSR) (serum substitute for FBS in ES cell culture), N2 supplement (Invitrogen), B27 supplement (Invitrogen), albumin, transferrin, apotransferrin, fatty acid, It may contain one or more serum substitutes such as insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol etc.
  • KSR Knockout Serum Replacement
  • N2 supplement Invitrogen
  • B27 supplement Invitrogen
  • albumin transferrin
  • apotransferrin fatty acid
  • It may contain one or more serum substitutes such as insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol etc.
  • lipids such as lipids, amino acids, L-glutamine, Glutamax (Invitrogen), non-essential It may also contain one or more substances such as amino acids, vitamins, growth factors, small molecule compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, selenate, progesterone and putrescine, etc. .
  • Neurobasal Medium containing a B27 supplement, or a mixed medium of DMEM and F12 containing insulin, apotransferrin, selenate, progesterone and putrescine can be suitably used as a basic medium.
  • the culture temperature at the time of induction of differentiation of nerve cells is not particularly limited, and is about 30 to 40 ° C., preferably about 37 ° C.
  • the culture is carried out under an atmosphere of air containing 2 and the concentration of CO 2 is preferably about 2 to 5%.
  • the exogenous nucleic acid encoding Ngn2 is under the control of an inducible promoter, more preferably under the control of a drug responsive promoter.
  • Pluripotent stem cells into which these foreign nucleic acids have been inserted into the chromosome maintain their undifferentiated ability and high proliferative ability, and can be proliferated while retaining the aforementioned traits. Furthermore, since the above-mentioned trait is not lost even when cryopreservation is performed, it is possible to stably maintain the cell line. In addition, it is a cell capable of rapidly and synchronously differentiating into neural cells by contacting with the agent to which the promoter responds.
  • the present invention provides a method for evaluating the excitotoxicity of a test substance to human neurons.
  • the method for evaluating the excitotoxicity of the test substance of the present invention on human neurons comprises the following steps. (1) bringing a test substance into contact with human neurons produced by inducing differentiation of pluripotent stem cells; (2) a step of stimulating the human neural cell, (3) measuring the degree of excitation of the human nerve cell, and (4) if the excitation of the human nerve cell is enhanced in the presence of the test substance, the test substance is excitotoxic to the human nerve cell Process to evaluate that there is
  • the human neural cells used in the method for evaluating the excitotoxicity of the test substance of the present invention on human neurons may be any human neural cells produced by inducing differentiation of pluripotent stem cells, for example, Examples include human nerve cells produced by inducing differentiation of the pluripotent stem cells described above, and the like. Examples of human neural cells produced by differentiating pluripotent stem cells include cerebral cortical neurons and the like.
  • the neural cell is preferably a cell that has been passaged once after being induced to differentiate from pluripotent stem cells. As will be described later in the Examples, by passaging once, it is possible to minimize the difference in cell number between wells and the bias in the position of nerve cells in the wells, and to more accurately measure the evaluation of excitotoxicity. It becomes.
  • human neuronal cells are treated with enzymes, isolated and suspended to single cell units, and subjected to cell strainer treatment with a mesh pore size of 40, 70 or 100 ⁇ m, preferably 70 ⁇ m, and then 5 to 40 ⁇ 10 4 Cells / cm 2 , preferably at a cell density of 15 ⁇ 10 4 cells / cm 2 , in Neurobasal medium (manufactured by Thermofisher), B27 supplement without vitamin A (manufactured by Thermofisher) 0.5%, Glutama x 1%, penicillin 100 units It is preferable to carry out by inoculating the culture medium etc. which added / ml and streptomycin 100microg / ml.
  • a culture vessel coated with a coating solution on a culture vessel such as a 96-well clear bottom plate.
  • a coating solution 0.5 to 4%, preferably 2% of Matrigel (M coat), 0.002 to 0.005%, preferably 0.003% Poly-L-lysine and 0.5 to 5% are preferable.
  • PS coated with 4%, preferably 1% synthetic human vitronectin substrate (SynthemaxTM II-SC Substrate etc.), 0.002 to 0.005% w / v, preferably 0.003% w / v v Poly-L-lysine and 0.5 to 4%, preferably 1% synthetic human vitronectin substrate (such as SynthemaxTM II-SC Substrate) and 0.5 to 4%, preferably 2% Matrigel Mixture (PSM coat), 0.002-0.005%, preferably 0.003% Poly-L-lysine and 0.5%- %, Preferably 1% synthetic human vitronectin substrate (SynthemaxTM II-SC Substrate etc.) and 0.5% to 4%, preferably 2% Matrigel, 0.002 to 0.005% w / v, Preferably, a mixture (PSMC coat) of 0.003% human type I collagen-like recombinant peptide (Cellnest etc.) and the like are used.
  • PSM coat
  • the incubator is dried and then seeded with human neurons or immediately seeded with human neurons.
  • Human nerve cells seeded in a culture vessel are subjected to the excitotoxicity evaluation method of the present embodiment 3 to 7 days later.
  • the method for stimulating human neural cells is not particularly limited as long as it is a method capable of stimulating human neural cells to cause depolarization. , And methods of adding excitatory nerve synaptic transmitters such as glutamate, and the like.
  • the method of measuring the degree of excitation of human nerve cells is not particularly limited as long as it is a method capable of measuring the degree of excitation of nerve cells.
  • Methods of measuring calcium dynamics, methods of measuring changes in fluorescence intensity upon addition of a compound whose fluorescence intensity changes in response to changes in intracellular potential, and the like can be mentioned.
  • the method of measuring the calcium ion dynamics is not particularly limited as long as intracellular calcium ion dynamics can be measured, and known measurement methods and the like can be used.
  • a method using a calcium indicator dye such as Fluo-8, Fluo-4, fura-2, indo-1 etc. a method using a calcium divalent ion sensitive microelectrode, fluorescence resonance energy transfer (fluorescence) Method using resonance energy transfer (FRET), method using calcium ion-sensitive photoprotein aequorin, calcium sensor protein (for example, green fluorescent protein (EGFP), calmodulin (eg, green fluorescent protein (EGFP)) in which calmodulin protein is genetically linked to a GFP gene variant CaM), a method of expressing and using GCaMP in which myosin light chain fragment (M13) is genetically engineered and the like, and the like can be mentioned.
  • a calcium indicator dye such as Fluo-8, Fluo-4, fura-2, indo-1 etc.
  • FRET fluorescence resonance energy
  • the calcium indicator dye is added to human neurons and, if necessary, washed with PBS, HESS buffer or the like, and then the dye concentration transferred to the cells is measured.
  • Pluronic acid F-127 manufactured by Sigma-Aldrich may be used to promote the intracellular transfer of the calcium indicator dye.
  • excitotoxicity evaluation method of the present embodiment in which the degree of excitation of the human neural cells is measured by measuring the intracellular calcium dynamics using electrical stimulation as stimulation to human neural cells, are shown below.
  • Intracellular calcium dynamics can be measured using FDSS / ⁇ Cell (manufactured by Hamamatsu Photonics Co., Ltd.). The recording is performed using Excitation 480 nm / Emission 540 nm, and the sampling interval is 30 to 1000 msec, preferably 100 msec. Intracellular calcium dynamics are monitored over time after extracellular field stimulation (EFS) using the stimulation electrodes of the FDSS device.
  • EFS extracellular field stimulation
  • a 96-electrode array stimulator with an electrical stimulation function is used for EFS stimulation electrodes.
  • EFS stimulation Electrical stimulation of nerve cells is usually performed under conditions of single-phase stimulation, voltage of 20 V, pulse width of 3 msec, and stimulation frequency of 50 Hz.
  • single-phase stimulation voltage is 10 to 15 V, preferably 12.5 V
  • pulse width is 1 to 6 msec, preferably 4 msec
  • stimulation frequency is 8 to 30 Hz, preferably It is preferable to perform electrical stimulation under conditions of 10 Hz.
  • EFS stimulation is applied with the baseline stabilized before EFS stimulation, and thereafter, intracellular calcium dynamics for about 600 seconds in total is recorded as a change in fluorescence intensity.
  • ⁇ F (change intensity) / F0 (baseline intensity) (100% peak height-bottom height) / bottom height)
  • ⁇ F / F0 is the maximum change.
  • the indicated peaks are quantified and the change in ⁇ F / F0 in the presence of the test substance is measured.
  • the degree of excitation of the human nerve cell is measured in the presence of the test substance and in the absence of the test substance, respectively.
  • the test substance can be evaluated as excitotoxic to the human nerve cell .
  • the test substance when the intracellular calcium concentration when electrically stimulated in the presence of a test substance is higher than the intracellular calcium concentration when electrically stimulated in the absence of the test substance, the test substance is a human neural cell. Can be evaluated as excitotoxic.
  • Example 1 (Preparation of nerve cells) A construct expressing human Ngn2 gene under doxycycline control was introduced into induced pluripotent stem cells (iPS cells) established from healthy individuals using a piggyBac vector. It should be noted that depending on the position of genomic insertion of the gene and the amount of introduction, immature neural stem cells positive for NESTIN protein were mixed in addition to mature neurons, and a phenomenon was observed that they gradually replaced neurons when the culture period was extended. Therefore, the seeding density of iPS cells at the time of vector introduction is lowered to 1800 cells / cm 2 , and drug resistant selection by G418 is initiated 48 hours after seeding, to obtain single cell-derived colonies of iPS cells into which the construct has been introduced. It was allowed to form and colonies were isolated and established. The established iPS cells were differentiated into about 48 to 120 neural cells, and the appearance thereof was observed, and a strain which was not mixed with weak neural stem cells was selected and used in the following experiment.
  • iPS cells induced pluripotent stem cells
  • the cell lines obtained above were cultured in a medium supplemented with doxycycline for 5 days to induce differentiation into neural cells. Subsequently, differentiation-induced neurons were passaged once. Specifically, differentiation-induced neurons are enzymatically treated with TrypLE (Gibco, manufactured by Themo Fisher Scientific), isolated to single cell units, suspended, and treated with 40 ⁇ m mesh pore size cell strainer, 3.3. The cells were seeded at a cell density of 10 5 cells / cm 2 .
  • Neurobasal medium is prepared by adding B27 supplement without vitamin A (manufactured by Thermofisher Scientific) 0.5%, Glutamax 1%, penicillin 100 units / ml, streptomycin 100 ⁇ g / ml to Neurobasal medium (manufactured by Thermo Fisher Scientific). Using.
  • the incubator used was a 96-well transparent bottom plate according to SBS standard.
  • the nerve cells prepared above were 0.003% w / v Poly-L-lysine, 1% synthetic human vitronectin substrate (SynthemaxTM II-SC Substrate; Corning), 2% Matrigel and 0.003%
  • the mixture was seeded on a culture vessel coated with a mixture of human type I collagen-like recombinant peptides (manufactured by Cellnest). Coat the incubator at 37 ° C. for 2 hours.
  • the coating solution was aspirated and immediately seeded with cells.
  • Example 2 (Monitoring intracellular calcium dynamics) Seven days after cell seeding, 2 ⁇ M Fluo-8, an intracellular calcium indicator dye, was added, incubated according to the package insert, and washed with HESS buffer. In order to promote intracellular transfer of the dye, 0.001% w / v Pluronic acid F-127 (manufactured by Sigma Aldrich) was added to the incubation solution.
  • the N-type calcium channel inhibitor Bepridil (Bourguignon et al. 1989) is adjusted to a maximum concentration of 25 ⁇ M, and a 5-fold dilution series is adjusted in seven steps of 1.6, 8, 40, 200 nM, 5, 25 ⁇ M.
  • the effect on internal calcium dynamics was evaluated as follows.
  • FDSS / ⁇ Cell manufactured by Hamamatsu Photonics K.K.
  • EFS extracellular field stimulation
  • the stimulation electrodes of the FDSS device For the EFS stimulation electrodes, a 96-electrode array stimulator with an electrical stimulation function was used.
  • Electrode stimulation was performed under the conditions of single-phase stimulation, voltage 12.5 V, pulse width 4 msec, and stimulation frequency 10 Hz. Monitoring was started 30 seconds before EFS stimulation, and EFS stimulation was applied with the baseline stabilized before EFS stimulation, and thereafter total intracellular calcium dynamics for 600 seconds was recorded as a change in fluorescence intensity.
  • cell lines are cultured for 5 days, and by differentiating induced differentiation of neurons once, cell number difference between wells can be minimized, and cells by FDSS can be minimized.
  • DMSO solvent was used as a negative control.
  • the results are shown in FIG.
  • FIG. 1 in the case of the negative control DMSO solvent, there was no change in ⁇ F / F 0, but with Bepridil, the change of intracellular calcium was inhibited.
  • Example 3 Intracellular calcium dynamics upon addition of excitotoxic compounds
  • Amoxapin, Chlorpromazine and Linopirdin which are agents also used in the United Nations and other research groups on toxicity evaluation systems (HESI), respectively, in the same manner as in Example 2 Calcium kinetics were measured.
  • the excitotoxicity evaluation method of the present invention can also be applied to a high-throughput screening system in a 96-well format, and can also be applied as a drug drug seed derivation step or as a preclinical in vitro neural excitotoxicity evaluation system for development candidate substances. Useful for therapeutic drug development.

Abstract

This method for evaluating hyperstimulation toxicity to a human neurocyte of a test substance comprises: (1) a step for bringing a test substance into contact with a human neurocyte prepared by inducing differentiation from pluripotent stem cells; (2) a step for imparting a stimulation to the human neurocyte; (3) a step for measuring the degree of hyperstimulation of the human neurocyte; and (4) a step for evaluating that the test substance has hyperstimulation toxicity to a human neurocyte when the hyperstimulation of the human neurocyte is enhanced in the presence of the test substance.

Description

細胞興奮毒性評価方法Cell excitotoxicity evaluation method
 本発明は、ヒト神経細胞に対する興奮毒性の評価方法に関する。
 本願は、2017年11月30日に、日本に出願された特願2017-230610号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method of evaluating excitotoxicity to human neurons.
Priority is claimed on Japanese Patent Application No. 2017-230610, filed Nov. 30, 2017, the content of which is incorporated herein by reference.
 治療薬候補物質の臨床適応までには、その多くが予期せぬ副作用で開発中止となる。なかでも、ヒトとは全く異なり、神経症状を評価しづらいモデル動物を用いた前臨床試験では副作用が見過ごされることが多い。そこで、ヒト第I相あるいは第II相臨床試験に進んで初めて発露することが多い神経系副作用を予測し、治療薬開発スキームに組み込むことが求められている。 By the time of clinical application of therapeutic drug candidate substances, many of them are unplanned side effects due to unexpected side effects. In particular, unlike in humans, side effects are often overlooked in preclinical studies using model animals whose neurological symptoms are difficult to assess. Therefore, there is a need to predict nervous system side effects that are often exposed for the first time in human phase I or phase II clinical trials and incorporate them into a therapeutic drug development scheme.
 しかしながら、神経系副作用のインビトロ副作用予測は、使用する細胞資源の不安定性と適切な評価方法の欠如から殆ど行われてこなかった。 However, in vitro side effect prediction of nervous system side effects has hardly been performed due to instability of the cell source used and lack of an appropriate evaluation method.
 神経系副作用のインビトロ副作用予測方法として、ラットやモルモットから調製した神経細胞を用い、細胞内カルシウム濃度の上昇を測定することで、神経細胞の興奮性を評価することが知られている(非特許文献1、非特許文献2)。また、特許文献1には、多能性幹細胞から神経細胞へ迅速且つ同調して分化させる方法が開示されている。 As a method of predicting side effects of nervous system side effects, it is known that nerve cell excitability is evaluated by measuring an increase in intracellular calcium concentration using nerve cells prepared from rat or guinea pig (non-patented) Document 1, non-patent document 2). In addition, Patent Document 1 discloses a method of rapidly and synchronously differentiating pluripotent stem cells into neurons.
国際公開第2014/148646号International Publication No. 2014/148646
 しかしながら、非特許文献1及び2の評価方法では、神経細胞を動物から調製するため、ヒト神経細胞を用いた評価方法ではない。また、当該評価方法は、細胞の安定供給にも問題があり、高スループットの評価には適していない。また、特許文献1に記載の方法により分化誘導した神経細胞を、神経細胞の興奮毒性の評価に適用できるか否かは検討されていない。このような背景のもと、安定的かつ高スループット評価に対応できる、インビトロ神経系副作用を予測可能な、被験物質の神経細胞に対する興奮毒性評価方法が求められている。そこで、本発明は、安定的かつ高スループット評価に対応できる、被験物質のヒト神経細胞に対する興奮毒性評価方法を提供することを目的とする。 However, in the evaluation methods of Non-Patent Documents 1 and 2, neural cells are prepared from animals, and therefore, evaluation methods using human nerve cells are not used. Moreover, the said evaluation method has a problem also in the stable supply of a cell, and is not suitable for high-throughput evaluation. In addition, it has not been examined whether or not the nerve cells induced to differentiate by the method described in Patent Document 1 can be applied to the evaluation of nerve cell excitotoxicity. Under such circumstances, there is a need for a method for evaluating the excitotoxicity of a test substance to nerve cells that can predict in vitro nervous system side effects, which can respond to stable and high-throughput evaluation. Therefore, an object of the present invention is to provide a method for evaluating excitotoxicity of a test substance to human neurons, which can respond to stable and high-throughput evaluation.
 本発明は以下の態様を含む。
[1]被験物質のヒト神経細胞に対する興奮毒性の評価方法であって、
(1)多能性幹細胞を分化誘導して製造されたヒト神経細胞と被験物質とを接触させる工程、
(2)前記ヒト神経細胞に刺激を与える工程、
(3)前記ヒト神経細胞の興奮の程度を測定する工程、及び
(4)被験物質存在下で、前記ヒト神経細胞の興奮が増強した場合、該被験物質はヒト神経細胞に対して興奮毒性があると評価する工程
を含む、被験物質のヒト神経細胞に対する興奮毒性の評価方法。
[2]前記ヒト神経細胞が、多能性幹細胞を神経細胞に分化誘導した後、一度継代した細胞である、[1]に記載の方法。
[3]前記ヒト神経細胞への刺激が電気刺激である、[1]又は[2]に記載の方法。
[4]前記電気刺激を、電圧10~15V、刺激頻度8~30Hzで行う、[3]に記載の方法。
[5]前記ヒト神経細胞の興奮の程度を測定する工程が、前記ヒト神経細胞内のカルシウム動態の測定である、[1]~[4]のいずれか一項に記載の方法。
[6]前記ヒト神経細胞が、大脳皮質神経細胞である、[1]~[5]のいずれか一項に記載の方法。
The present invention includes the following aspects.
[1] A method for evaluating the excitotoxicity of a test substance to human neurons,
(1) bringing a test substance into contact with human neurons produced by inducing differentiation of pluripotent stem cells;
(2) a step of stimulating the human neural cell,
(3) measuring the degree of excitation of the human nerve cell, and (4) if the excitation of the human nerve cell is enhanced in the presence of the test substance, the test substance is excitotoxic to the human nerve cell A method for evaluating excitotoxicity of a test substance on human neurons, which comprises the step of evaluating the presence of the compound.
[2] The method according to [1], wherein the human neural cell is a cell that has been passaged once after differentiating pluripotent stem cells into neural cells.
[3] The method according to [1] or [2], wherein the stimulation to human neurons is an electrical stimulation.
[4] The method according to [3], wherein the electrical stimulation is performed at a voltage of 10 to 15 V and a stimulation frequency of 8 to 30 Hz.
[5] The method according to any one of [1] to [4], wherein the step of measuring the degree of excitation of the human nerve cell is the measurement of calcium dynamics in the human nerve cell.
[6] The method according to any one of [1] to [5], wherein the human neuronal cell is a cerebral cortical neuronal cell.
 本発明によれば、安定的かつ高スループット評価に対応できるインビトロ神経系副作用を予測可能な、被験物質のヒト神経細胞に対する興奮毒性の評価方法を提供することができる。 According to the present invention, it is possible to provide a method for evaluating the excitotoxicity of a test substance on human neural cells, which can predict in vitro nervous system side effects that can respond to stable and high-throughput evaluation.
実施例1において、Bepridil添加時の細胞内カルシウムの変化を示した図である。In Example 1, it is the figure which showed the change of the intracellular calcium at the time of Bepridil addition. 実施例2において、Amoxapin、Chlorpromazine及びLinopirdinをそれぞれ添加した時の細胞内カルシウムの変化を示した図である。In Example 2, it is the figure which showed the change of the intracellular calcium at the time of adding Amoxapin, Chlorpromazine, and Linopirdin, respectively.
 1実施形態において、本発明は、被験物質のヒト神経細胞に対する興奮毒性の評価方法であって、
(1)多能性幹細胞を分化誘導して製造されたヒト神経細胞と被験物質とを接触させる工程、
(2)前記ヒト神経細胞に刺激を与える工程、
(3)前記ヒト神経細胞の興奮の程度を測定する工程、及び
(4)被験物質存在下で、前記ヒト神経細胞の興奮が増強した場合、該被験物質はヒト神経細胞に対して興奮毒性があると評価する工程
 を含む、被験物質のヒト神経細胞に対する興奮毒性評価方法を提供する。
 以下に、本実施形態について詳細に説明する。
In one embodiment, the present invention is a method for evaluating excitotoxicity of a test substance on human neurons,
(1) bringing a test substance into contact with human neurons produced by inducing differentiation of pluripotent stem cells;
(2) a step of stimulating the human neural cell,
(3) measuring the degree of excitation of the human nerve cell, and (4) if the excitation of the human nerve cell is enhanced in the presence of the test substance, the test substance is excitotoxic to the human nerve cell The present invention provides a method for evaluating the excitotoxicity of a test substance to human neurons, which comprises the step of evaluating the presence.
The present embodiment will be described in detail below.
 本実施形態の興奮毒性の評価方法に用いるヒト神経細胞は、多能性幹細胞から、特許文献1に記載された方法に従って、分化誘導することにより製造することができる。具体的には、以下のようにして、多能性幹細胞からヒト神経細胞を調製することができる。なお、以降の記載では、本発明の興奮毒性評価方法に用いられる神経細胞を、本来の(すなわち、生来の)神経細胞と区別するために、iNと呼ぶ場合がある。また、Ngn2遺伝子を神経細胞化因子(又は、N化因子)と呼ぶ場合がある。 Human neural cells used in the method for evaluating excitotoxicity of the present embodiment can be produced from pluripotent stem cells by differentiation induction according to the method described in Patent Document 1. Specifically, human neural cells can be prepared from pluripotent stem cells as follows. In the following description, a neuron used in the method of evaluating excitotoxicity according to the present invention may be called iN in order to distinguish it from an original (that is, natural) neuron. In addition, the Ngn2 gene may be referred to as a neurogenic factor (or N-factor).
 <多能性幹細胞から神経細胞を製造する方法>
 多能性幹細胞に、Ngn2をコードする核酸を、トランスポゾンを用いて導入し、該遺伝子の発現を3日間以上維持することで、神経細胞へと迅速且つ同調して分化させることができる。前記Ngn2遺伝子の発現誘導は、培養下、又は動物体内のいずれでも行うことができる。
 以下に、これらの方法を構成する技術について詳述する。
<Method of producing neural cells from pluripotent stem cells>
A nucleic acid encoding Ngn2 is introduced into pluripotent stem cells using a transposon, and the expression of the gene can be maintained for 3 days or more to allow rapid and synchronized differentiation into neural cells. The expression induction of the Ngn2 gene can be performed either in culture or in an animal.
Below, the technology which comprises these methods is explained in full detail.
 <多能性幹細胞>
 本実施形態の興奮毒性評価方法に用いる、多能性幹細胞とは、生体に存在するすべての細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞のことである。例として、以下に限定するものではないが、胚性幹(ES)細胞、核移植により得られるクローン胚由来の胚性幹(ntES)細胞、精子幹細胞(GS細胞)、胚性生殖細胞(EG細胞)、人工多能性幹(iPS)細胞、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)などが含まれる。これらのうち、本実施形態の興奮毒性評価方法に用いるのに好ましい多能性幹細胞は、ES細胞、ntES細胞、及びiPS細胞である。以下、各幹細胞について説明する。
<Pluripotent stem cells>
The pluripotent stem cells used in the method for evaluating excitotoxicity according to the present embodiment are stem cells having pluripotency capable of differentiating into all cells present in a living body and also having proliferation ability. . Examples include, but are not limited to, embryonic stem (ES) cells, cloned embryonic derived embryonic stem (ntES) cells obtained by nuclear transfer, spermatogonia stem cells (GS cells), embryonic germ cells (EG) Cells), induced pluripotent stem (iPS) cells, cultured fibroblasts and pluripotent cells derived from bone marrow stem cells (Muse cells). Among these, pluripotent stem cells preferable for use in the excitotoxicity evaluation method of the present embodiment are ES cells, nt ES cells, and iPS cells. Each stem cell is described below.
(A)胚性幹細胞
 ES細胞は、ヒトやマウスなどの哺乳動物の初期胚(例えば胚盤胞)の内部細胞塊から樹立された、多能性と自己複製による増殖能を有する幹細胞である。
 ES細胞は、受精卵の8細胞期、桑実胚後の胚である胚盤胞の内部細胞塊に由来する胚由来の幹細胞であり、成体を構成するあらゆる細胞に分化する能力、いわゆる分化多能性と、自己複製による増殖能とを有している。
(A) Embryonic Stem Cell ES cell is a stem cell having pluripotency and proliferation ability by self-replication established from the inner cell mass of a mammalian early embryo (eg, blastocyst) such as human and mouse.
ES cells are embryonic stem cells derived from the inner cell mass of the blastocyst, which is the 8-cell stage of fertilized eggs and embryos after morula, and have the ability to differentiate into any cells that constitute an adult, so-called highly differentiated cells. It has the ability to grow by self-replication.
 ヒトES細胞株は、例えばWA01(H1)及びWA09(H9)は、WiCell Reserch Instituteから、KhES-1、KhES-2及びKhES-3は、京都大学再生医科学研究所(京都、日本)から入手可能である。 Human ES cell lines such as WA01 (H1) and WA09 (H9) are obtained from the WiCell Research Institute, and KhES-1, KhES-2 and KhES-3 are obtained from the Research Institute for Regenerative Medicine (Kyoto, Japan) It is possible.
(B)精子幹細胞
 精子幹細胞は、精巣由来の多能性幹細胞であり、精子形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能であり、例えばマウス胚盤胞に移植するとキメラマウスを作出できるなどの性質をもつ。神経膠細胞系由来神経栄養因子(glial cell line-derived neurotrophic factor(GDNF))を含む培養液で自己複製可能であるし、またES細胞と同様の培養条件下で継代を繰り返すことによって、精子幹細胞を得ることができる。
(B) Sperm Stem Cells Sperm stem cells are testis-derived pluripotent stem cells, and are cells serving as a source for spermatogenesis. These cells, like ES cells, can be induced to differentiate into cells of various lineages, and for example, have the property of being able to produce chimeric mice when transplanted into mouse blastocysts. It is capable of self-replication in a culture solution containing glial cell line-derived neurotrophic factor (GDNF), and spermatozoa by repeating passaging under culture conditions similar to ES cells. Stem cells can be obtained.
(C)胚性生殖細胞
 胚性生殖細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞であり、LIF、bFGF、幹細胞因子(stem cell factor)などの物質の存在下で始原生殖細胞を培養することによって樹立しうる。
(C) Embryonic Germ Cells Embryonic germ cells are cells with pluripotency similar to ES cells, established from embryonic primordial germ cells, such as LIF, bFGF, stem cell factor, etc. It can be established by culturing primordial germ cells in the presence of
(D)人工多能性幹細胞
 人工多能性幹(iPS)細胞は、特定の初期化因子を、DNA又はタンパク質の形態で体細胞に導入することによって作製することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能、を有する体細胞由来の人工の幹細胞である。初期化因子は、ES細胞に特異的に発現している遺伝子、その遺伝子産物もしくはnon-cording RNA又はES細胞の未分化維持に重要な役割を果たす遺伝子、その遺伝子産物もしくはnon-cording RNA、あるいは低分子化合物によって構成されてもよい。初期化因子に含まれる遺伝子として、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3又はGlis1等が例示され、これらの初期化因子は、単独で用いても良く、組み合わせて用いても良い。
(D) Artificial pluripotent stem cells Artificial pluripotent stem (iPS) cells can be prepared by introducing specific reprogramming factors in the form of DNA or protein into somatic cells, and are almost equivalent to ES cells Artificial stem cells derived from somatic cells, which have the following characteristics: pluripotency of differentiation and proliferation ability by self-replication. The reprogramming factor is a gene specifically expressed in ES cells, its gene product or non-cording RNA, or a gene that plays an important role in the maintenance of undifferentiated ES cells, its gene product or non-cording RNA, or You may be comprised by the low molecular weight compound. As genes included in the reprogramming factor, for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15 -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1 etc. are exemplified, and these reprogramming factors may be used alone or in combination.
 上記初期化因子には、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸(VPA)、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNA及びshRNA(例えば、HDAC1 siRNA Smartpool(商標)(Millipore)、HuSH 29mer shRNA Constructs against HDAC1(OriGene)等)等の核酸性発現阻害剤など]、MEK阻害剤(例えば、PD184352、PD98059、U0126、SL327及びPD0325901)、Glycogen synthase kinase-3阻害剤(例えば、Bio及びCHIR99021)、DNAメチルトランスフェラーゼ阻害剤(例えば、5-azacytidine)、ヒストンメチルトランスフェラーゼ阻害剤(例えば、BIX-01294等の低分子阻害剤、Suv39hl、Suv39h2、SetDBl及びG9aに対するsiRNA及びshRNA等の核酸性発現阻害剤など)、L-channel calcium agonist(例えば、Bayk8644)、酪酸、TGFβ阻害剤又はALK5阻害剤(例えば、LY364947、SB431542、616453及びA-83-01)、p53阻害剤(例えば、p53に対するsiRNA及びshRNA)、ARID3A阻害剤(例えば、ARID3Aに対するsiRNA及びshRNA)、miR-291-3p、miR-294、miR-295及びmir-302などのmiRNA、Wnt Signaling(例えば、soluble Wnt3a)、神経ペプチドY、プロスタグランジン類(例えば、プロスタグランジンE2及びプロスタグランジンJ2)、hTERT、SV40LT、UTF1、IRX6、GLISl、PITX2、DMRTBl等の樹立効率を高めることを目的として用いられる因子も含まれており、本明細書においては、これらの樹立効率の改善目的にて用いられた因子についても初期化因子と別段の区別をしないものとする。 The reprogramming factors include histone deacetylase (HDAC) inhibitors [eg, valproic acid (VPA), trichostatin A, sodium butyrate, small molecule inhibitors such as MC 1293, M344, siRNA for HDAC and shRNA (eg, Nucleic acid expression inhibitors such as HDAC1 siRNA Smartpool (trademark) (Millipore), HuSH 29mer shRNA Constructs against HDAC1 (OriGene), etc.], MEK inhibitors (eg PD184352, PD98059, U0126, SL327 and PD0325901), Glycogen Synthase kinase-3 inhibitor (eg, Bio and CHIR99021), DNA methyltransferase inhibitor For example, 5-azacytidine), histone methyltransferase inhibitors (for example, small molecule inhibitors such as BIX-01294, nucleic acid expression inhibitors such as Suv39hl, Suv39h2, SetDB1 and G9a, nucleic acid expression inhibitors such as shRNA, etc.), L-channel calcium agonists (eg, Bayk 8644), butyric acid, TGFβ inhibitors or ALK5 inhibitors (eg, LY364947, SB431542, 616453 and A-83-01), p53 inhibitors (eg, siRNA and shRNA against p53), ARID3A inhibitors (eg, ARID3A) , SiRNA for ARID 3 A and shRNA), miRNA such as miR-291-3p, miR-294, miR-295 and mir-302, Wn Increase the establishment efficiency of t Signaling (eg soluble Wnt3a), neuropeptide Y, prostaglandins (eg prostaglandin E2 and prostaglandin J2), hTERT, SV40LT, UTF1, IRX6, GLIS1, PITX2, DMRTB1 etc The factors used for the purpose are also included, and in the present specification, the factors used for the purpose of improving the establishment efficiency are also not distinguished from the reprogramming factors.
 初期化因子は、タンパク質の形態の場合、例えばリポフェクション、細胞膜透過性ペプチド(例えば、HIV由来のTAT及びポリアルギニン)との融合、マイクロインジェクションなどの手法によって体細胞内に導入してもよい。 The reprogramming factor may be introduced into somatic cells in the form of a protein, for example, by lipofection, fusion with a cell membrane permeable peptide (eg, TAT and polyarginine derived from HIV), microinjection and the like.
 一方、DNAの形態の場合、例えば、ウイルス、プラスミド、人工染色体などのベクター、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって体細胞内に導入することができる。 On the other hand, in the case of the form of DNA, it can be introduced into somatic cells by techniques such as viruses, plasmids, vectors such as artificial chromosomes, lipofection, liposomes, microinjection and the like.
 また、RNAの形態の場合、例えばリポフェクション、マイクロインジェクションなどの手法によって体細胞内に導入しても良く、分解を抑制するため、5-メチルシチジン及びpseudouridineを取り込ませたRNAを用いても良い。 In the case of the form of RNA, for example, it may be introduced into somatic cells by a technique such as lipofection, microinjection or the like, and RNA in which 5-methylcytidine and pseudouridine have been incorporated may be used to suppress degradation.
 iPS細胞誘導のための培養液としては、例えば、10~15%FBSを含有するDMEM、DMEM/F12又はDME培養液(これらの培養液にはさらに、LIF、penicillin/streptomycin、puromycin、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)又は市販の培養液[例えば、マウスES細胞培養用培養液(TX-WES培養液、トロンボX社)、霊長類ES細胞培養用培養液(霊長類ES/iPS細胞用培養液、リプロセル社)、無血清培地(mTESR、Stemcell Technology社)]などが含まれる。 As a culture medium for iPS cell induction, for example, DMEM, DMEM / F12 or DME culture medium containing 10 to 15% FBS (LIF, penicillin / streptomycin, puromycin, L-glutamine are further added to these cultures. , Non-essential amino acids, β-mercaptoethanol, etc. can be suitably included) or commercially available culture fluid [eg, culture fluid for culturing mouse ES cell (TX-WES culture fluid, Thrombox X), primate ES cell Culture media (culture fluid for primate ES / iPS cells, Reprocel), serum-free medium (mTESR, Stemcell Technology), and the like are included.
 培養法の例としては、たとえば、37℃、5%CO存在下にて、10%FBS含有DMEM又はDMEM/F12培養液上で体細胞と初期化因子とを接触させ約4~7日間培養し、その後、細胞をフィーダー細胞(例えば、マイトマイシンC処理STO細胞、SNL細胞等)上にまきなおし、体細胞と初期化因子の接触から約10日後からbFGF含有霊長類ES細胞培養用培養液で培養し、該接触から約30~約45日又はそれ以上ののちにiPS様コロニーを生じさせることができる。 As an example of the culture method, for example, a somatic cell is contacted with a reprogramming factor on DMEM or DMEM / F12 culture medium at 10% FBS in the presence of 5% CO 2 at 37 ° C. and cultured for about 4 to 7 days The cells are then replated on feeder cells (eg, mitomycin C-treated STO cells, SNL cells, etc.), and after about 10 days after contact of somatic cells with the reprogramming factor, using a culture medium for culturing bFGF-containing primate ES cells An iPS-like colony can be generated after about 30 to about 45 days or more from the contacting and culturing.
 あるいは、37℃、5% CO存在下にて、フィーダー細胞(例えば、マイトマイシンC処理STO細胞、SNL細胞等)上で10%FBS含有DMEM培養液(これにはさらに、LIF、ペニシリン/ストレプトマイシン、ピューロマイシン、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)で培養し、約25~約30日又はそれ以上ののちにES様コロニーを生じさせることができる。望ましくは、フィーダー細胞の代わりに、初期化される体細胞そのものを用いる、もしくは細胞外基質(例えば、Laminin-5及びマトリゲル(BD社))を用いる方法が例示される。 Alternatively, DMEM culture solution containing 10% FBS on feeder cells (eg, mitomycin C-treated STO cells, SNL cells, etc.) at 37 ° C. in the presence of 5% CO 2 (in addition, LIF, penicillin / streptomycin, Puromycin, L-glutamine, non-essential amino acids, β-mercaptoethanol, etc. may optionally be included) and allowed to form ES-like colonies after about 25 to about 30 days or more . Desirably, a method using a somatic cell to be initialized itself or an extracellular matrix (for example, Laminin-5 and Matrigel (BD)) instead of feeder cells is exemplified.
 この他にも、血清を含有しない培地を用いて培養する方法も例示される。さらに、樹立効率を上げるため、低酸素条件(0.1%以上、15%以下の酸素濃度)によりiPS細胞を樹立しても良い。
 上記培養の間には、培養開始2日目以降から毎日1回新鮮な培養液と培養液交換を行う。また、核初期化に使用する体細胞の細胞数は、限定されないが、培養ディッシュ100cmあたり約5×10~約5×10細胞の範囲である。
Besides this, a method of culturing using a medium not containing serum is also exemplified. Furthermore, in order to increase the establishment efficiency, iPS cells may be established under hypoxic conditions (oxygen concentration of 0.1% or more and 15% or less).
During the above culture, culture medium exchange with fresh culture medium is performed once daily from the second day after the culture start. Also, the number of somatic cells used for nuclear reprogramming is not limited, but is in the range of about 5 × 10 3 to about 5 × 10 6 cells per 100 cm 2 of culture dish.
 iPS細胞は、形成したコロニーの形状により選択することが可能である。一方、体細胞が初期化された場合に発現する遺伝子(例えば、Oct3/4、Nanog)と連動して発現する薬剤耐性遺伝子をマーカー遺伝子として導入した場合は、対応する薬剤を含む培養液(選択培養液)で培養を行うことにより樹立したiPS細胞を選択することができる。また、マーカー遺伝子が蛍光タンパク質遺伝子の場合は蛍光顕微鏡で観察することによって、発光酵素遺伝子の場合は発光基質を加えることによって、また発色酵素遺伝子の場合は発色基質を加えることによって、iPS細胞を選択することができる。 IPS cells can be selected by the shape of the formed colony. On the other hand, when a drug resistance gene that is expressed in conjunction with a gene (for example, Oct3 / 4, Nanog) that is expressed when somatic cells are reprogrammed is introduced as a marker gene, a culture solution containing the corresponding drug (selection The established iPS cells can be selected by culturing in a culture solution). In addition, if the marker gene is a fluorescent protein gene, iPS cells are selected by observing with a fluorescent microscope, by adding a luminescent substrate in the case of a luminescent enzyme gene, or by adding a chromogenic substrate in the case of a chromogenic enzyme gene. can do.
 なお、本明細書中で使用する「体細胞」なる用語は、卵子、卵母細胞、ES細胞などの生殖系列細胞又は分化全能性細胞を除くあらゆる動物細胞(好ましくは、ヒトを含む哺乳動物細胞)をいう。体細胞には、非限定的に、胎児(仔)の体細胞、新生児(仔)の体細胞、及び成熟した健全なもしくは疾患性の体細胞のいずれも包含されるし、また、初代培養細胞、継代細胞、及び株化細胞のいずれも包含される。具体的には、体細胞は、例えば(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)リンパ球、上皮細胞、内皮細胞、筋肉細胞、線維芽細胞(皮膚細胞等)、毛細胞、肝細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞及び脂肪細胞等の分化した細胞などが例示される。 As used herein, the term "somatic cell" refers to any animal cell except germline cells such as oocytes, oocytes and ES cells or totipotent cells (preferably mammalian cells including human) Say). Somatic cells include, but are not limited to, fetal (child) somatic cells, neonatal (child) somatic cells, and any mature healthy or diseased somatic cells, and also primary culture cells. Also included are passage cells and cell lines. Specifically, somatic cells include, for example, (1) tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, dental pulp stem cells, (2) tissue precursor cells, (3) lymphocytes, epithelium Cells, endothelial cells, muscle cells, fibroblasts (skin cells etc.), hair cells, hepatocytes, gastric mucous cells, enterocytes, spleen cells, pancreatic cells (pancreatic exocrine cells etc.), brain cells, lung cells, kidney cells And differentiated cells such as adipocytes.
 また、病態のモデル細胞を作製するという観点から、疾患性の体細胞を用いてもよい。ここで疾患とは、神経変性疾患が例示される。上述した神経細胞を製造する方法を用いて病態のモデル細胞を作製する場合、神経変性疾患の患者由来の体細胞を用いてiPS細胞を製造してもよい。ここで、「神経変性疾患」とは、神経細胞の変性又は欠損により起きる病気のことであり、アルツハイマー型認知症、パーキンソン病、レビー小体型認知症、ハンチントン病、及び脊髄小脳変性症などが例示される。例えば、アルツハイマー型認知症の患者の体細胞とは、プレセニリン1遺伝子又はプレセリニン2遺伝子に変異がある体細胞が例示され、プレセニリン1の変異はこれまで30以上の変異が報告されており、例えば、D257又はD385をアラニン、又はグルタミン酸に置換した変異が挙げられるが、特にこれらへ限定されない。 Moreover, from the viewpoint of producing a model cell of a pathological condition, a diseased somatic cell may be used. Here, the disease is exemplified by neurodegenerative diseases. In the case of producing a model cell of a pathological condition using the method for producing neural cells described above, iPS cells may be produced using somatic cells derived from patients with neurodegenerative diseases. Here, "neurodegenerative disease" is a disease caused by degeneration or loss of nerve cells, and exemplified by Alzheimer's disease, Parkinson's disease, Lewy body disease, Huntington's disease, spinocerebellar degeneration, etc. Be done. For example, somatic cells of patients with Alzheimer's disease are exemplified by somatic cells having mutations in the presenilin 1 gene or the preselinin 2 gene, and more than 30 mutations have been reported for presenilin 1 mutations so far, for example, It includes mutations in which D257 or D385 is substituted with alanine or glutamic acid, but is not particularly limited thereto.
(E)核移植により得られたクローン胚由来のES細胞
 nt ES細胞は、核移植技術によって作製されたクローン胚由来のES細胞であり、受精卵由来のES細胞とほぼ同じ特性を有している。すなわち、未受精卵の核を体細胞の核と置換することによって得られたクローン胚由来の胚盤胞の内部細胞塊から樹立されたES細胞がnt ES(nuclear transfer ES)細胞である。nt ES細胞の作製のためには、核移植技術とES細胞作製技術(上記)との組み合わせが利用される。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、数時間培養することで初期化することができる。
(E) Cloned Embryo-Derived ES Cells Obtained by Nuclear Transfer nt ES cells are cloned embryo-derived ES cells prepared by nuclear transfer technology and have almost the same characteristics as fertilized egg-derived ES cells There is. That is, ES cells established from the inner cell mass of blastocysts derived from cloned embryos obtained by replacing unfertilized egg nuclei with somatic cell nuclei are nt ES (nuclear transfer ES) cells. For the generation of nt ES cells, a combination of nuclear transfer technology and ES cell generation technology (described above) is used. In nuclear transfer, the nucleus of a somatic cell can be injected into an enucleated unfertilized egg of a mammal, and reprogramming can be performed by culturing for several hours.
(F)Multilineage-differentiating Stress Enduring cells(Muse細胞)
 Muse細胞は、線維芽細胞又は骨髄間質細胞を長時間トリプシン処理、好ましくは8時間又は16時間トリプシン処理した後、浮遊培養することで得られる多能性を有した細胞であり、SSEA-3及びCD105が陽性である。
(F) Multilineage-differentiating Stress Enduring cells (Muse cells)
Muse cells are pluripotent cells obtained by subjecting fibroblasts or bone marrow stromal cells to trypsin treatment for a long time, preferably for 8 hours or 16 hours, and then suspension culture; And CD105 is positive.
 本実施形態の興奮毒性評価方法においては、病態のモデル細胞を作製するという観点から、疾患の原因となる遺伝子を導入した多能性幹細胞を用いることができる。変異遺伝子を有する多能性幹細胞として、アルツハイマー型認知症の患者の体細胞を単離して製造されたiPS細胞等が挙げられる。
 本実施形態の興奮毒性評価方法に用いる多能性幹細胞において、アルツハイマー型認知症モデル細胞とは、当該多能性幹細胞から上述した方法によって得られる、神経細胞を含む。本実施形態の興奮毒性評価方法に用いる多能性幹細胞において、好ましい病態のモデル細胞は、ヒト細胞である。
In the excitotoxic evaluation method of the present embodiment, pluripotent stem cells into which a gene causing a disease is introduced can be used from the viewpoint of producing a model cell of a pathological condition. Examples of pluripotent stem cells having a mutated gene include iPS cells produced by isolating somatic cells of patients with Alzheimer's disease and the like.
In the pluripotent stem cells used in the method for evaluating excitotoxicity according to the present embodiment, the Alzheimer's disease model cells of dementia include nerve cells obtained from the pluripotent stem cells by the method described above. In pluripotent stem cells used in the excitotoxic evaluation method of the present embodiment, model cells of a preferable pathological condition are human cells.
 <神経細胞>
 本実施形態の興奮毒性評価方法において、神経細胞とは、β-III tubulin、NCAM、MAP2等の神経細胞のマーカー遺伝子を1以上発現し、且つ、神経突起を有する細胞と定義される。よって、本発明に係る方法で製造された神経細胞(すなわち、iN)の判定基準もこれに従う。さらに、本発明において製造される神経細胞は、グルタミン酸作動性であることが好ましい。そして、本発明において神経細胞を製造するとは、上記定義を満たす細胞を含有する細胞集団を得ることを意味し、好ましくは、該細胞を50%、60%、70%、80%、又は90%以上含有する細胞集団を得ることである。
 なお、Tuj1は抗β-III tubulinであることから、前記β-III tubulinを発現している細胞を、Tuj1陽性細胞と呼ぶ場合がある。
<Neural cell>
In the excitotoxicity evaluation method of the present embodiment, a neuron is defined as a cell that expresses one or more marker genes of a neuron such as β-III tubulin, NCAM, and MAP2 and has a neurite. Thus, the criteria for the neural cells (ie, iN) produced by the method according to the invention also follow this. Furthermore, the neurons produced in the present invention are preferably glutamatergic. And, in the present invention, producing nerve cells means obtaining a cell population containing cells satisfying the above definition, preferably, 50%, 60%, 70%, 80% or 90% of the cells. It is to obtain a cell population containing the above.
Since Tuj1 is an anti-β-III tubulin, cells expressing the β-III tubulin may be referred to as Tuj1-positive cells.
 本実施形態の興奮毒性評価方法に用いる多能性幹細胞において、Ngn2をコードする核酸は、DNAであっても、RNAであっても、DNA/RNAキメラであってもよい。また、該核酸は二本鎖であっても、一本鎖であってもよい。二本鎖の場合、二本鎖DNA、二本鎖RNAもしくはDNA:RNAハイブリッドのいずれであってもよい。好ましくは、二本鎖DNA又は一本鎖RNAである。例えば、Ngn2をコードする核酸が二本鎖DNAの場合(本明細書においてNgn2遺伝子という場合もある)は、該核酸は適当な発現ベクターに挿入された形態で、多能性幹細胞に導入され得る。一方、Ngn2をコードする核酸が一本鎖RNAの場合、当該RNAは、分解を抑制するため、5-メチルシチジン及びpseudouridineを取り込ませたRNAを用いても良く、フォスファターゼ処理による修飾RNAであってもよい。なお、本明細書では、Ngn2をコードするRNA及びNgn2タンパク質を包括してNgn2遺伝子産物という場合がある。 In the pluripotent stem cells used in the method for evaluating excitotoxicity of the present embodiment, the nucleic acid encoding Ngn2 may be DNA, RNA, or DNA / RNA chimera. Also, the nucleic acid may be double stranded or single stranded. When double stranded, it may be either double stranded DNA, double stranded RNA or a DNA: RNA hybrid. Preferably, it is double stranded DNA or single stranded RNA. For example, when the nucleic acid encoding Ngn2 is a double-stranded DNA (sometimes referred to herein as the Ngn2 gene), the nucleic acid can be introduced into pluripotent stem cells in a form inserted into an appropriate expression vector. . On the other hand, when the nucleic acid encoding Ngn2 is a single-stranded RNA, the RNA may be an RNA into which 5-methylcytidine and pseudouridine have been incorporated in order to suppress degradation, and may be a modified RNA by phosphatase treatment, It is also good. In the present specification, the RNA encoding Ngn2 and the Ngn2 protein may be collectively referred to as the Ngn2 gene product.
 本発明の興奮毒性評価方法に用いる神経細胞を製造する方法では、前記N化因子による神経細胞誘導を阻害しない限り、他の神経発生に関わる転写因子をコードする核酸を、N化因子とともに多能性幹細胞に導入してもよい。そのような転写因子として、例えば、Ascl1をコードする核酸、Brn2をコードする核酸、Myt1lをコードする核酸、及びHB9をコードする核酸等が挙げられる。 In the method of producing nerve cells used in the method for evaluating excitotoxicity according to the present invention, nucleic acid encoding a transcription factor involved in other neurogenesis is pluripotent together with N-factor, as long as the nerve cell induction by N-factor is not inhibited. It may be introduced into sexual stem cells. Such transcription factors include, for example, a nucleic acid encoding Ascl1, a nucleic acid encoding Brn2, a nucleic acid encoding Myt1l, and a nucleic acid encoding HB9.
 <核酸の導入方法>
 Ngn2をコードする核酸を多能性幹細胞に導入する方法は特に限定されないが、例えば、以下の方法を用いることができる。
<Method of introducing nucleic acid>
Although the method of introducing the nucleic acid encoding Ngn2 into pluripotent stem cells is not particularly limited, for example, the following method can be used.
 前記核酸がDNAの形態の場合、例えば、ウイルス、プラスミド、人工染色体などのベクターに導入した形態で、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって多能性幹細胞内に導入することができる。
 ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、センダイウイルスベクターなどが例示される。また、プラスミドベクターとしては、哺乳動物細胞用プラスミドを使用することができる。そして、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが挙げられる。このうち、プラスミドベクター、及び人工染色体ベクターが好ましく、最も好ましくはプラスミドベクターである。
When the nucleic acid is in the form of DNA, it can be introduced into pluripotent stem cells by a method such as lipofection, liposome, microinjection or the like in a form introduced into a vector such as virus, plasmid, artificial chromosome or the like.
Examples of viral vectors include retrovirus vectors, lentivirus vectors, adenovirus vectors, adeno-associated virus vectors, Sendai virus vectors and the like. In addition, as a plasmid vector, a mammalian cell plasmid can be used. And as an artificial chromosome vector, a human artificial chromosome (HAC), a yeast artificial chromosome (YAC), a bacterial artificial chromosome (BAC, PAC) etc. are mentioned, for example. Among these, a plasmid vector and an artificial chromosome vector are preferable, and a plasmid vector is most preferable.
 これらのベクターには、Ngn2遺伝子が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができ、さらに、必要に応じて、薬剤耐性遺伝子(例えば、カナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、蛍光タンパク質、βグルクロニダーゼ(GUS)、FLAGなどのレポーター遺伝子配列などを含むことができる。 These vectors can contain control sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc., so that the Ngn2 gene can be expressed, and further, if necessary, drug resistance genes (eg, for example) , Kanamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.), thymidine kinase gene, selectable marker sequence such as diphtheria toxin gene, etc., fluorescent protein, reporter gene sequence such as β-glucuronidase (GUS), FLAG etc. .
 他の態様として、上記ベクターには、前記遺伝子をコードする核酸を染色体内に挿入するため、又は染色体に挿入された該核酸を必要に応じて切除するために、この発現カセット(プロモーター、遺伝子配列及びターミネーターを含む遺伝子発現単位)の前後にトランスポゾン配列を有していてもよい。トランスポゾン配列として特に限定されないが、piggyBacが例示される。トランスポゾンを用いて染色体内に発現カセットを導入するためには、トランスポゼースを当該発現カセットを有するベクターと供に同細胞へ導入することが望ましい。本発明において、トランスポゼースを導入するためには、前述のベクターに当該トランスポゼースをコードする核酸を含有させてもよく、また、他のベクターに当該トランスポゼースをコードする核酸を含有させ、同時に細胞へ導入しても良い。さらに、当該トランスポゼースをコードする遺伝子産物を直接導入しても良い。本発明において、好ましいトランスポゼースは、上述のトランスポゾン配列へ対応するトランスポゼースであり、好ましくはpiggyBacトランスポゼースである。 In another embodiment, the expression cassette (promoter, gene sequence) is inserted into the above-mentioned vector in order to insert the nucleic acid encoding the gene into the chromosome, or to excise the nucleic acid inserted into the chromosome as required. And transposon sequences may be included before and after the gene expression unit containing the Although it does not specifically limit as a transposon sequence, piggyBac is illustrated. In order to introduce an expression cassette into a chromosome using a transposon, it is desirable to introduce transposase into the same cell together with a vector having the expression cassette. In the present invention, in order to introduce transposase, the aforementioned vector may contain the nucleic acid encoding the transposase, and another vector may contain the nucleic acid encoding the transposase, and simultaneously introduced into cells. It is good. Furthermore, the gene product encoding the transposase may be directly introduced. In the present invention, preferred transposases are transposases corresponding to the transposon sequences described above, preferably piggyBac transposases.
 神経誘導因子がRNAの形態の場合、例えばエレクトロポレーション、リポフェクション、マイクロインジェクションなどの手法によって多能性幹細胞内に導入しても良い。 When the nerve induction factor is in the form of RNA, it may be introduced into pluripotent stem cells by techniques such as electroporation, lipofection, microinjection, and the like.
 神経誘導因子がタンパク質の形態の場合、例えばリポフェクション、細胞膜透過性ペプチド(例えば、HIV由来のTAT及びポリアルギニン)との融合、マイクロインジェクションなどの手法によって多能性幹細胞内に導入してもよい。 When the nerve induction factor is in the form of a protein, it may be introduced into pluripotent stem cells by a technique such as lipofection, fusion with cell membrane permeable peptides (eg, TAT and polyarginine derived from HIV), microinjection and the like.
 <Ngn2の発現誘導>
 Ngn2をコードする核酸は、誘導可能なプロモーターに機能的に接合させることで、所望の時期に、Ngn2の発現を誘導することができる。そのような誘導可能なプロモーターとしては、薬剤応答性プロモーターを挙げることができ、その好適な例として、テトラサイクリン応答性プロモーター(tetO配列が7回連続したテトラサイクリン応答配列(TRE)を有するCMV最小プロモーター)が挙げられる。該プロモーターは、リバーステトラサイクリン制御性トランス活性化因子(rtTA;reverse tetR(rTetR)とVP16ADから構成される融合タンパク質)の発現下において、テトラサイクリン又はその誘導体が供給されることにより活性化されるプロモーターである。よって、テトラサイクリン応答性プロモーターを用いて前記遺伝子の発現誘導を行う場合には、前記活性化因子を発現する様式を併せ持つベクターを用いるとさらに好適である。前記テトラサイクリンの誘導体としては、ドキシサイクリン(doxycycline、本願では以降、DOXと略記する)を好適に用いることができる。
<Induction of Ngn2 expression>
A nucleic acid encoding Ngn2 can induce expression of Ngn2 at a desired time by functionally joining to an inducible promoter. As such an inducible promoter, mention may be made of a drug responsive promoter, and a preferred example thereof is a tetracycline responsive promoter (a CMV minimal promoter having a tetracycline response element (TRE) having seven consecutive tetO sequences) Can be mentioned. The promoter is a promoter activated by supplying tetracycline or its derivative under expression of reverse tetracycline-regulated transactivator (rtTA; a fusion protein composed of reverse tetR (rTetR) and VP16AD). is there. Therefore, when induction of expression of the gene is performed using a tetracycline responsive promoter, it is more preferable to use a vector having a mode of expressing the activating factor. As a derivative of the tetracycline, doxycycline (doxycycline, hereinafter abbreviated as DOX) can be suitably used.
 また、上記以外の薬剤応答性プロモーターを用いた発現誘導系としては、エストロゲン応答性プロモーターを用いた発現誘導システム、RSL1によって誘導されるプロモーターを用いたRheoSwitch哺乳類誘導性発現システム(New England Biolabs社)、cumateによって誘導されるプロモーターを用いたQ-mateシステム(Krackeler Scientific社)又はCumate誘導性発現システム(National Research Council(NRC)社)、及びエクジソン応答性配列を有するプロモーターを用いたGenoStat誘導性発現システム(Upstate cell signaling solutions社)等が挙げられる。 Moreover, as an expression induction system using a drug responsive promoter other than the above, an expression induction system using an estrogen responsive promoter, a RheoSwitch mammalian inducible expression system using a promoter induced by RSL1 (New England Biolabs) , Q-mate system (Krackeler Scientific) or Cumate inducible expression system (National Research Council (NRC)) using a promoter induced by cumate, and GenoStat inducible expression using a promoter having an ecdysone responsive sequence Systems (Upstate cell signaling solutions) and the like.
 上記に示されるような薬剤応答性プロモーターに基づく発現誘導システムを備えた発現ベクター(すなわち、薬剤応答性誘導ベクター)を用いる場合、当該プロモーターの活性化を誘導し得る薬剤(例えば、前記テトラサイクリン応答性プロモーターを含むベクターの場合には、テトラサイクリン又はDOX)を培地に所望の期間添加し続けることで、Ngn2の発現を維持することができる。そして、培地から当該薬剤を除去する(例えば、該薬剤を含まない培地に置換する)ことで、前記遺伝子の発現を停止させることが可能である。 When using an expression vector provided with a drug responsive promoter-based expression induction system as described above (ie, a drug responsive induction vector), an agent capable of inducing activation of the promoter (eg, the tetracycline responsive agent) In the case of a vector containing a promoter, expression of Ngn2 can be maintained by continuing to add tetracycline or DOX) to the medium for a desired period of time. Then, expression of the gene can be stopped by removing the drug from the culture medium (for example, replacing it with a culture medium not containing the drug).
 さらに、Ngn2の発現誘導は、当該遺伝子を構成的プロモーターに機能的でない形で接合させておき、所望の時期に当該接合状態を機能的な接合状態に変換することで誘導してもよい。このような例としては、前記構成的プロモーターと前記遺伝子をコードする配列の間に、LoxP配列で挟まれた特定の配列(例えば、薬剤耐性遺伝子をコードする配列や転写終結を誘導する配列)を配しておき、所望の時期にCreを作用させて前記LoxP配列で挟まれた配列を除去することで、前記接合状態を機能的な接合状態に変換する方法等が挙げられる。さらに、前記LoxP配列の代わりにFRT配列又はトランスポゾン配列を、前記Creの代わりにFLP(flipase)又は当該トランスポゾンを用いてもよい。なお、この目的で好適に用いることができるトランスポゾンとして、piggyBacトランスポゾンが挙げられる。 Furthermore, expression induction of Ngn2 may be induced by bringing the gene into non-functional form into a constitutive promoter and converting the state of conjugation into a functional state of conjugation at a desired time. As such an example, a specific sequence (for example, a sequence encoding a drug resistance gene or a sequence inducing transcription termination) flanked by LoxP sequences may be inserted between the constitutive promoter and the sequence encoding the gene. A method of converting the bonding state into a functional bonding state, etc., may be mentioned by arranging it and acting Cre at a desired time to remove the sequence sandwiched between the LoxP sequences. Furthermore, instead of the LoxP sequence, FRT sequence or transposon sequence may be used, and FLP (flipase) or the transposon may be used instead of the Cre. In addition, piggyBac transposon is mentioned as a transposon which can be used suitably for this purpose.
 上記目的で用いることができる構成的プロモーターとしては、SV40プロモーター、LTRプロモーター、CMV(cytomegalovirus)プロモーター、RSV(Rous sarcoma virus)プロモーター、MoMuLV(Moloney mouse leukemia virus) LTR、HSV-TK(herpes simplex virus thymidine kinase)プロモーター、EF-αプロモーター、及びCAGプロモーター等が挙げられる。 Constitutive promoters that can be used for the above purpose include SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcoma virus) promoter, MoMuLV (Moloney murine leukemia virus) LTR, HSV-TK (herpes simplex virus thymidine) kinase) promoter, EF-α promoter, CAG promoter and the like.
 上記のようにCre、FLP、トランスポゾンを用いて接合状態を変換することで発現誘導を行った場合には、所望の期間経過後に再度Cre、FLP、トランスポゾンを作用させて前記配列(LoxP配列、FRT配列、又はトランスポゾン配列)で挟まれた配列を除去することで、前記遺伝子の発現を停止させることもできる。 As described above, when expression is induced by converting the conjugation state using Cre, FLP, and transposon, Cre, FLP, and transposon are allowed to act again after the desired period has elapsed, and the above sequence (LoxP sequence, FRT) The expression of the gene can also be stopped by removing the sequence or the sequence flanked by the transposon sequences).
 また、別の態様として、アデノウイルスベクター、アデノ随伴ウイルスベクター、センダイウイルスベクターやプラスミド、エピソーマルベクターなどの、容易に細胞内から消失させ得るベクターを用いることで前記遺伝子の発現期間を制御することも可能である。 In another embodiment, the expression period of the gene is controlled by using a vector that can be easily eliminated from the cell, such as an adenovirus vector, an adeno-associated virus vector, a Sendai virus vector, a plasmid, an episomal vector, etc. Is also possible.
 神経細胞の製造において、導入したNgn2の発現は、3日間、4日間、5日間、6日間、7日間のいずれにおいても本発明の効果を奏することができ、長期になることで神経細胞の製造に不利益を生じることはないが、好ましくは3日以上14日以下、特に好ましくは7日以上14日以下である。 In the production of nerve cells, the expression of introduced Ngn2 can exert the effects of the present invention in any of 3 days, 4 days, 5 days, 6 days, and 7 days, and the production of nerve cells is prolonged by becoming long. There is no disadvantage, but it is preferably 3 to 14 days, particularly preferably 7 to 14 days.
 <培養条件>
 本実施形態の興奮毒性評価方法に用いる神経細胞の製造方法において、前記Ngn2をコードする核酸が導入された多能性幹細胞を、培養下で神経細胞に分化誘導する際に用いる培地としては、基本培地のみ、又は、神経栄養因子を添加した基本培地を用いることができる。そのような基本培地としては、例えば、Glasgow’s Minimal Essential Medium(GMEM)培地、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、Neurobasal Medium(ライフテクノロジーズ)及びこれらの混合培地などが包含される。基本培地には、血清が含有されていてもよいし、あるいは無血清でもよい。
<Culture conditions>
In the method for producing nerve cells used in the method for evaluating excitotoxicity according to the present embodiment, a culture medium used to induce differentiation of pluripotent stem cells into which the nucleic acid encoding Ngn2 has been introduced into nerve cells in culture is basically used. A medium alone or a basal medium supplemented with a neurotrophic factor can be used. As such a basic medium, for example, Glasgow's Minimal Essential Medium (GMEM) medium, IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, αMEM medium, Dulbecco's modified Eagle's Medium (DMEM) Medium, Ham's F12 medium, RPMI 1640 medium, Fischer's medium, Neurobasal Medium (Life Technologies), and a mixed medium thereof are included. The basal medium may contain serum or may be serum free.
 必要に応じて、培地は、例えば、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、アルブミン、トランスフェリン、アポトランスフェリン、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロールなどの1つ以上の血清代替物を含んでもよく、また、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、セレン酸、プロゲステロン及びプトレシンなどの1つ以上の物質も含有してもよい。 As necessary, the medium is, for example, Knockout Serum Replacement (KSR) (serum substitute for FBS in ES cell culture), N2 supplement (Invitrogen), B27 supplement (Invitrogen), albumin, transferrin, apotransferrin, fatty acid, It may contain one or more serum substitutes such as insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol etc. and also lipids, amino acids, L-glutamine, Glutamax (Invitrogen), non-essential It may also contain one or more substances such as amino acids, vitamins, growth factors, small molecule compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, selenate, progesterone and putrescine, etc. .
 このうち、B27サプリメントを含有するNeurobasal Medium、又は、インスリン、アポトランスフェリン、セレン酸、プロゲステロン及びプトレシンを含有するDMEM及びF12の混合培地を基本培地として好適に用いることができる。 Among them, Neurobasal Medium containing a B27 supplement, or a mixed medium of DMEM and F12 containing insulin, apotransferrin, selenate, progesterone and putrescine can be suitably used as a basic medium.
 本実施形態の興奮毒性評価方法に用いる神経細胞の製造方法においては、神経細胞の分化誘導の際に、マウス細胞、特に、マウスのグリア細胞と共培養しなくとも神経細胞に誘導可能である。よって、夾雑物を混入させないことを目的として、マウス細胞との共培養を行わないことが望ましい。 In the method of producing nerve cells used in the method for evaluating excitotoxicity according to the present embodiment, when differentiation of nerve cells is induced, it can be induced into nerve cells without co-culture with mouse cells, in particular mouse glial cells. Therefore, it is desirable not to carry out co-culture with mouse cells in order to prevent contamination.
 本実施形態の興奮毒性評価方法に用いる神経細胞の製造方法において、神経細胞の分化誘導を行う際の培養温度は、特に限定されないが、約30~40℃、好ましくは約37℃であり、CO含有空気の雰囲気下で培養が行われ、CO濃度は、好ましくは約2~5%である。 In the method for producing nerve cells used in the method for evaluating excitotoxicity according to this embodiment, the culture temperature at the time of induction of differentiation of nerve cells is not particularly limited, and is about 30 to 40 ° C., preferably about 37 ° C. The culture is carried out under an atmosphere of air containing 2 and the concentration of CO 2 is preferably about 2 to 5%.
 Ngn2をコードする外来性の核酸は誘導可能なプロモーターの制御下にあることが好ましく、より好ましくは、薬剤応答性プロモーターの制御下である。これらの外来性核酸が染色体内に挿入された多能性幹細胞は、未分化能と高い増殖能を維持しており、前記形質を保持したまま増殖させることできる。さらに凍結保存を行っても前記形質が失われないことから、細胞株として安定に維持することが可能である。また、前記プロモーターが応答する薬剤と接触させることにより、迅速且つ同調して神経細胞へと分化し得る細胞である。 Preferably, the exogenous nucleic acid encoding Ngn2 is under the control of an inducible promoter, more preferably under the control of a drug responsive promoter. Pluripotent stem cells into which these foreign nucleic acids have been inserted into the chromosome maintain their undifferentiated ability and high proliferative ability, and can be proliferated while retaining the aforementioned traits. Furthermore, since the above-mentioned trait is not lost even when cryopreservation is performed, it is possible to stably maintain the cell line. In addition, it is a cell capable of rapidly and synchronously differentiating into neural cells by contacting with the agent to which the promoter responds.
<ヒト神経細胞に対する興奮毒性評価方法>
 本発明は、被験物質のヒト神経細胞に対する興奮毒性の評価方法を提供する。本発明の被験物質のヒト神経細胞に対する興奮毒性の評価方法は、以下の工程を含む。
(1)多能性幹細胞を分化誘導して製造されたヒト神経細胞と被験物質とを接触させる工程、
(2)前記ヒト神経細胞に刺激を与える工程、
(3)前記ヒト神経細胞の興奮の程度を測定する工程、及び
(4)被験物質存在下で、前記ヒト神経細胞の興奮が増強した場合、該被験物質はヒト神経細胞に対して興奮毒性があると評価する工程
<Method for evaluating excitotoxicity to human neurons>
The present invention provides a method for evaluating the excitotoxicity of a test substance to human neurons. The method for evaluating the excitotoxicity of the test substance of the present invention on human neurons comprises the following steps.
(1) bringing a test substance into contact with human neurons produced by inducing differentiation of pluripotent stem cells;
(2) a step of stimulating the human neural cell,
(3) measuring the degree of excitation of the human nerve cell, and (4) if the excitation of the human nerve cell is enhanced in the presence of the test substance, the test substance is excitotoxic to the human nerve cell Process to evaluate that there is
 本発明の被験物質のヒト神経細胞に対する興奮毒性の評価方法に用いられる、ヒト神経細胞としては、多能性幹細胞を分化誘導して製造したヒト神経細胞であれば、いずれでもよいが、例えば、前記の多能性幹細胞を分化誘導して製造したヒト神経細胞等が挙げられる。多能性幹細胞を分化誘導して製造したヒト神経細胞としては、例えば、大脳皮質神経細胞等が挙げられる。 The human neural cells used in the method for evaluating the excitotoxicity of the test substance of the present invention on human neurons may be any human neural cells produced by inducing differentiation of pluripotent stem cells, for example, Examples include human nerve cells produced by inducing differentiation of the pluripotent stem cells described above, and the like. Examples of human neural cells produced by differentiating pluripotent stem cells include cerebral cortical neurons and the like.
 神経細胞は、多能性幹細胞から分化誘導した後、一度継代した細胞であることが好ましい。実施例において後述するように、一度継代することにより、ウェル間の細胞数差、ウェル内での神経細胞の位置の偏りを最小限とし、興奮毒性の評価をより正確に測定することが可能となる。 The neural cell is preferably a cell that has been passaged once after being induced to differentiate from pluripotent stem cells. As will be described later in the Examples, by passaging once, it is possible to minimize the difference in cell number between wells and the bias in the position of nerve cells in the wells, and to more accurately measure the evaluation of excitotoxicity. It becomes.
 継代は、ヒト神経細胞を酵素処理し、単細胞単位にまで単離浮遊させ、40、70、又は100μmのメッシュポアサイズ、好ましくは70μmのメッシュポアサイズのセルストレイナー処理の後、5~40×10個/cm、好ましくは、15×10個/cmの細胞密度で、Neurobasal medium(Thermofisher社製)に、B27 supplement without vitamin A(Thermofisher社製)0.5%、Glutamax1%、ペニシリン100units/ml、ストレプトマイシン100μg/mlを添加した培地等に播種することにより行うことが好ましい。 For passaging, human neuronal cells are treated with enzymes, isolated and suspended to single cell units, and subjected to cell strainer treatment with a mesh pore size of 40, 70 or 100 μm, preferably 70 μm, and then 5 to 40 × 10 4 Cells / cm 2 , preferably at a cell density of 15 × 10 4 cells / cm 2 , in Neurobasal medium (manufactured by Thermofisher), B27 supplement without vitamin A (manufactured by Thermofisher) 0.5%, Glutama x 1%, penicillin 100 units It is preferable to carry out by inoculating the culture medium etc. which added / ml and streptomycin 100microg / ml.
 また、前記ヒト神経細胞は、96穴透明底プレート等の培養器にコート液でコートした培養器に播種するのが好ましい。該コート液としては、0.5~4%、好ましくは2%のマトリゲル(Mコート)、0.002~0.005%、好ましくは0.003%Poly-L-lysineと、0.5~4%、好ましくは1%合成ヒトビトロネクチン基質(Synthemax(商標)II-SC Substrate等)との混合物(PSコート)、0.002~0.005% w/v、好ましくは0.003% w/v Poly-L-lysineと、0.5~4%、好ましくは1%合成ヒトビトロネクチン基質(Synthemax(商標)II-SC Substrate等)と、0.5~4%、好ましくは2%マトリゲルと、の混合物(PSMコート)、0.002~0.005%、好ましくは0.003%Poly-L-lysineと、0.5%~4%、好ましくは1%合成ヒトビトロネクチン基質(Synthemax(商標)II-SC Substrate等)と、0.5%~4%、好ましくは2%マトリゲルと、0.002~0.005% w/v、好ましくは0.003%ヒトI型コラーゲン様リコンビナントペプチド(Cellnest等)と、の混合物(PSMCコート)等が用いられる。 Further, it is preferable to inoculate the human neural cells in a culture vessel coated with a coating solution on a culture vessel such as a 96-well clear bottom plate. As the coating solution, 0.5 to 4%, preferably 2% of Matrigel (M coat), 0.002 to 0.005%, preferably 0.003% Poly-L-lysine and 0.5 to 5% are preferable. Mixture (PS coated) with 4%, preferably 1% synthetic human vitronectin substrate (SynthemaxTM II-SC Substrate etc.), 0.002 to 0.005% w / v, preferably 0.003% w / v v Poly-L-lysine and 0.5 to 4%, preferably 1% synthetic human vitronectin substrate (such as SynthemaxTM II-SC Substrate) and 0.5 to 4%, preferably 2% Matrigel Mixture (PSM coat), 0.002-0.005%, preferably 0.003% Poly-L-lysine and 0.5%- %, Preferably 1% synthetic human vitronectin substrate (SynthemaxTM II-SC Substrate etc.) and 0.5% to 4%, preferably 2% Matrigel, 0.002 to 0.005% w / v, Preferably, a mixture (PSMC coat) of 0.003% human type I collagen-like recombinant peptide (Cellnest etc.) and the like are used.
 培養器のコートは室温あるいは37℃で30分間~4時間、好ましくは2時間行い、その後コート液は吸引除去する。培養器は、乾燥して、その後ヒト神経細胞を播種するか、又は直ちにヒト神経細胞を播種する。培養器に播種したヒト神経細胞は、3~7日後に、本実施形態の興奮毒性評価方法に供する。 Coat the incubator at room temperature or 37 ° C. for 30 minutes to 4 hours, preferably 2 hours, and then remove the coating solution by suction. The incubator is dried and then seeded with human neurons or immediately seeded with human neurons. Human nerve cells seeded in a culture vessel are subjected to the excitotoxicity evaluation method of the present embodiment 3 to 7 days later.
 本実施形態の興奮毒性評価方法において、前記ヒト神経細胞に刺激を与える方法としては、ヒト神経細胞に刺激を与え、脱分極させることができる方法であれば特に制限はないが、例えば、電気刺激による方法、グルタミン酸等の興奮性神経シナプストランスミッター等を添加する方法等が挙げられる。 In the excitotoxicity evaluation method of the present embodiment, the method for stimulating human neural cells is not particularly limited as long as it is a method capable of stimulating human neural cells to cause depolarization. , And methods of adding excitatory nerve synaptic transmitters such as glutamate, and the like.
 本実施形態の興奮毒性評価方法において、ヒト神経細胞の興奮の程度を測定する方法としては、神経細胞の興奮の程度を測定できる方法であれば、特に制限はないが、例えば、神経細胞内のカルシウム動態を測定する方法、細胞内電位の変化に反応して蛍光強度が変化する化合物を添加した際の蛍光強度の変化を測定する方法等が挙げられる。 In the excitotoxicity evaluation method of the present embodiment, the method of measuring the degree of excitation of human nerve cells is not particularly limited as long as it is a method capable of measuring the degree of excitation of nerve cells. Methods of measuring calcium dynamics, methods of measuring changes in fluorescence intensity upon addition of a compound whose fluorescence intensity changes in response to changes in intracellular potential, and the like can be mentioned.
 前記カルシウムイオン動態の測定方法としては、細胞内カルシウムイオン動態が測定できれば、特に制限はなく、公知の測定方法等を用いることができる。公知の測定方法としては、例えば、Fluo-8、Fluo-4、fura-2、indo-1等のカルシウムインジケーター色素を用いる方法、カルシウム二価イオン感受性微少電極を用いる方法、蛍光共鳴エネルギー移動(fluorescence resonance energy transfer;FRET)を利用する方法、カルシウムイオン感受性発光タンパク質エクオリンを用いる方法、GFP遺伝子改変体にカルモジュリンタンパク質を遺伝的に結合させたカルシウムセンサータンパク質(例えば、緑色蛍光タンパク(EGFP)、カルモジュリン(CaM)、ミオシン軽鎖フラグメント(M13)を遺伝子工学的に結合させたGCaMP)を発現させ用いる方法等が挙げられる。カルシウムインジケーター色素は、ヒト神経細胞に添加後、必要に応じ、PBS、HESS緩衝液等で洗浄した後に、細胞に移行した色素濃度を測定する。Pluronic acid F-127(シグマアルドリッチ社製)等を用いて、カルシウムインジケーター色素の細胞内への移行を促進してもよい。 The method of measuring the calcium ion dynamics is not particularly limited as long as intracellular calcium ion dynamics can be measured, and known measurement methods and the like can be used. For example, a method using a calcium indicator dye such as Fluo-8, Fluo-4, fura-2, indo-1 etc., a method using a calcium divalent ion sensitive microelectrode, fluorescence resonance energy transfer (fluorescence) Method using resonance energy transfer (FRET), method using calcium ion-sensitive photoprotein aequorin, calcium sensor protein (for example, green fluorescent protein (EGFP), calmodulin (eg, green fluorescent protein (EGFP)) in which calmodulin protein is genetically linked to a GFP gene variant CaM), a method of expressing and using GCaMP in which myosin light chain fragment (M13) is genetically engineered and the like, and the like can be mentioned. The calcium indicator dye is added to human neurons and, if necessary, washed with PBS, HESS buffer or the like, and then the dye concentration transferred to the cells is measured. Pluronic acid F-127 (manufactured by Sigma-Aldrich) may be used to promote the intracellular transfer of the calcium indicator dye.
 ヒト神経細胞への刺激として電気刺激を用い、前記ヒト神経細胞の興奮の程度を、細胞内カルシウム動態を測定する、本実施形態の興奮毒性評価方法の具体例を以下に示す。 Specific examples of the excitotoxicity evaluation method of the present embodiment, in which the degree of excitation of the human neural cells is measured by measuring the intracellular calcium dynamics using electrical stimulation as stimulation to human neural cells, are shown below.
 細胞内カルシウム動態は、FDSS/μCell(浜松ホトニクス社製)を用いて測定することができる。記録はExcitation 480nm/Emission 540nmを使用し、サンプリングインターバルは30~1000msec、好ましくは100msecとする。FDSS装置の刺激電極を用いて、細胞外フィールド電気刺激(Electricalfield stimulation: EFS)後の、細胞内カルシウム動態を経時的にモニタリングする。EFS刺激電極には、電気刺激機能がついた96電極アレイ刺激装置を用いる。 Intracellular calcium dynamics can be measured using FDSS / μCell (manufactured by Hamamatsu Photonics Co., Ltd.). The recording is performed using Excitation 480 nm / Emission 540 nm, and the sampling interval is 30 to 1000 msec, preferably 100 msec. Intracellular calcium dynamics are monitored over time after extracellular field stimulation (EFS) using the stimulation electrodes of the FDSS device. For EFS stimulation electrodes, a 96-electrode array stimulator with an electrical stimulation function is used.
 神経細胞の電気刺激(EFS刺激)は、通常、単相刺激、電圧は20V、パルス幅3msec、刺激頻度50Hzの条件で行われる。これに対し、本実施形態の興奮毒性評価方法では、単相刺激、電圧は10~15V、好ましくは12.5V、パルス幅は1~6msec、好ましくは4msec、刺激頻度は8~30Hz、好ましくは10Hzの条件で電気刺激を行うことが好ましい。このように、より弱い細胞外電気刺激を用いた薬剤検討を行うことにより、強すぎる電気刺激ではマスクされる可能性がある微小な変化を見出すことができる。 Electrical stimulation (EFS stimulation) of nerve cells is usually performed under conditions of single-phase stimulation, voltage of 20 V, pulse width of 3 msec, and stimulation frequency of 50 Hz. On the other hand, in the excitotoxicity evaluation method of the present embodiment, single-phase stimulation, voltage is 10 to 15 V, preferably 12.5 V, pulse width is 1 to 6 msec, preferably 4 msec, stimulation frequency is 8 to 30 Hz, preferably It is preferable to perform electrical stimulation under conditions of 10 Hz. Thus, by conducting drug studies with weaker extracellular electrical stimulation, it is possible to find minor changes that may be masked by too strong electrical stimulation.
 EFS刺激の30秒前からモニタリングを開始し、EFS刺激前の基線が安定した状態でEFS刺激を加え、以後合計600秒程度の細胞内カルシウム動態を、蛍光強度の変化として記録する。 Monitoring is started 30 seconds before EFS stimulation, EFS stimulation is applied with the baseline stabilized before EFS stimulation, and thereafter, intracellular calcium dynamics for about 600 seconds in total is recorded as a change in fluorescence intensity.
 得られた蛍光強度変化の実波形を、ΔF(変化強度)/F0(基線強度)=(100% peak height-bottom height)/bottom height)として経時的にモニタリングし、ΔF/F0が最大変化を示したピークを数値化し、被験物質存在下でのΔF/F0の変化を測定する。 The actual waveform of the obtained fluorescence intensity change is monitored over time as ΔF (change intensity) / F0 (baseline intensity) = (100% peak height-bottom height) / bottom height), and ΔF / F0 is the maximum change. The indicated peaks are quantified and the change in ΔF / F0 in the presence of the test substance is measured.
 本発明の被験物質のヒト神経細胞に対する興奮毒性の評価方法において、被験物質存在下、被験物質非存在下それぞれで、前記ヒト神経細胞の興奮の程度を測定し、被験物質非存在下での前記ヒト神経細胞の興奮の程度よりも、被験物質存在下での、前記ヒト神経細胞の興奮の程度が増強した場合、該被験物質はヒト神経細胞に対して興奮毒性があると評価することができる。 In the method for evaluating excitotoxicity of a test substance of the present invention to human nerve cells, the degree of excitation of the human nerve cell is measured in the presence of the test substance and in the absence of the test substance, respectively. When the degree of excitation of the human nerve cell in the presence of the test substance is enhanced rather than the degree of excitation of the human nerve cell, the test substance can be evaluated as excitotoxic to the human nerve cell .
 例えば、被験物質存在下で電気刺激したときの細胞内のカルシウム濃度が、被験物質非存在下で電気刺激したときの細胞内カルシウム濃度よりも増加した場合、当該被験物質は、ヒト神経細胞に対して興奮毒性があると評価することができる。 For example, when the intracellular calcium concentration when electrically stimulated in the presence of a test substance is higher than the intracellular calcium concentration when electrically stimulated in the absence of the test substance, the test substance is a human neural cell. Can be evaluated as excitotoxic.
 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto.
[実施例1]
(神経細胞の調製)
 健常人より樹立した人工多能性幹細胞(induced pluripotent stem cell:iPS細胞)に、piggyBacベクターを用いてヒトNgn2遺伝子をドキシサイクリン制御下に発現するコンストラクトを導入した。なお、遺伝子のゲノム挿入位置や導入量により、成熟した神経細胞以外にNESTINタンパク質陽性の幼弱な神経幹細胞が混在し、培養期間を延長すると段階的に神経細胞と入れ換わる現象が見られた。そこで、ベクター導入時のiPS細胞の播種密度を1800個/cmに下げ、G418による薬剤耐性セレクションを、播種48時間後から開始することで、コンストラクトを導入したiPS細胞のシングルセル由来のコロニーを形成させ、コロニーを単離、株化した。この株化したiPS細胞を48~120株程度神経細胞へ分化させ、その様子を観察して、幼弱な神経幹細胞が混ざることがない株を選択して以下の実験に用いた。
Example 1
(Preparation of nerve cells)
A construct expressing human Ngn2 gene under doxycycline control was introduced into induced pluripotent stem cells (iPS cells) established from healthy individuals using a piggyBac vector. It should be noted that depending on the position of genomic insertion of the gene and the amount of introduction, immature neural stem cells positive for NESTIN protein were mixed in addition to mature neurons, and a phenomenon was observed that they gradually replaced neurons when the culture period was extended. Therefore, the seeding density of iPS cells at the time of vector introduction is lowered to 1800 cells / cm 2 , and drug resistant selection by G418 is initiated 48 hours after seeding, to obtain single cell-derived colonies of iPS cells into which the construct has been introduced. It was allowed to form and colonies were isolated and established. The established iPS cells were differentiated into about 48 to 120 neural cells, and the appearance thereof was observed, and a strain which was not mixed with weak neural stem cells was selected and used in the following experiment.
 上記で得られた細胞株を5日間、ドキシサイクリンを添加した培地で培養し、神経細胞に分化誘導した。続いて、分化誘導した神経細胞を一度継代した。具体的には、分化誘導した神経細胞をTrypLE(Gibco,Themo Fisher Scientific社製)により酵素処理し、単細胞単位にまで単離、浮遊させ、40μmのメッシュポアサイズのセルストレイナー処理の後、3.3×10個/cmの細胞密度で播種した。神経細胞培地には、Neurobasal medium(Thermo Fisher Scientific社製)に、B27 supplement without vitamin A(Thermofisher Scientific社製)0.5%、Glutamax1%、ペニシリン100units/ml、ストレプトマイシン100μg/mlを添加したものを用いた。 The cell lines obtained above were cultured in a medium supplemented with doxycycline for 5 days to induce differentiation into neural cells. Subsequently, differentiation-induced neurons were passaged once. Specifically, differentiation-induced neurons are enzymatically treated with TrypLE (Gibco, manufactured by Themo Fisher Scientific), isolated to single cell units, suspended, and treated with 40 μm mesh pore size cell strainer, 3.3. The cells were seeded at a cell density of 10 5 cells / cm 2 . Neurobasal medium is prepared by adding B27 supplement without vitamin A (manufactured by Thermofisher Scientific) 0.5%, Glutamax 1%, penicillin 100 units / ml, streptomycin 100 μg / ml to Neurobasal medium (manufactured by Thermo Fisher Scientific). Using.
 播種する培養器は、SBS規格の96穴透明底プレートを用いた。上記で調製した神経細胞は、0.003% w/v Poly-L-lysine、1%合成ヒトビトロネクチン基質(Synthemax(商標)II-SC Substrate;Corning社製)、2%マトリゲル及び0.003%ヒトI型コラーゲン様リコンビナントペプチド(Cellnest社製)の混合物を用いてコートした培養器に播種した。培養器のコートは37℃で2時間行った。コート液は吸引除去し、直ちに細胞を播種した。 The incubator used was a 96-well transparent bottom plate according to SBS standard. The nerve cells prepared above were 0.003% w / v Poly-L-lysine, 1% synthetic human vitronectin substrate (SynthemaxTM II-SC Substrate; Corning), 2% Matrigel and 0.003% The mixture was seeded on a culture vessel coated with a mixture of human type I collagen-like recombinant peptides (manufactured by Cellnest). Coat the incubator at 37 ° C. for 2 hours. The coating solution was aspirated and immediately seeded with cells.
[実施例2]
(細胞内カルシウム動態のモニタリング)
 細胞播種後7日目に、細胞内カルシウムインジケーター色素である2μM Fluo-8を添加し、添付文書に従ってインキュベートし、HESS緩衝液で洗浄を行った。色素の細胞内移行を促進するため、0.001% w/v Pluronic acid F-127(シグマアルドリッチ社製)をインキュベート液に添加した。
Example 2
(Monitoring intracellular calcium dynamics)
Seven days after cell seeding, 2 μM Fluo-8, an intracellular calcium indicator dye, was added, incubated according to the package insert, and washed with HESS buffer. In order to promote intracellular transfer of the dye, 0.001% w / v Pluronic acid F-127 (manufactured by Sigma Aldrich) was added to the incubation solution.
 N型カルシウムチャネル阻害薬であるBepridil(Bourguignon etal.1989)を、25μMを最大濃度として、5倍の希釈系列を、1.6、8、40、200nM、5、25μMの7段階調整し、細胞内カルシウム動態に与える影響を以下のようにして評価した。 The N-type calcium channel inhibitor Bepridil (Bourguignon et al. 1989) is adjusted to a maximum concentration of 25 μM, and a 5-fold dilution series is adjusted in seven steps of 1.6, 8, 40, 200 nM, 5, 25 μM. The effect on internal calcium dynamics was evaluated as follows.
 細胞内カルシウムの測定には、FDSS/μCell(浜松ホトニクス社製)を用いた。測定波長には、Excitation 480nm/Emission 540nmを使用し、サンプリングインターバルは、100msecとした。
 FDSS装置の刺激電極を用いて、細胞外フィールド電気刺激(Electricalfield stimulation: EFS)後の、細胞内カルシウム動態を経時的にモニタリングした。EFS刺激電極には、電気刺激機能がついた96電極アレイ刺激装置を用いた。
FDSS / μCell (manufactured by Hamamatsu Photonics K.K.) was used for measurement of intracellular calcium. For the measurement wavelength, Excitation 480 nm / Emission 540 nm was used, and the sampling interval was 100 msec.
Intracellular calcium dynamics were monitored over time after extracellular field stimulation (EFS) using the stimulation electrodes of the FDSS device. For the EFS stimulation electrodes, a 96-electrode array stimulator with an electrical stimulation function was used.
 電気刺激は、単相刺激、電圧12.5V、パルス幅4msec、刺激頻度10Hzの条件で行った。EFS刺激の30秒前からモニタリングを開始し、EFS刺激前の基線が安定した状態でEFS刺激を加え、以後合計600秒の細胞内カルシウム動態を、蛍光強度の変化として記録した。 Electrical stimulation was performed under the conditions of single-phase stimulation, voltage 12.5 V, pulse width 4 msec, and stimulation frequency 10 Hz. Monitoring was started 30 seconds before EFS stimulation, and EFS stimulation was applied with the baseline stabilized before EFS stimulation, and thereafter total intracellular calcium dynamics for 600 seconds was recorded as a change in fluorescence intensity.
 なお、神経細胞の分化誘導において、上記の通り、細胞株を5日間培養し、分化誘導した神経細胞を、一度継代することにより、ウェル間の細胞数差を最小化でき、またFDSSによる細胞内カルシウム動態のモニタリングにおいてノイズ原因となるウェル内での神経細胞の位置により生じ得る偏りを最小限とすることができた。これにより、電気刺激の際、電圧12.5V、パルス幅4msec、刺激頻度10Hzという、弱い電気刺激で細胞内カルシウムの測定を行うことが可能となり、強すぎる電気刺激ではマスクされる可能性がある微小な蛍光強度の変化を見出すことができた。 In addition, in induction of differentiation of nerve cells, as described above, cell lines are cultured for 5 days, and by differentiating induced differentiation of neurons once, cell number difference between wells can be minimized, and cells by FDSS can be minimized. We were able to minimize the bias that can be caused by the location of neurons in the wells that cause noise in monitoring internal calcium dynamics. This makes it possible to measure intracellular calcium with a weak electrical stimulus with a voltage of 12.5 V, a pulse width of 4 msec, and a stimulation frequency of 10 Hz during electrical stimulation, and may be masked by an electrical stimulus that is too strong A minute change in fluorescence intensity could be found.
 陰性コントロールとして、DMSO溶媒を用いた。その結果を図1に示す。図1に示したように、陰性コントロールであるDMSO溶媒の場合は、ΔF/F0に変化はなかったが、Bepridilでは細胞内カルシウムの変化が阻害された。 DMSO solvent was used as a negative control. The results are shown in FIG. As shown in FIG. 1, in the case of the negative control DMSO solvent, there was no change in ΔF / F 0, but with Bepridil, the change of intracellular calcium was inhibited.
[実施例3]
 (興奮毒性を有する化合物添加時の細胞内カルシウム動態)
 被験物質として、Bepridilの代わりに、米国を始めとする統一毒性評価系の検討部会(HESI)でも使用される薬剤である、Amoxapin、Chlorpromazine及びLinopirdinをそれぞれ用い、実施例2と同様にして細胞内カルシウム動態を測定した。
[Example 3]
(Intracellular calcium dynamics upon addition of excitotoxic compounds)
As a test substance, instead of Bepridil, using Amoxapin, Chlorpromazine and Linopirdin, which are agents also used in the United Nations and other research groups on toxicity evaluation systems (HESI), respectively, in the same manner as in Example 2 Calcium kinetics were measured.
 その結果を図2に示す。図2に示したように、神経興奮毒性があることが知られているAmoxapin、Chlorpromazine及びLinopirdinのそれぞれについて、本発明の興奮毒性評価方法において、Bell-shape型の用量依存的な興奮毒性が確認された。 The results are shown in FIG. As shown in FIG. 2, with regard to each of Amoxapin, Chlorpromazine and Linopirdin which are known to have neuroexcitotoxicity, Bell-shape type dose-dependent excitotoxicity was confirmed in the excitotoxicity evaluation method of the present invention. It was done.
 本発明によれば、被験物質のヒト神経細胞に対する興奮毒性の評価方法を提供することができる。本発明の興奮毒性評価方法は、96ウェルフォーマットのハイスループットスクリーニング系に応用することも可能であり、治療薬シーズの導出段階、あるいは開発候補物質の前臨床インビトロ神経興奮毒性評価系としても適応でき、治療薬開発に有用である。 According to the present invention, it is possible to provide a method for evaluating the excitotoxicity of a test substance to human neurons. The excitotoxicity evaluation method of the present invention can also be applied to a high-throughput screening system in a 96-well format, and can also be applied as a drug drug seed derivation step or as a preclinical in vitro neural excitotoxicity evaluation system for development candidate substances. Useful for therapeutic drug development.

Claims (6)

  1.  被験物質のヒト神経細胞に対する興奮毒性の評価方法であって、
    (1)多能性幹細胞を分化誘導して製造されたヒト神経細胞と被験物質とを接触させる工程、
    (2)前記ヒト神経細胞に刺激を与える工程、
    (3)前記ヒト神経細胞の興奮の程度を測定する工程、及び
    (4)被験物質存在下で、前記ヒト神経細胞の興奮が増強した場合、該被験物質はヒト神経細胞に対して興奮毒性があると評価する工程
    を含む、被験物質のヒト神経細胞に対する興奮毒性の評価方法。
    A method for evaluating the excitotoxicity of a test substance to human neurons, comprising
    (1) bringing a test substance into contact with human neurons produced by inducing differentiation of pluripotent stem cells;
    (2) a step of stimulating the human neural cell,
    (3) measuring the degree of excitation of the human nerve cell, and (4) if the excitation of the human nerve cell is enhanced in the presence of the test substance, the test substance is excitotoxic to the human nerve cell A method for evaluating excitotoxicity of a test substance on human neurons, which comprises the step of evaluating the presence of the compound.
  2.  前記ヒト神経細胞が、多能性幹細胞を神経細胞に分化誘導した後、一度継代した細胞である、請求項1に記載の方法。 The method according to claim 1, wherein the human neural cell is a cell that has been passaged once after differentiating pluripotent stem cells into neural cells.
  3.  前記ヒト神経細胞への刺激が電気刺激である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the stimulation to human neural cells is an electrical stimulation.
  4.  前記電気刺激を、電圧10~15V、刺激頻度8~30Hzで行う、請求項3に記載の方法。 The method according to claim 3, wherein the electrical stimulation is performed at a voltage of 10 to 15 V and a stimulation frequency of 8 to 30 Hz.
  5.  前記ヒト神経細胞の興奮の程度を測定する工程が、前記ヒト神経細胞内のカルシウム動態の測定である、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the step of measuring the degree of excitation of human neurons is the measurement of calcium dynamics in the human neurons.
  6.  前記ヒト神経細胞が、大脳皮質神経細胞である、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the human neuronal cell is a cerebral cortical neuronal cell.
PCT/JP2018/043917 2017-11-30 2018-11-29 Method for evaluating cell hyperstimulation toxicity WO2019107481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019557314A JP7274216B2 (en) 2017-11-30 2018-11-29 Cell excitotoxicity evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-230610 2017-11-30
JP2017230610 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107481A1 true WO2019107481A1 (en) 2019-06-06

Family

ID=66665692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043917 WO2019107481A1 (en) 2017-11-30 2018-11-29 Method for evaluating cell hyperstimulation toxicity

Country Status (2)

Country Link
JP (1) JP7274216B2 (en)
WO (1) WO2019107481A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533835A (en) * 2001-06-21 2004-11-11 ジェロン コーポレイション Dopaminergic neurons and proliferative progenitor cells to treat Parkinson's disease
WO2014148646A1 (en) * 2013-03-21 2014-09-25 国立大学法人京都大学 Pluripotent stem cell for neuronal differentiation induction
WO2016076435A1 (en) * 2014-11-13 2016-05-19 国立大学法人京都大学 Screening method using induced neurons

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533835A (en) * 2001-06-21 2004-11-11 ジェロン コーポレイション Dopaminergic neurons and proliferative progenitor cells to treat Parkinson's disease
WO2014148646A1 (en) * 2013-03-21 2014-09-25 国立大学法人京都大学 Pluripotent stem cell for neuronal differentiation induction
WO2016076435A1 (en) * 2014-11-13 2016-05-19 国立大学法人京都大学 Screening method using induced neurons

Also Published As

Publication number Publication date
JPWO2019107481A1 (en) 2020-11-26
JP7274216B2 (en) 2023-05-16

Similar Documents

Publication Publication Date Title
JP6745498B2 (en) Pluripotent stem cells for inducing neural differentiation
US20230114089A1 (en) Method for inducing dopaminergic neuron progenitor cells
JP7116964B2 (en) Method for producing telencephalon or its precursor tissue
JP5761816B2 (en) Differentiation induction method from pluripotent stem cells to neural progenitor cells
KR102312123B1 (en) Method for producing dopamine-producing neural progenitor cells
JP6143268B2 (en) Method for inducing differentiation from human pluripotent stem cells to intermediate mesoderm cells
TW201629213A (en) Production method for retinal tissue
EP2938721B1 (en) Method for inducing astrocytes
EP2998391B1 (en) Efficient myocardial cell induction method
JP5896421B2 (en) Differentiation induction method from pluripotent stem cells to skeletal muscle or skeletal muscle progenitor cells
KR102318706B1 (en) Method for manufacturing ciliary marginal zone-like structure
JP7079017B2 (en) Method for inducing differentiation of pluripotent stem cells into germline stem cell-like cells
JP7274216B2 (en) Cell excitotoxicity evaluation method
WO2022138593A1 (en) Method for producing skeletal muscle cell
WO2021015086A1 (en) Method for producing mature myotube cells from skeletal muscle stem cells
JP2023086705A (en) Cell models of muscle fatigue/muscle damage, preparation methods and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557314

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882584

Country of ref document: EP

Kind code of ref document: A1