WO2019107153A1 - Imaging lens, imaging device, and vehicle-mounted camera system - Google Patents
Imaging lens, imaging device, and vehicle-mounted camera system Download PDFInfo
- Publication number
- WO2019107153A1 WO2019107153A1 PCT/JP2018/042141 JP2018042141W WO2019107153A1 WO 2019107153 A1 WO2019107153 A1 WO 2019107153A1 JP 2018042141 W JP2018042141 W JP 2018042141W WO 2019107153 A1 WO2019107153 A1 WO 2019107153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- refractive power
- imaging
- negative refractive
- object side
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/04—Reversed telephoto objectives
Definitions
- the present invention relates to an imaging lens, an imaging device, and an on-vehicle camera system.
- An imaging lens used for a monitoring camera or a vehicle-mounted camera is required to be resistant to environmental changes and have good imaging performance over the entire screen.
- the mounting space is often limited, it is required to be compact and lightweight.
- imaging lenses used for surveillance cameras or in-vehicle cameras are expected to be used in various areas from the cold zone to the tropics, and in particular the in-vehicle sensing camera, which has been spreading in recent years, has a longer usage time than the rear camera Therefore, an optical system that can be used in a wider temperature range is required.
- the sensing application which detects an object is added from the conventional visual application, and the further performance enhancement is calculated
- good optical performance is required over the entire screen corresponding to it.
- Patent document 1 JP 2008-8960 JP 2013-47753
- the present invention has been made in view of the above points, and an object thereof is to provide an imaging lens having high optical performance while being small, lightweight, and inexpensive. Furthermore, it is an object of the present invention to provide an imaging lens, an imaging apparatus, and an on-vehicle camera system which are small in size, light in weight, inexpensive, have optical performance, and have high weather resistance.
- An imaging lens for achieving the above object includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and a third lens having negative refractive power , And a fourth lens having positive refractive power, a fifth lens formed by cementing a lens having positive refractive power and a lens having negative refractive power, and all the lenses are formed by spherical surfaces.
- an imaging device for achieving the above object includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and a third lens having negative refractive power. Composed of a lens, a fourth lens having a positive refractive power, a fifth lens consisting of a lens having a positive refractive power and a lens having a negative refractive power, all lenses being formed by a spherical surface And an imaging device for converting an optical image formed through the imaging lens into an electrical signal.
- an on-vehicle camera system for achieving the above object is provided in a vehicle and includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and All lenses are composed of a third lens with refractive power, a fourth lens with positive refractive power, a fifth lens consisting of a lens with positive refractive power and a lens with negative refractive power.
- the imaging device includes: an imaging lens characterized by having a spherical surface; and an imaging element configured to convert an optical image formed through the imaging lens into an electric signal.
- An imaging lens for achieving the above object includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and a third lens having negative refractive power.
- the d-line of a lens having a negative refractive power which is composed of a lens, a fourth lens having a positive refractive power, a fifth lens consisting of a lens having a positive refractive power and a lens having a negative refractive power, Is characterized in that the following conditional expressions (1) and (2) are satisfied, where dn / dt_n is the average value of the temperature coefficients of relative refractive index in the lens and L45 is the distance between the fourth lens and the fifth lens. Imaging lens.
- an imaging device for achieving the above object includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and a third lens having negative refractive power.
- the d-line of a lens having a negative refractive power which is composed of a lens, a fourth lens having a positive refractive power, a fifth lens consisting of a lens having a positive refractive power and a lens having a negative refractive power, Is characterized in that the following conditional expressions (1) and (2) are satisfied, where dn / dt_n is the average value of the temperature coefficients of relative refractive index in the lens and L45 is the distance between the fourth lens and the fifth lens.
- an on-vehicle camera system for achieving the above object includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and Negative refractive power comprising a third lens having a refractive power, a fourth lens having a positive refractive power, a lens having a positive refractive power and a lens having a negative refractive power, and a fifth lens
- dn / dt_n is the average temperature coefficient of the relative refractive index at the d-line of the lens having a distance L45 between the fourth lens and the fifth lens:
- An imaging device including: an imaging lens characterized by; and an imaging device for converting an optical image formed through the imaging lens into an electric signal.
- a wide-angle imaging lens having a size capable of being mounted in various places such as an automobile etc. and having a high optical performance with good imaging performance over the entire screen while securing a wide field of view.
- a compact wide-angle imaging lens that can be mounted on a surveillance camera or an on-vehicle camera, and an imaging apparatus using the same.
- an imaging lens, an imaging device, and an on-vehicle camera system having high optical performance while being small, lightweight, and inexpensive. Furthermore, according to the present invention, it is possible to provide an imaging lens having high weather resistance and optical performance while being small, lightweight and inexpensive. As a result, it is possible to realize an imaging device and an on-vehicle camera system with compact optical performance that can be mounted on a surveillance camera or an on-vehicle camera.
- the lens configuration of the embodiment is shown in an optical cross section in FIG.
- the imaging lens 100 is a five-lens single-focus imaging lens 100 in which an imaging surface 200 serving as a light receiving surface of an imaging element 210 such as a device (Device) or a complementary metal-oxide semiconductor device (CMOS) is disposed.
- an imaging surface 200 serving as a light receiving surface of an imaging element 210 such as a device (Device) or a complementary metal-oxide semiconductor device (CMOS) is disposed.
- CMOS complementary metal-oxide semiconductor device
- the flat plate 180 may be a filter with an infrared cut coating or a filter such as a low pass filter.
- the flat plate 190 may be a cover glass of the imaging device 210.
- the five lenses include, in order from the object side, a first lens 110 having negative refractive power, a second lens 120 having positive refractive power, an aperture stop 130, and negative refractive power.
- the third lens 140 is arranged, the fourth lens 150 having positive refractive power, and the fifth lenses 160 and 170 having positive refractive power.
- 1 (R1) to 12 (R11) shown in FIG. 1 are surface numbers of the respective constituent requirements.
- the aperture stop 130 is disposed between the second lens 120 and the third lens 140. Disposing the aperture stop 130 closer to the image than the fifth lens 160 or 170 is undesirable because the lens system becomes larger, and placing it between the first lens 110 and the second lens 120 increases the back focus. It is not preferable because it is disadvantageous. Therefore, by disposing between the second lens 120 and the third lens 140 described above, it is possible to correct various aberrations and to make the lens system compact.
- Correction of axial chromatic aberration is facilitated by joining the fifth lens 160 and 170 with a lens having positive refractive power and a lens having negative refractive power.
- All the lenses are spherical surfaces, which makes them easy to manufacture.
- optical performance deterioration due to tolerance can be reduced by not using an aspheric surface.
- the imaging lens 100 has the following conditional expression (1), where ⁇ a is the Abbe number of the lens 160 having the positive refractive power of the fifth lens, and ⁇ ⁇ b is the Abbe number of the lens 170 having negative refractive power. To be satisfied).
- Conditional expression (1) relates the difference between Abbe numbers of the lens 160 having a positive refractive power of the fifth lens and the lens 170 having a negative refractive power. If the lower limit value of the conditional expression (1) is exceeded, the difference in Abbe number is too small, which makes it difficult to correct axial chromatic aberration due to negative refraction. On the other hand, if the upper limit value is exceeded, the occurrence of axial chromatic aberration due to negative refraction is too large, and the correction becomes excessive.
- the imaging lens 100 is preferably configured to satisfy the conditional expression (2).
- 2W is the total angle of view of the light beam incident on the maximum image height position on the imaging plane.
- Conditional expression (2) relates to the angle of view of the entire imaging lens system. If the lower limit value of the conditional expression (2) is exceeded, it will be difficult to secure a photographing range to be satisfied as an on-vehicle camera.
- the imaging lens 100 preferably has an Abbe number of 30 or less for the d-line of the material forming the third lens 140, and an Abbe number of 30 or more for the d-line of the material of the fourth lens 150. Ru.
- the Abbe number to the d-line of the material forming the fourth lens 150 of the positive lens is larger, the longitudinal chromatic aberration can be corrected better.
- the first lens 110 has a concave surface on the image side
- the second lens 120 has a convex surface on the object side
- the fifth lens 160 has a convex surface on the object side.
- the first lens 110 by directing the concave surface to the image side, it becomes possible to enter light from the object side at a wide angle of view.
- the convex surface to the object side in the second lens 120 By directing the convex surface to the object side in the second lens 120, the ghost generated on the image side surface of the first lens 110 is not collected.
- the fifth lens 160 focuses the light incident at a wide angle of view by directing the convex surface to the object side.
- all the lenses from the first lens 110 to the fifth lens 170 be formed of a glass material.
- the focal length of the first lens 110 is f1
- the focal length of the third lens 140 is f3
- the focal length of the imaging lens 100 is f
- Conditional expression (3) relates the focal length of the first lens 110 to the focal length of the imaging lens 100.
- Conditional expression (4) relates the focal length of the third lens 140 to the focal length of the imaging lens 100. If the lower limit value of the conditional expression (4) is exceeded, the power of the third lens 140 is too small to correct axial chromatic aberration, and if the upper limit is exceeded, the power of the third lens 140 is too large. Correction will be excessive.
- Examples 1 to 4 and Reference Examples 1 to 2 will be shown according to specific numerical values of the imaging lens 100.
- the focal length, the F value, the image height, and the total lens length are as described in Table 1 below.
- numerical data of the conditional expressions (1) to (4) have values described in Table 2 below.
- Example 1 The basic configuration of the imaging lens 100A in the first embodiment is shown in FIG. 2, each numerical data (setting value) is shown in Table 3, and an aberration chart showing spherical aberration, distortion and astigmatism is shown in FIG. Be
- the first lens 110 has a meniscus shape with a convex surface facing the object side
- the second lens 120 has a biconvex shape
- the third lens 140 disposed on the image side of the aperture stop 130 has a biconcave shape
- the fourth lens 150 has a biconvex shape
- the fifth lens 160 has a biconvex shape
- the fifth lens 170 has a meniscus shape with a concave surface facing the object side.
- the distance between the R1 surface 1 and the R2 surface 2 which is the thickness of the first lens 110 is D1
- the distance between the R2 surface 2 of the first lens 110 and the R3 surface 3 of the second lens 120 is D1
- the distance between the R2 surface 2 of the first lens 110 and the R3 surface 3 of the second lens 120 is D3
- the distance between the R4 surface 4 of the second lens 120 and the surface 5 of the aperture stop 130 is D4
- the surface of the aperture stop 130 The distance between the fifth lens 5 and the R5 surface 6 of the third lens 140 is D5, and the distance between the R5 surface 6 and the R6 surface 7 which is the thickness of the third lens 140 is D6.
- the R6 surface 7 of the third lens 140 and the fourth lens 150 The distance between the R7 surface 8 and the R8 surface 9 which is the thickness of the fourth lens 150 is D7.
- the distance between the R8 surface 9 of the fourth lens 150 and the R9 surface 10 of the fifth lens 160 is D8.
- R9 surface 10 and R1 that have a distance of D9 and the thickness of the fifth lens 160 The distance between the 0 surface 11 is D10, the distance between the R10 surface 11 and the R11 surface 12 is the thickness of the fifth lens 170 is D11, and the distance between the R11 surface 12 of the fifth lens 170 and the surface 13 of the flat plate 180 is D12, The distance between the surface 13 and the surface 14 which is the thickness of the flat plate 180 is D13, the distance between the surface 14 of the flat plate 180 and the surface 15 of the flat plate 190 is D14, and the distance between the surface 15 and the plane 16 which is the thickness of the flat plate 190 is D15. The distance between the surface 16 of the flat plate 190 and the imaging surface 200 is D16. In Examples 2 to 4 and Reference Examples 1 to 2 below, R1 surface 1 to surface 16 and D1 to D16 mean the same distance.
- Table 3 shows the stop corresponding to each surface number of the imaging lens 100A in Example 1, the curvature radius R of each lens, the distance D, the refractive index Nd, and the dispersion value dd.
- FIG. 3 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) and FIG. 3B shows astigmatic aberration (solid line: from left: 435.8 nm, 486.1 nm) in Example 1; , 546.1 nm, 587.6 nm, 656.3 nm sagittal ray, dotted line: left from 435.8 nm, 486.1 nm, 546.1 nm, 546.1 nm, 587.6 nm, 656.3 nm tangential ray), and FIG.
- FIG. 3C shows distortion aberration (435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm and 656.3 nm are shown respectively).
- the vertical axes in FIGS. 3B and 3C represent the half angle of view ⁇ , and in FIG. 3B, the solid line S represents the value of the sagittal image plane, and the broken line T represents the value of the tangential image plane (FIGS. The same applies to 11).
- various aberrations such as spherical surface, distortion and astigmatism are corrected well, and an imaging lens 100A having excellent imaging performance can be obtained.
- Example 2 The basic configuration of the imaging lens 100B according to Embodiment 2 is shown in FIG. 4, each numerical data (setting value) is shown in Table 4, and an aberration diagram showing spherical aberration, distortion and astigmatism is shown in FIG. Be
- the first lens 110 has a meniscus shape with a convex surface facing the object side
- the second lens 120 has a biconvex shape
- the third lens 140 disposed on the image side of the aperture stop 130 has a biconcave shape
- the fourth lens 150 has a biconvex shape
- the fifth lens 160 has a biconvex shape
- the fifth lens 170 has a meniscus shape with a concave surface facing the object side.
- Table 4 shows the stop corresponding to each surface number of the imaging lens 100B in Example 2, the radius of curvature R of each lens, the interval D, the refractive index Nd, and the dispersion value dd.
- FIG. 5 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) in FIG. 5A and astigmatism in FIG. 5B (solid line: from left: 435.8 nm, 486.1 nm) , 546.1 nm, 587.6 nm, 656.3 nm sagittal ray, dotted line: left from 435.8 nm, 486.1 nm, 546.1 nm, 546.1 nm, 587.6 nm, 656.3 nm tangential ray), and FIG.
- 5C shows distortion aberration (435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm and 656.3 nm are shown respectively).
- various aberrations such as spherical surface, distortion and astigmatism are corrected well, and an imaging lens 100B excellent in imaging performance is obtained.
- Example 3 Numerical data (setting values) in the third embodiment are shown in Table 5, and aberration diagrams showing spherical aberration, distortion and astigmatism are shown in FIG. 6, respectively.
- Table 5 shows the stop corresponding to each surface number of the imaging lens in Example 3, the curvature radius R of each lens, the interval D, the refractive index Nd, and the dispersion value dd.
- FIG. 6 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) and FIG. 6B shows astigmatic aberration (solid line: from left: 435.8 nm, 486.1). nm, 546.1 nm, 587.6 nm, 656.3 nm, sagittal light beam, dotted line: left from 435.8 nm, 486.1 nm, 546.1 nm, 547.6 nm, 587.6 nm, 656.3 nm tangential light), and FIG.
- 6C shows distortion aberration (435.8 nm, 486.1 nm) , 546.1 nm, 587.6 nm, and 656.3 nm), respectively.
- various aberrations such as spherical surface, distortion and astigmatism are corrected well, and an imaging lens having excellent imaging performance can be obtained.
- Example 4 Numerical data (setting values) in the fourth embodiment are shown in Table 6, and aberration diagrams showing spherical aberration, distortion and astigmatism are shown in FIG. 7, respectively.
- Table 6 shows the stop corresponding to each surface number of the imaging lens in Example 4, the curvature radius R of each lens, the distance D, the refractive index Nd, and the dispersion value dd.
- FIG. 7 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) in FIG. 7A and astigmatism in FIG. 7B (solid line from left: 435.8 nm, 486.1).
- Table 7 shows the stop corresponding to each surface number of the imaging lens in the reference example 1, the curvature radius R of each lens, the interval D, the refractive index Nd, and the dispersion value dd.
- FIG. 8 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) and astigmatic aberration (solid line: from left: 435.8 nm, 486.1 nm).
- Sagittal light beam 546.1 nm, 587.6 nm, 656.3 nm
- dotted line 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm tangential light beam from the left
- FIG. 8C shows distortion aberration (435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm and 656.3 nm are shown respectively).
- Table 8 shows the stop corresponding to each surface number of the imaging lens in the reference example 2, the curvature radius R of each lens, the distance D, the refractive index Nd, and the dispersion value dd.
- FIG. 9 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) in FIG. 9A, and FIG. 9B shows astigmatism (solid line: 435.8 nm from left, 486.1 nm).
- FIG. 10 shows the relationship between axial chromatic aberration and the Abbe's number difference of the fifth lens in each of the first to fourth embodiments and the first and second embodiments.
- the difference in Abbe number is 30 ⁇ ⁇ ⁇ va ⁇ vb ⁇ 17.
- the imaging lens concerning this embodiment was demonstrated, this invention is not limited to the imaging lens of these Examples, A various deformation
- transformation is possible in the range which does not deviate from the summary of invention.
- the specifications of the imaging lens 100 of Examples 1 to 4 are exemplification, and various parameter changes are possible within the scope of the present invention.
- the cover glass (flat plate) 190 may be provided with an infrared ray removing filter, or an infrared cut coat may be applied to the surface of the cover glass (flat plate) 190. Also, infrared coating may be applied to other lens surfaces or filters such as low pass filters.
- a wide-angle imaging lens can be provided which can be mounted in various places such as a monitoring camera or a car-mounted camera, has a wide field of view, has good imaging performance over the entire screen, and has high optical performance. .
- FIG. 11 shows a cross-sectional view of an embodiment of an imaging device 210 using the imaging lens 100 according to an embodiment of the present invention.
- the imaging lens 100 and an imaging element 210 such as a CCD or CMOS are defined and held in a positional relationship by a housing 220.
- the imaging surface 200 of the imaging lens 100 is disposed to coincide with the light receiving surface of the imaging element 210.
- An object image captured by the imaging lens 100 and formed on the light receiving surface of the imaging element 210 is converted into an electrical signal by the photoelectric conversion function of the imaging element 210 and output from the imaging element 210 as an image signal.
- FIG. 12 is a view for explaining an example of an on-vehicle camera system in which the imaging device 300 using the imaging lens 100 according to an embodiment of the present invention is applied to an on-vehicle camera 410 mounted on a vehicle 400.
- the on-vehicle camera system includes an on-vehicle camera 410 and an image processing device 420.
- the on-vehicle camera 410 can be attached to the interior or the exterior of the vehicle 400 and can image a predetermined direction, but in the example of FIG. An image shall be taken.
- the on-vehicle camera 410 outputs the acquired image to the image processing apparatus 420 via the communication unit in the vehicle 400.
- the image processing device 420 includes an image processing ASIC (Application Specific Integrated Circuit), a processor dedicated to image processing such as a DSP (Digital Signal Processor), and a memory for storing various information, and is output from the on-vehicle camera 410 and other on-vehicle cameras Processing such as white balance adjustment, exposure adjustment processing, color interpolation, brightness correction, and gamma correction is performed on the captured image.
- ASIC Application Specific Integrated Circuit
- DSP Digital Signal Processor
- the image processing device 420 performs processing such as switching of images, combining of images from a plurality of in-vehicle cameras, clipping of a part of images, superimposing on images such as symbols, characters or expected trajectory lines, etc. It outputs an image signal according to the specifications of the device 430.
- the on-vehicle camera 410 may have some or all of the functions of the image processing apparatus 420.
- the display device 430 is disposed on a dashboard or the like of the vehicle 400, and displays the image information processed by the image processing device 420 to the driver of the vehicle 400.
- the imaging lens 100 is a wide-angle imaging lens, the occurrence of distortion can be reduced, an object image with high optical performance can be formed on the light receiving surface of the imaging element 210, and the visibility is excellent. It is possible to output an image signal of an image. Furthermore, axial chromatic aberration can be suppressed even if the wavelength band is extended to near infrared light in order to be used in an environment where light intensity is low such as nighttime. It is suitable for the camera 410. Furthermore, since the device can be made compact and lightweight, the mounting space can be made compact, which is suitable for the imaging device 210 for various applications.
- the lens configuration of the embodiment is shown in an optical cross section in FIG.
- the imaging lens 1100 is a five-lens single-focus imaging lens 1100 in which an imaging surface 1200 serving as a light receiving surface of an imaging element 1210 such as a device (Device) or a complementary metal-oxide semiconductor device (CMOS) is disposed.
- an imaging element 1210 such as a device (Device) or a complementary metal-oxide semiconductor device (CMOS)
- the five lenses include, in order from the object side, a first lens 1110 having negative refractive power, a second lens 1120 having positive refractive power, an aperture stop 1130, and negative refractive power.
- the third lens 1140, the fourth lens 1150 having a positive refractive power, and the fifth lens 1160 or 1170 having a positive refractive power are arranged.
- 1 (R1) to 12 (R11) shown in FIG. 13 are surface numbers of respective constituent requirements.
- the aperture stop 1130 is disposed between the second lens 1120 and the third lens 1140. Disposing the aperture stop 1130 closer to the image than the fifth lens 1160-1170 is not preferable because the lens system becomes larger, and placing it between the first lens 1110 and the second lens 1120 increases the back focus. It is not preferable because it is disadvantageous. Therefore, by disposing between the second lens 1120 and the third lens 1140 described above, satisfactory correction of various aberrations and downsizing of the lens system become possible.
- the fifth lens 1160-1170 is a cement of a lens having a positive refractive power and a lens having a negative refractive power, so that correction of axial chromatic aberration is facilitated.
- the imaging lens 1100 embodying the present invention has an average value of the temperature coefficient of the relative refractive index at the d-line of the lens having negative refractive power, dn / dt_n, and the distance between the fourth lens 1150 and the fifth lens 1160 ⁇ 1170.
- L 45 is L 45, the following conditional expressions (5) and (6) are satisfied.
- Conditional expression (5) is an expression relating to the average value of the temperature coefficients of the relative refractive index at the d-line of the first lens 1110 having a negative refractive power, the third lens 1130, and the fifth lens 1170.
- the glass lens usually changes in the direction in which the refractive power increases.
- the lower limit value of the conditional expression (5) is exceeded, it is difficult to change in the direction in which the refractive power of the lens having negative refractive power increases. The focus shifts to the object side.
- Conditional expression (6) is an expression related to the distance between the fourth lens 1150 and the fifth lens 1160-1170. If the lower limit value of the conditional expression (6) is exceeded, a general manufacturing tolerance of 20 ⁇ m occupies 10% or more of the design value, which makes manufacturing difficult.
- the imaging lens 1100 is preferably configured to satisfy the conditional expression (7).
- 2W is the total angle of view of the light beam incident on the maximum image height position on the imaging plane.
- Conditional expression (7) is an expression regarding the angle of view of the imaging lens 1100. If the lower limit value of the conditional expression (7) is exceeded, it will be difficult to secure a photographing range to be satisfied as an on-vehicle sensing camera.
- the first lens 1110 has a concave surface on the image side
- the second lens 1120 has a convex surface on the object side
- the fifth lens 1160 has a convex surface on the object side.
- the first lens 1110 As a result, with the first lens 1110, light from the object side can be incident at a wide angle of view by directing the concave surface toward the image side. By directing the convex surface to the object side in the second lens 1120, the ghost generated on the image side surface of the first lens 1110 is not collected.
- the fifth lens 1160 focuses light incident at a wide angle of view by directing the convex surface toward the object side.
- all the lenses from the first lens 1110 to the fifth lens 1170 be formed of a glass material.
- the imaging lens 1100 is preferably configured to satisfy the conditional expression (8).
- dn / dt_p shows the average value of the temperature coefficient of the relative refractive index at the d-line of the lens having positive refractive power.
- Conditional expression (8) relates to the average value of the temperature coefficient of the relative refractive index at the d-line of the second lens 1120 having a positive refractive power, the fourth lens 1150, and the fifth lens 1170. If the upper limit value of the conditional expression (8) is exceeded, the refractive power of the lens having positive refractive power becomes too large at high temperature, and the focus shifts to the object side.
- the fourth lens 1150 preferably has an aspheric shape on one side or both sides.
- the focal length of the first lens 1110 is f1
- the focal length of the third lens 1140 is f3
- the focal length of the imaging lens 1100 is f
- Conditional expression (9) relates the focal length of the first lens 1110 to the focal length of the imaging lens 1100.
- Conditional expression (10) relates the focal length of the third lens 1140 to the focal length of the imaging lens 1100. If the lower limit value of the conditional expression (10) is exceeded, the power of the third lens 1140 is too small to correct axial chromatic aberration. If the upper limit is exceeded, the power of the third lens 1140 is too large. Correction will be excessive.
- the direction from the object side to the image plane side is positive
- k is a conical coefficient
- A is a fourth-order aspheric coefficient
- B is a sixth order aspheric coefficient
- C is an eighth order aspheric coefficient
- D is a tenth order aspheric coefficient.
- h is the height of the ray
- c is the reciprocal of the central radius of curvature
- Z is the depth from the tangent to the surface vertex.
- Examples 5 to 10 and reference examples 3 to 5 will be shown below by using specific numerical values of the imaging lens 100.
- the focal length, the f-number, the image height, and the total lens length are as described in Table 9 below.
- the numerical data of the conditional expressions (5) to (10) have the values described in Table 10 below.
- Example 5 The basic configuration of the imaging lens 1100A in the seventh embodiment is shown in FIG. 14, each numerical data (setting value) is shown in Table 11, and an aberration diagram showing spherical aberration, distortion and astigmatism is shown in FIG. Be
- the first lens 1110 has a meniscus shape with a convex surface facing the object side
- the second lens 1120 has a biconvex shape
- the third lens 1140 disposed on the image side of the aperture stop 1130 has a biconcave shape
- the fourth lens 1150 has a biconvex shape
- the fifth lens 1160 has a biconvex shape
- the fifth lens 1170 has a meniscus shape with a concave surface facing the object side.
- the distance between the R1 surface 1 and the R2 surface 2 which is the thickness of the first lens 1110 is D1
- the distance between the R2 surface 2 of the first lens 1110 and the R3 surface 3 of the second lens 1120 The distance between the R3 surface 3 and the R4 surface 4 which is the thickness of the second lens 1120 is D3
- the distance between the R4 surface 4 of the second lens 1120 and the surface 5 of the aperture stop 1130 is D4
- the surface of the aperture stop 1130 The distance between the fifth lens 513 and the R5 6 of the third lens 1140 is D5
- the distance between the R5 6 and the R6 7 is the thickness of the third lens 1140 D6, the R6 7 of the third lens 1140 and the fourth lens 1150
- the distance between the R7 surface 8 and the R8 surface 9 which is the thickness of the fourth lens 1150 is D7.
- the distance between the R8 surface 9 of the fourth lens 1150 and the R9 surface 10 of the fifth lens 1160 is D8.
- Distance D9, fifth lens 1 The distance between the R9 surface 10 and the R10 surface 11 with a thickness of 60 is D10, the distance between the R10 surface 11 and the R11 surface 12 with a thickness of the fifth lens 1170 is D11, the R11 surface 12 of the fifth lens 1170 and the flat plate 1180 The distance between the surface 13 and the surface 14 which is the thickness of the flat plate 1180 is D13, the distance between the surface 14 of the flat plate 1180 and the surface 15 of the flat plate 1190 is D14, the surface which is the thickness of the flat plate 1190 The distance between the surface 15 and the surface 16 is D15, and the distance between the surface 16 of the flat plate 1190 and the imaging surface 1200 is D16. Also in the following Examples 6 to 10 and Reference Examples 3 to 4, R1 surface 1 to surface 16 and D1 to D16 mean the same distance.
- Table 11 shows the diaphragms corresponding to the surface numbers of the imaging lens 1100A in Example 5, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value ⁇ d, relative refractive index at d-line Temperature coefficient dn / dt and linear expansion coefficient ⁇ .
- Surfaces with * in Table 11 indicate that they have an aspherical shape.
- Table 12 shows the aspheric coefficients of the predetermined surface.
- FIG. 15 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) in FIG. 15A and astigmatism in FIG. 15B (solid line: from 43.58 nm, 486.1 nm from left) Sagittal light beam, 546.1 nm, 587.6 nm, 656.3 nm, dotted line: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm tangential light beam from the left, distortion aberration in FIG.
- FIGS. 15B and 15C (435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm and 656.3 nm are shown respectively).
- the vertical axes in FIGS. 15B and 15C represent the half angle of view ⁇ , and in FIG. 15B, the solid line S represents the value of the sagittal image plane, and the broken line T represents the value of the tangential image plane (FIGS. 17, 19 and 21). The same applies to (23).
- various aberrations such as spherical surface, distortion and astigmatism are corrected well, and an imaging lens 1100A excellent in imaging performance is obtained.
- Example 6 The basic configuration of the imaging lens and the aberration diagram showing spherical aberration, distortion, and astigmatism in the eighth embodiment are the same as in the fifth embodiment. Each numerical data (setting value) is shown in Table 13.
- Table 13 shows the stop corresponding to each surface number of the imaging lens in Example 6, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value dd, relative refractive index at d-line
- the temperature coefficient dn / dt and the linear expansion coefficient ⁇ are shown.
- Surfaces with * in Table 13 indicate that they have an aspheric shape.
- Table 14 shows the aspheric coefficients of the predetermined surface.
- Example 7 The basic configuration of the imaging lens 1100B in the ninth embodiment is shown in FIG. 16, each numerical data (setting value) is shown in Table 15, and aberration diagrams showing spherical aberration, distortion and astigmatism are shown in FIG. Be
- the first lens 1110 has a meniscus shape with a convex surface facing the object side
- the second lens 1120 has a double convex shape
- the third lens 1140 disposed on the image side of the aperture stop 1130 has a double concave shape
- the fourth lens 1150 has a biconvex shape
- the fifth lens 1160 has a biconvex shape
- the fifth lens 1170 has a biconvex shape.
- Table 15 shows the stop corresponding to each surface number of the imaging lens in Example 7, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value dd, relative refractive index at d-line
- the temperature coefficient dn / dt and the linear expansion coefficient ⁇ are shown.
- the surface indicated by * in Table 15 indicates that the surface has an aspherical shape.
- Table 16 shows the aspheric coefficients of the predetermined surface.
- FIG. 17 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) in FIG. 17A and astigmatism in FIG. 17B (solid line from left: 435.8 nm, 486.1). nm, 546.1 nm, 587.6 nm, 656.3 nm, sagittal ray, dotted line: left from 435.8 nm, 486.1 nm, 546.1 nm, 546.1 nm, 587.6 nm, 656.3 nm, tangential ray), and FIG.
- 17C shows distortion aberration (435.8 nm, 486.1 nm) , 546.1 nm, 587.6 nm, and 656.3 nm), respectively.
- various aberrations of spherical surface, distortion and astigmatism are corrected well, and an imaging lens excellent in imaging performance can be obtained.
- Example 8 The basic configuration of the imaging lens and the aberration diagram showing spherical aberration, distortion, and astigmatism in the tenth embodiment are the same as in the seventh embodiment. Each numerical data (setting value) is shown in Table 17.
- Table 17 shows the stop corresponding to each surface number of the imaging lens in Example 7, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value dd, relative refractive index at d-line
- the temperature coefficient dn / dt and the linear expansion coefficient ⁇ are shown.
- Surfaces with * in Table 17 indicate that they have an aspheric shape.
- Table 18 shows the aspheric coefficients of the predetermined surface.
- Example 9 The basic configuration of the imaging lens 1100C according to Embodiment 11 is shown in FIG. 18, each numerical data (setting value) is shown in Table 19, and an aberration diagram showing spherical aberration, distortion and astigmatism is shown in FIG. Be
- the first lens 1110 has a meniscus shape with a convex surface facing the object side
- the second lens 1120 has a double convex shape
- the third lens 1140 disposed on the image side of the aperture stop 1130 has a double concave shape
- the fourth lens 1150 has a biconvex shape
- the fifth lens 1160 has a biconvex shape
- the fifth lens 1170 has a biconvex shape.
- Table 19 shows the diaphragms corresponding to the surface numbers of the imaging lens in Example 9, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value ⁇ d, and relative refractive index at d-line
- the temperature coefficient dn / dt and the linear expansion coefficient ⁇ are shown.
- Surfaces with * in Table 19 indicate that they have an aspherical shape.
- Table 20 shows the aspheric coefficients of the predetermined surface.
- FIG. 19 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) and FIG. 19B shows astigmatism (solid line: from left: 435.8 nm, 486.1) in Example 9; nm, 546.1 nm, 587.6 nm, 656.3 nm, sagittal light beam, dotted line: left from 435.8 nm, 486.1 nm, 546.1 nm, 547.6 nm, 587.6 nm, 656.3 nm tangential light), and FIG.
- 19C shows distortion aberration (435.8 nm, 486.1 nm) , 546.1 nm, 587.6 nm, and 656.3 nm), respectively.
- various aberrations such as spherical surface, distortion and astigmatism are corrected well, and an imaging lens having excellent imaging performance can be obtained.
- Example 10 The basic configuration of the imaging lens and the aberration diagram showing spherical aberration, distortion, and astigmatism in Embodiment 12 are the same as in Embodiment 9.
- Each numerical data (set value) is shown in Table 21.
- Table 21 shows the stop corresponding to each surface number of the imaging lens in Example 9, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value dd, relative refractive index at d-line
- the temperature coefficient dn / dt and the linear expansion coefficient ⁇ are shown.
- Surfaces with * in Table 21 indicate that they have an aspheric shape.
- Table 22 shows the aspheric coefficients of the predetermined surface.
- Table 23 shows the stop corresponding to each surface number of the imaging lens in the reference example 3, the curvature radius R (mm) of each lens, the distance D (mm), the refractive index Nd, the dispersion value dd, and the relative refractive index at the d line
- the temperature coefficient dn / dt and the linear expansion coefficient ⁇ are shown.
- Surfaces with * in Table 23 indicate that they have an aspherical shape.
- Table 24 shows the aspheric coefficients of the predetermined surface.
- Table 25 shows the stop corresponding to each surface number of the imaging lens in the reference example 4, the curvature radius R (mm) of each lens, the distance D (mm), the refractive index Nd, the dispersion value ⁇ d, and the relative refractive index at the d line
- the temperature coefficient dn / dt and the linear expansion coefficient ⁇ are shown.
- the surface indicated by * in Table 25 indicates that the surface has an aspheric shape.
- Table 26 shows the aspheric coefficients of the predetermined surface.
- Table 27 shows the stop corresponding to each surface number of the imaging lens in the reference example 5, the curvature radius R (mm) of each lens, the distance D (mm), the refractive index Nd, the dispersion value dd, and the relative refractive index at the d line
- the temperature coefficient dn / dt and the linear expansion coefficient ⁇ are shown.
- Surfaces with * in Table 27 indicate that they have an aspherical shape.
- Table 28 shows the aspheric coefficients of the predetermined surface.
- Example 20 shows the d-line of the first lens 1110, the third lens 1130, and the fifth lens 1170 having negative refractive power in Example 5 to Example 10 and Reference Example 3 to Reference Example 5, respectively.
- the relationship between the average value of the temperature coefficient of the relative refractive index and the focus shift amount at 105 ° C. is shown.
- the focus shift amount is calculated from the temperature coefficient of the relative refractive index at the d-line and the linear expansion coefficient.
- FIGS. 20, 21, and 22 by setting the average value of the temperature coefficients of relative refractive indices to a specific value or more, the amount of focus shift can be suppressed to a small value.
- the focus shift amount needs to be 10 ⁇ m or less due to manufacturing tolerances, and the average value of the temperature coefficient of the relative refractive index at the d-line of a lens having negative refractive power is dn / dt_n ⁇ 3.0.
- an infrared ray removing filter may be provided on the cover glass (flat plate) 1190, or an infrared cut coat may be applied to the surface of the cover glass (flat plate) 1190. Also, infrared coating may be applied to other lens surfaces or filters such as low pass filters.
- a wide-angle imaging lens can be provided which can be mounted in various places such as a monitoring camera or a car-mounted camera, has a wide field of view, has good imaging performance over the entire screen, and has high optical performance. .
- FIG. 23 shows a cross-sectional view of an embodiment of an imaging device 1300 using an imaging lens 1100 according to an embodiment of the present invention.
- An imaging lens 1100 and an imaging element 1210 such as a CCD or CMOS are defined and held in a positional relationship by a housing 1220.
- the imaging surface 1200 of the imaging lens 1100 is disposed to coincide with the light receiving surface of the imaging element 1210.
- An object image captured by the imaging lens 1100 and formed on the light receiving surface of the imaging element 1210 is converted into an electrical signal by the photoelectric conversion function of the imaging element 1210 and output from the imaging element 1210 as an image signal.
- FIG. 24 is a view for explaining an example of an on-vehicle camera system in which an imaging device 1300 using an imaging lens 1100 according to an embodiment of the present invention is applied to an on-vehicle camera 1410 mounted on a vehicle 1400.
- the on-vehicle camera system includes an on-vehicle camera 1410 and an image processing device 1420.
- the on-vehicle camera 1410 is attached to the interior or the exterior of the vehicle 1400 and can capture a predetermined direction, but in the example of FIG. An image shall be taken.
- the on-vehicle camera 1410 outputs the acquired image to the image processing apparatus 1420 via the communication unit in the vehicle 1400.
- the image processing apparatus 1420 includes an image processing ASIC (Application Specific Integrated Circuit), a processor dedicated to image processing such as a DSP (Digital Signal Processor), and a memory for storing various information, and is output from the onboard camera 1410 and other onboard cameras Processing such as white balance adjustment, exposure adjustment processing, color interpolation, brightness correction, and gamma correction is performed on the captured image. Furthermore, the image processing device 1420 performs processing such as switching of images, combining of images from a plurality of in-vehicle cameras, cutting out of some images, superimposing on images such as symbols, characters or expected trajectory lines, etc. An image signal according to the specifications of the device 1430 is output.
- the on-vehicle camera 1410 may have some or all of the functions of the image processing apparatus 1420.
- the display device 1430 is disposed on a dashboard or the like of the vehicle 1400, and displays the image information processed by the image processing device 1420 to the driver of the vehicle 1400.
- the imaging lens 1100 is a wide-angle imaging lens, the occurrence of distortion can be reduced, and an object image with high optical performance can be formed on the light receiving surface of the imaging element 1210, and the visibility is excellent. It is possible to output an image signal of an image. Furthermore, axial chromatic aberration can be suppressed even if the wavelength band is extended to near infrared light in order to be used in an environment where the amount of light is low, such as at night, and in particular, an on-vehicle using an imaging element 1210 without an infrared cut filter It is suitable for the camera 1410. Furthermore, since the device can be made compact and lightweight, the mounting space can be made compact, which is suitable for the imaging device 1210 for various applications.
- imaging lens 100, 100A to 100B imaging lens 110 first lens 120 second lens 130 aperture stop 140 third lens 150 fourth lens 160 fifth lens 170 fifth lens 180 flat plate 190 flat plate 200 imaging surface 210 imaging element 220 frame 300 imaging device 400 vehicle 410 vehicle-mounted camera 420 image processing device 430 display device 1100, 1100A to 1100C imaging lens 1110 first lens 1120 second lens 1130 aperture stop 1140 third lens 1150 fourth lens 1160 fifth lens 1170 fifth lens 1180 flat plate 1190 flat plate 1200 image forming plane 1210 imaging device 1220 housing 1300 imaging device 1400 vehicle 1410 in-vehicle camera 1420 image processing device 1430 display device
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Through the present invention, by appropriately setting the shape of a lens, an imaging lens is obtained that has high optical performance while being small, lightweight, and inexpensive. The present invention is constituted from, in order to an object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture diaphragm, a third lens having negative refractive power, a fourth lens having positive refractive power, and a fifth lens comprising a union of a lens having positive refractive power and a lens having negative refractive power, all of the lenses being formed by spherical surfaces.
Description
本出願は、日本国特許出願2017-227714号(2017年11月28日出願)及び日本国特許出願2017-228099号(2017年11月28日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに 参照のために取り込む。
This application claims the priority of Japanese patent application 2017-227714 (filed on November 28, 2017) and Japanese patent application 2017-228099 (filed on November 28, 2017), The entire disclosure of the application is incorporated herein by reference.
本発明は、撮像レンズ、撮像装置および車載カメラシステムに関する。
The present invention relates to an imaging lens, an imaging device, and an on-vehicle camera system.
監視用カメラまたは車載用カメラに用いられる撮像レンズには、環境変化に強く、画面全域で結像性能が良いことが要求される。また、搭載スペースが限られることが多いことなどから小型で軽量であることが要求される。たとえば、監視用カメラまたは車載用カメラに用いられる撮像レンズには、寒帯から熱帯までの様々な地域での使用が想定され、特に近年広まりつつある車載用センシングカメラはリアカメラに比べ使用時間が長いため、より広い温度範囲において使用可能な光学系が求められている。また、従来の視認用途から物体を検知するセンシング用途が加えられ、更なる高性能化が求められている。撮像素子の高画素化に伴い、それに見合う画面全域で良好な光学性能が要求されている。また、さらには、搭載スペースが限られることから小型且つ軽量であることが要求される。
An imaging lens used for a monitoring camera or a vehicle-mounted camera is required to be resistant to environmental changes and have good imaging performance over the entire screen. In addition, because the mounting space is often limited, it is required to be compact and lightweight. For example, imaging lenses used for surveillance cameras or in-vehicle cameras are expected to be used in various areas from the cold zone to the tropics, and in particular the in-vehicle sensing camera, which has been spreading in recent years, has a longer usage time than the rear camera Therefore, an optical system that can be used in a wider temperature range is required. Moreover, the sensing application which detects an object is added from the conventional visual application, and the further performance enhancement is calculated | required. Along with the increase in the number of pixels of an imaging device, good optical performance is required over the entire screen corresponding to it. Furthermore, because of the limited mounting space, it is required to be compact and lightweight.
これらの要望に対応し得る可能性がある単焦点の撮像レンズとして、下記の特許文献1、2が提案されている。
The following patent documents 1 and 2 are proposed as a single focus imaging lens which may be able to respond to these demands.
近年、車載用カメラは従来の視認用途から物体を検知するセンシング用途が加えられ、更なる高性能化が求められている。また、撮像素子の高画素化に伴い、それに見合う良好な光学性能が求められている。
In recent years, in automotive cameras, sensing applications for detecting an object have been added from conventional viewing applications, and further higher performance has been demanded. In addition, along with the increase in the number of pixels of an imaging device, good optical performance to be compatible with it is required.
本発明は、上記の点に鑑みて成されたものであり、目的とするのは小型、軽量且つ安価でありながら、高い光学性能を持つ撮像レンズを提供する。さらに、本発明が目的とするのは小型、軽量且つ安価でありながら、光学性能を持ち、高い耐候性をも備えた撮像レンズおよび撮像装置および車載カメラシステムを提供することである。
The present invention has been made in view of the above points, and an object thereof is to provide an imaging lens having high optical performance while being small, lightweight, and inexpensive. Furthermore, it is an object of the present invention to provide an imaging lens, an imaging apparatus, and an on-vehicle camera system which are small in size, light in weight, inexpensive, have optical performance, and have high weather resistance.
上記目的を達成する撮像レンズは、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、全てのレンズが球面により形成されることを特徴とする。
An imaging lens for achieving the above object includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and a third lens having negative refractive power , And a fourth lens having positive refractive power, a fifth lens formed by cementing a lens having positive refractive power and a lens having negative refractive power, and all the lenses are formed by spherical surfaces. I assume.
また、上記目的を達成する撮像装置は、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、全てのレンズが球面により形成されることを特徴とする撮像レンズと、前記撮像レンズを介して結像する光学像を電気信号に変換する撮像素子とを備える。
Further, an imaging device for achieving the above object includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and a third lens having negative refractive power. Composed of a lens, a fourth lens having a positive refractive power, a fifth lens consisting of a lens having a positive refractive power and a lens having a negative refractive power, all lenses being formed by a spherical surface And an imaging device for converting an optical image formed through the imaging lens into an electrical signal.
さらに、上記目的を達成する車載カメラシステムは、車両に設けられ、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、全てのレンズが球面により形成されることを特徴とする撮像レンズと、前記撮像レンズを介して結像する光学像を電気信号に変換する撮像素子とを含む撮像装置を備える。
Furthermore, an on-vehicle camera system for achieving the above object is provided in a vehicle and includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and All lenses are composed of a third lens with refractive power, a fourth lens with positive refractive power, a fifth lens consisting of a lens with positive refractive power and a lens with negative refractive power. The imaging device includes: an imaging lens characterized by having a spherical surface; and an imaging element configured to convert an optical image formed through the imaging lens into an electric signal.
また、上記目的を達成する撮像レンズは、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、負の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値をdn/dt_n、前記第4レンズと前記第5レンズの間隔をL45とするとき、下記条件式(1)、(2)を満足することを特徴とする撮像レンズ。
An imaging lens for achieving the above object includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and a third lens having negative refractive power. The d-line of a lens having a negative refractive power, which is composed of a lens, a fourth lens having a positive refractive power, a fifth lens consisting of a lens having a positive refractive power and a lens having a negative refractive power, Is characterized in that the following conditional expressions (1) and (2) are satisfied, where dn / dt_n is the average value of the temperature coefficients of relative refractive index in the lens and L45 is the distance between the fourth lens and the fifth lens. Imaging lens.
dn/dt_n≧3.0 ・・・(1)
L45≧0.2 ・・・(2)
また、上記目的を達成する撮像装置は、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、負の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値をdn/dt_n、前記第4レンズと前記第5レンズの間隔をL45とするとき、下記条件式(1)、(2)を満足することを特徴とする撮像レンズと、前記撮像レンズを介して結像する光学像を電気信号に変換する撮像素子とを備える。 dn / dt_n ≧ 3.0 (1)
L45 ≧ 0.2 (2)
Further, an imaging device for achieving the above object includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and a third lens having negative refractive power. The d-line of a lens having a negative refractive power, which is composed of a lens, a fourth lens having a positive refractive power, a fifth lens consisting of a lens having a positive refractive power and a lens having a negative refractive power, Is characterized in that the following conditional expressions (1) and (2) are satisfied, where dn / dt_n is the average value of the temperature coefficients of relative refractive index in the lens and L45 is the distance between the fourth lens and the fifth lens. An imaging lens, and an imaging device for converting an optical image formed through the imaging lens into an electric signal.
L45≧0.2 ・・・(2)
また、上記目的を達成する撮像装置は、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、負の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値をdn/dt_n、前記第4レンズと前記第5レンズの間隔をL45とするとき、下記条件式(1)、(2)を満足することを特徴とする撮像レンズと、前記撮像レンズを介して結像する光学像を電気信号に変換する撮像素子とを備える。 dn / dt_n ≧ 3.0 (1)
L45 ≧ 0.2 (2)
Further, an imaging device for achieving the above object includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and a third lens having negative refractive power. The d-line of a lens having a negative refractive power, which is composed of a lens, a fourth lens having a positive refractive power, a fifth lens consisting of a lens having a positive refractive power and a lens having a negative refractive power, Is characterized in that the following conditional expressions (1) and (2) are satisfied, where dn / dt_n is the average value of the temperature coefficients of relative refractive index in the lens and L45 is the distance between the fourth lens and the fifth lens. An imaging lens, and an imaging device for converting an optical image formed through the imaging lens into an electric signal.
dn/dt_n≧3.0 ・・・(1)
L45≧0.2 ・・・(2)
さらに、上記目的を達成する車載カメラシステムは、車両に設けられ、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、負の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値をdn/dt_n、前記第4レンズと前記第5レンズの間隔をL45とするとき、下記条件式(1)、(2)を満足することを特徴とする撮像レンズと、前記撮像レンズを介して結像する光学像を電気信号に変換する撮像素子とを含む撮像装置を備える。 dn / dt_n ≧ 3.0 (1)
L45 ≧ 0.2 (2)
Furthermore, an on-vehicle camera system for achieving the above object is provided in a vehicle and includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and Negative refractive power comprising a third lens having a refractive power, a fourth lens having a positive refractive power, a lens having a positive refractive power and a lens having a negative refractive power, and a fifth lens The following conditional expressions (1) and (2) are satisfied, where dn / dt_n is the average temperature coefficient of the relative refractive index at the d-line of the lens having a distance L45 between the fourth lens and the fifth lens: An imaging device including: an imaging lens characterized by; and an imaging device for converting an optical image formed through the imaging lens into an electric signal.
L45≧0.2 ・・・(2)
さらに、上記目的を達成する車載カメラシステムは、車両に設けられ、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、負の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値をdn/dt_n、前記第4レンズと前記第5レンズの間隔をL45とするとき、下記条件式(1)、(2)を満足することを特徴とする撮像レンズと、前記撮像レンズを介して結像する光学像を電気信号に変換する撮像素子とを含む撮像装置を備える。 dn / dt_n ≧ 3.0 (1)
L45 ≧ 0.2 (2)
Furthermore, an on-vehicle camera system for achieving the above object is provided in a vehicle and includes, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and Negative refractive power comprising a third lens having a refractive power, a fourth lens having a positive refractive power, a lens having a positive refractive power and a lens having a negative refractive power, and a fifth lens The following conditional expressions (1) and (2) are satisfied, where dn / dt_n is the average temperature coefficient of the relative refractive index at the d-line of the lens having a distance L45 between the fourth lens and the fifth lens: An imaging device including: an imaging lens characterized by; and an imaging device for converting an optical image formed through the imaging lens into an electric signal.
dn/dt_n≧3.0 ・・・(1)
L45≧0.2 ・・・(2) dn / dt_n ≧ 3.0 (1)
L45 ≧ 0.2 (2)
L45≧0.2 ・・・(2) dn / dt_n ≧ 3.0 (1)
L45 ≧ 0.2 (2)
本発明によれば、自動車等の様々な箇所に搭載可能な大きさであり、広い視野を確保しながら画面全域で結像性能が良く、高い光学性能を持つ広角撮像レンズを提供することができる。その結果、監視カメラまたは車載用カメラに搭載可能なコンパクトな広角撮像レンズ及びそれを用いた撮像装置を実現することができる。
According to the present invention, it is possible to provide a wide-angle imaging lens having a size capable of being mounted in various places such as an automobile etc. and having a high optical performance with good imaging performance over the entire screen while securing a wide field of view. . As a result, it is possible to realize a compact wide-angle imaging lens that can be mounted on a surveillance camera or an on-vehicle camera, and an imaging apparatus using the same.
本発明の一実施形態によれば、小型、軽量且つ安価でありながら、高い光学性能を持つ撮像レンズ、撮像装置および車載カメラシステムを提供することができる。さらに、本発明によれば、小型、軽量且つ安価でありながら、高い耐候性と光学性能を持つ撮像レンズを提供することができる。その結果、監視カメラまたは車載用カメラに搭載可能なコンパクトな高い光学性能を持つ撮像装置および車載カメラシステムを実現することができる。
According to an embodiment of the present invention, it is possible to provide an imaging lens, an imaging device, and an on-vehicle camera system having high optical performance while being small, lightweight, and inexpensive. Furthermore, according to the present invention, it is possible to provide an imaging lens having high weather resistance and optical performance while being small, lightweight and inexpensive. As a result, it is possible to realize an imaging device and an on-vehicle camera system with compact optical performance that can be mounted on a surveillance camera or an on-vehicle camera.
以下、本発明の実施形態について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的なものであり、図面上の寸法比率等は現実のものとは必ずしも一致していない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the drawings used in the following description are schematic, and dimensional ratios and the like in the drawings do not necessarily coincide with actual ones.
図1に実施の形態のレンズ構成をそれぞれ光学断面で示す。この実施形態は物体側から順に、第1レンズ110、第2レンズ120、開口絞り130、第3レンズ140、第4レンズ150、第5レンズ160・170、平板フィルタ、平板190、CCD(Charge Coupled Device)またはCMOS(Complementary Metal-Oxide Semiconductor device)等の撮像素子210の受光面となる結像面200が配置される5枚構成の単焦点の撮像レンズ100である。
The lens configuration of the embodiment is shown in an optical cross section in FIG. In this embodiment, the first lens 110, the second lens 120, the aperture stop 130, the third lens 140, the fourth lens 150, the fifth lens 160 and 170, a flat plate filter, a flat plate 190, a CCD (Charge Coupled) in this order from the object side. The imaging lens 100 is a five-lens single-focus imaging lens 100 in which an imaging surface 200 serving as a light receiving surface of an imaging element 210 such as a device (Device) or a complementary metal-oxide semiconductor device (CMOS) is disposed.
平板180は赤外カットコートが施されたフィルタまたはローパスフィルタ等のフィルタであってもよい。平板190は撮像素子210のカバーガラスであってもよい。
The flat plate 180 may be a filter with an infrared cut coating or a filter such as a low pass filter. The flat plate 190 may be a cover glass of the imaging device 210.
本発明を実施した撮像レンズで5枚のレンズは、物体側から順に、負の屈折力を有する第1レンズ110、正の屈折力を有する第2レンズ120、開口絞り130、負の屈折力を有する第3レンズ140、正の屈折力を有する第4レンズ150、正の屈折力を有する第5レンズ160・170のように配列されている。また、図1に記載の1(R1)~12(R11)は、各構成要件の面番号である。
In the imaging lens according to the present invention, the five lenses include, in order from the object side, a first lens 110 having negative refractive power, a second lens 120 having positive refractive power, an aperture stop 130, and negative refractive power. The third lens 140 is arranged, the fourth lens 150 having positive refractive power, and the fifth lenses 160 and 170 having positive refractive power. Further, 1 (R1) to 12 (R11) shown in FIG. 1 are surface numbers of the respective constituent requirements.
開口絞り130は第2レンズ120と第3レンズ140との間に配置している。開口絞り130を第5レンズ160・170より像側に配置するとレンズ系が大型化することにより好ましくなく、また第1レンズ110と第2レンズ120との間に配置するとバックフォーカスが長くなることに対して不利になり好ましくない。よって上述した第2レンズ120と第3レンズ140との間に配置することで諸収差の良好な補正およびレンズ系のコンパクト化が可能となる。
The aperture stop 130 is disposed between the second lens 120 and the third lens 140. Disposing the aperture stop 130 closer to the image than the fifth lens 160 or 170 is undesirable because the lens system becomes larger, and placing it between the first lens 110 and the second lens 120 increases the back focus. It is not preferable because it is disadvantageous. Therefore, by disposing between the second lens 120 and the third lens 140 described above, it is possible to correct various aberrations and to make the lens system compact.
第5レンズ160・170は正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合とすることで、軸上色収差の補正が容易となる。
Correction of axial chromatic aberration is facilitated by joining the fifth lens 160 and 170 with a lens having positive refractive power and a lens having negative refractive power.
全てのレンズは球面により形成されることで、製造し易いレンズとなる。また、非球面を用いないことで、公差による光学性能劣化を低減することができる。
All the lenses are spherical surfaces, which makes them easy to manufacture. In addition, optical performance deterioration due to tolerance can be reduced by not using an aspheric surface.
本発明を実施した撮像レンズ100は、第5レンズの正の屈折力を有するレンズ160のアッベ数をνa、負の屈折力を有するレンズ170のアッベ数をνbとする時、下記条件式(1)を満足するように構成される。
The imaging lens 100 according to the present invention has the following conditional expression (1), where ベ a is the Abbe number of the lens 160 having the positive refractive power of the fifth lens, and ア ッ b is the Abbe number of the lens 170 having negative refractive power. To be satisfied).
30≧νa-νb≧17 ・・・(1)
条件式(1)は、第5レンズの正の屈折力を有するレンズ160と負の屈折力を有するレンズ170のアッベ数の差分を関連づけたものである。条件式(1)の下限値を超えるとアッベ数の差分が小さ過ぎることにより、負の屈折による軸上色収差の補正が難しくなる。一方、上限値を超えると負の屈折による軸上色収差の発生が大き過ぎるため、補正が過多となってしまう。 30 ν a a-b b 17 17 (1)
Conditional expression (1) relates the difference between Abbe numbers of thelens 160 having a positive refractive power of the fifth lens and the lens 170 having a negative refractive power. If the lower limit value of the conditional expression (1) is exceeded, the difference in Abbe number is too small, which makes it difficult to correct axial chromatic aberration due to negative refraction. On the other hand, if the upper limit value is exceeded, the occurrence of axial chromatic aberration due to negative refraction is too large, and the correction becomes excessive.
条件式(1)は、第5レンズの正の屈折力を有するレンズ160と負の屈折力を有するレンズ170のアッベ数の差分を関連づけたものである。条件式(1)の下限値を超えるとアッベ数の差分が小さ過ぎることにより、負の屈折による軸上色収差の補正が難しくなる。一方、上限値を超えると負の屈折による軸上色収差の発生が大き過ぎるため、補正が過多となってしまう。 30 ν a a-b b 17 17 (1)
Conditional expression (1) relates the difference between Abbe numbers of the
また、撮像レンズ100は、好ましくは条件式(2)を満足するように構成される。
The imaging lens 100 is preferably configured to satisfy the conditional expression (2).
2W≧50° ・・・(2)
但し、2Wは、結像面での最大像高位置に入射する光線の全画角である。 2 W 50 50 ° (2)
Here, 2W is the total angle of view of the light beam incident on the maximum image height position on the imaging plane.
但し、2Wは、結像面での最大像高位置に入射する光線の全画角である。 2 W 50 50 ° (2)
Here, 2W is the total angle of view of the light beam incident on the maximum image height position on the imaging plane.
条件式(2)は、前記撮像レンズ全系の画角に関する式である。条件式(2)の下限値を超えると車載カメラとして満たすべき撮影範囲を確保することが困難となる。
Conditional expression (2) relates to the angle of view of the entire imaging lens system. If the lower limit value of the conditional expression (2) is exceeded, it will be difficult to secure a photographing range to be satisfied as an on-vehicle camera.
また、撮像レンズ100は、好ましくは第3レンズ140を構成する材料のd線に対するアッベ数が30以下に、第4レンズ150を構成する材料のd線に対するアッベ数が30以上に、それぞれ設定される。
The imaging lens 100 preferably has an Abbe number of 30 or less for the d-line of the material forming the third lens 140, and an Abbe number of 30 or more for the d-line of the material of the fourth lens 150. Ru.
これにより、負レンズの第3レンズ140を構成する材料のd線に対するアッベ数が小さいほど、軸上色収差が小さくなる。一方、正レンズの第4レンズ150を構成する材料のd線に対するアッベ数が大きいほど、軸上色収差を良好に補正できる。
As a result, the smaller the Abbe number to the d-line of the material forming the third lens 140 of the negative lens, the smaller the axial chromatic aberration. On the other hand, as the Abbe number to the d-line of the material forming the fourth lens 150 of the positive lens is larger, the longitudinal chromatic aberration can be corrected better.
また、第1レンズ110は像側に凹面を向け、第2レンズ120は物体側に凸面を向け、第5レンズ160は物体側に凸面を向けることが好ましい。
Preferably, the first lens 110 has a concave surface on the image side, the second lens 120 has a convex surface on the object side, and the fifth lens 160 has a convex surface on the object side.
これにより、第1レンズ110では像側に凹面を向けることで物体側からの光を広画角で入射することが可能となる。第2レンズ120では物体側に凸面を向けることで、第1レンズ110の像側の面とで発生するゴーストを集光させない。第5レンズ160では物体側に凸面を向けることで、広画角で入射した光を結像させる。
Thereby, in the first lens 110, by directing the concave surface to the image side, it becomes possible to enter light from the object side at a wide angle of view. By directing the convex surface to the object side in the second lens 120, the ghost generated on the image side surface of the first lens 110 is not collected. The fifth lens 160 focuses the light incident at a wide angle of view by directing the convex surface to the object side.
また、第1レンズ110から第5レンズ170まで全てのレンズが硝子材料で形成されていることが好ましい。
Further, it is preferable that all the lenses from the first lens 110 to the fifth lens 170 be formed of a glass material.
これにより、温度変化による光学特性変化を抑制することができる。
Thereby, it is possible to suppress the change in optical characteristics due to the temperature change.
また、第1レンズ110の焦点距離をf1、第3レンズ140の焦点距離をf3、撮像レンズ100の焦点距離をfとする時、下記条件式(3)~(4)を満足するように構成される。
Further, when the focal length of the first lens 110 is f1, the focal length of the third lens 140 is f3, and the focal length of the imaging lens 100 is f, the following conditional expressions (3) to (4) are satisfied. Be done.
-1.95<f1/f<-1.55 ・・・(3)
-1.3 <f3/f<-0.9 ・・・(4)
条件式(3)は、第1レンズ110の焦点距離と撮像レンズ100の焦点距離を関連づけたものである。条件式(3)の下限値を超えると、物体側からの光を広画角で入射することが困難になり、上限値を超えるとL1R2面の曲率半径が小さくなり過ぎてしまい、製造が困難となる。条件式(4)は、第3レンズ140の焦点距離と撮像レンズ100の焦点距離を関連づけたものである。条件式(4)の下限値を超えると、第3レンズ140のパワーが小さ過ぎるため軸上色収差の補正が困難になり、上限値を超えると第3レンズ140のパワーが大き過ぎるため軸上色収差の補正が過多となってしまう。 -1.95 <f1 / f <-1.55 (3)
-1.3 <f 3 / f <-0.9 (4)
Conditional expression (3) relates the focal length of thefirst lens 110 to the focal length of the imaging lens 100. When the lower limit value of the conditional expression (3) is exceeded, it becomes difficult to enter light from the object side at a wide angle of view, and when the upper limit value is exceeded, the curvature radius of the L1R2 surface becomes too small, which makes manufacturing difficult It becomes. Conditional expression (4) relates the focal length of the third lens 140 to the focal length of the imaging lens 100. If the lower limit value of the conditional expression (4) is exceeded, the power of the third lens 140 is too small to correct axial chromatic aberration, and if the upper limit is exceeded, the power of the third lens 140 is too large. Correction will be excessive.
-1.3 <f3/f<-0.9 ・・・(4)
条件式(3)は、第1レンズ110の焦点距離と撮像レンズ100の焦点距離を関連づけたものである。条件式(3)の下限値を超えると、物体側からの光を広画角で入射することが困難になり、上限値を超えるとL1R2面の曲率半径が小さくなり過ぎてしまい、製造が困難となる。条件式(4)は、第3レンズ140の焦点距離と撮像レンズ100の焦点距離を関連づけたものである。条件式(4)の下限値を超えると、第3レンズ140のパワーが小さ過ぎるため軸上色収差の補正が困難になり、上限値を超えると第3レンズ140のパワーが大き過ぎるため軸上色収差の補正が過多となってしまう。 -1.95 <f1 / f <-1.55 (3)
-1.3 <
Conditional expression (3) relates the focal length of the
以下に、撮像レンズ100の具体的な数値による実施例1~4、参考例1~2を示す。実施例1~4、参考例1~2の数値実施例において、焦点距離、F値、像高、レンズ全長は次の表1に記載の通りである。また、同じく実施例1~4、参考例1~2の数値実施例において、条件式(1)~(4)の数値データは、次の表2に記載の値になる。
Hereinafter, Examples 1 to 4 and Reference Examples 1 to 2 will be shown according to specific numerical values of the imaging lens 100. In the numerical examples of Examples 1 to 4 and Reference Examples 1 to 2, the focal length, the F value, the image height, and the total lens length are as described in Table 1 below. Similarly, in the numerical examples of Examples 1 to 4 and Reference Examples 1 and 2, numerical data of the conditional expressions (1) to (4) have values described in Table 2 below.
<実施例1>
実施の形態1における撮像レンズ100Aの基本構成は図2に示され、各数値データ(設定値)は表3に、球面収差、歪曲収差、および非点収差を示す収差図は図3にそれぞれ示される。 Example 1
The basic configuration of theimaging lens 100A in the first embodiment is shown in FIG. 2, each numerical data (setting value) is shown in Table 3, and an aberration chart showing spherical aberration, distortion and astigmatism is shown in FIG. Be
実施の形態1における撮像レンズ100Aの基本構成は図2に示され、各数値データ(設定値)は表3に、球面収差、歪曲収差、および非点収差を示す収差図は図3にそれぞれ示される。 Example 1
The basic configuration of the
図2に示すように、第1レンズ110は物体側に凸面を向けたメニスカス形状、第2レンズ120は両凸形状、開口絞り130の像側に配置される第3レンズ140は両凹形状、第4レンズ150は両凸形状、第5レンズ160は両凸形状、第5レンズ170は物体側に凹面を向けたメニスカス形状を有する。
As shown in FIG. 2, the first lens 110 has a meniscus shape with a convex surface facing the object side, the second lens 120 has a biconvex shape, the third lens 140 disposed on the image side of the aperture stop 130 has a biconcave shape, The fourth lens 150 has a biconvex shape, the fifth lens 160 has a biconvex shape, and the fifth lens 170 has a meniscus shape with a concave surface facing the object side.
また、図2に示すように、第1レンズ110の厚さとなるR1面1とR2面2間の距離をD1、第1レンズ110のR2面2と第2レンズ120のR3面3までの距離をD2、第2レンズ120の厚さとなるR3面3とR4面4間の距離をD3、第2レンズ120のR4面4と開口絞り130の面5までの距離をD4、開口絞り130の面5と第3レンズ140のR5面6までの距離をD5、第3レンズ140の厚さとなるR5面6とR6面7間の距離をD6、第3レンズ140のR6面7と第4レンズ150のR7面8までの距離をD7、第4レンズ150の厚さとなるR7面8とR8面9間の距離をD8、第4レンズ150のR8面9と第5レンズ160のR9面10までの距離をD9、第5レンズ160の厚さとなるR9面10とR10面11間の距離をD10、第5レンズ170の厚さとなるR10面11とR11面12間の距離をD11、第5レンズ170のR11面12と平板180の面13までの距離をD12、平板180の厚さとなる面13と面14間の距離をD13、平板180の面14と平板190の面15までの距離をD14、平板190の厚さとなる面15と面16間の距離をD15、平板190の面16と結像面200までの距離をD16とする。尚、以降の実施例2~4、参考例1~2においてもR1面1~面16、およびD1~D16は同様の距離を意味するものとする。
Further, as shown in FIG. 2, the distance between the R1 surface 1 and the R2 surface 2 which is the thickness of the first lens 110 is D1, and the distance between the R2 surface 2 of the first lens 110 and the R3 surface 3 of the second lens 120. The distance between the R3 surface 3 and the R4 surface 4 which is the thickness of the second lens 120 is D3, the distance between the R4 surface 4 of the second lens 120 and the surface 5 of the aperture stop 130 is D4, the surface of the aperture stop 130 The distance between the fifth lens 5 and the R5 surface 6 of the third lens 140 is D5, and the distance between the R5 surface 6 and the R6 surface 7 which is the thickness of the third lens 140 is D6. The R6 surface 7 of the third lens 140 and the fourth lens 150 The distance between the R7 surface 8 and the R8 surface 9 which is the thickness of the fourth lens 150 is D7. The distance between the R8 surface 9 of the fourth lens 150 and the R9 surface 10 of the fifth lens 160 is D8. R9 surface 10 and R1 that have a distance of D9 and the thickness of the fifth lens 160 The distance between the 0 surface 11 is D10, the distance between the R10 surface 11 and the R11 surface 12 is the thickness of the fifth lens 170 is D11, and the distance between the R11 surface 12 of the fifth lens 170 and the surface 13 of the flat plate 180 is D12, The distance between the surface 13 and the surface 14 which is the thickness of the flat plate 180 is D13, the distance between the surface 14 of the flat plate 180 and the surface 15 of the flat plate 190 is D14, and the distance between the surface 15 and the plane 16 which is the thickness of the flat plate 190 is D15. The distance between the surface 16 of the flat plate 190 and the imaging surface 200 is D16. In Examples 2 to 4 and Reference Examples 1 to 2 below, R1 surface 1 to surface 16 and D1 to D16 mean the same distance.
表3は、実施例1における撮像レンズ100Aの各面番号に対応した絞り、各レンズの曲率半径R、間隔D、屈折率Nd、および分散値νdを示している。
数値実施例1 Table 3 shows the stop corresponding to each surface number of theimaging lens 100A in Example 1, the curvature radius R of each lens, the distance D, the refractive index Nd, and the dispersion value dd.
Numerical embodiment 1
数値実施例1 Table 3 shows the stop corresponding to each surface number of the
図3は、実施例1において、図3Aが球面収差(左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nm)を、図3Bが非点収差(実線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのサジタル光線、点線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのタンジェンシャル光線)を、図3Cが歪曲収差(435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmが重なっている)をそれぞれ示している。図3B、Cの縦軸は半画角ωを表し、図3B中、実線Sはサジタル像面の値、破線Tはタンジェンシャル像面の値をそれぞれ示している(図5、7、9、11においても同様である)。図3からわかるように、実施例1によれば、球面、歪曲、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズ100Aが得られる。
3 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) and FIG. 3B shows astigmatic aberration (solid line: from left: 435.8 nm, 486.1 nm) in Example 1; , 546.1 nm, 587.6 nm, 656.3 nm sagittal ray, dotted line: left from 435.8 nm, 486.1 nm, 546.1 nm, 546.1 nm, 587.6 nm, 656.3 nm tangential ray), and FIG. 3C shows distortion aberration (435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm and 656.3 nm are shown respectively). The vertical axes in FIGS. 3B and 3C represent the half angle of view ω, and in FIG. 3B, the solid line S represents the value of the sagittal image plane, and the broken line T represents the value of the tangential image plane (FIGS. The same applies to 11). As can be seen from FIG. 3, according to Example 1, various aberrations such as spherical surface, distortion and astigmatism are corrected well, and an imaging lens 100A having excellent imaging performance can be obtained.
<実施例2>
実施の形態2における撮像レンズ100Bの基本構成は図4に示され、各数値データ(設定値)は表4に、球面収差、歪曲収差、および非点収差を示す収差図は図5にそれぞれ示される。 Example 2
The basic configuration of theimaging lens 100B according to Embodiment 2 is shown in FIG. 4, each numerical data (setting value) is shown in Table 4, and an aberration diagram showing spherical aberration, distortion and astigmatism is shown in FIG. Be
実施の形態2における撮像レンズ100Bの基本構成は図4に示され、各数値データ(設定値)は表4に、球面収差、歪曲収差、および非点収差を示す収差図は図5にそれぞれ示される。 Example 2
The basic configuration of the
図4に示すように、第1レンズ110は物体側に凸面を向けたメニスカス形状、第2レンズ120は両凸形状、開口絞り130の像側に配置される第3レンズ140は両凹形状、第4レンズ150は両凸形状、第5レンズ160は両凸形状、第5レンズ170は物体側に凹面を向けたメニスカス形状を有する。
As shown in FIG. 4, the first lens 110 has a meniscus shape with a convex surface facing the object side, the second lens 120 has a biconvex shape, the third lens 140 disposed on the image side of the aperture stop 130 has a biconcave shape, The fourth lens 150 has a biconvex shape, the fifth lens 160 has a biconvex shape, and the fifth lens 170 has a meniscus shape with a concave surface facing the object side.
表4は、実施例2における撮像レンズ100Bの各面番号に対応した絞り、各レンズの曲率半径R、間隔D、屈折率Nd、および分散値νdを示している。
数値実施例2 Table 4 shows the stop corresponding to each surface number of theimaging lens 100B in Example 2, the radius of curvature R of each lens, the interval D, the refractive index Nd, and the dispersion value dd.
Numerical embodiment 2
数値実施例2 Table 4 shows the stop corresponding to each surface number of the
図5は、実施例2において、図5Aが球面収差(左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nm)を、図5Bが非点収差(実線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのサジタル光線、点線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのタンジェンシャル光線)を、図5Cが歪曲収差(435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmが重なっている)をそれぞれ示している。図5からわかるように、実施例2によれば、球面、歪曲、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズ100Bが得られる。
FIG. 5 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) in FIG. 5A and astigmatism in FIG. 5B (solid line: from left: 435.8 nm, 486.1 nm) , 546.1 nm, 587.6 nm, 656.3 nm sagittal ray, dotted line: left from 435.8 nm, 486.1 nm, 546.1 nm, 546.1 nm, 587.6 nm, 656.3 nm tangential ray), and FIG. 5C shows distortion aberration (435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm and 656.3 nm are shown respectively). As can be seen from FIG. 5, according to the second embodiment, various aberrations such as spherical surface, distortion and astigmatism are corrected well, and an imaging lens 100B excellent in imaging performance is obtained.
<実施例3>
実施の形態3における各数値データ(設定値)は表5に、球面収差、歪曲収差、および非点収差を示す収差図は図6にそれぞれ示される。 Example 3
Numerical data (setting values) in the third embodiment are shown in Table 5, and aberration diagrams showing spherical aberration, distortion and astigmatism are shown in FIG. 6, respectively.
実施の形態3における各数値データ(設定値)は表5に、球面収差、歪曲収差、および非点収差を示す収差図は図6にそれぞれ示される。 Example 3
Numerical data (setting values) in the third embodiment are shown in Table 5, and aberration diagrams showing spherical aberration, distortion and astigmatism are shown in FIG. 6, respectively.
表5は、実施例3における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R、間隔D、屈折率Nd、および分散値νdを示している。
数値実施例3 Table 5 shows the stop corresponding to each surface number of the imaging lens in Example 3, the curvature radius R of each lens, the interval D, the refractive index Nd, and the dispersion value dd.
Numerical embodiment 3
数値実施例3 Table 5 shows the stop corresponding to each surface number of the imaging lens in Example 3, the curvature radius R of each lens, the interval D, the refractive index Nd, and the dispersion value dd.
図6は、実施例3おいて、図6Aが球面収差(左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nm)を、図6Bが非点収差(実線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのサジタル光線、点線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのタンジェンシャル光線)を、図6Cが歪曲収差(435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmが重なっている)をそれぞれ示している。図6からわかるように、実施例3によれば、球面、歪曲、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズが得られる。
6 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) and FIG. 6B shows astigmatic aberration (solid line: from left: 435.8 nm, 486.1). nm, 546.1 nm, 587.6 nm, 656.3 nm, sagittal light beam, dotted line: left from 435.8 nm, 486.1 nm, 546.1 nm, 547.6 nm, 587.6 nm, 656.3 nm tangential light), and FIG. 6C shows distortion aberration (435.8 nm, 486.1 nm) , 546.1 nm, 587.6 nm, and 656.3 nm), respectively. As can be seen from FIG. 6, according to the third embodiment, various aberrations such as spherical surface, distortion and astigmatism are corrected well, and an imaging lens having excellent imaging performance can be obtained.
<実施例4>
実施の形態4における各数値データ(設定値)は表6に、球面収差、歪曲収差、および非点収差を示す収差図は図7にそれぞれ示される。 Example 4
Numerical data (setting values) in the fourth embodiment are shown in Table 6, and aberration diagrams showing spherical aberration, distortion and astigmatism are shown in FIG. 7, respectively.
実施の形態4における各数値データ(設定値)は表6に、球面収差、歪曲収差、および非点収差を示す収差図は図7にそれぞれ示される。 Example 4
Numerical data (setting values) in the fourth embodiment are shown in Table 6, and aberration diagrams showing spherical aberration, distortion and astigmatism are shown in FIG. 7, respectively.
表6は、実施例4における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R、間隔D、屈折率Nd、および分散値νdを示している。
数値実施例4 Table 6 shows the stop corresponding to each surface number of the imaging lens in Example 4, the curvature radius R of each lens, the distance D, the refractive index Nd, and the dispersion value dd.
Numerical embodiment 4
数値実施例4 Table 6 shows the stop corresponding to each surface number of the imaging lens in Example 4, the curvature radius R of each lens, the distance D, the refractive index Nd, and the dispersion value dd.
図7は、実施例4おいて、図7Aが球面収差(左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nm)を、図7Bが非点収差(実線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのサジタル光線、点線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのタンジェンシャル光線)を、図7Cが歪曲収差(435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmが重なっている)をそれぞれ示している。図7からわかるように、実施例4によれば、球面、歪曲、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズが得られる。
FIG. 7 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) in FIG. 7A and astigmatism in FIG. 7B (solid line from left: 435.8 nm, 486.1). nm, 546.1 nm, 587.6 nm, 656.3 nm sagittal ray, dotted line: left from 435.8 nm, 486.1 nm, 546.1 nm, 546.1 nm, 587.6 nm, 656.3 nm tangential ray), distortion is shown in FIG. 7C (435.8 nm, 486.1 nm) , 546.1 nm, 587.6 nm, and 656.3 nm), respectively. As can be seen from FIG. 7, according to Example 4, various aberrations such as spherical surface, distortion and astigmatism are corrected well, and an imaging lens having excellent imaging performance can be obtained.
<参考例1>
実施の形態5における各数値データ(設定値)は表7に、球面収差、歪曲収差、および非点収差を示す収差図は図8にそれぞれ示される。 Reference Example 1
Numerical data (setting values) in the fifth embodiment are shown in Table 7, and aberration diagrams showing spherical aberration, distortion and astigmatism are shown in FIG. 8, respectively.
実施の形態5における各数値データ(設定値)は表7に、球面収差、歪曲収差、および非点収差を示す収差図は図8にそれぞれ示される。 Reference Example 1
Numerical data (setting values) in the fifth embodiment are shown in Table 7, and aberration diagrams showing spherical aberration, distortion and astigmatism are shown in FIG. 8, respectively.
表7は、参考例1における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R、間隔D、屈折率Nd、および分散値νdを示している。
数値参考例1 Table 7 shows the stop corresponding to each surface number of the imaging lens in the reference example 1, the curvature radius R of each lens, the interval D, the refractive index Nd, and the dispersion value dd.
Numerical reference example 1
数値参考例1 Table 7 shows the stop corresponding to each surface number of the imaging lens in the reference example 1, the curvature radius R of each lens, the interval D, the refractive index Nd, and the dispersion value dd.
Numerical reference example 1
図8は、参考例1において、図8Aが球面収差(左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nm)を、図8Bが非点収差(実線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのサジタル光線、点線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのタンジェンシャル光線)を、図8Cが歪曲収差(435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmが重なっている)をそれぞれ示している。
FIG. 8 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) and astigmatic aberration (solid line: from left: 435.8 nm, 486.1 nm). Sagittal light beam, 546.1 nm, 587.6 nm, 656.3 nm, dotted line: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm tangential light beam from the left, and FIG. 8C shows distortion aberration (435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm and 656.3 nm are shown respectively).
<参考例2>
実施の形態6における各数値データ(設定値)は表8に、球面収差、歪曲収差、および非点収差を示す収差図は図9にそれぞれ示される。 Reference Example 2
Numerical data (setting values) in the sixth embodiment are shown in Table 8, and aberration diagrams showing spherical aberration, distortion and astigmatism are shown in FIG. 9, respectively.
実施の形態6における各数値データ(設定値)は表8に、球面収差、歪曲収差、および非点収差を示す収差図は図9にそれぞれ示される。 Reference Example 2
Numerical data (setting values) in the sixth embodiment are shown in Table 8, and aberration diagrams showing spherical aberration, distortion and astigmatism are shown in FIG. 9, respectively.
表8は、参考例2における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R、間隔D、屈折率Nd、および分散値νdを示している。
数値参考例2 Table 8 shows the stop corresponding to each surface number of the imaging lens in the reference example 2, the curvature radius R of each lens, the distance D, the refractive index Nd, and the dispersion value dd.
Numerical reference example 2
数値参考例2 Table 8 shows the stop corresponding to each surface number of the imaging lens in the reference example 2, the curvature radius R of each lens, the distance D, the refractive index Nd, and the dispersion value dd.
Numerical reference example 2
図9は、参考例2において、図9Aが球面収差(左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nm)を、図9Bが非点収差(実線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのサジタル光線、点線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのタンジェンシャル光線)を、図9Cが歪曲収差(435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmが重なっている)をそれぞれ示している。
9 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) in FIG. 9A, and FIG. 9B shows astigmatism (solid line: 435.8 nm from left, 486.1 nm). , 546.1 nm, 587.6 nm, 656.3 nm, sagittal light beam, dotted line: left from 435.8 nm, 486.1 nm, 546.1 nm, 547.6 nm, 587.6 nm, 656.3 nm tangential light), distortion aberration (435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm and 656.3 nm are shown respectively).
図10は、実施例1から実施例4、参考例1、2において、軸上色収差と第5レンズのアッベ数の差分の関係を示している。図10から分かるように、アッベ数の差分を特定の範囲内にすることで、軸上色収差を小さく抑えることができる。軸上色収差を良好に補正するには0.05以下にする必要があり、アッベ数の差分は30≧νa-νb≧17となる。
FIG. 10 shows the relationship between axial chromatic aberration and the Abbe's number difference of the fifth lens in each of the first to fourth embodiments and the first and second embodiments. As can be seen from FIG. 10, by setting the difference in Abbe number within a specific range, it is possible to suppress axial chromatic aberration to a small value. In order to correct axial chromatic aberration well, it is necessary to make it 0.05 or less, and the difference in Abbe number is 30 と な る va−vbν17.
以上、本実施形態にかかる撮像レンズについて説明したが、本発明はこれらの実施例の撮像レンズに限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変形が可能である。例えば、実施例1~4の撮像レンズ100の諸元は例示であって、本発明の範囲内で種々のパラメータの変更が可能である。また、上記実施例において、カバーガラス(平板)190に赤外線除去フィルタを設ける構成にしたり、赤外カットコートをカバーガラス(平板)190の面に施すなどしたりしても良い。また、他のレンズ面またはローパスフィルタ等のフィルタに赤外コートを施しても良い。
As mentioned above, although the imaging lens concerning this embodiment was demonstrated, this invention is not limited to the imaging lens of these Examples, A various deformation | transformation is possible in the range which does not deviate from the summary of invention. For example, the specifications of the imaging lens 100 of Examples 1 to 4 are exemplification, and various parameter changes are possible within the scope of the present invention. In the above embodiment, the cover glass (flat plate) 190 may be provided with an infrared ray removing filter, or an infrared cut coat may be applied to the surface of the cover glass (flat plate) 190. Also, infrared coating may be applied to other lens surfaces or filters such as low pass filters.
本実施形態によれば、監視用カメラまたは車載カメラ等の様々な箇所に搭載可能であり、広い視野を確保しながら画面全域で結像性能が良く、高い光学性能を持つ広角撮像レンズが提供できる。
According to this embodiment, a wide-angle imaging lens can be provided which can be mounted in various places such as a monitoring camera or a car-mounted camera, has a wide field of view, has good imaging performance over the entire screen, and has high optical performance. .
図11に本発明の一実施形態に係る撮像レンズ100を用いた撮像素子210の一実施形態の断面図を示す。撮像レンズ100およびCCDまたはCMOS等の撮像素子210は筐体220によって位置関係を規定、保持される。このとき撮像レンズ100の結像面200は撮像素子210の受光面に一致するように配置されている。
FIG. 11 shows a cross-sectional view of an embodiment of an imaging device 210 using the imaging lens 100 according to an embodiment of the present invention. The imaging lens 100 and an imaging element 210 such as a CCD or CMOS are defined and held in a positional relationship by a housing 220. At this time, the imaging surface 200 of the imaging lens 100 is disposed to coincide with the light receiving surface of the imaging element 210.
撮像レンズ100によって取り込まれ、撮像素子210の受光面に結像した被写体像は、撮像素子210の光電変換機能によって電気信号に変換されて、画像信号として撮像素子210から出力される。
An object image captured by the imaging lens 100 and formed on the light receiving surface of the imaging element 210 is converted into an electrical signal by the photoelectric conversion function of the imaging element 210 and output from the imaging element 210 as an image signal.
図12は本発明の一実施形態による撮像レンズ100を用いた撮像装置300を、車両400に搭載される車載カメラ410に適用した車載カメラシステムの例を説明する図である。車載カメラシステムは、車載カメラ410と画像処理装置420を含んで構成される。車載カメラ410は車両400の車室内部または外部に取り付けられ、所定の方向を撮像することができるが、図12の例では、車室内の前部に固定して車両400の前方の視界の周辺画像を撮像するものとする。
FIG. 12 is a view for explaining an example of an on-vehicle camera system in which the imaging device 300 using the imaging lens 100 according to an embodiment of the present invention is applied to an on-vehicle camera 410 mounted on a vehicle 400. The on-vehicle camera system includes an on-vehicle camera 410 and an image processing device 420. The on-vehicle camera 410 can be attached to the interior or the exterior of the vehicle 400 and can image a predetermined direction, but in the example of FIG. An image shall be taken.
車載カメラ410は、取得した画像を車両400内の通信手段を介して、画像処理装置420に出力する。画像処理装置420は、画像処理用ASIC(Application SpecificIntegrated Circuit),DSP(Digital Signal Processor)等の画像処理専用のプロセッサおよび種々の情報を記憶するメモリを含み、車載カメラ410および他の車載カメラから出力された画像に対して、ホワイトバランス調整、露出調整処理、色補間、明るさ補正およびガンマ補正等の処理を行う。さらに、画像処理装置420は、画像の切替え、複数の車載カメラからの画像の結合、一部の画像の切出し、記号、文字または予想軌跡線等の画像への重畳、等の処理を行い、表示装置430の仕様に合わせた画像信号を出力する。画像処理装置420の一部またはすべての機能を車載カメラ410側に持たせても良い。
The on-vehicle camera 410 outputs the acquired image to the image processing apparatus 420 via the communication unit in the vehicle 400. The image processing device 420 includes an image processing ASIC (Application Specific Integrated Circuit), a processor dedicated to image processing such as a DSP (Digital Signal Processor), and a memory for storing various information, and is output from the on-vehicle camera 410 and other on-vehicle cameras Processing such as white balance adjustment, exposure adjustment processing, color interpolation, brightness correction, and gamma correction is performed on the captured image. Furthermore, the image processing device 420 performs processing such as switching of images, combining of images from a plurality of in-vehicle cameras, clipping of a part of images, superimposing on images such as symbols, characters or expected trajectory lines, etc. It outputs an image signal according to the specifications of the device 430. The on-vehicle camera 410 may have some or all of the functions of the image processing apparatus 420.
表示装置430は、車両400のダッシュボード等に配置され、車両400の運転者に対して画像処理装置420で処理された画像情報を表示する。
The display device 430 is disposed on a dashboard or the like of the vehicle 400, and displays the image information processed by the image processing device 420 to the driver of the vehicle 400.
以上のように、撮像レンズ100は、広角撮像レンズでありながら、歪曲収差の発生を低減し、高い光学性能を持つ被写体像を撮像素子210の受光面上に結像でき、視認性に優れた画像の画像信号を出力できる。さらに、夜間などの光量の乏しい環境で使用するために波長帯域を近赤外光まで広げても、軸上色収差を抑制することができるので、特に、赤外線カットフィルタのない撮像素子210を用いる車載カメラ410に適している。さらに、小型、軽量とすることができるので、搭載スペースがコンパクトにでき、様々な用途の撮像素子210に適している。
As described above, although the imaging lens 100 is a wide-angle imaging lens, the occurrence of distortion can be reduced, an object image with high optical performance can be formed on the light receiving surface of the imaging element 210, and the visibility is excellent. It is possible to output an image signal of an image. Furthermore, axial chromatic aberration can be suppressed even if the wavelength band is extended to near infrared light in order to be used in an environment where light intensity is low such as nighttime. It is suitable for the camera 410. Furthermore, since the device can be made compact and lightweight, the mounting space can be made compact, which is suitable for the imaging device 210 for various applications.
以下、本発明の別の実施形態について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的なものであり、図面上の寸法比率等は現実のものとは必ずしも一致していない。
Hereinafter, another embodiment of the present invention will be described with reference to the drawings. Note that the drawings used in the following description are schematic, and dimensional ratios and the like in the drawings do not necessarily coincide with actual ones.
図13に実施の形態のレンズ構成をそれぞれ光学断面で示す。この実施形態は物体側から順に、第1レンズ1110、第2レンズ1120、開口絞り1130、第3レンズ1140、第4レンズ1150、第5レンズ1160・1170、平板1180、平板1190、CCD(Charge Coupled Device)またはCMOS(Complementary Metal-Oxide Semiconductor device) 等の撮像素子1210の受光面となる結像面1200が配置される5枚構成の単焦点の撮像レンズ1100である。
The lens configuration of the embodiment is shown in an optical cross section in FIG. In this embodiment, a first lens 1110, a second lens 1120, an aperture stop 1130, a third lens 1140, a fourth lens 1150, a fifth lens 1160 and 1170, a flat plate 1180, a flat plate 1190, and a CCD (Charge Coupled) from the object side. The imaging lens 1100 is a five-lens single-focus imaging lens 1100 in which an imaging surface 1200 serving as a light receiving surface of an imaging element 1210 such as a device (Device) or a complementary metal-oxide semiconductor device (CMOS) is disposed.
本発明を実施した撮像レンズで5枚のレンズは、物体側から順に、負の屈折力を有する第1レンズ1110、正の屈折力を有する第2レンズ1120、開口絞り1130、負の屈折力を有する第3レンズ1140、正の屈折力を有する第4レンズ1150、正の屈折力を有する第5レンズ1160・1170のように配列されている。また、図13に記載の1(R1)~12(R11)は、各構成要件の面番号である。
In the imaging lens according to the present invention, the five lenses include, in order from the object side, a first lens 1110 having negative refractive power, a second lens 1120 having positive refractive power, an aperture stop 1130, and negative refractive power. The third lens 1140, the fourth lens 1150 having a positive refractive power, and the fifth lens 1160 or 1170 having a positive refractive power are arranged. Further, 1 (R1) to 12 (R11) shown in FIG. 13 are surface numbers of respective constituent requirements.
開口絞り1130は第2レンズ1120と第3レンズ1140との間に配置している。開口絞り1130を第5レンズ1160・1170より像側に配置するとレンズ系が大型化することにより好ましくなく、また第1レンズ1110と第2レンズ1120との間に配置するとバックフォーカスが長くなることに対して不利になり好ましくない。よって上述した第2レンズ1120と第3レンズ1140との間に配置することで諸収差の良好な補正およびレンズ系のコンパクト化が可能となる。
The aperture stop 1130 is disposed between the second lens 1120 and the third lens 1140. Disposing the aperture stop 1130 closer to the image than the fifth lens 1160-1170 is not preferable because the lens system becomes larger, and placing it between the first lens 1110 and the second lens 1120 increases the back focus. It is not preferable because it is disadvantageous. Therefore, by disposing between the second lens 1120 and the third lens 1140 described above, satisfactory correction of various aberrations and downsizing of the lens system become possible.
第5レンズ1160・1170は正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合とすることで、軸上色収差の補正が容易となる。
The fifth lens 1160-1170 is a cement of a lens having a positive refractive power and a lens having a negative refractive power, so that correction of axial chromatic aberration is facilitated.
本発明を実施した撮像レンズ1100は、負の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値をdn/dt_n、前記第4レンズ1150と前記第5レンズ1160・1170の間隔をL45とする時、下記条件式(5)、(6)を満足するように構成される。
The imaging lens 1100 embodying the present invention has an average value of the temperature coefficient of the relative refractive index at the d-line of the lens having negative refractive power, dn / dt_n, and the distance between the fourth lens 1150 and the fifth lens 1160 · 1170. When L 45 is L 45, the following conditional expressions (5) and (6) are satisfied.
dn/dt_n≧3.0 ・・・(5)
L45≧0.2 ・・・(6)
条件式(5)は、負の屈折力を有する第1レンズ1110、第3レンズ1130、第5レンズ1170のd線における相対的屈折率の温度係数の平均値に関する式である。高温の場合、通常ガラスレンズは屈折力が大きくなる方向に変化するが、条件式(5)の下限値を超えると負の屈折力を有するレンズの屈折力が大きくなる方向に変化しにくいため、物体側にピントがシフトしてしまう。条件式(6)は、第4レンズ1150と第5レンズ1160・1170の間隔に関する式である。条件式(6)の下限値を超えると、一般的な製造公差20μmが設計値の10%以上を占めてしまうため、製造が困難となってしまう。 dn / dt_n ≧ 3.0 (5)
L45 ≧ 0.2 (6)
Conditional expression (5) is an expression relating to the average value of the temperature coefficients of the relative refractive index at the d-line of thefirst lens 1110 having a negative refractive power, the third lens 1130, and the fifth lens 1170. When the temperature is high, the glass lens usually changes in the direction in which the refractive power increases. However, when the lower limit value of the conditional expression (5) is exceeded, it is difficult to change in the direction in which the refractive power of the lens having negative refractive power increases. The focus shifts to the object side. Conditional expression (6) is an expression related to the distance between the fourth lens 1150 and the fifth lens 1160-1170. If the lower limit value of the conditional expression (6) is exceeded, a general manufacturing tolerance of 20 μm occupies 10% or more of the design value, which makes manufacturing difficult.
L45≧0.2 ・・・(6)
条件式(5)は、負の屈折力を有する第1レンズ1110、第3レンズ1130、第5レンズ1170のd線における相対的屈折率の温度係数の平均値に関する式である。高温の場合、通常ガラスレンズは屈折力が大きくなる方向に変化するが、条件式(5)の下限値を超えると負の屈折力を有するレンズの屈折力が大きくなる方向に変化しにくいため、物体側にピントがシフトしてしまう。条件式(6)は、第4レンズ1150と第5レンズ1160・1170の間隔に関する式である。条件式(6)の下限値を超えると、一般的な製造公差20μmが設計値の10%以上を占めてしまうため、製造が困難となってしまう。 dn / dt_n ≧ 3.0 (5)
L45 ≧ 0.2 (6)
Conditional expression (5) is an expression relating to the average value of the temperature coefficients of the relative refractive index at the d-line of the
また、撮像レンズ1100は、好ましくは条件式(7)を満足するように構成される。
The imaging lens 1100 is preferably configured to satisfy the conditional expression (7).
2W≧50° ・・・(7)
但し、2Wは、結像面での最大像高位置に入射する光線の全画角である。 2W ≧ 50 ° (7)
Here, 2W is the total angle of view of the light beam incident on the maximum image height position on the imaging plane.
但し、2Wは、結像面での最大像高位置に入射する光線の全画角である。 2W ≧ 50 ° (7)
Here, 2W is the total angle of view of the light beam incident on the maximum image height position on the imaging plane.
条件式(7)は、撮像レンズ1100の画角に関する式である。条件式(7)の下限値を超えると車載用センシングカメラとして満たすべき撮影範囲を確保することが困難となる。
Conditional expression (7) is an expression regarding the angle of view of the imaging lens 1100. If the lower limit value of the conditional expression (7) is exceeded, it will be difficult to secure a photographing range to be satisfied as an on-vehicle sensing camera.
また、第1レンズ1110は像側に凹面を向け、第2レンズ1120は物体側に凸面を向け、第5レンズ1160は物体側に凸面を向けることが好ましい。
Further, it is preferable that the first lens 1110 has a concave surface on the image side, the second lens 1120 has a convex surface on the object side, and the fifth lens 1160 has a convex surface on the object side.
これにより、第1レンズ1110では像側に凹面を向けることで物体側からの光を広画角で入射することが可能となる。第2レンズ1120では物体側に凸面を向けることで、第1レンズ1110の像側の面とで発生するゴーストを集光させない。第5レンズ1160では物体側に凸面を向けることで、広画角で入射した光を結像させる。
As a result, with the first lens 1110, light from the object side can be incident at a wide angle of view by directing the concave surface toward the image side. By directing the convex surface to the object side in the second lens 1120, the ghost generated on the image side surface of the first lens 1110 is not collected. The fifth lens 1160 focuses light incident at a wide angle of view by directing the convex surface toward the object side.
また、第1レンズ1110から第5レンズ1170まで全てのレンズが硝子材料で形成されていることが好ましい。
In addition, it is preferable that all the lenses from the first lens 1110 to the fifth lens 1170 be formed of a glass material.
これにより、黄変による透過率低下を抑制することができる。
Thereby, the transmittance | permeability fall by yellowing can be suppressed.
また、撮像レンズ1100は、好ましくは条件式(8)を満足するように構成される。
The imaging lens 1100 is preferably configured to satisfy the conditional expression (8).
dn/dt_p≦4.0 ・・・(8)
但し、dn/dt_pは、正の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値を示す。 dn / dt_p ≦ 4.0 (8)
However, dn / dt_p shows the average value of the temperature coefficient of the relative refractive index at the d-line of the lens having positive refractive power.
但し、dn/dt_pは、正の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値を示す。 dn / dt_p ≦ 4.0 (8)
However, dn / dt_p shows the average value of the temperature coefficient of the relative refractive index at the d-line of the lens having positive refractive power.
条件式(8)は、正の屈折力を有する第2レンズ1120、第4レンズ1150、第5レンズ1170のd線における相対的屈折率の温度係数の平均値に関する式である。条件式(8)の上限値を超えると、高温の場合、正の屈折力を有するレンズの屈折力が大きくなり過ぎるため、物体側にピントがシフトしてしまう。
Conditional expression (8) relates to the average value of the temperature coefficient of the relative refractive index at the d-line of the second lens 1120 having a positive refractive power, the fourth lens 1150, and the fifth lens 1170. If the upper limit value of the conditional expression (8) is exceeded, the refractive power of the lens having positive refractive power becomes too large at high temperature, and the focus shifts to the object side.
また、第4レンズ1150は片面乃至両面が非球面形状を持つことが好ましい。
The fourth lens 1150 preferably has an aspheric shape on one side or both sides.
これにより、収差補正が容易となり、小型でありながら良好な解像性能を得ることが可能となる。
As a result, aberration correction becomes easy, and it becomes possible to obtain good resolution performance while being compact.
また、第1レンズ1110の焦点距離をf1、第3レンズ1140の焦点距離をf3、撮像レンズ1100の焦点距離をfとする時、下記条件式(9)~(10)を満足するように構成される。
In addition, when the focal length of the first lens 1110 is f1, the focal length of the third lens 1140 is f3, and the focal length of the imaging lens 1100 is f, the following conditional expressions (9) to (10) are satisfied. Be done.
-1.8<f1/f<-1.3 ・・・(9)
-1.4<f3/f<-1.0 ・・・(10)
条件式(9)は、第1レンズ1110の焦点距離と撮像レンズ1100の焦点距離を関連づけたものである。条件式(9)の下限値を超えると、物体側からの光を広画角で入射することが困難になり、上限値を超えるとL1R2面の曲率半径が小さくなり過ぎてしまい、製造が困難となる。条件式(10)は、第3レンズ1140の焦点距離と撮像レンズ1100の焦点距離を関連づけたものである。条件式(10)の下限値を超えると、第3レンズ1140のパワーが小さ過ぎるため軸上色収差の補正が困難になり、上限値を超えると第3レンズ1140のパワーが大き過ぎるため軸上色収差の補正が過多となってしまう。 -1.8 <f1 / f <-1.3 (9)
-1.4 <f3 / f <-1.0 (10)
Conditional expression (9) relates the focal length of thefirst lens 1110 to the focal length of the imaging lens 1100. When the lower limit value of the conditional expression (9) is exceeded, it becomes difficult to enter light from the object side at a wide angle of view, and when the upper limit value is exceeded, the curvature radius of the L1R2 surface becomes too small, which makes manufacturing difficult It becomes. Conditional expression (10) relates the focal length of the third lens 1140 to the focal length of the imaging lens 1100. If the lower limit value of the conditional expression (10) is exceeded, the power of the third lens 1140 is too small to correct axial chromatic aberration. If the upper limit is exceeded, the power of the third lens 1140 is too large. Correction will be excessive.
-1.4<f3/f<-1.0 ・・・(10)
条件式(9)は、第1レンズ1110の焦点距離と撮像レンズ1100の焦点距離を関連づけたものである。条件式(9)の下限値を超えると、物体側からの光を広画角で入射することが困難になり、上限値を超えるとL1R2面の曲率半径が小さくなり過ぎてしまい、製造が困難となる。条件式(10)は、第3レンズ1140の焦点距離と撮像レンズ1100の焦点距離を関連づけたものである。条件式(10)の下限値を超えると、第3レンズ1140のパワーが小さ過ぎるため軸上色収差の補正が困難になり、上限値を超えると第3レンズ1140のパワーが大き過ぎるため軸上色収差の補正が過多となってしまう。 -1.8 <f1 / f <-1.3 (9)
-1.4 <f3 / f <-1.0 (10)
Conditional expression (9) relates the focal length of the
なお、以下の数値実施例の中で記載されるレンズの非球面の形状は、物体側から像面側へ向かう方向を正とし、kを円錐係数、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数としたとき次式で表される。hは光線の高さ、cは中心曲率半径の逆数を、Zは面頂点に対する接平面からの深さを、それぞれ表している。
As for the shape of the aspheric surface of the lens described in the following numerical examples, the direction from the object side to the image plane side is positive, k is a conical coefficient, A is a fourth-order aspheric coefficient, B Is a sixth order aspheric coefficient, C is an eighth order aspheric coefficient, and D is a tenth order aspheric coefficient. h is the height of the ray, c is the reciprocal of the central radius of curvature, and Z is the depth from the tangent to the surface vertex.
以下に、撮像レンズ100の具体的な数値による実施例5~10、参考例3~5を示す。実施例5~10、参考例3~5の数値実施例において、焦点距離、F値、像高、レンズ全長は次の表9に記載の通りである。また、同じく実施例5~10、参考例3~5の数値実施例において、条件式(5)~(10)の数値データは、次の表10に記載の値になる。
Examples 5 to 10 and reference examples 3 to 5 will be shown below by using specific numerical values of the imaging lens 100. In the numerical examples of Examples 5 to 10 and Reference Examples 3 to 5, the focal length, the f-number, the image height, and the total lens length are as described in Table 9 below. Similarly, in the numerical examples of the embodiments 5 to 10 and the reference examples 3 to 5, the numerical data of the conditional expressions (5) to (10) have the values described in Table 10 below.
<実施例5>
実施の形態7における撮像レンズ1100Aの基本構成は図14に示され、各数値データ(設定値)は表11に、球面収差、歪曲収差、および非点収差を示す収差図は図15にそれぞれ示される。 Example 5
The basic configuration of theimaging lens 1100A in the seventh embodiment is shown in FIG. 14, each numerical data (setting value) is shown in Table 11, and an aberration diagram showing spherical aberration, distortion and astigmatism is shown in FIG. Be
実施の形態7における撮像レンズ1100Aの基本構成は図14に示され、各数値データ(設定値)は表11に、球面収差、歪曲収差、および非点収差を示す収差図は図15にそれぞれ示される。 Example 5
The basic configuration of the
図14に示すように、第1レンズ1110は物体側に凸面を向けたメニスカス形状、第2レンズ1120は両凸形状、開口絞り1130の像側に配置される第3レンズ1140は両凹形状、第4レンズ1150は両凸形状、第5レンズ1160は両凸形状、第5レンズ1170は物体側に凹面を向けたメニスカス形状を有する。
As shown in FIG. 14, the first lens 1110 has a meniscus shape with a convex surface facing the object side, the second lens 1120 has a biconvex shape, and the third lens 1140 disposed on the image side of the aperture stop 1130 has a biconcave shape, The fourth lens 1150 has a biconvex shape, the fifth lens 1160 has a biconvex shape, and the fifth lens 1170 has a meniscus shape with a concave surface facing the object side.
また、図14に示すように、第1レンズ1110の厚さとなるR1面1とR2面2間の距離をD1、第1レンズ1110のR2面2と第2レンズ1120のR3面3までの距離をD2、第2レンズ1120の厚さとなるR3面3とR4面4間の距離をD3、第2レンズ1120のR4面4と開口絞り1130の面5までの距離をD4、開口絞り1130の面5と第3レンズ1140のR5面6までの距離をD5、第3レンズ1140の厚さとなるR5面6とR6面7間の距離をD6、第3レンズ1140のR6面7と第4レンズ1150のR7面8までの距離をD7、第4レンズ1150の厚さとなるR7面8とR8面9間の距離をD8、第4レンズ1150のR8面9と第5レンズ1160のR9面10までの距離をD9、第5レンズ1160の厚さとなるR9面10とR10面11間の距離をD10、第5レンズ1170の厚さとなるR10面11とR11面12間の距離をD11、第5レンズ1170のR11面12と平板1180の面13までの距離をD12、平板1180の厚さとなる面13と面14間の距離をD13、平板1180の面14と平板1190の面15までの距離をD14、平板1190の厚さとなる面15と面16間の距離をD15、平板1190の面16と結像面1200までの距離をD16とする。尚、以降の実施例6~10、参考例3~4においてもR1面1~面16、およびD1~D16は同様の距離を意味するものとする。
Further, as shown in FIG. 14, the distance between the R1 surface 1 and the R2 surface 2 which is the thickness of the first lens 1110 is D1, and the distance between the R2 surface 2 of the first lens 1110 and the R3 surface 3 of the second lens 1120 The distance between the R3 surface 3 and the R4 surface 4 which is the thickness of the second lens 1120 is D3, the distance between the R4 surface 4 of the second lens 1120 and the surface 5 of the aperture stop 1130 is D4, the surface of the aperture stop 1130 The distance between the fifth lens 513 and the R5 6 of the third lens 1140 is D5, the distance between the R5 6 and the R6 7 is the thickness of the third lens 1140 D6, the R6 7 of the third lens 1140 and the fourth lens 1150 The distance between the R7 surface 8 and the R8 surface 9 which is the thickness of the fourth lens 1150 is D7. The distance between the R8 surface 9 of the fourth lens 1150 and the R9 surface 10 of the fifth lens 1160 is D8. Distance D9, fifth lens 1 The distance between the R9 surface 10 and the R10 surface 11 with a thickness of 60 is D10, the distance between the R10 surface 11 and the R11 surface 12 with a thickness of the fifth lens 1170 is D11, the R11 surface 12 of the fifth lens 1170 and the flat plate 1180 The distance between the surface 13 and the surface 14 which is the thickness of the flat plate 1180 is D13, the distance between the surface 14 of the flat plate 1180 and the surface 15 of the flat plate 1190 is D14, the surface which is the thickness of the flat plate 1190 The distance between the surface 15 and the surface 16 is D15, and the distance between the surface 16 of the flat plate 1190 and the imaging surface 1200 is D16. Also in the following Examples 6 to 10 and Reference Examples 3 to 4, R1 surface 1 to surface 16 and D1 to D16 mean the same distance.
表11は、実施例5における撮像レンズ1100Aの各面番号に対応した絞り、各レンズの曲率半径R(mm)、間隔D(mm)、屈折率Nd、分散値νd、d線における相対屈折率の温度係数dn/dt、線膨張係数αを示している。表11中で面番号に*がついている面は非球面形状となっていることを示す。表12は、所定面の非球面係数を示している。
数値実施例5 Table 11 shows the diaphragms corresponding to the surface numbers of theimaging lens 1100A in Example 5, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value 分散 d, relative refractive index at d-line Temperature coefficient dn / dt and linear expansion coefficient α. Surfaces with * in Table 11 indicate that they have an aspherical shape. Table 12 shows the aspheric coefficients of the predetermined surface.
Numerical embodiment 5
数値実施例5 Table 11 shows the diaphragms corresponding to the surface numbers of the
図15は、実施例5において、図15Aが球面収差(左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nm)を、図15Bが非点収差(実線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのサジタル光線、点線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのタンジェンシャル光線)を、図15Cが歪曲収差(435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmが重なっている)をそれぞれ示している。図15B、Cの縦軸は半画角ωを表し、図15B中、実線Sはサジタル像面の値、破線Tはタンジェンシャル像面の値をそれぞれ示している(図17、19、21、23においても同様である)。図15からわかるように、実施例5によれば、球面、歪曲、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズ1100Aが得られる。
FIG. 15 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) in FIG. 15A and astigmatism in FIG. 15B (solid line: from 43.58 nm, 486.1 nm from left) Sagittal light beam, 546.1 nm, 587.6 nm, 656.3 nm, dotted line: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm tangential light beam from the left, distortion aberration in FIG. 15C (435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm and 656.3 nm are shown respectively). The vertical axes in FIGS. 15B and 15C represent the half angle of view ω, and in FIG. 15B, the solid line S represents the value of the sagittal image plane, and the broken line T represents the value of the tangential image plane (FIGS. 17, 19 and 21). The same applies to (23). As can be seen from FIG. 15, according to the fifth embodiment, various aberrations such as spherical surface, distortion and astigmatism are corrected well, and an imaging lens 1100A excellent in imaging performance is obtained.
<実施例6>
実施の形態8における撮像レンズの基本構成及び球面収差、歪曲収差、および非点収差を示す収差図は実施例5と同様である。尚、各数値データ(設定値)は表13に示される。 Example 6
The basic configuration of the imaging lens and the aberration diagram showing spherical aberration, distortion, and astigmatism in the eighth embodiment are the same as in the fifth embodiment. Each numerical data (setting value) is shown in Table 13.
実施の形態8における撮像レンズの基本構成及び球面収差、歪曲収差、および非点収差を示す収差図は実施例5と同様である。尚、各数値データ(設定値)は表13に示される。 Example 6
The basic configuration of the imaging lens and the aberration diagram showing spherical aberration, distortion, and astigmatism in the eighth embodiment are the same as in the fifth embodiment. Each numerical data (setting value) is shown in Table 13.
表13は、実施例6における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R(mm)、間隔D(mm)、屈折率Nd、分散値νd、d線における相対屈折率の温度係数dn/dt、線膨張係数αを示している。表13中で面番号に*がついている面は非球面形状となっていることを示す。表14は、所定面の非球面係数を示している。
数値実施例6 Table 13 shows the stop corresponding to each surface number of the imaging lens in Example 6, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value dd, relative refractive index at d-line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. Surfaces with * in Table 13 indicate that they have an aspheric shape. Table 14 shows the aspheric coefficients of the predetermined surface.
Numerical embodiment 6
数値実施例6 Table 13 shows the stop corresponding to each surface number of the imaging lens in Example 6, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value dd, relative refractive index at d-line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. Surfaces with * in Table 13 indicate that they have an aspheric shape. Table 14 shows the aspheric coefficients of the predetermined surface.
<実施例7>
実施の形態9における撮像レンズ1100Bの基本構成は図16に示され、各数値データ(設定値)は表15に、球面収差、歪曲収差、および非点収差を示す収差図は図17にそれぞれ示される。 Example 7
The basic configuration of theimaging lens 1100B in the ninth embodiment is shown in FIG. 16, each numerical data (setting value) is shown in Table 15, and aberration diagrams showing spherical aberration, distortion and astigmatism are shown in FIG. Be
実施の形態9における撮像レンズ1100Bの基本構成は図16に示され、各数値データ(設定値)は表15に、球面収差、歪曲収差、および非点収差を示す収差図は図17にそれぞれ示される。 Example 7
The basic configuration of the
図16に示すように、第1レンズ1110は物体側に凸面を向けたメニスカス形状、第2レンズ1120は両凸形状、開口絞り1130の像側に配置される第3レンズ1140は両凹形状、第4レンズ1150は両凸形状、第5レンズ1160は両凸形状、第5レンズ1170は両凸形状を有する。
As shown in FIG. 16, the first lens 1110 has a meniscus shape with a convex surface facing the object side, the second lens 1120 has a double convex shape, the third lens 1140 disposed on the image side of the aperture stop 1130 has a double concave shape, The fourth lens 1150 has a biconvex shape, the fifth lens 1160 has a biconvex shape, and the fifth lens 1170 has a biconvex shape.
表15は、実施例7における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R(mm)、間隔D(mm)、屈折率Nd、分散値νd、d線における相対屈折率の温度係数dn/dt、線膨張係数αを示している。表15中で面番号に*がついている面は非球面形状となっていることを示す。表16は、所定面の非球面係数を示している。
数値実施例7 Table 15 shows the stop corresponding to each surface number of the imaging lens in Example 7, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value dd, relative refractive index at d-line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. The surface indicated by * in Table 15 indicates that the surface has an aspherical shape. Table 16 shows the aspheric coefficients of the predetermined surface.
Numerical embodiment 7
数値実施例7 Table 15 shows the stop corresponding to each surface number of the imaging lens in Example 7, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value dd, relative refractive index at d-line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. The surface indicated by * in Table 15 indicates that the surface has an aspherical shape. Table 16 shows the aspheric coefficients of the predetermined surface.
図17は、実施例7おいて、図17Aが球面収差(左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nm)を、図17Bが非点収差(実線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのサジタル光線、点線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのタンジェンシャル光線)を、図17Cが歪曲収差(435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmが重なっている)をそれぞれ示している。図17からわかるように、実施例7によれば、球面、歪曲、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズが得られる。
FIG. 17 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) in FIG. 17A and astigmatism in FIG. 17B (solid line from left: 435.8 nm, 486.1). nm, 546.1 nm, 587.6 nm, 656.3 nm, sagittal ray, dotted line: left from 435.8 nm, 486.1 nm, 546.1 nm, 546.1 nm, 587.6 nm, 656.3 nm, tangential ray), and FIG. 17C shows distortion aberration (435.8 nm, 486.1 nm) , 546.1 nm, 587.6 nm, and 656.3 nm), respectively. As can be seen from FIG. 17, according to the seventh embodiment, various aberrations of spherical surface, distortion and astigmatism are corrected well, and an imaging lens excellent in imaging performance can be obtained.
<実施例8>
実施の形態10における撮像レンズの基本構成及び球面収差、歪曲収差、および非点収差を示す収差図は実施例7と同様である。尚、各数値データ(設定値)は表17に示される。 Example 8
The basic configuration of the imaging lens and the aberration diagram showing spherical aberration, distortion, and astigmatism in the tenth embodiment are the same as in the seventh embodiment. Each numerical data (setting value) is shown in Table 17.
実施の形態10における撮像レンズの基本構成及び球面収差、歪曲収差、および非点収差を示す収差図は実施例7と同様である。尚、各数値データ(設定値)は表17に示される。 Example 8
The basic configuration of the imaging lens and the aberration diagram showing spherical aberration, distortion, and astigmatism in the tenth embodiment are the same as in the seventh embodiment. Each numerical data (setting value) is shown in Table 17.
表17は、実施例7における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R(mm)、間隔D(mm)、屈折率Nd、分散値νd、d線における相対屈折率の温度係数dn/dt、線膨張係数αを示している。表17中で面番号に*がついている面は非球面形状となっていることを示す。表18は、所定面の非球面係数を示している。
数値実施例8 Table 17 shows the stop corresponding to each surface number of the imaging lens in Example 7, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value dd, relative refractive index at d-line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. Surfaces with * in Table 17 indicate that they have an aspheric shape. Table 18 shows the aspheric coefficients of the predetermined surface.
Numerical embodiment 8
数値実施例8 Table 17 shows the stop corresponding to each surface number of the imaging lens in Example 7, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value dd, relative refractive index at d-line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. Surfaces with * in Table 17 indicate that they have an aspheric shape. Table 18 shows the aspheric coefficients of the predetermined surface.
<実施例9>
実施の形態11における撮像レンズ1100Cの基本構成は図18に示され、各数値データ(設定値)は表19に、球面収差、歪曲収差、および非点収差を示す収差図は図19にそれぞれ示される。 Example 9
The basic configuration of theimaging lens 1100C according to Embodiment 11 is shown in FIG. 18, each numerical data (setting value) is shown in Table 19, and an aberration diagram showing spherical aberration, distortion and astigmatism is shown in FIG. Be
実施の形態11における撮像レンズ1100Cの基本構成は図18に示され、各数値データ(設定値)は表19に、球面収差、歪曲収差、および非点収差を示す収差図は図19にそれぞれ示される。 Example 9
The basic configuration of the
図18に示すように、第1レンズ1110は物体側に凸面を向けたメニスカス形状、第2レンズ1120は両凸形状、開口絞り1130の像側に配置される第3レンズ1140は両凹形状、第4レンズ1150は両凸形状、第5レンズ1160は両凸形状、第5レンズ1170は両凸形状を有する。
As shown in FIG. 18, the first lens 1110 has a meniscus shape with a convex surface facing the object side, the second lens 1120 has a double convex shape, the third lens 1140 disposed on the image side of the aperture stop 1130 has a double concave shape, The fourth lens 1150 has a biconvex shape, the fifth lens 1160 has a biconvex shape, and the fifth lens 1170 has a biconvex shape.
表19は、実施例9における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R(mm)、間隔D(mm)、屈折率Nd、分散値νd、d線における相対屈折率の温度係数dn/dt、線膨張係数αを示している。表19中で面番号に*がついている面は非球面形状となっていることを示す。表20は、所定面の非球面係数を示している。
数値実施例9 Table 19 shows the diaphragms corresponding to the surface numbers of the imaging lens in Example 9, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value 分散 d, and relative refractive index at d-line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. Surfaces with * in Table 19 indicate that they have an aspherical shape. Table 20 shows the aspheric coefficients of the predetermined surface.
Numerical embodiment 9
数値実施例9 Table 19 shows the diaphragms corresponding to the surface numbers of the imaging lens in Example 9, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value 分散 d, and relative refractive index at d-line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. Surfaces with * in Table 19 indicate that they have an aspherical shape. Table 20 shows the aspheric coefficients of the predetermined surface.
図19は、実施例9おいて、図19Aが球面収差(左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nm)を、図19Bが非点収差(実線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのサジタル光線、点線:左から435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmのタンジェンシャル光線)を、図19Cが歪曲収差(435.8nm, 486.1nm, 546.1nm, 587.6nm, 656.3nmが重なっている)をそれぞれ示している。図19からわかるように、実施例9によれば、球面、歪曲、非点の諸収差が良好に補正され、結像性能に優れた撮像レンズが得られる。
19 shows spherical aberration (from left: 435.8 nm, 486.1 nm, 546.1 nm, 587.6 nm, 656.3 nm) and FIG. 19B shows astigmatism (solid line: from left: 435.8 nm, 486.1) in Example 9; nm, 546.1 nm, 587.6 nm, 656.3 nm, sagittal light beam, dotted line: left from 435.8 nm, 486.1 nm, 546.1 nm, 547.6 nm, 587.6 nm, 656.3 nm tangential light), and FIG. 19C shows distortion aberration (435.8 nm, 486.1 nm) , 546.1 nm, 587.6 nm, and 656.3 nm), respectively. As can be seen from FIG. 19, according to Example 9, various aberrations such as spherical surface, distortion and astigmatism are corrected well, and an imaging lens having excellent imaging performance can be obtained.
<実施例10>
実施の形態12における撮像レンズの基本構成及び球面収差、歪曲収差、および非点収差を示す収差図は実施例9と同様である。尚、各数値データ(設定値)は表21に示される。表21は、実施例9における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R(mm)、間隔D(mm)、屈折率Nd、分散値νd、d線における相対屈折率の温度係数dn/dt、線膨張係数αを示している。表21中で面番号に*がついている面は非球面形状となっていることを示す。表22は、所定面の非球面係数を示している。
数値実施例10 Example 10
The basic configuration of the imaging lens and the aberration diagram showing spherical aberration, distortion, and astigmatism inEmbodiment 12 are the same as in Embodiment 9. Each numerical data (set value) is shown in Table 21. Table 21 shows the stop corresponding to each surface number of the imaging lens in Example 9, curvature radius R (mm) of each lens, distance D (mm), refractive index Nd, dispersion value dd, relative refractive index at d-line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. Surfaces with * in Table 21 indicate that they have an aspheric shape. Table 22 shows the aspheric coefficients of the predetermined surface.
Numerical embodiment 10
実施の形態12における撮像レンズの基本構成及び球面収差、歪曲収差、および非点収差を示す収差図は実施例9と同様である。尚、各数値データ(設定値)は表21に示される。表21は、実施例9における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R(mm)、間隔D(mm)、屈折率Nd、分散値νd、d線における相対屈折率の温度係数dn/dt、線膨張係数αを示している。表21中で面番号に*がついている面は非球面形状となっていることを示す。表22は、所定面の非球面係数を示している。
数値実施例10 Example 10
The basic configuration of the imaging lens and the aberration diagram showing spherical aberration, distortion, and astigmatism in
<参考例3>
実施の形態13における各数値データ(設定値)は表17に示される。 Reference Example 3
Numerical data (setting values) in the thirteenth embodiment are shown in Table 17.
実施の形態13における各数値データ(設定値)は表17に示される。 Reference Example 3
Numerical data (setting values) in the thirteenth embodiment are shown in Table 17.
表23は、参考例3における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R(mm)、間隔D(mm)、屈折率Nd、分散値νd、d線における相対屈折率の温度係数dn/dt、線膨張係数αを示している。表23中で面番号に*がついている面は非球面形状となっていることを示す。表24は、所定面の非球面係数を示している。
数値参考例3 Table 23 shows the stop corresponding to each surface number of the imaging lens in the reference example 3, the curvature radius R (mm) of each lens, the distance D (mm), the refractive index Nd, the dispersion value dd, and the relative refractive index at the d line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. Surfaces with * in Table 23 indicate that they have an aspherical shape. Table 24 shows the aspheric coefficients of the predetermined surface.
Numerical reference example 3
数値参考例3 Table 23 shows the stop corresponding to each surface number of the imaging lens in the reference example 3, the curvature radius R (mm) of each lens, the distance D (mm), the refractive index Nd, the dispersion value dd, and the relative refractive index at the d line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. Surfaces with * in Table 23 indicate that they have an aspherical shape. Table 24 shows the aspheric coefficients of the predetermined surface.
Numerical reference example 3
<参考例4>
実施の形態14における各数値データ(設定値)は表25に示される。 Reference Example 4
Numerical data (setting values) in the fourteenth embodiment are shown in Table 25.
実施の形態14における各数値データ(設定値)は表25に示される。 Reference Example 4
Numerical data (setting values) in the fourteenth embodiment are shown in Table 25.
表25は、参考例4における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R(mm)、間隔D(mm)、屈折率Nd、分散値νd、d線における相対屈折率の温度係数dn/dt、線膨張係数αを示している。表25中で面番号に*がついている面は非球面形状となっていることを示す。表26は、所定面の非球面係数を示している。
数値参考例4 Table 25 shows the stop corresponding to each surface number of the imaging lens in the reference example 4, the curvature radius R (mm) of each lens, the distance D (mm), the refractive index Nd, the dispersion value νd, and the relative refractive index at the d line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. The surface indicated by * in Table 25 indicates that the surface has an aspheric shape. Table 26 shows the aspheric coefficients of the predetermined surface.
Numerical reference example 4
数値参考例4 Table 25 shows the stop corresponding to each surface number of the imaging lens in the reference example 4, the curvature radius R (mm) of each lens, the distance D (mm), the refractive index Nd, the dispersion value νd, and the relative refractive index at the d line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. The surface indicated by * in Table 25 indicates that the surface has an aspheric shape. Table 26 shows the aspheric coefficients of the predetermined surface.
Numerical reference example 4
<参考例5>
実施の形態15における各数値データ(設定値)は表27に示される。 Reference Example 5
Numerical data (setting values) in the fifteenth embodiment are shown in Table 27.
実施の形態15における各数値データ(設定値)は表27に示される。 Reference Example 5
Numerical data (setting values) in the fifteenth embodiment are shown in Table 27.
表27は、参考例5における撮像レンズの各面番号に対応した絞り、各レンズの曲率半径R(mm)、間隔D(mm)、屈折率Nd、分散値νd、d線における相対屈折率の温度係数dn/dt、線膨張係数αを示している。表27中で面番号に*がついている面は非球面形状となっていることを示す。表28は、所定面の非球面係数を示している。
数値参考例5 Table 27 shows the stop corresponding to each surface number of the imaging lens in the reference example 5, the curvature radius R (mm) of each lens, the distance D (mm), the refractive index Nd, the dispersion value dd, and the relative refractive index at the d line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. Surfaces with * in Table 27 indicate that they have an aspherical shape. Table 28 shows the aspheric coefficients of the predetermined surface.
Numerical reference example 5
数値参考例5 Table 27 shows the stop corresponding to each surface number of the imaging lens in the reference example 5, the curvature radius R (mm) of each lens, the distance D (mm), the refractive index Nd, the dispersion value dd, and the relative refractive index at the d line The temperature coefficient dn / dt and the linear expansion coefficient α are shown. Surfaces with * in Table 27 indicate that they have an aspherical shape. Table 28 shows the aspheric coefficients of the predetermined surface.
Numerical reference example 5
図20、図21、図22は、実施例5から実施例10、参考例3から参考例5において、負の屈折力を有する第1レンズ1110、第3レンズ1130、第5レンズ1170のd線における相対的屈折率の温度係数の平均値と105℃でのピントシフト量の関係を示している。ピントシフト量はd線における相対的屈折率の温度係数及び線膨張係数より算出している。
図20、図21、図22から分かるように、相対的屈折率の温度係数の平均値を特定の値以上にすることで、ピントシフト量を小さく抑えることができる。ピントシフト量は製造公差上10μm以下にする必要があり、負の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値はdn/dt_n≧3.0となる。 20, 21 and 22 show the d-line of thefirst lens 1110, the third lens 1130, and the fifth lens 1170 having negative refractive power in Example 5 to Example 10 and Reference Example 3 to Reference Example 5, respectively. The relationship between the average value of the temperature coefficient of the relative refractive index and the focus shift amount at 105 ° C. is shown. The focus shift amount is calculated from the temperature coefficient of the relative refractive index at the d-line and the linear expansion coefficient.
As can be seen from FIGS. 20, 21, and 22, by setting the average value of the temperature coefficients of relative refractive indices to a specific value or more, the amount of focus shift can be suppressed to a small value. The focus shift amount needs to be 10 μm or less due to manufacturing tolerances, and the average value of the temperature coefficient of the relative refractive index at the d-line of a lens having negative refractive power is dn / dt_n ≧ 3.0.
図20、図21、図22から分かるように、相対的屈折率の温度係数の平均値を特定の値以上にすることで、ピントシフト量を小さく抑えることができる。ピントシフト量は製造公差上10μm以下にする必要があり、負の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値はdn/dt_n≧3.0となる。 20, 21 and 22 show the d-line of the
As can be seen from FIGS. 20, 21, and 22, by setting the average value of the temperature coefficients of relative refractive indices to a specific value or more, the amount of focus shift can be suppressed to a small value. The focus shift amount needs to be 10 μm or less due to manufacturing tolerances, and the average value of the temperature coefficient of the relative refractive index at the d-line of a lens having negative refractive power is dn / dt_n ≧ 3.0.
以上、本実施形態にかかる撮像レンズについて説明したが、本発明はこれらの実施例の撮像レンズに限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変形が可能である。例えば、実施例5~8の撮像レンズ1100の諸元は例示であって、本発明の範囲内で種々のパラメータの変更が可能である。また、上記実施例において、カバーガラス(平板)1190に赤外線除去フィルタを設ける構成にしたり、赤外カットコートをカバーガラス(平板)1190の面に施すなどしたりしても良い。また、他のレンズ面またはローパスフィルタ等のフィルタに赤外コートを施しても良い。
As mentioned above, although the imaging lens concerning this embodiment was demonstrated, this invention is not limited to the imaging lens of these Examples, A various deformation | transformation is possible in the range which does not deviate from the summary of invention. For example, the specifications of the imaging lens 1100 of Examples 5 to 8 are exemplification, and various parameter changes are possible within the scope of the present invention. Further, in the above embodiment, an infrared ray removing filter may be provided on the cover glass (flat plate) 1190, or an infrared cut coat may be applied to the surface of the cover glass (flat plate) 1190. Also, infrared coating may be applied to other lens surfaces or filters such as low pass filters.
本実施形態によれば、監視用カメラまたは車載カメラ等の様々な箇所に搭載可能であり、広い視野を確保しながら画面全域で結像性能が良く、高い光学性能を持つ広角撮像レンズが提供できる。
According to this embodiment, a wide-angle imaging lens can be provided which can be mounted in various places such as a monitoring camera or a car-mounted camera, has a wide field of view, has good imaging performance over the entire screen, and has high optical performance. .
図23に本発明の一実施形態に係る撮像レンズ1100を用いた撮像装置1300の一実施形態の断面図を示す。撮像レンズ1100およびCCDまたはCMOS等の撮像素子1210は筐体1220によって位置関係を規定、保持される。このとき撮像レンズ1100の結像面1200は撮像素子1210の受光面に一致するように配置されている。
FIG. 23 shows a cross-sectional view of an embodiment of an imaging device 1300 using an imaging lens 1100 according to an embodiment of the present invention. An imaging lens 1100 and an imaging element 1210 such as a CCD or CMOS are defined and held in a positional relationship by a housing 1220. At this time, the imaging surface 1200 of the imaging lens 1100 is disposed to coincide with the light receiving surface of the imaging element 1210.
撮像レンズ1100によって取り込まれ、撮像素子1210の受光面に結像した被写体像は、撮像素子1210の光電変換機能によって電気信号に変換されて、画像信号として撮像素子1210から出力される。
An object image captured by the imaging lens 1100 and formed on the light receiving surface of the imaging element 1210 is converted into an electrical signal by the photoelectric conversion function of the imaging element 1210 and output from the imaging element 1210 as an image signal.
図24は本発明の一実施形態による撮像レンズ1100を用いた撮像装置1300を、車両1400に搭載される車載カメラ1410に適用した車載カメラシステムの例を説明する図である。車載カメラシステムは、車載カメラ1410と画像処理装置1420を含んで構成される。車載カメラ1410は車両1400の車室内部または外部に取り付けられ、所定の方向を撮像することができるが、図24の例では、車室内の前部に固定して車両1400の前方の視界の周辺画像を撮像するものとする。
FIG. 24 is a view for explaining an example of an on-vehicle camera system in which an imaging device 1300 using an imaging lens 1100 according to an embodiment of the present invention is applied to an on-vehicle camera 1410 mounted on a vehicle 1400. The on-vehicle camera system includes an on-vehicle camera 1410 and an image processing device 1420. The on-vehicle camera 1410 is attached to the interior or the exterior of the vehicle 1400 and can capture a predetermined direction, but in the example of FIG. An image shall be taken.
車載カメラ1410は、取得した画像を車両1400内の通信手段を介して、画像処理装置1420に出力する。画像処理装置1420は、画像処理用ASIC(Application SpecificIntegrated Circuit),DSP(Digital Signal Processor)等の画像処理専用のプロセッサおよび種々の情報を記憶するメモリを含み、車載カメラ1410および他の車載カメラから出力された画像に対して、ホワイトバランス調整、露出調整処理、色補間、明るさ補正およびガンマ補正等の処理を行う。さらに、画像処理装置1420は、画像の切替え、複数の車載カメラからの画像の結合、一部の画像の切出し、記号、文字または予想軌跡線等の画像への重畳、等の処理を行い、表示装置1430の仕様に合わせた画像信号を出力する。画像処理装置1420の一部またはすべての機能を車載カメラ1410側に持たせても良い。
The on-vehicle camera 1410 outputs the acquired image to the image processing apparatus 1420 via the communication unit in the vehicle 1400. The image processing apparatus 1420 includes an image processing ASIC (Application Specific Integrated Circuit), a processor dedicated to image processing such as a DSP (Digital Signal Processor), and a memory for storing various information, and is output from the onboard camera 1410 and other onboard cameras Processing such as white balance adjustment, exposure adjustment processing, color interpolation, brightness correction, and gamma correction is performed on the captured image. Furthermore, the image processing device 1420 performs processing such as switching of images, combining of images from a plurality of in-vehicle cameras, cutting out of some images, superimposing on images such as symbols, characters or expected trajectory lines, etc. An image signal according to the specifications of the device 1430 is output. The on-vehicle camera 1410 may have some or all of the functions of the image processing apparatus 1420.
表示装置1430は、車両1400のダッシュボード等に配置され、車両1400の運転者に対して画像処理装置1420で処理された画像情報を表示する。
The display device 1430 is disposed on a dashboard or the like of the vehicle 1400, and displays the image information processed by the image processing device 1420 to the driver of the vehicle 1400.
以上のように、撮像レンズ1100は、広角撮像レンズでありながら、歪曲収差の発生を低減し、高い光学性能を持つ被写体像を撮像素子1210の受光面上に結像でき、視認性に優れた画像の画像信号を出力できる。さらに、夜間などの光量の乏しい環境で使用するために波長帯域を近赤外光まで広げても、軸上色収差を抑制することができるので、特に、赤外線カットフィルタのない撮像素子1210を用いる車載カメラ1410に適している。さらに、小型、軽量とすることができるので、搭載スペースがコンパクトにでき、様々な用途の撮像素子1210に適している。
As described above, although the imaging lens 1100 is a wide-angle imaging lens, the occurrence of distortion can be reduced, and an object image with high optical performance can be formed on the light receiving surface of the imaging element 1210, and the visibility is excellent. It is possible to output an image signal of an image. Furthermore, axial chromatic aberration can be suppressed even if the wavelength band is extended to near infrared light in order to be used in an environment where the amount of light is low, such as at night, and in particular, an on-vehicle using an imaging element 1210 without an infrared cut filter It is suitable for the camera 1410. Furthermore, since the device can be made compact and lightweight, the mounting space can be made compact, which is suitable for the imaging device 1210 for various applications.
100、100A~100B 撮像レンズ
110 第1レンズ
120 第2レンズ
130 開口絞り
140 第3レンズ
150 第4レンズ
160 第5レンズ
170 第5レンズ
180 平板
190 平板
200 結像面
210 撮像素子
220 筺体
300 撮像装置
400 車両
410 車載カメラ
420 画像処理装置
430 表示装置
1100、1100A~1100C 撮像レンズ
1110 第1レンズ
1120 第2レンズ
1130 開口絞り
1140 第3レンズ
1150 第4レンズ
1160 第5レンズ
1170 第5レンズ
1180 平板
1190 平板
1200 結像面
1210 撮像素子
1220 筺体
1300 撮像装置
1400 車両
1410 車載カメラ
1420 画像処理装置
1430 表示装置 100, 100A to100B imaging lens 110 first lens 120 second lens 130 aperture stop 140 third lens 150 fourth lens 160 fifth lens 170 fifth lens 180 flat plate 190 flat plate 200 imaging surface 210 imaging element 220 frame 300 imaging device 400 vehicle 410 vehicle-mounted camera 420 image processing device 430 display device 1100, 1100A to 1100C imaging lens 1110 first lens 1120 second lens 1130 aperture stop 1140 third lens 1150 fourth lens 1160 fifth lens 1170 fifth lens 1180 flat plate 1190 flat plate 1200 image forming plane 1210 imaging device 1220 housing 1300 imaging device 1400 vehicle 1410 in-vehicle camera 1420 image processing device 1430 display device
110 第1レンズ
120 第2レンズ
130 開口絞り
140 第3レンズ
150 第4レンズ
160 第5レンズ
170 第5レンズ
180 平板
190 平板
200 結像面
210 撮像素子
220 筺体
300 撮像装置
400 車両
410 車載カメラ
420 画像処理装置
430 表示装置
1100、1100A~1100C 撮像レンズ
1110 第1レンズ
1120 第2レンズ
1130 開口絞り
1140 第3レンズ
1150 第4レンズ
1160 第5レンズ
1170 第5レンズ
1180 平板
1190 平板
1200 結像面
1210 撮像素子
1220 筺体
1300 撮像装置
1400 車両
1410 車載カメラ
1420 画像処理装置
1430 表示装置 100, 100A to
Claims (18)
- 物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、全てのレンズが球面により形成されることを特徴とする撮像レンズ。 From the object side, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, a third lens having negative refractive power, and a fourth lens having positive refractive power An imaging lens comprising: a lens; a lens having a positive refracting power; and a fifth lens formed by cementing a lens having a negative refracting power, wherein all the lenses are formed by a spherical surface.
- 前記第5レンズの正の屈折力を有するレンズのアッベ数をνa、負の屈折力を有するレンズのアッベ数をνbとする時、下記条件式(1)を満足することを特徴とする請求項1に記載の撮像レンズ。
30≧νa-νb≧17 ・・・(1) When the Abbe number of the lens having positive refractive power of the fifth lens is aa and the Abbe number of the lens having negative refractive power is νb, the following conditional expression (1) is satisfied: The imaging lens according to 1.
30 ν a a-b b 17 17 (1) - 下記条件式(2)を満足することを特徴とする請求項1乃至2のいずれかに記載の撮像レンズ。
2W≧50° ・・・(2)
但し、2Wは、結像面での最大像高位置に入射する光線の全画角である。 The imaging lens according to any one of claims 1 to 2, wherein the following conditional expression (2) is satisfied.
2 W 50 50 ° (2)
Here, 2W is the total angle of view of the light beam incident on the maximum image height position on the imaging plane. - 前記第3レンズを構成する材料のd線に対するアッベ数が30以下に、前記第4レンズを構成する材料のd線に対するアッベ数が30以上に、それぞれ設定されることを特徴とする請求項1乃至3のいずれかに記載の撮像レンズ。 The Abbe number to the d-line of the material forming the third lens is set to 30 or less, and the Abbe number to the d-line of the material forming the fourth lens to 30 or more. 3. The imaging lens according to any one of to 3.
- 前記第1レンズは像側に凹面を向け、前記第2レンズは物体側に凸面を向け、前記第5レンズは物体側に凸面を向けることを特徴とする請求項1乃至4のいずれかに記載の撮像レンズ。 The first lens according to any one of claims 1 to 4, wherein the first lens has a concave surface on the image side, the second lens has a convex surface on the object side, and the fifth lens has a convex surface on the object side. Imaging lens.
- 前記第1レンズから前記第5レンズまで全てのレンズが硝子材料で形成されていることを特徴とする請求項1乃至5のいずれかに記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 5, wherein all the lenses from the first lens to the fifth lens are formed of a glass material.
- 前記第1レンズの焦点距離をf1、前記第3レンズの焦点距離をf3、前記撮像レンズ全系の焦点距離をfとする時、下記条件式(3)~(4)を満足することを特徴とする請求項1乃至6のいずれかに記載の撮像レンズ。
-1.95<f1/f<-1.55 ・・・(3)
-1.3<f3/f<-0.9 ・・・(4) When the focal length of the first lens is f1, the focal length of the third lens is f3, and the focal length of the entire imaging lens system is f, the following conditional expressions (3) to (4) are satisfied: The imaging lens according to any one of claims 1 to 6.
-1.95 <f1 / f <-1.55 (3)
-1.3 <f3 / f <-0.9 (4) - 物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、全てのレンズが球面により形成されることを特徴とする撮像レンズと、
前記撮像レンズを介して結像する光学像を電気信号に変換する撮像素子と、
を備えることを特徴とする撮像装置。 From the object side, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, a third lens having negative refractive power, and a fourth lens having positive refractive power An imaging lens characterized by comprising a lens, a lens having a positive refractive power, and a fifth lens formed by cementing a lens having a negative refractive power, all the lenses being formed by spherical surfaces;
An imaging device for converting an optical image formed through the imaging lens into an electrical signal;
An imaging apparatus comprising: - 車両に設けられ、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、全てのレンズが球面により形成されることを特徴とする撮像レンズと、前記撮像レンズを介して結像する光学像を電気信号に変換する撮像素子と、を含む撮像装置を備える車載カメラシステム。 A first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and a third lens having negative refractive power, which are provided in a vehicle and are arranged in order from the object side An imaging lens characterized by comprising a fourth lens having a power, a lens having a positive refractive power, and a fifth lens formed by cementing a lens having a negative refractive power, all the lenses being formed by spherical surfaces. An on-vehicle camera system comprising: an imaging device including: an imaging device configured to convert an optical image formed through the imaging lens into an electrical signal.
- 物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、下記条件式(1)、(2)を満足することを特徴とする撮像レンズ。
dn/dt_n≧3.0 ・・・(1)
L45≧0.2 ・・・(2)
但し、dn/dt_nは、負の屈折力を有するレンズのd線における相対屈折率の温度
係数の平均値を、L45は、前記第4レンズと前記第5レンズの間隔を示す。 From the object side, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, a third lens having negative refractive power, and a fourth lens having positive refractive power What is claimed is: 1. An imaging lens comprising: a lens; a lens having a positive refractive power; and a fifth lens formed by cementing a lens having a negative refractive power, and satisfying the following conditional expressions (1) and (2).
dn / dt_n ≧ 3.0 (1)
L45 ≧ 0.2 (2)
However, dn / dt_n shows the average value of the temperature coefficient of the relative refractive index at the d-line of the lens having negative refractive power, and L45 shows the distance between the fourth lens and the fifth lens. - 下記条件式(3)を満足することを特徴とする請求項10に記載の撮像レンズ。
2W≧50° ・・・(3)
但し、2Wは、結像面での最大像高位置に入射する光線の全画角である。 The imaging lens according to claim 10, which satisfies the following conditional expression (3).
2W ≧ 50 ° (3)
Here, 2W is the total angle of view of the light beam incident on the maximum image height position on the imaging plane. - 前記第1レンズは像側に凹面を向け、前記第2レンズは物体側に凸面を向け、前記第5レンズは物体側に凸面を向けることを特徴とする請求項10乃至11のいずれかに記載の撮像レンズ。 12. The lens according to any one of claims 10 to 11, wherein the first lens has a concave surface on the image side, the second lens has a convex surface on the object side, and the fifth lens has a convex surface on the object side. Imaging lens.
- 前記第1レンズから前記第5レンズまで全てのレンズが硝子材料で形成されていることを特徴とする請求項10乃至12のいずれかに記載の撮像レンズ。 The imaging lens according to any one of claims 10 to 12, wherein all the lenses from the first lens to the fifth lens are formed of a glass material.
- 下記条件式(4)を満足することを特徴とする請求項10乃至13のいずれかに記載の撮像レンズ。
dn/dt_p≦4.0 ・・・(4)
但し、dn/dt_pは、正の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値を示す。 The imaging lens according to any one of claims 10 to 13, wherein the following conditional expression (4) is satisfied.
dn / dt_p ≦ 4.0 (4)
However, dn / dt_p shows the average value of the temperature coefficient of the relative refractive index at the d-line of the lens having positive refractive power. - 前記第4レンズは片面乃至両面が非球面形状を持つことを特徴とする請求項10乃至14のいずれかに記載の撮像レンズ。 The imaging lens according to any one of claims 10 to 14, wherein one surface or both surfaces of the fourth lens has an aspheric shape.
- 前記第1レンズの焦点距離をf1、前記第3レンズの焦点距離をf3、前記撮像レンズ全系の焦点距離をfとする時、下記条件式(5)~(6)を満足することを特徴とする請求項1乃至6のいずれかに記載の撮像レンズ。
-1.8<f1/f<-1.3 ・・・(5)
-1.4<f3/f<-1.0 ・・・(6) When the focal length of the first lens is f1, the focal length of the third lens is f3, and the focal length of the entire imaging lens system is f, the following conditional expressions (5) to (6) are satisfied: The imaging lens according to any one of claims 1 to 6.
-1.8 <f1 / f <-1.3 (5)
-1.4 <f3 / f <-1.0 (6) - 物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、下記条件式(1)、(2)を満足することを特徴とする撮像レンズと、
前記撮像レンズを介して結像する光学像を電気信号に変換する撮像素子と、
を備えることを特徴とする撮像装置。
dn/dt_n≧3.0 ・・・(1)
L45≧0.2 ・・・(2)
但し、dn/dt_nは、負の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値を、L45は、前記第4レンズと前記第5レンズの間隔を示す。 From the object side, in order from the object side, a first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, a third lens having negative refractive power, and a fourth lens having positive refractive power An imaging lens characterized by comprising a lens, a lens having a positive refractive power, and a fifth lens formed by cementing a lens having a negative refractive power, and satisfying the following conditional expressions (1) and (2): ,
An imaging device for converting an optical image formed through the imaging lens into an electrical signal;
An imaging apparatus comprising:
dn / dt_n ≧ 3.0 (1)
L45 ≧ 0.2 (2)
However, dn / dt_n shows the average value of the temperature coefficient of the relative refractive index at the d-line of the lens having negative refractive power, and L45 shows the distance between the fourth lens and the fifth lens. - 車両に設けられ、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、負の屈折力を有する第3レンズと、正の屈折力を有する第4レンズ、正の屈折力を有するレンズおよび負の屈折力を有するレンズの接合からなる第5レンズとで構成され、下記条件式(1)、(2)を満足することを特徴とする撮像レンズと、前記撮像レンズを介して結像する光学像を電気信号に変換する撮像素子と、を含む撮像装置を備える車載カメラシステム。
dn/dt_n≧3.0 ・・・(1)
L45≧0.2 ・・・(2)
但し、dn/dt_nは、負の屈折力を有するレンズのd線における相対屈折率の温度係数の平均値を、L45は、前記第4レンズと前記第5レンズの間隔を示す。 A first lens having negative refractive power, a second lens having positive refractive power, an aperture stop, and a third lens having negative refractive power, which are provided in a vehicle and are arranged in order from the object side It consists of the 4th lens which has power, the lens which has positive refracting power, and the 5th lens which consists of junction of the lens which has negative refracting power, and is characterized by satisfying the following conditional expressions (1) and (2) An on-vehicle camera system comprising: an imaging device for imaging; and an imaging device for converting an optical image formed through the imaging lens into an electrical signal.
dn / dt_n ≧ 3.0 (1)
L45 ≧ 0.2 (2)
However, dn / dt_n shows the average value of the temperature coefficient of the relative refractive index at the d-line of the lens having negative refractive power, and L45 shows the distance between the fourth lens and the fifth lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019557134A JP6908724B2 (en) | 2017-11-28 | 2018-11-14 | Imaging lens and imaging device and in-vehicle camera system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017228099 | 2017-11-28 | ||
JP2017-227714 | 2017-11-28 | ||
JP2017227714 | 2017-11-28 | ||
JP2017-228099 | 2017-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019107153A1 true WO2019107153A1 (en) | 2019-06-06 |
Family
ID=66665588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/042141 WO2019107153A1 (en) | 2017-11-28 | 2018-11-14 | Imaging lens, imaging device, and vehicle-mounted camera system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6908724B2 (en) |
WO (1) | WO2019107153A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110646920A (en) * | 2019-09-17 | 2020-01-03 | 福建福光天瞳光学有限公司 | Long-focus vehicle-mounted optical lens and working method thereof |
JP2022024966A (en) * | 2020-07-13 | 2022-02-09 | エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド | Image capturing optical lens |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58202414A (en) * | 1982-05-20 | 1983-11-25 | Minolta Camera Co Ltd | Inverted telephoto type photographic lens |
JPH07181377A (en) * | 1993-12-24 | 1995-07-21 | Olympus Optical Co Ltd | Endoscopic objective lens |
JPH1020188A (en) * | 1996-07-03 | 1998-01-23 | Asahi Optical Co Ltd | Photographing lens |
JPH11142730A (en) * | 1997-09-04 | 1999-05-28 | Konica Corp | Image pickup lens |
JPH11316339A (en) * | 1998-03-03 | 1999-11-16 | Olympus Optical Co Ltd | Objective optical system |
JP2008010739A (en) * | 2006-06-30 | 2008-01-17 | Toshiba Corp | Semiconductor device, and its manufacturing method |
JP2009251432A (en) * | 2008-04-09 | 2009-10-29 | Olympus Medical Systems Corp | Objective optical system for endoscope |
JP2010072622A (en) * | 2008-08-21 | 2010-04-02 | Fujinon Corp | Imaging lens and imaging apparatus |
WO2015002584A1 (en) * | 2013-07-03 | 2015-01-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio unit and method performed by a radio unit operable in a base station system of a wireless communication network for reducing interference at the radio unit |
JP2015125150A (en) * | 2013-12-25 | 2015-07-06 | 富士フイルム株式会社 | Image-capturing lens and image-capturing device |
US20170115470A1 (en) * | 2015-10-23 | 2017-04-27 | Largan Precision Co.,Ltd. | Imaging lens assembly, image capturing unit and electronic device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008107391A (en) * | 2006-10-23 | 2008-05-08 | Olympus Medical Systems Corp | Object optical system for endoscope |
EP3037858A4 (en) * | 2013-08-22 | 2017-03-15 | Olympus Corporation | Endoscope objective optical system |
-
2018
- 2018-11-14 JP JP2019557134A patent/JP6908724B2/en active Active
- 2018-11-14 WO PCT/JP2018/042141 patent/WO2019107153A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58202414A (en) * | 1982-05-20 | 1983-11-25 | Minolta Camera Co Ltd | Inverted telephoto type photographic lens |
JPH07181377A (en) * | 1993-12-24 | 1995-07-21 | Olympus Optical Co Ltd | Endoscopic objective lens |
JPH1020188A (en) * | 1996-07-03 | 1998-01-23 | Asahi Optical Co Ltd | Photographing lens |
JPH11142730A (en) * | 1997-09-04 | 1999-05-28 | Konica Corp | Image pickup lens |
JPH11316339A (en) * | 1998-03-03 | 1999-11-16 | Olympus Optical Co Ltd | Objective optical system |
JP2008010739A (en) * | 2006-06-30 | 2008-01-17 | Toshiba Corp | Semiconductor device, and its manufacturing method |
JP2009251432A (en) * | 2008-04-09 | 2009-10-29 | Olympus Medical Systems Corp | Objective optical system for endoscope |
JP2010072622A (en) * | 2008-08-21 | 2010-04-02 | Fujinon Corp | Imaging lens and imaging apparatus |
WO2015002584A1 (en) * | 2013-07-03 | 2015-01-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio unit and method performed by a radio unit operable in a base station system of a wireless communication network for reducing interference at the radio unit |
JP2015125150A (en) * | 2013-12-25 | 2015-07-06 | 富士フイルム株式会社 | Image-capturing lens and image-capturing device |
US20170115470A1 (en) * | 2015-10-23 | 2017-04-27 | Largan Precision Co.,Ltd. | Imaging lens assembly, image capturing unit and electronic device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110646920A (en) * | 2019-09-17 | 2020-01-03 | 福建福光天瞳光学有限公司 | Long-focus vehicle-mounted optical lens and working method thereof |
CN110646920B (en) * | 2019-09-17 | 2023-10-27 | 福建福光天瞳光学有限公司 | Long-focal-length vehicle-mounted optical lens and working method thereof |
JP2022024966A (en) * | 2020-07-13 | 2022-02-09 | エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド | Image capturing optical lens |
JP7104769B2 (en) | 2020-07-13 | 2022-07-21 | エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド | Imaging optical lens |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019107153A1 (en) | 2020-11-19 |
JP6908724B2 (en) | 2021-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5330202B2 (en) | Imaging lens and imaging apparatus | |
JP4949871B2 (en) | Image pickup lens and image pickup apparatus including the image pickup lens | |
JP5830104B2 (en) | Imaging lens and imaging apparatus | |
US8355215B2 (en) | Image pickup lens and image pickup apparatus | |
JP4815319B2 (en) | Imaging lens and camera device provided with the same | |
JP5335710B2 (en) | Imaging lens and imaging apparatus | |
JP5015657B2 (en) | Image pickup lens and image pickup apparatus including the image pickup lens | |
JP5252842B2 (en) | Imaging lens | |
JP5084335B2 (en) | Imaging lens | |
JP5438583B2 (en) | Imaging lens and imaging apparatus | |
CN104914554B (en) | Imaging lens system and photographic device | |
CN104914553B (en) | Imaging lens system and photographic device | |
JP6732411B2 (en) | Imaging lens and imaging device | |
JP5224455B2 (en) | Imaging lens and imaging apparatus | |
WO2019031266A1 (en) | Single-focus lens system and camera | |
JP2016212134A (en) | Imaging lens and imaging device | |
JPWO2016125613A1 (en) | Imaging lens and imaging apparatus | |
JPWO2013046567A1 (en) | Imaging lens and imaging apparatus | |
JP2008233610A (en) | Imaging lens and imaging device equipped with the imaging lens | |
JP2009092798A (en) | Imaging lens and imaging device | |
JP5450023B2 (en) | Imaging lens and imaging apparatus using the imaging lens | |
JP2009145809A (en) | Image pickup lens and image pickup apparatus | |
JP2020112835A (en) | Image capturing lens system and image capturing device | |
CN104914552B (en) | Imaging lens system and photographic device | |
JPWO2017086052A1 (en) | Imaging lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18884195 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019557134 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18884195 Country of ref document: EP Kind code of ref document: A1 |