WO2022138593A1 - Method for producing skeletal muscle cell - Google Patents

Method for producing skeletal muscle cell Download PDF

Info

Publication number
WO2022138593A1
WO2022138593A1 PCT/JP2021/047144 JP2021047144W WO2022138593A1 WO 2022138593 A1 WO2022138593 A1 WO 2022138593A1 JP 2021047144 W JP2021047144 W JP 2021047144W WO 2022138593 A1 WO2022138593 A1 WO 2022138593A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
skeletal muscle
pluripotent stem
light
Prior art date
Application number
PCT/JP2021/047144
Other languages
French (fr)
Japanese (ja)
Inventor
英俊 櫻井
智也 内村
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2022571469A priority Critical patent/JPWO2022138593A1/ja
Publication of WO2022138593A1 publication Critical patent/WO2022138593A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination

Definitions

  • the present invention relates to a method for producing skeletal muscle cells in which contractile activity is induced by light stimulation and a method for screening a substance that promotes or suppresses contractile activity in skeletal muscle cells.
  • Muscle diseases include a large number of diseases, but most of the symptoms are muscle atrophy and accompanying muscle weakness.
  • the causes of muscle atrophy include abnormalities in the muscles themselves and abnormalities in the nerves that move the muscles.
  • the former is called myopathy and the latter is called neurogenic disease.
  • Muscular dystrophy is known as a representative of myopathy, and Duchenne muscular dystrophy, which has the largest number of patients among muscular dystrophy, is caused by mutations in the causative gene, the dystrophin gene (point mutation, deletion mutation, duplicate mutation, etc.). , A disease caused by the inability to synthesize normal dystrophin proteins.
  • a model that reflects the pathological condition in humans in vitro is required.
  • induced pluripotent stem cells produced by reprogramming somatic cells it is expected that cells produced from the patient's own cells will be used as a pathological model.
  • One such cell is skeletal muscle cells, and various efforts have been made to establish a method for inducing differentiation of induced pluripotent stem cells into skeletal muscle cells.
  • Tet tetracycline
  • MyoD or Myf5 Doxycyclin
  • Non-Patent Document 1 It has been reported that the transcription factor can be expressed in pluripotent stem cells by adding) to induce differentiation into skeletal muscle cells.
  • the present inventors also improved the method for inducing skeletal muscle cells and expressed exogenous MyoD by continuously adding Dox after the first day of induction of differentiation, and on the 3rd to 4th days.
  • 5% Knockout Serum Replacement (KSR) is reported to be able to induce differentiation into skeletal muscle cells efficiently and with high reproducibility by reseeding the cells in a medium containing (KSR) (Non-Patent Document 1).
  • KSR Knockout Serum Replacement
  • Non-Patent Document 2 Induced pluripotent stem cells in a medium containing 20% Knockout Serum Replacement (KSR), and continued to add Dox after the first day of differentiation induction to obtain exogenous MyoD.
  • KSR Knockout Serum Replacement
  • Non-Patent Document 3 Unlike cardiomyocytes, skeletal muscle cells basically do not spontaneously contract and require external stimuli for the contraction reaction. Especially in cultured cells, stimulation is required for maintenance of functionality and maturation, and an electrical stimulation system is often used (Non-Patent Document 3).
  • the electrical stimulation system can easily control the activation of muscle cells, but on the other hand, it is known to generate toxic gas, which limits the intensity of electrical stimulation and the length of stimulation time.
  • optical genetics (optogenetics) technology has come to be used as an alternative technique to electrical stimulation. It is a mechanism that activates in response to specific light by expressing a photo-driven ion channel protein called channelrhodopsin in cells, and a method of stimulating muscle cells using this technology has been adopted. (Non-Patent Document 4).
  • the present invention provides a method for producing skeletal muscle cells having contractile activity equivalent to that when electrical stimulation is used from pluripotent stem cells, and using the obtained skeletal muscle cells, contraction of skeletal muscle cells.
  • the challenge is to provide a method for screening candidate substances for therapeutic agents for muscle diseases using activity as an index.
  • the present invention includes the following inventions in order to solve the above problems.
  • a method for producing skeletal muscle cells in which contractile activity is induced by light stimulation (1) A step of producing pluripotent stem cells that stably express channelrhodopsin, (2) A production method including a step of inducing differentiation of the cells obtained in step (1) into skeletal muscle cells, and (3) a step of irradiating the cells that have started differentiation induction with light.
  • the pluripotent stem cell in the step (1) is a cell derived from a myopathy patient or a myotonia patient.
  • the pluripotent stem cell of the step (1) is a cell expressing one or more exogenous skeletal cell inducing factors selected from MyoD and Myf5. Production method.
  • Step of irradiating cells with light (3) Step of contacting the test substance with the cells, A method comprising (4) measuring the contractile activity of cells and (5) selecting a test substance that promotes or suppresses the contractile activity of cells as compared with the case where the test substance is not contacted.
  • the screening method according to the above [7] which uses a multi-well plate.
  • the screening method according to the above [7] or [8], wherein the pluripotent stem cells in the step (1) are cells derived from a myopathy patient or a myotonia patient.
  • the present invention it is possible to provide a method for producing skeletal muscle cells having contractile activity equivalent to that when electrical stimulation is used from pluripotent stem cells.
  • the skeletal muscle cells obtained by the production method can be used for high-throughput screening of candidate substances for the treatment of muscle diseases using the contractile activity of the skeletal muscle cells as an index.
  • FIG. 1 It is a figure showing the structure of the vector introduced into iPS cells, (A) is the structure of tetracycline-responsive MyoD forced expression piggyBac vector (pB-EF1 ⁇ -MyoD-IRES-puro), and (B) is the channelrhodopsin forced expression piggyBac vector. It is a structure of (pB-EF1 ⁇ -ChR2-IRES-puro). It is a figure which shows the differentiation induction schedule of one form of the manufacturing method of this invention used in an Example. It is a figure which shows the cross section of one well of a 96-well plate used in an Example.
  • the present invention provides a method for producing skeletal muscle cells in which contractile activity is induced by light stimulation (hereinafter referred to as "the production method of the present invention").
  • the production method of the present invention may have the following steps. (1) A step of producing pluripotent stem cells that stably express channelrhodopsin, (2) A step of inducing differentiation of the cells obtained in step (1) into skeletal muscle cells, and (3) a step of irradiating the cells that have started differentiation induction with light.
  • skeletal muscle cell is a broader concept that includes cells of all skeletal muscle lineages, including skeletal muscle stem cells, myoblasts, myotube cells, mature myotube cells, and fully mature myotube cells. Including all of. Marker genes for identifying skeletal muscle cells include, for example, myogenin, myosin heavy chain (MHC), MyoD, Myf5 and the like.
  • the skeletal muscle cell may be a human skeletal muscle cell or a skeletal muscle cell of a non-human organism.
  • Organisms other than humans are not particularly limited and may be, for example, mammals. Examples of mammals include monkeys, chimpanzees, dogs, cats, cows, horses, pigs, rabbits, mice, rats and the like.
  • the pluripotent stem cell used in the production method of the present invention may be a pluripotent stem cell derived from a muscle disease patient.
  • muscle diseases include myopathy and myotonia.
  • myopathy include muscular dystrophy (Duschenne muscular dystrophy (DMD), Becker muscular dystrophy, limb muscular dystrophy, facial scapulohumeral muscular dystrophy, ocular throat muscular dystrophy, Emeri-Drefus muscular dystrophy, congenital muscular dystrophy, and distal muscular dystrophy.
  • myotonia include grasping myotonia, tapping myotonia, myotonia syndrome, congenital myotonia, congenital paramyotonia, and Schwartz-Jampel syndrome.
  • the pluripotent stem cell used in the production method of the present invention may be a pluripotent stem cell modified to overexpress a skeletal muscle cell inducing factor.
  • Specific examples thereof include pluripotent stem cells into which an expression vector into which a gene encoding a skeletal muscle cell inducing factor has been inserted has been introduced.
  • Examples of the skeletal muscle cell inducing factor include MyoD, Myf5, Pax7 and the like. Preferred is extrinsic MyoD or Myf5.
  • Expression vectors into which the gene encoding MyoD or Myf5 has been inserted can be constructed using known gene recombination techniques. The obtained expression vector can be introduced into pluripotent stem cells by using a known gene transfer method described later.
  • the expression vector into which the gene encoding MyoD or Myf5 is inserted may be a drug-inducible (for example, tetracycline-inducible) expression vector.
  • the base sequence of the gene encoding MyoD or Myf5 can be obtained from a known database (NCBI, etc.).
  • NCBI Non-silicon a known database
  • the base sequence of the gene encoding human MyoD Homo sapiens myogenic differentiation 1 (MYOD1), mRNA
  • MYOD1 Homo sapiens myogenic differentiation 1
  • NM_002478.5 a gene encoding human Myf5 (Homo sapiens myogenic factor 5 (MYF5), mRNA)
  • NM_005593.3 is registered as NCBI Reference Sequence: NM_005593.3.
  • the pluripotent stem cells that can be used in the production method of the present invention are stem cells that have pluripotency capable of differentiating into all cells existing in a living body and also have proliferative ability, particularly. Not limited, for example, embryonic stem (ES) cells, cloned embryo-derived embryonic stem (ntES) cells, sperm stem (GS) cells, embryonic reproductive (EG) cells, artificial pluripotent stems obtained by nuclear transplantation. Includes (iPS) cells, cultured fibroblasts and pluripotent cells (Muse cells) derived from bone marrow stem cells.
  • Preferred pluripotent stem cells are ES cells, ntES cells and iPS cells.
  • Embryonic stem cells ES cells are pluripotent and self-replicating stem cells established from the inner cell mass of early embryos (eg, blastocysts) of mammals such as humans and mice.
  • ES cells are embryo-derived stem cells derived from the inner cell mass of the scutellum vesicle, which is the embryo after the morula at the 8-cell stage of the fertilized egg, and have the ability to differentiate into all the cells that make up the adult, so-called polymorphism. It has the ability and the ability to proliferate by self-replication.
  • ES cells were discovered in mice in 1981 (M.J. Evans and M.H. Kaufman (1981), Nature 292: 154-156), and then ES cell lines were established in primates such as humans and monkeys (J.A. Thomson et). al. (1998), Science 282: 1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci.
  • ES cells For the establishment of ES cells, a method known in this field is used. For example, it can be established by removing the inner cell mass from the blastocyst of a fertilized egg of a target animal and culturing the inner cell mass on a fibroblast feeder. For cell maintenance by subculture, use a culture solution containing substances such as leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF). It can be carried out.
  • LIF leukemia inhibitory factor
  • bFGF basic fibroblast growth factor
  • a culture method for producing ES cells a method known in the art is used.
  • the culture medium use DMEM / F-12 culture medium supplemented with, for example, 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino acid, 2 mM L-glutamic acid, 20% KSR (KnockOut Serum Replacement, Invitrogen) and 4 ng / ml bFGF.
  • human ES cells can be maintained in a moist atmosphere of 37 ° C, 2% CO 2 / 98% air (O. Fumitaka et al. (2008), Nat. Biotechnol., 26: 215-224).
  • ES cells may be passaged every 3-4 days, with passage using, for example, 0.25% trypsin and 0.1 mg / ml collagenase IV in PBS containing 1 mM CaCl2 and 20% KSR. It can be carried out.
  • ES cells can generally be selected by the Real-Time PCR method using the expression of gene markers such as alkaline phosphatase, Oct-3 / 4, and Nanog as an index.
  • gene markers such as alkaline phosphatase, Oct-3 / 4, and Nanog as an index.
  • the expression of gene markers such as OCT-3 / 4, NANOG, and ECAD can be used as an index (E. Kroon et al. (2008), Nat. Biotechnol., 26: 443. -452).
  • mouse ES cells various mouse ES cell lines established by inGenious, RIKEN (RIKEN), etc. can be used.
  • human ES cells various human ES cell lines established by the National Institutes of Health (NIH), RIKEN, Kyoto University, and Cellartis can be used.
  • ES cell lines NIH CHB-1 to CHB-12 strains, RUES1 strains, RUES2 strains, HUES1 to HUES28 strains, etc.
  • WisCell Research Institute WA01 (H1) strains, WA09 (H9) strains, RIKEN KhES- One strain, KhES-2 strain, KhES-3 strain, KhES-4 strain, KhES-5 strain, SSES1 strain, SSES2 strain, SSES3 strain and the like can be used.
  • the KhES-1, KhES-2, KhES-3 and KthES11 strains are available from the Institute for Frontier Life and Medical Sciences, Kyoto University (Kyoto, Japan).
  • sperm stem cells are pluripotent stem cells derived from the testis and are the origin cells for spermatogenesis. Similar to ES cells, these cells can be induced to differentiate into various lineages of cells, and have properties such as the ability to produce chimeric mice when transplanted into mouse blastocysts (M. Kanatsu-Shinohara et al. (M. Kanatsu-Shinohara et al.). 2003) Biol. Reprod., 69: 612-616; K. Shinohara et al. (2004), Cell, 119: 1001-1012).
  • GDNF glial cell line-derived neurotrophic factor
  • Embryonic germ cells are cells with pluripotency similar to ES cells, which are established from primordial germ cells in the embryonic period, such as LIF, bFGF, and stem cell factor. It can be established by culturing primordial germ cells in the presence of the substance of (Y. Matsui et al. (1992), Cell, 70: 841-847; JL Resnick et al. (1992), Nature, 359: 550. -551).
  • Induced pluripotent stem cells are similar to ES cells, which can be produced by introducing specific reprogramming factors into somatic cells in the form of DNA or protein.
  • Reprogramming factors are genes that are specifically expressed in ES cells, their gene products or non-cording RNAs, or genes that play an important role in maintaining undifferentiated ES cells, their gene products or non-cording RNAs, or It may be composed of low molecular weight compounds.
  • Genes included in the reprogramming factors include, for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15. -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3, Glis1, etc.
  • initialization factors include WO2007 / 069666, WO2008 / 118820, WO2009 / 007852, WO2009 / 032194, WO2009 / 058413, WO2009 / 057831, WO2009 / 075119, WO2009 / 079007, WO2009 / 091659, WO2009 / 101084, WO2009 / 101407, WO2009 / 102983, WO2009 / 114949, WO2009 / 117439, WO2009 / 126250, WO2009 / 126251, WO2009 / 126655, WO2009 / 157593, WO2010 / 009015, WO2010 / 033906, WO2010 / 033920, WO2010 / 042800, WO2010 / 050626, WO 2010/056831, WO2010 / 068955,
  • the reprogramming factors include histone deacetylase (HDAC) inhibitors [eg, small molecule inhibitors such as valproic acid (VPA), tricostatin A, sodium butyrate, MC 1293, M344, siRNA against HDAC and shRNA (eg).
  • HDAC histone deacetylase
  • HDAC1 siRNA Smartpool (Millipore), HuSH 29mer shRNA Constructs against HDAC1 (OriGene), etc.
  • MEK inhibitors eg PD184352, PD98059, U0126, SL327 and PD0325901
  • Glycogen synthesis 3 Against small molecule inhibitors such as Bio and CHIR99021, DNA methyltransferase inhibitors (eg 5-azacytidine), histone methyltransferase inhibitors (eg BIX-01294), Suv39hl, Suv39h2, SetDBl and G9a Nucleic acid expression inhibitors such as siRNA and shRNA), L-channel calciumagonist (eg Bayk8644), butyric acid, TGF ⁇ inhibitors or ALK5 inhibitors (eg LY364947, SB431542, 616453 and A-83-01), p53 inhibition Agents (eg siRNA and shRNA for p53), ARID3A inhibitors (eg siRNA and shRNA for AR
  • the reprogramming factor may be introduced into somatic cells by techniques such as lipofection, fusion with cell membrane permeable peptides (eg, HIV-derived TAT and polyarginine), and microinjection.
  • somatic cells by techniques such as lipofection, fusion with cell membrane permeable peptides (eg, HIV-derived TAT and polyarginine), and microinjection.
  • DNA morphology in the case of DNA morphology, it can be introduced into somatic cells by methods such as viruses, plasmids, vectors such as artificial chromosomes, lipofection, liposomes, and microinjection.
  • Viral vectors include retro viral vectors and lentiviral vectors (above, Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007. ), Adenovirus vector (Science, 322, 945-949, 2008), adeno-associated virus vector, Sendai virus vector (WO2010 / 008054) and the like.
  • the artificial chromosome vector includes, for example, a human artificial chromosome (HAC), a yeast artificial chromosome (YAC), a bacterial artificial chromosome (BAC, PAC) and the like.
  • a plasmid a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008).
  • the vector can contain regulatory sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc. so that the nuclear reprogramming substance can be expressed, and further, if necessary, a drug resistance gene (drug resistance gene).
  • canamycin resistance gene for example, canamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.
  • thymidin kinase gene selection marker sequence such as diphtheriatoxin gene
  • reporter gene sequence such as green fluorescent protein (GFP), ⁇ -glucuronidase (GUS), etc.
  • GFP green fluorescent protein
  • GUS ⁇ -glucuronidase
  • the above vector has LoxP sequences before and after introduction into somatic cells in order to excise both the gene encoding the reprogramming factor or the promoter and the gene encoding the reprogramming factor that binds to the promoter. You may.
  • RNA morphology it may be introduced into somatic cells by a method such as lipofection or microinjection, and in order to suppress degradation, RNA incorporating 5-methylcytidine and pseudouridine (TriLink Biotechnologies) is used. It may be (Warren L, (2010) Cell Stem Cell. 7: 618-630).
  • Cultures for iPS cell induction include, for example, DMEM, DMEM / F12 or DME cultures containing 10-15% FBS (these cultures also include LIF, penicillin / streptomycin, puromycin, L-glutamine). , Non-essential amino acids, ⁇ -mercaptoethanol, etc. can be appropriately contained.) Or mouse ES cell culture medium (TX-WES culture medium, Thrombo X), primate ES cell culture medium (primates). Commercially available cultures such as ES / iPS cell culture medium, Reprocell), serum-free pluripotent stem cell maintenance medium (for example, mTeSR (Stemcell Technology), Essential 8 (Life Technologies), StemFit AK03 (AJINOMOTO)) Illustrated.
  • mTeSR StemTeSR
  • Essential 8 Life Technologies
  • StemFit AK03 AJINOMOTO
  • the somatic cells are brought into contact with the reprogramming factor on a DMEM or DMEM / F12 culture medium containing 10% FBS and cultured for about 4 to 7 days. Then, the cells are re-seeded on feeder cells (for example, mitomycin C-treated STO cells, SNL cells, etc.), and about 10 days after the contact between the somatic cells and the reprogramming factor, the culture medium for bFGF-containing primate ES cell culture is used. It can be cultured and give rise to iPS-like colonies about 30-about 45 days or more after the contact.
  • feeder cells for example, mitomycin C-treated STO cells, SNL cells, etc.
  • DMEM culture medium containing 10% FBS for example, LIF, penicillin / streptomycin, etc.
  • feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • FBS for example, LIF, penicillin / streptomycin, etc.
  • feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • FBS for example, LIF, penicillin / streptomycin, etc.
  • feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • FBS for example, LIF, penicillin / streptomycin, etc.
  • ES-like colonies can be generated after about 25 to about 30 days or more.
  • the reprogrammed somatic cells themselves are used (Takahashi K, et al. (2009), PLoS One. 4: e8067 or WO2010 / 137746), or extracellular matrix (eg, Laminin-). 5 (WO2009 / 123
  • iPS cells may be established under hypoxic conditions (oxygen concentration of 0.1% or more and 15% or less) (Yoshida Y, et al. (2009), Cell Stem Cell. 5: 237. -241 or WO2010 / 013845).
  • the fresh culture solution and the culture solution are exchanged once a day from the second day after the start of the culture.
  • the number of somatic cells used for nuclear reprogramming is not limited, but ranges from about 5 ⁇ 10 3 to about 5 ⁇ 10 6 cells per 100 cm 2 culture dish.
  • the iPS cells can be selected according to the shape of the formed colonies.
  • a drug resistance gene expressed in conjunction with a gene expressed when somatic cells are reprogrammed for example, Oct3 / 4, Nanog
  • a culture medium containing the corresponding drug selection.
  • Established iPS cells can be selected by culturing in a culture medium).
  • iPS cells are selected by observing with a fluorescence microscope when the marker gene is a fluorescent protein gene, by adding a luminescent substrate when it is a luminescent enzyme gene, and by adding a chromogenic substrate when it is a chromogenic enzyme gene. can do.
  • the term "somatic cell” refers to any animal cell (eg, mammalian cell including human) except germline cells such as eggs, egg mother cells, ES cells or totipotent cells. .. Somatic cells include, but are not limited to, fetal (pup) somatic cells, neonatal (pup) somatic cells, and mature healthy or diseased somatic cells, as well as primary cultured cells. , Passed cells, and established cells are all included. Specifically, the somatic cells include, for example, (1) tissue stem cells (somatic stem cells) such as nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells, (2) tissue precursor cells, (3) lymphocytes, and epithelium.
  • tissue stem cells such as nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells
  • tissue precursor cells such as lymphocytes, and epithelium.
  • Endothelial cells muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, intestinal cells, splenocytes, pancreatic cells (pancreatic exocrine cells, etc.), brain cells, lung cells, renal cells And differentiated cells such as fat cells are exemplified.
  • the HLA genotypes of the transplanted individuals are the same or substantially the same from the viewpoint of not causing rejection. It is desirable to use cells.
  • substantially the same HLA type means that the HLA genotypes match to the extent that the transplanted cells can engraft when the cells are transplanted.
  • the main HLA HLA
  • HLA- It is a somatic cell having an HLA type that matches the 3 loci of A, HLA-B and HLA-DR or the 4 loci with HLA-C).
  • iPS cell lines established by NIH, RIKEN, Kyoto University, etc. may be used.
  • ES cells derived from cloned embryos obtained by nuclear transplantation ntES cells are ES cells derived from cloned embryos produced by nuclear transplantation technology and have almost the same characteristics as ES cells derived from fertilized eggs (T. Wakayama et al. (2001), Science, 292: 740-743; S. Wakayama et al. (2005), Biol. Reprod., 72: 932-936; J. Byrne et al. (2007), Nature, 450: 497-502).
  • ES cells established from the inner cell mass of blastocysts derived from cloned embryos obtained by replacing the nuclei of unfertilized eggs with the nuclei of somatic cells are ntES (nuclear transfer ES) cells.
  • ntES nuclear transfer ES
  • a combination of nuclear transplantation technology JB Cibelli et al. (1998), Nature Biotechnol., 16: 642-646) and ES cell production technology (above) is used (Seika Wakayama). Et al. (2008), Experimental Medicine, Vol. 26, No. 5 (Special Edition), pp. 47-52).
  • somatic cell nuclei can be injected into unenucleated unfertilized eggs of mammals and cultured for several hours to initialize them.
  • Muse cells are pluripotent stem cells produced by the method described in WO2011 / 007900, specifically fibroblasts or bone marrow stromal cells treated with long-term trypsin, preferably 8 hours or 16 hours. Pluripotent cells obtained by suspension culture after treatment and positive for SSEA-3 and CD105.
  • Step (1) is a step of producing pluripotent stem cells that stably express channelrhodopsin.
  • Channelrhodopsin is a photodriven ion channel isolated from algae and has the property of taking up cations by light irradiation. Examples of channelrhodopsin that can be used in the production method of the present invention include channelrhodopsin 1, channelrhodopsin 2, and modified channelrhodopsin (eg, modified channelrhodopsin described in WO2011 / 019081 or WO2020 / 059675). Be done. Channelrhodopsin 2 is preferred.
  • channelrhodopsin examples include, but are not limited to, those derived from Chlamydomonas reinhardtii, Volvox carteri, Tetraselmis subcordiformis, and Tetraselmis stritata.
  • Channelrhodopsin 2 is, for example, a protein having the same or substantially the same amino acid sequence as the amino acid sequence shown in SEQ ID NO: 1.
  • the amino acid sequence shown in SEQ ID NO: 1 is registered as GenBank accession number AAM15777.1.
  • An amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 1 is, for example, an amino acid sequence in which 1 to 10 amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1. Can be mentioned. Preferably 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1 amino acid deleted, Amino acid sequence substituted, inserted or added.
  • the amino acid sequence substantially identical to the amino acid sequence shown in SEQ ID NO: 1 has 60% or more identity (for example, 60% or more, 70% or more) with respect to the amino acid sequence shown in SEQ ID NO: 1.
  • Identity can be determined using techniques known as the degree of identity between two sequences. For example, various alignment algorithms and / or programs may be used, including FASTA, BLAST, or ENTREZ. FASTA and BLAST are available as part of the GCG sequence analysis package (University of Wisconsin, Madison, Wis.) And can be used, for example, with default settings.
  • the protein having an amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 1 is preferably a protein having substantially the same activity as channelrhodopsin 2 consisting of the amino acid sequence shown in SEQ ID NO: 1. .. Specifically, the photodriven cation channel activity (light wavelength, ion permeability, etc.) is equivalent to the photodriven cation channel activity of channelrhodopsin 2 consisting of the amino acid sequence shown in SEQ ID NO: 1. Is mentioned.
  • the base sequence of the gene encoding channelrhodopsin 2 is, for example, the base sequence encoding the amino acid sequence shown in SEQ ID NO: 1, but is not particularly limited. For example, it may be the base sequence shown by SEQ ID NO: 2.
  • the basic acid sequence shown in SEQ ID NO: 2 is registered as GenBank accession number AF461397.1.
  • the gene encoding channelrhodopsin may be a humanized codon.
  • the gene encoding channelrhodopsin 2 may be a gene encoding a protein having an amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 1.
  • Pluripotent stem cells that stably express channelrhodopsin can be prepared by introducing an expression vector into which a gene encoding channelrhodopsin is inserted into pluripotent stem cells and selecting clones that stably express channelrhodopsin. ..
  • the gene encoding channelrhodopsin can be obtained by PCR or the like based on the sequence information. It can also be chemically synthesized.
  • a vector such as a virus, a plasmid, or an artificial chromosome
  • the virus vector include a retrovirus vector, a lentivirus vector, an adenovirus vector, an adeno-associated virus vector, a Sendai virus vector and the like.
  • the artificial chromosome vector include a human artificial chromosome (HAC), a yeast artificial chromosome (YAC), and a bacterial artificial chromosome (BAC, PAC).
  • the plasmid include a plasmid for mammalian cells.
  • the vector can contain regulatory sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc.
  • a canamycin resistance gene an ampicillin resistance gene, a puromycin resistance gene, etc.
  • a selection marker sequence such as a thymidine kinase gene, a diphtheriatoxin gene, a fluorescent protein, a reporter gene sequence such as ⁇ -glucuronidase (GUS), and the like can be included.
  • SV40 promoter As promoters, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcoma virus) promoter, MoMuLV (Moloney mouse leukemia virus) LTR, HSV-TK (herpes simplex virus thymidine kinase) promoter, EF- ⁇ promoter, CAG Promoters and the like can be mentioned.
  • the vector contains the expression cassette (gene containing promoter, gene sequence and terminator) for inserting the nucleic acid encoding channel rhodopsin into the chromosome or, if necessary, excising the nucleic acid inserted into the chromosome. It may have a transposon sequence before and after the expression unit).
  • the transposon sequence is not particularly limited, but piggyBac is exemplified. In order to introduce an expression cassette into a chromosome using a transposon, it is desirable to introduce the transposase into the cell together with a vector having the expression cassette.
  • the above-mentioned vector may contain a nucleic acid encoding the transposase, or another vector may contain a nucleic acid encoding the transposase, and the nucleic acid may be introduced into a cell at the same time. You may.
  • the gene product encoding the transposase may be directly introduced.
  • the preferred transposase is the transposase corresponding to the transposon sequence described above, preferably the piggyBac transposase.
  • the gene encoding channelrhodopsin is transferred to the pluripotent stem cell by introducing the DNA or RNA encoding channelrhodopsin into the above-exemplified virus and infecting the pluripotent stem cell with this recombinant virus.
  • a method of introduction using liposomes liposomal method, HVJ-liposome method, cationic liposome method, lipofection method, lipofectamine method, etc.
  • microinjection method calcium phosphate method
  • electroporation method A method of transferring into a cell together with a carrier (metal particle) with a gene gun (GeneGun) can be used.
  • a method for selecting pluripotent stem cells that stably express channel rhodopsin is, for example, a method for selecting surviving colonies by culturing cells in a drug-containing medium after transfection using an expression vector containing a drug resistance gene. Can be mentioned.
  • Step (2) is a step of inducing differentiation of the cells obtained in step (1) into skeletal muscle cells.
  • the method for inducing the differentiation of pluripotent stem cells that stably express channel rhodopsin into skeletal muscle cells is not particularly limited, and known pluripotent stem cells can be appropriately selected from the methods for inducing differentiation into skeletal muscle cells.
  • the method of inducing the differentiation of pluripotent stem cells into skeletal muscle cells may be a method of overexpressing the skeletal muscle cell inducing factor in the pluripotent stem cells.
  • Examples of such a differentiation-inducing method include the method described in the international publication WO2013 / 073246 A1, the method described in the international publication WO2020 / 090836 A1, and Uchimura et al. (Stem Cell Research, 25: 98-106 (2017)). Examples include the method described and the method described in Shoji et al. (Science Reports, 5: 12831 (2015)).
  • the method of inducing the differentiation of pluripotent stem cells into skeletal muscle cells is a method of mimicking the developmental process of the fetus without using a transgene (via paraxial mesoderm cells, segment cells, and cutaneous muscle cells). It may be a method of inducing differentiation of skeletal muscle lineage cells). Examples of such differentiation induction methods include the method described in Zhao et al. (Stem Cell Reports, Vol. 15 1-15 July 14, 2020), the method described in the international publication WO2016 / 108288 A1, and Hicks et al. (Nat Cell Biol. The method described in 2018 Jan; 20 (1): 46-57) can be mentioned.
  • the skeletal muscle cells whose contractile activity is induced by photostimulation produced by the production method of the present invention have very low variation in skeletal muscle differentiation efficiency between wells when seeded on a multi-well plate and induced to differentiate. It has also been confirmed that the variation in contractile force of skeletal muscle cells between wells is very low. Therefore, in step (2), pluripotent stem cells may be seeded on a multi-well plate to induce differentiation.
  • the multi-well plate include a 24-well plate, a 48-well plate, a 96-well plate, and a 384-well plate. A 96-well plate or a 384-well plate is preferable.
  • the skeletal muscle cells produced using the multi-well plate can be suitably used, for example, for high-throughput screening of candidate substances for therapeutic agents for muscle diseases.
  • the multi-well plate is not particularly limited, but it is preferable to use a plate having a culture surface in which the contractile activity of cells is not limited.
  • a plate having a culture surface in which the contractile activity of cells is not limited.
  • examples of such a plate include a plate whose culture surface is hydrogel.
  • the hydrogel include gelatin hydrogel, collagen hydrogel, starch hydrogel, pectin hydrogel, hyaluronic acid hydrogel, chitin hydrogel, chitosan hydrogel, and alginate hydrogel. Of these, collagen hydrogel or gelatin hydrogel is preferable.
  • the gel hardness (elastic modulus) of the hydrogel may be 10 kPa or more (10 kPa, 11 kPa, 12 kPa, 13 kPa, 14 kPa, 15 kPa or more) and 25 kPa or less (25 kPa, 20 kPa, 19 kPa, 18 kPa, 17 kPa, 16 kPa, 15 kPa). The following) may be used. It is preferably 12 kPa.
  • the plate in which the culture surface is hydrogel may be a plate in which the hydrogel is coated on the culture surface, or a plate in which the recess of the plate having the recess for placing the hydrogel on the culture surface is filled with hydrogel. May be there.
  • Step (3) is a step of irradiating the cells that have started differentiation induction with light. Differentiation induction is initiated when the pluripotent stem cell medium is replaced with a differentiation medium, or when a differentiation induction method for introducing a skeletal muscle cell inducing factor expression vector into pluripotent stem cells is used, the skeletal muscle cell inducing factor. Whichever comes first, the time when the onset of expression begins or the time when the medium is replaced with a differentiation medium.
  • the time to start the light irradiation is not particularly limited, and the light irradiation may be started at the same time as the start of the differentiation induction, or may be started after an arbitrary period from the start of the differentiation induction. It is preferable to start light irradiation before the stage where cells fuse to form a myotube, and light irradiation should be started within 4 days, 3 days, 2 days, and 1 day after the start of differentiation induction. Is preferable. It can be confirmed by observing the morphology of the cells under a microscope that the cells do not fuse to form a myotube.
  • the end time of light irradiation is not particularly validated, it is preferable to continue light irradiation until the differentiation-induced skeletal muscle cells start contractile activity and the test using contractile activity as an index is completed.
  • the production method of the present invention when skeletal muscle cells produced by the production method of the present invention are used for screening a candidate substance for a therapeutic agent for muscle disease, it is preferable to continue light irradiation until the screening is completed.
  • light irradiation may be performed intermittently or continuously.
  • the on / off ratio is not particularly limited, but may be, for example, 0.02 to 0.9, 0.05 to 0.5, or 0.05 to 0.1. Continuous irradiation is preferable.
  • a blue laser is used as the light to irradiate.
  • the frequency of the irradiated light is 0.25 Hz to 0.75 Hz, preferably 0.4 Hz to 0.6 Hz, and more preferably 0.5 Hz.
  • the pulse width of the irradiated light is 2 msec to 100 msec, preferably 5 msec to 50 msec.
  • the voltage is 8V to 15V, preferably 10V.
  • the amount of light is 1 mW to 10 mW, preferably 2 mW to 3 mW.
  • the light irradiation device it is preferable to use a device that can uniformly irradiate all the wells of the multi-well plate used.
  • a device that uniformly irradiates the entire bottom surface of the multi-well plate with light can be used.
  • Examples of such a device include an LED array system for optogenetics (BRC Bioresearch Center).
  • a commercially available imaging system capable of analyzing moving images of cells for example, Sony's live cell imaging system SI8000, etc.
  • SI8000 Sony's live cell imaging system
  • the present invention provides a method for screening a substance that promotes or suppresses the contractile activity of skeletal muscle cells (hereinafter referred to as "the screening method of the present invention").
  • the screening method of the present invention may have the following steps. (1) A step of inducing differentiation of pluripotent stem cells that stably express channelrhodopsin into skeletal muscle cells. (2) Step of irradiating cells with light, (3) A step of contacting the test substance with the cells, and (4) a step of selecting a test substance that promotes or suppresses the contractile activity of skeletal muscle cells as compared with the case where the test substance is not contacted.
  • the steps (1) and (2) in the screening method of the present invention can be carried out in the same manner as the steps (2) and (3) of the manufacturing method of the present invention. That is, the screening method of the present invention can be rephrased as a screening method using skeletal muscle cells produced by the production method of the present invention.
  • the screening method of the present invention can perform high-throughput screening using a multi-well plate, preferably a 96-well plate or a 384-well plate. Further, in the screening method of the present invention, a desired test substance can be selected using the contractile activity of skeletal muscle cells as an index. When using a 96-well plate or a 384-well plate, 2 wells may be evaluated as 1 sample and 4 wells may be evaluated as 1 sample. By using a plurality of wells as one sample, the variation between the samples can be reduced.
  • the pluripotent stem cell in step (1) may be a pluripotent stem cell derived from a healthy person or a pluripotent stem cell derived from a muscle disease patient.
  • the muscle disease may be myopathy or myotonia.
  • Skeletal muscle cells obtained by inducing differentiation from pluripotent stem cells derived from myopathy patients are suitable for screening methods for substances that promote contractile activity of skeletal muscle cells, and pluripotent stem cells derived from healthy subjects or myotonia patients.
  • Skeletal muscle cells obtained by inducing differentiation from skeletal muscle cells are suitable for screening methods for substances that promote contractile activity of skeletal muscle cells.
  • Step (3) is a step of bringing the test substance into contact with the cells.
  • the test substance is not particularly limited, and for example, nucleic acid, peptide, protein, non-peptidic compound, synthetic compound, fermentation product, cell extract, cell culture supernatant, plant extract, mammalian tissue extract, plasma and the like. Can be used.
  • the test substance may be a novel substance or a known substance. These test substances may form salts.
  • As the salt of the test substance a salt with a physiologically acceptable acid or base is used.
  • the time when the test substance is brought into contact with the cells may be before the cells start contractile activity or after the cells start contractile activity.
  • Contact between the cells and the test substance can be performed by adding the test substance to the medium.
  • the same test substance is added to the multiple wells. Specifically, for example, when 2 wells are 1 sample, the same test substance is added to 2 wells, and when 4 wells are 1 sample, the same test substance is added to 4 wells.
  • Step (4) is a step of measuring the contractile activity of cells.
  • the contractile activity of cells can be measured using a commercially available imaging system (for example, Sony's live cell imaging system SI8000 or the like) capable of analyzing moving images of cells. Measurement items include contraction speed, relaxation speed, acceleration, contraction distance and the like.
  • the test substance when using skeletal muscle cells differentiated from pluripotent stem cells derived from myopathy patients, the test substance is preferably contacted immediately before or on the day of the observation of maximum contractile force, and measurement of cell contractile activity. Is preferably performed at a time when the contractile force is reduced. The measurement of cell contractile activity may be performed twice, at the time when the maximum contractile force is observed and at the time when the contractile force decreases. By measuring twice, the rate of decrease in contractile force can be evaluated.
  • a test substance that suppresses cell contractile activity when selected, usually, pluripotent stem cells derived from healthy subjects or skeletal muscle cells induced to differentiate from pluripotent stem cells derived from myotonia patients are used. used.
  • the test substance is brought into contact with the test substance immediately before or on the day when the maximum contractile force is observed, and the cell contraction activity may be measured multiple times over time immediately after the test substance is brought into contact with the test substance. preferable. By measuring multiple times over time, it is possible to evaluate how the effect of suppressing contractile activity appears in the long term.
  • step (4) cells that are not in contact with the test substance are used as controls, and in step (4), the contractile activity of the control cells is similarly measured.
  • Step (5) is a step of selecting a test substance that promotes or suppresses the contractile activity of cells as compared with the case where the test substance is not contacted.
  • a test substance that promotes cell contraction activity for example, when the contraction rate is used as an index, the contraction rate of control cells that have not been in contact with the test substance is 50% or more, 60% or more, 70% or more, 80.
  • a test substance that recovers to% or more and 90% or more may be selected.
  • skeletal muscle cells induced to differentiate from pluripotent stem cells derived from healthy subjects may be used as healthy control cells, and a test substance that restores the contraction rate to a contraction rate close to the contraction rate level of healthy control may be selected.
  • test substance that suppresses cell contraction activity for example, when the contraction rate is used as an index, the contraction rate of control cells that have not been in contact with the test substance is 10% or less, 20% or less, 30% or less, 40.
  • a test substance that suppresses% or less and 50% or less may be selected.
  • test substance selected as a substance that promotes the contractile activity of cells is useful as a candidate substance for an active ingredient of a prophylactic or therapeutic drug for myopathy.
  • test substance selected as a substance that suppresses the contractile activity of cells is useful as a candidate substance for an active ingredient of a prophylactic or therapeutic agent for myotonia.
  • iPS cell DMD Duplex muscular dystrophy
  • CiRA00111 iPS cell line
  • DMD ⁇ 44 Cultured human iPS cell DMD (Duchenne muscular dystrophy) iPS cell line (clone ID: CiRA00111, hereinafter referred to as "DMD ⁇ 44") is episodic from skin fibroblasts of DMD patients lacking the dystrophin gene exxon 44. It was established by the Maruvector system (Okita et al., Stem Cells, 31; 458-466, 2012). The maintenance culture of human iPS cells was performed in a feeder-free state.
  • the maintenance medium 500 mL of StemFit (Ajinomoto Co., Inc.) plus 50 mU / L penicillin / 50 ⁇ g / L streptomycin (Invitrogen Co., Ltd.) was used.
  • a medium supplemented with 100 ⁇ g / mL puromycin and Blasticidin (Invitrogen) was used. Cell passage was performed when the cell colonies were 80-90% confluent.
  • Tetracycline Responsive Gene Forced Expression Vector The tetracycline responsive gene forced expression piggyBac vector was developed by Woltjen et al. Alternatively, KW879 (see Addgene plasmid # 80478, Induced Pluripotent Stem (iPS) Cells pp111-131) was used. This vector incorporates both a reverse tetracycline transactivator (rtTA) and a tetracycline responsive region (TRE). KW879 can be selected by the puromycin resistance gene.
  • rtTA reverse tetracycline transactivator
  • TRE tetracycline responsive region
  • pENTR / D-TOPO-MyoD or Myf5 entry vector
  • pB-Tet-MyoD A vector (pB-EF1 ⁇ -MyoD-IRES-puro, hereinafter referred to as “pB-Tet-MyoD”) was prepared.
  • the pENTR / D-TOPO-MyoD entry vector and the pENTR / D-TOPO-Myf5 entry vector are entry vectors in which the cDNA of MyoD or Myf5 is incorporated into pENTR / D-TOPO (Thermo Fisher Scientific, catalog number K240020), respectively. be.
  • ChR2 vector Preparation of channelrhodopsin (ChR2) forced expression vector (ChR2 vector)
  • ChR2 vector In order to prepare a channelrhodopsin forced expression piggyBac vector, first, the gene sequence of ChR2 was added to the pENTR / D-TOPO entry vector (Thermo Fisher Scientific, catalog number K240020). A pENTR / D-TOPO-ChR2 vector was prepared by inserting by cloning using PCR.
  • the piggyBac-EF1 ⁇ -IRES-blastcidin vector (SEQ ID NO: 3) and the pENTR / D-TOPO-ChR2 vector (entry vector) were mixed and subjected to a recombination reaction using LR chronase (Invitrogen).
  • the ChR2 forced expression piggyBac vector (pB-EF1 ⁇ -ChR2-IRES-Bsr, hereinafter referred to as “pB-ChR2”) shown in B) was prepared. This vector can be drug-selected by the blastidin resistance gene.
  • iPS cell clones (DMD- ⁇ 44) derived from DMD patients, cells for one 10 cm dish were prepared. From the day before the introduction of the vector, the cells were cultured in a medium containing the ROCK inhibitor Y, and then transfection of the seeded cells and the vector by the electroporation method was performed in the same manner as in the maintenance culture. 5 ⁇ g each of a vector (EF1 ⁇ -PBase) incorporating Transposase downstream of the pB-Tet-MyoD, pB-ChR, and EF1 ⁇ -promoter was prepared and dissolved in 100 ⁇ l of Opti-MEM (Invitrogen).
  • EF1 ⁇ -PBase incorporating Transposase downstream of the pB-Tet-MyoD, pB-ChR, and EF1 ⁇ -promoter was prepared and dissolved in 100 ⁇ l of Opti-MEM (Invitrogen).
  • 1.0 ⁇ 10 6 cells were suspended in Opti-MEM containing the vector and the vector was transfected using the NEPA21 electroporator (Nepagene) under the conditions shown in Table 1.
  • Transfected cells were seeded on 6-well plates at 1.0 ⁇ 10 3 to 5.0 ⁇ 10 4 cells / well. After 48 hours, the medium was replaced with 100 ⁇ g / ml blastsaidin and puromycin (Nacalai Tesque) -containing medium. After that, the medium was replaced with a drug-containing medium every two days, and cells transformed into drug resistance were selected.
  • the cells were cultured in Dox-free medium for 2 days, and then 1 ⁇ g / mL Dox was re-added. Immunostaining was performed between the 14th and 28th days of culture to confirm whether differentiation into skeletal muscle cells was induced.
  • the light stimulator used a blue LED array system for optogenetics (BRC Bioresearch Center) to continuously apply stimulation with a frequency of 0.5 Hz, a pulse width of 50 msec, and a voltage of 10 V for 24 hours every day during the period.
  • the medium was changed at least once every two days.
  • the efficiency of skeletal muscle differentiation was calculated by the following formula: (number of nuclei stained with DAPI staining on MHC-positive cells / total number of nuclei stained with DAPI staining).
  • a flat test was performed by calculating the skeletal muscle differentiation efficiency of each well and calculating the mean (Mean), standard deviation (SD) and coefficient of variation (CV).
  • SI8000 video analyzer A live cell imaging system SI8000 (SONY) was used to analyze the contractile activity of differentiated skeletal muscle cells. The contractile activity was stimulated with a frequency of 0.5 Hz, a pulse width of 2 msec, and a voltage of 10 V using a C-Pace EP and a C-Dish system (IonOptics). Using SI8000, we photographed at 27 frames / sec for a total of 270 frames for 10 seconds, and analyzed the velocity and distance during contraction activity with SI8000 software.
  • SI8000 live cell imaging system
  • Skeletal muscle differentiation efficiency of cells on day 18 The cells on day 18 were fixed and immunostained with an anti-MHC antibody to calculate the skeletal muscle differentiation efficiency, and the results of a flat test are shown in FIG.
  • the upper row is a heat map of the skeletal muscle differentiation efficiency (%) of each well of the 96-well plate, and the lower row is its mean (Mean), standard deviation (SD) and coefficient of variation (CV).
  • the cells on the 18th day are skeletal muscle cells that have already started contractile activity, and are considered to be the time when they exert the most contractile force. Since the average value of the skeletal muscle differentiation efficiency of each well was 93.67% and the coefficient of variation was 3.91, the skeletal muscle cells obtained by using the production method of the present invention sufficiently satisfy the screening quality. Was shown.
  • FIGS. 8 to 11 show the results of comparing electrical stimulation and light stimulation.
  • FIG. 8 shows the result of contraction velocity
  • FIG. 9 shows the result of relaxation velocity
  • FIG. 10 shows the result of acceleration
  • FIG. 11 shows the result of contraction distance.
  • (A) is the result of electrical stimulation
  • (B) is the result of light stimulation.
  • Changes in contractile force due to electrical stimulation were evaluated using skeletal muscle cells on days 19, 21, and 27 of culture. As shown in FIGS. 8 to 11, the maximum contractile force was observed on the 19th day of culture (electrical stimulation) and the 18th day of culture (light stimulation), and the maximum contractile force of light stimulation was the maximum contractile force of electrical stimulation. It was shown to be equivalent.
  • collagen gel (Nippi) was spread inside the CellCarrier-Ultra 384 well, coated with Matrigel, and then re-seeded. Then, from the 10th day, the promotion of maturation by light stimulation is started, and light stimulation is continuously given until each test is performed.
  • the light stimulator uses a blue LED array system for optogenetics (BRC Bio Research Center) to continuously apply stimulation with a frequency of 0.5 Hz, a pulse width of 50 msec, and a voltage of 10 V for 24 hours every day during the period. Change the medium at least once every two days. A light diffusing sheet is sandwiched between the array system and the plate so that even light stimuli are applied to each well. Evaluate the minimum number of wells to maintain muscle differentiation efficiency, contractile movement, and screening accuracy performed using 96-well plates.

Abstract

The present invention provides: a method for producing a skeletal muscle cell of which the contraction activity can be induced by an optical stimulation, the method comprising (1) a step for producing a pluripotent stem cell capable of stably expressing channelrhodopsin, (2) a step for differentiating/inducing the cell produced in step (1) into a skeletal muscle cell, and (3) a step for irradiating the cell of which the differentiation/induction is initiated with light; and a method for screening for a substance capable of promoting or suppressing the contraction activity of a skeletal muscle cell, the method comprising (1) a step for differentiating/inducing a pluripotent stem cell capable of stably expressing channelrhodopsin into a skeletal muscle cell, (2) a step for irradiating the cell with light, (3) a step for bringing the cell into contact with each of test substances, (4) a step for measuring the contraction activity of the cell, and (5) a step for selecting a test substance that promotes or suppresses the contraction activity of the cell more effectively compared with the case where the cell is not brought into contact with the test substance.

Description

骨格筋細胞の製造方法Method for manufacturing skeletal muscle cells
 本発明は、光刺激により収縮活動が誘導される骨格筋細胞の製造方法および骨格筋細胞の収縮活動を促進または抑制する物質のスクリーニング方法に関するものである。 The present invention relates to a method for producing skeletal muscle cells in which contractile activity is induced by light stimulation and a method for screening a substance that promotes or suppresses contractile activity in skeletal muscle cells.
 筋疾患は非常に多くの病気を含んでいるが、その症状の大半は筋肉の萎縮とそれに伴う筋力の低下である。筋肉の萎縮の原因には、筋肉自体に異常がある場合と筋肉を動かす神経に異常がある場合とがあり、前者を筋原性疾患(ミオパチー)、後者を神経原性疾患という。ミオパチーの代表的なものとして、筋ジストロフィーが知られており、筋ジストロフィーのうち最も患者数の多いデュシェンヌ型筋ジストロフィーは、原因遺伝子であるジストロフィン遺伝子の変異(点突然変異や欠失変異、重複変異など)により、正常なジストロフィンタンパク質が合成されないために生ずる病気である。性染色体劣性遺伝で男子だけに発症する疾患であり、人口10万人あたり3~5人、出生男児2000~3000人あたり1人といわれている。デュシェンヌ型筋ジストロフィー症を含む多くのミオパチーに対する良好な治療手段は未だなく、治療法の開発が望まれている。 Muscle diseases include a large number of diseases, but most of the symptoms are muscle atrophy and accompanying muscle weakness. The causes of muscle atrophy include abnormalities in the muscles themselves and abnormalities in the nerves that move the muscles. The former is called myopathy and the latter is called neurogenic disease. Muscular dystrophy is known as a representative of myopathy, and Duchenne muscular dystrophy, which has the largest number of patients among muscular dystrophy, is caused by mutations in the causative gene, the dystrophin gene (point mutation, deletion mutation, duplicate mutation, etc.). , A disease caused by the inability to synthesize normal dystrophin proteins. It is a disease that develops only in boys due to sex chromosome recessive inheritance, and is said to be 3 to 5 per 100,000 population and 1 per 2000 to 3000 born boys. There is still no good treatment for many myopathy, including Duchenne muscular dystrophy, and the development of a treatment is desired.
 治療薬を開発する上では、in vitroでヒトでの病態を反映したモデルが必要となる。近年、体細胞を初期化することにより作製される人工多能性幹細胞が開発されたことで、患者自身の細胞から作製された細胞を病態モデルとして利用することが期待されている。かかる細胞の1つとして、骨格筋細胞が挙げられ、人工多能性幹細胞から骨格筋細胞への分化誘導法を確立するために、様々な努力がなされている。その分化誘導方法として、本発明者らは、テトラサイクリン(Tet)誘導性の転写因子(MyoDまたはMyf5)を多能性幹細胞に導入し、分化誘導の1日目以降継続してドキシサイクリン(Doxycyclin(Dox))を添加して、多能性幹細胞で該転写因子を発現させることで、骨格筋細胞へと分化誘導できることを報告している(特許文献1)。本発明者らはまた、前記骨格筋細胞への誘導方法を改良し、分化誘導の1日目以降継続してDoxを添加することで、外因性のMyoDを発現させ、3~4日目に、5% Knockout Serum Replacement(KSR)を含む培地中に細胞を再播種することで、効率良く、かつ再現性高く骨格筋細胞へ分化誘導できることを報告している(非特許文献1)。また、Shoji Eらは、20% Knockout Serum Replacement(KSR)を含む培地中で多能性幹細胞を分化誘導し、分化誘導の1日目以降継続してDoxを添加して、外因性のMyoDを発現させることで、多能性幹細胞を骨格筋細胞へと分化誘導する方法を報告している(非特許文献2)。 In developing a therapeutic drug, a model that reflects the pathological condition in humans in vitro is required. In recent years, with the development of induced pluripotent stem cells produced by reprogramming somatic cells, it is expected that cells produced from the patient's own cells will be used as a pathological model. One such cell is skeletal muscle cells, and various efforts have been made to establish a method for inducing differentiation of induced pluripotent stem cells into skeletal muscle cells. As a method for inducing differentiation, the present inventors introduced a tetracycline (Tet) -inducible transcription factor (MyoD or Myf5) into pluripotent stem cells and continued to use Doxycyclin (Dox) from the first day of differentiation induction. It has been reported that the transcription factor can be expressed in pluripotent stem cells by adding)) to induce differentiation into skeletal muscle cells (Patent Document 1). The present inventors also improved the method for inducing skeletal muscle cells and expressed exogenous MyoD by continuously adding Dox after the first day of induction of differentiation, and on the 3rd to 4th days. , 5% Knockout Serum Replacement (KSR) is reported to be able to induce differentiation into skeletal muscle cells efficiently and with high reproducibility by reseeding the cells in a medium containing (KSR) (Non-Patent Document 1). In addition, Shoji E et al. Induced pluripotent stem cells in a medium containing 20% Knockout Serum Replacement (KSR), and continued to add Dox after the first day of differentiation induction to obtain exogenous MyoD. We have reported a method for inducing differentiation of pluripotent stem cells into skeletal muscle cells by expressing them (Non-Patent Document 2).
 骨格筋細胞は心筋細胞と異なり、基本的に自発収縮が起こらず、外部からの刺激が収縮反応に必要である。特に培養細胞では機能性維持や成熟にも刺激が必要であり、電気刺激システムが良く使われている(非特許文献3)。電気刺激システムは簡便に筋細胞の活性化が制御できるが、その一方で毒性のガスを発生することが知られており、電気刺激の強さや刺激時間の長さが制限される。近年、電気刺激に代わる技術として光遺伝子学(オプトジェネティクス)技術が用いられるようになった。チャネルロドプシンという光駆動性のイオンチャネルタンパク質を細胞に発現させることで特定の光に反応して活性化する仕組みであり、この技術を用いて筋細胞を刺激する手法が取られるようになっている(非特許文献4)。 Unlike cardiomyocytes, skeletal muscle cells basically do not spontaneously contract and require external stimuli for the contraction reaction. Especially in cultured cells, stimulation is required for maintenance of functionality and maturation, and an electrical stimulation system is often used (Non-Patent Document 3). The electrical stimulation system can easily control the activation of muscle cells, but on the other hand, it is known to generate toxic gas, which limits the intensity of electrical stimulation and the length of stimulation time. In recent years, optical genetics (optogenetics) technology has come to be used as an alternative technique to electrical stimulation. It is a mechanism that activates in response to specific light by expressing a photo-driven ion channel protein called channelrhodopsin in cells, and a method of stimulating muscle cells using this technology has been adopted. (Non-Patent Document 4).
国際公開第2013/073246号International Publication No. 2013/073246
 多能性幹細胞から分化誘導した骨格筋細胞の収縮活動を指標にしたスクリーニング系を構築するためには細胞に刺激を与える必要がある。しかし、従来用いられている電気刺激は、培地が加水分解されてガスや活性酸素が発生し、細胞にダメージを与えるという問題がある。また、ウェル数の多い(例えば、96ウェルまたは384ウェルプレート)に均一に電気刺激を与える装置の作製が難しいため、ハイスループットスクリーニングに適していないという問題もある。 In order to construct a screening system using the contractile activity of skeletal muscle cells induced to differentiate from pluripotent stem cells as an index, it is necessary to stimulate the cells. However, the conventionally used electrical stimulation has a problem that the medium is hydrolyzed to generate gas and active oxygen, which damages cells. Another problem is that it is not suitable for high-throughput screening because it is difficult to fabricate a device that uniformly applies electrical stimulation to a large number of wells (for example, 96-well or 384-well plate).
 そこで、本発明は、電気刺激を用いた場合と同等の収縮活性を有する骨格筋細胞を多能性幹細胞から製造する方法を提供し、得られた骨格筋細胞を用いて、骨格筋細胞の収縮活動を指標に、筋疾患治療薬の候補物質をスクリーニングする方法を提供することを課題とする。 Therefore, the present invention provides a method for producing skeletal muscle cells having contractile activity equivalent to that when electrical stimulation is used from pluripotent stem cells, and using the obtained skeletal muscle cells, contraction of skeletal muscle cells. The challenge is to provide a method for screening candidate substances for therapeutic agents for muscle diseases using activity as an index.
 本発明は、上記の課題を解決するために以下の各発明を包含する。
[1]光刺激により収縮活動が誘導される骨格筋細胞の製造方法であって、
(1)チャネルロドプシンを安定発現する多能性幹細胞を作製する工程、
(2)工程(1)で得られた細胞を骨格筋細胞に分化誘導する工程、および
(3)分化誘導を開始した細胞に光照射する工程
を含む製造方法。
[2]前記工程(3)において、細胞が融合して筋管を形成する段階より前に光照射を開始する、前記[1]に記載の製造方法。
[3]前記工程(3)において、光照射開始から光照射終了まで連続照射する、前記[1]または[2]に記載の製造方法。
[4]細胞に照射する光が周波数0.25Hz~0.75Hz、パルス幅2msec~100msec、電圧8V~15V、光量が1mW~10mWの青色レーザー光である、前記[1]~[3]のいずれかに記載の製造方法。
[5]前記工程(1)の多能性幹細胞がミオパチー患者またはミオトニア患者由来の細胞である、前記[1]~[4]のいずれかに記載の製造方法。
[6]前記工程(1)の多能性幹細胞がMyoDおよびMyf5から選ばれる1以上の外因性骨格細胞誘導因子を発現する細胞である、前記[1]~[5]のいずれかに記載の製造方法。
[7]骨格筋細胞の収縮活動を促進または抑制する物質のスクリーニング方法であって、
(1)チャネルロドプシンを安定発現する多能性幹細胞を骨格筋細胞に分化誘導する工程、
(2)細胞に光照射する工程、
(3)細胞に被験物質を接触させる工程、
(4)細胞の収縮活動を測定する工程、および
(5)被験物質を接触させなかった場合と比較して細胞の収縮活動を促進または抑制する被験物質を選択する工程
を含む方法。
[8]マルチウェルプレートを用いる、前記[7]に記載のスクリーニング方法。
[9]前記工程(1)の多能性幹細胞がミオパチー患者またはミオトニア患者由来の細胞である、前記[7]または[8]に記載のスクリーニング方法。
The present invention includes the following inventions in order to solve the above problems.
[1] A method for producing skeletal muscle cells in which contractile activity is induced by light stimulation.
(1) A step of producing pluripotent stem cells that stably express channelrhodopsin,
(2) A production method including a step of inducing differentiation of the cells obtained in step (1) into skeletal muscle cells, and (3) a step of irradiating the cells that have started differentiation induction with light.
[2] The production method according to the above [1], wherein in the step (3), light irradiation is started before the stage where cells fuse to form a myotube.
[3] The production method according to the above [1] or [2], wherein in the step (3), continuous irradiation is performed from the start of light irradiation to the end of light irradiation.
[4] Any of the above [1] to [3], wherein the light irradiating the cells is a blue laser light having a frequency of 0.25 Hz to 0.75 Hz, a pulse width of 2 msec to 100 msec, a voltage of 8 V to 15 V, and a light amount of 1 mW to 10 mW. The manufacturing method described in.
[5] The production method according to any one of [1] to [4] above, wherein the pluripotent stem cell in the step (1) is a cell derived from a myopathy patient or a myotonia patient.
[6] The above-mentioned [1] to [5], wherein the pluripotent stem cell of the step (1) is a cell expressing one or more exogenous skeletal cell inducing factors selected from MyoD and Myf5. Production method.
[7] A method for screening a substance that promotes or suppresses contractile activity of skeletal muscle cells.
(1) A step of inducing differentiation of pluripotent stem cells that stably express channelrhodopsin into skeletal muscle cells.
(2) Step of irradiating cells with light,
(3) Step of contacting the test substance with the cells,
A method comprising (4) measuring the contractile activity of cells and (5) selecting a test substance that promotes or suppresses the contractile activity of cells as compared with the case where the test substance is not contacted.
[8] The screening method according to the above [7], which uses a multi-well plate.
[9] The screening method according to the above [7] or [8], wherein the pluripotent stem cells in the step (1) are cells derived from a myopathy patient or a myotonia patient.
 本発明により、電気刺激を用いた場合と同等の収縮活性を有する骨格筋細胞を多能性幹細胞から製造する方法を提供することができる。該製造方法で得られた骨格筋細胞は、骨格筋細胞の収縮活動を指標とする筋疾患治療の候補物質のハイスループットスクリーニングに用いることができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for producing skeletal muscle cells having contractile activity equivalent to that when electrical stimulation is used from pluripotent stem cells. The skeletal muscle cells obtained by the production method can be used for high-throughput screening of candidate substances for the treatment of muscle diseases using the contractile activity of the skeletal muscle cells as an index.
iPS細胞に導入したベクターの構造を示す図であり、(A)はテトラサイクリン応答性MyoD強制発現piggyBacベクター(pB-EF1α-MyoD-IRES-puro)の構造、(B)はチャネルロドプシン強制発現piggyBacベクター(pB-EF1α-ChR2-IRES-puro)の構造である。It is a figure showing the structure of the vector introduced into iPS cells, (A) is the structure of tetracycline-responsive MyoD forced expression piggyBac vector (pB-EF1α-MyoD-IRES-puro), and (B) is the channelrhodopsin forced expression piggyBac vector. It is a structure of (pB-EF1α-ChR2-IRES-puro). 実施例で用いた本発明の製造方法の一形態の分化誘導スケジュールを示す図である。It is a figure which shows the differentiation induction schedule of one form of the manufacturing method of this invention used in an Example. 実施例で用いた96ウェルプレートの1つのウェルの断面を示す図である。It is a figure which shows the cross section of one well of a 96-well plate used in an Example. 図2に示したスケジュールの14日目の細胞を抗MHC抗体で免疫染色して骨格筋分化効率を算出し、フラットテストを行った結果を示す図である。It is a figure which shows the result of performing the flat test by immunostaining the cell of the 14th day of the schedule shown in FIG. 2 with an anti-MHC antibody, calculating the skeletal muscle differentiation efficiency. 図2に示したスケジュールの18日目の細胞を抗MHC抗体で免疫染色して骨格筋分化効率を算出し、フラットテストを行った結果を示す図である。It is a figure which shows the result of performing the flat test by immunostaining the cell of the 18th day of the schedule shown in FIG. 2 with an anti-MHC antibody, calculating the skeletal muscle differentiation efficiency. 96ウェルプレートの2ウェルを1サンプルとする場合、4ウェルを1サンプルとする場合のウェルの使い方を示す図である。It is a figure which shows the usage of the well when 2 well of a 96-well plate is used as 1 sample, and 4 well is used as 1 sample. 図2に示したスケジュールの18日目の骨格筋細胞の収縮力を動画解析装置で解析し、2ウェルまたは4ウェルを1サンプルとして、各サンプルの収縮速度についてフラットテストを行った結果を示す図であり、(A)が2ウェル1サンプルの結果、(B)が4ウェル1サンプルの結果である。The figure showing the result of performing a flat test on the contraction rate of each sample by analyzing the contractile force of the skeletal muscle cells on the 18th day of the schedule shown in Fig. 2 with a video analyzer and using 2 wells or 4 wells as one sample. (A) is the result of 1 sample of 2 wells, and (B) is the result of 1 sample of 4 wells. 図2に示したスケジュールの18~28日目の骨格筋細胞について電気刺激および光刺激による収縮速度の変化を解析した結果を示す図であり、(A)が電気刺激の結果、(B)が光刺激の結果である。It is a figure which shows the result of having analyzed the change of the contraction rate by the electric stimulus and the light stimulus about the skeletal muscle cell of the 18th to 28th days of the schedule shown in FIG. It is the result of light stimulation. 図2に示したスケジュールの18~28日目の骨格筋細胞について電気刺激および光刺激による弛緩速度の変化を解析した結果を示す図であり、(A)が電気刺激の結果、(B)が光刺激の結果である。It is a figure which shows the result of having analyzed the change of the relaxation rate by the electric stimulation and the light stimulation about the skeletal muscle cell of the 18th to 28th days of the schedule shown in FIG. It is the result of light stimulation. 図2に示したスケジュールの18~28日目の骨格筋細胞について電気刺激および光刺激による加速度の変化を解析した結果を示す図であり、(A)が電気刺激の結果、(B)が光刺激の結果である。It is a figure which shows the result of having analyzed the change of the acceleration by the electric stimulus and the light stimulus about the skeletal muscle cell of the 18th to 28th days of the schedule shown in FIG. It is the result of stimulation. 図2に示したスケジュールの18~28日目の骨格筋細胞について電気刺激および光刺激による収縮距離の変化を解析した結果を示す図であり、(A)が電気刺激の結果、(B)が光刺激の結果である。It is a figure which shows the result of having analyzed the change of the contraction distance by the electric stimulus and the light stimulus about the skeletal muscle cell of the 18th to 28th days of the schedule shown in FIG. It is the result of light stimulation. 図2に示したスケジュールの28日目の骨格筋細胞の収縮力を動画解析装置で解析し、4ウェル1サンプルで収縮速度についてフラットテストを行った結果を示す図である。It is a figure which shows the result of having analyzed the contraction force of the skeletal muscle cell on the 28th day of the schedule shown in FIG. 2 with the moving image analyzer, and performed the flat test about the contraction rate with one sample of 4 wells.
〔骨格筋細胞の製造方法〕
 本発明は、光刺激により収縮活動が誘導される骨格筋細胞の製造方法(以下、「本発明の製造方法」と記す)を提供する。本発明の製造方法は、以下の工程を有するものであればよい。
(1)チャネルロドプシンを安定発現する多能性幹細胞を作製する工程、
(2)工程(1)で得られた細胞を骨格筋細胞に分化誘導する工程、および
(3)分化誘導を開始した細胞に光照射する工程。
[Manufacturing method of skeletal muscle cells]
The present invention provides a method for producing skeletal muscle cells in which contractile activity is induced by light stimulation (hereinafter referred to as "the production method of the present invention"). The production method of the present invention may have the following steps.
(1) A step of producing pluripotent stem cells that stably express channelrhodopsin,
(2) A step of inducing differentiation of the cells obtained in step (1) into skeletal muscle cells, and (3) a step of irradiating the cells that have started differentiation induction with light.
 本明細書において、「骨格筋細胞」は、全ての骨格筋系譜の細胞を含む広義の概念であり、骨格筋幹細胞、筋芽細胞、筋管細胞、成熟筋管細胞、十分成熟した筋管細胞の全てを含む。骨格筋細胞を特定するためのマーカー遺伝子として、例えば、ミオゲニン、ミオシン重鎖(MHC)、MyoD、Myf5などが挙げられる。骨格筋細胞は、ヒトの骨格筋細胞でもよく、ヒト以外の生物の骨格筋細胞でもよい。ヒト以外の生物は特に限定されず、例えば、哺乳動物であってもよい。哺乳動物としては、例えば、サル、チンパンジー、イヌ、ネコ、ウシ、ウマ、ブタ、ウサギ、マウス、ラット等が挙げられる。 As used herein, "skeletal muscle cell" is a broader concept that includes cells of all skeletal muscle lineages, including skeletal muscle stem cells, myoblasts, myotube cells, mature myotube cells, and fully mature myotube cells. Including all of. Marker genes for identifying skeletal muscle cells include, for example, myogenin, myosin heavy chain (MHC), MyoD, Myf5 and the like. The skeletal muscle cell may be a human skeletal muscle cell or a skeletal muscle cell of a non-human organism. Organisms other than humans are not particularly limited and may be, for example, mammals. Examples of mammals include monkeys, chimpanzees, dogs, cats, cows, horses, pigs, rabbits, mice, rats and the like.
 本発明の製造方法で使用する多能性幹細胞は、筋疾患患者由来の多能性幹細胞であってもよい。筋疾患としては、ミオパチー、ミオトニアなどが挙げられる。ミオパチーとしては、例えば、筋ジストロフィー(デュシェンヌ型筋ジストロフィー(DMD)、ベッカー型筋ジストロフィー、肢帯型筋ジストロフィー、顔面肩甲上腕型筋ジストロフィー、眼筋咽頭型筋ジストロフィー、エメリ・ドレフュス型筋ジストロフィー、先天性筋ジストロフィー、遠位型筋ジストロフィー、筋強直性ジストロフィー等)、遠位型ミオパチー(三好型ミオパチー、GNEミオパチー、眼咽頭型遠位型ミオパチー等)、先天性ミオパチー(ネマリンミオパチー、セントラルコア病等)、糖原病、周期性四肢麻痺、ミトコンドリアミオパチーなどが挙げられる。ミオトニアとしては、把握ミオトニア、叩打ミオトニア、筋強直症候群、先天性ミオトニア、先天性パラミオトニア、シュワルツ・ヤンペル症候群などが挙げられる。 The pluripotent stem cell used in the production method of the present invention may be a pluripotent stem cell derived from a muscle disease patient. Examples of muscle diseases include myopathy and myotonia. Examples of myopathy include muscular dystrophy (Duschenne muscular dystrophy (DMD), Becker muscular dystrophy, limb muscular dystrophy, facial scapulohumeral muscular dystrophy, ocular throat muscular dystrophy, Emeri-Drefus muscular dystrophy, congenital muscular dystrophy, and distal muscular dystrophy. Muscular dystrophy, muscular dystrophy, etc.), distal myopathy (Miyoshi-type myopathy, GNE myopathy, ophthalmic-pharyngeal type distal myopathy, etc.), congenital myopathy (nemarin myopathy, central core disease, etc.), glycolytic disease, cycle Examples include sexual dystrophy and mitochondrial myopathy. Examples of myotonia include grasping myotonia, tapping myotonia, myotonia syndrome, congenital myotonia, congenital paramyotonia, and Schwartz-Jampel syndrome.
 本発明の製造方法で使用する多能性幹細胞は、骨格筋細胞誘導因子を過剰発現させるように改変された多能性幹細胞であってもよい。具体的には、例えば、骨格筋細胞誘導因子をコードする遺伝子が挿入された発現ベクターが導入された多能性幹細胞が挙げられる。骨格筋細胞誘導因子としては、例えば、MyoD、Myf5、Pax7などが挙げられる。好ましくは、外因性のMyoDまたはMyf5である。MyoDまたはMyf5をコードする遺伝子が挿入された発現ベクターは、公知の遺伝子組み換え技術を用いて構築することができる。得られた発現ベクターの多能性幹細胞への導入は、後述の公知の遺伝子導入法を用いて行うことができる。 The pluripotent stem cell used in the production method of the present invention may be a pluripotent stem cell modified to overexpress a skeletal muscle cell inducing factor. Specific examples thereof include pluripotent stem cells into which an expression vector into which a gene encoding a skeletal muscle cell inducing factor has been inserted has been introduced. Examples of the skeletal muscle cell inducing factor include MyoD, Myf5, Pax7 and the like. Preferred is extrinsic MyoD or Myf5. Expression vectors into which the gene encoding MyoD or Myf5 has been inserted can be constructed using known gene recombination techniques. The obtained expression vector can be introduced into pluripotent stem cells by using a known gene transfer method described later.
 MyoDまたはMyf5をコードする遺伝子が挿入された発現ベクターは、薬剤誘導性(例えばテトラサイクリン誘導性)の発現ベクターであってもよい。MyoDまたはMyf5をコードする遺伝子の塩基配列は、公知のデータベース(NCBI等)から取得することができる。例えば、ヒトMyoDをコードする遺伝子の塩基配列(Homo sapiens myogenic differentiation 1 (MYOD1), mRNA)はNCBI Reference Sequence: NM_002478.5として登録されている。また、例えばヒトMyf5をコードする遺伝子(Homo sapiens myogenic factor 5 (MYF5), mRNA)は、NCBI Reference Sequence: NM_005593.3として登録されている。 The expression vector into which the gene encoding MyoD or Myf5 is inserted may be a drug-inducible (for example, tetracycline-inducible) expression vector. The base sequence of the gene encoding MyoD or Myf5 can be obtained from a known database (NCBI, etc.). For example, the base sequence of the gene encoding human MyoD (Homo sapiens myogenic differentiation 1 (MYOD1), mRNA) is registered as NCBI Reference Sequence: NM_002478.5. Further, for example, a gene encoding human Myf5 (Homo sapiens myogenic factor 5 (MYF5), mRNA) is registered as NCBI Reference Sequence: NM_005593.3.
 本発明の製造方法で使用可能な多能性幹細胞は、生体に存在するすべての細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞であり、それには、特に限定されないが、例えば胚性幹(ES)細胞、核移植により得られるクローン胚由来の胚性幹(ntES)細胞、精子幹(GS)細胞、胚性生殖(EG)細胞、人工多能性幹(iPS)細胞、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)などが含まれる。好ましい多能性幹細胞は、ES細胞、ntES細胞およびiPS細胞である。 The pluripotent stem cells that can be used in the production method of the present invention are stem cells that have pluripotency capable of differentiating into all cells existing in a living body and also have proliferative ability, particularly. Not limited, for example, embryonic stem (ES) cells, cloned embryo-derived embryonic stem (ntES) cells, sperm stem (GS) cells, embryonic reproductive (EG) cells, artificial pluripotent stems obtained by nuclear transplantation. Includes (iPS) cells, cultured fibroblasts and pluripotent cells (Muse cells) derived from bone marrow stem cells. Preferred pluripotent stem cells are ES cells, ntES cells and iPS cells.
(A) 胚性幹細胞
 ES細胞は、ヒトやマウスなどの哺乳動物の初期胚(例えば胚盤胞)の内部細胞塊から樹立された、多能性と自己複製による増殖能を有する幹細胞である。
(A) Embryonic stem cells ES cells are pluripotent and self-replicating stem cells established from the inner cell mass of early embryos (eg, blastocysts) of mammals such as humans and mice.
 ES細胞は、受精卵の8細胞期、桑実胚後の胚である胚盤胞の内部細胞塊に由来する胚由来の幹細胞であり、成体を構成するあらゆる細胞に分化する能力、いわゆる分化多能性と、自己複製による増殖能とを有している。ES細胞は、マウスで1981年に発見され (M.J. Evans and M.H. Kaufman (1981), Nature 292:154-156)、その後、ヒト、サルなどの霊長類でもES細胞株が樹立された (J.A. Thomson et al. (1998), Science 282:1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848;J.A. Thomson et al. (1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall (1998), Curr. Top. Dev. Biol., 38:133-165)。 ES cells are embryo-derived stem cells derived from the inner cell mass of the scutellum vesicle, which is the embryo after the morula at the 8-cell stage of the fertilized egg, and have the ability to differentiate into all the cells that make up the adult, so-called polymorphism. It has the ability and the ability to proliferate by self-replication. ES cells were discovered in mice in 1981 (M.J. Evans and M.H. Kaufman (1981), Nature 292: 154-156), and then ES cell lines were established in primates such as humans and monkeys (J.A. Thomson et). al. (1998), Science 282: 1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92: 7844-7848; J.A. Thomson et al. (1996), Biol. ., 55: 254-259; J.A. Thomson and V.S. Marshall (1998), Curr. Top. Dev. Biol., 38: 133-165).
 ES細胞の樹立は、当分野で知られた方法が用いられる。例えば、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー上で培養することによって樹立することができる。また、継代培養による細胞の維持は、白血病抑制因子(leukemia inhibitory factor (LIF))、塩基性線維芽細胞成長因子(basic fibroblast growth factor (bFGF))などの物質を添加した培養液を用いて行うことができる。ヒトおよびサルのES細胞の樹立と維持の方法については、例えばUSP5,843,780; Thomson JA, et al. (1995), Proc Natl. Acad. Sci. U S A. 92:7844-7848; Thomson JA, et al. (1998), Science. 282:1145-1147; H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345:926-932; M. Ueno et al. (2006), Proc. Natl. Acad. Sci. USA, 103:9554-9559; H. Suemori et al. (2001), Dev. Dyn., 222:273-279;H. Kawasaki et al. (2002), Proc. Natl. Acad. Sci. USA, 99:1580-1585;Klimanskaya I, et al. (2006), Nature. 444:481-485などに記載されている。 For the establishment of ES cells, a method known in this field is used. For example, it can be established by removing the inner cell mass from the blastocyst of a fertilized egg of a target animal and culturing the inner cell mass on a fibroblast feeder. For cell maintenance by subculture, use a culture solution containing substances such as leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF). It can be carried out. For methods of establishing and maintaining ES cells in humans and monkeys, see, for example, USP 5,843,780; Thomson JA, et al. (1995), Proc Natl. Acad. Sci. U S A. 92: 7844-7848; Thomson JA, et al. (1998), Science. 282: 1145-1147; H. Suemori et al. (2006), Biochem. Biophys. Res. Communi., 345: 926-932; M. Ueno et al. (2006), Proc. Natl. Acad. Sci. USA, 103: 9554-9559; H. Suemori et al. (2001), Dev. Dyn., 222: 273-279; H. Kawasaki et al. (2002), Proc. Natl . Acad. Sci. USA, 99: 1580-1585; Klimanskaya I, et al. (2006), Nature. 444: 481-485, etc.
 ES細胞作製のための培養方法は、当分野で知られた方法が用いられる。培養液として、例えば0.1mM 2-メルカプトエタノール、0.1mM 非必須アミノ酸、2mM L-グルタミン酸、20% KSR(KnockOut Serum Replacement, Invitrogen)および4ng/ml bFGFを補充したDMEM/F-12培養液を使用し、37℃、2% CO2/98% 空気の湿潤雰囲気下でヒトES細胞を維持することができる(O. Fumitaka et al. (2008), Nat. Biotechnol., 26:215-224)。ES細胞は、3~4日おきに継代してもよく、このとき、継代は、例えば1mM CaCl2および20% KSRを含有するPBS中の0.25% トリプシンおよび0.1mg/mlコラゲナーゼIVを用いて行うことができる。 As a culture method for producing ES cells, a method known in the art is used. As the culture medium, use DMEM / F-12 culture medium supplemented with, for example, 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino acid, 2 mM L-glutamic acid, 20% KSR (KnockOut Serum Replacement, Invitrogen) and 4 ng / ml bFGF. However, human ES cells can be maintained in a moist atmosphere of 37 ° C, 2% CO 2 / 98% air (O. Fumitaka et al. (2008), Nat. Biotechnol., 26: 215-224). ES cells may be passaged every 3-4 days, with passage using, for example, 0.25% trypsin and 0.1 mg / ml collagenase IV in PBS containing 1 mM CaCl2 and 20% KSR. It can be carried out.
 ES細胞の選択は、一般に、アルカリホスファターゼ、Oct-3/4、Nanogなどの遺伝子マーカーの発現を指標にしてReal-Time PCR法で行うことができる。特に、ヒトES細胞の選択では、OCT-3/4、NANOG、ECADなどの遺伝子マーカーの発現を指標とすることができる(E. Kroon et al. (2008), Nat. Biotechnol., 26:443-452)。 ES cells can generally be selected by the Real-Time PCR method using the expression of gene markers such as alkaline phosphatase, Oct-3 / 4, and Nanog as an index. In particular, in the selection of human ES cells, the expression of gene markers such as OCT-3 / 4, NANOG, and ECAD can be used as an index (E. Kroon et al. (2008), Nat. Biotechnol., 26: 443. -452).
 マウスES細胞としては、inGenious社、理化学研究所(理研)等が樹立した各種マウスES細胞株が利用可能である。ヒトES細胞としては、米国国立衛生研究所(NIH)、理研、京都大学、Cellartis社が樹立した各種ヒトES細胞株が利用可能である。たとえばES細胞株としては、NIHのCHB-1~CHB-12株、RUES1株、RUES2株、HUES1~HUES28株等、WisCell Research InstituteのWA01(H1)株、WA09(H9)株、理研のKhES-1株、KhES-2株、KhES-3株、KhES-4株、KhES-5株、SSES1株、SSES2株、SSES3株等を利用することができる。また、KhES-1株、KhES-2株、KhES-3株およびKthES11株は、京都大学ウイルス・再生医科学研究所(京都、日本)から入手可能である。 As mouse ES cells, various mouse ES cell lines established by inGenious, RIKEN (RIKEN), etc. can be used. As human ES cells, various human ES cell lines established by the National Institutes of Health (NIH), RIKEN, Kyoto University, and Cellartis can be used. For example, as ES cell lines, NIH CHB-1 to CHB-12 strains, RUES1 strains, RUES2 strains, HUES1 to HUES28 strains, etc., WisCell Research Institute WA01 (H1) strains, WA09 (H9) strains, RIKEN KhES- One strain, KhES-2 strain, KhES-3 strain, KhES-4 strain, KhES-5 strain, SSES1 strain, SSES2 strain, SSES3 strain and the like can be used. The KhES-1, KhES-2, KhES-3 and KthES11 strains are available from the Institute for Frontier Life and Medical Sciences, Kyoto University (Kyoto, Japan).
(B) 精子幹細胞
 精子幹細胞は、精巣由来の多能性幹細胞であり、精子形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能であり、例えばマウス胚盤胞に移植するとキメラマウスを作出できるなどの性質をもつ(M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69:612-616; K. Shinohara et al. (2004), Cell, 119:1001-1012)。神経膠細胞系由来神経栄養因子(glial cell line-derived neurotrophic factor (GDNF))を含む培養液で自己複製可能であるし、またES細胞と同様の培養条件下で継代を繰り返すことによって、精子幹細胞を得ることができる(竹林正則ら(2008),実験医学,26巻,5号(増刊),41~46頁,羊土社(東京、日本))。
(B) Sperm stem cells Sperm stem cells are pluripotent stem cells derived from the testis and are the origin cells for spermatogenesis. Similar to ES cells, these cells can be induced to differentiate into various lineages of cells, and have properties such as the ability to produce chimeric mice when transplanted into mouse blastocysts (M. Kanatsu-Shinohara et al. (M. Kanatsu-Shinohara et al.). 2003) Biol. Reprod., 69: 612-616; K. Shinohara et al. (2004), Cell, 119: 1001-1012). It is self-renewable in a culture medium containing a glial cell line-derived neurotrophic factor (GDNF), and sperm by repeating passage under the same culture conditions as ES cells. Stem cells can be obtained (Masanori Takebayashi et al. (2008), Experimental Medicine, Vol. 26, No. 5 (Special Edition), pp. 41-46, Yodosha (Tokyo, Japan)).
(C) 胚性生殖細胞
 胚性生殖細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞であり、LIF、bFGF、幹細胞因子(stem cell factor)などの物質の存在下で始原生殖細胞を培養することによって樹立しうる(Y. Matsui et al. (1992), Cell, 70:841-847; J.L. Resnick et al. (1992), Nature, 359:550-551)。
(C) Embryonic germ cells Embryonic germ cells are cells with pluripotency similar to ES cells, which are established from primordial germ cells in the embryonic period, such as LIF, bFGF, and stem cell factor. It can be established by culturing primordial germ cells in the presence of the substance of (Y. Matsui et al. (1992), Cell, 70: 841-847; JL Resnick et al. (1992), Nature, 359: 550. -551).
(D) 人工多能性幹細胞
 人工多能性幹(iPS)細胞は、特定の初期化因子を、DNAまたはタンパク質の形態で体細胞に導入することによって作製することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能、を有する体細胞由来の人工の幹細胞である(K. Takahashi and S. Yamanaka (2006) Cell, 126:663-676; K. Takahashi et al. (2007), Cell, 131:861-872; J. Yu et al. (2007), Science, 318:1917-1920; Nakagawa, M.ら,Nat. Biotechnol. 26:101-106 (2008);国際公開WO 2007/069666)。初期化因子は、ES細胞に特異的に発現している遺伝子、その遺伝子産物もしくはnon-cording RNAまたはES細胞の未分化維持に重要な役割を果たす遺伝子、その遺伝子産物もしくはnon-cording RNA、あるいは低分子化合物によって構成されてもよい。初期化因子に含まれる遺伝子として、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3またはGlis1等が例示され、これらの初期化因子は、単独で用いても良く、組み合わせて用いても良い。初期化因子の組み合わせとしては、WO2007/069666、WO2008/118820、WO2009/007852、WO2009/032194、WO2009/058413、WO2009/057831、WO2009/075119、WO2009/079007、WO2009/091659、WO2009/101084、WO2009/101407、WO2009/102983、WO2009/114949、WO2009/117439、WO2009/126250、WO2009/126251、WO2009/126655、WO2009/157593、WO2010/009015、WO2010/033906、WO2010/033920、WO2010/042800、WO2010/050626、WO 2010/056831、WO2010/068955、WO2010/098419、WO2010/102267、WO 2010/111409、WO 2010/111422、WO2010/115050、WO2010/124290、WO2010/147395、WO2010/147612、Huangfu D, et al. (2008), Nat. Biotechnol., 26: 795-797、Shi Y, et al. (2008), Cell Stem Cell, 2: 525-528、Eminli S, et al. (2008), Stem Cells. 26:2467-2474、Huangfu D, et al. (2008), Nat Biotechnol. 26:1269-1275、Shi Y, et al. (2008), Cell Stem Cell, 3, 568-574、Zhao Y, et al. (2008), Cell Stem Cell, 3:475-479、Marson A, (2008), Cell Stem Cell, 3, 132-135、Feng B, et al. (2009), Nat Cell Biol. 11:197-203、R.L. Judson et al., (2009), Nat. Biotech., 27:459-461、Lyssiotis CA, et al. (2009), Proc Natl Acad Sci U S A. 106:8912-8917、Kim JB, et al. (2009), Nature. 461:649-643、Ichida JK, et al. (2009), Cell Stem Cell. 5:491-503、Heng JC, et al. (2010), Cell Stem Cell. 6:167-74、Han J, et al. (2010), Nature. 463:1096-100、Mali P, et al. (2010), Stem Cells. 28:713-720、Maekawa M, et al. (2011), Nature. 474:225-9.に記載の組み合わせが例示される。
(D) Induced pluripotent stem cells Induced pluripotent stem (iPS) cells are similar to ES cells, which can be produced by introducing specific reprogramming factors into somatic cells in the form of DNA or protein. K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676; K. Takahashi et al (2007), Cell, 131: 861-872; J. Yu et al. (2007), Science, 318: 1917-1920; Nakagawa, M. et al., Nat. Biotechnol. 26: 101-106 (2008); International release WO 2007/069666). Reprogramming factors are genes that are specifically expressed in ES cells, their gene products or non-cording RNAs, or genes that play an important role in maintaining undifferentiated ES cells, their gene products or non-cording RNAs, or It may be composed of low molecular weight compounds. Genes included in the reprogramming factors include, for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15. -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3, Glis1, etc. are exemplified, and these initialization factors may be used alone or in combination. The combinations of initialization factors include WO2007 / 069666, WO2008 / 118820, WO2009 / 007852, WO2009 / 032194, WO2009 / 058413, WO2009 / 057831, WO2009 / 075119, WO2009 / 079007, WO2009 / 091659, WO2009 / 101084, WO2009 / 101407, WO2009 / 102983, WO2009 / 114949, WO2009 / 117439, WO2009 / 126250, WO2009 / 126251, WO2009 / 126655, WO2009 / 157593, WO2010 / 009015, WO2010 / 033906, WO2010 / 033920, WO2010 / 042800, WO2010 / 050626, WO 2010/056831, WO2010 / 068955, WO2010 / 098419, WO2010/102267, WO 2010/111409, WO 2010/111422, WO2010 / 115050, WO2010 / 124290, WO2010 / 147395, WO2010 / 147612, Huangfu D, et al. ( 2008), Nat. Biotechnol., 26: 795-797, Shi Y, et al. (2008), Cell Stem Cell, 2: 525-528, Eminli S, et al. (2008), Stem Cells. 26: 2467 -2474, Huangfu D, et al. (2008), Nat Biotechnol. 26: 1269-1275, Shi Y, et al. (2008), Cell Stem Cell, 3, 568-574, Zhao Y, et al. (2008) ), Cell Stem Cell, 3: 475-479, Marson A, (2008), Cell Stem Cell, 3, 132-135, Feng B, et al. (2009), Nat Cell Biol. 11: 197-203, RL Judson et al., (2009), Nat. Biotech., 27: 459-461, Lyssiotis CA, et al. (2009), Proc Natl Acad Sci U S A. 106: 8912-8 917, Kim JB, et al. (2009), Nature. 461: 649-643, Ichida JK, et al. (2009), Cell Stem Cell. 5: 491-503, Heng JC, et al. (2010), Cell Stem Cell. 6: 167-74, Han J, et al. (2010), Nature. 463: 1096-100, Mali P, et al. (2010), Stem Cells. 28: 713-720, Maekawa M, The combinations described in et al. (2011), Nature. 474: 225-9. Are exemplified.
 上記初期化因子には、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸 (VPA)、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNAおよびshRNA(例、HDAC1 siRNA Smartpool (Millipore)、HuSH 29mer shRNA Constructs against HDAC1 (OriGene)等)等の核酸性発現阻害剤など]、MEK阻害剤(例えば、PD184352、PD98059、U0126、SL327およびPD0325901)、Glycogen synthase kinase-3阻害剤(例えば、BioおよびCHIR99021)、DNAメチルトランスフェラーゼ阻害剤(例えば、5-azacytidine)、ヒストンメチルトランスフェラーゼ阻害剤(例えば、BIX-01294 等の低分子阻害剤、Suv39hl、Suv39h2、SetDBlおよびG9aに対するsiRNAおよびshRNA等の核酸性発現阻害剤など)、L-channel calcium agonist (例えばBayk8644)、酪酸、TGFβ阻害剤またはALK5阻害剤(例えば、LY364947、SB431542、616453およびA-83-01)、p53阻害剤(例えばp53に対するsiRNAおよびshRNA)、ARID3A阻害剤(例えば、ARID3Aに対するsiRNAおよびshRNA)、miR-291-3p、miR-294、miR-295およびmir-302などのmiRNA、Wnt Signaling(例えばsoluble Wnt3a)、神経ペプチドY、プロスタグランジン類(例えば、プロスタグランジンE2およびプロスタグランジンJ2)、hTERT、SV40LT、UTF1、IRX6、GLISl、PITX2、DMRTBl等の樹立効率を高めることを目的として用いられる因子も含まれており、本明細書においては、これらの樹立効率の改善目的にて用いられた因子についても初期化因子と別段の区別をしないものとする。 The reprogramming factors include histone deacetylase (HDAC) inhibitors [eg, small molecule inhibitors such as valproic acid (VPA), tricostatin A, sodium butyrate, MC 1293, M344, siRNA against HDAC and shRNA (eg). , HDAC1 siRNA Smartpool (Millipore), HuSH 29mer shRNA Constructs against HDAC1 (OriGene), etc.), MEK inhibitors (eg PD184352, PD98059, U0126, SL327 and PD0325901), Glycogen synthesis 3 Against small molecule inhibitors such as Bio and CHIR99021, DNA methyltransferase inhibitors (eg 5-azacytidine), histone methyltransferase inhibitors (eg BIX-01294), Suv39hl, Suv39h2, SetDBl and G9a Nucleic acid expression inhibitors such as siRNA and shRNA), L-channel calciumagonist (eg Bayk8644), butyric acid, TGFβ inhibitors or ALK5 inhibitors (eg LY364947, SB431542, 616453 and A-83-01), p53 inhibition Agents (eg siRNA and shRNA for p53), ARID3A inhibitors (eg siRNA and shRNA for ARID3A), miRNAs such as miR-291-3p, miR-294, miR-295 and mir-302, Wnt Signaling (eg soluble Wnt3a) ), Nucleic acid peptide Y, prostaglandins (eg, prostaglandins E2 and prostaglandins J2), hTERT, SV40LT, UTF1, IRX6, GLISl, PITX2, DMRTBl, etc. In this specification, the factors used for the purpose of improving the establishment efficiency are not particularly distinguished from the reprogramming factors.
 初期化因子は、タンパク質の形態の場合、例えばリポフェクション、細胞膜透過性ペプチド(例えば、HIV由来のTATおよびポリアルギニン)との融合、マイクロインジェクションなどの手法によって体細胞内に導入してもよい。 In the case of protein morphology, the reprogramming factor may be introduced into somatic cells by techniques such as lipofection, fusion with cell membrane permeable peptides (eg, HIV-derived TAT and polyarginine), and microinjection.
 一方、DNAの形態の場合、例えば、ウイルス、プラスミド、人工染色体などのベクター、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって体細胞内に導入することができる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター(以上、Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007)、アデノウイルスベクター(Science, 322, 945-949, 2008)、アデノ随伴ウイルスベクター、センダイウイルスベクター(WO 2010/008054)などが例示される。また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが含まれる。プラスミドとしては、哺乳動物細胞用プラスミドを使用しうる(Science, 322:949-953, 2008)。ベクターには、核初期化物質が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができるし、さらに、必要に応じて、薬剤耐性遺伝子(例えばカナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、緑色蛍光タンパク質(GFP)、βグルクロニダーゼ(GUS)などのレポーター遺伝子配列などを含むことができる。また、上記ベクターには、体細胞への導入後、初期化因子をコードする遺伝子もしくはプロモーターとそれに結合する初期化因子をコードする遺伝子を共に切除するために、それらの前後にLoxP配列を有してもよい。 On the other hand, in the case of DNA morphology, it can be introduced into somatic cells by methods such as viruses, plasmids, vectors such as artificial chromosomes, lipofection, liposomes, and microinjection. Viral vectors include retro viral vectors and lentiviral vectors (above, Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007. ), Adenovirus vector (Science, 322, 945-949, 2008), adeno-associated virus vector, Sendai virus vector (WO2010 / 008054) and the like. Further, the artificial chromosome vector includes, for example, a human artificial chromosome (HAC), a yeast artificial chromosome (YAC), a bacterial artificial chromosome (BAC, PAC) and the like. As the plasmid, a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008). The vector can contain regulatory sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc. so that the nuclear reprogramming substance can be expressed, and further, if necessary, a drug resistance gene (drug resistance gene). For example, canamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.), thymidin kinase gene, selection marker sequence such as diphtheriatoxin gene, reporter gene sequence such as green fluorescent protein (GFP), β-glucuronidase (GUS), etc. Can be done. In addition, the above vector has LoxP sequences before and after introduction into somatic cells in order to excise both the gene encoding the reprogramming factor or the promoter and the gene encoding the reprogramming factor that binds to the promoter. You may.
 また、RNAの形態の場合、例えばリポフェクション、マイクロインジェクションなどの手法によって体細胞内に導入しても良く、分解を抑制するため、5-メチルシチジンおよびpseudouridine(TriLink Biotechnologies)を取り込ませたRNAを用いても良い(Warren L, (2010) Cell Stem Cell. 7:618-630)。 In the case of RNA morphology, it may be introduced into somatic cells by a method such as lipofection or microinjection, and in order to suppress degradation, RNA incorporating 5-methylcytidine and pseudouridine (TriLink Biotechnologies) is used. It may be (Warren L, (2010) Cell Stem Cell. 7: 618-630).
 iPS細胞誘導のための培養液としては、例えば、10~15%FBSを含有するDMEM、DMEM/F12またはDME培養液(これらの培養液にはさらに、LIF、penicillin/streptomycin、puromycin、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)またはマウスES細胞培養用培養液(TX-WES培養液、トロンボX社)、霊長類ES細胞培養用培養液(霊長類ES/iPS細胞用培養液、リプロセル社)、無血清多能性幹細胞維持培地(例えば、mTeSR(Stemcell Technology社)、Essential 8(Life Technologies)、StemFit AK03(AJINOMOTO))などの市販の培養液が例示される。 Cultures for iPS cell induction include, for example, DMEM, DMEM / F12 or DME cultures containing 10-15% FBS (these cultures also include LIF, penicillin / streptomycin, puromycin, L-glutamine). , Non-essential amino acids, β-mercaptoethanol, etc. can be appropriately contained.) Or mouse ES cell culture medium (TX-WES culture medium, Thrombo X), primate ES cell culture medium (primates). Commercially available cultures such as ES / iPS cell culture medium, Reprocell), serum-free pluripotent stem cell maintenance medium (for example, mTeSR (Stemcell Technology), Essential 8 (Life Technologies), StemFit AK03 (AJINOMOTO)) Illustrated.
 培養法の例としては、例えば、37℃、5%CO2存在下にて、10%FBS含有DMEMまたはDMEM/F12培養液上で体細胞と初期化因子とを接触させ約4~7日間培養し、その後、細胞をフィーダー細胞(たとえば、マイトマイシンC処理STO細胞、SNL細胞等)上に播きなおし、体細胞と初期化因子の接触から約10日後からbFGF含有霊長類ES細胞培養用培養液で培養し、該接触から約30~約45日またはそれ以上ののちにiPS様コロニーを生じさせることができる。 As an example of the culture method, for example, in the presence of 5% CO 2 at 37 ° C., the somatic cells are brought into contact with the reprogramming factor on a DMEM or DMEM / F12 culture medium containing 10% FBS and cultured for about 4 to 7 days. Then, the cells are re-seeded on feeder cells (for example, mitomycin C-treated STO cells, SNL cells, etc.), and about 10 days after the contact between the somatic cells and the reprogramming factor, the culture medium for bFGF-containing primate ES cell culture is used. It can be cultured and give rise to iPS-like colonies about 30-about 45 days or more after the contact.
 あるいは、37℃、5% CO2存在下にて、フィーダー細胞(たとえば、マイトマイシンC処理STO細胞、SNL細胞等)上で10%FBS含有DMEM培養液(これにはさらに、LIF、ペニシリン/ストレプトマイシン、ピューロマイシン、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)で培養し、約25~約30日またはそれ以上後にES様コロニーを生じさせることができる。望ましくは、フィーダー細胞の代わりに、初期化される体細胞そのものを用いる(Takahashi K, et al. (2009), PLoS One. 4:e8067またはWO2010/137746)、もしくは細胞外マトリックス(例えば、Laminin-5(WO2009/123349)およびマトリゲル(BD社))を用いる方法が例示される。 Alternatively, in the presence of 5% CO 2 at 37 ° C., DMEM culture medium containing 10% FBS (for example, LIF, penicillin / streptomycin, etc.) on feeder cells (eg, mitomycin C-treated STO cells, SNL cells, etc.). (Pureomycin, L-glutamine, non-essential amino acids, β-mercaptoethanol, etc. can be appropriately contained), and ES-like colonies can be generated after about 25 to about 30 days or more. Desirably, instead of feeder cells, the reprogrammed somatic cells themselves are used (Takahashi K, et al. (2009), PLoS One. 4: e8067 or WO2010 / 137746), or extracellular matrix (eg, Laminin-). 5 (WO2009 / 123349) and Matrigel (BD)) are exemplified.
 この他にも、血清を含有しない培地を用いて培養する方法も例示される(Sun N, et al. (2009), Proc Natl Acad Sci U S A. 106:15720-15725)。さらに、樹立効率を上げるため、低酸素条件(0.1%以上、15%以下の酸素濃度)によりiPS細胞を樹立しても良い(Yoshida Y, et al. (2009), Cell Stem Cell. 5:237-241またはWO2010/013845)。 In addition to this, a method of culturing using a medium containing no serum is also exemplified (Sun N, et al. (2009), Proc Natl Acad Sci U S A. 106: 15720-15725). Furthermore, in order to improve the establishment efficiency, iPS cells may be established under hypoxic conditions (oxygen concentration of 0.1% or more and 15% or less) (Yoshida Y, et al. (2009), Cell Stem Cell. 5: 237. -241 or WO2010 / 013845).
 上記培養の間には、培養開始2日目以降から毎日1回新鮮な培養液と培養液交換を行う。また、核初期化に使用する体細胞の細胞数は、限定されないが、培養ディッシュ100cm2あたり約5×103~約5×106細胞の範囲である。 During the above culture, the fresh culture solution and the culture solution are exchanged once a day from the second day after the start of the culture. The number of somatic cells used for nuclear reprogramming is not limited, but ranges from about 5 × 10 3 to about 5 × 10 6 cells per 100 cm 2 culture dish.
 iPS細胞は、形成したコロニーの形状により選択することが可能である。一方、体細胞が初期化された場合に発現する遺伝子(例えば、Oct3/4、Nanog)と連動して発現する薬剤耐性遺伝子をマーカー遺伝子として導入した場合は、対応する薬剤を含む培養液(選択培養液)で培養を行うことにより樹立したiPS細胞を選択することができる。また、マーカー遺伝子が蛍光タンパク質遺伝子の場合は蛍光顕微鏡で観察することによって、発光酵素遺伝子の場合は発光基質を加えることによって、また発色酵素遺伝子の場合は発色基質を加えることによって、iPS細胞を選択することができる。 The iPS cells can be selected according to the shape of the formed colonies. On the other hand, when a drug resistance gene expressed in conjunction with a gene expressed when somatic cells are reprogrammed (for example, Oct3 / 4, Nanog) is introduced as a marker gene, a culture medium containing the corresponding drug (selection). Established iPS cells can be selected by culturing in a culture medium). In addition, iPS cells are selected by observing with a fluorescence microscope when the marker gene is a fluorescent protein gene, by adding a luminescent substrate when it is a luminescent enzyme gene, and by adding a chromogenic substrate when it is a chromogenic enzyme gene. can do.
 本明細書中で使用する「体細胞」なる用語は、卵子、卵母細胞、ES細胞などの生殖系列細胞または分化全能性細胞を除くあらゆる動物細胞(例えば、ヒトを含む哺乳動物細胞)をいう。体細胞には、非限定的に、胎児(仔)の体細胞、新生児(仔)の体細胞、および成熟した健全なもしくは疾患性の体細胞のいずれも包含されるし、また、初代培養細胞、継代細胞、および株化細胞のいずれも包含される。具体的には、体細胞は、例えば(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)リンパ球、上皮細胞、内皮細胞、筋肉細胞、線維芽細胞(皮膚細胞等)、毛細胞、肝細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞および脂肪細胞等の分化した細胞などが例示される。 As used herein, the term "somatic cell" refers to any animal cell (eg, mammalian cell including human) except germline cells such as eggs, egg mother cells, ES cells or totipotent cells. .. Somatic cells include, but are not limited to, fetal (pup) somatic cells, neonatal (pup) somatic cells, and mature healthy or diseased somatic cells, as well as primary cultured cells. , Passed cells, and established cells are all included. Specifically, the somatic cells include, for example, (1) tissue stem cells (somatic stem cells) such as nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells, (2) tissue precursor cells, (3) lymphocytes, and epithelium. Cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, intestinal cells, splenocytes, pancreatic cells (pancreatic exocrine cells, etc.), brain cells, lung cells, renal cells And differentiated cells such as fat cells are exemplified.
 また、iPS細胞および/またはそれらから分化誘導した細胞を移植用細胞の材料として用いる場合、拒絶反応が起こらないという観点から、移植先の個体のHLA遺伝子型が同一もしくは実質的に同一である体細胞を用いることが望ましい。ここで、HLAの型が「実質的に同一」とは、細胞を移植した場合に移植細胞が生着可能な程度にHLA遺伝子型が一致していることであり、例えば、主たるHLA(HLA-A、HLA-BおよびHLA-DRの3遺伝子座あるいはHLA-Cを加えた4遺伝子座)が一致するHLA型を有する体細胞である。 In addition, when iPS cells and / or cells induced to differentiate from them are used as materials for transplant cells, the HLA genotypes of the transplanted individuals are the same or substantially the same from the viewpoint of not causing rejection. It is desirable to use cells. Here, "substantially the same HLA type" means that the HLA genotypes match to the extent that the transplanted cells can engraft when the cells are transplanted. For example, the main HLA (HLA-). It is a somatic cell having an HLA type that matches the 3 loci of A, HLA-B and HLA-DR or the 4 loci with HLA-C).
 人工多能性幹細胞株としては、NIH、理研、京都大学等が樹立した各種iPS細胞株を用いてもよい。例えば、ヒトiPS細胞株であれば、理研のHiPS-RIKEN-1A株、HiPS-RIKEN-2A株、HiPS-RIKEN-12A株、Nips-B2株等、京都大学のFf-WJ-18株、Ff-I01s01株、Ff-I01s02株、Ff-I01s04株、Ff-I01s06株、Ff-I14s03株、Ff-I14s04株、QHJI01s01株、QHJI01s04株、QHJI14s03株、QHJI14s04株、AK5株、TkDN-Sev2株、692D2株、253G1株、201B7株、409B2株、454E2株、606A1株、610B1株、648A1株、1231A3株、1390D4株および1390C1株等が挙げられる。あるいは、京都大学やCellular Dynamics International等から提供される臨床グレードの細胞株並びにそれらの細胞株を用いて作製された研究用および臨床用の細胞株等を用いてもよい。 As the induced pluripotent stem cell line, various iPS cell lines established by NIH, RIKEN, Kyoto University, etc. may be used. For example, in the case of human iPS cell lines, RIKEN's HiPS-RIKEN-1A strain, HiPS-RIKEN-2A strain, HiPS-RIKEN-12A strain, Nips-B2 strain, etc., Kyoto University's Ff-WJ-18 strain, Ff -I01s01 shares, Ff-I01s02 shares, Ff-I01s04 shares, Ff-I01s06 shares, Ff-I14s03 shares, Ff-I14s04 shares, QHJI01s01 shares, QHJI01s04 shares, QHJI14s03 shares, QHJI14s04 shares, QHJI14s04 shares, AK5 shares, TkDN-S Examples include 253G1 shares, 201B7 shares, 409B2 shares, 454E2 shares, 606A1 shares, 610B1 shares, 648A1 shares, 1231A3 shares, 1390D4 shares and 1390C1 shares. Alternatively, clinical grade cell lines provided by Kyoto University, Cellular Dynamics International, etc., and research and clinical cell lines prepared using these cell lines may be used.
(E) 核移植により得られたクローン胚由来のES細胞(ntES細胞)
 ntES細胞は、核移植技術によって作製されたクローン胚由来のES細胞であり、受精卵由来のES細胞とほぼ同じ特性を有している(T. Wakayama et al. (2001), Science, 292:740-743; S. Wakayama et al. (2005), Biol. Reprod., 72:932-936; J. Byrne et al. (2007), Nature, 450:497-502)。すなわち、未受精卵の核を体細胞の核と置換することによって得られたクローン胚由来の胚盤胞の内部細胞塊から樹立されたES細胞がntES(nuclear transfer ES)細胞である。ntES細胞の作製のためには、核移植技術(J.B. Cibelli et al. (1998), Nature Biotechnol., 16:642-646)とES細胞作製技術(上記)との組み合わせが利用される(若山清香ら(2008),実験医学,26巻,5号(増刊), 47~52頁)。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、数時間培養することで初期化することができる。
(E) ES cells (ntES cells) derived from cloned embryos obtained by nuclear transplantation
ntES cells are ES cells derived from cloned embryos produced by nuclear transplantation technology and have almost the same characteristics as ES cells derived from fertilized eggs (T. Wakayama et al. (2001), Science, 292: 740-743; S. Wakayama et al. (2005), Biol. Reprod., 72: 932-936; J. Byrne et al. (2007), Nature, 450: 497-502). That is, ES cells established from the inner cell mass of blastocysts derived from cloned embryos obtained by replacing the nuclei of unfertilized eggs with the nuclei of somatic cells are ntES (nuclear transfer ES) cells. For the production of ntES cells, a combination of nuclear transplantation technology (JB Cibelli et al. (1998), Nature Biotechnol., 16: 642-646) and ES cell production technology (above) is used (Seika Wakayama). Et al. (2008), Experimental Medicine, Vol. 26, No. 5 (Special Edition), pp. 47-52). In nuclear transplantation, somatic cell nuclei can be injected into unenucleated unfertilized eggs of mammals and cultured for several hours to initialize them.
(F) Multilineage-differentiating Stress Enduring cells(Muse細胞)
 Muse細胞は、WO2011/007900に記載された方法にて製造された多能性幹細胞であり、詳細には、線維芽細胞または骨髄間質細胞を長時間トリプシン処理、好ましくは8時間または16時間トリプシン処理した後、浮遊培養することで得られる多能性を有した細胞であり、SSEA-3およびCD105が陽性である。
(F) Multilineage-differentiating Stress Enduring cells (Muse cells)
Muse cells are pluripotent stem cells produced by the method described in WO2011 / 007900, specifically fibroblasts or bone marrow stromal cells treated with long-term trypsin, preferably 8 hours or 16 hours. Pluripotent cells obtained by suspension culture after treatment and positive for SSEA-3 and CD105.
 工程(1)は、チャネルロドプシンを安定発現する多能性幹細胞を作製する工程である。チャネルロドプシンは藻類から単離された光駆動性のイオンチャネルであり、光照射によって陽イオンを取り込むという性質を持つ。本発明の製造方法で使用可能なチャネルロドプシンとしては、例えば、チャネルロドプシン1、チャネルロドプシン2、改変されたチャネルロドプシン(例えば、WO2011/019081またはWO2020/059675に記載される改変チャネルロドプシン)などが挙げられる。好ましくは、チャネルロドプシン2である。本発明の製造方法で使用可能なチャネルロドプシンとしては、例えば、Chlamydomonas reinhardtii、Volvox carteri、Tetraselmis subcordiformis、およびTetraselmis striataに由来するものが挙げられるが、これらに限られない。 Step (1) is a step of producing pluripotent stem cells that stably express channelrhodopsin. Channelrhodopsin is a photodriven ion channel isolated from algae and has the property of taking up cations by light irradiation. Examples of channelrhodopsin that can be used in the production method of the present invention include channelrhodopsin 1, channelrhodopsin 2, and modified channelrhodopsin (eg, modified channelrhodopsin described in WO2011 / 019081 or WO2020 / 059675). Be done. Channelrhodopsin 2 is preferred. Examples of channelrhodopsin that can be used in the production method of the present invention include, but are not limited to, those derived from Chlamydomonas reinhardtii, Volvox carteri, Tetraselmis subcordiformis, and Tetraselmis stritata.
 チャネルロドプシン2は、例えば、配列番号1に示されるアミノ酸配列と同一または実質的に同一のアミノ酸配列からなるタンパク質である。配列番号1に示されるアミノ酸配列は、GenBankアクセッション番号AAM15777.1として登録されている。配列番号1に示されるアミノ酸配列と実質的に同一のアミノ酸配列としては、例えば、配列番号1に示されるアミノ酸配列において、1~10個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列が挙げられる。好ましくは1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1~2個、1個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列である。あるいは、配列番号1に示されるアミノ酸配列と実質的に同一のアミノ酸配列としては、配列番号1に示されるアミノ酸配列に対して、60%以上の同一性(例えば、60%以上、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、97%以上、98%以上、または99%以上の同一性)を有するアミノ酸配列である。同一性は、2つの配列間の同一度として公知の手法を用いて決定することができる。例えば、FASTA、BLAST、またはENTREZを含む種々の整列アルゴリズムおよび/またはプログラムを使用してもよい。FASTAおよび BLASTは、GCG配列分析パッケージ(University of Wisconsin, Madison, Wis.)の一部として入手可能であり、例えばデフォルト設定で使用することができる。 ENTREZは、Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Mdの National Centerを介して入手可能である。配列番号1に示されるアミノ酸配列と実質的に同一のアミノ酸配列からなるタンパク質は、配列番号1に示されるアミノ酸配列をからなるチャネルロドプシン2と実質的に同質の活性を有するタンパク質であることが好ましい。具体的には、光駆動性の陽イオンチャネル活性(光の波長、イオン透過性等)が、配列番号1に示されるアミノ酸配列をからなるチャネルロドプシン2の光駆動性の陽イオンチャネル活性と同等であることが挙げられる。 Channelrhodopsin 2 is, for example, a protein having the same or substantially the same amino acid sequence as the amino acid sequence shown in SEQ ID NO: 1. The amino acid sequence shown in SEQ ID NO: 1 is registered as GenBank accession number AAM15777.1. An amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 1 is, for example, an amino acid sequence in which 1 to 10 amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1. Can be mentioned. Preferably 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 1 amino acid deleted, Amino acid sequence substituted, inserted or added. Alternatively, the amino acid sequence substantially identical to the amino acid sequence shown in SEQ ID NO: 1 has 60% or more identity (for example, 60% or more, 70% or more) with respect to the amino acid sequence shown in SEQ ID NO: 1. An amino acid sequence having 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 97% or more, 98% or more, or 99% or more identity). Identity can be determined using techniques known as the degree of identity between two sequences. For example, various alignment algorithms and / or programs may be used, including FASTA, BLAST, or ENTREZ. FASTA and BLAST are available as part of the GCG sequence analysis package (University of Wisconsin, Madison, Wis.) And can be used, for example, with default settings. ENTREZ is available through the National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, and Md. The protein having an amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 1 is preferably a protein having substantially the same activity as channelrhodopsin 2 consisting of the amino acid sequence shown in SEQ ID NO: 1. .. Specifically, the photodriven cation channel activity (light wavelength, ion permeability, etc.) is equivalent to the photodriven cation channel activity of channelrhodopsin 2 consisting of the amino acid sequence shown in SEQ ID NO: 1. Is mentioned.
 チャネルロドプシン2をコードする遺伝子の塩基配列は、例えば、配列番号1に示されるアミノ酸配列をコードする塩基配列であるが、特に限定されない。例えば、配列番号2で示される塩基配列であってもよい。配列番号2に示される塩基酸配列は、GenBankアクセッション番号AF461397.1として登録されている。チャネルロドプシンをコードする遺伝子は、コドンをヒト化したものであってもよい。また、チャネルロドプシン2をコードする遺伝子は、配列番号1に示されるアミノ酸配列と実質的に同一のアミノ酸配列からなるタンパク質をコードする遺伝子であってもよい。 The base sequence of the gene encoding channelrhodopsin 2 is, for example, the base sequence encoding the amino acid sequence shown in SEQ ID NO: 1, but is not particularly limited. For example, it may be the base sequence shown by SEQ ID NO: 2. The basic acid sequence shown in SEQ ID NO: 2 is registered as GenBank accession number AF461397.1. The gene encoding channelrhodopsin may be a humanized codon. Further, the gene encoding channelrhodopsin 2 may be a gene encoding a protein having an amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 1.
 チャネルロドプシンを安定発現する多能性幹細胞は、チャネルロドプシンをコードする遺伝子が挿入された発現ベクターを多能性幹細胞に導入し、チャネルロドプシンを安定発現するクローンを選別することにより作製することができる。チャネルロドプシンをコードする遺伝子は、その配列情報に基づいてPCR等により取得することができる。また、化学的に合成することもできる。 Pluripotent stem cells that stably express channelrhodopsin can be prepared by introducing an expression vector into which a gene encoding channelrhodopsin is inserted into pluripotent stem cells and selecting clones that stably express channelrhodopsin. .. The gene encoding channelrhodopsin can be obtained by PCR or the like based on the sequence information. It can also be chemically synthesized.
 発現ベクターとしては、例えば、ウイルス、プラスミド、人工染色体などのベクターを用いることができる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、センダイウイルスベクターなどが挙げられる。また、人工染色体ベクターとしては、ヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが挙げられる。プラスミドとしては、哺乳動物細胞用プラスミドが例示される。ベクターには、チャネルロドプシンをコードするDNAが発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができ、さらに必要に応じて、薬剤耐性遺伝子(例えば、カナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、蛍光タンパク質、βグルクロニダーゼ(GUS)などのレポーター遺伝子配列などを含むことができる。プロモーターとして、SV40プロモーター、LTRプロモーター、CMV(cytomegalovirus)プロモーター、RSV(Rous sarcoma virus)プロモーター、MoMuLV(Moloney mouse leukemia virus)LTR、HSV-TK(herpes simplex virus thymidine kinase)プロモーター、EF-αプロモーター、CAGプロモーターなどが挙げられる。 As the expression vector, for example, a vector such as a virus, a plasmid, or an artificial chromosome can be used. Examples of the virus vector include a retrovirus vector, a lentivirus vector, an adenovirus vector, an adeno-associated virus vector, a Sendai virus vector and the like. Examples of the artificial chromosome vector include a human artificial chromosome (HAC), a yeast artificial chromosome (YAC), and a bacterial artificial chromosome (BAC, PAC). Examples of the plasmid include a plasmid for mammalian cells. The vector can contain regulatory sequences such as promoters, enhancers, ribosome binding sequences, terminators, polyadenylation sites, etc. so that the DNA encoding channel rhodopsin can be expressed, as well as drug resistance genes (as needed). For example, a canamycin resistance gene, an ampicillin resistance gene, a puromycin resistance gene, etc.), a selection marker sequence such as a thymidine kinase gene, a diphtheriatoxin gene, a fluorescent protein, a reporter gene sequence such as β-glucuronidase (GUS), and the like can be included. As promoters, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcoma virus) promoter, MoMuLV (Moloney mouse leukemia virus) LTR, HSV-TK (herpes simplex virus thymidine kinase) promoter, EF-α promoter, CAG Promoters and the like can be mentioned.
 上記ベクターには、チャネルロドプシンをコードする核酸を染色体内に挿入するため、または染色体に挿入された該核酸を必要に応じて切除するために、この発現カセット(プロモーター、遺伝子配列およびターミネーターを含む遺伝子発現単位)の前後にトランスポゾン配列を有していてもよい。トランスポゾン配列としては特に限定されないが、piggyBacが例示される。トランスポゾンを用いて染色体内に発現カセットを導入するためには、トランスポゼースを、該発現カセットを有するベクターと供に同細胞へ導入することが望ましい。本発明において、トランスポゼースを導入するためには、前述のベクターに該トランスポゼースをコードする核酸を含有させてもよく、また、他のベクターに該トランスポゼースをコードする核酸を含有させ、同時に細胞へ導入してもよい。さらに、該トランスポゼースをコードする遺伝子産物を直接導入してもよい。本発明において、好ましいトランスポゼースは、上述のトランスポゾン配列へ対応するトランスポゼースであり、好ましくはpiggyBacトランスポゼースである。 The vector contains the expression cassette (gene containing promoter, gene sequence and terminator) for inserting the nucleic acid encoding channel rhodopsin into the chromosome or, if necessary, excising the nucleic acid inserted into the chromosome. It may have a transposon sequence before and after the expression unit). The transposon sequence is not particularly limited, but piggyBac is exemplified. In order to introduce an expression cassette into a chromosome using a transposon, it is desirable to introduce the transposase into the cell together with a vector having the expression cassette. In the present invention, in order to introduce a transposase, the above-mentioned vector may contain a nucleic acid encoding the transposase, or another vector may contain a nucleic acid encoding the transposase, and the nucleic acid may be introduced into a cell at the same time. You may. In addition, the gene product encoding the transposase may be directly introduced. In the present invention, the preferred transposase is the transposase corresponding to the transposon sequence described above, preferably the piggyBac transposase.
 ウイルスベクターを用いる場合、上記例示したウイルスにチャネルロドプシンをコードするDNAまたはRNAを導入し、多能性幹細胞にこの組換えウイルスを感染させることにより、チャネルロドプシンをコードする遺伝子を多能性幹細胞に導入することができる。非ウイルスベクターを用いる場合は、リポソームを用いて導入する方法(リポソーム法、HVJ-リポソーム法、カチオニックリポソーム法、リポフェクション法、リポフェクトアミン法など)、マイクロインジェクション法、リン酸カルシウム法、エレクトロポレーション法、遺伝子銃(Gene Gun)でキャリア(金属粒子)とともに細胞に移入する方法などを利用することができる。 When a viral vector is used, the gene encoding channelrhodopsin is transferred to the pluripotent stem cell by introducing the DNA or RNA encoding channelrhodopsin into the above-exemplified virus and infecting the pluripotent stem cell with this recombinant virus. Can be introduced. When using a non-viral vector, a method of introduction using liposomes (liposomal method, HVJ-liposome method, cationic liposome method, lipofection method, lipofectamine method, etc.), microinjection method, calcium phosphate method, electroporation method , A method of transferring into a cell together with a carrier (metal particle) with a gene gun (GeneGun) can be used.
 チャネルロドプシンを安定発現する多能性幹細胞を選別する方法は、例えば、薬剤耐性遺伝子を含む発現ベクターを用いてトランスフェクションした後、薬剤含有培地で細胞を培養して生存したコロニーを選別する方法などが挙げられる。 A method for selecting pluripotent stem cells that stably express channel rhodopsin is, for example, a method for selecting surviving colonies by culturing cells in a drug-containing medium after transfection using an expression vector containing a drug resistance gene. Can be mentioned.
 工程(2)は、工程(1)で得られた細胞を骨格筋細胞に分化誘導する工程である。チャネルロドプシンを安定発現する多能性幹細胞を骨格筋細胞に分化誘導する方法は特に限定されず、公知の多能性幹細胞を骨格筋細胞に分化誘導する方法から適宜選択して用いることができる。 Step (2) is a step of inducing differentiation of the cells obtained in step (1) into skeletal muscle cells. The method for inducing the differentiation of pluripotent stem cells that stably express channel rhodopsin into skeletal muscle cells is not particularly limited, and known pluripotent stem cells can be appropriately selected from the methods for inducing differentiation into skeletal muscle cells.
 多能性幹細胞を骨格筋細胞に分化誘導する方法は、多能性幹細胞に骨格筋細胞誘導因子を過剰発現させる方法であってもよい。このような分化誘導法としては、例えば、国際公開WO2013/073246 A1に記載の方法、国際公開WO2020/090836 A1に記載の方法、Uchimuraら(Stem Cell Research, 25:98-106 (2017))に記載の方法、Shojiら(Science Reports, 5:12831 (2015))に記載の方法などが挙げられる。また、多能性幹細胞を骨格筋細胞に分化誘導する方法は、導入遺伝子を使用せずに、胎児の発生過程を模倣する方法(沿軸中胚葉細胞、体節細胞、皮筋節細胞を経由して骨格筋系譜細胞を分化誘導する方法)であってもよい。このような分化誘導法としては、Zhaoら(Stem Cell Reports, Vol. 15 1-15 July 14, 2020)に記載の方法、国際公開WO2016/108288 A1に記載の方法、Hicksら(Nat Cell Biol. 2018 Jan;20(1):46-57)に記載の方法などが挙げられる。 The method of inducing the differentiation of pluripotent stem cells into skeletal muscle cells may be a method of overexpressing the skeletal muscle cell inducing factor in the pluripotent stem cells. Examples of such a differentiation-inducing method include the method described in the international publication WO2013 / 073246 A1, the method described in the international publication WO2020 / 090836 A1, and Uchimura et al. (Stem Cell Research, 25: 98-106 (2017)). Examples include the method described and the method described in Shoji et al. (Science Reports, 5: 12831 (2015)). In addition, the method of inducing the differentiation of pluripotent stem cells into skeletal muscle cells is a method of mimicking the developmental process of the fetus without using a transgene (via paraxial mesoderm cells, segment cells, and cutaneous muscle cells). It may be a method of inducing differentiation of skeletal muscle lineage cells). Examples of such differentiation induction methods include the method described in Zhao et al. (Stem Cell Reports, Vol. 15 1-15 July 14, 2020), the method described in the international publication WO2016 / 108288 A1, and Hicks et al. (Nat Cell Biol. The method described in 2018 Jan; 20 (1): 46-57) can be mentioned.
 本発明の製造方法で製造される、光刺激により収縮活動が誘導される骨格筋細胞は、マルチウェルプレートに播種して分化誘導した場合に、ウェル間の骨格筋分化効率のばらつきが非常に低いこと、また、ウェル間の骨格筋細胞の収縮力のばらつきが非常に低いことが確認されている。したがって、工程(2)では、多能性幹細胞をマルチウェルプレートに播種して分化誘導を行ってもよい。マルチウェルプレートとしては、24ウェルプレート、48ウェルプレート、96ウェルプレート、384ウェルプレートなどが挙げられる。好ましくは96ウェルプレートまたは384ウェルプレートである。本発明の製造方法において、マルチウェルプレートを用いて製造された骨格筋細胞は、例えば筋疾患治療薬の候補物質のハイスループットスクリーニングに好適に用いることができる。 The skeletal muscle cells whose contractile activity is induced by photostimulation produced by the production method of the present invention have very low variation in skeletal muscle differentiation efficiency between wells when seeded on a multi-well plate and induced to differentiate. It has also been confirmed that the variation in contractile force of skeletal muscle cells between wells is very low. Therefore, in step (2), pluripotent stem cells may be seeded on a multi-well plate to induce differentiation. Examples of the multi-well plate include a 24-well plate, a 48-well plate, a 96-well plate, and a 384-well plate. A 96-well plate or a 384-well plate is preferable. In the production method of the present invention, the skeletal muscle cells produced using the multi-well plate can be suitably used, for example, for high-throughput screening of candidate substances for therapeutic agents for muscle diseases.
 マルチウェルプレートは特に限定されないが、細胞の収縮活動が制限されない培養面を有するプレートを用いることが好ましい。このようなプレートして、例えば培養面がハイドロゲルであるプレートが挙げられる。ハイドロゲルとしては、例えば、ゼラチンハイドロゲル、コラーゲンハイドロゲル、デンプンハイドロゲル、ペクチンハイドロゲル、ヒアルロン酸ハイドロゲル、キチンハイドロゲル、キトサンハイドロゲル、アルギン酸ハイドロゲルなどが挙げられる。中でも、コラーゲンハイドロゲルまたはゼラチンハイドロゲルが好ましい。ハイドロゲルのゲル硬度(弾力係数)は、10kPa以上(10kPa、11kPa、12kPa、13kPa、14kPa、15kPa以上)でであってもよく、25kPa以下(25kPa、20kPa、19kPa、18kPa、17kPa、16kPa、15kPa以下)であってもよい。好ましくは12kPaである。培養面がハイドロゲルであるプレートとしては、ハイドロゲルが培養面にコーティングされたプレートであってもよく、ハイドロゲル載置用の凹部を培養面に有するプレートの凹部にハイドロゲルを満たしたプレートであてもよい。 The multi-well plate is not particularly limited, but it is preferable to use a plate having a culture surface in which the contractile activity of cells is not limited. Examples of such a plate include a plate whose culture surface is hydrogel. Examples of the hydrogel include gelatin hydrogel, collagen hydrogel, starch hydrogel, pectin hydrogel, hyaluronic acid hydrogel, chitin hydrogel, chitosan hydrogel, and alginate hydrogel. Of these, collagen hydrogel or gelatin hydrogel is preferable. The gel hardness (elastic modulus) of the hydrogel may be 10 kPa or more (10 kPa, 11 kPa, 12 kPa, 13 kPa, 14 kPa, 15 kPa or more) and 25 kPa or less (25 kPa, 20 kPa, 19 kPa, 18 kPa, 17 kPa, 16 kPa, 15 kPa). The following) may be used. It is preferably 12 kPa. The plate in which the culture surface is hydrogel may be a plate in which the hydrogel is coated on the culture surface, or a plate in which the recess of the plate having the recess for placing the hydrogel on the culture surface is filled with hydrogel. May be there.
 工程(3)は、分化誘導を開始した細胞に光照射する工程である。分化誘導の開始は、多能性幹細胞の培地を分化培地に交換した時点、または、骨格筋細胞誘導因子発現ベクターを多能性幹細胞に導入する分化誘導方法を用いる場合は、骨格筋細胞誘導因子の発現が始まった時点もしくは培地を分化培地に交換した時点のどちらか早い方である。 Step (3) is a step of irradiating the cells that have started differentiation induction with light. Differentiation induction is initiated when the pluripotent stem cell medium is replaced with a differentiation medium, or when a differentiation induction method for introducing a skeletal muscle cell inducing factor expression vector into pluripotent stem cells is used, the skeletal muscle cell inducing factor. Whichever comes first, the time when the onset of expression begins or the time when the medium is replaced with a differentiation medium.
 工程(3)において、光照射を開始する時期は特に限定されず、分化誘導開始と同時であってもよく、分化誘導開始から任意の期間後から光照射を開始してもよい。細胞が融合して筋管を形成する段階より前に光照射を開始することが好ましく、分化誘導開始後の4日以内、3日以内、2日以内、1日以内に光照射を開始することが好ましい。細胞が融合して筋管を形成していないことは、細胞の形態を顕微鏡観察することにより確認することができる。 In the step (3), the time to start the light irradiation is not particularly limited, and the light irradiation may be started at the same time as the start of the differentiation induction, or may be started after an arbitrary period from the start of the differentiation induction. It is preferable to start light irradiation before the stage where cells fuse to form a myotube, and light irradiation should be started within 4 days, 3 days, 2 days, and 1 day after the start of differentiation induction. Is preferable. It can be confirmed by observing the morphology of the cells under a microscope that the cells do not fuse to form a myotube.
 光照射の終了時期は特に検定されないが、分化誘導された骨格筋細胞が収縮活動を開始し、収縮活動を指標とする試験が終了するまで光照射を続けることが好ましい。例えば、本発明の製造方法により製造された骨格筋細胞を用いて筋疾患治療薬の候補物質のスクリーニングに用いる場合、該スクリーニングが終了するまで光照射を続けることが好ましい。光照射期間中、間欠的に光照射を行ってもよく、連続的に光照射を行ってもよい。間欠的に光照射を行う場合、そのオン/オフ比は特に限定されないが、例えば、0.02~0.9、0.05~0.5、0.05~0.1であってもよい。好ましくは連続照射である。 Although the end time of light irradiation is not particularly validated, it is preferable to continue light irradiation until the differentiation-induced skeletal muscle cells start contractile activity and the test using contractile activity as an index is completed. For example, when skeletal muscle cells produced by the production method of the present invention are used for screening a candidate substance for a therapeutic agent for muscle disease, it is preferable to continue light irradiation until the screening is completed. During the light irradiation period, light irradiation may be performed intermittently or continuously. When light irradiation is performed intermittently, the on / off ratio is not particularly limited, but may be, for example, 0.02 to 0.9, 0.05 to 0.5, or 0.05 to 0.1. Continuous irradiation is preferable.
 チャネルロドプシン2を安定発現する多能性幹細胞を用いる場合、照射する光として青色レーザーが用いられる。照射する光の周波数は0.25Hz~0.75Hzであり、好ましくは0.4Hz~0.6Hz、より好ましくは0.5Hzである。照射する光のパルス幅は2msec~100msecであり、好ましくは5msec~50msecである。電圧は8V~15Vであり、好ましくは10Vである。光量は1mW~10mWであり、好ましくは2mW~3mWである。光照射装置は、用いたマルチウェルプレートのすべてのウェルに均一に照射できる装置を用いることが好ましい。例えば、マルチウェルプレートの底面全体に均一に光を照射する装置を用いることができる。このような装置として、例えば、オプトジェネティクス用LEDアレーシステム(BRCバイオリサーチセンター社)が挙げられる。 When using pluripotent stem cells that stably express channelrhodopsin 2, a blue laser is used as the light to irradiate. The frequency of the irradiated light is 0.25 Hz to 0.75 Hz, preferably 0.4 Hz to 0.6 Hz, and more preferably 0.5 Hz. The pulse width of the irradiated light is 2 msec to 100 msec, preferably 5 msec to 50 msec. The voltage is 8V to 15V, preferably 10V. The amount of light is 1 mW to 10 mW, preferably 2 mW to 3 mW. As the light irradiation device, it is preferable to use a device that can uniformly irradiate all the wells of the multi-well plate used. For example, a device that uniformly irradiates the entire bottom surface of the multi-well plate with light can be used. Examples of such a device include an LED array system for optogenetics (BRC Bioresearch Center).
 本発明の方法により得られた骨格筋細胞が光刺激により収縮活動を行うことは、細胞の動画像の解析が可能な、市販のイメージングシステム(例えば、Sony社製ライブセルイメージングシステムSI8000等)を用いて確認することができる。 For the skeletal muscle cells obtained by the method of the present invention to perform contractile activity by photostimulation, a commercially available imaging system capable of analyzing moving images of cells (for example, Sony's live cell imaging system SI8000, etc.) can be used. Can be confirmed using.
〔スクリーニング方法〕
 本発明は、骨格筋細胞の収縮活動を促進または抑制する物質のスクリーニング方法(以下、「本発明のスクリーニング方法」と記す)を提供する。本発明のスクリーニング方法は、以下の工程を有するものであればよい。
(1)チャネルロドプシンを安定発現する多能性幹細胞を骨格筋細胞に分化誘導する工程、
(2)細胞に光照射する工程、
(3)細胞に被験物質を接触させる工程、および
(4)被験物質を接触させなかった場合と比較して骨格筋細胞の収縮活動を促進または抑制する被験物質を選択する工程。
[Screening method]
The present invention provides a method for screening a substance that promotes or suppresses the contractile activity of skeletal muscle cells (hereinafter referred to as "the screening method of the present invention"). The screening method of the present invention may have the following steps.
(1) A step of inducing differentiation of pluripotent stem cells that stably express channelrhodopsin into skeletal muscle cells.
(2) Step of irradiating cells with light,
(3) A step of contacting the test substance with the cells, and (4) a step of selecting a test substance that promotes or suppresses the contractile activity of skeletal muscle cells as compared with the case where the test substance is not contacted.
 本発明のスクリーニング方法における、工程(1)および工程(2)は、前記本発明の製造方法の工程(2)および工程(3)と同じように実施することができる。すなわち、本発明のスクリーニング方法は、前記本発明の製造方法で製造された骨格筋細胞を用いるスクリーニング方法と換言することができる。 The steps (1) and (2) in the screening method of the present invention can be carried out in the same manner as the steps (2) and (3) of the manufacturing method of the present invention. That is, the screening method of the present invention can be rephrased as a screening method using skeletal muscle cells produced by the production method of the present invention.
 本発明のスクリーニング方法は、マルチウェルプレート、好ましくは96ウェルプレートまたは384ウェルプレートを用いてハイスループットスクリーニング行うことができる。また、本発明のスクリーニング方法は、骨格筋細胞の収縮活動を指標に所望の被験物質を選択することができる。96ウェルプレートまたは384ウェルプレートを用いる場合、2ウェルを1サンプルとして評価してもよく、4ウェルを1サンプルとして評価してもよい。複数ウェルを1サンプルとすることにより、サンプル間のばらつきを小さくすることができる。 The screening method of the present invention can perform high-throughput screening using a multi-well plate, preferably a 96-well plate or a 384-well plate. Further, in the screening method of the present invention, a desired test substance can be selected using the contractile activity of skeletal muscle cells as an index. When using a 96-well plate or a 384-well plate, 2 wells may be evaluated as 1 sample and 4 wells may be evaluated as 1 sample. By using a plurality of wells as one sample, the variation between the samples can be reduced.
 工程(1)の多能性幹細胞は、健常者由来の多能性幹細胞であってもよく、筋疾患患者由来の多能性幹細胞であってもよい。筋疾患はミオパチーであってもよく、ミオトニアであってもよい。ミオパチー患者由来の多能性幹細胞から分化誘導して得られた骨格筋細胞は、骨格筋細胞の収縮活動を促進する物質のスクリーニング方法に適しており、健常者またはミオトニア患者由来の多能性幹細胞から分化誘導して得られた骨格筋細胞は、骨格筋細胞の収縮活動を促進する物質のスクリーニング方法に適している。 The pluripotent stem cell in step (1) may be a pluripotent stem cell derived from a healthy person or a pluripotent stem cell derived from a muscle disease patient. The muscle disease may be myopathy or myotonia. Skeletal muscle cells obtained by inducing differentiation from pluripotent stem cells derived from myopathy patients are suitable for screening methods for substances that promote contractile activity of skeletal muscle cells, and pluripotent stem cells derived from healthy subjects or myotonia patients. Skeletal muscle cells obtained by inducing differentiation from skeletal muscle cells are suitable for screening methods for substances that promote contractile activity of skeletal muscle cells.
 工程(3)は、細胞に被験物質を接触させる工程である。被験物質は特に限定されず、例えば、核酸、ペプチド、タンパク質、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、細胞培養上清、植物抽出液、哺乳動物の組織抽出液、血漿等を用いることができる。被験物質は、新規な物質であってもよいし、公知の物質であってもよい。これら被験物質は塩を形成していてもよい。被験物質の塩としては、生理学的に許容される酸や塩基との塩が用いられる。 Step (3) is a step of bringing the test substance into contact with the cells. The test substance is not particularly limited, and for example, nucleic acid, peptide, protein, non-peptidic compound, synthetic compound, fermentation product, cell extract, cell culture supernatant, plant extract, mammalian tissue extract, plasma and the like. Can be used. The test substance may be a novel substance or a known substance. These test substances may form salts. As the salt of the test substance, a salt with a physiologically acceptable acid or base is used.
 細胞に被験物質を接触させる時期は、細胞が収縮活動を開始する前でもよく、細胞が収縮活動を開始した後でもよい。細胞と被験物質の接触は、培地に被験物質を添加することにより行うことができる。複数ウェルを1サンプルとする場合は、複数ウェルに同じ被験物質を添加する。具体的には、例えば、2ウェルを1サンプルとする場合は2ウェルに同じ被験物質を添加し、4ウェルを1サンプルとする場合は4ウェルに同じ被験物質を添加する。 The time when the test substance is brought into contact with the cells may be before the cells start contractile activity or after the cells start contractile activity. Contact between the cells and the test substance can be performed by adding the test substance to the medium. When multiple wells are used as one sample, the same test substance is added to the multiple wells. Specifically, for example, when 2 wells are 1 sample, the same test substance is added to 2 wells, and when 4 wells are 1 sample, the same test substance is added to 4 wells.
 工程(4)は、細胞の収縮活動を測定する工程である。細胞の収縮活動は、細胞の動画像の解析が可能な、市販のイメージングシステム(例えば、Sony社製ライブセルイメージングシステムSI8000等)を用いて測定することができる。測定項目としては、収縮速度、弛緩速度、加速度、収縮距離などが挙げられる。 Step (4) is a step of measuring the contractile activity of cells. The contractile activity of cells can be measured using a commercially available imaging system (for example, Sony's live cell imaging system SI8000 or the like) capable of analyzing moving images of cells. Measurement items include contraction speed, relaxation speed, acceleration, contraction distance and the like.
 本発明のスクリーニング方法において、細胞の収縮活動を促進する被験物質を選択する場合は、通常、ミオパチー患者由来の多能性幹細胞から分化誘導された骨格筋細胞が使用される。ミオパチー患者由来の多能性幹細胞から分化誘導された骨格筋細胞は、最大収縮力が観察された時点から収縮力が低下することがわかっている(実施例参照)。したがって、ミオパチー患者由来の多能性幹細胞から分化誘導された骨格筋細胞を使用する場合、被験物質は、最大収縮力が観察される直前または当日に接触させることが好ましく、細胞の収縮活動の測定は、収縮力が低下した時期に行うことが好ましい。細胞の収縮活動の測定は、最大収縮力が観察される時期と、収縮力が低下した時期の2回行ってもよい。2回測定することにより、収縮力低下率を評価することができる。
In the screening method of the present invention, when a test substance that promotes cell contractile activity is selected, skeletal muscle cells induced to differentiate from pluripotent stem cells derived from myopathy patients are usually used. It has been found that skeletal muscle cells induced to differentiate from pluripotent stem cells derived from myopathy patients have reduced contractile force from the time when maximum contractile force is observed (see Examples). Therefore, when using skeletal muscle cells differentiated from pluripotent stem cells derived from myopathy patients, the test substance is preferably contacted immediately before or on the day of the observation of maximum contractile force, and measurement of cell contractile activity. Is preferably performed at a time when the contractile force is reduced. The measurement of cell contractile activity may be performed twice, at the time when the maximum contractile force is observed and at the time when the contractile force decreases. By measuring twice, the rate of decrease in contractile force can be evaluated.
 本発明のスクリーニング方法において、細胞の収縮活動を抑制する被験物質を選択する場合は、通常、健常者由来の多能性幹細胞またはミオトニア患者由来の多能性幹細胞から分化誘導された骨格筋細胞が使用される。この場合は、被験物質は、最大収縮力が観察される直前または当日に接触させることが好ましく、細胞の収縮活動の測定は、被験物質を接触させた直後から経時的に複数回測定することが好ましい。経時的に複数回測定することにより、収縮活動を抑制する効果が長期的にどのように現れるかを評価することができる。 In the screening method of the present invention, when a test substance that suppresses cell contractile activity is selected, usually, pluripotent stem cells derived from healthy subjects or skeletal muscle cells induced to differentiate from pluripotent stem cells derived from myotonia patients are used. used. In this case, it is preferable that the test substance is brought into contact with the test substance immediately before or on the day when the maximum contractile force is observed, and the cell contraction activity may be measured multiple times over time immediately after the test substance is brought into contact with the test substance. preferable. By measuring multiple times over time, it is possible to evaluate how the effect of suppressing contractile activity appears in the long term.
 本発明のスクリーニング方法では、被験物質と接触していない細胞がコントロールとして用いられ、工程(4)では、コントロール細胞の収縮活動も同様に測定される。 In the screening method of the present invention, cells that are not in contact with the test substance are used as controls, and in step (4), the contractile activity of the control cells is similarly measured.
 工程(5)は、被験物質を接触させなかった場合と比較して細胞の収縮活動を促進または抑制する被験物質を選択する工程である。
 細胞の収縮活動を促進する被験物質を選択する場合において、例えば収縮速度を指標とした場合、被験物質を接触させなかったコントロール細胞の収縮速度を50%以上、60%以上、70%以上、80%以上、90%以上に回復させる被験物質を選択してもよい。また、同時に健常者由来の多能性幹細胞から分化誘導した骨格筋細胞を健常コントロール細胞として用い、健常コントロールの収縮速度レベルに近い収縮速度に回復させる被験物質を選択してもよい。
Step (5) is a step of selecting a test substance that promotes or suppresses the contractile activity of cells as compared with the case where the test substance is not contacted.
When selecting a test substance that promotes cell contraction activity, for example, when the contraction rate is used as an index, the contraction rate of control cells that have not been in contact with the test substance is 50% or more, 60% or more, 70% or more, 80. A test substance that recovers to% or more and 90% or more may be selected. At the same time, skeletal muscle cells induced to differentiate from pluripotent stem cells derived from healthy subjects may be used as healthy control cells, and a test substance that restores the contraction rate to a contraction rate close to the contraction rate level of healthy control may be selected.
 細胞の収縮活動を抑制する被験物質を選択する場合において、例えば収縮速度を指標とした場合、被験物質を接触させなかったコントロール細胞の収縮速度を10%以下、20%以下、30%以下、40%以下、50%以下に抑制する被験物質を選択してもよい。 When selecting a test substance that suppresses cell contraction activity, for example, when the contraction rate is used as an index, the contraction rate of control cells that have not been in contact with the test substance is 10% or less, 20% or less, 30% or less, 40. A test substance that suppresses% or less and 50% or less may be selected.
 細胞の収縮活動を促進する物質として選択された被験物質は、ミオパチーの予防または治療薬の有効成分の候補物質として有用である。また、細胞の収縮活動を抑制する物質として選択された被験物質は、ミオトニアの予防または治療薬の有効成分の候補物質として有用である。 The test substance selected as a substance that promotes the contractile activity of cells is useful as a candidate substance for an active ingredient of a prophylactic or therapeutic drug for myopathy. In addition, the test substance selected as a substance that suppresses the contractile activity of cells is useful as a candidate substance for an active ingredient of a prophylactic or therapeutic agent for myotonia.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
〔実験方法〕
1.ヒトiPS細胞の培養
 DMD(デュシェンヌ型筋ジストロフィー)iPS細胞株(クローンID:CiRA00111、以下「DMDΔ44」と記載する)は、ジストロフィン遺伝子のエクソン44が欠失したDMD患者の皮膚線維芽細胞から、エピゾーマルベクターシステムによって樹立された(Okita et al., Stem Cells,31;458-466,2012)。ヒトiPS細胞の維持培養は、フィーダーフリーの状態で行った。維持培地はStemFit(味の素社)500mLに50mU/Lペニシリン/50μg/Lストレプトマイシン(Invitrogen社)を加えたものを用いた。Tetベクター(後述)およびChR2ベクター(後述)導入後のヒトiPS細胞の維持培養には、さらに100μg/mLのピューロマイシンとブラストサイジン(Invitrogen社)を添加した培地を使用した。細胞継代は細胞コロニーが80~90%コンフルエントになった時点で行った。細胞解離液Accutase(フナコシ社)で細胞を剥がし、その後スクレイパーで細胞を回収し、新しくラミニンコート(ニッピ社)されたプレートにROCK阻害薬Y-27632(ナカライテスク社)(以下、[ROCK阻害薬Y]と記す)添加培地で播種し、37℃、5% CO2、100%湿度環境のインキュベータで培養した。
〔experimental method〕
1. 1. Cultured human iPS cell DMD (Duchenne muscular dystrophy) iPS cell line (clone ID: CiRA00111, hereinafter referred to as "DMDΔ44") is episodic from skin fibroblasts of DMD patients lacking the dystrophin gene exxon 44. It was established by the Maruvector system (Okita et al., Stem Cells, 31; 458-466, 2012). The maintenance culture of human iPS cells was performed in a feeder-free state. As the maintenance medium, 500 mL of StemFit (Ajinomoto Co., Inc.) plus 50 mU / L penicillin / 50 μg / L streptomycin (Invitrogen Co., Ltd.) was used. For the maintenance culture of human iPS cells after introduction of the Tet vector (described later) and ChR2 vector (described later), a medium supplemented with 100 μg / mL puromycin and Blasticidin (Invitrogen) was used. Cell passage was performed when the cell colonies were 80-90% confluent. Peel the cells with the cell dissociation solution Accutase (Funakoshi), then collect the cells with a scraper, and place them on a newly laminin-coated (Nippi) plate with the ROCK inhibitor Y-27632 (Nakalitesk) (hereinafter, [ROCK inhibitor]. (Y]) The seeds were sown in the added medium and cultured in an incubator in an environment of 37 ° C, 5% CO 2 , and 100% humidity.
2.テトラサイクリン応答性遺伝子強制発現ベクター(Tetベクター)の作製
 テトラサイクリン応答性遺伝子強制発現piggyBacベクターは、Woltjenら(Woltjen K. et al., Nature 458, 766, 2009)が開発したKW111(Addgene Plasmid #80475)またはKW879(Addgene Plasmid #80478, Induced Pluripotent Stem (iPS) Cells pp111-131参照)を用いた。このベクターは、reverse tetracycline transactivator(rtTA)とテトラサイクリン応答性領域(TRE)を両方組み込んだものである。KW879はピューロマイシン耐性遺伝子により薬剤選別が可能である。これらのベクターとpENTR/D-TOPO-MyoD(またはMyf5)エントリーベクターとを混合し、LRクロナーゼ(Invitrogen社)を用いた組換え反応により、図1(A)に示すテトラサイクリン応答性MyoD強制発現piggyBacベクター(pB-EF1α-MyoD-IRES-puro、以下「pB-Tet-MyoD」と記す)を作製した。pENTR/D-TOPO-MyoDエントリーベクターおよびpENTR/D-TOPO-Myf5エントリーベクターは、pENTR/D-TOPO(Thermo Fisher Scientific製、カタログ番号K240020)に、それぞれMyoDもしくはMyf5のcDNAを組み込んだエントリーベクターである。
2. 2. Preparation of Tetracycline Responsive Gene Forced Expression Vector (Tet Vector) The tetracycline responsive gene forced expression piggyBac vector was developed by Woltjen et al. Alternatively, KW879 (see Addgene plasmid # 80478, Induced Pluripotent Stem (iPS) Cells pp111-131) was used. This vector incorporates both a reverse tetracycline transactivator (rtTA) and a tetracycline responsive region (TRE). KW879 can be selected by the puromycin resistance gene. These vectors are mixed with the pENTR / D-TOPO-MyoD (or Myf5) entry vector and subjected to a recombination reaction using LR chronase (Invitrogen). A vector (pB-EF1α-MyoD-IRES-puro, hereinafter referred to as “pB-Tet-MyoD”) was prepared. The pENTR / D-TOPO-MyoD entry vector and the pENTR / D-TOPO-Myf5 entry vector are entry vectors in which the cDNA of MyoD or Myf5 is incorporated into pENTR / D-TOPO (Thermo Fisher Scientific, catalog number K240020), respectively. be.
3.チャネルロドプシン(ChR2)強制発現ベクター(ChR2ベクター)の作製
 チャネルロドプシン強制発現piggyBacベクター作製のために、まずpENTR/D-TOPOエントリーベクター(Thermo Fisher Scientific製、カタログ番号K240020)に、ChR2の遺伝子配列をPCRを用いたクローニングで挿入しpENTR/D-TOPO-ChR2ベクターを作製した。その後、piggyBac-EF1α-IRES-blastcidinベクター(配列番号3)とpENTR/D-TOPO-ChR2ベクター(エントリーベクター)とを混合して、LRクロナーゼ(Invitrogen社)を用いた組み換え反応により、図1(B)に示すChR2強制発現piggyBacベクター(pB-EF1α-ChR2-IRES-Bsr、以下「pB-ChR2」と記す)を作製した。このベクターは、ブラストサイジン耐性遺伝子により薬剤選別が可能である。
3. 3. Preparation of channelrhodopsin (ChR2) forced expression vector (ChR2 vector) In order to prepare a channelrhodopsin forced expression piggyBac vector, first, the gene sequence of ChR2 was added to the pENTR / D-TOPO entry vector (Thermo Fisher Scientific, catalog number K240020). A pENTR / D-TOPO-ChR2 vector was prepared by inserting by cloning using PCR. Then, the piggyBac-EF1α-IRES-blastcidin vector (SEQ ID NO: 3) and the pENTR / D-TOPO-ChR2 vector (entry vector) were mixed and subjected to a recombination reaction using LR chronase (Invitrogen). The ChR2 forced expression piggyBac vector (pB-EF1α-ChR2-IRES-Bsr, hereinafter referred to as “pB-ChR2”) shown in B) was prepared. This vector can be drug-selected by the blastidin resistance gene.
4.iPS細胞へのベクター導入および形質転換細胞の選別
 DMD患者由来のiPS細胞クローン(DMD-Δ44)は10cmディッシュ1枚分の細胞を準備した。ベクター導入の前日よりROCK阻害薬Y含有培地で培養した後、維持培養と同様に、播種した細胞とベクターのエレクトロポレーション法によるトランスフェクションを行った。pB-Tet-MyoD、pB-ChR、およびEF1α-プロモーターの下流にTransposaseを組み込んだベクター(EF1α-PBase)をそれぞれ5μg準備し、100μlのOpti-MEM(Invitrogen社)に溶解した。1.0×106の細胞を、ベクターを含有するOpti-MEMで懸濁し、NEPA21エレクトロポレーター(Nepagene社)を用いて、ベクターを表1の条件でトランスフェクションした。トランスフェクションした細胞を、1.0×103~5.0×104 cells/well の条件で6ウェルプレートに播種した。48時間後に100μg/mlのブラストサイジンおよびピューロマイシン(ナカライテスク社)含有培地に交換した。その後は2日おきに薬剤含有培地への培地交換を行い、薬剤耐性に形質転換した細胞を選別した。
4. Vector introduction into iPS cells and selection of transformed cells For iPS cell clones (DMD-Δ44) derived from DMD patients, cells for one 10 cm dish were prepared. From the day before the introduction of the vector, the cells were cultured in a medium containing the ROCK inhibitor Y, and then transfection of the seeded cells and the vector by the electroporation method was performed in the same manner as in the maintenance culture. 5 μg each of a vector (EF1α-PBase) incorporating Transposase downstream of the pB-Tet-MyoD, pB-ChR, and EF1α-promoter was prepared and dissolved in 100 μl of Opti-MEM (Invitrogen). 1.0 × 10 6 cells were suspended in Opti-MEM containing the vector and the vector was transfected using the NEPA21 electroporator (Nepagene) under the conditions shown in Table 1. Transfected cells were seeded on 6-well plates at 1.0 × 10 3 to 5.0 × 10 4 cells / well. After 48 hours, the medium was replaced with 100 μg / ml blastsaidin and puromycin (Nacalai Tesque) -containing medium. After that, the medium was replaced with a drug-containing medium every two days, and cells transformed into drug resistance were selected.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
5.形質転換細胞クローンの選別
 得られたクローンを、培地にて100倍に希釈したマトリゲル(Invitrogen社)でコートした6ウェルプレートに播種した。播種した細胞数は1.0×103~5.0×104 cells/wellであった。48時間後にドキシサイクリン(Dox; LKT Laboratories社)を1μg/mlにて培地に添加した。Dox添加の4日間後、骨格筋細胞に誘導された細胞のうち、分化効率の良いクローンを、筋管細胞の特徴である複数の核を持ち細長い形態になっている細胞の状態に基づいて選別した。
5. Selection of Transformed Cell Clone The obtained clones were seeded on 6-well plates coated with Matrigel (Invitrogen) diluted 100-fold in medium. The number of seeded cells was 1.0 × 10 3 to 5.0 × 10 4 cells / well. After 48 hours, doxycycline (Dox; LKT Laboratories) was added to the medium at 1 μg / ml. Four days after Dox addition, among the cells induced in skeletal muscle cells, clones with good differentiation efficiency are selected based on the state of cells having multiple nuclei and elongated morphology, which is a characteristic of myotube cells. did.
6.Tet-MyoD iPS細胞の骨格筋細胞への分化誘導(図2参照)
 上記5で選別したクローン(Tet-MyoD iPS細胞)を、マトリゲルコートされたプレートへ、ROCK阻害薬Yを含むStemFit培地を用いて播種した(0日目)。播種した細胞数は1.0×103~5.0×104 cells/wellであった。1日目にROCK阻害薬Yを添加したPECM培地(Reprocell)に交換し、2日目に0.4μg/mLから1.5μg/mLのDoxを添加したPECM培地に交換した。その48時間後の4日目に、再播種をアッセイに適合した目的のプレート(例えば後述のμ-Plate Angiogenesis 96 Well(Ibidi社製、カタログ番号89646))に行った。その際はαMEM(ナカライテスク社)に2%(v/v)ウマ血清(HS: Invitrogen社)、100μM 2-メルカプトエタノール、インスリン、SB431542(以上、和光純薬社)、グルコース(Invitrogen社)、50mU/Lペニシリン/50μg/Lストレプトマイシンを添加した培地を使用した。再播種後2日間はDox非添加の培地で培養し、その後1μg/mLのDoxを再添加した。培養14~28日目の間で免疫染色を行い、骨格筋細胞への分化誘導がなされているか確認した。
6. Induction of differentiation of Tet-MyoD iPS cells into skeletal muscle cells (see Fig. 2)
The clones (Tet-MyoD iPS cells) selected in 5 above were seeded on Matrigel-coated plates using StemFit medium containing the ROCK inhibitor Y (day 0). The number of seeded cells was 1.0 × 10 3 to 5.0 × 10 4 cells / well. On the first day, the medium was replaced with PECM medium (Reprocell) supplemented with ROCK inhibitor Y, and on the second day, the medium was replaced with PECM medium supplemented with Dox from 0.4 μg / mL to 1.5 μg / mL. On the 4th day, 48 hours later, reseeding was performed on a plate of interest suitable for the assay (eg, μ-Plate Angiogenesis 96 Well (Ibidi, Catalog No. 89646) described below). In that case, αMEM (Nakalitesk), 2% (v / v) horse serum (HS: Invitrogen), 100 μM 2-mercaptoethanol, insulin, SB431542 (Wako Pure Chemical Industries), glucose (Invitrogen), A medium supplemented with 50 mU / L penicillin / 50 μg / L streptomycin was used. After reseeding, the cells were cultured in Dox-free medium for 2 days, and then 1 μg / mL Dox was re-added. Immunostaining was performed between the 14th and 28th days of culture to confirm whether differentiation into skeletal muscle cells was induced.
7.分化骨格筋細胞の光刺激による成熟化促進培養
 4日目(Day4)での再播種の際に、μ-Plate Angiogenesis 96ウェルの内側にコラーゲンゲル(ニッピ社)をコーティングした上に再播種し、10日目から光刺激による成熟化促進を開始し(図3参照)、各試験を行うまで連続で光刺激を与えた。再播種した細胞数は1.0×103~5.0×104 cells/wellであった。光刺激装置はオプトジェネティクス用青色LEDアレーシステム(BRCバイオリサーチセンター社)を用いて周波数0.5Hz, パルス幅50msec, 電圧10Vの刺激を24時間、期間中毎日連続で与え続けた。培地は少なくとも2日に1回交換した。
7. At the time of re-seeding on the 4th day (Day 4) of culturing to promote maturation by photostimulation of differentiated skeletal muscle cells, the inside of μ-Plate Angiogenesis 96 wells was coated with collagen gel (Nippi) and then re-seeded. From the 10th day, the promotion of maturation by light stimulation was started (see Fig. 3), and light stimulation was continuously applied until each test was performed. The number of cells reseeded was 1.0 × 10 3 to 5.0 × 10 4 cells / well. The light stimulator used a blue LED array system for optogenetics (BRC Bioresearch Center) to continuously apply stimulation with a frequency of 0.5 Hz, a pulse width of 50 msec, and a voltage of 10 V for 24 hours every day during the period. The medium was changed at least once every two days.
8.分化骨格筋細胞の免疫染色
 分化した細胞を2%パラホルムアルデヒド(ナカライテスク社)/PBSで、4℃で10分固定し、PBSで5分間の洗浄を3回行った後、メタノール(ナカライテスク社)に1%過酸化水素(Wako社)を加えた液で15分間脱色を行った。再度PBSで4℃、5分間の洗浄を3回行った。BlockingOne(ナカライテスク社)にてブロッキングを4℃で15分間行った。一次抗体には、anti-MHC(Mouse Monoclonal. R&D社、1:400希釈)を上記ブロッキング液中に希釈して使用した。4℃で16~18時間反応させ、0.2%トライトンX-100添加PBS(PBST)で3回洗浄した後、二次抗体にはanti-Mouse IgG-Alexa644(Molecular Probes社)を1:500でPBSTに希釈し、4℃で16~18時間反応させた。その後細胞の核を染色するため、5μg/mlのDAPI(Sigma社)をPBSTに5000倍希釈し、室温で5分反応させ、PBSにて3回洗浄した後、Opera Phenix ハイスループット・ハイコンテンツイメージングシステム(PerkinElmer社)にて観察した。その後、骨格筋分化効率を以下の計算式で計算した:(MHC陽性細胞上にいるDAPI染色で染まった核の数/DAPI染色で染まった核の総数)。各ウェルの骨格筋分化効率を算出し、平均値(Mean)、標準偏差(standard deviation: SD)および変動係数(coefficient of variation: CV)を算出することによりフラットテストを行った。
8. Immunostaining of differentiated skeletal muscle cells The differentiated cells were fixed with 2% paraformaldehyde (Nakalitesk) / PBS at 4 ° C for 10 minutes, washed with PBS for 5 minutes three times, and then methanol (Nakalitesk). ) Was decolorized with a solution containing 1% hydrogen peroxide (Wako) for 15 minutes. Washing with PBS at 4 ° C for 5 minutes was performed again 3 times. Blocking was performed at 4 ° C for 15 minutes at BlockingOne (Nacalai Tesque). For the primary antibody, anti-MHC (Mouse Monoclonal. R & D, 1: 400 dilution) was diluted in the above blocking solution and used. After reacting at 4 ° C for 16 to 18 hours and washing 3 times with 0.2% Triton X-100-added PBS (PBST), anti-Mouse IgG-Alexa644 (Molecular Probes) was used as the secondary antibody at 1: 500 PBST. And reacted at 4 ° C. for 16-18 hours. Then, in order to stain the cell nuclei, 5 μg / ml DAPI (Sigma) was diluted 5000 times with PBST, reacted at room temperature for 5 minutes, washed 3 times with PBS, and then Opera Phenix high-throughput high-content imaging. Observed with the system (PerkinElmer). Then, the efficiency of skeletal muscle differentiation was calculated by the following formula: (number of nuclei stained with DAPI staining on MHC-positive cells / total number of nuclei stained with DAPI staining). A flat test was performed by calculating the skeletal muscle differentiation efficiency of each well and calculating the mean (Mean), standard deviation (SD) and coefficient of variation (CV).
9.SI8000動画解析装置
 分化した骨格筋細胞の収縮活動の解析には、ライブセルイメージングシステムSI8000(SONY社)を用いた。収縮活動にはC-PaceEPとC-Dishシステム(IonOptics社)を用いて周波数0.5Hz, パルス幅2msec, 電圧10Vの刺激を与えた。SI8000を用いて、27 frames/secで計270frames、10秒間撮影しSI8000のソフトウェアで収縮活動時の速度および距離を解析した。
9. SI8000 video analyzer A live cell imaging system SI8000 (SONY) was used to analyze the contractile activity of differentiated skeletal muscle cells. The contractile activity was stimulated with a frequency of 0.5 Hz, a pulse width of 2 msec, and a voltage of 10 V using a C-Pace EP and a C-Dish system (IonOptics). Using SI8000, we photographed at 27 frames / sec for a total of 270 frames for 10 seconds, and analyzed the velocity and distance during contraction activity with SI8000 software.
〔実験結果〕
1.14日目の細胞の骨格筋分化効率
 14日目の細胞を固定し、抗MHC抗体で免疫染色して骨格筋分化効率を算出し、フラットテストを行った結果を図4に示した。上段は96ウェルプレートの各ウェルの骨格筋分化効率(%)のヒートマップであり、下段はその平均値(Mean)、標準偏差(SD)および変動係数(CV)を示す表である。14日目の細胞は、まだ収縮活動を開始していない骨格筋細胞である。各ウェルの骨格筋分化効率の平均値が98.02%、変動係数が2.84であったことから、本願発明の製造方法を用いて得られた骨格筋細胞は、十分スクリーニングの質を満たしていることが示された。なお、変動係数が10を下回っていれば、スクリーニングの質を満たしていると考えられる(Iversen et al. Assay Guidance Manual.2004.)。
〔Experimental result〕
1. Skeletal muscle differentiation efficiency of cells on day 14 The cells on day 14 were fixed and immunostained with an anti-MHC antibody to calculate the skeletal muscle differentiation efficiency, and the results of a flat test are shown in FIG. The upper row is a heat map of the skeletal muscle differentiation efficiency (%) of each well of the 96-well plate, and the lower row is a table showing the mean value (Mean), standard deviation (SD) and coefficient of variation (CV). The cells on the 14th day are skeletal muscle cells that have not yet started contractile activity. Since the average value of the skeletal muscle differentiation efficiency of each well was 98.02% and the coefficient of variation was 2.84, the skeletal muscle cells obtained by using the production method of the present invention sufficiently satisfy the screening quality. Shown. If the coefficient of variation is less than 10, it is considered that the quality of screening is satisfied (Iversen et al. Assay Guidance Manual. 2004.).
2.18日目の細胞の骨格筋分化効率
 18日目の細胞を固定し、抗MHC抗体で免疫染色して骨格筋分化効率を算出し、フラットテストを行った結果を図5に示した。上段は96ウェルプレートの各ウェルの骨格筋分化効率(%)のヒートマップであり、下段はその平均値(Mean)、標準偏差(SD)および変動係数(CV)である。18日目の細胞は、既に収縮活動を開始している骨格筋細胞であり、最も収縮力を発揮する時期と考えられる。各ウェルの骨格筋分化効率の平均値が93.67%であり、変動係数が3.91であったことから、本願発明の製造方法を用いて得られた骨格筋細胞は、十分スクリーニングの質を満たしていることが示された。
2. Skeletal muscle differentiation efficiency of cells on day 18 The cells on day 18 were fixed and immunostained with an anti-MHC antibody to calculate the skeletal muscle differentiation efficiency, and the results of a flat test are shown in FIG. The upper row is a heat map of the skeletal muscle differentiation efficiency (%) of each well of the 96-well plate, and the lower row is its mean (Mean), standard deviation (SD) and coefficient of variation (CV). The cells on the 18th day are skeletal muscle cells that have already started contractile activity, and are considered to be the time when they exert the most contractile force. Since the average value of the skeletal muscle differentiation efficiency of each well was 93.67% and the coefficient of variation was 3.91, the skeletal muscle cells obtained by using the production method of the present invention sufficiently satisfy the screening quality. Was shown.
3.骨格筋細胞の収縮力を評価するスクリーニング方法の検討
 培養18日目の骨格筋細胞の収縮力を動画解析装置で解析しフラットテストを行った。解析にするにあたって、スクリーニングの精度を保つには最低何ウェルのデータを1サンプルとして解析する必要があるかを見極めるために、2ウェルまたは4ウェルを1サンプルとして解析する方法を試した(図6参照)。収縮速度(contraction velocity)を評価した結果を図7に示した。(A)が2ウェル1サンプルの結果、(B)が4ウェル1サンプルの結果である。4ウェル1サンプルのほうが変動係数(CV)が低いが、2ウェルおよび4ウェル両方とも、CV値は基準となる10を下回ったことから、最低でも2ウェル分を1データとして解析することが適切と考えられた。
3. 3. Examination of screening method to evaluate the contractile force of skeletal muscle cells The contractile force of skeletal muscle cells on the 18th day of culture was analyzed with a moving image analyzer and a flat test was performed. In order to determine how many wells of data should be analyzed as one sample to maintain the accuracy of screening, we tried the method of analyzing 2 wells or 4 wells as 1 sample (Fig. 6). reference). The results of evaluating the contraction velocity are shown in Fig. 7. (A) is the result of 1 sample of 2 wells, and (B) is the result of 1 sample of 4 wells. The coefficient of variation (CV) is lower in the 4-well 1 sample, but since the CV value of both the 2-well and 4-well was below the standard 10, it is appropriate to analyze at least 2 wells as 1 data. It was considered.
4.電気刺激および光刺激による骨格筋細胞の収縮力の変化
 培養18日目、21日目、28日目の骨格筋細胞の収縮力の変化を、電気刺激を与えた場合と比較した。電気刺激はC-Pace EM(IonOptics社製)とC-Dish 6ウェルプレート(IonOptics社製)を用いて培養6日目から、周波数0.5Hz、パルス幅2msecで電気刺激を開始した。播種した細胞数は1.0×105~5.0×105 cells/wellであった。電圧は徐々に上げていき最終的に20Vで刺激した。具体的には、最初の48時間は2V、次の48時間は5V、次の72時間は10V、次の72時間は15V、その後は培養28日目まで20Vで連続刺激した。電気刺激は3ウェル1サンプルで評価し、光刺激は96ウェルプレートの4ウェル1サンプルで評価した。
4. Changes in contractile force of skeletal muscle cells due to electrical and light stimulation Changes in contractile force of skeletal muscle cells on days 18, 21, and 28 of culture were compared with those given electrical stimulation. Electrical stimulation was started from the 6th day of culture using C-Pace EM (manufactured by IonOptics) and C-Dish 6-well plate (manufactured by IonOptics) at a frequency of 0.5 Hz and a pulse width of 2 msec. The number of seeded cells was 1.0 × 10 5 to 5.0 × 10 5 cells / well. The voltage was gradually increased and finally stimulated at 20V. Specifically, it was continuously stimulated with 2V for the first 48 hours, 5V for the next 48 hours, 10V for the next 72 hours, 15V for the next 72 hours, and then 20V until the 28th day of culture. Electrical stimulation was evaluated with 1 sample of 3 wells, and light stimulation was evaluated with 1 sample of 4 wells on a 96-well plate.
 電気刺激と光刺激を比較した結果を図8~図11に示した。図8は収縮速度(contraction velocity)の結果、図9は弛緩速度(relaxation velocity)の結果、図10は加速度(acceleration)の結果、図11は収縮距離(contraction distance)の結果である。いずれの図も(A)が電気刺激の結果、(B)が光刺激の結果である。電気刺激による収縮力の変化は培養19日目、21日目、27日目の骨格筋細胞を用いて評価した。図8~図11に示したように、培養19日目(電気刺激)と培養18日目(光刺激)において最大収縮力が観察され、光刺激の最大収縮力は電気刺激の最大収縮力と同等であることが示された。その後、培養27日目(電気刺激)と培養28日目(光刺激)において、収縮力が最大値の半分以下に低下し、低下の程度も電気刺激と光刺激は同等であることが示された。すなわち、電気刺激に代えて光刺激を用いても同等の収縮力を有する骨格筋細胞を作製することができ、DMDΔ44のようなジストロフィンを発現しない骨格筋細胞は、電気刺激および光刺激のどちらを与えた場合でも、最大収縮力が観察された時点から収縮力が低下することが示された。 The results of comparing electrical stimulation and light stimulation are shown in FIGS. 8 to 11. FIG. 8 shows the result of contraction velocity, FIG. 9 shows the result of relaxation velocity, FIG. 10 shows the result of acceleration, and FIG. 11 shows the result of contraction distance. In each figure, (A) is the result of electrical stimulation, and (B) is the result of light stimulation. Changes in contractile force due to electrical stimulation were evaluated using skeletal muscle cells on days 19, 21, and 27 of culture. As shown in FIGS. 8 to 11, the maximum contractile force was observed on the 19th day of culture (electrical stimulation) and the 18th day of culture (light stimulation), and the maximum contractile force of light stimulation was the maximum contractile force of electrical stimulation. It was shown to be equivalent. After that, on the 27th day of culture (electrical stimulation) and the 28th day of culture (light stimulation), the contractile force decreased to less than half of the maximum value, and it was shown that the degree of decrease was equivalent between electrical stimulation and light stimulation. rice field. That is, skeletal muscle cells having the same contractile force can be produced by using light stimulation instead of electrical stimulation, and skeletal muscle cells that do not express dystrophin such as DMDΔ44 can be either electrical stimulation or light stimulation. Even when given, it was shown that the contractile force decreased from the time when the maximum contractile force was observed.
 収縮力が低下した骨格筋細胞がスクリーニングの質を満たしていることを確認するために、培養28日目の光刺激を与えた骨格筋細胞の収縮力を動画解析装置で解析しフラットテストを行った。収縮速度(contraction velocity)を評価した結果を図12に示した。収縮力が低下した培養28日目の細胞は、骨格筋細胞の収縮活動を促進する被験物質をスクリーニングする際に十分スクリーニングの質を満たしていることが示された。 In order to confirm that the skeletal muscle cells with reduced contractility meet the screening quality, the contractile force of the light-stimulated skeletal muscle cells on the 28th day of culture was analyzed with a video analyzer and a flat test was performed. rice field. Figure 12 shows the results of evaluating the contraction velocity. It was shown that the cells on the 28th day of culture with reduced contractile force sufficiently satisfied the screening quality when screening for a test substance that promotes the contractile activity of skeletal muscle cells.
5.分化骨格筋細胞の光刺激による成熟化促進培養
 4日目(Day4)での再播種の際に、CellCarrier-Ultra 384 ウェルの内側にコラーゲンゲル(ニッピ社)を敷きマトリゲルでコーティングした上に再播種し、10日目から光刺激による成熟化促進を開始し、各試験を行うまで連続で光刺激を与える。光刺激装置はオプトジェネティクス用青色LEDアレーシステム(BRCバイオリサーチセンター社)を用いて周波数0.5Hz, パルス幅50msec, 電圧10Vの刺激を24時間、期間中毎日連続で与え続ける。培地は少なくとも2日に1回交換する。均等な光刺激が各ウェルに照射されるように、アレーシステムとプレートの間に光拡散シートを挟む。96ウェルプレートを用いて行った、筋分化効率、収縮運動、スクリーニングの精度を保つための最低ウェル数を評価する。
5. At the time of re-seeding on the 4th day (Day 4) of culturing to promote maturation by photostimulation of differentiated skeletal muscle cells , collagen gel (Nippi) was spread inside the CellCarrier-Ultra 384 well, coated with Matrigel, and then re-seeded. Then, from the 10th day, the promotion of maturation by light stimulation is started, and light stimulation is continuously given until each test is performed. The light stimulator uses a blue LED array system for optogenetics (BRC Bio Research Center) to continuously apply stimulation with a frequency of 0.5 Hz, a pulse width of 50 msec, and a voltage of 10 V for 24 hours every day during the period. Change the medium at least once every two days. A light diffusing sheet is sandwiched between the array system and the plate so that even light stimuli are applied to each well. Evaluate the minimum number of wells to maintain muscle differentiation efficiency, contractile movement, and screening accuracy performed using 96-well plates.
 なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。 The present invention is not limited to the above-described embodiments and examples, and various modifications can be made within the scope of the claims, and the technical means disclosed in the different embodiments may be appropriately combined. The obtained embodiments are also included in the technical scope of the present invention. In addition, all of the academic and patent documents described in this specification are incorporated herein by reference.

Claims (9)

  1.  光刺激により収縮活動が誘導される骨格筋細胞の製造方法であって、
    (1)チャネルロドプシンを安定発現する多能性幹細胞を作製する工程、
    (2)工程(1)で得られた細胞を骨格筋細胞に分化誘導する工程、および
    (3)分化誘導を開始した細胞に光照射する工程
    を含む製造方法。
    A method for producing skeletal muscle cells in which contractile activity is induced by light stimulation.
    (1) A step of producing pluripotent stem cells that stably express channelrhodopsin,
    (2) A production method including a step of inducing differentiation of the cells obtained in step (1) into skeletal muscle cells, and (3) a step of irradiating the cells that have started differentiation induction with light.
  2.  前記工程(3)において、細胞が融合して筋管を形成する段階より前に光照射を開始する、請求項1に記載の製造方法。 The production method according to claim 1, wherein in the step (3), light irradiation is started before the stage where cells fuse to form a myotube.
  3.  前記工程(3)において、光照射開始から光照射終了まで連続照射する、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein in the step (3), continuous irradiation is performed from the start of light irradiation to the end of light irradiation.
  4.  細胞に照射する光が、周波数0.25Hz~0.75Hz、パルス幅2msec~100msec、電圧8V~15V、光量が1mW~10mWの青色レーザー光である、請求項1~3のいずれか1項に記載の製造方法。 13. Production method.
  5.  前記工程(1)の多能性幹細胞がミオパチー患者またはミオトニア患者由来の細胞である、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the pluripotent stem cell in the step (1) is a cell derived from a myopathy patient or a myotonia patient.
  6.  前記工程(1)の多能性幹細胞がMyoDおよびMyf5から選ばれる1以上の外因性骨格細胞誘導因子を発現する細胞である、請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the pluripotent stem cell in the step (1) is a cell expressing one or more exogenous skeletal cell inducing factors selected from MyoD and Myf5.
  7.  骨格筋細胞の収縮活動を促進または抑制する物質のスクリーニング方法であって、
    (1)チャネルロドプシンを安定発現する多能性幹細胞を骨格筋細胞に分化誘導する工程、
    (2)細胞に光照射する工程、
    (3)細胞に被験物質を接触させる工程、
    (4)細胞の収縮活動を測定する工程、および
    (5)被験物質を接触させなかった場合と比較して細胞の収縮活動を促進または抑制する被験物質を選択する工程
    を含む方法。
    A screening method for substances that promote or suppress the contractile activity of skeletal muscle cells.
    (1) A step of inducing differentiation of pluripotent stem cells that stably express channelrhodopsin into skeletal muscle cells.
    (2) Step of irradiating cells with light,
    (3) Step of contacting the test substance with the cells,
    A method comprising (4) measuring the contractile activity of cells and (5) selecting a test substance that promotes or suppresses the contractile activity of cells as compared with the case where the test substance is not contacted.
  8.  マルチウェルプレートを用いる、請求項7に記載のスクリーニング方法。 The screening method according to claim 7, using a multi-well plate.
  9.  前記工程(1)の多能性幹細胞がミオパチー患者またはミオトニア患者由来の細胞である、請求項7または8に記載のスクリーニング方法。 The screening method according to claim 7 or 8, wherein the pluripotent stem cells in the step (1) are cells derived from a myopathy patient or a myotonia patient.
PCT/JP2021/047144 2020-12-22 2021-12-20 Method for producing skeletal muscle cell WO2022138593A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022571469A JPWO2022138593A1 (en) 2020-12-22 2021-12-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-212997 2020-12-22
JP2020212997 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022138593A1 true WO2022138593A1 (en) 2022-06-30

Family

ID=82159370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047144 WO2022138593A1 (en) 2020-12-22 2021-12-20 Method for producing skeletal muscle cell

Country Status (2)

Country Link
JP (1) JPWO2022138593A1 (en)
WO (1) WO2022138593A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3381511A1 (en) * 2017-03-30 2018-10-03 Nokia Solutions and Networks Oy Directly modulated lasers for optogenetic therapy
WO2019241552A1 (en) * 2018-06-13 2019-12-19 The Trustees Of Columbia University In The City Of New York System and methods for optogenetic evaluation of human neuromuscular function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3381511A1 (en) * 2017-03-30 2018-10-03 Nokia Solutions and Networks Oy Directly modulated lasers for optogenetic therapy
WO2019241552A1 (en) * 2018-06-13 2019-12-19 The Trustees Of Columbia University In The City Of New York System and methods for optogenetic evaluation of human neuromuscular function

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASANO, TOSHIFUMI ET AL.: "O-36-5 Induction of photodifferentiation of skeletal muscle cells", REGENERATIVE MEDICINE, JAPANESE SOCIETY FOR REGENERATIVE MEDICINE, JP, vol. 14, no. Suppl., 1 January 2015 (2015-01-01), JP , pages 239 , XP009538540, ISSN: 1347-7919 *
OSCAR J. ABILEZ: "Cardiac optogenetics", ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013 34TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE, IEEE, 28 August 2012 (2012-08-28), pages 1386 - 1389, XP032463182, ISSN: 1557-170X, DOI: 10.1109/EMBC.2012.6346197 *
TOSHIFUMI ASANO; TORU ISHIZUA; HIROMU YAWO: "Optically controlled contraction of photosensitive skeletal muscle cells", BIOTECHNOLOGY AND BIOENGINEERING, JOHN WILEY, HOBOKEN, USA, vol. 109, no. 1, 18 August 2011 (2011-08-18), Hoboken, USA, pages 199 - 204, XP071113662, ISSN: 0006-3592, DOI: 10.1002/bit.23285 *

Also Published As

Publication number Publication date
JPWO2022138593A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP6083877B2 (en) Method for inducing differentiation from pluripotent stem cells to skeletal muscle cells
US8883498B2 (en) Method for inducing differentiation of pluripotent stem cells into skeletal muscle or skeletal muscle progenitor cells
JP6429280B2 (en) Efficient cardiomyocyte induction method
JP7166631B2 (en) Novel chondrocyte induction method
KR20170072941A (en) Production method for retinal tissue
JP6143027B2 (en) How to induce astrocytes
KR20160045145A (en) Method for producing retinal tissue and retina-related cells
JP6612736B2 (en) Cardiomyocyte sorting method
JP5995247B2 (en) Method for producing dendritic cells from pluripotent stem cells
JP5842289B2 (en) Efficient method for inducing endothelial cells
WO2022138593A1 (en) Method for producing skeletal muscle cell
JPWO2016114341A1 (en) Pluripotent cell identification compound
WO2021015086A1 (en) Method for producing mature myotube cells from skeletal muscle stem cells
WO2022102742A1 (en) Cell surface marker for high efficiency purification of skeletal muscle lineage cells and skeletal muscle stem cells, and use thereof
JP2014143954A (en) Method of efficiently making pluripotent stem cells
JP7274216B2 (en) Cell excitotoxicity evaluation method
WO2017073794A1 (en) Method for producing three-dimensional myocardial tissue from pluripotent stem cells
JP2023086705A (en) Cell models of muscle fatigue/muscle damage, preparation methods and uses thereof
WO2020090836A1 (en) Cell production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910736

Country of ref document: EP

Kind code of ref document: A1