WO2019107324A1 - 電気推進車両用充電ケーブルおよび電気推進車両用充電ケーブルに装着される電源アダプター - Google Patents

電気推進車両用充電ケーブルおよび電気推進車両用充電ケーブルに装着される電源アダプター Download PDF

Info

Publication number
WO2019107324A1
WO2019107324A1 PCT/JP2018/043473 JP2018043473W WO2019107324A1 WO 2019107324 A1 WO2019107324 A1 WO 2019107324A1 JP 2018043473 W JP2018043473 W JP 2018043473W WO 2019107324 A1 WO2019107324 A1 WO 2019107324A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
power
charging
voltage
power supply
Prior art date
Application number
PCT/JP2018/043473
Other languages
English (en)
French (fr)
Inventor
徳明 赤井
浩一 元岡
Original Assignee
パナソニック株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 日産自動車株式会社 filed Critical パナソニック株式会社
Priority to JP2019557220A priority Critical patent/JP7269178B2/ja
Publication of WO2019107324A1 publication Critical patent/WO2019107324A1/ja
Priority to US16/886,110 priority patent/US11305657B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6683Structural association with built-in electrical component with built-in electronic circuit with built-in sensor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/70Structural association with built-in electrical component with built-in switch
    • H01R13/713Structural association with built-in electrical component with built-in switch the switch being a safety switch
    • H01R13/7135Structural association with built-in electrical component with built-in switch the switch being a safety switch with ground fault protector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2103/00Two poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2105/00Three poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to, for example, a charging cable for an electric propulsion vehicle used to charge a battery of an electric propulsion vehicle such as an electric vehicle or a hybrid vehicle and a power adapter attached to the charging cable for the electric propulsion vehicle.
  • the charging cable for the electric propulsion vehicle (hereinafter referred to as charging cable and abbreviation for connecting the power supply in the charging equipment and the connector on the electric propulsion vehicle side) Is used.
  • a configuration has been proposed in which the charging time is reduced using such a charging cable (see, for example, Patent Document 1).
  • various power supplies having different power supply voltages such as a residential power supply with single-phase AC 100 V / 200 V and a commercial power supply with three-phase AC 200 V are used.
  • a residential power supply with single-phase AC 100 V / 200 V and a commercial power supply with three-phase AC 200 V are used.
  • an electric propulsion vehicle since the space which accommodates a charge cable is limited, it is difficult to prepare a plurality of charge cables corresponding to various power supplies of charge facilities.
  • charging with a large current may be performed using a large rated power plug such as a rated voltage of 250 V and a rated current of 50 A as a charging cable. desirable.
  • the present disclosure has been made in view of the above problems, and provides a power supply adapter attached to a charging cable for an electric propulsion vehicle and a charging cable for an electric propulsion vehicle capable of coping with a power supply different in specification. It is intended to be provided.
  • the charging cable for an electric propulsion vehicle of the present disclosure is: In a charging cable for an electric propulsion vehicle, having a power plug connected to a power source of the charging facility at one end and a charging coupler at the other end detachably connected to the electric propulsion vehicle via the control unit,
  • the power plug has an electrode structure having three high-voltage electrodes and three high-voltage ground pins, and among the three high-voltage electrodes, two high-voltage electrodes are used for the electric propulsion vehicle.
  • a charging cable for an electric propulsion vehicle used to charge a battery comprising: A power supply adapter comprising: an electrode receiver connected to the three high-voltage electrodes and the high-voltage ground pin; and a connection terminal having an electrode structure corresponding to a power supply having a standard different from that of the electrode structure of the power plug. ing.
  • a power adapter attached to the charging cable for an electric propulsion vehicle of the present disclosure is: In a charging cable for an electric propulsion vehicle, having a power plug connected to a power source of the charging facility at one end and a charging coupler at the other end detachably connected to the electric propulsion vehicle via the control unit,
  • the power plug has an electrode structure having three high-voltage electrodes and three high-voltage ground pins, and among the three high-voltage electrodes, two high-voltage electrodes are used for the electric propulsion vehicle.
  • a power adapter attached to a charging cable for an electric propulsion vehicle used to charge a battery comprising: For an electric propulsion vehicle, having an electrode receiver connected to the three high-voltage electrodes and the high-voltage ground pin, and having a connection terminal of an electrode structure corresponding to a power supply having a different standard from the electrode structure of the power plug Attached to the charging cable.
  • a power supply adapter attached to a charging cable for an electric propulsion vehicle and a charging cable for an electric propulsion vehicle capable of coping with power supplies of different standards.
  • FIG. 1 shows typically the state at the time of charging to the battery of an electric propulsion vehicle from a charge installation using the charging cable of Embodiment 1 which concerns on this indication.
  • Side view showing a power plug of the power supply side cable in the first embodiment Front view showing the power plug of the power supply side cable in the first embodiment
  • Sectional drawing which shows the power supply plug of the power supply side cable in Embodiment 1
  • Top view of the power supply adapter according to the first embodiment viewed from above Front view (a), side view (b) and rear view (c) of the power supply adapter according to the first embodiment Sectional drawing which shows the electrode structure of the power supply adapter in Embodiment 1.
  • FIG. 6 illustrates a process of connecting a power plug and a power adapter according to Embodiment 1.
  • FIG. 6 illustrates a process of connecting a power plug and a power adapter according to Embodiment 1.
  • a charging cable for an electric propulsion vehicle having a power supply plug (12) connected to the power supply of the charging facility at one end and a charge coupler (11) detachably connected to the electric propulsion vehicle via the control unit (9) at the other end
  • the power plug has an electrode structure having three high voltage electrodes (14a, 14b, 14c) and a high voltage earth pin (15), and two high voltage voltages among the three high voltage electrodes.
  • a charging cable for an electric propulsion vehicle the charging cable being used to charge a battery of the electric propulsion vehicle using the driving electrodes (14a, 14b),
  • the charging cable for an electric propulsion vehicle has an electrode receptacle (20, 21, 22, 23) to which the high voltage electrode for the three poles and the ground pin for high voltage are connected, and the electrode structure and standard of the power plug Power supply adapter (13) having connection terminals (18a, 18b, 19) of the electrode structure corresponding to different power supplies.
  • the connection terminal of the power supply adapter in the first aspect is a bipolar low-voltage electrode (18a) having a standard different from that of the electrode structure of the power plug. , 18b) and a low voltage ground pin (19),
  • an electrode receiver (22 or 23) to which one high voltage electrode (14c) not used as a charging electrode among the three high voltage electrodes of the power plug is connected;
  • the electrode receiver (23 or 22) to which the voltage ground pin (15) is connected is electrically connected to each other,
  • the two low voltage electrodes (18a, 18b) are respectively connected to the high voltage electrodes (14a, 14b) used as charging electrodes among the three high voltage electrodes in the power plug. It is good also as composition electrically connected to two electrode receptacles (20, 21) which are carried out, respectively.
  • the charging cable for an electric propulsion vehicle is the power supply adapter according to the second aspect, wherein the three high-voltage electrodes for the three poles and the high-voltage ground pin in the power plug are inserted.
  • the power supply adapter in the third aspect is 180 with respect to a center of arrangement with respect to the four electrode holes in the contact surface with the power plug.
  • the power plug may be configured to be attached to the power plug at a position where it is rotated.
  • the power adapter in the fourth aspect is an electrode to which the unipolar high-voltage electrode (14c) is not used as the charging electrode.
  • An electrode hole (13b) leading to a receiver (22 or 23), and an electrode hole (13b) leading to an electrode receiver (23 or 22) to which the high voltage earth pin (15) is connected are included in the contact surface.
  • Are arranged on the center line (P) of the Two electrode holes (13a) leading to the electrode receptacles (20, 21) connected to each of the bipolar high-voltage electrodes (14a, 14b) used as the charging electrodes are provided on both sides of the arrangement center line It may be arranged symmetrically.
  • the power adapter engages with a mounted power plug. It may be configured to have a locking means (17).
  • the power adapter mounted on the charging cable for an electric propulsion vehicle according to the seventh aspect of the present disclosure
  • An electric propulsion vehicle having a power supply plug (12) connected to the power supply of the charging facility at one end and a charge coupler (11) detachably connected to the electric propulsion vehicle via the control unit (9) at the other end
  • the power plug has an electrode structure having three high voltage electrodes (14a, 14b, 14c) and a high voltage earth pin (15), and two high voltage voltages among the three high voltage electrodes.
  • a power supply adapter attached to a charging cable for an electric propulsion vehicle which is used to charge a battery of the electric propulsion vehicle using the driving electrodes (14a, 14b),
  • connection terminal of the power adapter has a bipolar standard different from that of the electrode structure of the power plug.
  • the two low voltage electrodes (18a, 18b) are respectively connected to the high voltage electrodes (14a, 14b) used as charging electrodes among the three high voltage electrodes in the power plug. It is good also as composition electrically connected to two electrode receptacles (20, 21) which are carried out, respectively.
  • the three high-voltage electrodes for the three poles and the high-voltage ground pin in the power plug are Has four electrode holes (13a, 13b) which are inserted and lead to respective electrode receptacles (20, 21, 22, 23), The four electrode holes are arranged symmetrically on the contact surface (13e) with the power plug, In the four electrode holes, an electrode hole (13b) leading to an electrode receiver (22 or 23) to which the single high voltage electrode (14c) not used as the charging electrode is connected, and a high voltage earth pin ( 15) may be configured to have substantially the same shape as the electrode hole (13b) leading to the electrode receiver (23 or 22) to which it is connected.
  • the power supply adapter mounted on the charging cable for an electric propulsion vehicle has a contact surface with the power plug in the ninth aspect with respect to the arrangement center with respect to the four electrode holes.
  • the power plug may be configured to be mounted at a position rotated 180 degrees.
  • the unipolar high-voltage electrode (14c) not used as the charging electrode is connected
  • An electrode hole (13b) leading to the electrode receptacle (22 or 23) and an electrode hole (13b) leading to the electrode receptacle (23 or 22) to which the high voltage earth pin (15) is connected; Are placed on the placement center line (P) included in Two electrode holes (13a) leading to the electrode receptacles (20, 21) connected to each of the bipolar high-voltage electrodes (14a, 14b) used as the charging electrodes are provided on both sides of the arrangement center line It may be arranged symmetrically.
  • the power supply adapter mounted on the charging cable for an electric propulsion vehicle is engaged with the mounted power plug in any of the seventh to eleventh aspects. It may be configured to have a locking means (17).
  • FIG. 1 is a residential power supply used in a general household which is a charging facility using a charging cable 1 for an electric propulsion vehicle (hereinafter simply referred to as “charging cable 1”) according to the first embodiment of the present disclosure
  • charging cable 1 an electric propulsion vehicle
  • the charging cable 1 In addition to the general household power supply (100 V / 200 V) provided on the outer wall of a general household or the like, for example, the charging cable 1 also uses an electric propulsion vehicle for power supply equipment (three-phase 200 V) having a different standard. 2 has a configuration capable of performing charging.
  • the battery 5 of the electric propulsion vehicle 2 is charged by connecting the electric propulsion vehicle 2 to the high-voltage residential power supply A (200 V) via the charging cable 1.
  • the electric propulsion vehicle 2 also has a charging cable 1 on which a power adapter 13 described later is attached to a low voltage residential power supply B (100 V) having a different standard from the high voltage residential power supply A (200 V). By using this, the battery 5 of the electric propulsion vehicle 2 can be charged.
  • the electric propulsion vehicle 2 includes a traveling motor 3, an inverter 4, a battery 5, and a charge control device 6, which are electrically connected to one another.
  • the electric propulsion vehicle 2 is connected to the charging cable 1 via a connector 7 connected to the charging control device 6.
  • the charging cable 1 is connected to, for example, a high voltage 200 V residential power supply A, and used to charge the battery 5 mounted on the electric propulsion vehicle 2.
  • the charging cable 1 has a configuration that can cope with power supplies having different standards such as a low voltage residential power supply B (100 V) commonly used in general homes. Optimal charging can be performed on the mounted battery 5 in accordance with the standard of the power supply.
  • FIG. 2 is an overall view showing the charging cable 1 in the first embodiment.
  • the charging cable 1 includes a control unit 9, and is provided with a power supply side cable 8 leading out from the control unit 9 to the power supply side and a vehicle side cable 10 leading out to the electric propulsion vehicle side There is.
  • a charge coupler 11 detachably connected to the connector 7 of the electric propulsion vehicle 2 is provided at the lead-out end of the vehicle-side cable 10.
  • a power plug 12 for mounting on a charging facility such as a residential power supply (A, B) is provided at the leading end of the power supply side cable 8.
  • the power plug 12 has a three-pole electrode plate 14 (14a, 14b, 14c) and a ground pin (15) as connection terminals so as to be connected to the 200 V residential power supply A (described later) See Figure 4).
  • the two-pole electrode plates (18a, 18b) and the charging cable 1 in the first embodiment are used.
  • a power adapter 13 (see FIG. 7 described later) having one ground pin (19) is configured to be attached to the power plug 12.
  • the charging cable 1 is described as including the power supply adapter 13, the power supply adapter 13 is distributed to the market alone as a power supply adapter of the charging cable 1 for the electric propulsion vehicle.
  • a temperature sensor for example, a temperature measuring resistor
  • the temperature information of the power plug 12 detected by the temperature sensor (16: see FIG. 5) is transmitted to the control unit 9 via the power supply cable 8.
  • the control unit 9 has a configuration capable of monitoring the temperature of the power plug 12.
  • FIG. 3 is a side view showing the power plug 12 provided at the end of the power supply side cable 8 in the first embodiment.
  • a three-pole electrode plate 14 and a ground pin 15 are provided on the left side of the power plug 12 so as to project therefrom.
  • FIG. 4 is a front view of the power plug 12 and shows the connection terminal side on which the three-pole electrode plate 14 (14a, 14b, 14c) and the ground pin 15 are provided.
  • FIG. 5 is a cross-sectional view vertically cut at a substantially central portion of the power plug 12 shown in FIG.
  • the power plug 12 in the charging cable 1 has an electrode structure having three high voltage electrodes (14: 14 a, 14 b, 14 c) and earth pins 15. .
  • the power plug 12 includes a main body 12a provided with electrode plates 14 (14a, 14b, 14c) which are high voltage electrodes of three poles and a ground pin 15, and a lead-out portion 12b for leading the power side cable 8 from the main body 12a. And.
  • the electrode plate 14 and the ground pin 15 are provided so as to project in the direction orthogonal to the contact surface 12e that contacts the power outlet which is the power plug receiver.
  • the lead-out portion 12b guides the power supply side cable 8 from the main portion 12a so as to be parallel to the contact surface 12e, that is, vertically downward. That is, as shown in FIG. 3, in the power plug 12, the electrode plate 14 and the ground pin 15 are horizontally provided to project from the contact surface 12 e. And the power source side cable 8 is formed so as to lead out vertically downward. Therefore, in the power plug 12, the protruding directions of the electrode plate 14 and the ground pin 15 are substantially orthogonal to the lead-out direction of the power-side cable 8.
  • a three-pole electrode plate 14 (14a, 14b, 14c) and a ground pin 15 for grounding are provided so as to protrude from the contact surface 12e.
  • the first electrode plate 14a and the second electrode plate 14b are bipolar high voltage electrodes used as charging electrodes of 200V.
  • the third electrode plate 14c which is the third electrode plate of the power plug 12 is not used. For this reason, in the power plug 12, the third electrode plate 14c is not electrically connected to any of them, and is held in a so-called electrically floating state.
  • the flat surfaces of the first electrode plate 14 a and the second electrode plate 14 b which are flat plate-like lead-out portions connected to the power supply, face each other are located in
  • the third electrode plate 14c which has the same plate-like lead-out shape as the first electrode plate 14a and the second electrode plate 14b, has a projecting position between the first electrode plate 14a and the second electrode plate 14b. It is disposed on the center line included in the contact surface 12e, and is disposed at a position shifted from the facing position of the first electrode plate 14a and the second electrode plate 14b (a position offset to the lower side in FIG. 4) .
  • the power supply in which the first electrode plate 14a, the second electrode plate 14b, and the third electrode plate 14c of the power plug 12 are the residential power supply A (200 V). It is disposed symmetrically on the contact surface 12 e between the outlet and the power plug 12.
  • the third electrode plate 14c is disposed on a center line which is an intermediate position between the first electrode plate 14a and the second electrode plate 14b facing each other.
  • the ground pin 15 is disposed on the center line of the ground pin 15 and is disposed at a position shifted from the position where the first electrode plate 14a and the second electrode plate 14b face each other (a position offset upward in FIG. 4). Therefore, the first electrode plate 14a, the second electrode plate 14b, the third electrode plate 14c, and the ground pin 15, which are the four connection terminals of the power plug 12, are between the first electrode plate 14a and the second electrode plate 14b. It is arranged symmetrically with respect to the center line of.
  • NEMA 14-50 rated voltage 240 V, rated current 50 A
  • NEMA standard National Electrical Manufacturers Association
  • the charging cable 1 in the first embodiment is configured to assume the power supply standard of the United States.
  • the lead-out portion 12 b is provided on the lower side of the main body portion 12 a so that the power supply side cable 8 is drawn vertically downward from the main body portion 12 a.
  • the ground pin 15 and the third electrode plate 14c are symmetrically disposed at the upper and lower positions with respect to the opposing position of the first electrode plate 14a and the second electrode plate 14b which are disposed to face each other. That is, the ground pin 15 is provided on the upper side with respect to the facing position of the first electrode plate 14a and the second electrode plate 14b, and the third electrode plate 14c is provided with the first electrode plate 14a and the second electrode plate 14b. It is provided below the opposing position of.
  • position restricting grooves 12d, 12d are formed on both side surfaces of the main body 12a of the power plug 12 (see FIGS. 3 and 4). ).
  • the position restricting grooves 12d are extended in the direction orthogonal to the contact surface 12e at opposing positions on both side surfaces of the main body 12a.
  • the electrode portion embedded in the main body 12a is fixed to the main body 12a. Also, they are not electrically connected.
  • a temperature sensor 16 (temperature measuring resistor) is provided in the vicinity of the electrode portion in the main body 12a in each of the first electrode plate 14a and the second electrode plate 14b. Electrical signals (temperature information) from temperature sensors 16 provided on the first electrode plate 14 a and the second electrode plate 14 b are transmitted to the control unit 9 through the power supply cable 8.
  • the control unit 9 has a configuration capable of monitoring the temperatures of the first electrode plate 14a and the second electrode plate 14b.
  • the control unit 9 is a switching circuit 28 (for example, a relay) that opens and closes a charging path between the power plug 12 and the charging coupler 11 and a leakage detection unit 29 that monitors the current flowing through the charging path and detects an electric leakage. And (see FIG. 11 described later).
  • a switching circuit 28 for example, a relay
  • the control unit 25 in the control unit 9 detects an abnormal temperature based on temperature information from the temperature sensor 16
  • the control unit 25 transmits a pilot signal to the charge control device 6 of the electric propulsion vehicle 2 so as to reduce the charge current.
  • electric leakage detection unit 29 detects an electric leakage
  • control unit 25 shuts off the charge path via switching circuit 28 and stops the power supply from the power supply (A, B) of the charging facility to electric propulsion vehicle 2 .
  • FIG. 6 is a plan view of the power supply adapter 13 according to the first embodiment as viewed from above.
  • FIG. 7 is a front view (a), a side view (b) and a rear view (c) of the power adapter 13.
  • the power supply adapter 13 has a male electrode structure provided in a projecting manner for connection to a general residential power supply (100 V), and a female side electrode structure connected to the connection terminal of the power supply plug 12 described above. And. Also, as will be described later, the female electrode structure of the power adapter 13 is a special electrode in which the power adapter 13 is easily and safely connected to the power plug 12 even when rotated 180 degrees with respect to the power plug 12 It has a structure.
  • the power adapter 13 is provided with a locking means in order to prevent it from coming off the power plug 12.
  • the locking means in the power supply adapter 13 is constituted by the locking claw 17.
  • an electrode plate 18 which is a bipolar low voltage electrode connected to the 100 V power supply. (18a, 18b) and a ground pin 19 which is a low voltage ground pin are provided in a protruding manner.
  • two first electrode plates 14a or second electrode plates 14b of the power supply plug 12 for 200V are inserted.
  • a first / second electrode hole (13a, 13a), and two third / ground electrode holes (13b, 13b) into which the third electrode plate 14c or the ground pin 15 is inserted are formed.
  • two first / second electrode holes (13a, 13a) and two third / earth electrode holes ( 13b, 13b) are arranged symmetrically. Even if the contact surface 13e is rotated 180 degrees with respect to the arrangement center C which is a central point having the same distance to these four electrode holes (13a, 13a, 13b, 13b), the four electrode holes ( 13a, 13a, 13b, 13b) have the same arrangement. Further, as shown in (c) of FIG. 7, the two third / ground electrode holes (13b, 13b) are at the upper and lower positions of the arrangement center C on the arrangement center line P including the arrangement center C at the contact surface 13e. Is formed.
  • the two first / second electrode holes (13a, 13a) are arranged symmetrically about the arrangement center line P. That is, the four electrode holes (13a, 13a, 13b, 13b) in the power supply adapter 13 are disposed to face the three electrode plates 14 (14a, 14b, 14c) in the power plug 12 and the earth pin 15, The arrangement can be inserted by the arspin 15.
  • locking claws 17 as locking means are provided at the positions of the upper end and the lower end.
  • the locking claws 17 at the upper end and the lower end of the power supply adapter 13 are provided substantially in parallel in the direction of the power plug (the right direction in (b) of FIG. 7). It has projecting protrusion 17a.
  • the power adapter 13 is in a mounted state in which the power adapter 12 is securely integrated with the power plug 12.
  • an elastic member such as a spring is provided so that the locking claws 17 located on the upper and lower sides of the power supply adapter 13 press the main body 12a of the power supply plug 12 in a clamping direction. Is in a state where it does not come off the power plug 12.
  • the projection 17 a of the locking claw 17 is a power plug by pressing the convex portion provided on the locking claw 17 and opening it in the direction to open the opposing locking claw 17.
  • the power adapter 13 can be detached from the power plug 12 by coming out of the recess of the locking portion 12 c.
  • the power adapter 13 when the power adapter 13 is attached to the power plug 12, the power adapter 13 is configured to be attachable even at a position rotated 180 degrees with respect to the power plug 12.
  • the power adapter 13 can be mounted at a position rotated 180 degrees with respect to the power plug 12
  • FIG. 8 is a cross-sectional view showing the electrode structure of the power supply adapter 13, and shows the internal structure of the high voltage electrode receiver into which the connection terminal of the power supply plug 12 is inserted.
  • the sectional view of FIG. 8 corresponds to the rear view shown in FIG. 7 (c).
  • the first / second electrode plate 14 a or the second electrode plate 14 b of the power plug 12 is sandwiched and electrically connected.
  • a third / ground electrode receiver 22 and an earth / third electrode receiver 23 are provided which sandwich the third electrode plate 14c of the power plug 12 or the ground pin 15 to establish an electrically connected state.
  • the third / ground electrode receiver 22 and the ground / third electrode receiver 23 are connected to each other in the electrode structure inside the power supply adapter 13 and are electrically connected by the connection plate 24.
  • two 100 V electrode plates 18 (18 a, 18 b) connected to the 100 V power supply and earth pins 19 are protruded on the left side of the power supply side. It is set up.
  • the first electrode plate 18 a and the second electrode plate 18 b in the power supply adapter 13 are electrically connected to the first / second electrode receiver 20 and the second / first electrode receiver 21 respectively. That is, in the electrode structure inside the power supply adapter 13, the first electrode plate 18 a is electrically connected to the first / second electrode receiver 20, and the second electrode plate 18 b is connected to the second / first electrode receiver 21. It is electrically connected.
  • the ground pin 19 protruding from the power supply side is electrically connected to the third / ground electrode receiver 22 and the ground / third electrode receiver 23. Therefore, the third / ground electrode receptacle 22 and the ground / third electrode receptacle 23 in the power supply adapter 13 both serve as electrode receptacles on the ground side.
  • two first / second electrode holes 13a and 13a to be inserted into the first electrode plate 14a or the second electrode plate 14b of the power plug 12 and Two third / ground electrode holes 13 b and 13 b are provided to be inserted into the third electrode plate 14 c of the power plug 12 or the ground pin 15.
  • the two third / ground electrode holes 13b and 13b are disposed at upper and lower positions on the arrangement center line P in the vertical direction on the contact surface 13e (formation surface of the electrode hole) with the power plug 12 in the power adapter 13 There is.
  • the two first and second electrode holes 13a and 13a are formed at symmetrical positions on the left and right with respect to the disposition center line P in the vertical direction on the contact surface 13e (surface on which the electrode holes are formed).
  • the third / ground electrode hole 13 b has a shape in which both the third electrode plate 14 c of the power plug 12 and the ground pin 15 can be inserted.
  • the first and second electrode holes 13a have the same shape because the first electrode plate 14a and the second electrode plate 14b to be inserted have the same shape.
  • the first electrode plate 14 a or the second electrode plate 14 b inserted in the first / second electrode hole 13 a is a first / second electrode receiver 20 or a second / second electrode receiver 20 that is an electrode receiver for high voltage in the power supply adapter 13.
  • the first electrode receiver 21 is configured to be electrically connected reliably (in a sandwiching state).
  • the first electrode plate 14a or the second electrode plate 14b of the power plug 12 is inserted into and guided by the first / second electrode hole 13a, and the first / second electrode receiver 20 or the second / second / second The first electrode receiver 21 is electrically connected.
  • the third electrode plate 14a or the ground electrode 15 in the power plug 12 is inserted into and guided by the third / ground electrode hole 13b and electrically connected to the third / ground electrode receiver 22 or the ground / third electrode receiver 23.
  • the first electrode plate 14 a or the second electrode plate 14 b of the power plug 12 is connected to the first / second electrode receiver 20 or the second electrode plate 20 in the power adapter 13.
  • the first electrode plate 21 is electrically connected to the first electrode plate 18a and the second electrode plate 18b, which are low voltage electrode plates, through the first electrode receiver 21, and is in a heat conductive contact state. Therefore, the temperature information from the temperature sensor 16 provided in the vicinity of the first electrode plate 14 a and the second electrode plate 14 b is temperature information capable of detecting an abnormal temperature of the charging path in the power adapter 13.
  • control unit 25 in the control unit 9 detects an abnormal temperature in the charge path according to the temperature information from the temperature sensor 16, the control unit 25 causes the charge control device 6 of the electric propulsion vehicle 2 to reduce the charge current. And the power supply from the power supply of the charging facility to the electric propulsion vehicle 2 can be reduced.
  • annular skirt portion 13 c formed so as to wrap the contact side tip portion of the main body portion 12 a of the power plug 12 to be connected is formed. It is done. On the inner surface side of the skirt portion 13c, two position restricting protrusions 13d, 13d which protrude in the opposite direction are formed.
  • FIGS. 9 and 10 are diagrams for explaining the connection between the power plug 12 and the power adapter 13.
  • FIG. 9 shows a state immediately before connection of the power plug 12 and the power adapter 13, and (b) shows the high voltage electrode plate 14 (14 a, 14 b, 14 c) and the earth pin 15 in the power plug 12.
  • the tip portion shows the state during insertion into the electrode holes (13a, 13b) of the power supply adapter 13, and (c) shows the state when the connection of the power supply plug 12 and the power supply adapter 13 is completed (during attachment).
  • (a) corresponds immediately before the connection of (a) of FIG.
  • FIG. 9 is a view showing the right side of the power plug 12 and the power adapter 13.
  • FIG. 10 is a back view of the power plug 12 and the power adapter 13 as viewed from below.
  • position restricting grooves 12d are formed on both side surfaces of the main body 12a of the power plug 12, and position restricting projections 13d formed on the power adapter 13 in these position restricting grooves 12d (see FIG. 7 (c)) is configured to fit.
  • the position restricting grooves 12 d are provided at opposing positions (positions on the opposite side rotated 180 degrees) on both side surfaces of the main body portion 12 a.
  • an annular skirt portion 13c formed so as to wrap the contact side distal end portion of the main body portion 12a of the power supply plug 12 to be connected is formed, and inside the skirt portion 13c
  • Position control protrusions 13 d are formed at opposing positions.
  • position restricting protrusions 13 d are configured to respectively engage with position restricting grooves 12 d formed on both side surfaces of the main body 12 a of the power plug 12 when the power adapter 13 is attached (connected) to the power plug 12. ing. Therefore, in the configuration of the first embodiment, the power adapter 13 can be connected to the power plug 12 only at two positions rotated 180 degrees such that the position restricting protrusion 13 d can be engaged with the position restricting groove 12 d. .
  • NEMA 14-50 (rated voltage 240 V, rated current 50 A) in the NEMA standard (National Electrical Manufacturers Association) as the electrode arrangement of the connection terminal of the power plug 12 Is used. Therefore, for example, a residential power supply in which a three-pole electrode plate (14a, 14b, 14c) and an earth pin 15 are inserted is assumed as a residential charging facility. In a residential power supply (100 V / 200 V) having such an earth pin, the case where the insertion port of the earth pin is located above the insertion port of the electrode or the case where it is installed so as to be below is there.
  • the power plug 12 of the first embodiment When charging the power supply plug 12 of the first embodiment to the indoor power supply A (for 200 V), if the ground pin insertion port is above the insertion port of the electrode, the power plug 12 has the ground pin 15 on the upper side. In the state shown in FIG. 3). At this time, the power supply side cable 8 from the lead-out portion 12 b of the power plug 12 is wired in a state of being led vertically downward.
  • the power supply side cable 8 leads upward from the power supply plug 12, so the power supply side cable 8 etc. A force in the direction of removal from the power source A is applied.
  • the power plug 12 is mounted to the residential power supply A (for 200 V) at four points of the three-pole electrode plates (14a, 14b, 14c) and the ground pin 15. Furthermore, each electrode plate and the ground pin have a sufficient size because they are for high voltage and high current, and it is possible that the power plug 12 is released even if a force is applied in such a direction to be removed from the residential power source A Absent.
  • the power supply adapter 13 is attached to the residential power supply B (for 100 V) at three points of the two electrode plates (18 a, 18 b) and the earth pin 19. Furthermore, since the bipolar electrode plates (18a, 18b) and the ground pin 19 are for low voltage and low current, they are considerably smaller than the electrode plates (14a, 14b, 14c) of the power plug 12 and the ground pin 15. It is conceivable that the power supply adapter 13 is pulled out of the power supply (B) when the power supply cable 8 is drawn upward from the power plug 12 and a force is applied to the power supply adapter 13 in a direction to be pulled out of the power supply.
  • the power plug 12 can be attached to the power adapter 13 at the opposite position rotated 180 degrees. Even when the ground pin is located below the electrode insertion port, the power supply side cable 8 from the lead-out portion 12b of the power plug 12 can be wired in the state of being led vertically downward. Therefore, it is possible to suppress an accident such as the power adapter 13 integrated with the power plug 12 being pulled out from the power source (B).
  • the third electrode plate 14c of the power plug 12 and the high voltage electrode hole (third / ground electrode hole 13b) into which the ground pin 15 is inserted are shared. It is. Further, in the configuration of the power supply adapter 13, the third / ground electrode receiver 22 and the ground / third electrode receiver 23 to which the third electrode plate 14c of the power plug 12 and the ground pin 15 are electrically connected are electrically connected. It is. Therefore, even if the power plug 12 is mounted at any position (position rotated 180 degrees) with respect to the power adapter 13, the ground pin 15 of the power plug 12 is electrically connected to the ground pin 19 of the power adapter 13 It becomes a state.
  • the power supply adapter 13 can be attached (connected) so that the lead-out portion 12b of the power plug 12 always leads vertically downward. It is a structure.
  • the power plug 12 and the power adapter 13 have the ground pins (15, 19) as the connection terminals, and the connection pins of which the ground pins (15, 19) become the charge electrodes. It is disposed at the upper position or the lower position, and the projection length is set longer than the connection terminal of the charge electrode. For this reason, in a state where the charging cable 1 of the first embodiment is connected to the power supply (B), the power adapter 13 integrated with the power plug 12 is configured to be suppressed from dropping out of the power supply (B). .
  • FIG. 11 is a block diagram showing the main configuration of charging cable 1 of the first embodiment.
  • the control unit 9 in the charging cable 1 receives a signal (temperature information) from the control unit 25 configured by a microcomputer and the temperature sensor 16 provided to the power plug 12.
  • a leakage detection unit 29 that monitors the current flowing through the charging path to detect a leakage.
  • the control unit 25 receives temperature information from the power plug temperature detection unit 26, and controls the charging operation based on the detected temperature information. Further, when the leak detection unit 29 detects a leak, the control unit 25 shuts off the charge path via the switching circuit 28 and stops the power supply from the power supply to the electric propulsion vehicle 2.
  • the temperature information in the power plug 12 and the power supply voltage information supplied by the power plug 12 are detected by the control unit 25 of the control unit 9 based on the detected information.
  • the controller 25 forms a pilot signal.
  • the control unit 15 is configured to transmit the formed pilot signal to the electrically propelled vehicle 2 connected via the vehicle-side cable 10.
  • the control unit 25 changes, for example, the duty ratio of the pilot signal according to the power supply voltage information, and transmits charging information such as a charging current to be supplied from the power supply to the electric propulsion vehicle 2.
  • the configuration of charging cable 1 according to the first embodiment provides a charging cable 1 and a power adapter used for charging cable 1 that can correspond to the power supply (100 V / 200 V) of charging equipment with different standards. It can be done.
  • the charging cable 1 according to the first embodiment of the present disclosure there is no mechanism for converting the voltage to the power supply adapter 13, and the electric propulsion vehicle is supplied with the power supplied from the power supply via the charging cable 1. The electric power is transmitted to the vehicle 2, and an appropriate charging operation is performed based on the power and charging information supplied to the electric propulsion vehicle 2.
  • the configuration of the first embodiment has been described in which the charging operation is controlled based on the temperature information of the power plug 12 and the power adapter 13 using the temperature sensor 16 which is the temperature detecting means for the power plug 12.
  • the present invention is not limited to this configuration.
  • temperature detection means is used for main components such as the connection portion of the power supply side cable 8 with the control unit 9, the charge coupler 11 of the vehicle side cable 10, and / or the control unit 9 which is the main body. Then, the charging operation may be controlled based on the temperature information of each component.
  • Abnormal heat generated when the charging cable 1 is used is the connection between the power supply (power outlet) of the charging facility and the power plug 12, the connection between the charge coupler 11 and the connector 7 of the electric propulsion vehicle 2, the control which is the main body
  • the charging current in the unit 9 is generated due to an incomplete contact or tracking phenomenon at the connection between the connection terminals of the power line through which the charging current flows. Therefore, it is preferable to arrange the temperature detection means (temperature sensor 16) in the vicinity of each connection portion in the charging line where abnormal heat generation occurs.
  • the charging current to the battery 5 is controlled based on the pilot signal transmitted from the control unit 25 in the control unit 9 of the charging cable 1.
  • the temperature detection means detects abnormal heat generation, it is possible to variably set the charging current on the electric propulsion vehicle side according to the temperature detected by the temperature detection means. Therefore, for example, when the temperature of the power plug 12 becomes high, the charging current is reduced, and the charging of the battery 5 is not interrupted but continued while suppressing the temperature rise of the power plug 12. Can. As a result, not only the charging time can be shortened, but also the durability of the relay can be improved.
  • the control unit 25 performs the two first / second
  • the failure of the power plug 12, the power adapter 13 and / or the charging coupler 11 can be determined based on the output of the temperature detecting means of the above, and the configuration of the apparatus leads to the improvement of the reliability.
  • the control unit 25 of the control unit 9 transmits a pilot signal whose waveform has been changed to the electric propulsion vehicle 2, By notifying the electric propulsion vehicle 2 to lower the charging current, overheating of the power plug 12 can be prevented, and safety can be further improved.
  • the control unit 25 of the control unit 9 transmits the pilot signal whose pulse width has been changed to the electric propulsion vehicle 2 so as to reduce the charging current steplessly. Also by notifying the electric propulsion vehicle 2, the same effect can be achieved.
  • control unit 25 of the control unit 9 may notify the electric propulsion vehicle 2 to lower the charging current stepwise by using a pilot signal.
  • the control unit 25 of the control unit 9 transmits the pilot signal whose amplitude is changed to the electric propulsion vehicle to reduce the charging current. You may make it notify to 2.
  • control unit 25 of the control unit 9 transmits to the electric propulsion vehicle 2 a pilot signal whose amplitude is gradually changed in advance so as not to reach the threshold value by calculating the temperature detected by the temperature detection means.
  • the electric propulsion vehicle 2 may be notified to lower the charging current.
  • the charging circuit may be finally shut off.
  • the charging cable according to the present disclosure can easily cope with power sources in charging facilities of different standards with a simple configuration, and is useful as a charging cable for an electric propulsion vehicle traveling with at least a traveling battery installed. It is.
  • Charging cable for electric propulsion vehicles (charging cable) DESCRIPTION OF SYMBOLS 2 electric propulsion vehicle 3 driving motor 4 inverter 5 battery 6 charge control apparatus 7 connector 8 power supply side cable 9 control unit 10 vehicle side cable 11 charge coupler 12 power supply plug 12a main body part 12b outlet part 12c locking part (locking means) 12d Position Regulating Groove 12e Abutment Surface 13 Power Adapter 13a First / Second Electrode Hole 13b Third / Earth Electrode Hole 13c Skirt Part 13d Position Regulation Protrusion 13e Abutment Surface 14 Electrode Plate (for 200 V) 14a first electrode plate 14b second electrode plate 14c third electrode plate 15 arspin 16 temperature sensor (temperature detection means) 17 Locking claw (locking means) 18 electrode plate (for 100V) 18a first electrode plate 18b second electrode plate 19 arspin 20 second / second electrode receiver 21 second / first electrode receiver 22 third / earth electrode receiver 23 ground / third electrode receiver 24 connection plate 25 control unit 26 power source Plug temperature detection unit 27 Power supply voltage detection

Abstract

規格の異なる電源に対応することが可能な電気推進車両用充電ケーブルおよび電気推進車両用充電ケーブルに装着される電源アダプターを提供するために、電気推進車両用充電ケーブルの電源プラグが三極の高電圧用電極と高電圧用アースピンとを有する電極構造を有し、三極の高電圧用電極のうち二極の高電圧用電極を使用して電気推進車両のバッテリに充電するために使用される電気推進車両用充電ケーブルであって、電源アダプターが三極の高電圧用電極と高電圧用アースピンが接続される電極受けを有し、電源プラグの電極構造と規格が異なる電源に対応する電極構造の接続端子を有する。

Description

電気推進車両用充電ケーブルおよび電気推進車両用充電ケーブルに装着される電源アダプター
 本開示は、例えば、電気自動車やハイブリッド車のような電気推進車両のバッテリに充電するために使用される電気推進車両用充電ケーブルおよび電気推進車両用充電ケーブルに装着される電源アダプターに関する。
 近年、環境に優しい自動車として電気推進車両の開発が急ピッチで進められている。電気推進車両の充電インフラ(充電インフラストラクチャー)としては、電力網の末端である住宅用電源を利用する住宅用充電設備と、市街地などに設けられる不特定多数の利用を前提とする公共用充電設備がある。電気推進車両においては、充電動作を容易に行えると共に、充電時間を短くすることが、電気推進車両の普及において重要な課題である。
 使用者が充電設備を利用して電気推進車両のバッテリに充電を行う場合、充電設備における電源と電気推進車両側のコネクタとを接続するために電気推進車両用充電ケーブル(以下、充電ケーブルと略称)が用いられる。このような充電ケーブルを用いて充電時間の短縮を図った構成が提案されている(例えば、特許文献1参照)。
国際公開公報第2012/117743号パンフレット
 充電設備においては、電源電圧が単相交流100V/200Vの住宅用電源、三相交流200Vの工業用電源などの電源電圧および電源プラグ(電極構造)の形状が異なる各種電源が用いられている。しかし、電気推進車両においては、充電ケーブルを収容する空間が限定されているため、充電設備の各種電源に対応する複数の充電ケーブルを用意することは困難である。また、充電時間の短縮化(急速充電)を図るためには、充電ケーブルとして、定格の大きな電源プラグ、例えば、定格電圧250V、定格電流50Aの電源プラグを用いて大電流による充電を行うことが望ましい。しかし、電気推進車両のバッテリに充電を行う場合には、100Vの住宅用電源を使用するときがあるため、定格電圧250V、定格電流50Aの電源プラグが設けられた充電ケーブルの他に、例えば、定格電圧125V、定格電流15Aの電源プラグが設けられた充電ケーブルを備える必要があった。
 さらに、海外においては、例えば、米国においては、単相交流115V/230V、三相交流230Vの電源があり、それぞれに対応する電源プラグが異なっている。また、電源電圧が異なる複数の国が陸続きで繋がっている欧州などの大陸においては、電気推進車両が電源電圧が異なる地域や国境を越えて移動するため、各地域又は各国の各種電源事情に対応した充電ケーブルを予め車に搭載しておく必要がある。
 しかしながら、前述のように、電気推進車両においては充電ケーブルを収容するための空間が限られているため、多くの充電ケーブルを車に搭載することができず、電気推進車両の普及における大きな障害となっていた。
 本開示は、上記のような問題点に鑑みてなされたものであり、規格の異なる電源に対応することが可能な電気推進車両用充電ケーブルおよび電気推進車両用充電ケーブルに装着される電源アダプターを提供することを目的としている。
 上記目的を達成するために、本開示の電気推進車両用充電ケーブルは、
 充電設備の電源に接続される電源プラグを一端に有し、他端にコントロールユニットを介して電気推進車両に着脱自在に接続される充電カプラを有する電気推進車両用充電ケーブルにおいて、
 前記電源プラグが三極の高電圧用電極と高電圧用アースピンとを有する電極構造を有し、前記三極の高電圧用電極のうち二極の高電圧用電極を使用して電気推進車両のバッテリに充電するために使用される電気推進車両用充電ケーブルであって、
 前記三極の高電圧用電極と前記高電圧用アースピンが接続される電極受けを有し、前記電源プラグの電極構造と規格が異なる電源に対応する電極構造の接続端子を有する電源アダプター、を備えている。
 また、本開示の電気推進車両用充電ケーブルに装着される電源アダプターは、
 充電設備の電源に接続される電源プラグを一端に有し、他端にコントロールユニットを介して電気推進車両に着脱自在に接続される充電カプラを有する電気推進車両用充電ケーブルにおいて、
 前記電源プラグが三極の高電圧用電極と高電圧用アースピンとを有する電極構造を有し、前記三極の高電圧用電極のうち二極の高電圧用電極を使用して電気推進車両のバッテリに充電するために使用される電気推進車両用充電ケーブルに装着される電源アダプターであって、
 前記三極の高電圧用電極と前記高電圧用アースピンが接続される電極受けを有し、前記電源プラグの電極構造と規格が異なる電源に対応する電極構造の接続端子を有する、電気推進車両用充電ケーブルに装着される。
 本開示によれば、規格の異なる電源に対応することが可能な電気推進車両用充電ケーブルおよび電気推進車両用充電ケーブルに装着される電源アダプターを提供することができる。
本開示に係る実施の形態1の充電ケーブルを使用して、充電設備から電気推進車両のバッテリに充電するときの状態を模式的に示す図 電気推進車両と充電設備を接続するための実施の形態1の充電ケーブルを示す図 実施の形態1における電源側ケーブルの電源プラグを示す側面図 実施の形態1における電源側ケーブルの電源プラグを示す正面図 実施の形態1における電源側ケーブルの電源プラグを示す断面図 実施の形態1における電源アダプターを上から見た平面図 実施の形態1における電源アダプターの正面図(a)、側面図(b)および背面図(c) 実施の形態1における電源アダプターの電極構造を示す断面図 実施の形態1における電源プラグと電源アダプターとの接続過程を示す図 実施の形態1における電源プラグと電源アダプターとの接続過程を示す図 実施の形態1における充電ケーブルの主要な構成を示すブロック図
 以下に述べる本開示におけるそれぞれの態様において、主な要素には後述する実施の形態1において説明する参照符号を付すが、これらの参照符号は、本開示を実施の形態に記載した構成に限定するものではなく、単に理解を容易なものとするためである。
 本開示の第1の態様の電気推進車両用充電ケーブルは、
 充電設備の電源に接続される電源プラグ(12)を一端に有し、他端にコントロールユニット(9)を介して電気推進車両に着脱自在に接続される充電カプラ(11)を有する電気推進車両用充電ケーブル(1)において、
 前記電源プラグが三極の高電圧用電極(14a,14b,14c)と高電圧用アースピン(15)とを有する電極構造を有し、前記三極の高電圧用電極のうち二極の高電圧用電極(14a,14b)を使用して電気推進車両のバッテリに充電するために使用される電気推進車両用充電ケーブルであって、
 前記電気推進車両用充電ケーブルは、前記三極の高電圧用電極と前記高電圧用アースピンが接続される電極受け(20,21,22,23)を有し、前記電源プラグの電極構造と規格が異なる電源に対応する電極構造の接続端子(18a,18b,19)を有する電源アダプター(13)、を備えている。
 本開示の第2の態様の電気推進車両用充電ケーブルは、前記の第1の態様における前記電源アダプターの接続端子が、前記電源プラグの電極構造と規格が異なる二極の低電圧用電極(18a,18b)と低電圧用アースピン(19)とを有する電極構造を持ち、
 前記電源アダプターおいて、前記電源プラグにおける前記三極の高電圧用電極のうち充電電極として使用されない一極の高電圧用電極(14c)が接続される電極受け(22又は23)と、前記高電圧用アースピン(15)が接続される電極受け(23又は22)とが互いに電気的に接続されており、
 前記二極の低電圧用電極(18a,18b)が、前記電源プラグにおける前記三極の高電圧用電極のうち充電電極として使用される二極の高電圧用電極(14a,14b)とそれぞれ接続される2つの電極受け(20,21)にそれぞれ電気的に接続された構成としてもよい。
 本開示の第3の態様の電気推進車両用充電ケーブルは、前記の第2の態様の前記電源アダプターにおいて、前記電源プラグにおける前記三極の高電圧用電極と前記高電圧用アースピンとが挿入されてそれぞれの電極受け(20,21,22,23)に導く4つの電極孔(13a,13b)を有し、
 前記電源プラグとの当接面(13e)において、前記4つの電極孔が対称的に配置され、
 前記4つの電極孔において、前記充電電極として使用されない前記一極の高電圧用電極(14c)が接続される電極受け(22又は23)に導く電極孔(13b)と、前記高電圧用アースピン(15)が接続される電極受け(23又は22)に導く電極孔(13b)とは実質的に同じ形状を有する構成としてもよい。
 本開示の第4の態様の電気推進車両用充電ケーブルは、前記の第3の態様における前記電源アダプターが、前記電源プラグとの当接面において、前記4つの電極孔に対する配置中心に対して180度回転した位置で前記電源プラグに装着されるように構成されてもよい。
 本開示の第5の態様の電気推進車両用充電ケーブルは、前記の第4の態様における前記電源アダプターが、前記充電電極として使用されない前記一極の高電圧用電極(14c)が接続される電極受け(22又は23)に導く電極孔(13b)と、前記高電圧用アースピン(15)が接続される電極受け(23又は22)に導く電極孔(13b)とが、前記当接面に含まれる配置中心線(P)の上に配設されており、
 前記充電電極として使用される二極の高電圧用電極(14a,14b)のそれぞれに接続される電極受け(20,21)に導く2つの電極孔(13a)が、前記配置中心線の両側に対称的に配置されてもよい。
 本開示の第6の態様の電気推進車両用充電ケーブルは、前記の第1の態様乃至第5の態様のいずれかの態様において、前記電源アダプターが、装着された電源プラグに対して係合する係止手段(17)を有する構成としてもよい。
 本開示の第7の態様の電気推進車両用充電ケーブルに装着される電源アダプターは、
 充電設備の電源に接続される電源プラグ(12)を一端に有し、他端にコントロールユニット(9)を介して電気推進車両に着脱自在に接続される充電カプラ(11)を有する電気推進車両用充電ケーブル(1)において、
 前記電源プラグが三極の高電圧用電極(14a,14b,14c)と高電圧用アースピン(15)とを有する電極構造を有し、前記三極の高電圧用電極のうち二極の高電圧用電極(14a,14b)を使用して電気推進車両のバッテリに充電するために使用される電気推進車両用充電ケーブルに装着される電源アダプターであって、
 前記三極の高電圧用電極と前記高電圧用アースピンが接続される電極受け(20,21,22,23)を有し、前記電源プラグの電極構造と規格が異なる電源に対応する電極構造の接続端子(18a,18b,19)を有する。
 本開示の第8の態様の電気推進車両用充電ケーブルに装着される電源アダプターは、前記の第7の態様において、前記電源アダプターの接続端子が、前記電源プラグの電極構造と規格が異なる二極の低電圧用電極(18a,18b)と低電圧用アースピン(19)とを有する電極構造を持ち、
 前記電源プラグにおける前記三極の高電圧用電極のうち充電電極として使用されない一極の高電圧用電極(14c)が接続される電極受け(22又は23)と、前記高電圧用アースピン(15)が接続される電極受け(23又は22)とが互いに電気的に接続されており、
 前記二極の低電圧用電極(18a,18b)が、前記電源プラグにおける前記三極の高電圧用電極のうち充電電極として使用される二極の高電圧用電極(14a,14b)とそれぞれ接続される2つの電極受け(20,21)にそれぞれ電気的に接続された構成としてもよい。
 本開示の第9の態様の電気推進車両用充電ケーブルに装着される電源アダプターは、前記の第8の態様において、前記電源プラグにおける前記三極の高電圧用電極と前記高電圧用アースピンとが挿入されてそれぞれの電極受け(20,21,22,23)に導く4つの電極孔(13a,13b)を有し、
 前記電源プラグとの当接面(13e)において、前記4つの電極孔が対称的に配置され、
 前記4つの電極孔において、前記充電電極として使用されない前記一極の高電圧用電極(14c)が接続される電極受け(22又は23)に導く電極孔(13b)と、前記高電圧用アースピン(15)が接続される電極受け(23又は22)に導く電極孔(13b)とは実質的に同じ形状を有する構成としてもよい。
 本開示の第10の態様の電気推進車両用充電ケーブルに装着される電源アダプターは、前記の第9の態様の前記電源プラグとの当接面において、前記4つの電極孔に対する配置中心に対して180度回転した位置で前記電源プラグに装着されるように構成されてもよい。
 本開示の第11の態様の電気推進車両用充電ケーブルに装着される電源アダプターは、前記の第10の態様において、前記充電電極として使用されない前記一極の高電圧用電極(14c)が接続される電極受け(22又は23)に導く電極孔(13b)と、前記高電圧用アースピン(15)が接続される電極受け(23又は22)に導く電極孔(13b)とが、前記当接面に含まれる配置中心線(P)の上に配設されており、
 前記充電電極として使用される二極の高電圧用電極(14a,14b)のそれぞれに接続される電極受け(20,21)に導く2つの電極孔(13a)が、前記配置中心線の両側に対称的に配置されてもよい。
 本開示の第12の態様の電気推進車両用充電ケーブルに装着される電源アダプターは、前記の第7の態様乃至第11の態様のいずれかの態様において、装着された電源プラグに対して係合する係止手段(17)を有する構成としてもよい。
 以下、本開示に係る実施の形態について、添付の図面を参照しながら説明する。図面において、同じ要素には同じ符号を付しており、説明を省略する場合もある。また、図面は、理解しやすくするために、それぞれの構成要素を模式的に示している。
 なお、以下で説明する実施の形態は、本開示の一具体例を示すものである。以下の実施の形態において示される数値、形状、構成などは、一例を示すものであり、本開示を限定するものではない。以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。実施の形態における各々の変形例の構成も同様であり、各変形例に記載した構成をそれぞれ組み合わせてもよい。
 (実施の形態1)
 図1は、本開示に係る実施の形態1の電気推進車両用充電ケーブル1(以下、単に「充電ケーブル1」という。)を使用して、充電設備である一般家庭で用いられる住宅用電源(100V/200V)から電気推進車両2のバッテリ5に充電するときの状態を模式的に示している。
 なお、充電ケーブル1は、例えば、一般家庭の住宅の外壁などに設けられた一般住宅用電源(100V/200V)の他にさらに規格が異なる電源設備(三相200V)に対しても電気推進車両2の充電を行うことが可能な構成を有している。
 図1に示されているように、電気推進車両2が充電ケーブル1を介して高電圧の住宅用電源A(200V)に接続されることにより、当該電気推進車両2のバッテリ5が充電されるように構成されている。また、電気推進車両2は、高電圧の住宅用電源A(200V)とは規格が異なる低電圧の住宅用電源B(100V)に対しても、後述する電源アダプター13が装着された充電ケーブル1を用いることにより、当該電気推進車両2のバッテリ5を充電できる構成である。
 高電圧、大電流であれば急速充電が可能であることは言うまでもないが、充電ケーブル1は、それぞれの住宅用電源A,Bの規格に応じて適切な充電を行うことができる構成となっている。
 電気推進車両2は、走行用モータ3と、インバータ4と、バッテリ5と、充電制御装置6とを備えており、互いに電気的に接続されている。電気推進車両2は、充電制御装置6に接続されたコネクタ7を介して充電ケーブル1に接続される。充電ケーブル1は、例えば、高電圧の200Vの住宅用電源Aに接続されて、電気推進車両2に搭載されたバッテリ5を充電するために用いられる。また、充電ケーブル1は、一般家庭で常用される低電圧の住宅用電源B(100V)のような規格が異なる電源に対しても対応可能な構成を有しており、当該電気推進車両2に搭載されたバッテリ5に対して電源の規格に応じて最適な充電を行うことができる。
 図2は、実施の形態1における充電ケーブル1を示す全体図である。図2に示すように、充電ケーブル1は、コントロールユニット9を備えており、コントロールユニット9から電源側に導出する電源側ケーブル8、および電気推進車両側に導出する車両側ケーブル10が設けられている。車両側ケーブル10の導出端部には、電気推進車両2のコネクタ7に対して着脱自在に接続される充電カプラ11が設けられている。一方、電源側ケーブル8の導出端部には住宅用電源(A,B)などの充電設備に装着するための電源プラグ12が設けられている。
 電源プラグ12は、200Vの住宅用電源Aに接続されるように、接続端子として三極の電極板14(14a,14b,14c)と1本のアースピン(15)を有している(後述する図4参照)。また、電源プラグ12が一般家庭で常用される低電圧の住宅用電源B(100V)においても、実施の形態1における充電ケーブル1が用いられるように、二極の電極板(18a,18b)と1本のアースピン(19)を有する電源アダプター13(後述する図7参照)が当該電源プラグ12に装着されうるように構成されている。本開示においては、充電ケーブル1が電源アダプター13を含むものとして説明するが、電源アダプター13は電気推進車両用充電ケーブル1の電源アダプターとして単独で市場に流通するものである。
 電源プラグ12には、電極板(14a,14b)の近傍に温度検出手段である温度センサ(例えば、測温抵抗体)が埋設されている。温度センサ(16:図5参照)により検出された電源プラグ12の温度情報は、電源側ケーブル8を介してコントロールユニット9に送信される。コントロールユニット9は電源プラグ12の温度を監視できる構成を有している。
 以下、実施の形態1の充電ケーブル1における電源プラグ12および電源アダプター13について説明する。
 [電源プラグ12]
 図3は、実施の形態1における電源側ケーブル8の端部に設けられた電源プラグ12を示す側面図である。図3においては、電源プラグ12の左側に三極の電極板14およびアースピン15が突設されている。図4は、電源プラグ12の正面図であり、三極の電極板14(14a,14b,14c)およびアースピン15が突設された接続端子側を示している。図5は、図3に示した電源プラグ12の略中央部分で縦に切断した断面図である。
 図3に示すように、実施の形態1の充電ケーブル1における電源プラグ12は、三極の高電圧用電極(14:14a,14b,14c)とアースピン15とを有する電極構造を有している。三極の高電圧用電極のうち二極の高電圧用電極(14a,14b)が充電電極として使用される。電源プラグ12は、三極の高電圧用電極である電極板14(14a,14b,14c)およびアースピン15が設けられた本体部12aと、本体部12aから電源側ケーブル8を導出する導出部12bとを有する。また、電源プラグ12の本体部12aにおいては、電極板14およびアースピン15が電源プラグ受けである電源コンセントと当接する当接面12eに対して直交する方向に突出するように設けられている。導出部12bは、本体部12aから電源側ケーブル8を当接面12eと平行に導出するように、即ち鉛直下方に案内する。即ち、図3に示すように、電源プラグ12においては、電極板14およびアースピン15が当接面12eから水平方向に突設されている。そして、電源側ケーブル8は鉛直下方に導出するように形成されている。従って、電源プラグ12においては、電極板14およびアースピン15の突出方向と、電源側ケーブル8の導出方向が略直交する構成となっている。
 図3および図4に示すように、電源プラグ12の接続端子としては、三極の電極板14(14a,14b,14c)および接地用のアースピン15が当接面12eから突設されている。電源プラグ12における三極の電極板14(14a,14b,14c)のうち第1電極板14aおよび第2電極板14bが200Vの充電電極として使用される二極の高電圧用電極である。なお、電源プラグ12が三相3線式の200Vの住宅用電源Aに接続されて使用されるときには、電源プラグ12における3番目の電極板である第3電極板14cは使用されない。このため、電源プラグ12においては、第3電極板14cがいずれにも電気的に接続されていない、所謂電気的に浮いた状態で保持されている。
 図4に示すように、電源プラグ12における接続端子において、電源に接続される平板な板状の導出部分である第1電極板14aおよび第2電極板14bは、それぞれの平坦面が対向するように配設されている。なお、第1電極板14aおよび第2電極板14bと同じ板状の導出形状である第3電極板14cは、その突設位置が第1電極板14aと第2電極板14bとの間における当接面12eに含まれる中心線上に配設されており、第1電極板14aと第2電極板14bの対向する位置からずれた位置(図4において下側にオフセットした位置)に配置されている。
 上記のように、実施の形態1における充電ケーブル1においては、電源プラグ12の第1電極板14a、第2電極板14b、および第3電極板14cが、住宅用電源A(200V)である電源コンセントと電源プラグ12との当接面12eにおいて対称的に配設されている。そして、第3電極板14cは、第1電極板14aと第2電極板14bの対向する間の中間位置である中心線上に配設されている。
 また、アースピン15はその中心線上に配設されており、第1電極板14aと第2電極板14bが対向する位置からずれた位置(図4において上側にオフセットした位置)に配置されている。従って、電源プラグ12の4つの接続端子である、第1電極板14a、第2電極板14b、第3電極板14c、およびアースピン15は、第1電極板14aと第2電極板14bとの間の中心線に対して対称的に配置されている。実施の形態1における電源プラグ12における接続端子の電極配置としては、例えば、NEMA規格(National Electrical Manufacturers Association)におけるNEMA14-50(定格電圧240V、定格電流50A)が用いられている。実施の形態1における充電ケーブル1においては、米国の電源規格を想定した構成となっている。
 上記のように、実施の形態1における電源プラグ12においては、電源側ケーブル8が本体部12aから鉛直下方に導出するように本体部12aの下側に導出部12bが設けられている。また、アースピン15と第3電極板14cは、対向して配置された第1電極板14aと第2電極板14bとの対向位置に対して上下の位置に対称的に配置されている。即ち、アースピン15は、第1電極板14aと第2電極板14bとの対向位置に対して上側に設けられており、第3電極板14cは、第1電極板14aと第2電極板14bとの対向位置に対して下側に設けられている。
 また、図3および図4に示すように、実施の形態1の構成において、電源プラグ12の本体部12aの両側面には位置規制溝12d,12dが形成されている(図3および図4参照)。位置規制溝12d,12dは、本体部12aの両側面における対向する位置に当接面12eに対して直交する方向に延設されている。
 図5に示すように、本体部12aから略水平方向に突出するように設けられた第3電極板14cは、本体部12aに埋設された電極部分が本体部12aに固着されているが、いずれにも電気的に接続されていない状態である。第1電極板14aと第2電極板14bのそれぞれにおける本体部12a内にある電極部分の近傍には温度センサ16(測温抵抗体)が設けられている。第1電極板14aと第2電極板14bのそれぞれに設けられた温度センサ16からの電気信号(温度情報)は、電源側ケーブル8を通ってコントロールユニット9に送信される。コントロールユニット9は、第1電極板14aと第2電極板14bのそれぞれの温度を監視できる構成を有している。
 なお、コントロールユニット9は、電源プラグ12と充電カプラ11との間の充電電路を開閉する開閉回路28(例えば、リレー)と、充電電路を流れる電流を監視して漏電を検出する漏電検出部29とを備えている(後述する図11参照)。コントロールユニット9内の制御部25は、温度センサ16からの温度情報により異常温度を検知したとき、電気推進車両2の充電制御装置6に充電電流を低下させるようにパイロット信号を送信する。また、制御部25は漏電検出部29が漏電を検出したとき、開閉回路28を介して充電電路を遮断し、充電設備の電源(A,B)から電気推進車両2への電力供給を中止する。
 [電源アダプター13]
 図6は、実施の形態1における電源アダプター13を上から見た平面図である。図7は、電源アダプター13の正面図(a)、側面図(b)、および背面図(c)である。
 図6に示すように、電源アダプター13は、一般住宅用電源(100V)に接続するために突設された雄型電極構造と、前述の電源プラグ12の接続端子に接続される雌側電極構造とを有している。また、後述するように、電源アダプター13の雌側電極構造は、電源プラグ12に対して180度回転した状態でも当該電源アダプター13が電源プラグ12に容易に、且つ安全に接続される特殊な電極構造を有している。
 更に、電源アダプター13には、電源プラグ12からの抜けを防止するために、係止手段が設けられている。電源アダプター13における係止手段は、係止爪17で構成されている。電源アダプター13が電源プラグ12に適切な状態で接続されたとき、電源アダプター13の係止爪17が電源プラグ12の側面に形成された凹部である係止部12c(図5参照)に係合する。
 図7に示すように、電源アダプター13の一方の面(図7の(a)に示す電源側の面)には、100V用電源に接続される二極の低電圧用電極である電極板18(18a,18b)、および低電圧用アースピンであるアースピン19が突設されている。電源アダプター13の他方の面(図7の(c)に示す電源プラグ側の面)には、200V用の電源プラグ12の第1電極板14aまたは第2電極板14bが挿入される2つの第1/第2電極孔(13a,13a)、および第3電極板14cまたはアースピン15が挿入される2つの第3/アース電極孔(13b,13b)が形成されている。
 図7の(c)に示すように、電源アダプター13における電源プラグ12との当接面13eにおいて、2つの第1/第2電極孔(13a,13a)および2つの第3/アース電極孔(13b,13b)は、対称的に配置されている。これらの4つの電極孔(13a,13a,13b,13b)に対して同じ距離となる中心点である配置中心Cに対して、当接面13eにおいて180度回転しても、4つの電極孔(13a,13a,13b,13b)は同じ配置となる。また、図7の(c)に示すように、2つの第3/アース電極孔(13b,13b)は、当接面13eにおいて配置中心Cを含む配置中心線P上における配置中心Cの上下位置に形成されている。一方、2つの第1/第2電極孔(13a,13a)は、配置中心線Pを中心として対称的に配置されている。即ち、電源アダプター13における4つの電極孔(13a,13a,13b,13b)は、電源プラグ12における3つの電極板14(14a,14b,14c)とアースピン15に対向する配置となり、電極板14とアースピン15により挿入されうる配置となっている。
 また、図7に示す電源アダプター13において、上端と下端の位置に係止手段としての係止爪17が設けられている。電源アダプター13において上端と下端とにある係止爪17は、電源プラグ側の方向(図7の(b)における右側方向)に略平行に突設されており、その突出先端が互いに向かい合う方向に突出する突起17aを有している。電源プラグ12の接続端子である各電極(14a,14b,14c,15)が電源アダプター13の各電極孔(13a,13b)に挿入されたとき、突起17aが電源プラグ12の上下位置にある係止部12c(図5参照)の凹部に係合して、電源アダプター13が電源プラグ12と確実に一体化された装着状態となる。この装着状態において、電源アダプター13の上下にある係止爪17は、電源プラグ12の本体部12aを挟み付ける方向に押圧するように、例えばバネなどによる弾性部材が設けられており、電源アダプター13が電源プラグ12から外れない状態となっている。
 電源アダプター13を電源プラグ12から外すときには、係止爪17に設けられた凸部を押圧して対向する係止爪17を開放する方向に開くことにより、係止爪17の突起17aが電源プラグ12の係止部12cの凹部から外れて、電源アダプター13が電源プラグ12から外すことができる状態となる。
 実施の形態1における充電ケーブル1において、電源アダプター13を電源プラグ12に装着するとき、電源アダプター13は電源プラグ12に対して180度回転した位置でも装着可能に構成されている。以下、電源アダプター13が電源プラグ12に対して180度回転した位置で装着できる構成について説明する。
 図8は、電源アダプター13の電極構造を示す断面図であり、電源プラグ12の接続端子が差し込まれる高電圧用電極受けの内部構造を示している。図8の断面図は図7の(c)に示した背面図に対応する。図8に示すように、電源アダプター13における高電圧用電極受けとしては、電源プラグ12の第1電極板14aまたは第2電極板14bを挟着して電気的に接続状態とする第1/第2電極受け20、および第2/第1電極受け21がある。また、電源プラグ12の第3電極板14cまたはアースピン15を挟着して電気的に接続状態とする第3/アース電極受け22、およびアース/第3電極受け23が設けられている。第3/アース電極受け22およびアース/第3電極受け23は、電源アダプター13の内部の電極構造において互いに接続状態となっており、接続板24により電気的に接続されている。
 図7の(b)に示した電源アダプター13において、電源側である左側の面には、100V用電源に接続される2つの100V用の電極板18(18a,18b)、およびアースピン19が突設されている。電源アダプター13における第1電極板18aおよび第2電極板18bは、第1/第2電極受け20および第2/第1電極受け21に対してそれぞれが電気的に接続されている。即ち、電源アダプター13の内部の電極構造において、第1電極板18aが第1/第2電極受け20に電気的に接続されており、第2電極板18bが第2/第1電極受け21に電気的に接続されている。また、電源アダプター13において、電源側(100V側)に突設されたアースピン19は、第3/アース電極受け22およびアース/第3電極受け23に電気的に接続されている。従って、電源アダプター13における第3/アース電極受け22およびアース/第3電極受け23は、両方ともアース側の電極受けとなる。
 図7の(c)に示すように、電源アダプター13には、電源プラグ12の第1電極板14aまたは第2電極板14bに挿入される2つの第1/第2電極孔13a,13a、および電源プラグ12の第3電極板14cまたはアースピン15に挿入される2つの第3/アース電極孔13b,13bが設けられている。電源アダプター13における電源プラグ12との当接面13e(電極孔の形成面)において、2つの第3/アース電極孔13b,13bは鉛直方向の配置中心線P上における上下位置に配設されている。また、2つの第1/第2電極孔13a,13aは、当接面13e(電極孔の形成面)において、鉛直方向の配置中心線Pに対して左右に対称の位置に形成されている。
 また、第3/アース電極孔13bは、電源プラグ12の第3電極板14cおよびアースピン15のいずれもが挿入可能な形状を有する。なお、第1/第2電極孔13aは、挿入される第1電極板14aおよび第2電極板14bが同じ形状であるため、同じ形状を有する。第1/第2電極孔13aに挿入された第1電極板14aまたは第2電極板14bは、電源アダプター13の内部の高電圧用電極受けである第1/第2電極受け20または第2/第1電極受け21に対して電気的に確実に接続状態(挟着状態)となるように構成されている。
 上記のように、電源プラグ12における第1電極板14aまたは第2電極板14bは、第1/第2電極孔13aに挿入され案内されて、第1/第2電極受け20または第2/第1電極受け21に電気的に接続される。また、電源プラグ12における第3電極板14aまたはアース電極15は、第3/アース電極孔13bに挿入され案内されて、第3/アース電極受け22またはアース/第3電極受け23に電気的に接続される。
 上記のように、電源プラグ12が電源アダプター13に装着されたとき、電源プラグ12の第1電極板14aまたは第2電極板14bは、電源アダプター13において第1/第2電極受け20または第2/第1電極受け21を介して低電圧用電極板である第1電極板18aおよび第2電極板18bに電気的にそれぞれ接続され、且つ熱伝導可能な接触状態となる。このため、第1電極板14aおよび第2電極板14bの近傍に設けられたに温度センサ16からの温度情報は、電源アダプター13における充電電路の異常温度を検知できる温度情報となる。このため、コントロールユニット9内の制御部25は、温度センサ16からの温度情報により充電電路における異常温度を検知したとき、電気推進車両2の充電制御装置6に充電電流を低下させるようにパイロット信号を送信し、充電設備の電源から電気推進車両2への電力供給を低下させることが可能な構成となる。
 また、図7の(c)に示すように、電源アダプター13においては、接続される電源プラグ12の本体部12aの当接側先端部分を包み込むように形成された円環状のスカート部13cが形成されている。スカート部13cの内面側には対向する方向に突出した2つの位置規制突起13d,13dが形成されている。
 [電源プラグ12と電源アダプター13との接続]
 図9および図10は、電源プラグ12と電源アダプター13との接続状態を説明する図である。図9において、(a)が電源プラグ12と電源アダプター13の接続直前の状態を示しており、(b)が電源プラグ12における高電圧用電極板14(14a,14b,14c)およびアースピン15の先端部分が電源アダプター13の電極孔(13a,13b)に対する挿入途中の状態を示しており、(c)が電源プラグ12と電源アダプター13の接続完了時(装着時)の状態を示している。図10においては、(a)が図9の(a)の接続直前に対応し、(b)が図9の(b)の挿入途中に対応し、そして(c)が図9の(c)の接続完了時に対応する状態を示している。図9は、電源プラグ12と電源アダプター13における右側面を示した図であり、図10は、電源プラグ12と電源アダプター13を下から見た裏面図である。
 実施の形態1の構成において、電源プラグ12の本体部12aの両側面には位置規制溝12dが形成されており、これらの位置規制溝12dに電源アダプター13に形成された位置規制突起13d(図7の(c)参照)が嵌まるように構成されている。位置規制溝12dは、本体部12aの両側面における対向する位置(180度回転した反対側の位置)に設けられている。また、電源アダプター13においては、接続される電源プラグ12の本体部12aの当接側先端部分を包み込むように形成された円環状のスカート部13cが形成されており、スカート部13cの内側には対向する位置に位置規制突起13dが形成されている。これらの位置規制突起13dは、電源アダプター13が電源プラグ12に装着(接続)されるとき、電源プラグ12の本体部12aの両側面に形成された位置規制溝12dとそれぞれ係合するよう構成されている。従って、実施の形態1の構成においては、電源アダプター13が電源プラグ12に対して、位置規制突起13dが位置規制溝12dと係合可能な180度回転した二カ所の位置でのみ接続可能となる。
 上記のように、実施の形態1の充電ケーブル1においては、電源プラグ12の接続端子の電極配置として、例えば、NEMA規格(National Electrical Manufacturers Association)におけるNEMA14-50(定格電圧240V、定格電流50A)が用いられている。従って、例えば、住宅用充電設備としては、三極の電極板(14a,14b,14c)とアースピン15が挿入される住宅用電源が想定されている。このようなアースピンを有する住宅用電源(100V/200V)において、アースピンの挿入口が電極の挿入口より上側となるように設置されている場合や、下側となるように設置されている場合がある。実施の形態1の電源プラグ12を屋内の住宅用電源A(200V用)に装着して充電する場合、アースピン挿入口が電極の挿入口より上側にあると、電源プラグ12は、アースピン15が上にある状態(図3に示した状態)で装着することができる。このとき、電源プラグ12の導出部12bからの電源側ケーブル8は、鉛直下方に導出する状態で配線される。
 一方、アースピン挿入口が電極の挿入口より下側にある場合には、電源側ケーブル8が電源プラグ12から上方に導出するため、電源側ケーブル8などの自重により電源プラグ12に対して住宅用電源Aから抜ける方向の力が加わる。電源プラグ12は、三極の電極板(14a,14b,14c)とアースピン15の4箇所で住宅用電源A(200V用)に装着される。さらに、各電極板、アースピンが高電圧・高電流用であるため十分な大きさを有し、電源プラグ12に対してそのような住宅用電源Aから抜ける方向の力が加わっても抜けることはない。
 次に、実施の形態1の電源プラグ12に電源アダプター13を装着した状態で、住宅用電源B(100V用)に装着して充電する場合について説明する。アースピン挿入口が電極の挿入口より上側にあると、電源プラグ12は、アースピン15が上にある状態(図9の(c)に示した状態)で電源アダプター13に装着することができる。このため、電源プラグ12の導出部12bからの電源側ケーブル8は、鉛直下方に導出する状態で配線される。
 一方、アースピン挿入口が電極の挿入口より下側にある場合には、図9の(c)に示した状態では、電源側ケーブル8が電源プラグ12から上方に導出する。そのため、電源プラグ12と一体化された電源アダプター13、および電源アダプター13が挿入された電源に対して無用な荷重が加わる。電源アダプター13は、二極の電極板(18a,18b)とアースピン19の3箇所で住宅用電源B(100V用)に装着される。さらに、二極の電極板(18a,18b)とアースピン19は低電圧・低電流用であるため、電源プラグ12の電極板(14a,14b,14c)とアースピン15と比較するとかなり小さい。電源側ケーブル8が電源プラグ12から上方に導出して電源アダプター13に対して電源から抜ける方向の力が加わると、電源アダプター13が電源(B)から抜けることが考えられる。
 しかし、実施の形態1の充電ケーブル1においては、電源プラグ12は180度回転した反対の位置で、電源アダプター13に装着することができる。アースピン挿入口が電極の挿入口より下側にある場合であっても、電源プラグ12の導出部12bからの電源側ケーブル8が、鉛直下方に導出する状態で配線することができる。そのため、電源プラグ12と一体化された電源アダプター13が電源(B)から抜けるなどの事故を抑制することが可能となる。
 上記のように、実施の形態1の電源アダプター13の構成においては、電源プラグ12の第3電極板14cとアースピン15が挿入される高電圧用電極孔(第3/アース電極孔13b)は共用である。また、電源アダプター13の構成においては、電源プラグ12の第3電極板14cとアースピン15が電気的に接続される第3/アース電極受け22とアース/第3電極受け23は電気的に接続状態である。このため、電源プラグ12が電源アダプター13に対していずれの位置(180度回転した位置)に装着されても、電源プラグ12のアースピン15は、電源アダプター13のアースピン19と電気的に確実に接続状態となる。
 従って、実施の形態1における充電ケーブル1を用いて充電を行う場合には、電源プラグ12の導出部12bが常に鉛直下方に導出するように、電源アダプター13に装着(接続)することが可能な構成である。
 上記のように、実施の形態1の充電ケーブル1において、電源プラグ12および電源アダプター13が接続端子としてアースピン(15,19)を有し、当該アースピン(15,19)が充電電極となる接続端子より上側位置、または下側位置に配置されており、充電電極の接続端子より突出長さが長く設定されている。このため、実施の形態1の充電ケーブル1が電源(B)に接続された状態において、電源プラグ12と一体化された電源アダプター13が、電源(B)から抜け落ちることが抑制された構成となる。
 図11は、実施の形態1の充電ケーブル1における主要な構成を示すブロック図である。図11に示すように、充電ケーブル1におけるコントロールユニット9には、マイクロコンピュータで構成された制御部25と、電源プラグ12に設けられた温度センサ16からの信号(温度情報)を受け取る電源プラグ温度検出部26と、電源プラグ12により供給された電源電圧情報を検知する電源電圧検知部27と、電源プラグ12と充電カプラ11との間の充電電路を開閉する開閉回路28(例えば、リレー)と、充電電路を流れる電流を監視して漏電を検出する漏電検出部29とを備えている。
 制御部25においては、電源プラグ温度検出部26からの温度情報が入力されており、検出された温度情報に基づいて、充電動作が制御される。また、漏電検出部29が漏電を検出すると、制御部25は開閉回路28を介して充電電路を遮断し、電源から電気推進車両2への電力供給を中止する。
 実施の形態1の充電ケーブル1においては、電源プラグ12における温度情報、電源プラグ12により供給された電源電圧情報などがコントロールユニット9の制御部25で検知されて、検知された情報に基づいて、制御部25がパイロット信号を形成する。制御部15は、形成されたパイロット信号を車両側ケーブル10を介して接続された電気推進車両2に送信する構成である。制御部25においては、電源電圧情報に応じて、例えばパイロット信号のデューティ比を変更して、電源から供給すべき充電電流などの充電情報を電気推進車両2へ送信する。
 以上のように、実施の形態1の充電ケーブル1の構成は、規格の異なる充電設備の電源(100V/200V)に対応することが可能な充電ケーブル1および充電ケーブル1に用いる電源アダプターを提供することができるものである。上記のように、本開示に係る実施の形態1の充電ケーブル1においては、電源アダプター13に電圧を変換するような機構はなく、電源から供給された電力を充電ケーブル1を介して電気推進車両2に送電するものであり、電気推進車両2において供給された電力および充電情報に基づいて適切な充電動作が行われる構成である。
 なお、実施の形態1の構成においては、電源プラグ12に温度検出手段である温度センサ16を用いて電源プラグ12および電源アダプター13の温度情報に基づいて充電動作を制御する構成ついて説明したが、本発明はこの構成に限定されるものではない。例えば、本発明においては、電源側ケーブル8におけるコントロールユニット9との接続部分、車両側ケーブル10の充電カプラ11、および/または本体であるコントロールユニット9などの主要な構成要素に温度検出手段を用いて、それぞれの構成要素の温度情報に基づいて充電動作を制御してもよい。
 充電ケーブル1を用いたときに生じる異常発熱は、充電設備の電源(電源コンセント)と電源プラグ12との接続部分、充電カプラ11と電気推進車両2のコネクタ7との接続部分、本体であるコントロールユニット9における充電電流が流れるパワーラインの接続端子間の接続部分などにおいて不完全な接触やトラッキング現象により発生する。したがって、温度検出手段(温度センサ16)は、異常発熱が発生する充電電路における各接続部分近傍に配設することが好ましい。
 前述のように、電気推進車両2においては、充電ケーブル1のコントロールユニット9における制御部25から送信されてくるパイロット信号に基づき、バッテリ5への充電電流が制御される。実施の形態1の構成によれば、温度検出手段が異常発熱を検出すると、温度検出手段の検出温度に応じて、電気推進車両側において充電電流を可変設定することが可能である。したがって、例えば、電源プラグ12の温度が高くなった場合には、充電電流を小さくし、電源プラグ12の温度上昇を抑制した状態で、バッテリ5への充電を遮断するのではなく、継続することができる。これにより、充電時間を短縮できるばかりでなく、リレーなどの耐久性を向上させることができる。
 また、電源プラグ12および/または充電カプラ11に第1の温度検出手段を配置するとともに、コントロールユニット9に第2の温度検出手段を配置することにより、制御部25が2つの第1/第2の温度検出手段の出力に基づいて電源プラグ12、電源アダプター13および/または充電カプラ11の不具合を判別することができ、機器の信頼性の向上につながる構成となる。
 さらに具体的には、コントロールユニット9の制御部25は、温度検出手段で検出された温度が予め設定されている閾値に到達すると、波形を変更したパイロット信号を電気推進車両2に送信して、充電電流を下げるよう当該電気推進車両2に通知することにより、電源プラグ12の過熱を防止することができ、安全性をさらに向上させることが可能となる。
 また、コントロールユニット9の制御部25は、温度検出手段で検出した温度が閾値に到達したとき、パルス幅を変更したパイロット信号を電気推進車両2に送信して、充電電流を無段階で下げるよう当該電気推進車両2に通知することによっても、同様の効果を奏することができる。
 また、コントロールユニット9の制御部25は、温度検出手段で検出した温度が閾値に到達したとき、パイロット信号を用いて、充電電流を段階的に下げるよう電気推進車両2に通知してもよい。
 また、コントロールユニット9の制御部25は、温度検出手段で検出された温度が閾値に到達したとき、振幅を変更したパイロット信号を電気推進車両に送信して、充電電流を下げるよう当該電気推進車両2に通知するようにしてもよい。
 また、コントロールユニット9の制御部25は、温度検出手段で検出された温度を演算することにより、閾値に到達しないように、事前に振幅を徐々に変更したパイロット信号を電気推進車両2に送信して、充電電流を下げるよう当該電気推進車両2に通知するようにしてもよい。
 さらに、前述の各制御方法に加えて、温度検出手段で検出された温度が閾値に到達したとき、最終的に充電電路を遮断する方式としてもよい。
 なお、上記の実施の形態において説明した構成のうちの任意の構成を適宜組み合わせることにより、それぞれが有する優れた効果を奏することができる。
 本開示は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本開示の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 本開示に係る充電ケーブルは、規格の異なる充電設備における電源に対して簡単な構成で容易に対応することが可能となり、少なくとも走行用バッテリを搭載して走行する電気推進車両用の充電ケーブルとして有用である。
  1 電気推進車両用充電ケーブル(充電ケーブル)
  2 電気推進車両
  3 走行用モータ
  4 インバータ
  5 バッテリー
  6 充電制御装置
  7 コネクタ
  8 電源側ケーブル
  9 コントロールユニット
 10 車両側ケーブル
 11 充電カプラ
 12 電源プラグ
 12a 本体部
 12b 導出部
 12c 係止部(係止手段)
 12d 位置規制溝
 12e 当接面
 13 電源アダプター
 13a 第1/第2電極孔
 13b 第3/アース電極孔
 13c スカート部
 13d 位置規制突起
 13e 当接面
 14 電極板(200V用)
 14a 第1電極板
 14b 第2電極板
 14c 第3電極板
 15 アースピン
 16 温度センサ(温度検出手段)
 17 係止爪(係止手段)
 18 電極板(100V用)
 18a 第1電極板
 18b 第2電極板
 19 アースピン
 20 第1/第2電極受け
 21 第2/第1電極受け
 22 第3/アース電極受け
 23 アース/第3電極受け
 24 接続板
 25 制御部
 26 電源プラグ温度検出部
 27 電源電圧検知部
 28 開閉回路
 29 漏電検出部

Claims (12)

  1.  充電設備の電源に接続される電源プラグを一端に有し、他端にコントロールユニットを介して電気推進車両に着脱自在に接続される充電カプラを有する電気推進車両用充電ケーブルにおいて、
     前記電源プラグが三極の高電圧用電極と高電圧用アースピンとを有する電極構造を有し、前記三極の高電圧用電極のうち二極の高電圧用電極を使用して電気推進車両のバッテリに充電するために使用される電気推進車両用充電ケーブルであって、
     前記三極の高電圧用電極と前記高電圧用アースピンが接続される電極受けを有し、前記電源プラグの電極構造と規格が異なる電源に対応する電極構造の接続端子を有する電源アダプター、を備えた電気推進車両用充電ケーブル。
  2.  前記電源アダプターの接続端子は、前記電源プラグの電極構造と規格が異なる二極の低電圧用電極と低電圧用アースピンとを有する電極構造を持ち、
     前記電源アダプターおいて、前記電源プラグにおける前記三極の高電圧用電極のうち充電電極として使用されない一極の高電圧用電極が接続される電極受けと、前記高電圧用アースピンが接続される電極受けとが互いに電気的に接続されており、
     前記二極の低電圧用電極が、前記電源プラグにおける前記三極の高電圧用電極のうち充電電極として使用される二極の高電圧用電極とそれぞれ接続される2つの電極受けにそれぞれ電気的に接続された請求項1に記載の電気推進車両用充電ケーブル。
  3.  前記電源アダプターにおいては、前記電源プラグにおける前記三極の高電圧用電極と前記高電圧用アースピンとが挿入されてそれぞれの電極受けに導く4つの電極孔を有し、
     前記電源プラグとの当接面において、前記4つの電極孔が対称的に配置され、
     前記4つの電極孔において、前記充電電極として使用されない前記一極の高電圧用電極が接続される電極受けに導く電極孔と、前記高電圧用アースピンが接続される電極受けに導く電極孔とは実質的に同じ形状を有する請求項2に記載の電気推進車両用充電ケーブル。
  4.  前記電源アダプターは、前記電源プラグとの当接面において、前記4つの電極孔に対する配置中心に対して180度回転した位置で前記電源プラグに装着されるように構成された請求項3に記載の電気推進車両用充電ケーブル。
  5.  前記電源アダプターは、前記充電電極として使用されない前記一極の高電圧用電極が接続される電極受けに導く電極孔と、前記高電圧用アースピンが接続される電極受けに導く電極孔とが、前記当接面に含まれる配置中心線の上に配設されており、
     前記充電電極として使用される二極の高電圧用電極のそれぞれに接続される電極受けに導く2つの電極孔が、前記配置中心線の両側に対称的に配置された請求項4に記載の電気推進車両用充電ケーブル。
  6.  前記電源アダプターは、装着された電源プラグに対して係合する係止手段を有する請求項1乃至5のいずれか一項に記載の電気推進車両用充電ケーブル。
  7.  充電設備の電源に接続される電源プラグを一端に有し、他端にコントロールユニットを介して電気推進車両に着脱自在に接続される充電カプラを有する電気推進車両用充電ケーブルにおいて、
     前記電源プラグが三極の高電圧用電極と高電圧用アースピンとを有する電極構造を有し、前記三極の高電圧用電極のうち二極の高電圧用電極を使用して電気推進車両のバッテリに充電するために使用される電気推進車両用充電ケーブルに装着される電源アダプターであって、
     前記三極の高電圧用電極と前記高電圧用アースピンが接続される電極受けを有し、前記電源プラグの電極構造と規格が異なる電源に対応する電極構造の接続端子を有する、電気推進車両用充電ケーブルに装着される電源アダプター。
  8.  前記電源アダプターの接続端子は、前記電源プラグの電極構造と規格が異なる二極の低電圧用電極と低電圧用アースピンとを有する電極構造を持ち、
     前記電源プラグにおける前記三極の高電圧用電極のうち充電電極として使用されない一極の高電圧用電極が接続される電極受けと、前記高電圧用アースピンが接続される電極受けとが互いに電気的に接続されており、
     前記二極の低電圧用電極が、前記電源プラグにおける前記三極の高電圧用電極のうち充電電極として使用される二極の高電圧用電極とそれぞれ接続される2つの電極受けにそれぞれ電気的に接続された請求項7に記載の電源アダプター。
  9.  前記電源プラグにおける前記三極の高電圧用電極と前記高電圧用アースピンとが挿入されてそれぞれの電極受けに導く4つの電極孔を有し、
     前記電源プラグとの当接面において、前記4つの電極孔が対称的に配置され、
     前記4つの電極孔において、前記充電電極として使用されない前記一極の高電圧用電極が接続される電極受けに導く電極孔と、前記高電圧用アースピンが接続される電極受けに導く電極孔とは実質的に同じ形状を有する請求項8に記載の電源アダプター。
  10.  前記電源プラグとの当接面において、前記4つの電極孔に対する配置中心に対して180度回転した位置で前記電源プラグに装着されるように構成された請求項9に記載の電源アダプター。
  11.  前記充電電極として使用されない前記一極の高電圧用電極が接続される電極受けに導く電極孔と、前記高電圧用アースピンが接続される電極受けに導く電極孔とが、前記当接面に含まれる配置中心線の上に配設されており、
     前記充電電極として使用される二極の高電圧用電極のそれぞれに接続される電極受けに導く2つの電極孔が、前記配置中心線の両側に対称的に配置された請求項10に記載の電源アダプター。
  12.  装着された電源プラグに対して係合する係止手段を有する請求項7乃至11のいずれか一項に記載の電源アダプター。
PCT/JP2018/043473 2017-11-30 2018-11-27 電気推進車両用充電ケーブルおよび電気推進車両用充電ケーブルに装着される電源アダプター WO2019107324A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019557220A JP7269178B2 (ja) 2017-11-30 2018-11-27 電気推進車両用充電ケーブルおよび電気推進車両用充電ケーブルに装着される電源アダプター
US16/886,110 US11305657B2 (en) 2017-11-30 2020-05-28 Electric propulsion vehicle charging cable and power adapter attached to electric propulsion vehicle charging cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-231009 2017-11-30
JP2017231009 2017-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/886,110 Continuation US11305657B2 (en) 2017-11-30 2020-05-28 Electric propulsion vehicle charging cable and power adapter attached to electric propulsion vehicle charging cable

Publications (1)

Publication Number Publication Date
WO2019107324A1 true WO2019107324A1 (ja) 2019-06-06

Family

ID=66665014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043473 WO2019107324A1 (ja) 2017-11-30 2018-11-27 電気推進車両用充電ケーブルおよび電気推進車両用充電ケーブルに装着される電源アダプター

Country Status (3)

Country Link
US (1) US11305657B2 (ja)
JP (1) JP7269178B2 (ja)
WO (1) WO2019107324A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021197366A (ja) * 2020-06-15 2021-12-27 台達電子工業股▲ふん▼有限公司Delta Electronics, Inc. 電気自動車の電源アダプタモジュール

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101996603B1 (ko) * 2018-12-19 2019-07-04 중앙제어 주식회사 전기차 충전 시 전기차 충전기의 온도를 센싱하는 장치
US11506541B2 (en) * 2019-01-03 2022-11-22 Aptiv Technologies Limited Temperature monitoring device
DE102019125736A1 (de) * 2019-09-25 2021-03-25 Audi Ag Kalibrieren einer Ladeeinrichtung eines Elektrofahrzeugs
US11552486B2 (en) * 2020-07-27 2023-01-10 Ford Global Technologies, Llc Portable vehicle charging system with location detection
DE102021121377A1 (de) * 2021-08-17 2023-02-23 Bayerische Motoren Werke Aktiengesellschaft Skalierbarer Adapter für einen Fahrzeug-Ladevorgang
US11780607B2 (en) * 2021-10-31 2023-10-10 Beta Air, Llc Connector with ambience monitoring capability and methods of use for charging an electric aircraft
US11884170B1 (en) * 2022-11-10 2024-01-30 Evject, Inc. Adapter for electric vehicle charging connectors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135104A (ja) * 2010-12-21 2012-07-12 Toyota Motor Corp 充電接続装置
JP2014517664A (ja) * 2011-04-08 2014-07-17 ヴァレオ システム ドゥ コントロール モトゥール 電荷移動管理方法および電荷移動装置
JP2016517141A (ja) * 2013-03-15 2016-06-09 エアロバイロメント, インコーポレイテッドAerovironment, Inc. ソケットキー安全システムを有する電気プラグアダプタ
US9472899B1 (en) * 2015-11-04 2016-10-18 Delphi Technologies, Inc. Adaptable electrical plug assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677607B1 (en) * 2011-02-15 2019-06-19 Toyota Jidosha Kabushiki Kaisha Adapter and vehicle equipped therewith, and method for controlling the vehicle
JP5934905B2 (ja) 2011-03-03 2016-06-15 パナソニックIpマネジメント株式会社 電気推進車両用充電ケーブル
JP5409737B2 (ja) * 2011-09-22 2014-02-05 富士重工業株式会社 電力供給システム、電動車両、および充電アダプタ
US20180015834A1 (en) * 2016-07-18 2018-01-18 GM Global Technology Operations LLC Fast charging home system for an electric vehicle
DK3453559T3 (da) * 2017-09-12 2020-07-13 Dietmar Niederl Ladekabel og adapter til elektrisk at oplade en energilagringsindretning på en energiforsyningsindretning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135104A (ja) * 2010-12-21 2012-07-12 Toyota Motor Corp 充電接続装置
JP2014517664A (ja) * 2011-04-08 2014-07-17 ヴァレオ システム ドゥ コントロール モトゥール 電荷移動管理方法および電荷移動装置
JP2016517141A (ja) * 2013-03-15 2016-06-09 エアロバイロメント, インコーポレイテッドAerovironment, Inc. ソケットキー安全システムを有する電気プラグアダプタ
US9472899B1 (en) * 2015-11-04 2016-10-18 Delphi Technologies, Inc. Adaptable electrical plug assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021197366A (ja) * 2020-06-15 2021-12-27 台達電子工業股▲ふん▼有限公司Delta Electronics, Inc. 電気自動車の電源アダプタモジュール
JP7190532B2 (ja) 2020-06-15 2022-12-15 台達電子工業股▲ふん▼有限公司 電気自動車の電源アダプタモジュール
US11837827B2 (en) 2020-06-15 2023-12-05 Delta Electronics, Inc. Vehicle power adaptor module

Also Published As

Publication number Publication date
JPWO2019107324A1 (ja) 2021-03-25
US20200317069A1 (en) 2020-10-08
US11305657B2 (en) 2022-04-19
JP7269178B2 (ja) 2023-05-08

Similar Documents

Publication Publication Date Title
WO2019107324A1 (ja) 電気推進車両用充電ケーブルおよび電気推進車両用充電ケーブルに装着される電源アダプター
KR102516435B1 (ko) 전기 자동차 충전 장치
US9153980B2 (en) Portable electric vehicle recharging device
CN103858297B (zh) 电动车辆用充放电装置
US9090169B2 (en) Adapter and vehicle for performing power feeding using adapter
US9466999B2 (en) Vehicle with an electric storage section capable of discharging (supplying) an electric power to an external electric load, discharge system including the vehicle and a power cable, method for discharging the electric storage section, and equipment external to the vehicle used in the discharge system
US9387767B2 (en) Vehicle with an electric storage section, and charge-discharge system including the vehicle and an energy management equipment
EP3842274B1 (en) Method for identifying a feeding connector for feeding electric power from a vehicle to an external power receiving device
JP2010110055A (ja) 電気自動車用充電ケーブル
TWI514716B (zh) 過電流檢測裝置、利用該過電流檢測裝置之充放電系統、配電盤、充電控制裝置、車輛用充放電裝置、車輛用電氣設備
US20120119702A1 (en) Charging Cable Connector for Connecting an Electric Vehicle to a Charging Station
US9960612B2 (en) Charging and discharging system for a vehicle including a first fuse in the vehicle and a second fuse in a cable connected to the vehicle
CN103001279B (zh) 车辆充电装置
CA2827606A1 (en) Charging cable for electrically-driven vehicle
US20160009189A1 (en) Vehicle power device
US9969277B2 (en) Electric vehicle AC power adapter
CN102237619B (zh) 电动车辆传导式充电插接器
JP2011193683A (ja) 自動車用充電ケーブル
CN201690079U (zh) 电动车辆传导式充电插接器
JP2017135767A (ja) 電力変換ユニット
US20240051398A1 (en) Electric vehicle charging controller
JP5925534B2 (ja) 電源ケーブル
US20230278448A1 (en) Electric meter collar housing electric vehicle supply equipment
TW201726447A (zh) 用於針對危險電氣信號將電動車輛閉鎖的方法及系統
JP2005210797A (ja) 安全機能付き結線箱、電源回路用の安全装置、及び、電源回路の安全システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557220

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882816

Country of ref document: EP

Kind code of ref document: A1