WO2019107271A1 - Plasma-resistant resin composition and electrostatic chucking device employing same - Google Patents

Plasma-resistant resin composition and electrostatic chucking device employing same Download PDF

Info

Publication number
WO2019107271A1
WO2019107271A1 PCT/JP2018/043187 JP2018043187W WO2019107271A1 WO 2019107271 A1 WO2019107271 A1 WO 2019107271A1 JP 2018043187 W JP2018043187 W JP 2018043187W WO 2019107271 A1 WO2019107271 A1 WO 2019107271A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
plasma
adhesive
composition according
Prior art date
Application number
PCT/JP2018/043187
Other languages
French (fr)
Japanese (ja)
Inventor
奥村 勝弥
津田 統
勇気 清水
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Priority to JP2019557196A priority Critical patent/JP7186722B2/en
Publication of WO2019107271A1 publication Critical patent/WO2019107271A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a resin composition having high plasma resistance, and an electrostatic chuck device using the same.
  • the plasma processing apparatus plasmas a predetermined gas with a high frequency power source or the like to generate reactive chemical species having high reaction activity such as radicals, ions, and electrons.
  • the plasma processing apparatus utilizes physical impact force or chemical reactivity of the reactive chemical species, for example, CVD (chemical vapor deposition) in the manufacturing process of semiconductor, liquid crystal panel, solar cell, LED, etc. It is used as an apparatus, sputtering apparatus, plasma etching apparatus, plasma ashing apparatus and the like. In addition to these, it has a wide range of applications in general industries such as surface modification and dry cleaning.
  • the plasma processing apparatus is mainly made of metal, quartz or the like, but a resin member is used in part.
  • a packing or an O-ring is used as a sealing material of a vacuum system (gas supply unit, plasma source, plasma processing chamber, exhaust pipe, etc.) in reduced pressure plasma.
  • the resin members used in the plasma source portion, the plasma processing chamber, and the exhaust pipe are exposed to reactive chemical species with high reactivity directly or indirectly, and are degraded by decomposition or deterioration. For this reason, the degree of vacuum decreases, particles and contamination occur, and periodical replacement is required. It is a problem that the production stop at that time causes cost increase and productivity decrease.
  • the electrostatic chuck device is installed in the plasma processing chamber and directly exposed to reactive chemical species, deterioration of the resin member is remarkable.
  • the chucking part (wafer installation part) of the electrostatic chuck apparatus was comprised with the polyimide resin, it is changed into the ceramic for the said deterioration.
  • the electrostatic chuck apparatus (FIG. 1) in which ceramics were used is used combining an aluminum member and a ceramic member, those joining is performed using an adhesive agent.
  • the wafer is heated and cooled through the electrostatic chuck apparatus depending on the process conditions. Therefore, the aluminum member and the ceramic member may be distorted (displaced) due to the difference between their thermal expansion coefficients, which may lead to breakage.
  • the adhesive is also used to absorb the strain due to the difference in the thermal expansion coefficient.
  • the adhesive has the problem of deterioration due to the plasma, the maintenance frequency is increased, and the cost increase and the decrease in production efficiency become problems.
  • Patent Document 1 As a resin composition of a molded member having improved plasma resistance, in Patent Document 1, various fillers can be added to the fluorine-containing elastomer composition having high plasma resistance in order to reinforce the elastomer, increase the amount, and improve the processability.
  • the invention in which is used is disclosed.
  • Patent Document 2 discloses that a vulcanized product having excellent compression set resistance characteristics and plasma resistance can be obtained by combining the fluororubber composition and the spherical composite cured melamine resin particles, and therefore, for a semiconductor manufacturing apparatus.
  • an invention which can be effectively used as a vulcanized molding material of a sealing material.
  • Patent Document 4 As a resin composition of the adhesive agent which improved plasma resistance, it is disclosed by patent document 3 that the adhesive sheet containing acrylic rubber and a thermosetting resin has high plasma resistance. Furthermore, as a method of preventing the deterioration of the adhesive used for the electrostatic chuck, it has been proposed to cover the surface of the adhesive with a material having high plasma resistance so that the adhesive is not exposed to plasma (Patent Document 4) ).
  • Patent Documents 1 to 3 are characterized in that a matrix resin or a combination of a specific matrix resin and a specific filler exhibits high plasma resistance, and the effect thereof is as follows: Because it is limited to the resin, or the combination of the specific resin and the specific filler, the application and application have been limited. In addition, the plasma resistance was not sufficient.
  • a protective material (edge seal) for preventing deterioration of the adhesive of the electrostatic chuck device disclosed in Patent Document 4 it is disclosed that only an elastomer is used, and a material having high plasma resistance is used. Even if there were, there was a possibility that the frequency of replacement would be high, and there was room for improvement.
  • the present invention reduces the frequency of replacement by providing a resin composition that significantly improves the inherent plasma resistance of the resin regardless of the matrix resin, and an electrostatic chuck device using the resin composition. Reduce costs and improve production efficiency.
  • the resin composition can be a molded member or an adhesive.
  • the present invention (1) is A resin composition used in an environment exposed directly or indirectly to plasma, comprising: Matrix resin, And a filler of a layered inorganic compound having ion exchangeability dispersed in the matrix resin,
  • the blending of the layered inorganic compound is characterized in that it is 1 to 90% by volume with respect to the sum of the volume of the matrix resin and the volume of the layered inorganic compound. It is a resin composition.
  • the present invention (2) is The resin composition according to the invention (1), wherein the ion exchangeability is anion exchangeability.
  • the present invention (3) is The resin composition according to the invention (1) or (2), wherein the layered inorganic compound is represented by the following formula (1). ⁇ A 1-x B x (OH) 2 ⁇ (D x / n ⁇ mH 2 O) (1)
  • A is a divalent metal ion
  • B is a trivalent metal ion
  • D is an n-valent anion
  • x is a real number in the range of more than 0 and 0.4 or less
  • m is a real number greater than 0 It is.
  • the present invention (4) is The resin composition according to the invention (3), wherein the layered inorganic compound is a layered inorganic compound represented by the following formulas (2) and (3). ⁇ Mg 1-x Al x (OH) 2 ⁇ (CO 3 ) x / 2 ⁇ mH 2 O (2) 1.5 ⁇ (1-x) / x ⁇ 4 (3)
  • the present invention (5) is The resin composition according to the invention (4) or (5), wherein the layered inorganic compound is a hydrotalcite represented by Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O .
  • the present invention (6) is The resin composition according to any one of the inventions (1) to (5), wherein the adhesive contains a silicone resin.
  • the present invention (7) is The resin composition according to any one of the inventions (1) to (6), wherein the adhesive is included in a plasma etching apparatus.
  • the present invention (8) is The resin composition according to any one of the inventions (1) to (7), wherein the resin composition is an adhesive.
  • the present invention (9) is The resin composition according to any one of the inventions (1) to (7), wherein the resin composition is used as a resin molded member obtained by curing the resin composition.
  • the present invention (10) is The resin composition according to the invention (9), wherein the resin molded member is any one of a belt, a band, a packing, an O-ring, and a sheet.
  • the present invention (11) is The resin molded member is used as a protective material that covers the surface of an adhesive exposed portion used in an electrostatic chuck device provided in a plasma etching apparatus, and isolates the adhesive surface from plasma. It is a resin composition of the invention (9) or (10).
  • the present invention (12) is An electrostatic chuck device comprising the resin composition described in the inventions (1) to (11).
  • the present invention it is possible to provide a resin composition having significantly improved plasma resistance regardless of the type of matrix resin.
  • the obtained resin composition can be used in a wide range of applications as an adhesive or a molded member, and can be effective in improving maintenance costs and production efficiency of a plasma device.
  • the resin composition of the present invention is a resin composition in which a layered inorganic compound having ion exchange properties is dispersed in a resin which is a matrix. It is used in an environment exposed to plasma directly or indirectly.
  • the resin composition according to the present invention is excellent in plasma resistance, and can be used as a molded member such as an adhesive of an electrostatic chuck device or a sealing material of a plasma device.
  • the adhesive is not limited to a liquid or paste adhesive, and may be a sheet or tape adhesive.
  • an adhesive includes, in the form of a liquid or paste, cured by heat treatment or the like.
  • it can also be used as a protective material by using it as a cover which covers sealing materials, such as packing and O-ring, and a member with low plasma resistance as a use of a shaping
  • the resin composition according to the present invention is in direct contact with the plasma, but contacts with electrons, ions and radicals generated from the plasma. Including the case.
  • the resin composition according to the present invention is not limited to the case where it is used in the plasma generation part of the plasma chamber, and used in the inside or connection part of plasma source, plasma chamber, exhaust piping etc. Including the case where
  • “dispersed” here is not limited to the case where the inorganic compound is present in a uniform state in the matrix resin, and may be unevenly distributed.
  • the plasma resistance can be efficiently improved by making a large number of localized near the surface exposed to plasma.
  • plasma resistance is durability with respect to plasma here, and is evaluated by the change in mass and surface observation before and after plasma exposure.
  • the mass change before and after the plasma exposure can be measured by weighing the mass before and after the plasma exposure using a direct reading balance or the like.
  • the surface observation before and after the plasma can be evaluated by observing generation of a crack or the like by observation with an optical microscope, a scanning electron microscope or the like.
  • the resin contained in the resin composition according to the present invention is not particularly limited, as long as the layered inorganic compound can be dispersed.
  • the said resin can be used in mixture of plurality.
  • a resin exhibiting preferable performance can be selected, but from the viewpoint of plasma resistance, a molded resin is also used as a silicone resin or fluorine resin having high plasma resistance. Is also preferable.
  • a layered inorganic compound filler having ion exchangeability is dispersed.
  • the layered inorganic compound filler is not particularly limited, as long as it can be dispersed in the matrix resin.
  • smectite group montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, sauconite, steven site; vermiculite group di. Vermiculite, tri.
  • the hydrotalcite is a type of layered inorganic compound represented by the following formula (1).
  • the layered inorganic compound represented by the following formula (1) is also referred to as a hydrotalcite-like compound.
  • A is a divalent metal ion
  • B is a trivalent metal ion
  • D is an n-valent anion
  • x is a real number in the range of more than 0 and 0.4 or less
  • m is a real number greater than 0 And it is a real number that changes depending on the degree of dehydration.
  • layered inorganic compounds compounds represented by the following formulas (2) and (3) are more preferable because of their high anion exchangeability.
  • hydrotalcite represented by Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O is particularly preferable because it has an ability to exchange ions with various anions.
  • the plasma processing apparatus plasmifies the source gas. That is, electrons, radicals derived from gas, and ions derived from gas exist in plasma.
  • the source gas is oxygen gas, electrons, oxygen ions, and oxygen radicals are generated.
  • radicals it is easy to cause the radicals to react with each other and be activated, and for electrons and ions, it is easy to react and react with ions or substances having opposite charges.
  • a layered inorganic compound filler having anion exchangeability is considered.
  • the reactive species incorporated into the layer collide with (react with) other substances in a narrow space and die.
  • the radicals react with one another to be activated, (2) the electron with negative charge is reacted with the oxygen ion with positive charge to be activated, (3) negative
  • the oxygen ion having the following charge has a mode in which it is ion-exchanged with an anion present in the layer to be dead and the like.
  • reactive species generated by plasma depend on the source gas (type or combination of one or more types of gases) and plasma processing conditions (gas flow rate, plasma chamber pressure, etc.), the type, concentration, charge valence Since the radical reactivity and the like change, the type and amount of the layered inorganic compound filler added to the resin composition can be adjusted.
  • the average thickness of the layered inorganic compound filler is not limited as long as the effects of the present invention are exhibited, but it is preferably 0.005 ⁇ m to 0.1 ⁇ m.
  • the value of the average thickness is a value obtained by observing and measuring the thickness of at least 100 fillers of the layered inorganic compound filler with a scanning electron microscope, and determining the average value.
  • the size of the layered inorganic compound filler is not particularly limited, and for example, the average plate surface diameter is 0.008 ⁇ m to 1.0 ⁇ m.
  • the thickness is preferably 0.02 ⁇ m to 0.8 ⁇ m, and more preferably 0.02 ⁇ m to 0.7 ⁇ m.
  • the value of the average plate surface diameter is a value obtained by observing and measuring at least 100 fillers of the layered inorganic compound filler with a scanning electron microscope, and determining the average value thereof. More specifically, the “average plate surface diameter” is the diameter of a circle having the same area as the area of the plate-like surface of the filler imaged by scanning microscope observation (for example, in known software) The average value of the area diameter derived by calculating
  • the BET specific surface area of the layered inorganic compound filler is preferably 5 m 2 / g to 150 m 2 / g. More preferably, it is 7 m 2 / g to 125 m 2 / g, and still more preferably 8 m 2 / g to 100 m 2 / g.
  • the BET specific surface area is in such a range, the layered inorganic compound filler can obtain sufficient ion exchange ability, aggregation of the particles is difficult to occur, and the particles can be uniformly dispersed in the resin.
  • the BET specific surface area can be measured in accordance with JIS Z 8830: 2013 “Method of measuring specific surface area of powder (solid) by gas adsorption”.
  • the particle surface is coated with at least one surface treatment agent selected from higher fatty acids, anionic surfactants, higher fatty acid phosphate esters, coupling agents and polyhydric alcohol esters. Also good.
  • a surface coating By coating with a surface coating, the dispersibility of the layered inorganic compound filler in the resin is improved, and further functionalization and stabilization of the resin are possible.
  • the blending amount of the layered inorganic compound filler is 1% by volume to 90% by volume, preferably 1% by volume to 50% by volume, and more preferably 1% by volume to 35% by volume, with respect to the matrix resin. .
  • the amount of the layered inorganic compound filler is in such a range, sufficient adhesiveness can be obtained when used as an adhesive, and when used as a molded member, sufficient fluidity is obtained. As it is obtained, the formability can be enhanced.
  • the resin composition according to the present invention may further contain additives depending on the application.
  • additives for example, a crosslinking agent, a curing catalyst, an inorganic filler (excluding the layered inorganic compound), an organic filler, an adhesive imparting component, a water repellent, an oil repellent, an ultraviolet absorber, an antibacterial agent, an antistatic agent, a paint fixing agent
  • Anti-wrinkle agents, antioxidants, surfactants, coupling agents, coloring agents, solvents, etc. can be mentioned.
  • the inorganic filler is added for the purpose of reducing the thermal expansion coefficient of the molded body and improving the elastic modulus of the molded body, and crushed, spherical, subspherical, fibrous and phosphorus pen-like materials are used.
  • spherical or subspherical fillers having an average particle diameter of 10 ⁇ m or less are preferable in consideration of surface smoothness.
  • a fibrous thing can also be used aiming at the reinforcing effect of crack resistance.
  • the inorganic filler can be used in a range in which the total of the layered inorganic compound and the inorganic filler is 1% by volume to 90% by volume with respect to the volume of the resin component of the resin composition.
  • the thermal expansion coefficient of the cured product is suppressed, the thermal shock resistance is sufficient, and further, the resin composition is sufficiently fluid, Workability is high, and generation of voids can be suppressed.
  • An organic filler such as a thermal thermoplastic resin, a rubber component, or various oligomers may be added to the resin composition for the purpose of improving the crack resistance and reducing the elastic modulus of the molded product.
  • the organic filler can be used in such a range that the total amount of the layered inorganic compound filler and the organic filler is 1% by volume to 90% by volume with respect to the volume of the resin component of the resin composition.
  • the resin composition according to the present invention may be a sheet-like or tape-like thin film adhesive.
  • the resin composition can be laminated on a substrate, and a release film is provided on the surface of the laminated resin composition layer opposite to the substrate, and the resin composition until used It can be a layer protective material.
  • the said base material can also use a peeling film.
  • the said base material is not specifically limited, For example, a polypropylene film, a fluororesin film, a polyethylene film, a polyethylene terephthalate film, and paper are mentioned.
  • a peeling film is not specifically limited, A polypropylene film, a fluorine resin film, a polyethylene film, a polyethylene terephthalate film, and paper are mentioned.
  • the peeling film can use what gave peelability with silicone resins, such as a polydimethylsiloxane, on the surface which contact
  • the thickness of the substrate and the peelable film is preferably 1 ⁇ m to 200 ⁇ m, and more preferably 10 ⁇ m to 100 ⁇ m.
  • the release film preferably has a 90 ° peel strength to the adhesive sheet in the range of 0.01 g / cm to 10.0 g / cm. When the 90 ° peel strength is within the above range, the peelable film does not easily peel off during processing of the adhesive sheet with a protective film, and the peelable film peels off from the adhesive layer cleanly during attachment processing, resulting in good workability. Become.
  • the 90 ° peel strength can be measured by a known method, and can be based on, for example, JIS Z0237: 2009 “adhesive tape / adhesive sheet test method”. When the peelable film is laminated on both sides of the adhesive sheet, it is preferable that the peelability of the peelable film laminated on one side be different from the peelability of the peelable film laminated on the other side.
  • Viscosity before curing of adhesive for electrostatic chuck device The viscosity before curing of the resin composition according to the present invention can be, for example, 100 mPa ⁇ s to 5000 Pa ⁇ s, and 1 Pa ⁇ s to 5000 Pa ⁇ s is more Preferably, 5 Pa ⁇ s to 5000 Pa ⁇ s is more preferable.
  • the high viscosity side that is, the upper limit of the viscosity, is not particularly limited as long as it can flow by pressure or heating.
  • the viscosity can be measured by a known method, for example, according to JIS K7117-1: 1999 "Plastic-liquid, emulsion or dispersion resin-measurement method of apparent viscosity with Brookfield type rotational viscometer”. It can be measured in compliance.
  • the loss tangent at a predetermined temperature of the adhesive after curing of the resin composition according to the present invention can be 0.008 to 5, 0.03 -3 is more preferable.
  • the loss tangent is in such a range, it is appropriately elastic and viscous, and can absorb the strain due to the difference in the thermal expansion of the material of the bonded part of the electrostatic chuck device, and the adhesive layer is broken In addition to the above, it is possible to prevent deformation due to viscous flow and the like.
  • the electrostatic chuck device may form accurate wiring.
  • the predetermined temperature is a temperature at which the electrostatic chuck device is used, and is a temperature determined according to the application and process conditions.
  • the measurement of the loss tangent can be performed by a known method, and can be measured, for example, by a method according to JIS K7244-4.
  • the ratio (G ′ ′ / G ′) of the complex loss elastic modulus (referred to as G ′ ′) and the complex storage elastic modulus (referred to as G ′) measured by this measurement can be a loss tangent.
  • the storage elastic modulus of the adhesive after curing of the resin composition according to the present invention at 30 ° C. is preferably 5 ⁇ 10 4 Pa to 5 ⁇ 10 8 Pa, and more preferably 1 ⁇ 10 5 Pa to 1 ⁇ 10 8 Pa.
  • the storage elastic modulus at 100 ° C. is preferably 1 ⁇ 10 4 Pa to 1 ⁇ 10 8 Pa, and more preferably 5 ⁇ 10 4 Pa to 5 ⁇ 10 7 Pa.
  • the storage elastic modulus at 150 ° C. is preferably 1 ⁇ 10 4 Pa to 1 ⁇ 10 7 Pa.
  • the elastic modulus of the adhesive after curing of the resin composition according to the present invention preferably has a small change in the heat deterioration test and the heat cycle test.
  • the electrostatic chuck device is used as a stage of an etching device or the like that performs accurate wiring formation, heating and cooling are repeated when the stage unit is used. Therefore, if the change in elastic modulus after the heat deterioration test or heat cycle test is large, the amount of distortion of the adhesive after curing of the resin composition is not stable, the stage position is not stable, and the wiring processing accuracy of the device is lowered.
  • the elastic modulus can be measured by a known method, and can be measured, for example, in accordance with JIS K 6254: 2010 "Vulcanized rubber and thermoplastic rubber-Determination of stress / strain characteristics".
  • the thermal deterioration test can be conducted by a known method, but can be conducted, for example, according to JIS K 6257: 2010 "Vulcanized rubber and thermoplastic rubber-Determination of heat aging characteristics".
  • the change in elastic modulus after the test is preferably in the range of 30% to 500% .
  • the heat cycle test can be conducted by a known method, and can be conducted, for example, by a method according to JIS K 6270: 2001 "Vulcanized rubber and thermoplastic rubber-Determination of tensile fatigue characteristics-Constant strain method". .
  • JIS K 6270: 2001 "Vulcanized rubber and thermoplastic rubber-Determination of tensile fatigue characteristics-Constant strain method”.
  • the change in elastic modulus after the test is in the range of 50% to 300%. Is preferred.
  • Adhesive strength after curing of adhesive for electrostatic chuck device The adhesive strength after curing of the resin composition according to the present invention can be 0.1 N / mm 2 to 100 N / mm 2 and can be 0.5 N / mm 2 to 80 N / mm 2 is more preferable, and 1 N / mm 2 to 50 N / mm 2 is more preferable.
  • the adhesive strength at 150 ° C. can be 0.05 N / mm 2 to 100 N / mm 2, and more preferably 0.1 N / mm 2 to 50 N / mm 2 . Furthermore, when the heat cycle conditions of the adhesive after curing of the resin composition are tested as ⁇ 20 ° C. to 125 ° C.
  • the change in elastic modulus after the test is in the range of 50% to 300%. Is preferred.
  • the adhesive strength is in such a range, it is possible to prevent the decrease in the adhesive force due to the repeated application of the thermal stress due to the heating and cooling cycles of the electrostatic chuck device.
  • the physical properties can be freely determined according to the molding method and application.
  • the method for molding the resin molded member is not particularly limited, and a known molding method can be used.
  • injection molding, injection compression molding, extrusion molding, compression molding, blow molding, press molding and the like can be mentioned. It can be selected in consideration of the nature of the matrix resin to be used and the use of the resin molded member.
  • a base material can be manufactured by the above-described forming method or the like, and cutting and the like can be additionally performed. Below, the case where an elastomer is used as matrix resin and others are divided and demonstrated.
  • the matrix resin is used as an elastomer in a resin molded member used in an electrostatic chuck apparatus, which is a preferred example of the present resin composition.
  • the elastomer in the present specification refers to a resin exhibiting rubber elasticity at 23 ° C. For example, it is used as a belt or a band-like resin molding member.
  • the physical properties and the like are merely examples and do not limit the present invention.
  • Viscosity before curing The viscosity of the resin composition according to the present invention before curing is too high in flowability when the viscosity is low, making it difficult to control the shape. Particularly in the case of a sheet-like shape or the like, it becomes difficult to control the thickness. In addition, when the viscosity is too high, the fluidity is insufficient and the molding becomes difficult.
  • the viscosity can be measured by a known method, for example, according to JIS K7117-1: 1999 "Plastic-liquid, emulsion or dispersion resin-measurement method of apparent viscosity with Brookfield type rotational viscometer". It can be measured in compliance.
  • the hardness after curing of the resin composition according to the present invention is not particularly limited, and can be determined according to the application.
  • the Shore A hardness after curing is preferably 10 to 100, and more preferably 20 to 90.
  • the Shore A hardness can be measured using a durometer (spring-type rubber hardness meter) that presses and deforms an indenter on the surface of an object to be measured, measures the amount of deformation (indentation depth), and digitizes it.
  • the Shore A is in such a range, it has appropriate rigidity, and can be fixed to the adhesive surface of the electrostatic chuck device as a protective material without looseness (without any gap).
  • it becomes possible to follow the shape of the adhesive surface and it becomes possible to fix the surface without a gap.
  • the reactive chemical species described above penetrate from the gap, resulting in incomplete protection of the adhesive.
  • the elongation after curing of the resin composition according to the present invention is not particularly limited, and can be determined according to the application.
  • the elongation after curing when used as a protective material for protecting the adhesive surface of the electrostatic chuck device, is preferably 1% to 1000%, and more preferably 3% to 500%.
  • the elongation rate is in such a range, it becomes a flexible protective material, and the operability at the time of fixing on the adhesive surface of the electrostatic chuck device becomes easy, and the working efficiency of the attachment can be increased.
  • the glass transition temperature (Tg) which is a parameter related to the elongation, is sufficiently high, and can be used in a heating environment.
  • the elongation can be measured by a known method, and can be measured, for example, in accordance with JIS K-6251: 2010 "Vulcanized rubber and thermoplastic rubber-How to determine tensile properties".
  • the tensile strength after curing of the resin composition according to the present invention is not particularly limited, and can be determined according to the application.
  • the tensile strength after curing is preferably 0.1 N / mm 2 to 100 N / mm 2 , and 0.1 N / mm 2 to 80 N / mm 2 is more preferable.
  • the upper limit of the tensile strength is not particularly limited, but when the tensile strength is high, the hardness and the elongation increase, and the above-mentioned problems occur.
  • the tensile strength can be measured by a known method, and can be measured, for example, in accordance with JIS K-6251: 2010 "Vulcanized rubber and thermoplastic rubber-Determination of tensile properties".
  • matrix resin is resin (hard resin) other than elastomer (plastic resin) used for the electrostatic chuck apparatus which is a suitable example of the present resin composition which is a preferable example of the present resin composition
  • elastomer plastic resin
  • an example of the case is described. That is, when the matrix resin of the said shaping
  • the matrix resin is used as an elastomer, there are advantages such as ease of operation, but the structure is weak, and there is a limit in matching with the complicated structure of the other to be fixed.
  • thermosetting resin and a thermoplastic resin can be used as a matrix resin in this invention. Therefore, it may be liquid or solid at normal temperature, as long as it exhibits properties suitable for the molding method at the time of molding. For example, in the method of molding by flowing into a mold, it is sufficient to have fluidity, that is, viscosity, to flow in the mold at the temperature at the time of molding.
  • the kneader may have elasticity and viscosity that can be molded by the kneader, that is, viscoelasticity.
  • the physical properties and the like are merely examples and do not limit the present invention.
  • Viscosity before curing of thermosetting resin or viscosity at melting of thermoplastic resin Viscosity before curing when matrix resin of resin composition according to the present invention is thermosetting resin, and matrix resin as thermoplastic resin
  • the viscosity at the time of melting when it is used as a resin is not particularly limited. It is sufficient that the viscosity is suitable for the molding method of the resin molded member.
  • the modulus of elasticity after curing of the resin composition according to the present invention is not particularly limited, and can be determined according to the application.
  • the tensile modulus after curing is preferably 0.2 GPa to 40 GPa, and more preferably 0.5 GPa to 30 GPa .
  • the tensile elastic modulus is in such a range, it can be fixed using a screw or the like, and it can not be too hard and can have high processability.
  • the measurement of the tensile elastic modulus after curing can be performed by a known method, and can be measured, for example, in accordance with JIS K7161-1994 "Plastics-Test method of tensile properties".
  • the tensile strength after curing of the resin composition according to the present invention is not particularly limited, and can be determined according to the application.
  • 50 kPa or more is preferable and, as for the tensile strength after the said hardening, 200 kPa or more is more preferable.
  • the tensile strength is in such a range, it has sufficient strength and is not easily broken.
  • the tensile strength can be measured by a known method, and can be measured, for example, in accordance with JIS K7161-1994 "Plastics-Test method of tensile properties".
  • the method for producing the resin composition according to the present invention can be produced by a known method, and for example, the matrix resin, the layered inorganic compound filler and other components are measured in predetermined amounts. For example, it may be prepared by mixing with a bead mill. Moreover, when using the said resin composition as a sheet-like adhesive agent or a tape-like adhesive agent, it can thin-film the prepared resin composition on a base material using a well-known method. As a method of forming a thin film, for example, a method using an applicator may be mentioned. In the case of processing as a forming member, it can be formed by a known method, for example, a method of flowing the resin composition into a mold and applying pressure by a press machine for forming.
  • the resin composition according to the present invention is used in an environment exposed to plasma directly or indirectly because of its high plasma resistance. Although it does not specifically limit as an aspect of use, It is preferable to use as molded members, such as an adhesive agent and a sealing material.
  • the plasma apparatus in which the resin composition according to the present invention is used is not limited to the general plasma used under reduced pressure (under vacuum), but also includes atmospheric pressure plasma (atmospheric pressure plasma) used under atmospheric pressure.
  • the plasma processing apparatus is not particularly limited as long as it is an apparatus using plasma, such as a plasma etching apparatus, a plasma ashing apparatus, a CVD apparatus, a sputtering apparatus, a deposition apparatus, a dry cleaning apparatus, and a surface reforming apparatus.
  • the resin composition according to the present invention can be used in an electrostatic chuck device as a suitable application.
  • a mode in which a metal base which is a conductive portion is bonded as an adhesive layer, and a suction portion which is an insulating member which sucks a silicon wafer etc. (2) the adhesive layer An adhesive surface protection material which isolates the surface of the adhesive layer not included in the invention from the plasma.
  • FIG. 1 is a top view (FIG. 1a) and a sectional view (FIG. 1b) of an electrostatic chuck device used in a plasma processing apparatus.
  • the electrostatic chuck device 100 is configured by stacking the ceramic adsorption portion 10, which is an insulating member, the adhesive layer 20, the insulating layer 30, the electrically insulating elastic layer 40, the metal substrate 50, the conductive portion 60, and the electrode 70 in layers. be able to. Additionally, adhesive surface protectors 80 and 90 can be provided to isolate the adhesive from the plasma.
  • the through holes provided in the electrostatic chuck device 100 are for receiving silicon wafer support pins of a lift rod that delivers the silicon wafer from the robot hand to the electrostatic chuck device. By moving the wafer delivery pin up and down, the silicon wafer can be detached from the electrostatic chuck device and delivered to the robot hand. It is preferable that a temperature control means, such as a heat medium passage (not shown) through which a heat medium for adjusting the wafer temperature is formed, be formed inside the metal base 50.
  • the electrostatic chuck device 100 can apply a voltage to the electrode 70 to charge the adsorbing portion 10 and adsorb the silicon wafer by electrostatic force. Further, the adsorption can be released by removing the voltage.
  • the resin composition according to the present invention As an adhesive, it can be used for the adhesive layer 20, and it is possible to alleviate the strain caused by the difference in the thermal expansion coefficient between the ceramic member and the aluminum member, and further to plasma resistance It is possible to improve the When using for this application, it is preferable to use a sheet-like adhesive because the coating operation is simplified.
  • the thickness of the sheet-like adhesive can be designed according to the application and is not particularly limited. For example, it can be 5 ⁇ m to 500 ⁇ m, more preferably 10 ⁇ m to 200 ⁇ m, and still more preferably 20 ⁇ m to 150 ⁇ m.
  • the resin composition by this invention can be used for adhesive surface protection materials 80 and 90 by setting it as a shaping
  • Adhesive surface protection materials 80 and 90 isolate the adhesive layer 20 from the plasma and can prolong the life of the adhesive layer.
  • the adhesive surface protection materials 80 and 90 can be used in the form of a band, for example, by using an elastomer as a matrix. In this case. The elastic force of the elastomer enables it to be attached and fixed to the electrostatic chuck device, and the replacement operation is simplified. Further, the adhesive surface protection members 80 and 90 can be fixed to the electrostatic chuck device by screwing or the like by using the matrix as the cured resin, and the electrostatic chuck device having the complicated structure is also possible.
  • the resin composition of the present invention exerts an effect even if it is used for either the adhesive layer 20 or the adhesive surface protective materials 80 and 90 described above, the use of both of them further enhances the effect. Can play. Since the adhesive surface protection material has high plasma resistance, in addition to a decrease in replacement frequency, it is easy to replace, so that the maintenance time can be significantly shortened. In the case of the electrostatic chuck device where only the conventional adhesive is used, it is necessary to take the electrostatic chuck device out of the plasma processing apparatus, send it to the manufacturer for maintenance, and there is a situation where production can not be performed for a certain period However, there is an effect that the necessity is lost.
  • Examples of applications as other molded members include sealing materials such as packings and O-rings; and belt-like, sheet-like or three-dimensional structures.
  • the packing and the O-ring can be used, for example, as a sealing material at a connecting portion of a vacuum system (gas supply portion, plasma source, plasma processing chamber, exhaust pipe, etc.) in reduced pressure plasma.
  • the conventional sealing material with low plasma resistance which is used in the plasma source portion, plasma processing chamber, and exhaust piping, needs to be replaced once every several months due to deterioration due to plasma. By using the material, it is possible to prolong the life.
  • silicon wafer support pins of elevating rods that deliver a silicon wafer from a robot hand to a plasma device when loading and installing a wafer in a plasma processing device that is a semiconductor manufacturing device. Can be used, etc.
  • Example 1 Hydrotalcite ⁇ Composition formula: Mg 6 Al 2 (OH) 16 CO 3 ⁇ 4 H 2 O, average plate surface diameter: 249 nm, BET specific surface area relative to a commercially available silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) 50 m 2 / g ⁇ was blended so as to be 15% by volume, and mixed in a bead mill. (Comparative example 1) Only commercially available silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) was only stirred by a bead mill.
  • Example 1 ⁇ Plasma resistance evaluation> (Plasma treatment 1)
  • the adhesive prepared in Example 1 and Comparative Example 1 is formed into a film of 10 cm ⁇ 10 cm ⁇ 100 ⁇ m thick on a PET peeling film, and then heated at 120 ° C. for 5 minutes in a drying furnace. Dried. After drying, the release film was removed to obtain a sample for evaluation.
  • the prepared sample for evaluation was placed on a flat surface in a plasma device and subjected to plasma treatment for 24 hours. The processing conditions of the plasma are shown below.
  • Plasma processing system Unity Me (made by Tokyo Electron Ltd.) High frequency power output: 1000 W High frequency power supply frequency: 13.56 MHz Bias power output: None Vacuum degree: 133.33Pa Oxygen gas flow rate: 450 sccm Fluorine gas flow rate: 50 sccm Stage temperature: 25 ° C Plasma treatment time: 24 hours
  • Example 2 Hydrotalcite ⁇ Composition formula: Mg 6 Al 2 (OH) 16 CO 3 ⁇ 4H 2 O, average plate surface diameter: 249 nm, BET specific surface area: 50 m 2 relative to a silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) / G ⁇ was blended so as to be 1.5% by volume, and mixed and adjusted with a 3-roll mill.
  • a silicone adhesive KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.
  • Example 3 Hydrotalcite ⁇ Composition formula: Mg 6 Al 2 (OH) 16 CO 3 ⁇ 4H 2 O, average plate surface diameter: 249 nm, BET specific surface area: 50 m 2 relative to a silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) / G ⁇ was blended so as to be 3.5% by volume, and mixed and adjusted with a 3-roll mill.
  • a silicone adhesive KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.
  • Example 4 Hydrotalcite ⁇ Composition formula: Mg 6 Al 2 (OH) 16 CO 3 ⁇ 4H 2 O, average plate surface diameter: 249 nm, BET specific surface area: 50 m 2 relative to a silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) / G ⁇ was blended so as to be 8.0% by volume, and mixed and adjusted with a 3-roll mill.
  • a silicone adhesive KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.
  • Example 5 Hydrotalcite ⁇ Composition formula: Mg 6 Al 2 (OH) 16 CO 3 ⁇ 4H 2 O, average plate surface diameter: 249 nm, BET specific surface area: 50 m 2 relative to a silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) / G ⁇ was blended so as to be 17.5% by volume, and mixed and adjusted with a 3-roll mill.
  • a silicone adhesive KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.
  • Plasma processing system RIE-10 NRT (manufactured by SUMCO) High frequency power output: 250 W Bias power output: None Vacuum degree: 100 Pa Oxygen gas flow rate: 45 sccm CF 4 flow rate: 5 sccm Stage temperature: 25 ° C Plasma treatment time: 4 hours
  • Mass decrease measurement The mass reduction evaluation was performed by weighing the mass of the evaluation sample before and after plasma treatment using a direct reading balance (Metler: MS104TS / 00) to calculate the mass reduction rate. The measured results are shown in Tables 1 to 3. In the measurement, each evaluation sample was processed in three samples, and the average value was taken as the measurement result.
  • ⁇ Plasma treatment 1> The surface condition was observed using a scanning microscope (manufactured by Hitachi High-Technologies Corporation: SE-5000), and the surface condition of the evaluation sample before and after the plasma treatment of the resin composition of Example 1 and Comparative Example 1 was observed. The results are shown in FIG. ⁇ Plasma treatment 2> Using a digital microscope (manufactured by Keyence Corporation: VHX-6000), changes in appearance of the evaluation samples before and after plasma treatment of the resin compositions of Examples 2 to 8 and Comparative Examples 1 to 3 were observed at a magnification of 500 times. Evaluation criteria are as follows. ⁇ : No change in appearance of resin composition before and after plasma treatment. Fair: slight streaks are observed in the resin composition after plasma treatment. X: A plurality of clear streaks are observed in the resin composition after plasma treatment.
  • Example 1 The mass reduction rate of Example 1 was 0.28%, and a good result of 1/10 or less was obtained as compared with Comparative Example 1. Also in the surface observation, no large change was observed while the crack was generated on the surface in Comparative Example 1. From this, the effects of the present invention can be understood. Further, in Examples 2 to 8 and Comparative Examples 2 to 4, even if conditions are changed using another plasma apparatus (etching apparatus), the mass reduction rate of each Example can be suppressed to a low level, and Also in surface observation, it is clear that it is excellent in plasma resistance, and the effect of the present invention can be understood.
  • Electrostatic chuck apparatus 10 Suction surface 20 Adhesive layer 30 Insulating layer 40 Electric-insulation elastic layer 50 Metal base 60 Conductive part 70 Electrode 80, 90 Adhesive surface protection material

Abstract

[Problem] To provide: a resin composition in which plasma resistance is considerably enhanced regardless of the type of a matrix resin; and an electrostatic chucking device employing the same. [Solution] The present invention provides: a resin composition that is used in an environment in which said resin composition is directly or indirectly exposed to plasma and that is characterized by comprising a resin, which serves as a matrix, and a filler comprising a layer-like inorganic compound that is dispersed in the resin, which serves as the matrix, and that possesses ion exchanging property, wherein the resin and the layer-like inorganic compound are blended at 1-90% by volume; and an electrostatic chucking device employing said resin composition.

Description

耐プラズマ性を有する樹脂組成物、及び、それを用いた静電チャック装置Resin composition having plasma resistance, and electrostatic chuck device using the same
 本発明は、高い耐プラズマ性を有する樹脂組成物、及び、それを用いた静電チャック装置に関する。 The present invention relates to a resin composition having high plasma resistance, and an electrostatic chuck device using the same.
 プラズマ処理装置は、高周波電源などにより、所定のガスをプラズマ化し、ラジカル、イオン、電子といった反応活性の高い反応性化学種を発生させる。プラズマ処理装置は、それら反応性化学種の物理的な衝撃力や化学的な反応性を利用し、例えば、半導体、液晶パネル、太陽電池、LED等の製造工程において、CVD(ケミカルベーパーデポジション)装置、スパッタリング装置、プラズマエッチング装置、プラズマアッシング装置等として用いられている。また、これらに限らず、表面改質、ドライクリーニングなど一般産業においても幅広い用途がある。
 プラズマ処理装置は、金属や石英などを主材として構成されるが、一部に樹脂部材が用いられる。例えば、減圧プラズマにおける真空系統(ガス供給部、プラズマソース、プラズマ処理室、排気配管等)のシール材としてパッキンやO-リングが用いられている。プラズマソース部、プラズマ処理室、排気配管に使用されている前記樹脂部材は、反応性の高い反応性化学種に、直接又は間接的に曝され、分解されたり、変質することで劣化する。このため真空度の低下、パーティクルやコンタミネーションが発生し、定期的な交換が必要とされ、その際の生産停止による、高コスト化や生産性の低下を招くことが問題となっている。
 特に、静電チャック装置は、プラズマ処理室内に設置され、直接反応性化学種に曝されるため、樹脂部材の劣化が顕著である。従来、静電チャック装置のチャッキング部(ウエハ設置部)は、ポリイミド樹脂で構成されていたが、前記劣化のため、セラミックスに変更されている。セラミックスが用いられた静電チャック装置(図1)は、アルミニウム部材とセラミックス部材を組み合せて用いられるが、それらの接合は接着剤を用いて行われる。例えば、エッチング装置の場合には、プロセス条件によって、ウエハを、静電チャック装置を介して加熱・冷却する。このため、前記アルミニウム部材とセラミックス部材は、それらの熱膨張係数の違いによる歪(ずれ)が生じ、破損に至るおそれがある。前記接着剤は、この前記熱膨張係数の違いによる歪を吸収するためにも用いられている。しかしながら、接着剤は前記プラズマによる劣化の問題があり、メンテンナンス頻度が多くなり、コスト上昇と生産効率の低下が問題となっている。
The plasma processing apparatus plasmas a predetermined gas with a high frequency power source or the like to generate reactive chemical species having high reaction activity such as radicals, ions, and electrons. The plasma processing apparatus utilizes physical impact force or chemical reactivity of the reactive chemical species, for example, CVD (chemical vapor deposition) in the manufacturing process of semiconductor, liquid crystal panel, solar cell, LED, etc. It is used as an apparatus, sputtering apparatus, plasma etching apparatus, plasma ashing apparatus and the like. In addition to these, it has a wide range of applications in general industries such as surface modification and dry cleaning.
The plasma processing apparatus is mainly made of metal, quartz or the like, but a resin member is used in part. For example, a packing or an O-ring is used as a sealing material of a vacuum system (gas supply unit, plasma source, plasma processing chamber, exhaust pipe, etc.) in reduced pressure plasma. The resin members used in the plasma source portion, the plasma processing chamber, and the exhaust pipe are exposed to reactive chemical species with high reactivity directly or indirectly, and are degraded by decomposition or deterioration. For this reason, the degree of vacuum decreases, particles and contamination occur, and periodical replacement is required. It is a problem that the production stop at that time causes cost increase and productivity decrease.
In particular, since the electrostatic chuck device is installed in the plasma processing chamber and directly exposed to reactive chemical species, deterioration of the resin member is remarkable. Conventionally, although the chucking part (wafer installation part) of the electrostatic chuck apparatus was comprised with the polyimide resin, it is changed into the ceramic for the said deterioration. Although the electrostatic chuck apparatus (FIG. 1) in which ceramics were used is used combining an aluminum member and a ceramic member, those joining is performed using an adhesive agent. For example, in the case of the etching apparatus, the wafer is heated and cooled through the electrostatic chuck apparatus depending on the process conditions. Therefore, the aluminum member and the ceramic member may be distorted (displaced) due to the difference between their thermal expansion coefficients, which may lead to breakage. The adhesive is also used to absorb the strain due to the difference in the thermal expansion coefficient. However, the adhesive has the problem of deterioration due to the plasma, the maintenance frequency is increased, and the cost increase and the decrease in production efficiency become problems.
 耐プラズマ性を向上させた成形部材の樹脂組成物としては、特許文献1において、プラズマ耐性の高い含フッ素エラストマー組成物に、エラストマーの補強、増量、加工性の改善等の目的で種々の充填剤が使用される発明が開示されている。また、特許文献2には、フッ素ゴム組成物と、球状複合硬化メラミン樹脂粒子とを組み合せることで、耐圧縮永久歪特性や耐プラズマ性がすぐれた加硫物得られるので、半導体製造装置用シール材の加硫成形材料として有効に用いることができる発明が開示されている。
 耐プラズマ性を向上させた接着剤の樹脂組成物としては、特許文献3に、アクリルゴムと熱硬化性樹脂を含む接着シートが、耐プラズマ性が高いことが開示されている。
 さらに静電チャックに用いられる接着剤の劣化を防止する方法として、接着剤表面を、耐プラズマ性の高い材料で覆い、接着剤をプラズマに曝さない構造とする提案がなされている(特許文献4)。
As a resin composition of a molded member having improved plasma resistance, in Patent Document 1, various fillers can be added to the fluorine-containing elastomer composition having high plasma resistance in order to reinforce the elastomer, increase the amount, and improve the processability. The invention in which is used is disclosed. Further, Patent Document 2 discloses that a vulcanized product having excellent compression set resistance characteristics and plasma resistance can be obtained by combining the fluororubber composition and the spherical composite cured melamine resin particles, and therefore, for a semiconductor manufacturing apparatus. There is disclosed an invention which can be effectively used as a vulcanized molding material of a sealing material.
As a resin composition of the adhesive agent which improved plasma resistance, it is disclosed by patent document 3 that the adhesive sheet containing acrylic rubber and a thermosetting resin has high plasma resistance.
Furthermore, as a method of preventing the deterioration of the adhesive used for the electrostatic chuck, it has been proposed to cover the surface of the adhesive with a material having high plasma resistance so that the adhesive is not exposed to plasma (Patent Document 4) ).
特開2013-057057号公報JP, 2013-057057, A 特開2014-118510号公報JP, 2014-118510, A 特開2009-071023号公報JP, 2009-071023, A 特開2017-041631号公報JP, 2017-041631, A
 特許文献1~3に開示されている発明は、マトリクス樹脂、又は、特定のマトリクス樹脂と特定の充填剤の組み合わせが、高い耐プラズマ性を発揮することに特徴があり、その効果は、特定の樹脂、又は特定の樹脂と特定の充填剤の組み合わせに限定されるため、応用や用途が限定されるものであった。また、耐プラズマ性能も十分なものではなかった。
 特許文献4に開示されている静電チャック装置の接着剤の劣化を防止するための保護材(エッジシール)は、単にエラストマーが用いられることが開示されており、耐プラズマ性の高い材質を用いたとしても、交換頻度が高くなるおそれがあり、改善の余地があった。
 そこで、本発明は、マトリクス樹脂によらず、樹脂本来の持つ耐プラズマ性を著しく向上させた樹脂組成物、及び、それを用いた静電チャック装置を提供することにより、交換頻度を削減し、コスト低減と生産効率を向上させる。また、前記樹脂組成物は成形部材や接着剤とすることができる。
The inventions disclosed in Patent Documents 1 to 3 are characterized in that a matrix resin or a combination of a specific matrix resin and a specific filler exhibits high plasma resistance, and the effect thereof is as follows: Because it is limited to the resin, or the combination of the specific resin and the specific filler, the application and application have been limited. In addition, the plasma resistance was not sufficient.
As a protective material (edge seal) for preventing deterioration of the adhesive of the electrostatic chuck device disclosed in Patent Document 4, it is disclosed that only an elastomer is used, and a material having high plasma resistance is used. Even if there were, there was a possibility that the frequency of replacement would be high, and there was room for improvement.
Therefore, the present invention reduces the frequency of replacement by providing a resin composition that significantly improves the inherent plasma resistance of the resin regardless of the matrix resin, and an electrostatic chuck device using the resin composition. Reduce costs and improve production efficiency. Further, the resin composition can be a molded member or an adhesive.
 上記課題について、本発明者らが鋭意検討を行っていたところ、イオン交換性を有する層状無機化合物のフィラーを樹脂に分散させたところ、高い耐プラズマ性を発揮することが可能であることを発見し、本発明を完成するに至った。
 すなわち、
本発明(1)は、
 プラズマに、直接、又は、間接的に曝露される環境下で用いられる樹脂組成物であって、
 マトリクス樹脂と、
 前記マトリクス樹脂に分散させたイオン交換性を有する層状無機化合物のフィラーとを含み、
 前記層状無機化合物の配合が、前記マトリクス樹脂の体積と前記層状無機化合物の体積の和に対して、1~90体積%であることを特徴とする、
樹脂組成物である。
 本発明(2)は、
 前記イオン交換性が、アニオン交換性であることを特徴とする、前記発明(1)の樹脂組成物である。
 本発明(3)は、
 前記層状無機化合物が、下式(1)で表されることを特徴とする、前記発明(1)又は(2)の樹脂組成物である。
{A1-x(OH)}(Dx/n・mHO)    (1)
なお式中、Aは2価の金属イオン、Bは3価の金属イオン,Dはn価のアニオン、xは0を超え、0.4以下の範囲の実数、また、mは0より大きい実数である。
 本発明(4)は、
 前記層状無機化合物が、下式(2)及び(3)で表される層状無機化合物であることを特徴とする、前記発明(3)の樹脂組成物である。
{Mg1-xAl(OH)}(COx/2・mHO   (2)
1.5<(1-x)/x<4          (3)
 本発明(5)は、
 前記層状無機化合物が、MgAl(OH)16CO・4HOで表されるハイドロタルサイトであることを特徴とする、前記発明(4)又は(5)の樹脂組成物である。
 本発明(6)は、
 前記接着剤が、シリコーン樹脂を含むことを特徴とする、前記発明(1)~(5)のいずれかの樹脂組成物である。
 本発明(7)は、
 前記接着剤が、プラズマエッチング装置に含まれることを特徴とした、前記発明(1)~(6)のいずれかの樹脂組成物である。
 本発明(8)は、
 前記樹脂組成物が、接着剤であることを特徴とする、前記発明(1)~(7)のいずれかの樹脂組成物である。
 本発明(9)は、
 前記樹脂組成物が、前記樹脂組成物を硬化させてなる樹脂成形部材として用いられることを特徴とする、前記発明(1)~(7)のいずれかの樹脂組成物。
 本発明(10)は、
 前記樹脂成形部材が、ベルト、バンド、パッキン、O-リング、シートのいずれかであることを特徴とする、前記発明(9)の樹脂組成物である。
 本発明(11)は、
 前記樹脂成形部材が、プラズマエッチング装置に設けられる静電チャック装置に用いられる接着剤露出部の表面を覆い、前記接着剤表面をプラズマから隔離する保護材として使用されることを特徴とする、前記発明(9)又は(10)の樹脂組成物である。
 本発明(12)は、
 前記発明(1)~(11)に記載された樹脂組成物を含むことを特徴とする、静電チャック装置である。
The inventors of the present invention conducted intensive studies on the above problems, and found that when the filler of the layered inorganic compound having ion exchangeability is dispersed in the resin, it is possible to exhibit high plasma resistance. And completed the present invention.
That is,
The present invention (1) is
A resin composition used in an environment exposed directly or indirectly to plasma, comprising:
Matrix resin,
And a filler of a layered inorganic compound having ion exchangeability dispersed in the matrix resin,
The blending of the layered inorganic compound is characterized in that it is 1 to 90% by volume with respect to the sum of the volume of the matrix resin and the volume of the layered inorganic compound.
It is a resin composition.
The present invention (2) is
The resin composition according to the invention (1), wherein the ion exchangeability is anion exchangeability.
The present invention (3) is
The resin composition according to the invention (1) or (2), wherein the layered inorganic compound is represented by the following formula (1).
{A 1-x B x (OH) 2 } (D x / n · mH 2 O) (1)
In the formula, A is a divalent metal ion, B is a trivalent metal ion, D is an n-valent anion, x is a real number in the range of more than 0 and 0.4 or less, and m is a real number greater than 0 It is.
The present invention (4) is
The resin composition according to the invention (3), wherein the layered inorganic compound is a layered inorganic compound represented by the following formulas (2) and (3).
{Mg 1-x Al x (OH) 2 } (CO 3 ) x / 2 · mH 2 O (2)
1.5 <(1-x) / x <4 (3)
The present invention (5) is
The resin composition according to the invention (4) or (5), wherein the layered inorganic compound is a hydrotalcite represented by Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O .
The present invention (6) is
The resin composition according to any one of the inventions (1) to (5), wherein the adhesive contains a silicone resin.
The present invention (7) is
The resin composition according to any one of the inventions (1) to (6), wherein the adhesive is included in a plasma etching apparatus.
The present invention (8) is
The resin composition according to any one of the inventions (1) to (7), wherein the resin composition is an adhesive.
The present invention (9) is
The resin composition according to any one of the inventions (1) to (7), wherein the resin composition is used as a resin molded member obtained by curing the resin composition.
The present invention (10) is
The resin composition according to the invention (9), wherein the resin molded member is any one of a belt, a band, a packing, an O-ring, and a sheet.
The present invention (11) is
The resin molded member is used as a protective material that covers the surface of an adhesive exposed portion used in an electrostatic chuck device provided in a plasma etching apparatus, and isolates the adhesive surface from plasma. It is a resin composition of the invention (9) or (10).
The present invention (12) is
An electrostatic chuck device comprising the resin composition described in the inventions (1) to (11).
 本発明によれば、マトリクス樹脂の種類によらず、耐プラズマ性を著しく向上させた樹脂組成物を提供することが可能である。得られた前記樹脂組成物は、接着剤や成形部材として幅広い用途に使用することが可能であり、プラズマ装置のメンテナンス費用や生産効率の向上に効果を発揮することが可能である。 According to the present invention, it is possible to provide a resin composition having significantly improved plasma resistance regardless of the type of matrix resin. The obtained resin composition can be used in a wide range of applications as an adhesive or a molded member, and can be effective in improving maintenance costs and production efficiency of a plasma device.
プラズマエッチング装置に含まれる静電チャック装置の上面図と断面図である。It is the top view and sectional drawing of the electrostatic chuck apparatus contained in a plasma etching apparatus. 実施例1及び比較例1の樹脂組成物のプラズマ処理前後の走査型顕微鏡表面写真である。It is a scanning microscope surface photograph before and behind plasma treatment of the resin composition of Example 1 and Comparative Example 1.
1.プラズマに、直接、又は、間接的に曝露される環境下で用いられる樹脂組成物
 本発明の樹脂組成物は、マトリクスである樹脂に、イオン交換性を有する層状無機化合物を分散させた樹脂組成物であり、プラズマに、直接、又は、間接的に曝露される環境下で用いられる。本発明による樹脂組成物は、耐プラズマ性に優れており、静電チャック装置の接着剤やプラズマ装置のシール材などの成形部材としての用途で用いることができる。前記接着剤は、液体状やペースト状の接着剤に限定されず、シート状やテープ状の接着剤としてもよい。また、接着剤のように、使用時には、液体又はペースト状で、加熱処理などにより硬化したものも含まれる。
 また、成形部材の用途として、パッキンやO-リングなどのシール材、さらには耐プラズマ性の低い部材を覆うカバーとして用いることで、保護材として使用することもできる。
1. Resin composition used in an environment directly or indirectly exposed to plasma The resin composition of the present invention is a resin composition in which a layered inorganic compound having ion exchange properties is dispersed in a resin which is a matrix. It is used in an environment exposed to plasma directly or indirectly. The resin composition according to the present invention is excellent in plasma resistance, and can be used as a molded member such as an adhesive of an electrostatic chuck device or a sealing material of a plasma device. The adhesive is not limited to a liquid or paste adhesive, and may be a sheet or tape adhesive. In addition, as in the case of an adhesive, it includes, in the form of a liquid or paste, cured by heat treatment or the like.
Moreover, it can also be used as a protective material by using it as a cover which covers sealing materials, such as packing and O-ring, and a member with low plasma resistance as a use of a shaping | molding member.
 ここで、「プラズマに、直接、又は、間接的に曝露される」とは、本発明による樹脂組成物が、プラズマに直接接する場合に限られず、プラズマから発生する電子、イオン、ラジカルと接触する場合も含む。例えば、減圧プラズマ処理装置においては、本発明による樹脂組成物が、プラズマ室のプラズマ発生部に用いられる場合に限定されず、プラズマソース部、プラズマ室部、排気配管などの内部や接続部に用いられる場合を含む。 Here, "exposed directly or indirectly to the plasma" is not limited to the case where the resin composition according to the present invention is in direct contact with the plasma, but contacts with electrons, ions and radicals generated from the plasma. Including the case. For example, in the reduced pressure plasma processing apparatus, the resin composition according to the present invention is not limited to the case where it is used in the plasma generation part of the plasma chamber, and used in the inside or connection part of plasma source, plasma chamber, exhaust piping etc. Including the case where
 また、ここで「分散する」とは、前記無機化合物が、マトリクス樹脂中に、均一な状態で存在する場合に限られず、偏在していてもよい。例えば、使用する態様(形状や配置)に応じて、プラズマに曝される表面付近に多く偏在させることで、効率的に耐プラズマ性を向上させることができる。 Moreover, "dispersed" here is not limited to the case where the inorganic compound is present in a uniform state in the matrix resin, and may be unevenly distributed. For example, depending on the mode (shape and arrangement) to be used, the plasma resistance can be efficiently improved by making a large number of localized near the surface exposed to plasma.
 さらに、ここで「耐プラズマ性」とは、プラズマに対する耐久性であり、プラズマ曝露前後の質量変化や表面観察による変化によって評価される。プラズマ曝露前後の質量変化は、プラズマ曝露前後の質量を直示天秤などにより秤量することで測定できる。プラズマ前後の表面観察は、光学顕微鏡や走査型電子顕微鏡などによる観察により、クラック等の発生を観察することで評価することができる。 Furthermore, "plasma resistance" is durability with respect to plasma here, and is evaluated by the change in mass and surface observation before and after plasma exposure. The mass change before and after the plasma exposure can be measured by weighing the mass before and after the plasma exposure using a direct reading balance or the like. The surface observation before and after the plasma can be evaluated by observing generation of a crack or the like by observation with an optical microscope, a scanning electron microscope or the like.
1-1.樹脂組成物の組成
1-1-1.マトリクス樹脂
 本発明による樹脂組成物に含まれる樹脂は、特に限定されず、前記層状無機化合物を分散させることが可能であればよい。例えば、アクリル樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、フッ素樹脂、エチレン―酢酸ビニル樹脂、エポキシ樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、シリコーン樹脂、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、ポリビニルブチラール樹脂、ポリメタクリレート樹脂、メラニン樹脂、ユリア樹脂、メラミン樹脂、ポリエステル樹脂、アルキド樹脂、フッ素樹脂、ABS樹脂、AS樹脂、ナイロン樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルファイド樹脂、ポリサルフォン樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリベンゾイミダゾール樹脂、シアノアクリレート樹脂、水性高分子-イソシアネート樹脂、クロロプレンゴム、スチレンブタジエンゴム、ニトリルゴム、ニトロセルロース、レゾルシノール、エーテル系セルロース等が挙げられ、用途等により選択することができる。前記樹脂類は複数を混合して用いることができる。
 接着剤として用いる場合や成形部材として用いる場合によって、好ましい性能を示す樹脂を選択できるが、耐プラズマ性の観点から樹脂自体の耐プラズマ性の高いシリコーン樹脂やフッ素樹脂が接着剤としても、成形部材としても好ましい。
1-1. Composition of resin composition 1-1-1. Matrix Resin The resin contained in the resin composition according to the present invention is not particularly limited, as long as the layered inorganic compound can be dispersed. For example, acrylic resin, polyolefin resin, polyurethane resin, fluorine resin, ethylene-vinyl acetate resin, epoxy resin, polyvinyl chloride resin, polyvinyl acetate resin, silicone resin, phenol resin, polyamide resin, polyimide resin, polystyrene resin, polyvinyl alcohol Resin, polyvinyl pyrrolidone resin, polyvinyl butyral resin, polymethacrylate resin, melanin resin, urea resin, melamine resin, polyester resin, alkyd resin, fluoro resin, ABS resin, AS resin, nylon resin, polyacetal resin, polycarbonate resin, polyphenylene ether resin , Polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, polybenzimidazole resin, Cyanoacrylate resin, an aqueous polymer - isocyanate resin, chloroprene rubber, styrene-butadiene rubber, nitrile rubber, nitrocellulose, resorcinol, ether cellulose, and the like, can be selected depending on the application or the like. The said resin can be used in mixture of plurality.
Depending on the case where it is used as an adhesive or when it is used as a molded member, a resin exhibiting preferable performance can be selected, but from the viewpoint of plasma resistance, a molded resin is also used as a silicone resin or fluorine resin having high plasma resistance. Is also preferable.
1-1-2.イオン交換性を有する層状無機化合物フィラー
 本発明による樹脂組成物は、イオン交換性を有する層状無機化合物フィラーが分散されている。前記層状無機化合物フィラーは、特に限定されず、前記マトリクス樹脂に分散が可能であればよい。例えば、スメクタイト群であるモンモリロナイト、バイデライト、ノントロナイト、サポナイト、鉄サポナイト、ヘクトライト、ソーコナイト、スチーブンサイト;バーミキュライト群であるdi.バーミキュライト、tri.バーミキュライト;雲母群である白雲母、パラゴナイト、イライト、フロゴパイト、黒雲母、紅雲母、レピドライト;脆雲母群であるマーガライト、クリントナイト;パイロフィライト群であるパイロフィライト、滑石;カオリナイト群であるカオリナイト、ディッカイト、ナクライト、ハロイサイト、クリソタイル、リザルダイト、アンチゴライト;層状ペロブスカイト;ハイドロタルサイト群;のアニオン交換性を有するもの、及び、リン酸ジルコニウム;遷移金属酸素酸塩;アルカリケイ酸塩;のカチオン交換性を有するものが挙げられる。これら層状無機化合物フィラーは、複数を組み合せて使用してもよい。
 また、これらのうち、耐プラズマ性を向上させるためには、アニオン交換性を有する層状無機化合物フィラーが好ましく、ハイドロタルサイトがより好ましい。
1-1-2. Layered Inorganic Compound Filler Having Ion Exchangeability In the resin composition according to the present invention, a layered inorganic compound filler having ion exchangeability is dispersed. The layered inorganic compound filler is not particularly limited, as long as it can be dispersed in the matrix resin. For example, smectite group montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, sauconite, steven site; vermiculite group di. Vermiculite, tri. Vermiculite; mica group muscovite, paragonite, illite, phlogopite, biotite, flash mica, lepidolite; margarite group of the brittle mica group, clintonite; pyrophyllite group of the pyrophyllite group, talc, kaolinite group Some kaolinite, dickite, nacrite, halloysite, chrysotile, lizardite, antigorite, layered perovskite, hydrotalcite group, having anion exchange properties, and zirconium phosphate; transition metal oxyacid salt; alkali silicate And those having cation exchangeability of These layered inorganic compound fillers may be used in combination of two or more.
Moreover, among these, in order to improve plasma resistance, the layered inorganic compound filler which has anion exchange property is preferable, and a hydrotalcite is more preferable.
 前記ハイドロタルサイトは、下式(1)で表される層状無機化合物の一種である。下記式(1)で表される層状無機化合物は、ハイドロタルサイト様化合物とも称される。
{A1-x(OH)}(Dx/n・mHO)    (1)
なお式中、Aは2価の金属イオン、Bは3価の金属イオン,Dはn価のアニオン、xは0を超え、0.4以下の範囲の実数、また、mは0より大きい実数で、脱水の程度により変わる実数である。
 この層状無機化合物のうち、下式(2)及び(3)で表される化合物であることが、アニオン交換性が高いため、さらに好ましい。
{Mg1-xAl(OH)}CO3・mHO   (2)
1.5<(1-x)/x<4          (3)
その中でも、MgAl(OH)16CO・4HOで表されるハイドロタルサイトが、様々なアニオンとイオン交換する能力を有しているので、特に好ましい。
The hydrotalcite is a type of layered inorganic compound represented by the following formula (1). The layered inorganic compound represented by the following formula (1) is also referred to as a hydrotalcite-like compound.
{A 1-x B x (OH) 2 } (D x / n · mH 2 O) (1)
In the formula, A is a divalent metal ion, B is a trivalent metal ion, D is an n-valent anion, x is a real number in the range of more than 0 and 0.4 or less, and m is a real number greater than 0 And it is a real number that changes depending on the degree of dehydration.
Among these layered inorganic compounds, compounds represented by the following formulas (2) and (3) are more preferable because of their high anion exchangeability.
{Mg 1-x Al x ( OH) 2} CO3 · mH 2 O (2)
1.5 <(1-x) / x <4 (3)
Among them, hydrotalcite represented by Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O is particularly preferable because it has an ability to exchange ions with various anions.
 仮説ではあるが、以下に層状無機化合物の耐プラズマ性を向上させる作用機序について説明する。
 プラズマ処理装置は原料ガスをプラズマ化する。即ち、プラズマ中には電子、ガス由来のラジカル、ガス由来のイオンが存在する。原料ガスを酸素ガスとした場合には、電子、酸素イオン、酸素ラジカルが発生する。樹脂部材の耐プラズマ性を向上させるためには、これら反応性化学種を、樹脂部材と反応させずに、死活させる必要がある。特にラジカルの場合には、ラジカル同士を反応させて死活させることが容易であり、電子やイオンに関しては反対電荷を有するイオンや物質と反応させて死活させることが容易である。
 ここで、アニオン交換性を有する層状無機化合物フィラーの場合を考える。層状無機化合物フィラーは表面積が広いため、反応性化学種と接触する機会が多い。このため層状無機化合物フィラーと反応性化学種との間で反応が起こりやすい。即ち、層間に取り込まれた反応性化学種は、狭い空間で他の物質と衝突(反応)して死活する。例えば、(1)ラジカルの場合には、ラジカル同士が反応して死活する態様、(2)負の電荷をもつ電子は、正の電荷をもつ酸素イオンと反応し死活する態様、(3)負の電荷をもつ酸素イオンは、層間に存在するアニオンとイオン交換され死活する態様、などである。MgAl(OH)16CO・4HOで表されるハイドロタルサイトの場合には、層間に存在する炭酸イオンと負の電荷をもつ酸素イオンがイオン交換されると考えられる。
 一方、カチオン交換性を有する層状無機化合物フィラーを用いた場合には、上述した(3)の態様に代わり、正の電荷をもつ酸素イオンが層間に存在するカチオンとイオン交換され死活する態様が挙げられる。
Although hypothesized, the action mechanism for improving the plasma resistance of the layered inorganic compound will be described below.
The plasma processing apparatus plasmifies the source gas. That is, electrons, radicals derived from gas, and ions derived from gas exist in plasma. When the source gas is oxygen gas, electrons, oxygen ions, and oxygen radicals are generated. In order to improve the plasma resistance of the resin member, it is necessary to cause these reactive chemical species to survive without reacting with the resin member. In particular, in the case of radicals, it is easy to cause the radicals to react with each other and be activated, and for electrons and ions, it is easy to react and react with ions or substances having opposite charges.
Here, the case of a layered inorganic compound filler having anion exchangeability is considered. Because of the large surface area of layered inorganic compound fillers, there are many opportunities for contact with reactive species. For this reason, a reaction is likely to occur between the layered inorganic compound filler and the reactive species. That is, the reactive species incorporated into the layer collide with (react with) other substances in a narrow space and die. For example, in the case of (1) radicals, the radicals react with one another to be activated, (2) the electron with negative charge is reacted with the oxygen ion with positive charge to be activated, (3) negative The oxygen ion having the following charge has a mode in which it is ion-exchanged with an anion present in the layer to be dead and the like. In the case of the hydrotalcite represented by Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, it is considered that the carbonate ion present in the layer and the oxygen ion having a negative charge are ion exchanged.
On the other hand, when a layered inorganic compound filler having cation exchangeability is used, an embodiment in which an oxygen ion having a positive charge is ion-exchanged with a cation existing in an interlayer to be dead is listed instead of the above-described embodiment (3). Be
 一般に、プラズマによって発生する反応性化学種は、原料ガス(一種類以上のガスの種類や組み合わせ)、やプラズマ処理条件(ガス流量、プラズマ室圧力等)によって、その種類、濃度、電荷の価数、ラジカルの反応性等が変わるため、樹脂組成物に添加する層状無機化合物フィラーの種類や量を調整することができる。 In general, reactive species generated by plasma depend on the source gas (type or combination of one or more types of gases) and plasma processing conditions (gas flow rate, plasma chamber pressure, etc.), the type, concentration, charge valence Since the radical reactivity and the like change, the type and amount of the layered inorganic compound filler added to the resin composition can be adjusted.
 層状無機化合物フィラーの平均厚さは、本発明の効果を奏する限りにおいて限定されないが、0.005μm~0.1μmであることが好ましい。
 ここで、平均厚さの値は、前記層状無機化合物フィラーを走査型電子顕微鏡によって、少なくとも100個のフィラーの厚さを観察測定し、その平均値から求めた値である。
The average thickness of the layered inorganic compound filler is not limited as long as the effects of the present invention are exhibited, but it is preferably 0.005 μm to 0.1 μm.
Here, the value of the average thickness is a value obtained by observing and measuring the thickness of at least 100 fillers of the layered inorganic compound filler with a scanning electron microscope, and determining the average value.
 層状無機化合物フィラーの大きさは、特に限定されないが、例えば、平均板面径が0.008μm~1.0μmである。好ましくは0.02μm~0.8μmであり、より好ましくは0.02μm~0.7μmである。平均板面径がかかる範囲にあることで、層状無機化合物フィラーの樹脂中の分散性が十分であり、かつ、工業的に生産することが容易なものとなる。
 ここで、平均板面径の値は、前記層状無機化合物フィラーを走査型電子顕微鏡によって、少なくとも100個のフィラーを観察測定し、その平均値から求めた値である。より詳細には「平均板面径」とは、走査型顕微鏡観察で撮像されたフィラーの板状表面の面積を算出し(例えば、公知ソフトにて)、当該面積と同一面積を有する円の直径を算出することにより導かれた面積径の平均値である。
The size of the layered inorganic compound filler is not particularly limited, and for example, the average plate surface diameter is 0.008 μm to 1.0 μm. The thickness is preferably 0.02 μm to 0.8 μm, and more preferably 0.02 μm to 0.7 μm. When the average plate surface diameter is in such a range, the dispersibility of the layered inorganic compound filler in the resin is sufficient, and it becomes easy to industrially produce.
Here, the value of the average plate surface diameter is a value obtained by observing and measuring at least 100 fillers of the layered inorganic compound filler with a scanning electron microscope, and determining the average value thereof. More specifically, the “average plate surface diameter” is the diameter of a circle having the same area as the area of the plate-like surface of the filler imaged by scanning microscope observation (for example, in known software) The average value of the area diameter derived by calculating
 層状無機化合物フィラーのBET比表面積が5m/g~150m/gが好ましい。より好ましくは7m/g~125m/gであり、更により好ましくは8m/g~100m/gである。BET比表面積がかかる範囲にあることで、層状無機化合物フィラーが、十分なイオン交換能を得ることができ、粒子同士の凝集が起こりにくく、樹脂中への均一に分散することができる。
 ここで、BET比表面積は、JIS Z8830:2013の「ガス吸着による粉体(固体)の比表面積測定方法」に準拠して測定できる。
The BET specific surface area of the layered inorganic compound filler is preferably 5 m 2 / g to 150 m 2 / g. More preferably, it is 7 m 2 / g to 125 m 2 / g, and still more preferably 8 m 2 / g to 100 m 2 / g. When the BET specific surface area is in such a range, the layered inorganic compound filler can obtain sufficient ion exchange ability, aggregation of the particles is difficult to occur, and the particles can be uniformly dispersed in the resin.
Here, the BET specific surface area can be measured in accordance with JIS Z 8830: 2013 “Method of measuring specific surface area of powder (solid) by gas adsorption”.
 層状無機化合物フィラーは、必要に応じ、粒子表面が高級脂肪酸、アニオン系界面活性剤、高級脂肪酸リン酸エステル、カップリング剤及び多価アルコールエステル類から選ばれる少なくとも一種の表面処理剤で被覆されても良い。表面被覆物で被覆することによって層状無機化合物フィラーの樹脂中への分散性が向上するほか、さらなる樹脂の高機能化、安定化が可能である。 In the layered inorganic compound filler, if necessary, the particle surface is coated with at least one surface treatment agent selected from higher fatty acids, anionic surfactants, higher fatty acid phosphate esters, coupling agents and polyhydric alcohol esters. Also good. By coating with a surface coating, the dispersibility of the layered inorganic compound filler in the resin is improved, and further functionalization and stabilization of the resin are possible.
 層状無機化合物フィラーの配合量は、マトリクス樹脂に対して、1体積%~90体積%であり、好ましくは、1体積%~50体積%であり、より好ましくは1体積%~35体積%である。前記層状無機化合物フィラーの配合量がかかる範囲にある場合には、接着剤として使用する際に十分な接着性を得ることができ、また、成形部材として使用する際には、十分な流動性が得られるため、成形性を高くすることができる。 The blending amount of the layered inorganic compound filler is 1% by volume to 90% by volume, preferably 1% by volume to 50% by volume, and more preferably 1% by volume to 35% by volume, with respect to the matrix resin. . When the amount of the layered inorganic compound filler is in such a range, sufficient adhesiveness can be obtained when used as an adhesive, and when used as a molded member, sufficient fluidity is obtained. As it is obtained, the formability can be enhanced.
1-1-3.その他の添加剤
 本発明による樹脂組成物は、用途に応じて、添加物をさらに添加することができる。例えば、架橋剤、硬化触媒、無機充填材(前記層状無機化合物を除く)、有機充填材、接着性付与成分、撥水剤、撥油剤、紫外線吸収剤、抗菌剤、帯電防止剤、塗料定着剤、防シワ剤、酸化防止剤、界面活性剤、カップリング剤、着色剤、溶剤等を挙げることができる。このうち無機充填材は成形体の熱膨張率を小さくするとともに成形体の弾性率を向上させる目的で添加するもので、破砕状、球状、亜球状、繊維状、燐ペン状、のものが使用でき、特に、表面平滑性を考慮して、平均粒径10μm以下の球状、亜球状の充填材が好ましい。また、耐クラック性の補強効果を狙って繊維状のものも使用できる。無機充填材は、樹脂組成物の樹脂分の体積に対して、前記層状無機化合物と無機充填材の合計が、1体積%~90体積%となる範囲で使用することができる。前記層状無機化合物と無機充填材の配合量係る範囲にある場合には、硬化物の熱膨張率が抑制され、耐熱衝撃性が十分となり、さらに、十分に樹脂組成物の流動的であるため、作業性が高く、ボイドの発生を抑制することができる。
 前記樹脂組成物には、耐クラック性の向上や成形体の弾性率を下げる目的で熱性熱可塑性樹脂、ゴム成分、各種オリゴマーなどの有機充填材を添加しても良い。有機充填材は、樹脂組成物の樹脂分の体積に対して、前記層状無機化合物フィラーと有機充填材の合計が、1体積%~90体積%となる範囲で使用できる。
1-1-3. Other Additives The resin composition according to the present invention may further contain additives depending on the application. For example, a crosslinking agent, a curing catalyst, an inorganic filler (excluding the layered inorganic compound), an organic filler, an adhesive imparting component, a water repellent, an oil repellent, an ultraviolet absorber, an antibacterial agent, an antistatic agent, a paint fixing agent Anti-wrinkle agents, antioxidants, surfactants, coupling agents, coloring agents, solvents, etc. can be mentioned. Among them, the inorganic filler is added for the purpose of reducing the thermal expansion coefficient of the molded body and improving the elastic modulus of the molded body, and crushed, spherical, subspherical, fibrous and phosphorus pen-like materials are used. In particular, spherical or subspherical fillers having an average particle diameter of 10 μm or less are preferable in consideration of surface smoothness. Moreover, a fibrous thing can also be used aiming at the reinforcing effect of crack resistance. The inorganic filler can be used in a range in which the total of the layered inorganic compound and the inorganic filler is 1% by volume to 90% by volume with respect to the volume of the resin component of the resin composition. When it is in the range related to the compounding amount of the layered inorganic compound and the inorganic filler, the thermal expansion coefficient of the cured product is suppressed, the thermal shock resistance is sufficient, and further, the resin composition is sufficiently fluid, Workability is high, and generation of voids can be suppressed.
An organic filler such as a thermal thermoplastic resin, a rubber component, or various oligomers may be added to the resin composition for the purpose of improving the crack resistance and reducing the elastic modulus of the molded product. The organic filler can be used in such a range that the total amount of the layered inorganic compound filler and the organic filler is 1% by volume to 90% by volume with respect to the volume of the resin component of the resin composition.
1-1-4.基材及び剥離シート
 本発明による樹脂組成物は、シート状やテープ状の薄膜状の接着剤とすることができる。その場合に、前記樹脂組成物は、基材上に積層することができ、さらに積層した樹脂組成物層の基材と反対側の表面に、剥離フィルムを設け、使用時までの前記樹脂組成物層の保護材とすることができる。また前記基材は、剥離フィルムを用いることもできる。
1-1-4. Base Material and Release Sheet The resin composition according to the present invention may be a sheet-like or tape-like thin film adhesive. In that case, the resin composition can be laminated on a substrate, and a release film is provided on the surface of the laminated resin composition layer opposite to the substrate, and the resin composition until used It can be a layer protective material. Moreover, the said base material can also use a peeling film.
 前記基材は、特に限定されず、例えば、ポリプロピレンフィルム、フッ素樹脂系フィルム、ポリエチレンフィルム、ポリエチレンテレフタレートフィルム、紙が挙げられる。 The said base material is not specifically limited, For example, a polypropylene film, a fluororesin film, a polyethylene film, a polyethylene terephthalate film, and paper are mentioned.
 また剥離フィルムは、特に限定されず、ポリプロピレンフィルム、フッ素樹脂系フィルム、ポリエチレンフィルム、ポリエチレンテレフタレートフィルム、紙が挙げられる。剥離フィルムは、前記樹脂組成物層と接する表面に、ポリジメチルシロキサン等のシリコーン樹脂で剥離性を付与したものを用いることができる。 Moreover, a peeling film is not specifically limited, A polypropylene film, a fluorine resin film, a polyethylene film, a polyethylene terephthalate film, and paper are mentioned. The peeling film can use what gave peelability with silicone resins, such as a polydimethylsiloxane, on the surface which contact | connects the said resin composition layer.
 なお、基材及び剥離性フィルムの厚さは、1μm~200μmが好ましく、10μm~100μmがより好ましい。剥離フィルムは、接着シートに対する90゜ピール強度が0.01g/cm~10.0g/cmの範囲にあるものが好ましい。90゜ピール強度が上記の範囲内であると、保護フィルム付き接着シート加工時に剥離性フィルムが簡単に剥離せず、また貼り付け加工時に剥離性フィルムが接着剤層からきれいに剥がれ、作業性が良くなる。90゜ピール強度は、公知の方法により測定することができ、例えば、JIS Z0237:2009「粘着テープ・粘着シート試験方法」に準拠することができる。
 接着シートの両面に剥離性フィルムが積層された状態の場合には、一方の面に積層した剥離性フィルムの剥離力と他方の面に積層した剥離性フィルムの剥離力とが異なることが好ましい。
The thickness of the substrate and the peelable film is preferably 1 μm to 200 μm, and more preferably 10 μm to 100 μm. The release film preferably has a 90 ° peel strength to the adhesive sheet in the range of 0.01 g / cm to 10.0 g / cm. When the 90 ° peel strength is within the above range, the peelable film does not easily peel off during processing of the adhesive sheet with a protective film, and the peelable film peels off from the adhesive layer cleanly during attachment processing, resulting in good workability. Become. The 90 ° peel strength can be measured by a known method, and can be based on, for example, JIS Z0237: 2009 “adhesive tape / adhesive sheet test method”.
When the peelable film is laminated on both sides of the adhesive sheet, it is preferable that the peelability of the peelable film laminated on one side be different from the peelability of the peelable film laminated on the other side.
1-2.樹脂組成物の物性等
 本発明による樹脂組成物の物性等は、特に限定されず、用途などによって決定することができる。
1-2. Physical Properties, etc. of Resin Composition The physical properties, etc. of the resin composition according to the present invention are not particularly limited, and can be determined depending on the application, etc.
1-2-1.接着剤として用いる場合の物性等
 下記には、本樹脂組成物の好適例である、静電チャック装置に用いる接着剤として使用する例を説明する。なお、本物性等は、一例に過ぎず、本発明を限定するものではない。
1-2-1. Physical Properties in the Case of Using as an Adhesive, etc. An example of using as an adhesive used in an electrostatic chuck apparatus, which is a preferred example of the present resin composition, will be described below. The physical properties and the like are merely examples and do not limit the present invention.
1-2-1-1.静電チャック装置用の接着剤の硬化前の粘度
 本発明による樹脂組成物の硬化前の粘度は、例えば、100mPa・s~5000Pa・sとすることができ、1Pa・s~5000Pa・sがより好ましく、5Pa・s~5000Pa・sがさらに好ましい。樹脂組成物の硬化前の粘度がかかる範囲にある場合には、100mPa・sよりも低くなると、適度な流動性を有し、膜形成が容易である。高粘度側、即ち粘度の上限は、加圧又は、加熱により流動可能である範囲において特に限定されるものではない。
 粘度の測定は、公知の方法で行うことができ、例えば、JIS K7117-1:1999「プラスチック-液状、乳濁状又は分散状の樹脂-ブルックフィールド形回転粘度計による見掛け粘度の測定方法」に準拠して測定することができる。
1-2-1-1. Viscosity before curing of adhesive for electrostatic chuck device The viscosity before curing of the resin composition according to the present invention can be, for example, 100 mPa · s to 5000 Pa · s, and 1 Pa · s to 5000 Pa · s is more Preferably, 5 Pa · s to 5000 Pa · s is more preferable. When the viscosity before curing of the resin composition is in such a range, if it is lower than 100 mPa · s, it has appropriate fluidity and film formation is easy. The high viscosity side, that is, the upper limit of the viscosity, is not particularly limited as long as it can flow by pressure or heating.
The viscosity can be measured by a known method, for example, according to JIS K7117-1: 1999 "Plastic-liquid, emulsion or dispersion resin-measurement method of apparent viscosity with Brookfield type rotational viscometer". It can be measured in compliance.
1-2-1-2.静電チャック装置用の接着剤の硬化後の粘弾性特性等
 本発明による樹脂組成物の硬化後接着剤の所定の温度における損失正接は、0.008~5とすることができ、0.03~3がより好ましい。損失正接が、かかる範囲にあることで、適度に弾性的かつ粘性的であり、静電チャック装置の被接着部品の材質の熱膨張の差による歪を吸収することができ、接着層の破損を防止することができるうえ、粘性流動による変形などを抑制することができる。粘性流動が生じると、加熱・冷却したのち、元の温度(例えば室内の温度)に戻した際に、元の層形状に戻らないおそれがあり、前記静電チャック装置が、精密な配線形成を行うエッチング装置などのステージとして使用する場合には、ステージの平行度がずれるなど、装置の配線加工精度が低下するおそれがある。
 ここで、所定の温度とは、前記静電チャック装置が使用される温度であり、その用途やプロセス条件により決められる温度である。
 損失正接の測定は、公知の方法で行うことができ、例えば、JIS K7244-4に準拠した方法で測定することができる。本測定によって測定された複素損失弾性率(G’’とする)と複素貯蔵弾性率(G’とする)の比率(G’’/G’)を損失正接とすることができる。
1-2-1-2. Viscoelastic property etc. after curing of adhesive for electrostatic chuck device The loss tangent at a predetermined temperature of the adhesive after curing of the resin composition according to the present invention can be 0.008 to 5, 0.03 -3 is more preferable. When the loss tangent is in such a range, it is appropriately elastic and viscous, and can absorb the strain due to the difference in the thermal expansion of the material of the bonded part of the electrostatic chuck device, and the adhesive layer is broken In addition to the above, it is possible to prevent deformation due to viscous flow and the like. If viscous flow occurs, it may not return to the original layer shape when heated and cooled, and then returned to the original temperature (for example, the temperature in the room), and the electrostatic chuck device may form accurate wiring. In the case of using as a stage of an etching apparatus or the like to be performed, there is a possibility that the wiring processing accuracy of the apparatus may be deteriorated, such as deviation of the stage parallelism.
Here, the predetermined temperature is a temperature at which the electrostatic chuck device is used, and is a temperature determined according to the application and process conditions.
The measurement of the loss tangent can be performed by a known method, and can be measured, for example, by a method according to JIS K7244-4. The ratio (G ′ ′ / G ′) of the complex loss elastic modulus (referred to as G ′ ′) and the complex storage elastic modulus (referred to as G ′) measured by this measurement can be a loss tangent.
 本発明による樹脂組成物の硬化後の接着剤の30℃における貯蔵弾性率は、5×10Pa~5×10Paが好ましく、1×10Pa~1×10Paがより好ましい。
 また、100℃における貯蔵弾性率が、1×10Pa~1×10Paが好ましく、5×10Pa~5×10Paがより好ましい。さらに、150℃における貯蔵弾性率が1×10Pa~1×10Paが好ましい。
The storage elastic modulus of the adhesive after curing of the resin composition according to the present invention at 30 ° C. is preferably 5 × 10 4 Pa to 5 × 10 8 Pa, and more preferably 1 × 10 5 Pa to 1 × 10 8 Pa.
The storage elastic modulus at 100 ° C. is preferably 1 × 10 4 Pa to 1 × 10 8 Pa, and more preferably 5 × 10 4 Pa to 5 × 10 7 Pa. Furthermore, the storage elastic modulus at 150 ° C. is preferably 1 × 10 4 Pa to 1 × 10 7 Pa.
 また、本発明による樹脂組成物の硬化後の接着剤の弾性率は、熱劣化試験やヒートサイクル試験における変化が小さいことが好ましい。例えば、前記静電チャック装置が、精密な配線形成を行うエッチング装置などのステージとして使用する場合には、ステージ部が使用の際、加熱冷却を繰り返すことになる。そのため、熱劣化試験やヒートサイクル試験後の弾性率の変化が大きいと、樹脂組成物の硬化後接着剤の歪量が安定せず、ステージの位置が安定せず、装置の配線加工精度が低下するおそれがある。
 弾性率の測定は、公知の方法で測定でき、例えば、JIS K6254:2010「加硫ゴム及び熱可塑性ゴム-応力・ひずみ特性の求め方」に準拠して測定することができる。
 熱劣化試験は、公知の方法で行うことができるが、例えば、JIS K6257:2010「加硫ゴム及び熱可塑性ゴム-熱老化特性の求め方」に準拠した方法で実施することができる。例えば、樹脂組成物の硬化後接着剤に対し、熱劣化条件を150℃×250hとして試験を実施した場合に、試験後の弾性率の変化が、30%~500%の範囲にあることが好ましい。
 ヒートサイクル試験は、公知の方法で行うことができ、例えば、JIS K6270:2001「加硫ゴム及び熱可塑性ゴム-引張疲労特性の求め方-定ひずみ方法」に準拠した方法で実施することができる。例えば、樹脂組成物の硬化後接着剤に対し、ヒートサイクル条件を、-20℃~125℃、100サイクルとして試験を実施した場合に、試験後の弾性率の変化が50%~300%の範囲にあることが好ましい。
The elastic modulus of the adhesive after curing of the resin composition according to the present invention preferably has a small change in the heat deterioration test and the heat cycle test. For example, in the case where the electrostatic chuck device is used as a stage of an etching device or the like that performs accurate wiring formation, heating and cooling are repeated when the stage unit is used. Therefore, if the change in elastic modulus after the heat deterioration test or heat cycle test is large, the amount of distortion of the adhesive after curing of the resin composition is not stable, the stage position is not stable, and the wiring processing accuracy of the device is lowered. There is a risk of
The elastic modulus can be measured by a known method, and can be measured, for example, in accordance with JIS K 6254: 2010 "Vulcanized rubber and thermoplastic rubber-Determination of stress / strain characteristics".
The thermal deterioration test can be conducted by a known method, but can be conducted, for example, according to JIS K 6257: 2010 "Vulcanized rubber and thermoplastic rubber-Determination of heat aging characteristics". For example, when a test is carried out on a post-cure adhesive of a resin composition under a thermal degradation condition of 150 ° C. × 250 h, the change in elastic modulus after the test is preferably in the range of 30% to 500% .
The heat cycle test can be conducted by a known method, and can be conducted, for example, by a method according to JIS K 6270: 2001 "Vulcanized rubber and thermoplastic rubber-Determination of tensile fatigue characteristics-Constant strain method". . For example, when the test is performed with heat cycle conditions of -20 ° C. to 125 ° C. for 100 cycles for the adhesive after curing of the resin composition, the change in elastic modulus after the test is in the range of 50% to 300%. Is preferred.
1-2-1-3.静電チャック装置用の接着剤の硬化後の接着強度
 本発明による樹脂組成物の硬化後の接着強度は、0.1N/mm~100N/mmとすることができ、0.5N/mm~80N/mmがより好ましく、1N/mm~50N/mmがさらに好ましい。また、150℃おける接着強度が、0.05N/mm~100N/mmとすることができ、0.1N/mm~50N/mmがより好ましい。
 さらに、樹脂組成物の硬化後接着剤に対し、ヒートサイクル条件を、-20℃~125℃、100サイクルとして試験を実施した場合に、試験後の弾性率の変化が50%~300%の範囲にあることが好ましい。接着強度がかかる範囲にある場合には、静電チャック装置の加熱・冷却サイクルによる熱応力の繰返し印加による接着力の低下を防止することができる。
1-2-1-3. Adhesive strength after curing of adhesive for electrostatic chuck device The adhesive strength after curing of the resin composition according to the present invention can be 0.1 N / mm 2 to 100 N / mm 2 and can be 0.5 N / mm 2 to 80 N / mm 2 is more preferable, and 1 N / mm 2 to 50 N / mm 2 is more preferable. The adhesive strength at 150 ° C. can be 0.05 N / mm 2 to 100 N / mm 2, and more preferably 0.1 N / mm 2 to 50 N / mm 2 .
Furthermore, when the heat cycle conditions of the adhesive after curing of the resin composition are tested as −20 ° C. to 125 ° C. and 100 cycles, the change in elastic modulus after the test is in the range of 50% to 300%. Is preferred. When the adhesive strength is in such a range, it is possible to prevent the decrease in the adhesive force due to the repeated application of the thermal stress due to the heating and cooling cycles of the electrostatic chuck device.
1-2-2.樹脂成形部材として用いる場合の物性等
 樹脂成形部材として用いる場合には、その成形方法や用途に応じて、自由に物性を決めることができる。
 ここで、前記樹脂成形部材を成形する方法としては、特に限定されず、公知の成形方法を用いることができる。例えば、射出成形、射出圧縮成形、押出成形、圧縮成形、ブロー成形、プレス成形などが挙げられる。用いるマトリクス樹脂の性質や前記樹脂成形部材の用途などを考慮して選ぶことができる。
 また、上記の成形方法などによって母材を作製し、さらに切削加工等を追加して成形することができる。
 下記にはマトリクス樹脂として、エラストマーを用いた場合とその他に分けて説明する。
1-2-2. Physical Properties, etc. When Using as a Resin Molding Member When using as a resin molding member, the physical properties can be freely determined according to the molding method and application.
Here, the method for molding the resin molded member is not particularly limited, and a known molding method can be used. For example, injection molding, injection compression molding, extrusion molding, compression molding, blow molding, press molding and the like can be mentioned. It can be selected in consideration of the nature of the matrix resin to be used and the use of the resin molded member.
In addition, a base material can be manufactured by the above-described forming method or the like, and cutting and the like can be additionally performed.
Below, the case where an elastomer is used as matrix resin and others are divided and demonstrated.
1-2-2-1.マトリクス樹脂をエラストマーとした場合
 下記には、本樹脂組成物の好適例である、静電チャック装置に用いる樹脂成形部材においてマトリクス樹脂をエラストマーとした場合の例について説明する。ここで、本明細書におけるエラストマーとは、23℃においてゴム弾性を示す樹脂をいうこととする。例えば、ベルトやバンド状の樹脂成形部材として用いられる。なお、本物性等は、一例に過ぎず、本発明を限定するものではない。
1-2-2-1. When a matrix resin is used as an elastomer The following will explain an example where the matrix resin is used as an elastomer in a resin molded member used in an electrostatic chuck apparatus, which is a preferred example of the present resin composition. Here, the elastomer in the present specification refers to a resin exhibiting rubber elasticity at 23 ° C. For example, it is used as a belt or a band-like resin molding member. The physical properties and the like are merely examples and do not limit the present invention.
1-2-2-1-1.硬化前の粘度
 本発明による樹脂組成物の硬化前の粘度は、粘度が低くなると、流動性が高すぎて、形状の制御が困難となる。特にシート状の形状等の場合に厚さの制御が困難となる。また粘度が高くなりすぎると流動性が不足し、成形が困難となる。
 粘度の測定は、公知の方法で行うことができ、例えば、JIS K7117-1:1999「プラスチック-液状、乳濁状又は分散状の樹脂-ブルックフィールド形回転粘度計による見掛け粘度の測定方法」に準拠して測定することができる。
1-2-2-1-1. Viscosity before curing The viscosity of the resin composition according to the present invention before curing is too high in flowability when the viscosity is low, making it difficult to control the shape. Particularly in the case of a sheet-like shape or the like, it becomes difficult to control the thickness. In addition, when the viscosity is too high, the fluidity is insufficient and the molding becomes difficult.
The viscosity can be measured by a known method, for example, according to JIS K7117-1: 1999 "Plastic-liquid, emulsion or dispersion resin-measurement method of apparent viscosity with Brookfield type rotational viscometer". It can be measured in compliance.
1-2-2-1-2.硬化後の硬さ
 本発明による樹脂組成物の硬化後の硬さは、特に限定されず、用途に応じて決定することができる。例えば、前記静電チャック装置の接着剤表面を保護する保護材として用いる場合には、前記硬化後のショアA硬さは、10~100であることが好ましく、20~90がより好ましい。ショアA硬さは、測定物の表面に圧子を押し込み変形させ、その変形量(押込み深さ)を測定し、数値化するデュロメーター(スプリング式ゴム硬度計)を用いて測定することができる。ショアAがかかる範囲にある場合には、適度な剛性を持ち、保護材として静電チャック装置の接着剤表面に対し、緩みなく(隙間なく)固定することが可能となる。また前記接着剤表面の形状を追従することが可能となり、その表面を隙間なく固定することが可能となる。前記接着剤表面は、保護材との間に隙間が存在すると、その隙間から上述した反応性化学種が侵入し、接着剤の保護が不完全となる。
1-2-2-1-2. Hardness after curing The hardness after curing of the resin composition according to the present invention is not particularly limited, and can be determined according to the application. For example, when used as a protective material for protecting the adhesive surface of the electrostatic chuck device, the Shore A hardness after curing is preferably 10 to 100, and more preferably 20 to 90. The Shore A hardness can be measured using a durometer (spring-type rubber hardness meter) that presses and deforms an indenter on the surface of an object to be measured, measures the amount of deformation (indentation depth), and digitizes it. When the Shore A is in such a range, it has appropriate rigidity, and can be fixed to the adhesive surface of the electrostatic chuck device as a protective material without looseness (without any gap). Moreover, it becomes possible to follow the shape of the adhesive surface, and it becomes possible to fix the surface without a gap. When a gap is present between the adhesive surface and the protective material, the reactive chemical species described above penetrate from the gap, resulting in incomplete protection of the adhesive.
1-2-2-1-3.硬化後の伸び率
 本発明による樹脂組成物の硬化後の伸び率は、特に限定されず、用途に応じて決定することができる。例えば、前記静電チャック装置の接着剤表面を保護する保護材として用いる場合には、前記硬化後の伸び率は、1%~1000%が好ましく、3%~500%がより好ましい。伸び率がかかる範囲にある場合には、柔軟な保護材となり、静電チャック装置の接着剤表面に固定する際の操作性が容易となり、取付けの作業効率を高くすることができる。また伸び率に関連するパラメータであるガラス転移温度(Tg)が十分に高くなり、加熱環境での使用にも耐えることができる。伸び率は、公知の方法で測定でき、例えば、JIS K-6251:2010「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に準拠して、測定することができる。
1-2-2-1-3. Elongation after curing The elongation after curing of the resin composition according to the present invention is not particularly limited, and can be determined according to the application. For example, when used as a protective material for protecting the adhesive surface of the electrostatic chuck device, the elongation after curing is preferably 1% to 1000%, and more preferably 3% to 500%. When the elongation rate is in such a range, it becomes a flexible protective material, and the operability at the time of fixing on the adhesive surface of the electrostatic chuck device becomes easy, and the working efficiency of the attachment can be increased. In addition, the glass transition temperature (Tg), which is a parameter related to the elongation, is sufficiently high, and can be used in a heating environment. The elongation can be measured by a known method, and can be measured, for example, in accordance with JIS K-6251: 2010 "Vulcanized rubber and thermoplastic rubber-How to determine tensile properties".
1-2-2-1-4.硬化後の引張強度
 本発明による樹脂組成物の硬化後の引張強度は、特に限定されず、用途に応じて決定することができる。例えば、前記静電チャック装置の接着剤表面を保護する保護材として用いる場合には、前記硬化後の引張強度は0.1N/mm~100N/mmが好ましく、0.1N/mm~80N/mmがより好ましい。引張強度がかかる範囲にある場合には、十分な強度を有し、壊れにくい。引張強度の上限は特にないが、引張強度が高い場合、硬度や伸び率が高くなるため上述した問題が生じる。引張強度の測定は公知の方法で測定することができ、例えば、JIS K-6251:2010「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に準拠して、測定することができる。
1-2-2-1-4. Tensile Strength after Curing The tensile strength after curing of the resin composition according to the present invention is not particularly limited, and can be determined according to the application. For example, when used as a protective material for protecting the adhesive surface of the electrostatic chuck device, the tensile strength after curing is preferably 0.1 N / mm 2 to 100 N / mm 2 , and 0.1 N / mm 2 to 80 N / mm 2 is more preferable. When the tensile strength is in such a range, it has sufficient strength and is not easily broken. The upper limit of the tensile strength is not particularly limited, but when the tensile strength is high, the hardness and the elongation increase, and the above-mentioned problems occur. The tensile strength can be measured by a known method, and can be measured, for example, in accordance with JIS K-6251: 2010 "Vulcanized rubber and thermoplastic rubber-Determination of tensile properties".
1-2-2-2.マトリクス樹脂をエラストマー以外の樹脂(硬質樹脂)とした場合
 下記には、本樹脂組成物の好適例である、静電チャック装置に用いる樹脂成形部材においてマトリクス樹脂をエラストマー以外(硬質樹脂と呼ぶ)とした場合の例を説明する。即ち、前記成形部材のマトリクス樹脂が、23℃においてガラス弾性を示す樹脂である場合、硬質樹脂の構造体の樹脂成形部材として用いられる。マトリクス樹脂をエラストマーとした場合には、作業が容易になるなどの優位な点が存在するが、構造体としては弱く、固定する相手方の複雑な構造に合わせることには限界がある。一方、硬質樹脂をマトリクス樹脂とした場合には、固定するためにねじ止めにするなどの工夫が必要となるが、固定する相手方の複雑な構造に合わせて加工でき、且つ、構造的に強いという利点がある。
 また、本発明におけるマトリクス樹脂として、熱硬化性樹脂と熱可塑性樹脂を用いることができる。従って、常温で、液体であっても、固体であってもよく、成形する際に成形方法に適した性質を示すものであればよい。例えば、金型に流して成形する方法においては、成形時の温度において、金型内で流れる流動性、即ち粘度を有すればよい。また、熱可塑性樹脂を用いて、混練機等により、マトリクス樹脂と層状無機化合物フィラーを配合する場合には、混練機で成型が可能な弾性と粘性、即ち粘弾性を有すればよい。
 なお、本物性等は、一例に過ぎず、本発明を限定するものではない。
1-2-2-2. When matrix resin is resin (hard resin) other than elastomer (plastic resin) used for the electrostatic chuck apparatus which is a suitable example of the present resin composition which is a preferable example of the present resin composition An example of the case is described. That is, when the matrix resin of the said shaping | molding member is resin which shows glass elasticity at 23 degreeC, it is used as a resin-molding member of the structure of a hard resin. When the matrix resin is used as an elastomer, there are advantages such as ease of operation, but the structure is weak, and there is a limit in matching with the complicated structure of the other to be fixed. On the other hand, in the case of using a hard resin as a matrix resin, it is necessary to use a device such as screwing to fix, but it can be processed according to the complicated structure of the other party to be fixed and is structurally strong. There is an advantage.
Moreover, a thermosetting resin and a thermoplastic resin can be used as a matrix resin in this invention. Therefore, it may be liquid or solid at normal temperature, as long as it exhibits properties suitable for the molding method at the time of molding. For example, in the method of molding by flowing into a mold, it is sufficient to have fluidity, that is, viscosity, to flow in the mold at the temperature at the time of molding. When a matrix resin and a layered inorganic compound filler are blended by a kneader or the like using a thermoplastic resin, the kneader may have elasticity and viscosity that can be molded by the kneader, that is, viscoelasticity.
The physical properties and the like are merely examples and do not limit the present invention.
1-2-2-2-1.熱硬化性樹脂の硬化前の粘度、又は、熱可塑性樹脂の溶融時の粘度
 本発明による樹脂組成物のマトリクス樹脂を熱硬化性樹脂とした場合の硬化前の粘度、及び、マトリクス樹脂を熱可塑性樹脂とした場合の溶融時の粘度は、特に限定されない。樹脂成形部材の成形方法に適した粘度であればよい。
1-2-2-2-1. Viscosity before curing of thermosetting resin or viscosity at melting of thermoplastic resin Viscosity before curing when matrix resin of resin composition according to the present invention is thermosetting resin, and matrix resin as thermoplastic resin The viscosity at the time of melting when it is used as a resin is not particularly limited. It is sufficient that the viscosity is suitable for the molding method of the resin molded member.
1-2-2-2-2.樹脂成形部材の引張弾性率
 本発明による樹脂組成物の硬化後の弾性率は、特に限定されず、用途に応じて決定することができる。例えば、前記静電チャック装置の接着剤表面を保護する保護材として用いる場合には、前記硬化後の引張弾性率は、0.2GPa~40GPaであることが好ましく、0.5GPa~30GPaがより好ましい。引張弾性率がかかる範囲にある場合には、ネジ等を用いて固定することが可能となり、硬くなり過ぎず、高い加工性を有することができる。
 硬化後の引張弾性率の測定は、公知の方法で行うことができ、例えば、JIS K7161-1994「プラスチック-引張特性の試験方法」に準拠して測定することができる。
1-2-2-2-2. Tensile modulus of elasticity of the resin molded member The modulus of elasticity after curing of the resin composition according to the present invention is not particularly limited, and can be determined according to the application. For example, when used as a protective material for protecting the adhesive surface of the electrostatic chuck device, the tensile modulus after curing is preferably 0.2 GPa to 40 GPa, and more preferably 0.5 GPa to 30 GPa . In the case where the tensile elastic modulus is in such a range, it can be fixed using a screw or the like, and it can not be too hard and can have high processability.
The measurement of the tensile elastic modulus after curing can be performed by a known method, and can be measured, for example, in accordance with JIS K7161-1994 "Plastics-Test method of tensile properties".
1-2-2-2-3.樹脂成形部材の引張強度
 本発明による樹脂組成物の硬化後の引張強度は、特に限定されず、用途に応じて決定することができる。例えば、前記静電チャック装置の接着剤表面を保護する保護材として用いる場合には、前記硬化後の引張強度は50kPa以上が好ましく、200kPa以上がより好ましい。引張強度がかかる範囲にある場合には、十分な強度を有し、壊れにくい。引張強度の上限は特にないが、引張強度が高い場合、硬くなりすぎて加工が困難になる。引張強度の測定は公知の方法で測定することができ、例えば、JIS K7161-1994「プラスチック-引張特性の試験方法」に準拠して測定することができる。
1-2-2-2-3. Tensile Strength of Resin Molded Member The tensile strength after curing of the resin composition according to the present invention is not particularly limited, and can be determined according to the application. For example, when using as a protective material which protects the adhesive agent surface of the said electrostatic chuck apparatus, 50 kPa or more is preferable and, as for the tensile strength after the said hardening, 200 kPa or more is more preferable. When the tensile strength is in such a range, it has sufficient strength and is not easily broken. There is no particular upper limit of tensile strength, but if the tensile strength is high, it becomes too hard and processing becomes difficult. The tensile strength can be measured by a known method, and can be measured, for example, in accordance with JIS K7161-1994 "Plastics-Test method of tensile properties".
1-3.本発明による樹脂組成物の製造方法
 本発明の樹脂組成物の製造方法は、公知の方法で製造でき、例えば、マトリクス樹脂、層状無機化合物フィラー及びその他の成分を、所定の配合量に測り取り、ビーズミルにより混合して調製するなどが挙げられる。
 また、前記樹脂組成物を、シート状の接着剤やテープ状の接着剤とする場合には、公知の方法を用いて、調製した樹脂組成物を基材上に薄膜化することができる。薄膜化する方法としては、例えば、アプリケーターを用いる方法などが挙げられる。
 成形部材として加工する場合には、公知の方法で成形でき、例えば、金型に前記樹脂組成物を流入し、プレス機によって圧力をかけ成形する方法などが挙げられる。
1-3. Method for Producing Resin Composition According to the Present Invention The method for producing the resin composition according to the present invention can be produced by a known method, and for example, the matrix resin, the layered inorganic compound filler and other components are measured in predetermined amounts. For example, it may be prepared by mixing with a bead mill.
Moreover, when using the said resin composition as a sheet-like adhesive agent or a tape-like adhesive agent, it can thin-film the prepared resin composition on a base material using a well-known method. As a method of forming a thin film, for example, a method using an applicator may be mentioned.
In the case of processing as a forming member, it can be formed by a known method, for example, a method of flowing the resin composition into a mold and applying pressure by a press machine for forming.
1-4.本発明による樹脂組成物の用途
 本発明による樹脂組成物は、耐プラズマ性の高さから、直接又は間接的にプラズマに曝される環境下で使用される。使用の態様としては、特に限定されないが、接着剤及びシール材などの成形部材として使用することが好ましい。
1-4. Applications of the Resin Composition According to the Present Invention The resin composition according to the present invention is used in an environment exposed to plasma directly or indirectly because of its high plasma resistance. Although it does not specifically limit as an aspect of use, It is preferable to use as molded members, such as an adhesive agent and a sealing material.
 本発明による樹脂組成物が用いられるプラズマ装置としては、一般的な、減圧下(真空下)で用いられるプラズマに限られず、大気圧下で用いられる大気圧プラズマ(常圧プラズマ)も含む。プラズマ処理装置の例として、プラズマエッチング装置、プラズマアッシング装置、CVD装置、スパッタリング装置、蒸着装置、ドライクリーニング装置、表面改質装置などの、プラズマを利用した装置であれば、特に限定されない。 The plasma apparatus in which the resin composition according to the present invention is used is not limited to the general plasma used under reduced pressure (under vacuum), but also includes atmospheric pressure plasma (atmospheric pressure plasma) used under atmospheric pressure. The plasma processing apparatus is not particularly limited as long as it is an apparatus using plasma, such as a plasma etching apparatus, a plasma ashing apparatus, a CVD apparatus, a sputtering apparatus, a deposition apparatus, a dry cleaning apparatus, and a surface reforming apparatus.
 本発明による樹脂組成物は、好適な用途として、静電チャック装置に用いることができる。例えば、(1)接着剤層として、導電部である金属基盤と、シリコンウエハ等を吸着する絶縁部材である吸着部と、を接合する態様、(2)成形部材として、前記接着剤層(本願発明によらない接着剤層も含む)の表面をプラズマから隔離する接着剤表面保護材が挙げられる。 The resin composition according to the present invention can be used in an electrostatic chuck device as a suitable application. For example, (1) a mode in which a metal base which is a conductive portion is bonded as an adhesive layer, and a suction portion which is an insulating member which sucks a silicon wafer etc., (2) the adhesive layer An adhesive surface protection material which isolates the surface of the adhesive layer not included in the invention from the plasma.
 下記に図1を例として好適例である静電チャック装置について詳述する。図1は、プラズマ処理装置に用いられる静電チャック装置の上面図(図1a)と断面図(図1b)である。
 静電チャック装置100は、絶縁部材であるセラミックス製の吸着部10、接着剤層20、絶縁層30、電気絶縁弾性層40、金属基盤50、導電部60、電極70を層状に積み重ねて構成することができる。さらに、接着剤をプラズマから隔離する接着剤表面保護材80及び90を備えることができる。静電チャック装置100に設けられた貫通孔は、ロボットハンドから静電チャック装置にシリコンウエハを受け渡す昇降ロッドのシリコンウエハ支持ピンを収納するためのものである。前記ウエハ受け渡しピンを上下動させることで、シリコンウエハを静電チャック装置から脱着することができ、ロボットハンドに受け渡すことができる。金属基盤50の内部には、ウエハ温度を調整するための熱媒が通る熱媒流路(図示略)等からなる調温手段が形成されているものが望ましい。静電チャック装置100は、電極70に電圧を印加することにより、吸着部10が帯電し、静電力によりシリコンウエハを吸着させることができる。また、前記電圧を除くことで、吸着を解除することができる。
The electrostatic chuck apparatus which is a suitable example is explained in full detail below by making FIG. 1 into an example. FIG. 1 is a top view (FIG. 1a) and a sectional view (FIG. 1b) of an electrostatic chuck device used in a plasma processing apparatus.
The electrostatic chuck device 100 is configured by stacking the ceramic adsorption portion 10, which is an insulating member, the adhesive layer 20, the insulating layer 30, the electrically insulating elastic layer 40, the metal substrate 50, the conductive portion 60, and the electrode 70 in layers. be able to. Additionally, adhesive surface protectors 80 and 90 can be provided to isolate the adhesive from the plasma. The through holes provided in the electrostatic chuck device 100 are for receiving silicon wafer support pins of a lift rod that delivers the silicon wafer from the robot hand to the electrostatic chuck device. By moving the wafer delivery pin up and down, the silicon wafer can be detached from the electrostatic chuck device and delivered to the robot hand. It is preferable that a temperature control means, such as a heat medium passage (not shown) through which a heat medium for adjusting the wafer temperature is formed, be formed inside the metal base 50. The electrostatic chuck device 100 can apply a voltage to the electrode 70 to charge the adsorbing portion 10 and adsorb the silicon wafer by electrostatic force. Further, the adsorption can be released by removing the voltage.
 本発明による樹脂組成物を接着剤とすることで、接着剤層20に用いることができ、セラミックス部材とアルミニウム部材の熱膨張率の差から生じる歪を緩和することが可能となり、さらに耐プラズマ性を向上させることが可能となる。本用途で用いる場合には、シート状接着剤を用いることが、塗布作業が簡略化されるので好ましい。
 本発明による樹脂組成物をシート状の接着剤として用いる場合には、シート状の接着剤の厚さは、用途に応じて設計でき、特に限定されない。例えば、5μm~500μmとすることができ、10μm~200μmがより好ましく、20μm~150μmがさらに好ましい。
By using the resin composition according to the present invention as an adhesive, it can be used for the adhesive layer 20, and it is possible to alleviate the strain caused by the difference in the thermal expansion coefficient between the ceramic member and the aluminum member, and further to plasma resistance It is possible to improve the When using for this application, it is preferable to use a sheet-like adhesive because the coating operation is simplified.
When the resin composition according to the present invention is used as a sheet-like adhesive, the thickness of the sheet-like adhesive can be designed according to the application and is not particularly limited. For example, it can be 5 μm to 500 μm, more preferably 10 μm to 200 μm, and still more preferably 20 μm to 150 μm.
 また本発明による樹脂組成物は、成形部材とすることで、接着剤表面保護材80及び90に用いることができる。接着剤表面保護材80及び90は、接着剤層20をプラズマから隔離し、接着剤層の延命することができる。
 接着剤表面保護材80及び90は、例えば、エラストマーをマトリクスとすることで、バンド状にして使用することが可能となる。この場合には。エラストマーの弾性力で、静電チャック装置に取付け、固定が可能であり、交換作業が簡便になる。
 また、接着剤表面保護材80及び90は、マトリクスを硬化樹脂とすることで、静電チャック装置にねじ止めなどで固定することが可能であり、その複雑な構造の静電チャック装置においても、形状に合わせて加工が可能であり、隙間なく固定でき、且つ、構造的に強くできる。
 また、本発明の樹脂組成物は、上述した接着剤層20と、接着剤表面保護材80及び90のどちらか一方に用いても、効果を奏するが、両方を用いることで、さらに高い効果を奏することができる。前記接着剤表面保護材は、耐プラズマ性が高いため、交換頻度が下がることに加え、交換が容易であるため、メンテナンス時間が大幅に短縮できる。従来の接着剤のみが使用されている静電チャック装置の場合にはプラズマ処理装置から静電チャック装置を取り出し、メーカーに送付してメンテナンスを行う必要があり、一定期間生産ができない状況があったが、その必要がなくなるという効果を奏する。
Moreover, the resin composition by this invention can be used for adhesive surface protection materials 80 and 90 by setting it as a shaping | molding member. Adhesive surface protection materials 80 and 90 isolate the adhesive layer 20 from the plasma and can prolong the life of the adhesive layer.
The adhesive surface protection materials 80 and 90 can be used in the form of a band, for example, by using an elastomer as a matrix. In this case. The elastic force of the elastomer enables it to be attached and fixed to the electrostatic chuck device, and the replacement operation is simplified.
Further, the adhesive surface protection members 80 and 90 can be fixed to the electrostatic chuck device by screwing or the like by using the matrix as the cured resin, and the electrostatic chuck device having the complicated structure is also possible. It can be processed according to the shape, can be fixed without gaps, and can be structurally strong.
In addition, although the resin composition of the present invention exerts an effect even if it is used for either the adhesive layer 20 or the adhesive surface protective materials 80 and 90 described above, the use of both of them further enhances the effect. Can play. Since the adhesive surface protection material has high plasma resistance, in addition to a decrease in replacement frequency, it is easy to replace, so that the maintenance time can be significantly shortened. In the case of the electrostatic chuck device where only the conventional adhesive is used, it is necessary to take the electrostatic chuck device out of the plasma processing apparatus, send it to the manufacturer for maintenance, and there is a situation where production can not be performed for a certain period However, there is an effect that the necessity is lost.
 その他の成形部材としての用途は、例えば、パッキンやO-リングなどのシール材;ベルト状、シート状や立体構造を持った構造体;が挙げられる。
 パッキンやO-リングは、例えば、減圧プラズマにおける真空系統(ガス供給部、プラズマソース、プラズマ処理室、排気配管等)の連結部にシール材として用いることができる。プラズマソース部、プラズマ処理室、排気配管に使用されている、耐プラズマ性の低い従来のシール材では、プラズマによる劣化で数カ月に1度の頻度で交換する必要があるが、本発明による前記シール材を用いることで、延命が可能となる。
 また、立体構造を持った構造体の用途としては、半導体製造装置であるプラズマ処理装置にウエハを搬入・設置する際に、ロボットハンドからプラズマ装置にシリコンウエハを受け渡す昇降ロッドのシリコンウエハ支持ピンなどに、使用できる。
Examples of applications as other molded members include sealing materials such as packings and O-rings; and belt-like, sheet-like or three-dimensional structures.
The packing and the O-ring can be used, for example, as a sealing material at a connecting portion of a vacuum system (gas supply portion, plasma source, plasma processing chamber, exhaust pipe, etc.) in reduced pressure plasma. The conventional sealing material with low plasma resistance, which is used in the plasma source portion, plasma processing chamber, and exhaust piping, needs to be replaced once every several months due to deterioration due to plasma. By using the material, it is possible to prolong the life.
In addition, as an application of the structure having a three-dimensional structure, silicon wafer support pins of elevating rods that deliver a silicon wafer from a robot hand to a plasma device when loading and installing a wafer in a plasma processing device that is a semiconductor manufacturing device. Can be used, etc.
<樹脂組成物の作製>
(実施例1)
 市販のシリコーン接着剤(信越シリコーン社製KE-1820)に対し、ハイドロタルサイト{組成式:MgAl(OH)16CO・4HO、平均板面径:249nm、BET比表面積:50m/g}を15体積%になるように配合し、ビーズミルで混合した。
(比較例1)
 市販のシリコーン接着剤(信越シリコーン社製KE-1820)のみを、ビーズミルによる撹拌のみ行った。
<Production of Resin Composition>
Example 1
Hydrotalcite {Composition formula: Mg 6 Al 2 (OH) 16 CO 3 · 4 H 2 O, average plate surface diameter: 249 nm, BET specific surface area relative to a commercially available silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) 50 m 2 / g} was blended so as to be 15% by volume, and mixed in a bead mill.
(Comparative example 1)
Only commercially available silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) was only stirred by a bead mill.
<耐プラズマ性評価>
(プラズマ処理1)
 実施例1及び比較例1で調製した接着剤を、それぞれPET製剥離フィルム上に10cm×10cm×100μm厚の大きさになるように成膜した後、乾燥炉内において120℃で5分間加熱して乾燥させた。乾燥後、剥離フィルムを剥離し、評価用試料を得た。
 作成した評価用試料をプラズマ装置内に平面になるように設置し、24時間プラズマ処理を行った。プラズマの処理条件を下記に示した。
 プラズマ処理装置:Unity Me(東京エレクトロン社製)
 高周波電源出力 :1000W
 高周波電源周波数:13.56MHz
 バイアス電源出力:なし
 真空度     :133.33Pa
 酸素ガス流量  :450sccm
 フッ素ガス流量 :50 sccm
 ステージ温度  :25℃
 プラズマ処理時間:24時間
<Plasma resistance evaluation>
(Plasma treatment 1)
The adhesive prepared in Example 1 and Comparative Example 1 is formed into a film of 10 cm × 10 cm × 100 μm thick on a PET peeling film, and then heated at 120 ° C. for 5 minutes in a drying furnace. Dried. After drying, the release film was removed to obtain a sample for evaluation.
The prepared sample for evaluation was placed on a flat surface in a plasma device and subjected to plasma treatment for 24 hours. The processing conditions of the plasma are shown below.
Plasma processing system: Unity Me (made by Tokyo Electron Ltd.)
High frequency power output: 1000 W
High frequency power supply frequency: 13.56 MHz
Bias power output: None Vacuum degree: 133.33Pa
Oxygen gas flow rate: 450 sccm
Fluorine gas flow rate: 50 sccm
Stage temperature: 25 ° C
Plasma treatment time: 24 hours
(実施例2)
 シリコーン接着剤(信越シリコーン社製KE-1820)に対し、ハイドロタルサイト{組成式:MgAl(OH)16CO・4HO、平均板面径:249nm、BET比表面積:50m/g}を1.5体積%になるように配合し、3本ロールで混合し調整した。
(実施例3)
 シリコーン接着剤(信越シリコーン社製KE-1820)に対し、ハイドロタルサイト{組成式:MgAl(OH)16CO・4HO、平均板面径:249nm、BET比表面積:50m/g}を3.5体積%になるように配合し、3本ロールで混合し調整した。
(実施例4)
 シリコーン接着剤(信越シリコーン社製KE-1820)に対し、ハイドロタルサイト{組成式:MgAl(OH)16CO・4HO、平均板面径:249nm、BET比表面積:50m/g}を8.0体積%になるように配合し、3本ロールで混合し調整した。
(実施例5)
 シリコーン接着剤(信越シリコーン社製KE-1820)に対し、ハイドロタルサイト{組成式:MgAl(OH)16CO・4HO、平均板面径:249nm、BET比表面積:50m/g}を17.5体積%になるように配合し、3本ロールで混合し調整した。
(実施例6)
 シリコーン接着剤(モメンティブ・パフォーマンス・マテリアルズ社製TSE3032、混合比 TSE3032(A):TSE3032(B)=100重量部:10重量部)に対し、ハイドロタルサイト{組成式:MgAl(OH)16CO・4HO、平均板面径:249nm、BET比表面積:50m/g}を8.0体積%になるように配合し、3本ロールで混合し調整した。
(実施例7)
 シリコーン接着剤(モメンティブ・パフォーマンス・マテリアルズ社製TSE3032、混合比 TSE3032(A):TSE3032(B)=100重量部:10重量部)に対し、ハイドロタルサイト{組成式:MgAl(OH)16CO・4HO、平均板面径:249nm、BET比表面積:50m/g}を33.3体積%になるように配合し、3本ロールで混合し調整した。
(実施例8)
 シリコーン接着剤((モメンティブ・パフォーマンス・マテリアルズ社製TSE3032、混合比 TSE3032(A):TSE3032(B)=100重量部:10重量部)に対し、ハイドロタルサイト{組成式:MgAl(OH)16CO・4HO、平均板面径:249nm、BET比表面積:50m/g}を50.0体積%になるように配合し、3本ロールで混合し調整した。
(比較例2)
 市販のシリコーン接着剤(信越シリコーン社製KE-1820)のみを、ビーズミルによる撹拌のみ行った。
(比較例3)
 シリコーン接着剤(信越シリコーン社製KE-1820)に対し、ハイドロタルサイト{組成式:MgAl(OH)16CO・4HO、平均板面径:249nm、BET比表面積:50m/g}を0.5体積%になるように配合し、3本ロールで混合し調整した。
(比較例4)
 シリコーン接着剤(モメンティブ・パフォーマンス・マテリアルズ社製TSE3032、混合比 TSE3032(A):TSE3032(B)=100重量部:10重量部)を、ミキサーにより混合し調整した。
(Example 2)
Hydrotalcite {Composition formula: Mg 6 Al 2 (OH) 16 CO 3 · 4H 2 O, average plate surface diameter: 249 nm, BET specific surface area: 50 m 2 relative to a silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) / G} was blended so as to be 1.5% by volume, and mixed and adjusted with a 3-roll mill.
(Example 3)
Hydrotalcite {Composition formula: Mg 6 Al 2 (OH) 16 CO 3 · 4H 2 O, average plate surface diameter: 249 nm, BET specific surface area: 50 m 2 relative to a silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) / G} was blended so as to be 3.5% by volume, and mixed and adjusted with a 3-roll mill.
(Example 4)
Hydrotalcite {Composition formula: Mg 6 Al 2 (OH) 16 CO 3 · 4H 2 O, average plate surface diameter: 249 nm, BET specific surface area: 50 m 2 relative to a silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) / G} was blended so as to be 8.0% by volume, and mixed and adjusted with a 3-roll mill.
(Example 5)
Hydrotalcite {Composition formula: Mg 6 Al 2 (OH) 16 CO 3 · 4H 2 O, average plate surface diameter: 249 nm, BET specific surface area: 50 m 2 relative to a silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) / G} was blended so as to be 17.5% by volume, and mixed and adjusted with a 3-roll mill.
(Example 6)
Hydrotalcite {Composition formula: Mg 6 Al 2 (OH) with respect to silicone adhesive (Momentive Performance Materials TSE 3032, mixing ratio TSE 3032 (A): TSE 3032 (B) = 100 parts by weight: 10 parts by weight) ) 16 CO 3 · 4 H 2 O, average plate surface diameter: 249 nm, BET specific surface area: 50 m 2 / g} was blended so as to be 8.0% by volume, and mixed and adjusted with a three-roll mill.
(Example 7)
Hydrotalcite {Composition formula: Mg 6 Al 2 (OH) with respect to silicone adhesive (Momentive Performance Materials TSE 3032, mixing ratio TSE 3032 (A): TSE 3032 (B) = 100 parts by weight: 10 parts by weight) ) 16 CO 3 · 4 H 2 O, average plate surface diameter: 249 nm, and BET specific surface area: 50 m 2 / g} were blended so as to be 33.3% by volume, and were mixed and adjusted with three rolls.
(Example 8)
Hydrotalcite {Composition formula: Mg 6 Al 2 (with respect to silicone adhesive ((Momentive Performance Materials TSE 3032, mixing ratio TSE 3032 (A): TSE 3032 (B) = 100 parts by weight: 10 parts by weight) OH) 16 CO 3 .4H 2 O, average plate surface diameter: 249 nm, BET specific surface area: 50 m 2 / g} was blended so as to be 50.0% by volume, and mixed and adjusted with a three-roll mill.
(Comparative example 2)
Only commercially available silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) was only stirred by a bead mill.
(Comparative example 3)
Hydrotalcite {Composition formula: Mg 6 Al 2 (OH) 16 CO 3 · 4H 2 O, average plate surface diameter: 249 nm, BET specific surface area: 50 m 2 relative to a silicone adhesive (KE-1820 manufactured by Shin-Etsu Silicone Co., Ltd.) / G} was blended so as to be 0.5% by volume, and mixed and adjusted with a 3-roll mill.
(Comparative example 4)
A silicone adhesive (Momentive Performance Materials TSE 3032, mixing ratio TSE 3032 (A): TSE 3032 (B) = 100 parts by weight: 10 parts by weight) was mixed and adjusted by a mixer.
<耐プラズマ性評価>
(プラズマ処理2)
 実施例2~8及び比較例2~4で調製した接着剤を、それぞれPET製剥離フィルム上に30mm×30mm×1mm厚の大きさになるように成膜した後、乾燥炉内において120℃で2時間間加熱して乾燥・硬化させた。硬化後、剥離フィルムを剥離し、評価用試料を得た。
 作成した評価用試料をプラズマ装置内に平面になるように設置し、4時間プラズマ処理を行った。プラズマの処理条件を下記に示した。
 プラズマ処理装置:RIE-10NRT(SUMCO社製)
 高周波電源出力 :250W
 バイアス電源出力:なし
 真空度     :100Pa
 酸素ガス流量  :45sccm
 CF流量   :5 sccm
 ステージ温度  :25℃
 プラズマ処理時間:4時間
<Plasma resistance evaluation>
(Plasma treatment 2)
The adhesive prepared in each of Examples 2 to 8 and Comparative Examples 2 to 4 is formed into a film of 30 mm × 30 mm × 1 mm thick on a PET peeling film, and then at 120 ° C. in a drying furnace. It was heated for 2 hours to dry and cure. After curing, the release film was released to obtain a sample for evaluation.
The prepared sample for evaluation was placed on a flat surface in a plasma device and subjected to plasma treatment for 4 hours. The processing conditions of the plasma are shown below.
Plasma processing system: RIE-10 NRT (manufactured by SUMCO)
High frequency power output: 250 W
Bias power output: None Vacuum degree: 100 Pa
Oxygen gas flow rate: 45 sccm
CF 4 flow rate: 5 sccm
Stage temperature: 25 ° C
Plasma treatment time: 4 hours
(質量減少測定)
 質量減少評価は、プラズマ処理前後の評価試料の質量を、直示天秤(メトラー社:MS104TS/00)を用いて秤量し、質量減少率を算出した。測定した結果を表1~表3に示した。測定は各評価試料を3検体ずつ処理し、その平均値を測定結果とした。
(Mass decrease measurement)
The mass reduction evaluation was performed by weighing the mass of the evaluation sample before and after plasma treatment using a direct reading balance (Metler: MS104TS / 00) to calculate the mass reduction rate. The measured results are shown in Tables 1 to 3. In the measurement, each evaluation sample was processed in three samples, and the average value was taken as the measurement result.
(表面状態変化観察)
<プラズマ処理1>
 表面状態観察は、走査型顕微鏡(日立ハイテクノロジーズ社製:SE-5000)を用いて行い、実施例1及び比較例1の樹脂組成物のプラズマ処理前後の評価試料の表面状態を観察した。結果を図2に示した。
<プラズマ処理2>
 デジタルマイクロスコープ(キーエンス社製:VHX-6000)を用いて500倍の倍率で、実施例2~8、比較例1~3の樹脂組成物のプラズマ処理前後の評価試料の外観変化を観察した。評価基準は以下の通り。
〇:プラズマ処理前後で樹脂組成物の外観上の変化なし。
△:プラズマ処理後の樹脂組成物にわずかな筋が見られる。
×:プラズマ処理後の樹脂組成物にあきらかな筋が複数見られる。
(Surface state change observation)
<Plasma treatment 1>
The surface condition was observed using a scanning microscope (manufactured by Hitachi High-Technologies Corporation: SE-5000), and the surface condition of the evaluation sample before and after the plasma treatment of the resin composition of Example 1 and Comparative Example 1 was observed. The results are shown in FIG.
<Plasma treatment 2>
Using a digital microscope (manufactured by Keyence Corporation: VHX-6000), changes in appearance of the evaluation samples before and after plasma treatment of the resin compositions of Examples 2 to 8 and Comparative Examples 1 to 3 were observed at a magnification of 500 times. Evaluation criteria are as follows.
○: No change in appearance of resin composition before and after plasma treatment.
Fair: slight streaks are observed in the resin composition after plasma treatment.
X: A plurality of clear streaks are observed in the resin composition after plasma treatment.
(評価)
 実施例1の質量減少率は、0.28%であり、比較例1に比べ、1/10以下と良好な結果が得られた。また、表面観察においても、比較例1が表面にクラックが発生しているのに対し、大きな変化は見られなかった。このことから本発明の効果が理解できる。
 また、実施例2~8及び比較例2~4において、別のプラズマ装置(エッチング装置)を用い、条件を変えても、各実施例の質量減少率は低く抑えることが可能であり、さらに、表面観察においても、耐プラズマ性に優れていることが明らかであり、本発明の効果が理解できる。
(Evaluation)
The mass reduction rate of Example 1 was 0.28%, and a good result of 1/10 or less was obtained as compared with Comparative Example 1. Also in the surface observation, no large change was observed while the crack was generated on the surface in Comparative Example 1. From this, the effects of the present invention can be understood.
Further, in Examples 2 to 8 and Comparative Examples 2 to 4, even if conditions are changed using another plasma apparatus (etching apparatus), the mass reduction rate of each Example can be suppressed to a low level, and Also in surface observation, it is clear that it is excellent in plasma resistance, and the effect of the present invention can be understood.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
100    静電チャック装置
10     吸着面
20     接着剤層
30     絶縁層
40     電気絶縁弾性層
50     金属基盤
60     導電部
70     電極
80,90  接着剤表面保護材
DESCRIPTION OF SYMBOLS 100 Electrostatic chuck apparatus 10 Suction surface 20 Adhesive layer 30 Insulating layer 40 Electric-insulation elastic layer 50 Metal base 60 Conductive part 70 Electrode 80, 90 Adhesive surface protection material

Claims (12)

  1.  プラズマに、直接、又は、間接的に曝露される環境下で用いられる樹脂組成物であって、
     マトリクス樹脂と、
     前記マトリクス樹脂に分散させたイオン交換性を有する層状無機化合物のフィラーとを含み、
     前記層状無機化合物の配合が、前記マトリクス樹脂の体積と前記層状無機化合物の体積の和に対して、1~90体積%であることを特徴とする、
    樹脂組成物。
    A resin composition used in an environment exposed directly or indirectly to plasma, comprising:
    Matrix resin,
    And a filler of a layered inorganic compound having ion exchangeability dispersed in the matrix resin,
    The blending of the layered inorganic compound is characterized in that it is 1 to 90% by volume with respect to the sum of the volume of the matrix resin and the volume of the layered inorganic compound.
    Resin composition.
  2.  前記イオン交換性が、アニオン交換性であることを特徴とする、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the ion exchangeability is anion exchangeability.
  3.  前記層状無機化合物が、下式(1)で表されることを特徴とする、請求項1又は2記載の樹脂組成物。
    {A1-x(OH)}(Dx/n)・mHO    (1)
    なお式中、Aは2価の金属イオン、Bは3価の金属イオン,Dはn価のアニオン、xは0を超え、0.4以下の範囲、また、mは0より大きい実数である。
    The resin composition according to claim 1, wherein the layered inorganic compound is represented by the following formula (1).
    {A 1-x B x ( OH) 2} (D x / n) · mH 2 O (1)
    In the formula, A is a divalent metal ion, B is a trivalent metal ion, D is an n-valent anion, x is greater than 0 and in the range of 0.4 or less, and m is a real number greater than 0. .
  4.  前記層状無機化合物が、下式(2)及び(3)で表される層状無機化合物であることを特徴とする、請求項3に記載の樹脂組成物。
    {Mg1-xAl(OH)}(COx/2・mHO   (2)
    1.5<(1-x)/x<4          (3)
    The resin composition according to claim 3, wherein the layered inorganic compound is a layered inorganic compound represented by the following formulas (2) and (3).
    {Mg 1-x Al x (OH) 2 } (CO 3 ) x / 2 · mH 2 O (2)
    1.5 <(1-x) / x <4 (3)
  5.  前記層状無機化合物が、MgAl(OH)16CO・4HOで表されるハイドロタルサイトであることを特徴とする、請求項4又は5に記載の樹脂組成物。 The layered inorganic compound, characterized in that it is a hydrotalcite represented by Mg 6 Al 2 (OH) 16 CO 3 · 4H 2 O, the resin composition according to claim 4 or 5.
  6.  前記樹脂組成物が、シリコーン樹脂を含むことを特徴とする、請求項1~5にいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the resin composition contains a silicone resin.
  7.  前記樹脂組成物が、プラズマエッチング装置に含まれることを特徴とした、請求項1~6のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the resin composition is contained in a plasma etching apparatus.
  8.  前記樹脂組成物が、接着剤であることを特徴とする、請求項1~7のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the resin composition is an adhesive.
  9.  前記樹脂組成物が、前記樹脂組成物を硬化させてなる樹脂成形部材として用いられることを特徴とする、請求項1~7のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the resin composition is used as a resin molded member obtained by curing the resin composition.
  10.  前記樹脂成形部材が、ベルト、バンド、パッキン、O-リング、シートのいずれかであることを特徴とする、請求項9に記載の樹脂組成物。 10. The resin composition according to claim 9, wherein the resin molded member is any one of a belt, a band, a packing, an O-ring, and a sheet.
  11.  前記樹脂成形部材が、プラズマエッチング装置に設けられる静電チャック装置に用いられる接着剤露出部の表面を覆い、前記接着剤表面をプラズマから隔離する保護材として使用されることを特徴とする、請求項9又は10に記載の樹脂組成物。 The resin molded member is used as a protective material that covers the surface of an adhesive exposed portion used in an electrostatic chuck device provided in a plasma etching apparatus, and is used as a protective material that isolates the adhesive surface from plasma. 11. The resin composition according to item 9 or 10.
  12.  請求項1~11に記載された樹脂組成物を含むことを特徴とする、静電チャック装置。 An electrostatic chuck device comprising the resin composition according to any one of claims 1 to 11.
PCT/JP2018/043187 2017-11-29 2018-11-22 Plasma-resistant resin composition and electrostatic chucking device employing same WO2019107271A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019557196A JP7186722B2 (en) 2017-11-29 2018-11-22 Resin composition having plasma resistance and electrostatic chuck device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017228690 2017-11-29
JP2017-228690 2017-11-29

Publications (1)

Publication Number Publication Date
WO2019107271A1 true WO2019107271A1 (en) 2019-06-06

Family

ID=66665606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043187 WO2019107271A1 (en) 2017-11-29 2018-11-22 Plasma-resistant resin composition and electrostatic chucking device employing same

Country Status (2)

Country Link
JP (1) JP7186722B2 (en)
WO (1) WO2019107271A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227748A (en) * 1988-07-16 1990-01-30 Tomoegawa Paper Co Ltd Electrostatic chucking device and forming method therefor
JPH0725140A (en) * 1993-07-14 1995-01-27 Tomoegawa Paper Co Ltd Discharge recording material
JP2013513697A (en) * 2009-12-10 2013-04-22 スリーエム イノベイティブ プロパティズ カンパニー Perfluoroelastomer adhesion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227748A (en) * 1988-07-16 1990-01-30 Tomoegawa Paper Co Ltd Electrostatic chucking device and forming method therefor
JPH0725140A (en) * 1993-07-14 1995-01-27 Tomoegawa Paper Co Ltd Discharge recording material
JP2013513697A (en) * 2009-12-10 2013-04-22 スリーエム イノベイティブ プロパティズ カンパニー Perfluoroelastomer adhesion

Also Published As

Publication number Publication date
JPWO2019107271A1 (en) 2020-12-03
JP7186722B2 (en) 2022-12-09

Similar Documents

Publication Publication Date Title
US9659883B2 (en) Thermally curable resin sheet for sealing semiconductor chip, and method for manufacturing semiconductor package
JP5265885B2 (en) Low hardness heat conductive resin composition and sheet-like heat radiation member using the same
EP2099090B1 (en) Dye-sensitized solar cell
EP3024021B1 (en) Method for manufacturing a semiconductor apparatus
EP3761355B1 (en) Insulating heat dissipation sheet
EP3608384B1 (en) Heat-conductive sheet
US20170033076A1 (en) Production method for semiconductor package
JP2006316112A (en) Fluorine-containing elastomer composition and molded article comprising the same
JP5228913B2 (en) Fluorine-containing elastomer composition
JP2008045088A (en) Thermosetting composition for optical semiconductor, sealant for optical semiconductor element, die bond material for optical semiconductor element, underfill material for optical semiconductor element and optical semiconductor device
TW202206550A (en) Lamination body of cured organopolysiloxane films, its use and manufacturing process thereof
JP2015216229A (en) Method for manufacturing semiconductor device, and thermosetting resin sheet
KR102216969B1 (en) Epoxy resin composition, use thereof, and filler for epoxy resin composition
JP5793160B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
WO2019107271A1 (en) Plasma-resistant resin composition and electrostatic chucking device employing same
KR101606303B1 (en) Resin composition for optical material
WO2015098838A1 (en) Method for producing semiconductor device, and thermosetting resin sheet
JP2007126568A (en) Fluorine-containing elastomer composition
JP2015065368A (en) Resin sheet, and method for manufacturing electronic device package
KR20180025816A (en) Heat-curable resin composition for semiconductor encapsulation
WO2015041076A1 (en) Sheet for electronic device seal and method for manufacturing electronic device package
JP7103225B2 (en) Encapsulating film and its cured product, and electronic devices
US20220396662A1 (en) Photocurable fluoropolyether-based elastomer composition and bonding method thereof
KR20170004623A (en) Electrically conductive rubber sheets and manufacturing method therof
JP2015088514A (en) Resin sheet for sealing electronic device, and method of manufacturing electronic device package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884055

Country of ref document: EP

Kind code of ref document: A1