JPH11316339A - Objective optical system - Google Patents

Objective optical system

Info

Publication number
JPH11316339A
JPH11316339A JP11053708A JP5370899A JPH11316339A JP H11316339 A JPH11316339 A JP H11316339A JP 11053708 A JP11053708 A JP 11053708A JP 5370899 A JP5370899 A JP 5370899A JP H11316339 A JPH11316339 A JP H11316339A
Authority
JP
Japan
Prior art keywords
lens
group
optical system
refractive power
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11053708A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nagaoka
利之 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11053708A priority Critical patent/JPH11316339A/en
Publication of JPH11316339A publication Critical patent/JPH11316339A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • G02B23/2438Zoom objectives

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Endoscopes (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an objective optical system whose entire length is short and whose lens outside diameter is small through it can realize enlarging observation by moving a 2nd group on an optical axis so that variable power action may be performed and making it satisfy specified conditions. SOLUTION: This optical system is constituted of a 1st group G1 having positive refractive power, a 2nd group G2 having negative refractive power and a 3rd group G3 having positive refractive power in order from an object side. By moving the 2nd group G2 on the optical axis, the variable power action is performed, and the system satisfies the conditional expressions: 0.1<|1/ f2 (DW-DT)}|<2, 1<|(fW.fT)<1/2> /f1 |<2. Provided that f1 and f2 are the focal distances of the 1st and the 2nd groups G1 and G2, DW and DT are intervals between the 1st and the 2nd groups G1 and G2 at a wide angle end and a telephoto end, fW and fT are the focal distances of the entire system at the wide angle end and the telephoto end, respectively. Thus, the occurrence of aberration in the 2nd group G2 is restrained and the aberration is kept excellent, and the refractive power of the 2nd group G2 is made strong while keeping the aberration excellent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変倍機能を有する
対物光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective optical system having a zoom function.

【0002】[0002]

【従来の技術】近年、内視鏡において病変等の精密診断
を行なうため通常の観察に加えて拡大観察を行ない得る
ようにすることが要求されている。又、内視鏡におい
て、先端硬性部の長さの短縮や外径の細径化が要求され
ている。そのため拡大観察用の光学系は、全長の短縮化
やレンズ外径の細径化が強く求められる。
2. Description of the Related Art In recent years, it has been required to perform magnified observation in addition to ordinary observation in order to perform precise diagnosis of a lesion or the like in an endoscope. Further, in the endoscope, it is required to shorten the length of the rigid portion at the distal end and to reduce the outer diameter. Therefore, the optical system for magnifying observation is strongly required to reduce the overall length and the lens outer diameter.

【0003】又、ビデオカメラやデジタルカメラの分野
においても、拡大観察はもちろん、レンズ系の全長の短
縮化や細径化が望まれる。
[0003] In the field of video cameras and digital cameras, it is desired not only to perform magnifying observation but also to reduce the overall length and diameter of the lens system.

【0004】拡大観察光学系の従来例として、特公昭6
1−44283号公報、特開平4−218012号公
報、特開平6−317744号公報に記載されている光
学系が知られている。これら従来例は、物体側より順
に、正の屈折力の第1群と負の屈折力の第2群と正の屈
折力の第3群とよりなり、第2群が光軸上を移動するこ
とによって変倍作用を行なうレンズ系である。
As a conventional example of a magnifying observation optical system, Japanese Patent Publication No. Sho 6
Optical systems described in JP-A-1-44283, JP-A-4-218012, and JP-A-6-317744 are known. These conventional examples include, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, and a third group having a positive refractive power, and the second group moves on the optical axis. This is a lens system that performs a zooming action.

【0005】[0005]

【発明が解決しようとする課題】これら従来例は、いず
れも第2群の変倍の際の移動距離が長いためレンズ系の
全長が長く、また負の屈折力の第2群からの発散光束が
入射する第3群において、他の群よりも光線高が著しく
高くそのためにこの第3群の外径が大になるという欠点
を有する。
In each of these conventional examples, since the moving distance of the second lens unit during zooming is long, the entire length of the lens system is long, and the divergent light flux from the second lens unit having a negative refractive power. Has the disadvantage that the beam height is significantly higher in the third group than in the other groups, so that the outer diameter of the third group becomes large.

【0006】本発明は、拡大観察が可能でありながら全
長が短くレンズ外径の小さい対物光学系を提供するもの
である。
An object of the present invention is to provide an objective optical system which has a short overall length and a small lens outer diameter while being capable of magnifying observation.

【0007】[0007]

【課題を解決するための手段】本発明の対物光学系は、
物体側より順に、正の屈折力の第1群と負の屈折力の第
2群と正の屈折力の第3群とよりなり、第2群が光軸上
を移動することにより変倍作用を行ない、下記条件
(1),(2)を満足することを特徴とする。 (1) 0.1<|1/{f2 (DW −DT )}|<2 (2) 1<|(fW ・fT1/2 /f1 |<2 ただし、f1 ,f2 は夫々第1群および第2群の焦点距
離、DW ,DT は夫々広角端および望遠端における第1
群と第2群の間隔、fW ,fT は夫々広角端および望遠
端における全系の焦点距離である。
The objective optical system according to the present invention comprises:
In order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power are provided. The second lens unit moves on the optical axis to change the magnification. And the following conditions (1) and (2) are satisfied. (1) 0.1 <| 1 / {f 2 (D W −D T )} | <2 (2) 1 <| (f W · f T ) 1/2 / f 1 | <2 where f 1 , F 2 are the focal lengths of the first and second lens units, respectively, and D W and D T are the first and second lens units at the wide-angle end and the telephoto end, respectively.
Group and spacing of the second group, f W, is f T is a focal length of the entire system at each wide angle end and the telephoto end.

【0008】一般に、光学系の全長を短縮するために
は、各群の屈折力を強くして間隔を短くすることが有効
である。物体側より順に、正の第1群と負の第2群と正
の第3群とよりなる本発明の光学系においても、光学系
の全長を短縮するために各群の屈折力を強くすることが
望ましい。特に変倍作用を有する第2群の屈折力を強く
することにより、変倍時のこの第2群の移動量を小にす
ることが光学系の全長を短くするために有効である。し
かし、第2群の屈折力を極端に強くすることによりこの
群で発生する収差が大になり、良好な結像性能を得るこ
とが困難である。
In general, in order to shorten the entire length of the optical system, it is effective to increase the refractive power of each group and shorten the interval. In the optical system according to the present invention including the first positive lens unit, the second negative lens unit, and the third positive lens unit in order from the object side, the refractive power of each lens unit is increased to shorten the entire length of the optical system. It is desirable. In particular, it is effective to shorten the total length of the optical system by reducing the amount of movement of the second unit during zooming by increasing the refractive power of the second unit having a zooming action. However, when the refractive power of the second lens unit is extremely increased, aberrations generated in this lens unit become large, and it is difficult to obtain good imaging performance.

【0009】本発明は、前記条件(1)を満足するよう
にして第2群での収差の発生を抑えて収差を良好に保つ
ようにして、収差を良好に保ったままこの第2群の屈折
力を強くすることを可能にし、これによって光学系の全
長を短縮し得るようにした。
According to the present invention, the condition (1) is satisfied to suppress the occurrence of aberrations in the second lens unit so as to maintain the aberrations favorably. It has been made possible to increase the refractive power, thereby reducing the overall length of the optical system.

【0010】条件(1)の下限の0.1を超えると第2
群の屈折力が弱くなりこの第2群の移動量が大になり光
学系の全長が長くなる。又条件(1)の上限の2を超え
ると第2群で発生する収差が特にその発生量が屈折力に
寄与するペッツバール和が大になり、像面が物体側より
遠ざかる方向に倒れる。
If the lower limit of 0.1 of condition (1) is exceeded, the second condition
The refracting power of the group becomes weak, the amount of movement of the second group becomes large, and the total length of the optical system becomes long. When the value exceeds the upper limit of 2 of the condition (1), the Petzval sum of the aberrations generated in the second lens group, in particular, the generation amount of which contributes to the refracting power becomes large, and the image plane falls in a direction away from the object side.

【0011】この条件(1)の代りに下記条件(1−
1)を満足することが一層好ましい。 (1−1) 0.15<|1/{f2 (DW −DT )}|<1
Instead of the condition (1), the following condition (1-
It is even more preferable that the condition (1) is satisfied. (1-1) 0.15 <| 1 / {f 2 (D W −D T )} | <1

【0012】又、本発明のように正の第1群と負の第2
群と正の第3群とにて構成される光学系において、光学
系の全長を短縮するためには、第2群に加えて第1群の
屈折力を強くすることが有効である。しかし軸上および
軸外の入射光線高が広角端と望遠端とで著しく異なる第
1群の屈折力を極端に強くすると、軸外光線高が高くな
る広角端で特にコマ収差の発生量が大になる。また軸上
光線高が高くなる望遠端では、特に球面収差の発生量が
大になり、これら収差を補正することが困難である。
Also, as in the present invention, the positive first lens unit and the negative second lens unit
In an optical system composed of a group and a positive third group, in order to shorten the overall length of the optical system, it is effective to increase the refractive power of the first group in addition to the second group. However, when the refracting power of the first lens group whose on-axis and off-axis incident light heights are significantly different between the wide-angle end and the telephoto end is extremely increased, the amount of coma aberration is particularly large at the wide-angle end where the off-axis light height is high. become. In addition, at the telephoto end where the on-axis ray height is high, the amount of generated spherical aberration is particularly large, and it is difficult to correct these aberrations.

【0013】本発明は、広角端と望遠端での収差の発生
を抑えつつ第1群の屈折力を強くして光学系の全長を短
縮するために条件(2)を満足するようにした。
The present invention satisfies the condition (2) in order to increase the refracting power of the first lens unit and reduce the overall length of the optical system while suppressing the occurrence of aberrations at the wide-angle end and the telephoto end.

【0014】条件(2)の下限の1を超えると、第1群
の屈折力が弱くなり、光学系の全長を短縮し得ない。ま
た、条件(2)の上限の2を超えると第1群で発生する
収差が大になり補正が困難になる。
If the lower limit of 1 to condition (2) is exceeded, the refractive power of the first lens unit will be weak, and the total length of the optical system cannot be reduced. When the value exceeds the upper limit of 2 of the condition (2), the aberration generated in the first lens unit becomes large, and it becomes difficult to correct the aberration.

【0015】また、本発明の対物光学系において、条件
(2)の代りに下記条件(2−1)を満足することが望
ましい。 (2−1) 1.1<|(fW ・fT1/2 /f1 |<1.8
In the objective optical system of the present invention, it is desirable that the following condition (2-1) is satisfied instead of the condition (2). (2-1) 1.1 <| (f W · f T ) 1/2 / f 1 | <1.8

【0016】また本発明の対物光学系は、複数の群と明
るさ絞りとよりなり、少なくとも一つの群が光軸上を移
動することにより変倍作用を有する光学系で、複数の群
のうちのいずれかの群(特定の群ではなく)が下記条件
(3)を満足するようにして外径が小になるようにすれ
ば、周辺光量を著しく悪化させずに細径化を達成し得
る。 (3) 0<Hu /Hs <0.8 ただし、Hu は明るさ絞り位置における軸外上側光線の
実際の光線高、Hsは明るさ絞りの半径である。
The objective optical system according to the present invention comprises a plurality of groups and an aperture stop, and at least one of the plurality of groups moves on the optical axis to have a zooming function. If any one of the groups (not a specific group) satisfies the following condition (3) and has a small outer diameter, the diameter can be reduced without significantly deteriorating the peripheral light amount. . (3) 0 <H u / H s <0.8 where Hu is the actual ray height of the off-axis upper ray at the aperture stop position, and H s is the radius of the aperture stop.

【0017】特に光学系を、物体側より順に、正の屈折
力の第1群と負の屈折力の第2群と正の屈折力の第3群
にて構成すれば、特にワイド端において、変倍作用を持
つ負の屈折力の第2群からの発散光束が入射する正の屈
折力の第3群において、軸外光線高が高くなる。そのた
めこの第3群のレンズ外径が大になり、レンズ系の細径
化が妨げになる。レンズ系の細径化を達成するためには
第3群の外径を小にすることが望ましい。しかし、単に
第3群の外径を小にすると、周辺光束が遮蔽されて周辺
光量が少なくなり、画像の周辺部が中心部に比べて著し
く暗くなる。
In particular, if the optical system is composed of, in order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power, particularly at the wide end, In the third group having a positive refractive power, into which the divergent light beam from the second group having a negative refractive power having a zooming effect is incident, the height of the off-axis ray is increased. For this reason, the outside diameter of the lens of the third group becomes large, which hinders a reduction in the diameter of the lens system. In order to reduce the diameter of the lens system, it is desirable to reduce the outer diameter of the third lens unit. However, if the outer diameter of the third lens unit is simply reduced, the peripheral light beam is blocked, the amount of peripheral light is reduced, and the peripheral portion of the image becomes significantly darker than the central portion.

【0018】ところが、内視鏡対物光学系の場合、画角
が広く、負の歪曲収差の発生量が約30%以上と大であ
るため、周辺部の結像倍率が中心部より小になるという
特徴があり、画角が広い場合には、歪曲収差が40%以
上になることもある。そのため、内視鏡光学系の場合、
外周部に集まる光量は、中心部と比較すると大になる特
徴を有している。
However, in the case of the endoscope objective optical system, since the angle of view is wide and the amount of generation of negative distortion is as large as about 30% or more, the imaging magnification at the peripheral portion is smaller than that at the central portion. When the angle of view is wide, the distortion may be 40% or more. Therefore, in the case of the endoscope optical system,
The amount of light collected on the outer peripheral portion is larger than that on the central portion.

【0019】このような特徴を利用すれば、画像の周辺
部が極端に暗くならない程度まで第3群の外径を小さく
することが可能になる。
By utilizing such a feature, it is possible to reduce the outer diameter of the third lens unit to such an extent that the peripheral portion of the image does not become extremely dark.

【0020】上記の点を考慮して、画像の周辺部が極端
に暗くならない程度まで第3群の外径を小さくするため
に、本発明の光学系は、上記条件(3)を満足すること
が望ましい。
In consideration of the above points, the optical system of the present invention must satisfy the above condition (3) in order to reduce the outer diameter of the third lens unit to such an extent that the periphery of the image is not extremely darkened. Is desirable.

【0021】前記の通りの構成の本発明の対物光学系に
おいて、前記のレンズ群(正負正の3群構成の場合第3
群)を条件(3)を満足するようにしてその外径を小さ
くすれば、周辺光量を減少させることなしに光学系の細
径化を達成し得る。
In the objective optical system according to the present invention having the above-described configuration, the above-mentioned lens unit (in the case of a positive, negative, positive three-unit configuration,
If the outer diameter is reduced by satisfying the condition (3), the diameter of the optical system can be reduced without reducing the amount of peripheral light.

【0022】もし条件(3)の下限値の0を超えるとワ
イド端において周辺光量が少なくなり、画像の周辺部が
中心部に比べて暗くなる。また、もし上限値の0.8を
超えると前記レンズ群の外径を十分小さくすることがで
きない。
If the lower limit of the condition (3) exceeds 0, the amount of peripheral light at the wide end becomes small, and the peripheral portion of the image becomes darker than the central portion. If the value exceeds the upper limit of 0.8, the outer diameter of the lens group cannot be sufficiently reduced.

【0023】上記条件(3)を満足するようにして光学
系の細径化を行なう効果は、広角側の画角が80°以上
の広い光学系において大である。また光学系の広角側の
画角が100°以上の場合は、条件(3)を満足するこ
とによる細径化の効果は更に大である。
The effect of reducing the diameter of the optical system so as to satisfy the above condition (3) is great in a wide optical system in which the angle of view on the wide-angle side is 80 ° or more. When the angle of view on the wide-angle side of the optical system is 100 ° or more, the effect of reducing the diameter by satisfying the condition (3) is even greater.

【0024】また、本発明の光学系において、前記条件
(3)の代りに下記条件(3−1)を満足することが望
ましい。 (3−1) 0.1<Hu /Hs <0.5
In the optical system of the present invention, it is preferable that the following condition (3-1) is satisfied instead of the condition (3). (3-1) 0.1 <H u / H s <0.5

【0025】以上本発明の光学系を内視鏡用として使用
する場合について主として述べた。しかしデジタルカメ
ラの場合、画角が内視鏡に比べてせまく、歪曲収差の発
生量が小さく、実用上問題にならない程度である。又歪
曲収差が小さいと周辺光量の不足が懸念されるが、撮影
対象が内視鏡のように照明装置を用いての照明ではない
ため、周辺減光の状態が内視鏡とは異なる。そのため
に、デジタルカメラの光学系において前記条件(3)を
満足するようにレンズ外径を小にしても周辺光量の低下
は実用上問題にならない。
The case where the optical system of the present invention is used for an endoscope has been mainly described above. However, in the case of a digital camera, the angle of view is narrower than that of an endoscope, and the amount of generation of distortion is small, so that there is no practical problem. Also, if the distortion is small, there is a concern that the peripheral light quantity is insufficient. However, since the imaging target is not illumination using an illumination device like an endoscope, the state of peripheral dimming is different from that of the endoscope. Therefore, even if the outer diameter of the lens is reduced so as to satisfy the condition (3) in the optical system of the digital camera, the decrease in the amount of peripheral light does not pose a practical problem.

【0026】また、複数のレンズ群にて構成され少なく
とも一つのレンズ群が光軸上を移動することによって変
倍作用を有する対物光学系を用いた拡大観察可能な内視
鏡においては、体内等への挿入性を向上させるために、
対物光学系が配置された先端部の外径を極力小にするこ
とが望ましい。
Also, in an endoscope capable of magnifying observation using an objective optical system having a zooming effect by moving at least one lens group on the optical axis, which is composed of a plurality of lens groups, the inside of the body or the like is required. In order to improve insertability into
It is desirable to minimize the outer diameter of the distal end where the objective optical system is disposed.

【0027】図37は内視鏡の先端部の断面を示すもの
で、1は対物光学系、2、3、4、5はいずれも照明光
学系であり、φ(n)、φ(p)は先端部の直径であ
る。この先端部の細径化のためには前述のように対物光
学系1の外径を小さくすることが有効であるが、その他
照明光学系の外径を小にする手段がある。つまり図37
において(A)は照明光学系の外径が大きい例で(B)
は照明光学系の外径が小さい例を示す。この図に示すよ
うに、照明光学系2、3を用いた(A)の内視鏡先端部
を(B)のように径の小さい照明光学系4、5を用いれ
ばその直径φ(p)を小にすることが可能である。
FIG. 37 shows a cross section of the distal end portion of the endoscope, where 1 is an objective optical system, 2, 3, 4, and 5 are illumination optical systems, and φ (n) and φ (p). Is the diameter of the tip. It is effective to reduce the outer diameter of the objective optical system 1 as described above in order to reduce the diameter of the distal end portion. However, there are other means for reducing the outer diameter of the illumination optical system. That is, FIG.
(A) is an example where the outer diameter of the illumination optical system is large (B)
Shows an example in which the outer diameter of the illumination optical system is small. As shown in this drawing, the endoscope end portion of (A) using the illumination optical systems 2 and 3 has a diameter φ (p) by using the illumination optical systems 4 and 5 having a small diameter as in (B). Can be reduced.

【0028】図38は照明光学系の例を示す断面図であ
る。図において(A)は負レンズを用いた例で、6はラ
イトガイド、7は負レンズよりなる照明光学系のレンズ
である。又図38の(B)は、正レンズ8を用いた照明
光学系を示す図である。
FIG. 38 is a sectional view showing an example of the illumination optical system. In the figure, (A) is an example using a negative lens, 6 is a light guide, and 7 is a lens of an illumination optical system composed of a negative lens. FIG. 38B shows an illumination optical system using the positive lens 8.

【0029】これら図38の(A)、(B)において、
(A)の負レンズ7を用いた照明光学系は、ライトガイ
ド6を出た光線L1は負レンズ7のライトガイド側の面
S2で発散させられそのため負レンズ7の物体側の面S
1の有効径を十分に大きくしなければならない。そのた
めにレンズの径が大になり内視鏡先端部の径φ (n)は
大きくなる。
Referring to FIGS. 38A and 38B,
The illumination optical system using the negative lens 7 shown in FIG.
The light beam L1 that has exited the gate 6 is the light guide side surface of the negative lens
S2 is diverged, so the object-side surface S of the negative lens 7
1 must have a sufficiently large effective diameter. That
The diameter of the lens becomes large and the diameter φ of the endoscope end (N)
growing.

【0030】これに対して、図38の(B)のように正
レンズ8を用いた照明光学系は、ライトガイド6からの
出射光L2および光線L3を収束させて物体に照射する
ので、同じ外径のライトガイドを用いた場合、レンズの
外径φL(p)を負レンズを用いた場合のレンズ外径φL
(n)よりも小にできる。そのため少なくとも一つの照
明光学系は、少なくとも1枚の正レンズを含む構成にす
ることが望ましい。また少なくとも一つの照明光学系
は、正の屈折力の光学系にすることが望ましい。特に光
学系が可動部を有する場合、可動機構が必要になり内視
鏡先端部が大になる。そのため照明光学系を上記のよう
に構成すれば内視鏡先端部の外径を小にすることができ
る。
On the other hand, the illumination optical system using the positive lens 8 as shown in FIG. 38B converges the light L2 and the light L3 emitted from the light guide 6 and irradiates the object with the light. When a light guide having an outer diameter is used, the outer diameter φ L (p) of the lens is changed to an outer diameter φ L when a negative lens is used.
It can be smaller than (n). Therefore, it is desirable that at least one illumination optical system be configured to include at least one positive lens. It is desirable that at least one illumination optical system is an optical system having a positive refractive power. In particular, when the optical system has a movable part, a movable mechanism is required, and the end of the endoscope becomes large. Therefore, if the illumination optical system is configured as described above, the outer diameter of the distal end portion of the endoscope can be reduced.

【0031】また少なくとも二つの照明光学系が少なく
とも1枚の正レンズを含むことが更に望ましい。また少
なくとも二つの照明光学系が正の屈折力を有することが
望ましい。
It is further desirable that at least two illumination optical systems include at least one positive lens. It is desirable that at least two illumination optical systems have a positive refractive power.

【0032】本発明の対物光学系において、光学系の全
長を短縮するためには、媒質に屈折率分布を有する屈折
率分布レンズを用いることが望ましい。屈折率分布レン
ズは、均質レンズと比較して収差補正の自由度が大であ
り本発明の光学系に適用すれば光学系のレンズ枚数を大
幅に削減し小型化が可能である。
In the objective optical system of the present invention, in order to shorten the entire length of the optical system, it is desirable to use a refractive index distribution lens having a refractive index distribution in the medium. The refractive index distribution lens has a greater degree of freedom in correcting aberrations than a homogeneous lens, and when applied to the optical system of the present invention, the number of lenses in the optical system can be greatly reduced and the size can be reduced.

【0033】また、拡大観察可能な内視鏡光学系は、ワ
イド側では物体距離を遠くして広い範囲を観察し、テレ
側では光学系の変倍作用に加えて物体距離を短くして光
学系の拡大率を大にしての観察が行なわれる。しかしテ
レ側での物体距離が適切でないと十分な拡大倍率にて観
察することができない。
The endoscope optical system capable of magnifying and observing an object has a long object distance on the wide side to observe a wide range. On the tele side, the object distance is shortened in addition to the magnification change of the optical system. Observations are made at high magnification of the system. However, if the object distance on the telephoto side is not appropriate, observation at a sufficient magnification cannot be performed.

【0034】本発明の対物光学系において、高い倍率で
の観察を行なう場合、下記条件(4)を満足することが
望ましい。 (4) 0.1<d0T/fT <5 ただし、d0Tはテレ側での物体距離、fT はテレ側での
全系の焦点距離である。
In the objective optical system of the present invention, when performing observation at a high magnification, it is desirable to satisfy the following condition (4). (4) 0.1 <d 0T / f T <5 However, d 0T the object distance on the telephoto side, the f T is a focal length of the entire system at the telephoto side.

【0035】条件(4)の上限値の5を超えると十分な
倍率を確保することが困難である。また下限値の0.1
を超えると物体距離が近すぎて観察範囲に照明が届きに
くくなる。
When the value exceeds the upper limit of 5 of the condition (4), it is difficult to secure a sufficient magnification. The lower limit of 0.1
When the distance exceeds, the object distance is too short, and it is difficult for illumination to reach the observation range.

【0036】上記条件(4)の代りに条件(4−1)を
満足すればより望ましい。 (4−1) 0.2<d0T/fT <3
It is more desirable that the condition (4-1) be satisfied instead of the condition (4). (4-1) 0.2 <d 0T / f T <3

【0037】また、条件(4)又は条件(4−1)の代
りに下記条件(4−2)を満足すれば一層望ましい。 (4−2) 0.5<d0T/fT <1.5
It is more desirable that the following condition (4-2) is satisfied instead of the condition (4) or the condition (4-1). (4-2) 0.5 <d 0T / f T <1.5

【0038】本発明の第3の構成の対物光学系は、物体
側より順に、正の屈折力の第1群と、負の屈折力の第2
群と、正の屈折力の第3群とよりなり、第2群が光軸上
を移動することによって変倍作用を行なうもので、第1
群が、1枚の負レンズと少なくとも1枚の正レンズとに
て構成され、第3群が1枚の負レンズと少なくとも1枚
の正レンズとにて構成されている。
The objective optical system according to the third configuration of the present invention comprises, in order from the object side, a first group having a positive refractive power and a second group having a negative refractive power.
And a third lens unit having a positive refractive power. The second lens unit performs zooming by moving on the optical axis.
The group includes one negative lens and at least one positive lens, and the third group includes one negative lens and at least one positive lens.

【0039】光学系をより少ないレンズにて構成し、し
かも収差を良好に補正するためには、軸外光線高が高く
軸外収差の発生量が大きい第1群を1枚の負レンズと少
なくとも1枚の正レンズにて構成することが望ましい。
In order to configure the optical system with a smaller number of lenses, and to favorably correct aberrations, the first unit having a high off-axis ray height and a large amount of off-axis aberrations is required to have at least one negative lens and at least one negative lens. It is desirable to configure with one positive lens.

【0040】また、主として結像作用を有し、球面収差
の発生が比較的大である第3群を少ないレンズ枚数にて
構成するためには、1枚の負レンズと少なくとも1枚の
正レンズで構成することが望ましい。
In order to constitute the third lens group having mainly an image forming function and generating relatively large spherical aberration with a small number of lenses, one negative lens and at least one positive lens are required. It is desirable to configure with.

【0041】また、本発明の第4の構成の光学系は、物
体側より順に、正の屈折力の第1群と、負の屈折力の第
2群と、正の屈折力の第3群とにて構成され、第2群が
光軸上を移動することによって変倍作用を行なうもの
で、一つの接合レンズを有することを特徴とする。
The optical system according to the fourth configuration of the present invention comprises, in order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power. The second unit performs a zooming operation by moving on the optical axis, and has one cemented lens.

【0042】本発明の対物光学系は、画角が広いために
倍率の色収差の発生量が大になる傾向がある。この色収
差をより安価なレンズ系にて補正するためには、光学系
中に正レンズと負レンズとからなる一組の接合レンズを
用いることが望ましい。コストよりも色収差の補正を優
先させるためには、二組の接合レンズを用いることが望
ましい。
Since the objective optical system of the present invention has a wide angle of view, the amount of chromatic aberration of magnification tends to be large. In order to correct this chromatic aberration with a less expensive lens system, it is desirable to use a set of cemented lenses composed of a positive lens and a negative lens in the optical system. In order to give priority to correction of chromatic aberration over cost, it is desirable to use two sets of cemented lenses.

【0043】本発明の第5の構成の対物光学系は、物体
側より順に、正の屈折力の第1群と、負の屈折力の第2
群と、正の屈折力の第3群とよりなり、第2群が光軸上
を移動することによって変倍作用を行なうもので、第1
群が物体側より順に、負レンズと平行平板と少なくとも
一つの光学素子と明るさ絞りとにて構成され、平行平板
と明るさ絞りとの間に配置されている光学素子の少なく
とも一つが下記条件(5)を満足するようにした光学系
である。 (5) DDi<0.2mm ただしDDiは平行平板と明るさ絞りとの間に配置され
ている光学素子の光学素子間の間隔(各光学素子とその
前後の光学素子との間の間隔)である。
The objective optical system according to the fifth aspect of the present invention comprises, in order from the object side, a first group having a positive refractive power and a second group having a negative refractive power.
And a third lens unit having a positive refractive power. The second lens unit performs zooming by moving on the optical axis.
The group includes, in order from the object side, a negative lens, a parallel plate, at least one optical element, and a brightness stop, and at least one of the optical elements disposed between the parallel plate and the brightness stop has the following conditions. This is an optical system that satisfies (5). (5) DDi <0.2 mm where DDi is the distance between the optical elements of the optical elements disposed between the parallel plate and the aperture stop (the distance between each optical element and the optical elements before and after it). is there.

【0044】図39に示すように、第1群を物体側より
順に、負レンズLnと平行平板Pと光学素子LPと絞り
Sとにて構成した場合、平行平板Pと絞りSとの間に配
置された光学素子LPのその前後の間隔DD1又はDD
2の少なくとも一方が前記条件(5)を満足すれば、光
学系の全長を短くできるため好ましい。また条件(5)
を満足すれば第1レンズLnと絞りSとの距離を短くで
き、したがって第1レンズLnを通過する軸外光線の光
線高を低くでき、第1レンズの外径を小さくできるの
で、光学系を小型になし得る。
As shown in FIG. 39, when the first lens unit is composed of a negative lens Ln, a parallel plate P, an optical element LP, and a stop S in order from the object side, between the parallel plate P and the stop S, Distance DD1 or DD before and after the arranged optical element LP
It is preferable that at least one of the two satisfies the condition (5) because the total length of the optical system can be shortened. Condition (5)
Is satisfied, the distance between the first lens Ln and the stop S can be reduced, and the height of off-axis rays passing through the first lens Ln can be reduced, and the outer diameter of the first lens can be reduced. Can be made smaller.

【0045】また、光学系の画角を120°以上の広画
角にする場合、特に本発明の光学系のように、物体側よ
り順に、正の屈折力の第1群と、負の屈折力の第2群
と、正の屈折力の第3群とにて構成し、第2群を光軸上
を移動させて変倍を行なうことが望ましい。
When the angle of view of the optical system is set to a wide angle of view of 120 ° or more, the first group having a positive refractive power and the negative refractive power are arranged in order from the object side, as in the optical system of the present invention. It is desirable that the zoom lens is composed of a second group of power and a third group of positive refractive power, and the second group is moved on the optical axis to perform zooming.

【0046】画角が120°以上の広画角になると軸外
収差の補正が困難になる。前記のように対物光学系を物
体側より順に正のレンズ群と負のレンズ群と正のレンズ
群として対称的なパワー配置にすれば、軸外収差を良好
に補正する上で望ましい。
When the angle of view is a wide angle of view of 120 ° or more, it becomes difficult to correct off-axis aberrations. As described above, it is desirable that the objective optical system be arranged symmetrically in order from the object side as a positive lens unit, a negative lens unit, and a positive lens unit, in order to properly correct off-axis aberrations.

【0047】本発明の各構成の光学系において、前記条
件(1)、(2)を満足することが望ましい。
In the optical system of each configuration of the present invention, it is desirable to satisfy the above conditions (1) and (2).

【0048】また本発明の各構成の対物光学系におい
て、条件(3)又は条件(1)、(2)、(3)を満足
することが望ましい。
It is desirable that the objective optical system of each configuration of the present invention satisfies the condition (3) or the conditions (1), (2) and (3).

【0049】また条件(1)の代わりに前記条件(1−
1)、条件(2)の代わりに前記条件(2−1)を満足
すればより望ましい。
Instead of the condition (1), the condition (1-
It is more preferable that the condition (2-1) is satisfied instead of the condition (1) and the condition (2).

【0050】また条件(3)の代わりに前記条件(3−
1)を満足すればより望ましい。
Instead of the condition (3), the condition (3-
It is more desirable to satisfy 1).

【0051】また本発明の各構成の対物光学系におい
て、条件(4)、条件(4−1)又は条件(4−2)の
代わりに、下記条件(4−3)を満足すれば一層コンパ
クトな光学系になし得るためより望ましい。 (4−3) 0.75<d0T/fT<1.5
Further, in the objective optical system of each configuration of the present invention, if the following condition (4-3) is satisfied instead of the condition (4), the condition (4-1) or the condition (4-2), the system is more compact. It is more desirable because the optical system can be made simple. (4-3) 0.75 <d 0T / f T <1.5

【0052】[0052]

【発明の実施の形態】次に本発明の対物光学系の実施の
形態を下記実施例にもとづき説明する。 実施例1 f=1.49〜2.94,F/6.7 〜17.6,2ω=113 °〜35.7° 物体距離=14〜2.5 ,像高=1.205 r1 =∞ d1 =0.4000 n1 =1.88300 ν1 =40.78 r2 =0.9925 d2 =0.6239 r3 =∞ d3 =0.6200 n2 =1.51633 ν2 =64.14 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.4000 n3 =1.51633 ν3 =64.14 r6 =∞ d6 =0.2000 r7 =∞ d7 =0.3000 n4 =1.84666 ν4 =23.78 r8 =2.2520 d8 =0.7000 n5 =1.51742 ν5 =52.43 r9 =-2.2520 d9 =0.0500 r10=4.0594 d10=1.0635 n6 =1.60342 ν6 =38.03 r11=-2.5841 d11=0.0500 r12=∞(絞り) d12=D1 (可変) r13=-3.5618 d13=0.3500 n7 =1.88300 ν7 =40.76 r14=3.5618 d14=D2 (可変) r15=-42.9033 d15=0.7420 n8 =1.72916 ν8 =54.68 r16=-3.9283 d16=0.0500 r17=3.9283 d17=0.7420 n9 =1.72916 ν9 =54.68 r18=42.9033 d18=0.5016 r19=-6.1532 d19=0.3000 n10=1.84666 ν10=23.78 r20=6.1532 d20=0.8660 n11=1.74100 ν11=52.64 r21=-9.1990 d21=3.9444 r22=∞ d22=2.8000 n12=1.51633 ν12=64.14 r23=∞ d23=0.7000 n13=1.51633 ν13=64.14 r24=∞ f 1.49 2.94 D0 14.0000 2.5000 D1 0.35000 2.39649 D2 2.54649 0.50000 |1/{f2 (DW −DT )}|=0.25 |(fW ・fT1/2 /f1 |=1.37,Hu /Hs =0.19,d0T/fT =0.85
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the objective optical system according to the present invention will now be described based on the following examples. Example 1 f = 1.49 to 2.94, F / 6.7 to 17.6, 2ω = 113 ° to 35.7 ° Object distance = 14 to 2.5, Image height = 1.205 r 1 = ∞ d 1 = 0.4000 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.9925 d 2 = 0.6239 r 3 = ∞ d 3 = 0.6200 n 2 = 1.51633 ν 2 = 64.14 r 4 = ∞ d 4 = 0.0300 r 5 = ∞ d 5 = 0.4000 n 3 = 1.51633 ν 3 = 64.14 r 6 = ∞ d 6 = 0.2000 r 7 = ∞ d 7 = 0.3000 n 4 = 1.84666 ν 4 = 23.78 r 8 = 2.2520 d 8 = 0.7000 n 5 = 1.51742 ν 5 = 52.43 r 9 = -2.2520 d 9 = 0.0500 r 10 = 4.0594 d 10 = 1.0635 n 6 = 1.60342 ν 6 = 38.03 r 11 = -2.5841 d 11 = 0.0500 r 12 = ∞ ( stop) d 12 = D 1 (variable) r 13 = -3.5618 d 13 = 0.3500 n 7 = 1.88300 ν 7 = 40.76 r 14 = 3.5618 d 14 = D 2 ( variable) r 15 = -42.9033 d 15 = 0.7420 n 8 = 1.72916 ν 8 = 54.68 r 16 = -3.9283 d 16 = 0.0500 r 17 = 3.9283 d 17 = 0.7420 n 9 = 1.72916 ν 9 = 54.68 r 18 = 42.9033 d 18 = 0.5016 r 19 = -6.1532 d 19 = 0.3000 n 10 = 1.84666 ν 10 = 23.78 r 20 = 6.1532 d 20 = 0.8660 n 11 = 1.74100 ν 11 = 52.64 r 21 = -9.1990 d 21 = 3.9444 r 22 = ∞ d 22 = 2.8000 n 12 = 1.51633 ν 12 = 64.14 r 23 = d d 23 = 0.7000 n 13 = 1.51633 ν 13 = 64.14 r 24 = f f 1.49 2.94 D 0 14.0000 2.5000 D 1 0.35000 2.39649 D 2 2.54649 0.50000 {/ { f 2 (D W −D T )} | = 0.25 | (f W · f T ) 1/2 / f 1 | = 1.37, Hu / H s = 0.19, d 0T / f T = 0.85

【0053】 実施例2 f=1.59〜2.65,F/7.1 〜16.6,2ω=113.6 °〜37.7° 物体距離=14〜2.5 ,像高=1.2 r1 =∞ d1 =0.4000 n1 =1.88300 ν1 =40.78 r2 =0.8683 d2 =0.5046 r3 =∞ d3 =0.6200 n2 =1.51633 ν2 =64.14 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.4000 n3 =1.51633 ν3 =64.14 r6 =∞ d6 =0.2545 r7 =1.2262 d7 =0.5702 n4 =1.90135 ν4 =31.55 r8 =0.6244 d8 =0.8714 n5 =1.58913 ν5 =61.14 r9 =-1.4901 d9 =0.0500 r10=∞(絞り) d10=D1 (可変) r11=-2.1064 d11=0.3500 n6 =1.88300 ν6 =40.76 r12=5.4229 d12=D2 (可変) r13=8.2464 d13=0.7638 n7 =1.77250 ν7 =49.60 r14=-4.2025 d14=0.1000 r15=3.5102 d15=0.9246 n8 =1.65160 ν8 =58.55 r16=∞ d16=0.4526 r17=-4.4938 d17=0.3000 n9 =1.84666 ν9 =23.78 r18=4.9157 d18=0.7487 n10=1.54072 ν10=47.23 r19=-5.4931 d19=1.9510 r20=∞ d20=2.0000 n11=1.51633 ν11=64.14 r21=∞ d21=0.7000 n12=1.51633 ν12=64.14 r22=∞ f 1.59 2.65 D0 14.0000 2.5000 D1 0.35000 1.92319 D2 2.07319 0.50000 |1/{f2 (DW −DT )}|=0.38 |(fW ・fT1/2 /f1 |=1.32,Hu /Hs =0.12,d0T/fT =0.95Example 2 f = 1.59 to 2.65, F / 7.1 to 16.6, 2ω = 113.6 ° to 37.7 ° Object distance = 14 to 2.5, Image height = 1.2 r 1 = ∞ d 1 = 0.4000 n 1 = 1.88300 v 1 = 40.78 r 2 = 0.8683 d 2 = 0.5046 r 3 = ∞ d 3 = 0.6200 n 2 = 1.51633 ν 2 = 64.14 r 4 = ∞ d 4 = 0.0300 r 5 = = d 5 = 0.4000 n 3 = 1.51633 ν 3 = 64.14 r 6 = ∞ d 6 = 0.2545 r 7 = 1.2262 d 7 = 0.5702 n 4 = 1.90135 ν 4 = 31.55 r 8 = 0.6244 d 8 = 0.8714 n 5 = 1.58913 ν 5 = 61.14 r 9 = -1.4901 d 9 = 0.0500 r 10 = ∞ (aperture) d 10 = D 1 (variable) r 11 = −2.106 d 11 = 0.3500 n 6 = 1.88300 v 6 = 40.76 r 12 = 5.4229 d 12 = D 2 (variable) r 13 = 8.2464 d 13 = 0.7638 n 7 = 1.77250 ν 7 = 49.60 r 14 = -4.2025 d 14 = 0.1000 r 15 = 3.5102 d 15 = 0.9246 n 8 = 1.65160 ν 8 = 58.55 r 16 = ∞ d 16 = 0.4526 r 17 = -4.4938 d 17 = 0.3000 n 9 = 1.84666 ν 9 = 23.78 r 18 = 4.9157 d 18 = 0.7487 n 10 = 1.54072 ν 10 = 47.23 r 19 = -5.4931 d 19 = 1.9510 r 20 = ∞ d 20 = 2.0000 n 11 = 1.51633 ν 11 = 64.14 r 21 = 21 d 21 = 0.7000 n 12 = 1.51633 ν 12 = 64.14 r 22 = ∞ f 1.59 2.65 D 0 14.0000 2.5000 D 1 0.35000 1.92319 D 2 2.07319 0.50000 | 1 / {f 2 (D W -D T )} | = 0.38 | (f W · f T ) 1/2 / f 1 | = 1.32, H u / H s = 0.12, d 0T / f T = 0.95

【0054】 実施例3 f=1.03〜2.13,F/6.3 〜19.2,2ω=113.1 °〜29.7° 物体距離=9 〜2 ,像高=0.8 r1 =∞ d1 =0.3000 n1 =1.88300 ν1 =40.78 r2 =0.7695 d2 =0.5457 r3 =∞ d3 =0.6200 n2 =1.51400 ν2 =75.00 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.4000 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.1000 r7 =4.8121 d7 =1.3697 n4 =1.51633 ν4 =64.14 r8 =-2.0089 d8 =0.0500 r9 =2.4698 d9 =0.5000 n5 =1.51633 ν5 =64.14 r10=-5.1287 d10=0.0300 r11=∞(絞り) d11=D1 (可変) r12=-1.6604 d12=0.3000 n6 =1.88300 ν6 =40.76 r13=3.1025 d13=D2 (可変) r14=11.3617 d14=0.6000 n7 =1.88300 ν7 =40.76 r15=-3.8018 d15=0.1000 r16=1.9815 d16=0.7000 n8 =1.51633 ν8 =64.14 r17=-2.8011 d17=0.1928 r18=-2.2197 d18=0.2997 n9 =1.84666 ν9 =23.78 r19=36.2030 d19=2.6936 r20=∞ d20=2.0000 n10=1.51633 ν10=64.14 r21=∞ d21=0.5000 n11=1.51633 ν11=64.14 r22=∞ f 1.03 2.13 D0 9.0000 2.0000 D1 0.20000 1.61610 D2 1.71610 0.30000 |1/{f2 (DW −DT )}|=0.59 |(fW ・fT1/2 /f1 |=1.48,Hu /Hs =0.28,d0T/fT =0.94Example 3 f = 1.03 to 2.13, F / 6.3 to 19.2, 2ω = 113.1 ° to 29.7 ° Object distance = 9 to 2, Image height = 0.8 r 1 = ∞ d 1 = 0.3000 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7695 d 2 = 0.5457 r 3 = ∞d 3 = 0.6200 n 2 = 1.51400 ν 2 = 75.00 r 4 = ∞ d 4 = 0.0300 r 5 = ∞ d 5 = 0.4000 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞d 6 = 0.1000 r 7 = 4.8121 d 7 = 1.3697 n 4 = 1.51633 ν 4 = 64.14 r 8 = -2.0089 d 8 = 0.0500 r 9 = 2.4698 d 9 = 0.5000 n 5 = 1.51633 ν 5 = 64.14 r 10 = -5.1287 d 10 = 0.0300 r 11 = ∞ ( stop) d 11 = D 1 (variable) r 12 = -1.6604 d 12 = 0.3000 n 6 = 1.88300 ν 6 = 40.76 r 13 = 3.1025 d 13 = D 2 ( Variable) r 14 = 11.3617 d 14 = 0.6000 n 7 = 1.88300 ν 7 = 40.76 r 15 = −3.8018 d 15 = 0.1000 r 16 = 1.9815 d 16 = 0.7000 n 8 = 1.51633 ν 8 = 64.14 r 17 = −2.8011 d 17 = 0.1928 r 18 = -2.2197 d 18 = 0.29 97 n 9 = 1.84666 v 9 = 23.78 r 19 = 36.2030 d 19 = 2.6936 r 20 = ∞ d 20 = 2.0000 n 10 = 1.51633 v 10 = 64.14 r 21 = ∞ d 21 = 0.5000 n 11 = 1.51633 v 11 = 64.14 r 22 = ∞ f 1.03 2.13 D 0 9.0000 2.0000 D 1 0.20000 1.61610 D 2 1.71610 0.30000 | 1 / {f 2 (D W -D T)} | = 0.59 | (f W · f T) 1/2 / f 1 | = 1.48, H u / H s = 0.28, d 0T / f T = 0.94

【0055】 実施例4 f=1.87〜2.46,F/8.4 〜17.2,2ω=114 °〜12.1° 物体距離=14〜2.4 ,像高=1.205 r1 =∞ d1 =0.4000 n1 =1.88300 ν1 =40.78 r2 =0.8962 d2 =0.5558 r3 =∞ d3 =0.6200 n2 =1.51633 ν2 =64.14 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.4000 n3 =1.51633 ν3 =64.14 r6 =∞ d6 =0.0500 r7 =1.7480 d7 =0.6384 n4 =1.85026 ν4 =32.29 r8 =1.1023 d8 =1.3177 n5 =1.51633 ν5 =64.14 r9 =-2.2516 d9 =0.0500 r10=5.0089 d10=0.2999 n6 =1.81600 ν6 =46.62 r11=1.7427 d11=0.9000 n7 =1.51633 ν7 =64.14 r12=-4.2864 d12=0.0500 r13=6.1780 d13=0.5000 n8 =1.51633 ν8 =64.14 r14=20.6106 d14=D1 (可変) r15=∞(絞り) d15=0.1000 r16=-4.7731 d16=0.3000 n9 =1.88300 ν9 =40.76 r17=2.2863 d17=D2 (可変) r18=8.4983 d18=0.9000 n10=1.54072 ν10=47.23 r19=-4.1683 d19=0.0500 r20=5.0624 d20=0.8000 n11=1.51633 ν11=64.14 r21=26.5610 d21=0.0500 r22=2.8523 d22=1.7156 n12=1.51633 ν12=64.14 r23=-4.2658 d23=0.4580 n13=1.84666 ν13=23.78 r24=3.6816 d24=3.1035 r25=∞ d25=2.0000 n14=1.51633 ν14=64.14 r26=∞ d26=0.7000 n15=1.51633 ν15=64.14 r27=∞ f 1.87 2.46 D0 14.0000 2.4000 D1 0.30000 3.08339 D2 3.08339 0.30000 |1/{f2 (DW −DT )}|=0.21 |(fW ・fT1/2 /f1 |=1.14,Hu /Hs =0.11,d0T/fT =0.97Example 4 f = 1.87 to 2.46, F / 8.4 to 17.2, 2ω = 114 ° to 12.1 ° Object distance = 14 to 2.4, Image height = 1.205 r 1 = ∞ d 1 = 0.4000 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.8962 d 2 = 0.5558 r 3 = ∞ d 3 = 0.6200 n 2 = 1.51633 ν 2 = 64.14 r 4 = ∞ d 4 = 0.0300 r 5 = = d 5 = 0.4000 n 3 = 1.51633 ν 3 = 64.14 r 6 = ∞ d 6 = 0.0500 r 7 = 1.7480 d 7 = 0.6384 n 4 = 1.85026 ν 4 = 32.29 r 8 = 1.1023 d 8 = 1.3177 n 5 = 1.51633 ν 5 = 64.14 r 9 = −2.2516 d 9 = 0.0500 r 10 = 5.0089 d 10 = 0.2999 n 6 = 1.81600 ν 6 = 46.62 r 11 = 1.7427 d 11 = 0.9000 n 7 = 1.51633 ν 7 = 64.14 r 12 = -4.2864 d 12 = 0.0500 r 13 = 6.1780 d 13 = 0.5000 n 8 = 1.51633 ν 8 = 64.14 r 14 = 20.6106 d 14 = D 1 ( variable) r 15 = ∞ (stop) d 15 = 0.1000 r 16 = -4.7731 d 16 = 0.3000 n 9 = 1.88300 ν 9 = 40.76 r 17 = 2.2863 d 17 = D 2 (variable) 18 = 8.4983 d 18 = 0.9000 n 10 = 1.54072 ν 10 = 47.23 r 19 = -4.1683 d 19 = 0.0500 r 20 = 5.0624 d 20 = 0.8000 n 11 = 1.51633 ν 11 = 64.14 r 21 = 26.5610 d 21 = 0.0500 r 22 = 2.8523 d 22 = 1.7156 n 12 = 1.51633 ν 12 = 64.14 r 23 = -4.2658 d 23 = 0.4580 n 13 = 1.84666 ν 13 = 23.78 r 24 = 3.6816 d 24 = 3.1035 r 25 = ∞ d 25 = 2.0000 n 14 = 1.51633 ν 14 = 64.14 r 26 = ∞ d 26 = 0.7000 n 15 = 1.51633 ν 15 = 64.14 r 27 = ∞ f 1.87 2.46 D 0 14.0000 2.4000 D 1 0.30000 3.08339 D 2 3.08339 0.30000 │1 / {f 2 (D WD T)} | = 0.21 | (f W · f T) 1/2 / f 1 | = 1.14, H u / H s = 0.11, d 0T / f T = 0.97

【0056】 実施例5 f=1.07〜1.70,F/7.2 〜11.4,2ω=113.5 °〜32.9° 物体距離=9 〜2 ,像高=0.8 r1 =∞ d1 =0.3000 n1 =1.88300 ν1 =40.78 r2 =0.5012 d2 =0.6125 r3 =∞ d3 =0.9539 n2 =1.61800 ν2 =63.33 r4 =-1.1459 d4 =0.0500 r5 =2.6528 d5 =0.5000 n3 =1.51633 ν3 =64.14 r6 =-2.7819 d6 =D1 (可変) r7 =∞(絞り) d7 =0.1000 r8 =-2.4333 d8 =0.3000 n4 =1.88300 ν4 =40.76 r9 =1.6593 d9 =D2 (可変) r10=1.2526(非球面) d10=0.7000 n5 =1.88300 ν5 =40.76 r11=-2.1707 d11=0.1757 r12=-1.6001 d12=0.2995 n6 =1.84666 ν6 =23.78 r13=3.5760 d13=0.2000 r14=∞ d14=0.6200 n7 =1.51400 ν7 =75.00 r15=∞ d15=0.0300 r16=∞ d16=0.4000 n8 =1.52287 ν8 =59.89 r17=∞ d17=1.1229 r18=∞ d18=1.2000 n9 =1.51633 ν9 =64.14 r19=∞ d19=0.5000 n10=1.51633 ν10=64.14 r20=∞ 非球面係数 A4 =-8.6636 ×10-2,A6 =-3.4303 ×10-2 f 1.07 1.70 D0 9.0000 2.0000 D1 0.20000 1.20746 D2 1.30746 0.30000 |1/{f2 (DW −DT )}|=0.92 |(fW ・fT1/2 /f1 |=1.45,Hu /Hs =0.16,d0T/fT =1.18Example 5 f = 1.07 to 1.70, F / 7.2 to 11.4, 2ω = 113.5 ° to 32.9 ° Object distance = 9 to 2, Image height = 0.8 r 1 = ∞ d 1 = 0.3000 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.5012 d 2 = 0.6125 r 3 = ∞ d 3 = 0.9539 n 2 = 1.61800 ν 2 = 63.33 r 4 = -1.1459 d 4 = 0.0500 r 5 = 2.6528 d 5 = 0.5000 n 3 = 1.51633 ν 3 = 64.14 r 6 = -2.7819 d 6 = D 1 (variable) r 7 = ∞ (aperture) d 7 = 0.1000 r 8 = -2.4333 d 8 = 0.3000 n 4 = 1.88300 v 4 = 40.76 r 9 = 1.6593 d 9 = D 2 (variable) r 10 = 1.2526 (aspherical surface) d 10 = 0.7000 n 5 = 1.88300 ν 5 = 40.76 r 11 = -2.1707 d 11 = 0.1757 r 12 = -1.6001 d 12 = 0.2995 n 6 = 1.84666 ν 6 = 23.78 r 13 = 3.5760 d 13 = 0.2000 r 14 = ∞ d 14 = 0.6200 n 7 = 1.51400 ν 7 = 75.00 r 15 = ∞ d 15 = 0.0300 r 16 = ∞ d 16 = 0.4000 n 8 = 1.52287 ν 8 = 59.89 r 17 = ∞ d 17 = 1.1229 r 18 = ∞ d 18 = 1.2000 n 9 = 1.51633 ν 9 = 64.14 r 19 = ∞ d 19 = 0.5000 n 10 = 1.51633 ν 10 = 64.14 r 20 = ∞ Aspherical coefficient A 4 = −8.6636 × 10 −2 , A 6 = −3.4303 × 10 -2 f 1.07 1.70 D 0 9.0000 2.0000 D 1 0.20000 1.20746 D 2 1.30746 0.30000 | 1 / {f 2 (D W -D T )} | = 0.92 | (f W · f T ) 1/2 / f 1 | = 1.45, H u / H s = 0.16, d 0T / f T = 1.18

【0057】 実施例6 f=1.50〜2.61,F/7.1 〜17.7,2ω=113.1 °〜37.2° 物体距離=13.4〜2.35,像高=1.205 r1 =∞ d1 =0.3500 n1 =1.88300 ν1 =40.78 r2 =1.0553 d2 =0.9677 r3 =∞ d3 =0.6200 n2 =1.51400 ν2 =75.00 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.4000 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.1000 r7 =∞ d7 =2.6391 n4 (屈折率分布レンズ) r8 =-2.6614 d8 =0.1000 r9 =∞(絞り) d9 =D1 (可変) r10=-4.1954 d10=0.3500 n5 =1.88300 ν5 =40.76 r11=4.2915 d11=D2 (可変) r12=4.4231 d12=0.9000 n6 =1.51633 ν6 =64.14 r13=-3.8049 d13=0.0500 r14=3.6296 d14=1.0000 n7 =1.51633 ν7 =64.14 r15=-6.0097 d15=0.2818 r16=-3.3067 d16=1.6846 n8 =1.84666 ν8 =23.78 r17=∞ d17=2.7940 r18=∞ d18=2.1000 n9 =1.51633 ν9 =64.14 r19=∞ d19=0.9800 n10=1.51633 ν10=64.14 r20=∞ f 1.50 2.61 D0 13.4000 2.3500 D1 0.20000 2.48900 D2 2.48900 0.20000 屈折率分布レンズ N012 d線 1.65000 -4.0000×10-2 -1.0542 ×10-3 C線 1.64567 -3.9960×10-2 -1.0531 ×10-3 F線 1.66011 -4.0093×10-2 -1.0566 ×10-3 |1/{f2 (DW −DT )}|=0.19 |(fW ・fT1/2 /f1 |=1.21,Hu /Hs =0.62,d0T/fT =0.90Example 6 f = 1.50 to 2.61, F / 7.1 to 17.7, 2ω = 113.1 ° to 37.2 ° Object distance = 13.4 to 2.35, Image height = 1.205 r 1 = ∞ d 1 = 0.3500 n 1 = 1.88300 ν 1 = 40.78 r 2 = 1.0553 d 2 = 0.9677 r 3 = ∞d 3 = 0.6200 n 2 = 1.51400 ν 2 = 75.00 r 4 = ∞ d 4 = 0.0300 r 5 = ∞ d 5 = 0.4000 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞d 6 = 0.1000 r 7 = ∞ d 7 = 2.6391 n 4 (refractive index distribution lens) r 8 = -2.6614 d 8 = 0.1000 r 9 = ∞ (aperture) d 9 = D 1 (variable) r 10 = -4.1954 d 10 = 0.3500 n 5 = 1.88300 ν 5 = 40.76 r 11 = 4.2915 d 11 = D 2 ( variable) r 12 = 4.4231 d 12 = 0.9000 n 6 = 1.51633 ν 6 = 64.14 r 13 = -3.8049 d 13 = 0.0500 r 14 = 3.6296 d 14 = 1.0000 n 7 = 1.51633 ν 7 = 64.14 r 15 = -6.0097 d 15 = 0.2818 r 16 = -3.3067 d 16 = 1.6846 n 8 = 1.84666 ν 8 = 23.78 r 17 = ∞ d 17 = 2.7940 r 18 = ∞ d 18 = 2.1 000 n 9 = 1.51633 v 9 = 64.14 r 19 = ∞ d 19 = 0.9800 n 10 = 1.51633 v 10 = 64.14 r 20 = ∞ f 1.50 2.61 D 0 13.4000 2.3500 D 1 0.20000 2.48900 D 2 2.48900 0.20000 Refractive index distribution lens N 0 N 1 N 2 d line 1.65000 -4.0000 × 10 -2 -1.0542 × 10 -3 C line 1.64567 -3.9960 × 10 -2 -1.0531 × 10 -3 F line 1.66011 -4.0093 × 10 -2 -1.0566 × 10 -3 | 1 / {f 2 (D W −D T )} | = 0.19 | (f W · f T ) 1/2 / f 1 | = 1.21, H u / H s = 0.62, d 0T / f T = 0.90

【0058】 実施例7 f=1.46〜2.76,F/7.1 〜16.5,2ω=112.9 °〜41.1° 物体距離=13.4〜2.35,像高=1.205 r1 =∞ d1 =0.3500 n1 =1.88300 ν1 =40.78 r2 =0.7822 d2 =0.5642 r3 =∞ d3 =0.6200 n2 =1.51400 ν2 =75.00 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.4000 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0500 r7 =∞ d7 =0.6449 n4 =1.51742 ν4 =52.43 r8 =-1.6249 d8 =0.0500 r9 =5.2248 d9 =0.5000 n5 =1.51633 ν5 =64.14 r10=-2.6718 d10=0.0500 r11=∞(絞り) d11=D1 (可変) r12=-3.2106 d12=0.3000 n6 =1.88300 ν6 =40.76 r13=3.7268 d13=D2 (可変) r14=5.1723 d14=5.2987 n7 (屈折率分布レンズ) r15=∞ d15=2.9044 r16=∞ d16=2.1000 n8 =1.51633 ν8 =64.14 r17=∞ d17=0.9800 n9 =1.51633 ν9 =64.14 r18=∞ f 1.46 2.76 D0 13.4000 2.3500 D1 0.30000 2.03085 D2 2.03085 0.30000 屈折率分布レンズ N012 d線 1.70000 -2.0000×10-2 3.6899×10-4 C線 1.69475 -2.0060×10-2 3.6899×10-4 F線 1.71225 -1.9860×10-2 3.6899×10-4 |1/{f2 (DW −DT )}|=0.30 |(fW ・fT1/2 /f1 |=1.36,Hu /Hs =0.36,d0T/fT =0.85Example 7 f = 1.46 to 2.76, F / 7.1 to 16.5, 2ω = 112.9 ° to 41.1 ° Object distance = 13.4 to 2.35, Image height = 1.205 r 1 = ∞ d 1 = 0.3500 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7822 d 2 = 0.5642 r 3 = ∞ d 3 = 0.6200 n 2 = 1.51400 ν 2 = 75.00 r 4 = ∞ d 4 = 0.0300 r 5 = ∞ d 5 = 0.4000 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0500 r 7 = ∞ d 7 = 0.6449 n 4 = 1.51742 ν 4 = 52.43 r 8 = -1.6249 d 8 = 0.0500 r 9 = 5.2248 d 9 = 0.5000 n 5 = 1.51633 ν 5 = 64.14 r 10 = -2.6718 d 10 = 0.0500 r 11 = ∞ ( stop) d 11 = D 1 (variable) r 12 = -3.2106 d 12 = 0.3000 n 6 = 1.88300 ν 6 = 40.76 r 13 = 3.7268 d 13 = D 2 ( variable) r 14 = 5.1723 d 14 = 5.2987 n 7 ( gradient index lens) r 15 = ∞ d 15 = 2.9044 r 16 = ∞ d 16 = 2.1000 n 8 = 1.51633 ν 8 = 64.14 r 17 = ∞ d 17 = 0.9800 n 9 = 1.51633 ν 9 = 64.14 r 18 = ∞ f 1.46 2.76 D 0 13.4000 2.3500 D 1 0.30000 2.03085 D 2 2.03085 0.30000 refractive index lens N 0 N 1 N 2 d-ray 1.70000 -2.0000 × 10 -2 3.6899 × 10 -4 C line 1.69475 -2.0060 × 10 - 2 3.6899 × 10 -4 F line 1.71225 -1.9860 × 10 -2 3.6899 × 10 -4 | 1 / {f 2 (D W −D T )} | = 0.30 | (f W · f T ) 1/2 / f 1 | = 1.36, H u / H s = 0.36, d 0T / f T = 0.85

【0059】 実施例8 f=1.83〜2.13,F/8.9 〜12.3,2ω=131 °〜75.3° 物体距離=14.4〜2.0 ,像高=1.61r1 =∞ d1 =0.3800 n1 = 1.88300 ν1 =40.78 r2 =1.0600 d2 =0.7200 r3 =∞ d3 =0.4000 n2 =1.52287 ν2 =59.89 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.6200 n3 =1.51400 ν3 =75.00 r6 =∞ d6 =0.0500 r7 =3.1860 d7 =1.5100 n4 =1.72916 ν4 =54.68 r8 =-2.3660 d8 =0.0500 r9 =∞(絞り) d9 =D1 (可変) r10=∞ d10=0.2800 n5 =1.59551 ν5 =39.24 r11=2.9200 d11=0.1800 r12=∞ d12=D2 (可変) r13=∞ d13=-0.0800 r14=4.2960 d14=1.8000 n6 =1.72916 ν6 =54.68 r15=-2.0850 d15=0.3200 n7 =1.84666 ν7 =23.78 r16=-5.8750 d16=2.0900 r17=∞ d17=1.2000 n8 =1.51633 ν8 =64.14 r18=∞ d18=0.0100 n9 =1.56384 ν9 =60.67 r19=∞ d19=1.2000 n10=1.53172 ν10=48.84 r20=∞ d20=0.0300 n11=1.56384 ν11=60.67 r21=∞ f 1.83 2.13D0 14.40000 2.00000 D1 0.20000 2.09000 D2 2.2000 0.31000 |1/{f2 (DW −DT )}|=0.11|(fW ・fT )1/2
/f1 |=0.89,Hu /Hs =0.36,d0T/fT =0.94 β2W=8.30, φ3-φFS=0.6mm
Example 8 f = 1.83 to 2.13, F / 8.9 to 12.3, 2ω = 131 ° to 75.3 ° Object distance = 14.4 to 2.0, Image height = 1.61r 1 = ∞ d 1 = 0.3800 n 1 = 1.88300 ν 1 = 40.78 r 2 = 1.0600 d 2 = 0.7200 r 3 = ∞ d 3 = 0.4000 n 2 = 1.52287 ν 2 = 59.89 r 4 = ∞ d 4 = 0.0300 r 5 = ∞ d 5 = 0.6200 n 3 = 1.51400 ν 3 = 75.00 r 6 = ∞ d 6 = 0.0500 r 7 = 3.1860 d 7 = 1.5100 n 4 = 1.72916 ν 4 = 54.68 r 8 = -2.3660 d 8 = 0.0500 r 9 = ∞ (aperture) d 9 = D 1 (variable) r 10 = ∞ d 10 = 0.2800 n 5 = 1.59551 ν 5 = 39.24 r 11 = 2.9200 d 11 = 0.1800 r 12 = ∞ d 12 = D 2 ( variable) r 13 = ∞ d 13 = -0.0800 r 14 = 4.2960 d 14 = 1.8000 n 6 = 1.72916 ν 6 = 54.68 r 15 = -2.0850 d 15 = 0.3200 n 7 = 1.84666 ν 7 = 23.78 r 16 = -5.8750 d 16 = 2.0900 r 17 = ∞ d 17 = 1.2000 n 8 = 1.51633 ν 8 = 64.14 r 18 = ∞ d 18 = 0.0100 n 9 = 1.5 6384 ν 9 = 60.67 r 19 = ∞ d 19 = 1.2000 n 10 = 1.53172 ν 10 = 48.84 r 20 = ∞ d 20 = 0.0300 n 11 = 1.56384 ν 11 = 60.67 r 21 = ∞ f 1.83 2.13D 0 14.40000 2.00000 D 1 0.20000 2.09000 D 2 2.2000 0.31000 | 1 / {f 2 (D W -D T )} | = 0.11 | (f W · f T ) 1/2
/ f 1 | = 0.89, H u / H s = 0.36, d 0T / f T = 0.94 β 2W = 8.30, φ3-φFS = 0.6mm

【0060】 実施例9f=1.97〜2.52,F/9.2 〜15.6,2ω=129.9 °〜56.3° 物体距離=15〜2.0 ,像高=1.61 r1 =∞ d1 =0.4000 n1 =1.8 8300 ν1 =40.78 r2 =1.0945 d2 =0.8692 r3 =∞ d3 =0.4000 n2 =1.52287 ν2 =59.89 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.6200 n3 =1.51400 ν3 =75.00 r6 =∞ d6 =0.1000 r7 =2.1389 d7 =0.5000 n4 =1.88300 ν4 =40.76 r8 =1.0592 d8 =1.4605 n5 =1.63930 ν5 =44.87 r9 =-2.1142 d9 =0.1000 r10=∞(絞り) d10=D1 (可変)r11=-59.6121 d11=0.3000 n6 =1.88300 ν6 =40.76 r12=3.8932 d12=D2 (可変)r13=4.3415 d13=1.5693 n7 =1.77250 ν7 =49.60 r14=-2.1637 d14=0.2810 n8 =1.90135 ν8 =31.55 r15=-7.3937 d15=3.4307 r16=∞ d16=1.5000 n9 =1.51633 ν9 =64.14 r17=∞ d17=1.2500 n10=1.51633 ν10=64.14 r18=∞ f 1.97 2.52 D0 15.00000 2.00000 D1 0.20000 2.69967 D2 2.74757 0.25000 |1/{f2 (DW -DT )}|=0.10 |(fW ・fT )1/2 /f1 |=0.95,Hu /Hs =0.11,d0T/fT =0.7
9,β2W=2.1
Example 9 f = 1.97 to 2.52, F / 9.2 to 15.6, 2ω = 129.9 ° to 56.3 ° Object distance = 15 to 2.0, Image height = 1.61 r 1 = ∞ d 1 = 0.4000 n 1 = 1.8 8300 ν 1 = 40.78 r 2 = 1.0945 d 2 = 0.8692 r 3 = ∞ d 3 = 0.4000 n 2 = 1.52287 ν 2 = 59.89 r 4 = ∞ d 4 = 0.0300 r 5 = ∞ d 5 = 0.6200 n 3 = 1.51400 ν 3 = 75.00 r 6 = ∞ d 6 = 0.1000 r 7 = 2.1389 d 7 = 0.5000 n 4 = 1.88300 ν 4 = 40.76 r 8 = 1.0592 d 8 = 1.4605 n 5 = 1.63930 ν 5 = 44.87 r 9 = -2.1142 d 9 = 0.1000 r 10 = ∞ (aperture) d 10 = D 1 (variable) r 11 = -59.6121 d 11 = 0.3000 n 6 = 1.88300 ν 6 = 40.76 r 12 = 3.8932 d 12 = D 2 (variable) r 13 = 4.3415 d 13 = 1.5693 n 7 = 1.77250 ν 7 = 49.60 r 14 = -2.1637 d 14 = 0.2810 n 8 = 1.90135 ν 8 = 31.55 r 15 = -7.3937 d 15 = 3.4307 r 16 = ∞ d 16 = 1.5000 n 9 = 1.51633 ν 9 = 64.14 r 17 = ∞ d 17 = 1.2500 n 10 = 1.51633 ν 10 = 64.14 r 18 = ∞ f 1.97 2.52 D 0 15.00000 2.00000 D 1 0.20000 2.69967 D 2 2.74757 0.25000 | 1 / {f 2 (D W -D T )} | = 0.1 0 | (f W・ f T ) 1/2 / f 1 | = 0.95, H u / H s = 0.11, d 0T / f T = 0.7
9, β 2W = 2.1

【0061】 実施例10f=1.14〜1.53,F/7.3 〜12 ,2ω=132.9 °〜65.3° 物体距離=12〜2.2 ,像高=1.05 r1 =∞ d1 =0.2600 n1 =1.8 8300 ν1 =40.78 r2 =0.7216 d2 =0.4587 r3 =∞ d3 =0.4000 n2 =1.52287 ν2 =59.89 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.6200 n3 =1.51400 ν3 =75.00 r6 =∞ d6 =0.0400 r7 =3.6037 d7 =0.6175 n4 =1.88300 ν4 =40.76 r8 =-1.8142 d8 =0.0500 r9=∞(絞り) d9 =D1 (可変)r10 = -8.7484 d10 =0.2000 n5 =1.90135 ν5 =31.55 r11=2.5880 d11=D2 (可変)r12=∞ d12=0.0000 r13=3.6204 d13=0.6208 n6 =1.88300 ν6 =40.76 r14=-3.7375 d14=0.0500 r15=4.4029 d15=0.8061 n 7 =1.51633 ν7 =64.14 r16=-1.6972 d16=0.2000 n8 =1.84666 ν8 =23.78 r17=39.0105 d17=1.2038 r18=∞ d18=1.1000 n9 =1.51633 ν9 =64.14 r19=∞ d19=0.8000 n10=1.51633 ν10=64.14 r20=∞ f 1.14 1.53 D0 12.00000 2.20000 D1 0.15000 1.32311 D2 1.32311 0.15000 |1/{f2 (DW -DT )}|=0.39 |(fW ・fT )1/2 /f1 |=0.90, Hu /Hs =0.44, d0T/fT =
1.44 β2W=1.36, φ3-φFS=0.4mm
Example 10f = 1.14 to 1.53, F / 7.3 to 12, 2ω = 132.9 ° to 65.3 ° Object distance = 12 to 2.2, Image height = 1.05 r1 = ∞ d1 = 0.2600 n1 = 1.8 8300 ν1 = 40.78 rTwo = 0.7216 dTwo = 0.4587 rThree = ∞ dThree = 0.4000 nTwo = 1.52287 νTwo = 59.89 rFour = ∞ dFour = 0.0300 rFive = ∞ dFive = 0.6200 nThree = 1.51400 νThree = 75.00 r6 = ∞ d6 = 0.0400 r7 = 3.6037 d7 = 0.6175 nFour = 1.88300 νFour = 40.76 r8 = -1.8142 d8 = 0.0500 r9= ∞ (aperture) d9 = D1 (Variable) rTen = -8.7484 dTen = 0.2000 nFive = 1.90135 νFive = 31.55 r11= 2.5880 d11= DTwo (Variable) r12= ∞ d12= 0.0000 r13= 3.6204 d13= 0.6208 n6 = 1.88300 ν6 = 40.76 r14= -3.7375 d14= 0.0500 rFifteen= 4.4029 dFifteen= 0.8061 n 7 = 1.51633 ν7 = 64.14 r16= -1.6972 d16= 0.2000 n8 = 1.84666 ν8 = 23.78 r17= 39.0105 d17= 1.2038 r18= ∞ d18= 1.1000 n9 = 1.51633 ν9 = 64.14 r19= ∞ d19= 0.8000 nTen= 1.51633 νTen= 64.14 r20= ∞ f 1.14 1.53 D0 12.00000 2.20000 D1 0.15000 1.32311 DTwo 1.32311 0.15000 | 1 / {fTwo (DW -DT )} | = 0.39 | (fW ・ FT )1/2 / f1 | = 0.90, Hu / Hs = 0.44, d0T/ fT =
1.44 β2W= 1.36, φ3-φFS = 0.4mm

【0062】実施例11f=1.35〜2.04, F/6.4 〜11.7,
2ω=130 °〜56.6°物体距離=12〜2.1 ,像高=1.21 r1
=∞ d1 =0.3000 n1 =1.8 8300 ν1 =40.78 r2 =0.7564 d2 =0.5000 r3 =∞ d3 =0.4000 n2 =1.52287 ν2 =59.89 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.6200 n3 =1.51400 ν3 =75.00 r6 =∞ d6 =0.0500 r7 =16.9172 d7 =0.6000 n4 =1.51633 ν4 =64.14 r8 =-1.5139 d8 =0.0500 r9 =5.5489 d9 =0.5000 n5 =1.51633 ν5 =64.14 r10=-2.7205 d10=0.5000 r10=∞(絞り) d11=D1 (可変)r12 =-6.2390 d12=0.2500 n6 =1.88300 ν6 =40.76 r13=2.6147 d13=D2 (可変)r14=6.1306 d14=1.1000 n7 =1.72916 ν7 =54.68 r15=-1.5473 d15=0.2500 n8 =1.84666 ν8 =23.78 r16=-3.6654 d16=0.0500 r17=6.0286 d17=0.6288 n 9 =1.51633 ν9 =64.14 r18=∞ d18=2.9631 r19=∞ d19=1.5000 n10=1.51633 ν10 =64.14 r20=∞ d20=1.0000 n11=1.51633 ν11 =64.14 r21=∞ f 1.35 2.04 D0 12.00000 2.10000 D1 0.20000 1.54000 D2 1.59000 0.25000 |1/{f2 (DW -DT )}|=0.36 |(fW ・fT )1/2 /f1 |=1.17, Hu /Hs =0.52, d0T/fT =1.
03,β2W=1.14
Example 11f = 1.35 to 2.04, F / 6.4 to 11.7,
2ω = 130 ° -56.6 ° Object distance = 12-2.1, Image height = 1.21 r1 
= ∞ d1 = 0.3000 n1 = 1.8 8300 ν1 = 40.78 rTwo = 0.7564 dTwo = 0.5000 rThree = ∞ dThree = 0.4000 nTwo = 1.52287 νTwo = 59.89 rFour = ∞ dFour = 0.0300 rFive = ∞ dFive = 0.6200 nThree = 1.51400 νThree = 75.00 r6 = ∞ d6 = 0.0500 r7 = 16.9172 d7 = 0.6000 nFour = 1.51633 νFour = 64.14 r8 = -1.5139 d8 = 0.0500 r9 = 5.5489 d9 = 0.5000 nFive = 1.51633 νFive = 64.14 rTen= -2.7205 dTen= 0.5000 rTen= ∞ (aperture) d11= D1 (Variable) r12 = -6.2390 d12= 0.2500 n6 = 1.88300 ν6 = 40.76 r13= 2.6147 d13= DTwo (Variable) r14= 6.1306 d14= 1.1000 n7 = 1.72916 ν7 = 54.68 rFifteen= -1.5473 dFifteen= 0.2500 n8 = 1.84666 ν8 = 23.78 r16= -3.6654 d16= 0.0500 r17= 6.0286 d17= 0.6288 n 9 = 1.51633 ν9 = 64.14 r18= ∞ d18= 2.9631 r19= ∞ d19= 1.5000 nTen= 1.51633 νTen = 64.14 r20= ∞ d20= 1.0000 n11= 1.51633 ν11 = 64.14 rtwenty one= ∞ f 1.35 2.04 D0 12.00000 2.10000 D1 0.20000 1.54000 DTwo 1.59000 0.25000 | 1 / {fTwo (DW -DT )} | = 0.36 | (fW ・ FT )1/2 / f1 | = 1.17, Hu / Hs = 0.52, d0T/ fT = 1.
03, β2W= 1.14

【0063】 実施例12f=1.21〜1.48, F/6.8 〜9.7, 2ω=149.6 °〜76.3° 物体距離=12〜1.9 ,像高=1.1 r1 =∞ d1 =0.2500 n1 =1.8830 0 ν1 =40.78 r2 =0.7403 d2 =0.4194 r3 =∞ d3 =0.2000 n2 =1.52287 ν2 =59.89 r4 =∞ d4 =0.0500 r5 =2.1275 d5 =1.7387 n3 =1.68893 ν3 =31.07 r6 =-1.3323 d6 =0.0500 r7 =∞(絞り) d7=D1 (可変)r8 =282.6298 d8 =0.2000 n4 =1. 84666 ν4 =23.78 r9 =2.6319 d9 =D2 (可変)r10 =4.5636 d10 =0.8674 n5 =1 88300 ν5 =40.76 r11=-1.7560 d11=0.2000 n6 =1.84666 ν6 =23.78 r12=-4.2149 d12=0.1000 r13=∞ d13=0.6200 n7 =1.51400 ν7 =75.00 r14=∞ d14=1.2120 r15=∞ d15=1.0000 n8 =1.51633 ν8 =64.14 r16=∞ d16=0.5000 n9 =1.51633 ν9 =64.14 r17=∞ f 1.21 1.48 D0 12.00000 1.90000 D1 0.10000 1.35581 D2 1.40581 0.15000 |1/{f2 (DW -DT )}|=0.25 |(fW ・fT )1/2 /f1 |=0.79, Hu /Hs =0.45, d0T/fT =1.28,β2W=3.63 ただしr1 ,r2 ,・・・ はレンズ各面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚又はレンズ間隔、n
1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2,・・・
は各レンズのアッベ数である。D0は物体距離である。
データ中長さの単位はmmである。
Example 12f = 1.21 to 1.48, F / 6.8 to 9.7, 2ω = 149.6 ° to 76.3 ° Object distance = 12 to 1.9, Image height = 1.1 r 1 = ∞ d 1 = 0.2500 n 1 = 1.8830 0 ν 1 = 40.78 r 2 = 0.7403 d 2 = 0.4194 r 3 = ∞ d 3 = 0.2000 n 2 = 1.52287 ν 2 = 59.89 r 4 = ∞ d 4 = 0.0500 r 5 = 2.1275 d 5 = 1.7387 n 3 = 1.68893 ν 3 = 31.07 r 6 = -1.3323 d 6 = 0.0500 r 7 = ∞ (aperture) d 7 = D 1 (variable) r 8 = 282.6298 d 8 = 0.2000 n 4 = 1.84666 ν 4 = 23.78 r 9 = 2.6319 d 9 = D 2 (variable) r 10 = 4.5636 d 10 = 0.8674 n 5 = 1 88300 ν 5 = 40.76 r 11 = -1.7560 d 11 = 0.2000 n 6 = 1.84666 ν 6 = 23.78 r 12 = -4.2149 d 12 = 0.1000 r 13 = D d 13 = 0.6200 n 7 = 1.51400 ν 7 = 75.00 r 14 = ∞ d 14 = 1.2120 r 15 = ∞ d 15 = 1.0000 n 8 = 1.51633 ν 8 = 64.14 r 16 = ∞ d 16 = 0.5000 n 9 = 1.51633 ν 9 = 64.14 r 17 = ∞ f 1.21 1.48 D 0 12.00000 1.90000 D 1 0.10000 1.35581 D 2 1.40581 0.15000 | 1 / {f 2 (D W -D T )} | = 0.25 | (f W · f T ) 1/2 / f 1 | = 0.79, H u / H s = 0.45, d 0T / f T = 1.28, β 2W = 3.63 where r 1 , r 2 ,... are the radii of curvature of the respective surfaces of the lens, d
.. , D 2 ,...
1 , n 2 ,... Are the refractive indices of each lens, ν 1 , ν 2 ,.
Is the Abbe number of each lens. D 0 is the object distance.
The unit of the length in the data is mm.

【0064】実施例1は図1に示す構成で(A)は広角
端(B)は望遠端を示す。この実施例1は、図示するよ
うに物体側より順に、正の屈折力の第1群G1と負の屈
折力の第2群G2と正の屈折力の第3群G3とよりな
る。
In the first embodiment, the configuration shown in FIG. 1 is shown, (A) shows the wide-angle end, and (B) shows the telephoto end. As shown, the first embodiment includes, in order from the object side, a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, and a third group G3 having a positive refractive power.

【0065】又第1群は物体側より順に、負レンズと、
負レンズと正レンズとの接合と、正レンズとにて構成さ
れ、軸上光線と軸外光線とを第2群へ導く作用を有す
る。この第1群中の平行平面板F1、F2は、夫々特定
の波長例えばYAGレーザーの1060nm、半導体レ
ーザーの810nmあるいは赤外域をカットするための
フィルターである。また接合レンズの正レンズの両面の
曲率半径を等しくして加工に有利な構成にしてある。又
第2群は、負レンズ1枚にて構成され、光軸上を移動す
ることにより変倍作用を持たせている。またこの負レン
ズの両面の曲率半径を等しくして加工コストの低減や誤
組立て防止に有利な構成にしている。又第3群は、物体
側より順に、正レンズと、正レンズと、負レンズと正レ
ンズとの接合レンズとで構成され、第2群からの発散光
束を結像する作用を有している。又物体側の2枚の正レ
ンズは等しい形状で等しい屈折率である。また負レンズ
は両面の曲率半径が等しく加工、組立てに有利な構成で
ある。またこの実施例1の光学系は、第1群と第2群の
間に明るさ絞りSが配置されている。又条件(1)、
(2)を満足することにより諸収差を良好に補正しつつ
全長を短縮することを可能にした。
The first unit includes, in order from the object side, a negative lens,
It is composed of a junction of a negative lens and a positive lens, and a positive lens, and has an action of guiding on-axis rays and off-axis rays to the second group. Each of the parallel plane plates F1 and F2 in the first group is a filter for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region. In addition, the curvature radii of both surfaces of the positive lens of the cemented lens are made equal to have a configuration advantageous for processing. The second group is composed of one negative lens, and has a zooming effect by moving on the optical axis. In addition, the curvature radii of both surfaces of the negative lens are made equal to make a configuration advantageous for reduction of processing cost and prevention of erroneous assembly. The third group is composed of, in order from the object side, a positive lens, a positive lens, and a cemented lens of a negative lens and a positive lens, and has an action of imaging the divergent light flux from the second group. . The two positive lenses on the object side have the same shape and the same refractive index. In addition, the negative lens has the same curvature radius on both surfaces, and is advantageous in processing and assembling. In the optical system according to the first embodiment, the aperture stop S is disposed between the first and second units. Condition (1),
By satisfying (2), it has become possible to shorten the overall length while favorably correcting various aberrations.

【0066】また条件(3)を満足することにより外径
の細径化を図っている。図1において光線L(1)は明
るさ絞り径一杯に軸外上側光線が通過した場合の光線、
又光線L(2)は第3群を細径化した場合の軸外上側光
線である。この図より明らかなように、明るさ絞り一杯
に光線を通した場合第3群のレンズ外径は破線で示すよ
うになり大きくなる。そのため条件(3)を満足する範
囲で外径を小にすれば、第3群の外径を小にすることが
できる。また、本実施例では、第3群の外径を小さくす
べく、第3群に配置した視野絞りFSで軸外光線を遮蔽
している。
By satisfying the condition (3), the outer diameter is reduced. In FIG. 1, a light ray L (1) is a light ray when an off-axis upper ray passes through the aperture stop to the full diameter of the aperture stop,
The ray L (2) is an off-axis upper ray when the diameter of the third lens unit is reduced. As is clear from this figure, when the light beam is fully transmitted through the aperture stop, the outside diameter of the lens of the third lens group becomes larger as shown by a broken line. Therefore, if the outer diameter is reduced within a range that satisfies the condition (3), the outer diameter of the third lens unit can be reduced. Further, in this embodiment, off-axis rays are blocked by the field stop FS arranged in the third lens unit so as to reduce the outer diameter of the third lens unit.

【0067】この実施例1の収差状況は図13、図14
に示す通りである。
FIGS. 13 and 14 show the aberration states of the first embodiment.
As shown in FIG.

【0068】実施例2は、図2に示す通りの構成で、物
体側より順に、正の屈折力の第1群G1と負の屈折力の
第2群G2と正の屈折力の第3群G3とよりなり、各群
の作用は実施例1と同じである。
The second embodiment has a configuration as shown in FIG. 2 and includes, in order from the object side, a first unit G1 having a positive refractive power, a second unit G2 having a negative refractive power, and a third unit G3 having a positive refractive power. G3. The operation of each group is the same as that of the first embodiment.

【0069】また第1群は物体側より順に、負レンズ
と、負レンズと正レンズの接合レンズにて、第2群は負
レンズ1枚にて、第3群は物体側より順に正レンズと、
正レンズと、負レンズと正レンズの接合レンズにて夫々
構成されている。明るさ絞りSは第1群と第2群の間に
配置されている。この実施例は実施例1と比較して第1
群のレンズ枚数が1枚少なくなっている。
The first unit includes a negative lens and a cemented lens of a negative lens and a positive lens in order from the object side, the second unit includes one negative lens, and the third unit includes a positive lens in order from the object side. ,
It is composed of a positive lens and a cemented lens of a negative lens and a positive lens. The aperture stop S is disposed between the first group and the second group. This embodiment is different from the first embodiment in that
The number of lenses in the group is reduced by one.

【0070】この実施例2は、条件(1)と(2)を満
足し、これによって諸収差を良好に補正しつつ全長を短
縮することを可能にし、全長が18.3mmである。また
条件(3)を満足することにより外径の細径化を図った
もので、レンズ外径が3.2mmである。また条件(4)
を満足することにより、望遠端で十分な拡大観察倍率を
有している。
The second embodiment satisfies the conditions (1) and (2), thereby enabling the overall length to be shortened while favorably correcting various aberrations, and the overall length is 18.3 mm. Further, the outer diameter is reduced by satisfying the condition (3), and the outer diameter of the lens is 3.2 mm. Condition (4)
By satisfying the above condition, the zoom lens has a sufficient magnification observation magnification at the telephoto end.

【0071】実施例2の収差状況は図15、図16に示
す通りである。
The aberration states of the second embodiment are as shown in FIGS.

【0072】実施例3は、図3に示すように、物体側よ
り順に、正の屈折力の第1群G1と負の屈折力の第2群
G2と正の屈折力の第3群G3とよりなり、各群の作用
は実施例1とほぼ同じである。
In the third embodiment, as shown in FIG. 3, in order from the object side, a first unit G1 having a positive refractive power, a second unit G2 having a negative refractive power, and a third unit G3 having a positive refractive power. The operation of each group is almost the same as in the first embodiment.

【0073】第1群は物体側より順に負レンズと、正レ
ンズと、正レンズとにて構成され、第2群は負レンズ1
枚にて構成され、第3群は物体側より順に、正レンズ
と、正レンズと、負レンズとにて構成されている。又、
明るさ絞りSは、第1群と第2群の間に配置されてい
る。
The first unit includes a negative lens, a positive lens, and a positive lens in order from the object side, and the second unit includes a negative lens 1
The third lens unit includes, in order from the object side, a positive lens, a positive lens, and a negative lens. or,
The aperture stop S is arranged between the first group and the second group.

【0074】この実施例3は、条件(1)と条件(2)
とを満足することにより諸収差を良好に補正しつつ全長
を短縮しており、レンズ系の全長は13.2mmである。
また条件(3)を満足することにより外径の細径化を図
り、レンズ外径が2.2mmである。また条件(4)を満
足することにより望遠端で十分な拡大観察倍率を有して
いる。
In the third embodiment, the conditions (1) and (2)
By satisfying the above conditions, the overall length is shortened while various aberrations are favorably corrected, and the overall length of the lens system is 13.2 mm.
By satisfying the condition (3), the outer diameter is reduced, and the outer diameter of the lens is 2.2 mm. By satisfying the condition (4), a sufficient magnification magnification is obtained at the telephoto end.

【0075】実施例3の収差状況は図17、図18に示
す通りである。
The aberration states of the third embodiment are as shown in FIGS.

【0076】実施例4は図4に示すように、物体側より
順に、正の屈折力の第1群G1と負の屈折力の第2群G
2と正の屈折力の第3群G3とよりなり、各群の作用は
実施例1と同様である。又明るさ絞りSは第1群と第2
群の間に配置されている。
In the fourth embodiment, as shown in FIG. 4, the first unit G1 having a positive refractive power and the second unit G1 having a negative refractive power are arranged in order from the object side.
2 and a third group G3 having a positive refractive power. The operation of each group is the same as that of the first embodiment. The aperture stop S is composed of the first group and the second group.
Located between groups.

【0077】実施例4の第1群は、物体側より順に、負
レンズと、負レンズと正レンズとを接合した接合レンズ
と、負レンズと正レンズを接合した接合レンズと、正レ
ンズとにて構成され、第2群は負レンズ1枚にて構成さ
れ、第3群は物体側より順に正レンズと、正レンズと、
正レンズと負レンズとを接合した接合レンズとにて構成
されている。
The first unit of the fourth embodiment includes, in order from the object side, a negative lens, a cemented lens in which a negative lens and a positive lens are cemented, a cemented lens in which a negative lens and a positive lens are cemented, and a positive lens. The second group includes one negative lens, and the third group includes, in order from the object side, a positive lens, a positive lens,
It is composed of a cemented lens in which a positive lens and a negative lens are cemented.

【0078】この実施例4の光学系は、条件(1)、
(2)、(3)を満足することにより諸収差を良好に補
正しつつ全長を短縮することと、外径の細径化とを図っ
ている。第1群中の二つの接合レンズは、いずれも負レ
ンズの屈折率を正レンズの屈折率よりも高くし、これに
よって全系で補正過剰になるペッツバール和を良好に補
正するようにしている。
The optical system of the fourth embodiment satisfies the conditions (1)
By satisfying (2) and (3), the overall length is shortened while various aberrations are favorably corrected, and the outer diameter is reduced. Each of the two cemented lenses in the first group has the refractive index of the negative lens higher than that of the positive lens, thereby favorably correcting the Petzval sum which is overcorrected in the entire system.

【0079】また、一般に内視鏡対物光学系は、外径の
制限を有するために、絞り径は固定であるが、本発明の
光学系においては、第1群と第2群の間に配置する絞り
径を固定にしたまま変倍比を大にすると、望遠側でのF
ナンバーが極端に大になり、回折の影響で像がぼけるお
それがある。
In general, the endoscope objective optical system has a fixed aperture diameter due to the limitation of the outer diameter. However, in the optical system of the present invention, it is disposed between the first and second lens groups. If the zoom ratio is increased with the aperture diameter fixed, the F
The number becomes extremely large, and the image may be blurred due to diffraction.

【0080】そのために、本発明の光学系においてこの
回折の影響が問題になる場合、変倍時に第2群と絞りと
を一体に移動させることが望ましい。このような構成に
すれば望遠側での光束径を大きくすることが可能にな
り、回折による像の劣化を防止し得る。
For this reason, when the influence of this diffraction becomes a problem in the optical system of the present invention, it is desirable to move the second unit and the stop together during zooming. With such a configuration, it is possible to increase the diameter of the light beam on the telephoto side, and it is possible to prevent image deterioration due to diffraction.

【0081】実施例4の収差状況は、図19、図20に
示す通りである。
The aberration states of the fourth embodiment are as shown in FIGS. 19 and 20.

【0082】実施例5は、図5に示す通りの構成で、正
の屈折力の第1群G1と負の屈折力の第2群G2と正の
屈折力の第3群G3とよりなり、これら各群の作用は実
施例1とほぼ同様である。
The fifth embodiment has a configuration as shown in FIG. 5 and includes a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, and a third group G3 having a positive refractive power. The operation of each of these groups is almost the same as in the first embodiment.

【0083】また第1群は物体側より順に負レンズと、
正レンズと、正レンズとよりなり、第2群は負レンズ1
枚よりなり、第3群は物体側より順に正レンズと負レン
ズとよりなり、明るさ絞りSは第1群と第2群の間に配
置されている。又第3群中には非球面を設けてあり、こ
の非球面により特にこの群にて発生する負の球面収差を
良好に補正している。このように球面収差を補正するた
めに、この非球面は光軸から周辺部に行くにしたがって
正の屈折力が小さくなる形状であることが望ましい。
The first lens unit includes a negative lens in order from the object side,
The second lens unit includes a positive lens and a positive lens.
The third lens unit includes a positive lens and a negative lens in order from the object side, and the aperture stop S is disposed between the first lens unit and the second lens unit. An aspherical surface is provided in the third lens unit, and the aspherical surface satisfactorily corrects negative spherical aberration particularly occurring in this lens unit. In order to correct the spherical aberration in this manner, it is desirable that the aspherical surface has a shape such that the positive refractive power decreases from the optical axis toward the peripheral portion.

【0084】この実施例にて用いている非球面の形状
は、下記式(a)にて近似される。 x=(y2 /r)/[1+{1−P(y/r)21/2 ]+ΣA2i2 (a) ただし、上記式(a)はx軸を光軸方向にとりy軸を光
軸と直角方向にとったときのもので、rは光軸上の曲率
半径、Pは円錐定数、A2iは非球面係数である。又この
実施例のP、A2i等の値はデータ中に示す通りである。
The shape of the aspherical surface used in this embodiment is approximated by the following equation (a). x = (y 2 / r) / [1+ {1-P (y / r) 2} 1/2] + ΣA 2i y 2 (a) provided that the formulas (a) the y axis represents the x-axis direction of the optical axis Is taken in the direction perpendicular to the optical axis, where r is the radius of curvature on the optical axis, P is the conic constant, and A 2i is the aspheric coefficient. The values of P, A 2i and the like in this embodiment are as shown in the data.

【0085】この実施例5は、第3群の像側に特定の波
長をカットするフィルターF3が配置されている。
In the fifth embodiment, a filter F3 for cutting a specific wavelength is disposed on the image side of the third group.

【0086】この実施例5の収差状況は、図21、図2
2に示す通りである。
The aberration conditions in the fifth embodiment are shown in FIGS.
As shown in FIG.

【0087】実施例6は、図6に示すように物体側より
順に正の屈折力の第1群G1と負の屈折力の第2群G2
と正の屈折力の第3群G3とよりなり、各群の作用は実
施例1とほぼ同様である。また第1群は物体側より順に
負レンズと、正レンズとよりなり、第2群は負レンズ1
枚よりなり、第3群は物体側より順に正レンズと、正レ
ンズと、負レンズとよりなる。また明るさ絞りSは第1
群と第2群の間に配置されている。また第1群中の正レ
ンズは光軸から半径方向に屈折率を有するいわゆるラジ
アル型屈折率分布レンズである。この実施例で用いるラ
ジアル型屈折率分布レンズは光軸から周辺に行くにした
がって屈折率が小になる分布を有し、特に望遠側で発生
する球面収差を補正する効果を有している。
In the sixth embodiment, as shown in FIG. 6, a first unit G1 having a positive refractive power and a second unit G2 having a negative refractive power are arranged in order from the object side.
And a third group G3 having a positive refractive power. The operation of each group is substantially the same as that of the first embodiment. The first unit includes a negative lens and a positive lens in order from the object side, and the second unit includes a negative lens 1.
The third unit includes, in order from the object side, a positive lens, a positive lens, and a negative lens. The aperture stop S is the first
It is located between the group and the second group. The positive lens in the first group is a so-called radial type refractive index distribution lens having a refractive index in a radial direction from the optical axis. The radial type gradient index lens used in this embodiment has a distribution in which the refractive index decreases from the optical axis toward the periphery, and has an effect of correcting spherical aberration particularly occurring on the telephoto side.

【0088】この実施例中のラジアル型屈折率分布レン
ズの屈折率分布は次の式(b)にて近似される。 N(r)=N0 +N12 +N24 +・・・ (b) ただし、N0 は光軸上の屈折率、N1 ,N2 ,・・・は
1次、2次、・・・の屈折率分布係数、rは光軸から半
径方向への距離である。この実施例6のN0、N1 、N2
・・・等の値はデータ中に示してある。
The refractive index distribution of the radial type gradient index lens in this embodiment is approximated by the following equation (b). N (r) = N 0 + N 1 r 2 + N 2 r 4 +... (B) where N 0 is the refractive index on the optical axis, N 1 , N 2 ,. .., R is the distance from the optical axis in the radial direction. N 0 , N 1 , N 2 of the sixth embodiment
Are shown in the data.

【0089】また実施例6は条件(1)、(2)を満足
することによって諸収差を良好に補正しつつ全長を短縮
することを可能にした。又条件(3)を満足することに
より外径の細径化を図っている。
In the sixth embodiment, by satisfying the conditions (1) and (2), it becomes possible to shorten the overall length while favorably correcting various aberrations. By satisfying the condition (3), the outer diameter is reduced.

【0090】この実施例6の収差状況は図23、図24
に示す通りである。
FIGS. 23 and 24 show the aberration states of the sixth embodiment.
As shown in FIG.

【0091】実施例7は、図7に示すように物体側から
順に、正の屈折力の第1群G1と負の屈折力の第2群G
2と正の屈折力の第3群G3とよりなり、これら各群の
作用は実施例1とほぼ同じである。
In the seventh embodiment, as shown in FIG. 7, the first unit G1 having a positive refractive power and the second unit G1 having a negative refractive power are arranged in order from the object side.
2 and a third group G3 having a positive refractive power. The operation of each group is almost the same as that of the first embodiment.

【0092】また、第1群は物体側より順に、負レンズ
と、正レンズと、正レンズとよりなり、第2群は負レン
ズ1枚よりなり、第3群は正レンズ1枚よりなる。又明
るさ絞りSは第1群と第2群との間に配置されている。
この実施例は、第3群が式(b)にて近似されるラジア
ル型屈折率分布レンズ1枚より構成されている。この屈
折率分布レンズは、光軸から周辺に行くにしたがって屈
折率が小さくなる分布を有し、特に望遠側で発生する球
面収差を補正する効果を有している。尚このラジアル型
屈折率分布レンズの分布係数等の値はデータ中に示す通
りである。
The first unit includes, in order from the object side, a negative lens, a positive lens, and a positive lens, the second unit includes one negative lens, and the third unit includes one positive lens. The aperture stop S is arranged between the first and second lens units.
In this embodiment, the third unit is constituted by one radial type gradient index lens which is approximated by the equation (b). This refractive index distribution lens has a distribution in which the refractive index decreases from the optical axis toward the periphery, and has an effect of correcting spherical aberration particularly occurring on the telephoto side. The values such as the distribution coefficient of the radial type gradient index lens are as shown in the data.

【0093】この実施例7は、条件(1)、(2)を満
足することにより諸収差を良好に補正しつつ全長を短縮
することを可能にした。また、条件(3)を満足するこ
とにより外径の細径化を図っている。
In the seventh embodiment, by satisfying the conditions (1) and (2), it becomes possible to satisfactorily correct various aberrations and shorten the overall length. Further, by satisfying the condition (3), the outer diameter is reduced.

【0094】この実施例7の収差状況は、図25、図2
6に示す通りである。
FIGS. 25 and 2 show the aberration states of the seventh embodiment.
6.

【0095】本発明の実施例8の対物光学系は、図8に
示す通りの構成で、物体側より順に、正の屈折力の第1
群G1と、負の屈折力の第2群G2と、正の屈折力の第
3群G3よりなる。第1群G1は、負レンズL11と正
レンズL12とよりなり、第2群G2は負レンズL21
の1枚よりなり、第3群G3は物体側より順に正レンズ
L31と負レンズL32とを接合した接合レンズにて構
成されている。
The objective optical system according to the eighth embodiment of the present invention has a configuration as shown in FIG. 8 and has the first positive refractive power in order from the object side.
The zoom lens includes a group G1, a second group G2 having a negative refractive power, and a third group G3 having a positive refractive power. The first group G1 includes a negative lens L11 and a positive lens L12, and the second group G2 includes a negative lens L21.
The third group G3 is composed of a cemented lens in which a positive lens L31 and a negative lens L32 are cemented in order from the object side.

【0096】また、明るさ絞りSは第1群G1と第2群
G2の間に配置されている。また第1群G1は負レンズ
L11と平行平板F1と平行平板F2と正レンズL12
と絞りSとにて構成され、平行平板F1と絞りSとの間
に配置された光学素子である平行平板F2と正レンズL
12とがいずれも条件(5)を満足するように構成され
ている。このようにこの実施例8の光学系は、条件
(5)を満足することによりコンパクトになっている。
Further, the aperture stop S is disposed between the first group G1 and the second group G2. The first group G1 includes a negative lens L11, a parallel flat plate F1, a parallel flat plate F2, and a positive lens L12.
A parallel plate F2, which is an optical element disposed between the parallel plate F1 and the stop S, and a positive lens L.
12 are configured to satisfy the condition (5). As described above, the optical system of the eighth embodiment is compact by satisfying the condition (5).

【0097】また第2群G2の最も像側にフレア絞り
(r13)を設けてある。また図8におけるC1はゴミ除
けカバーガラス、C2はCCD等の撮像素子のカバーガ
ラス、CE1、CE2は接着層である。また第1群G1
中の2枚の平行平板は特定の波長域の光をカットするフ
ィルターであり、物体側より順に、フィルターF1は干
渉型のレーザーカットフィルター、フィルター2は吸収
型の赤外カットフィルターである。
A flare stop (r 13 ) is provided closest to the image side of the second lens unit G2. In FIG. 8, C1 is a dust cover glass, C2 is a cover glass of an image sensor such as a CCD, and CE1 and CE2 are adhesive layers. Also, the first group G1
The two parallel plates in the middle are filters for cutting light in a specific wavelength range. In order from the object side, the filter F1 is an interference type laser cut filter, and the filter 2 is an absorption type infrared cut filter.

【0098】また、この実施例に示すような本発明の対
物光学系において、コンパクトな構成にするためには、
第2群G2の広角端における倍率β2Wが下記条件(6)
を満足することが望ましい。 (6) 1<|β2W
In order to make the objective optical system of the present invention as shown in this embodiment compact,
The magnification β 2W at the wide-angle end of the second lens unit G2 is as follows:
It is desirable to satisfy (6) 1 <| β 2W |

【0099】また、第3群G3よりも物体側にフレア絞
りFS(r13)を配置することにより、第3群G3のレ
ンズの外径を小さくすることができる。この場合、、フ
レア絞りFSの内径φFSと第3群G3中の最も外径の
小さいレンズの外径φ3との差が小さすぎると、特に視
野外の光線が第3群G3のレンズ側面に当りフレアが生
ずる。
By arranging the flare stop FS (r 13 ) on the object side of the third group G3, the outer diameter of the lens of the third group G3 can be reduced. In this case, if the difference between the inner diameter φFS of the flare stop FS and the outer diameter φ3 of the lens having the smallest outer diameter in the third group G3 is too small, the light outside the field of view hits the lens side surface of the third group G3. Flares occur.

【0100】そのため、この実施例に示すような本発明
の光学系においては、下記条件(7)を満足することが
望ましい。 (7) 0.1mm<φ3−φFS<1.2mm
Therefore, in the optical system of the present invention as shown in this embodiment, it is desirable to satisfy the following condition (7). (7) 0.1 mm <φ3-φFS <1.2 mm

【0101】条件(7)の下限の0.1mmを超えると
第3群G3でフレアが発生する可能性がある。また上限
の1.2mmを超えると第3群G3のレンズの外径が大
になり、コンパクトな光学系になし得ない。
If the lower limit of 0.1 mm of the condition (7) is exceeded, flare may occur in the third lens unit G3. If the upper limit of 1.2 mm is exceeded, the outer diameter of the lens of the third group G3 becomes large, and a compact optical system cannot be obtained.

【0102】この実施例8の対物光学系は、レンズL3
2の径φ3=3.2mm、φFS=2.6mm、φ3−
φFS=0.6mmである。また、条件(7)の代わり
に下記条件(7−1)を満足すればより望ましい。 (7−1) 0.3mm<φ3−φFS<0.8mm
The objective optical system according to the eighth embodiment includes a lens L3
2 diameter φ3 = 3.2 mm, φFS = 2.6 mm, φ3-
φFS = 0.6 mm. It is more preferable that the following condition (7-1) is satisfied instead of the condition (7). (7-1) 0.3mm <φ3-φFS <0.8mm

【0103】この実施例8の光学系で用いるようなフレ
ア絞りは、薄板にて構成されるが、鏡枠にその内側へ向
け突出する突起を設けることによってフレア絞りとする
ことも可能である。
The flare stop used in the optical system of the eighth embodiment is formed of a thin plate. However, the flare stop can be formed by providing a lens frame with a projection protruding inward.

【0104】また、レンズ表面に遮光効果をもつ絞り
を、蒸着や印刷により形成することによってもフレア絞
りとしての作用をもたせることが可能である。この実施
例8の収差状況は、図27、図28に示す通りである。
Further, it is also possible to have a function as a flare stop by forming a stop having a light blocking effect on the lens surface by vapor deposition or printing. The aberration states of the eighth embodiment are as shown in FIGS.

【0105】本発明の対物光学系の実施例9は、図9に
示す通りで、物体側より順に、正の屈折力の第1群G1
と負の屈折力の第2群G2と正の屈折力の第3群G3と
よりなる光学系である。
Embodiment 9 of the objective optical system according to the present invention, as shown in FIG. 9, is a first group G1 having a positive refractive power, in order from the object side.
And a second group G2 having a negative refractive power and a third group G3 having a positive refractive power.

【0106】第1群G1は、物体側より順に、負レンズ
L11と、負レンズL12と正レンズL13とを接合し
た接合レンズとより構成され、第2群G2は、負レンズ
L21の1枚にて構成され、第3群G3は、物体側より
順に、正レンズL31と負レンズL32を接合した接合
レンズとより構成されている。
The first group G1 includes, in order from the object side, a negative lens L11 and a cemented lens obtained by cementing the negative lens L12 and the positive lens L13. The second group G2 is composed of one negative lens L21. The third unit G3 includes, in order from the object side, a cemented lens formed by cementing a positive lens L31 and a negative lens L32.

【0107】この実施例9の光学系は、レンズ枚数が6
枚と少ないレンズ枚数で、コンパクトな構成であるにも
かかわらず光学性も良好である。この実施例9の収差状
況は、図29、図30に示す通りである。
In the optical system of the ninth embodiment, the number of lenses is six.
With a small number of lenses and a compact configuration, the optical properties are also good. The aberration states of the ninth embodiment are as shown in FIGS.

【0108】本発明の実施例10は、図10に示す構成
である。
Embodiment 10 of the present invention has the configuration shown in FIG.

【0109】この実施例10は、図10に示すように、
物体側より順に、正の屈折力の第1群G1と、負の屈折
力の第2群G2と、正の屈折力の第3群G3とよりな
る。また第1群G1は、物体側より順に負レンズL11
と正レンズL12にて構成され、第2群G2は負レンズ
L21の1枚にて構成され、第3群G3は、物体側より
順に、正レンズL31、正レンズL32と負レンズL3
3とを接合した接合レンズとにて構成されている。
The tenth embodiment, as shown in FIG.
In order from the object side, there are a first group G1 having a positive refractive power, a second group G2 having a negative refractive power, and a third group G3 having a positive refractive power. The first group G1 includes a negative lens L11 in order from the object side.
The second group G2 includes one negative lens L21. The third group G3 includes a positive lens L31, a positive lens L32, and a negative lens L3 in order from the object side.
3 is joined with a cemented lens.

【0110】この実施例10の光学系は、レンズ枚数が
6枚の少ないレンズ枚数であるにもかかわらず、前述の
各条件を満足することにより高性能であってコンパクト
な光学系である。
The optical system of the tenth embodiment is a high-performance and compact optical system that satisfies the above-mentioned conditions, even though the number of lenses is as small as six.

【0111】また、実施例10の光学系は、明るさ絞り
Sが第1群G1と第2群G2間に配置され、第3群G3
に2枚の正レンズを用いることによって望遠端における
球面収差と広角端におけるコマ収差が良好に補正されて
いる。
In the optical system of the tenth embodiment, the aperture stop S is disposed between the first unit G1 and the second unit G2, and the third unit G3
By using two positive lenses, the spherical aberration at the telephoto end and the coma at the wide-angle end are favorably corrected.

【0112】また、第3群G3の物体側にフレア絞りF
Sを配置している。このフレア絞りの内径φFSは1.
6mmであり、第3群G3中のフレア絞りFSに隣接す
る正レンズL31の外径φ3は2.0mmである。つま
りφ3−φFS=0.4mmである。この実施例10の
収差状況は、図31、図32に示す通りである。
Further, the flare stop F is located on the object side of the third lens unit G3.
S is arranged. The inner diameter φFS of this flare stop is 1.
The outer diameter φ3 of the positive lens L31 adjacent to the flare stop FS in the third group G3 is 2.0 mm. That is, φ3-φFS = 0.4 mm. The aberration states of the tenth embodiment are as shown in FIGS.

【0113】本発明の実施例11の光学系は、図11に
示す通りで、物体側より順に、正の屈折力の第1群G1
と、負の屈折力の第2群G2と、正の屈折力の第3群G
3とよりなる。
The optical system according to the eleventh embodiment of the present invention, as shown in FIG. 11, has, in order from the object side, a first group G1 having a positive refractive power.
And a second group G2 having a negative refractive power and a third group G having a positive refractive power.
It consists of three.

【0114】また、第1群G1は、物体側より順に、負
レンズL11と、正レンズL12と、正レンズL13と
よりなり、第2群G2は、1枚の負レンズL21よりな
り、第3群G3は、物体側より順に、正レンズL31と
負レンズL32を貼り合わせた接合レンズと、正レンズ
L33とよりなる。
The first group G1 includes, in order from the object side, a negative lens L11, a positive lens L12, and a positive lens L13. The second group G2 includes one negative lens L21. The group G3 includes, in order from the object side, a cemented lens formed by bonding a positive lens L31 and a negative lens L32, and a positive lens L33.

【0115】この実施例11も前述の各条件を満足する
ことにより、コンパクトで光学性能の良好な光学系であ
る。
The eleventh embodiment also satisfies the conditions described above, and is a compact optical system having good optical performance.

【0116】また、明るさ絞りSを第1群G1と第2群
G2との間に配置し、また、第1群G1に2枚の正レン
ズL1、L2を用いて、望遠端における球面収差と、広
角端におけるコマ収差を良好に補正している。この実施
例11の収差状況は、図33、図34に示す通りであ
る。
Further, the aperture stop S is disposed between the first group G1 and the second group G2, and two positive lenses L1 and L2 are used in the first group G1 to provide spherical aberration at the telephoto end. And the coma at the wide-angle end is favorably corrected. The aberration states of the eleventh embodiment are as shown in FIGS.

【0117】本発明の実施例12は、図12に示す構成
である。
Embodiment 12 of the present invention has the configuration shown in FIG.

【0118】実施例12の光学系は、物体側より順に、
正の屈折力の第1群G1と、負の屈折力の第2群G2
と、正の屈折力の第3群G3とよりなる。また第1群G
1は、物体側より順に負レンズL11と正レンズL12
とよりなり、第2群G2は負レンズL211枚よりな
り、第3群G3は、物体側より順に、正レンズL31と
負レンズL32とを接合した接合レンズよりなる。また
明るさ絞りSは、第1群G1と第2群G2との間に配置
されている。この実施例12の収差状況は、図35、図
36に示す通りである。
The optical system according to the twelfth embodiment is arranged in order from the object side.
A first group G1 having a positive refractive power and a second group G2 having a negative refractive power
And a third group G3 having a positive refractive power. The first group G
1 is a negative lens L11 and a positive lens L12 in order from the object side.
The second group G2 is composed of 211 negative lenses, and the third group G3 is composed of a cemented lens in which a positive lens L31 and a negative lens L32 are cemented in order from the object side. The aperture stop S is arranged between the first group G1 and the second group G2. The aberration states of the twelfth embodiment are as shown in FIGS.

【0119】尚、実施例8の第3群G3の物体側に設け
たフレア絞りFSの位置は、第3群G3の物体側の凸面
14の面頂よりも像側に位置している。したがって間隔
13(フレア絞りFS(r13)と凸面r14の光軸上の距
離)は像側から物体側へ向けて測った距離であり、デー
タ中にはマイナス(−)符号を付して記載してある。
The third group G3 of the eighth embodiment is provided on the object side.
The position of the flare stop FS is the convex surface on the object side of the third lens unit G3.
r14Is located closer to the image side than the surface top. Therefore spacing
d 13(Flare aperture FS (r13) And convex surface r14Distance on the optical axis of
Distance) is the distance measured from the image side to the object side.
In the data, a minus (-) sign is attached.

【0120】また実施例10のフレア絞りFS(r12
の位置は、第3群の物体側凸面(r13)の面頂と一致し
ており、したがってデータ中のd12はd12=0である。
Further, the flare aperture FS (r 12 ) of the tenth embodiment is used.
Corresponds to the vertex of the third-group object-side convex surface (r 13 ), and therefore d 12 in the data is d 12 = 0.

【0121】これら実施例を示す断面図(図1〜図7)
においていずれも(A)は広角端、(B)は望遠端であ
る。
Sectional views showing these embodiments (FIGS. 1 to 7)
In each case, (A) is the wide-angle end and (B) is the telephoto end.

【0122】図40は、拡大観察可能な対物光学系(本
発明の対物光学系)と組合わせて用いる照明光学系の例
を示す図である。これら図のうち(A)は正レンズ1枚
よりなる光学系、(B)は正レンズ2枚からなる光学
系、(C)は物体側より負レンズと正レンズとよりなる
光学系、(D)は三つの正レンズよりなる光学系であ
る。
FIG. 40 is a view showing an example of an illumination optical system used in combination with an objective optical system capable of magnifying observation (the objective optical system of the present invention). In these figures, (A) is an optical system including one positive lens, (B) is an optical system including two positive lenses, (C) is an optical system including a negative lens and a positive lens from the object side, and (D) ) Is an optical system composed of three positive lenses.

【0123】図40の(A)、(B)、(C)、(D)
の照明光学系は、いずれも少なくとも1枚の正レンズを
含むことを特徴とし、図38(A)に示すような負レン
ズ1枚よりなる光学系よりも外径を小さくすることがで
きる。又図24に示すように最もライトガイド側のレン
ズが正レンズであることが望ましい。このように最もラ
イトガイドのレンズが正レンズである少なくとも1枚の
正レンズを含む照明光学系は、ライトガイドより射出し
た光束を正レンズにより収束することによりレンズ外径
を小にすることが可能である。
(A), (B), (C), (D) of FIG.
Each of the illumination optical systems includes at least one positive lens, and can have a smaller outer diameter than an optical system including one negative lens as shown in FIG. It is desirable that the lens closest to the light guide is a positive lens as shown in FIG. As described above, the illumination optical system including at least one positive lens whose light guide lens is the most positive lens can reduce the lens outer diameter by converging the light beam emitted from the light guide by the positive lens. It is.

【0124】又図40(E)は、ライトガイドの前に径
の小さい球状レンズを多数配置した構成の照明光学系
で、外径が小さく極めて全長の短い照明光学系になし得
る。
FIG. 40E shows an illumination optical system having a configuration in which a large number of small-diameter spherical lenses are arranged in front of the light guide. The illumination optical system has a small outer diameter and a very short overall length.

【0125】これら図40の(A)〜(E)に示す照明
光学系は、外径形状が円形であることを想定している
が、その形状は例えば小判形や四角形等の異形状でもよ
く、これによって一層内視鏡先端の外径を小にし小型化
し得る。
Although the illumination optical system shown in FIGS. 40A to 40E is assumed to have a circular outer diameter, the illumination optical system may have an irregular shape such as an oval shape or a square shape. Thus, the outer diameter of the distal end of the endoscope can be further reduced and downsized.

【0126】前述の実施例に示す本発明の対物光学系と
図40の(A)〜(E)のいずれかの照明光学系とを組
合わせることにより、小型で外径の細い本発明の内視鏡
装置を構成し得る。
By combining the objective optical system of the present invention shown in the above-described embodiment with any one of the illumination optical systems shown in FIGS. An endoscope device can be configured.

【0127】本発明の対物光学系は、特許請求の範囲に
記載する光学系のほかに下記の各項の光学系もその目的
を達成し得る。
In the objective optical system according to the present invention, the following optical systems can achieve the object in addition to the optical system described in the claims.

【0128】(1)複数の群よりなり少なくとも一つの
群が光軸上を移動することにより変倍作用を行ない広角
端における物体距離よりも望遠端における物体距離が近
く、レンズの媒質に屈折率分布を有する屈折率分布レン
ズを少なくとも1枚有することを特徴とする対物光学
系。
(1) At least one of the plurality of groups moves on the optical axis to perform a zooming operation, and the object distance at the telephoto end is shorter than the object distance at the wide-angle end, and the refractive index of the lens medium An objective optical system comprising at least one gradient index lens having a distribution.

【0129】(2)前記の(1)の項に記載する光学系
で、下記条件(1)を満足することを特徴とする対物光
学系。 (1) 0.1<|1/{f2 (DW −DT )}|<2
(2) An objective optical system according to the above item (1), wherein the following condition (1) is satisfied. (1) 0.1 <| 1 / {f 2 (D W −D T )} | <2

【0130】(3)前記の(1)又は(2)の項に記載
する光学系で、下記条件(2)を満足することを特徴と
する対物光学系。 (2) 1<|(fW ・fT1/2 /f1 |<2
(3) The objective optical system described in the above item (1) or (2), wherein the following condition (2) is satisfied. (2) 1 <| (f W · f T) 1/2 / f 1 | <2

【0131】(4)前記の(1)、(2)又は(3)の
項に記載する光学系で、下記条件(3)を満足すること
を特徴とする対物光学系。 (3) 0<Hu /Hs <0.8
(4) The objective optical system described in the above item (1), (2) or (3), wherein the following condition (3) is satisfied. (3) 0 <H u / H s <0.8

【0132】(5)特許請求の範囲の請求項1あるいは
前記の(2)、(3)又は(4)に記載する光学系で、
前記条件(1)の代りに下記条件(1−1)を満足する
ことを特徴とする対物光学系。 (1−1) 0.15<|1/{f2 (DW −DT )}|<1
(5) The optical system according to claim 1 or (2), (3) or (4), wherein
An objective optical system which satisfies the following condition (1-1) instead of the condition (1). (1-1) 0.15 <| 1 / {f 2 (D W −D T )} | <1

【0133】(6)特許請求の範囲の請求項1あるいは
前記の(3)の項に記載する光学系で、条件(2)の代
りに下記条件(2−1)を満足することを特徴とする対
物光学系。 (2−1) 1.1<|(fW ・fT1/2 /f1 |<1.8
(6) The optical system according to claim 1 or (3), wherein the following condition (2-1) is satisfied instead of the condition (2). Objective optics. (2-1) 1.1 <| (f W · f T) 1/2 / f 1 | <1.8

【0134】(7)特許請求の範囲の請求項2又は前記
の(4)の項に記載する光学系で、条件(3)の代りに
下記条件(3−1)を満足することを特徴とする対物光
学系。 (3−1) 0.1<Hu /Hs <0.5
(7) The optical system according to claim 2 or (4), wherein the following condition (3-1) is satisfied instead of the condition (3). Objective optics. (3-1) 0.1 <H u / H s <0.5

【0135】(8)特許請求の範囲の請求項1又は2あ
るいは前記の(1)、(2)、(3)、(4)、
(5)、(6)又は(7)の項に記載する光学系で、広
角端における物体距離よりも望遠端における物体距離が
近いことを特徴とする対物光学系。
(8) Claims 1 or 2 of the claims or the above (1), (2), (3), (4),
(5) The objective optical system according to (6) or (7), wherein the object distance at the telephoto end is shorter than the object distance at the wide angle end.

【0136】(9)特許請求の範囲の請求項1又は2あ
るいは前記の(1)、(2)、(3)、(4)、
(5)、(6)、(7)又は(8)の項に記載する光学
系で、下記条件(4)を満足することを特徴とする対物
光学系。 (4) 0.1<d0T/fT <5
(9) Claims 1 or 2 of the claims or the above (1), (2), (3), (4),
(5) The optical system described in (6), (7) or (8), wherein the objective optical system satisfies the following condition (4). (4) 0.1 <d 0T / f T <5

【0137】(10)前記の(9)の項に記載する光学
系で、条件(4)の代りに下記条件(4−1)を満足す
ることを特徴とする対物光学系。 (4−1) 0.2<d0T/fT <3
(10) The objective optical system described in the above item (9), wherein the following condition (4-1) is satisfied instead of the condition (4). (4-1) 0.2 <d 0T / f T <3

【0138】(11)前記の(9)の項に記載する光学
系で、条件(4)の代りに下記条件(4−2)を満足す
ることを特徴とする対物光学系。 (4−2) 0.5<d0T/fT <1.5
(11) The objective optical system described in the above item (9), wherein the following condition (4-2) is satisfied instead of the condition (4). (4-2) 0.5 <d 0T / f T <1.5

【0139】(12)特許請求の範囲の請求項1又は2
あるいは前記の(1)、(2)、(3)、(4)、
(5)、(6)、(7)、(8)、(9)、(10)又
は(11)の項に記載する対物光学系と、少なくとも1
枚の正レンズを含む照明光学系とを備えたことを特徴と
する内視鏡装置。
(12) Claim 1 or 2 of the claims
Alternatively, the above (1), (2), (3), (4),
(5), (6), (7), (8), (9), (10) or (11), and at least one objective optical system.
And an illumination optical system including a number of positive lenses.

【0140】(13)前記の(12)に記載する装置
で、照明光学系が正の屈折力を有することを特徴とする
内視鏡装置。
(13) The endoscope apparatus according to (12), wherein the illumination optical system has a positive refractive power.

【0141】(14)物体側より順に、正の屈折力の第
1群と、負の屈折力の第2群と、正の屈折力の第3群と
よりなり、第2群が光軸上を移動可能であり、第1群が
1枚の負レンズと少なくとも1枚の正レンズとにて構成
され、第3群が1枚の負レンズと少なくとも1枚の正レ
ンズにて構成されていることを特徴とする対物光学系。
(14) In order from the object side, there are a first group having a positive refractive power, a second group having a negative refractive power, and a third group having a positive refractive power. The first group is composed of one negative lens and at least one positive lens, and the third group is composed of one negative lens and at least one positive lens. An objective optical system, characterized in that:

【0142】(15)物体側より順に、正の屈折力の第
1群と、負の屈折力の第2群と、正の屈折力の第3群と
よりなり、第2群が光軸上を移動可能であり、接合レン
ズを1組のみ有することを特徴とする対物光学系。
(15) In order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power are arranged. Characterized in that the objective optical system is movable, and has only one set of cemented lenses.

【0143】(16)物体側より順に、正の屈折力の第
1群と、負の屈折力の第2群と、正の屈折力の第3群と
よりなり、第2群が光軸上を移動可能であり、第1群が
物体側より順に負レンズと平行平板と少なくとも一つの
光学素子と明るさ絞りとにて構成され、平行平板と明る
さ絞りとの間に配置された光学素子の少なくとも一つ
が、下記条件(5)を満足することを特徴とする対物光
学系。 (5) DDi<0.2mm
(16) In order from the object side, there are a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power. Wherein the first group is composed of a negative lens, a parallel plate, at least one optical element, and a brightness stop in this order from the object side, and an optical element disposed between the parallel plate and the brightness stop At least one of the objective optical systems satisfies the following condition (5): (5) DDi <0.2mm

【0144】(17)物体側より順に、正の屈折力の第
1群と、負の屈折力の第2群と、正の屈折力の第3群と
よりなり、第2群が光軸上を移動可能であり、画角が1
20°以上であることを特徴とする対物光学系。
(17) In order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power are arranged. Can be moved, and the angle of view is 1
An objective optical system characterized by being at least 20 °.

【0145】(18)物体側より順に、正の屈折力の第
1群と、負の屈折力の第2群と、正の屈折力の第3群と
よりなり、第2群が光軸上を移動可能であり、下記条件
(4−3)を満足することを特徴とする対物光学系。 (4−3) 0.75<dOT/fT<1.5
(18) In order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power are arranged. Characterized by satisfying the following condition (4-3): (4-3) 0.75 <d OT / f T <1.5

【0146】(18)物体側より順に、正の屈折力の第
1群と、負の屈折力の第2群と、正の屈折力の第3群と
よりなり、第2群が光軸上を移動可能であり、第3群の
物体側にフレア絞りを有し、下記条件(7)を満足する
ことを特徴とする対物光学系。 (7) 0.1mm<φ3−φFS<1.2mm
(18) In order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power are arranged. An objective optical system characterized by having a flare stop on the object side of the third group and satisfying the following condition (7). (7) 0.1 mm <φ3-φFS <1.2 mm

【0147】(20)前記の(14)、(15)、(1
6)、(17)、(18)または(19)に記載する光
学系で、下記条件(6)を満足することを特徴とする対
物光学系。 (6) 1<|β2W
(20) The above (14), (15), (1)
(6) The optical system described in (17), (18) or (19), wherein the objective optical system satisfies the following condition (6). (6) 1 <| β 2W |

【0148】[0148]

【発明の効果】本発明は、拡大観察が可能でありながら
全長が短くレンズ外径の小さい対物光学系を実現し得た
ものである。又、本発明対物光学系を内視鏡に用いる場
合、小型な照明光学系と組合わせて径の小さい小型な先
端部を有する内視鏡を構成し得る。
According to the present invention, it is possible to realize an objective optical system having a short overall length and a small outer diameter of a lens, while enabling magnification observation. Further, when the objective optical system of the present invention is used for an endoscope, an endoscope having a small distal end with a small diameter can be configured in combination with a small illumination optical system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の実施例2の断面図FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の実施例3の断面図FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】本発明の実施例4の断面図FIG. 4 is a sectional view of a fourth embodiment of the present invention.

【図5】本発明の実施例5の断面図FIG. 5 is a sectional view of a fifth embodiment of the present invention.

【図6】本発明の実施例6の断面図FIG. 6 is a sectional view of a sixth embodiment of the present invention.

【図7】本発明の実施例7の断面図FIG. 7 is a sectional view of a seventh embodiment of the present invention.

【図8】本発明の実施例8の断面図FIG. 8 is a sectional view of Embodiment 8 of the present invention.

【図9】本発明の実施例9の断面図FIG. 9 is a sectional view of Embodiment 9 of the present invention.

【図10】本発明の実施例10の断面図FIG. 10 is a sectional view of Embodiment 10 of the present invention.

【図11】本発明の実施例11の断面図FIG. 11 is a sectional view of an eleventh embodiment of the present invention.

【図12】本発明の実施例12の断面図FIG. 12 is a sectional view of Embodiment 12 of the present invention.

【図13】本発明の実施例1の広角端の収差曲線図FIG. 13 is an aberration curve diagram at a wide angle end according to the first embodiment of the present invention.

【図14】本発明の実施例1の望遠端の収差曲線図FIG. 14 is an aberration curve diagram at a telephoto end according to the first embodiment of the present invention.

【図15】本発明の実施例2の広角端の収差曲線図FIG. 15 is an aberration curve diagram at a wide-angle end according to a second embodiment of the present invention.

【図16】本発明の実施例2の望遠端の収差曲線図FIG. 16 is an aberration curve diagram at a telephoto end according to a second embodiment of the present invention.

【図17】本発明の実施例3の広角端の収差曲線図FIG. 17 is an aberration curve diagram at a wide angle end according to a third embodiment of the present invention.

【図18】本発明の実施例3の望遠端の収差曲線図FIG. 18 is an aberration curve diagram at a telephoto end according to a third embodiment of the present invention.

【図19】本発明の実施例4の広角端の収差曲線図FIG. 19 is an aberration curve diagram at a wide-angle end according to a fourth embodiment of the present invention.

【図20】本発明の実施例4の望遠端の収差曲線図FIG. 20 is an aberration curve diagram at a telephoto end according to a fourth embodiment of the present invention.

【図21】本発明の実施例5の広角端の収差曲線図FIG. 21 is an aberration curve diagram at a wide-angle end according to a fifth embodiment of the present invention.

【図22】本発明の実施例5の望遠端の収差曲線図FIG. 22 is an aberration curve diagram at a telephoto end according to a fifth embodiment of the present invention.

【図23】本発明の実施例6の広角端の収差曲線図FIG. 23 is an aberration curve diagram at a wide-angle end according to a sixth embodiment of the present invention.

【図24】本発明の実施例6の望遠端の収差曲線図FIG. 24 is an aberration curve diagram at a telephoto end according to a sixth embodiment of the present invention.

【図25】本発明の実施例7の広角端の収差曲線図FIG. 25 is an aberration curve diagram at a wide angle end according to a seventh embodiment of the present invention.

【図26】本発明の実施例7の望遠端の収差曲線図FIG. 26 is an aberration curve diagram at a telephoto end according to a seventh embodiment of the present invention.

【図27】本発明の実施例8の広角端の収差曲線図FIG. 27 is an aberration curve diagram at a wide-angle end according to an eighth embodiment of the present invention.

【図28】本発明の実施例8の望遠端の収差曲線図FIG. 28 is an aberration curve diagram at a telephoto end according to an eighth embodiment of the present invention.

【図29】本発明の実施例9の広角端の収差曲線図FIG. 29 is an aberration curve diagram at a wide angle end according to a ninth embodiment of the present invention.

【図30】本発明の実施例9の望遠端の収差曲線図FIG. 30 is an aberration curve diagram at a telephoto end according to a ninth embodiment of the present invention.

【図31】本発明の実施例10の広角端の収差曲線図FIG. 31 is an aberration curve diagram at a wide-angle end according to a tenth embodiment of the present invention.

【図32】本発明の実施例10の望遠端の収差曲線図FIG. 32 is an aberration curve diagram at a telephoto end according to a tenth embodiment of the present invention.

【図33】本発明の実施例11の広角端の収差曲線図FIG. 33 is an aberration curve diagram at a wide angle end according to Example 11 of the present invention.

【図34】本発明の実施例11の望遠端の収差曲線図FIG. 34 is an aberration curve diagram at a telephoto end in Example 11 of the present invention.

【図35】本発明の実施例12の広角端の収差曲線図FIG. 35 is an aberration curve diagram at a wide angle end according to a twelfth embodiment of the present invention.

【図36】本発明の実施例12の望遠端の収差曲線図FIG. 36 is an aberration curve diagram at a telephoto end according to a twelfth embodiment of the present invention.

【図37】内視鏡先端部の構成の概要を示す図FIG. 37 is a diagram showing an outline of a configuration of an endoscope distal end portion;

【図38】内視鏡照明光学系の例を示す図FIG. 38 is a diagram showing an example of an endoscope illumination optical system.

【図39】本発明の第5の構成の第1群のレンズ配置の
概要を示す図
FIG. 39 is a diagram illustrating an outline of a lens arrangement of a first group having a fifth configuration according to the present invention;

【図40】本発明で用いる内視鏡照明光学系の例を示す
断面図
FIG. 40 is a sectional view showing an example of an endoscope illumination optical system used in the present invention.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年3月8日[Submission date] March 8, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0059[Correction target item name] 0059

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0059】 実施例8 f=1.83〜2.13,F/8.9 〜12.3,2ω=131 °〜75.3° 物体距離=14.4〜2.0 ,像高=1.61 r1 =∞ d1 =0.3800 n1 =1.88300 ν1 =40.78 r2 =1.0600 d2 =0.7200 r3 =∞ d3 =0.4000 n2 =1.52287 ν2 =59.89 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.6200 n3 =1.51400 ν3 =75.00 r6 =∞ d6 =0.0500 r7 =3.1860 d7 =1.5100 n4 =1.72916 ν4 =54.68 r8 =-2.3660 d8 =0.0500 r9 =∞(絞り) d9 =D1 (可変) r10=∞ d10=0.2800 n5 =1.59551 ν5 =39.24 r11=2.9200 d11=0.1800 r12=∞ d12=D2 (可変) r13=∞ d13=-0.0800 r14=4.2960 d14=1.8000 n6 =1.72916 ν6 =54.68 r15=-2.0850 d15=0.3200 n7 =1.84666 ν7 =23.78 r16=-5.8750 d16=2.0900 r17=∞ d17=1.2000 n8 =1.51633 ν8 =64.14 r18=∞ d18=0.0100 n9 =1.56384 ν9 =60.67 r19=∞ d19=1.2000 n10=1.53172 ν10=48.84 r20=∞ d20=0.0300 n11=1.56384 ν11=60.67 r21=∞ f 1.83 2.13 D0 14.40000 2.00000 D1 0.20000 2.09000 D2 2.2000 0.31000 |1/{f2 (DW −DT )}|=0.11 |(fW ・fT )1/2 /f1 |=0.89,Hu /Hs =0.36,d0T/fT =0.94 β2W=8.30, φ3-φFS=0.6mmExample 8 f = 1.83 to 2.13, F / 8.9 to 12.3, 2ω = 131 ° to 75.3 ° Object distance = 14.4 to 2.0, Image height = 1.61 r 1 = ∞ d 1 = 0.3800 n 1 = 1.88300 ν 1 = 40.78 r 2 = 1.0600 d 2 = 0.7200 r 3 = ∞ d 3 = 0.4000 n 2 = 1.52287 ν 2 = 59.89 r 4 = ∞ d 4 = 0.0300 r 5 = ∞ d 5 = 0.6200 n 3 = 1.51400 ν 3 = 75.00 r 6 = ∞ d 6 = 0.0500 r 7 = 3.1860 d 7 = 1.5100 n 4 = 1.72916 ν 4 = 54.68 r 8 = -2.3660 d 8 = 0.0500 r 9 = ∞ (aperture) d 9 = D 1 (variable) r 10 = ∞ d 10 = 0.2800 n 5 = 1.59551 ν 5 = 39.24 r 11 = 2.9200 d 11 = 0.1800 r 12 = ∞ d 12 = D 2 ( variable) r 13 = ∞ d 13 = -0.0800 r 14 = 4.2960 d 14 = 1.8000 n 6 = 1.72916 ν 6 = 54.68 r 15 = -2.0850 d 15 = 0.3200 n 7 = 1.84666 ν 7 = 23.78 r 16 = -5.8750 d 16 = 2.0900 r 17 = ∞ d 17 = 1.2000 n 8 = 1.51633 ν 8 = 64.14 r 18 = ∞ d 18 = 0.0100 n 9 = 1.5 6384 ν 9 = 60.67 r 19 = ∞ d 19 = 1.2000 n 10 = 1.53172 ν 10 = 48.84 r 20 = ∞ d 20 = 0.0300 n 11 = 1.56384 ν 11 = 60.67 r 21 = ∞ f 1.83 2.13 D 0 14.40000 2.00000 D 1 0.20000 2.09000 D 2 2.2000 0.31000 | 1 / {f 2 (D W -D T)} | = 0.11 | (f W · f T) 1/2 / f 1 | = 0.89, H u / H s = 0.36, d 0T / f T = 0.94 β 2W = 8.30, φ3-φFS = 0.6mm

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0060[Correction target item name] 0060

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0060】 実施例9f=1.97〜2.52,F/9.2 〜15.6,2ω=129.9 °〜56.3° 物体距離=15〜2.0 ,像高=1.61 r1 =∞ d1 =0.4000 n1 =1.88300 ν1 =40.78 r2 =1.0945 d2 =0.8692 r3 =∞ d3 =0.4000 n2 =1.52287 ν2 =59.89 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.6200 n3 =1.51400 ν3 =75.00 r6 =∞ d6 =0.1000 r7 =2.1389 d7 =0.5000 n4 =1.88300 ν4 =40.76 r8 =1.0592 d8 =1.4605 n5 =1.63930 ν5 =44.87 r9 =-2.1142 d9 =0.1000 r10=∞(絞り) d10=D1 (可変) r11=-59.6121 d11=0.3000 n6 =1.88300 ν6 =40.76 r12=3.8932 d12=D2 (可変) r13=4.3415 d13=1.5693 n7 =1.77250 ν7 =49.60 r14=-2.1637 d14=0.2810 n8 =1.90135 ν8 =31.55 r15=-7.3937 d15=3.4307 r16=∞ d16=1.5000 n9 =1.51633 ν9 =64.14 r17=∞ d17=1.2500 n10=1.51633 ν10=64.14 r18=∞ f 1.97 2.52 D0 15.00000 2.00000 D1 0.20000 2.69967 D2 2.74757 0.25000 |1/{f2 (DW -DT )}|=0.10 |(fW ・fT )1/2 /f1 |=0.95,Hu /Hs =0.11,d0T/fT =0.79,β2W=2.1Example 9 f = 1.97 to 2.52, F / 9.2 to 15.6, 2ω = 129.9 ° to 56.3 ° Object distance = 15 to 2.0, Image height = 1.61 r 1 = ∞ d 1 = 0.4000 n 1 = 1.88300 ν 1 = 40.78 r 2 = 1.0945 d 2 = 0.8692 r 3 = ∞ d 3 = 0.4000 n 2 = 1.52287 ν 2 = 59.89 r 4 = ∞ d 4 = 0.0300 r 5 = ∞ d 5 = 0.6200 n 3 = 1.51400 ν 3 = 75.00 r 6 = ∞ d 6 = 0.1000 r 7 = 2.1389 d 7 = 0.5000 n 4 = 1.88300 ν 4 = 40.76 r 8 = 1.0592 d 8 = 1.4605 n 5 = 1.63930 ν 5 = 44.87 r 9 = -2.1142 d 9 = 0.1000 r 10 = ∞ (aperture) d 10 = D 1 (variable) r 11 = -59.6121 d 11 = 0.3000 n 6 = 1.88300 ν 6 = 40.76 r 12 = 3.8932 d 12 = D 2 (variable) r 13 = 4.3415 d 13 = 1.5693 n 7 = 1.77250 ν 7 = 49.60 r 14 = -2.1637 d 14 = 0.2810 n 8 = 1.90135 ν 8 = 31.55 r 15 = -7.3937 d 15 = 3.4307 r 16 = ∞ d 16 = 1.5000 n 9 = 1.51633 ν 9 = 64.14 r 17 = ∞ d 17 = 1.2500 n 10 = 1.51633 ν 10 = 64.14 r 18 = ∞ f 1.97 2.52 D 0 15.00000 2.00000 D 1 0.20000 2.69967 D 2 2.74757 0.25000 | 1 / {f 2 (D W -D T )} | = 0. 10 | (f W・ f T ) 1/2 / f 1 | = 0.95, H u / H s = 0.11, d 0T / f T = 0.79, β 2W = 2.1

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0061[Correction target item name] 0061

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0061】 実施例10 f=1.14〜1.53,F/7.3 〜12 ,2ω=132.9 °〜65.3° 物体距離=12〜2.2 ,像高=1.05 r1 =∞ d1 =0.2600 n1 =1.88300 ν1 =40.78 r2 =0.7216 d2 =0.4587 r3 =∞ d3 =0.4000 n2 =1.52287 ν2 =59.89 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.6200 n3 =1.51400 ν3 =75.00 r6 =∞ d6 =0.0400 r7 =3.6037 d7 =0.6175 n4 =1.88300 ν4 =40.76 r8 =-1.8142 d8 =0.0500 r9=∞(絞り) d9 =D1 (可変) r10 =-8.7484 d10 =0.2000 n5 =1.90135 ν5 =31.55 r11=2.5880 d11=D2 (可変) r12=∞ d12=0.0000 r13=3.6204 d13=0.6208 n6 =1.88300 ν6 =40.76 r14=-3.7375 d14=0.0500 r15=4.4029 d15=0.8061 n7 =1.51633 ν7 =64.14 r16=-1.6972 d16=0.2000 n8 =1.84666 ν8 =23.78 r17=39.0105 d17=1.2038 r18=∞ d18=1.1000 n9 =1.51633 ν9 =64.14 r19=∞ d19=0.8000 n10=1.51633 ν10=64.14 r20=∞ f 1.14 1.53 D0 12.00000 2.20000 D1 0.15000 1.32311 D2 1.32311 0.15000 |1/{f2 (DW -DT )}|=0.39 |(fW ・fT )1/2 /f1 |=0.90, Hu /Hs =0.44, d0T/fT =1.44 β2W=1.36, φ3-φFS=0.4mmExample 10 f = 1.14 to 1.53, F / 7.3 to 12, 2ω = 132.9 ° to 65.3 ° Object distance = 12 to 2.2, Image height = 1.05 r 1 = ∞ d 1 = 0.2600 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7216 d 2 = 0.4587 r 3 = ∞ d 3 = 0.4000 n 2 = 1.52287 ν 2 = 59.89 r 4 = ∞ d 4 = 0.0300 r 5 = ∞ d 5 = 0.6200 n 3 = 1.51400 ν 3 = 75.00 r 6 = ∞ d 6 = 0.0400 r 7 = 3.6037 d 7 = 0.6175 n 4 = 1.88300 ν 4 = 40.76 r 8 = -1.8142 d 8 = 0.0500 r 9 = ∞ (aperture) d 9 = D 1 (variable) r 10 = -8.7484 d 10 = 0.2000 n 5 = 1.90135 ν 5 = 31.55 r 11 = 2.5880 d 11 = D 2 (variable) r 12 = ∞d 12 = 0.0000 r 13 = 3.6204 d 13 = 0.6208 n 6 = 1.88300 ν 6 = 40.76 r 14 = -3.7375 d 14 = 0.0500 r 15 = 4.4029 d 15 = 0.8061 n 7 = 1.51633 ν 7 = 64.14 r 16 = -1.6972 d 16 = 0.2000 n 8 = 1.84666 ν 8 = 23.78 r 17 = 39.0105 d 17 = 1.2038 r 18 = ∞ d 18 = 1.1000 n 9 = 1.51633 ν 9 = 64.14 r 19 = ∞ d 19 = 0.8000 n 10 = 1.51633 ν 10 = 64.14 r 20 = ∞ f 1.14 1.53 D 0 12.00000 2.20000 D 1 0.15000 1.32311 D 2 1.32311 0.15000 | 1 / {f 2 (D W -D T )} | = 0.39 | (f W · f T ) 1/2 / f 1 | = 0.90, Hu / H s = 0.44, d 0T / f T = 1.44 β 2W = 1.36, φ3-φFS = 0.4mm

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0062[Correction target item name] 0062

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0062】 実施例11 f=1.35〜2.04, F/6.4 〜11.7, 2ω=130 °〜56.6° 物体距離=12〜2.1 ,像高=1.21 r1 =∞ d1 =0.3000 n1 =1.88300 ν1 =40.78 r2 =0.7564 d2 =0.5000 r3 =∞ d3 =0.4000 n2 =1.52287 ν2 =59.89 r4 =∞ d4 =0.0300 r5 =∞ d5 =0.6200 n3 =1.51400 ν3 =75.00 r6 =∞ d6 =0.0500 r7 =16.9172 d7 =0.6000 n4 =1.51633 ν4 =64.14 r8 =-1.5139 d8 =0.0500 r9 =5.5489 d9 =0.5000 n5 =1.51633 ν5 =64.14 r10=-2.7205 d10=0.5000 r10=∞(絞り) d11=D1 (可変) r12=-6.2390 d12=0.2500 n6 =1.88300 ν6 =40.76 r13=2.6147 d13=D2 (可変) r14=6.1306 d14=1.1000 n7 =1.72916 ν7 =54.68 r15=-1.5473 d15=0.2500 n8 =1.84666 ν8 =23.78 r16=-3.6654 d16=0.0500 r17=6.0286 d17=0.6288 n9 =1.51633 ν9 =64.14 r18=∞ d18=2.9631 r19=∞ d19=1.5000 n10=1.51633 ν10 =64.14 r20=∞ d20=1.0000 n11=1.51633 ν11 =64.14 r21=∞ f 1.35 2.04 D0 12.00000 2.10000 D1 0.20000 1.54000 D2 1.59000 0.25000 |1/{f2 (DW -DT )}|=0.36 |(fW ・fT )1/2 /f1 |=1.17, Hu /Hs =0.52, d0T/fT =1.03,β2W=1.14Example 11 f = 1.35 to 2.04, F / 6.4 to 11.7, 2ω = 130 ° to 56.6 ° Object distance = 12 to 2.1, Image height = 1.21 r 1 = ∞ d 1 = 0.3000 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7564 d 2 = 0.5000 r 3 = ∞ d 3 = 0.4000 n 2 = 1.52287 ν 2 = 59.89 r 4 = ∞ d 4 = 0.0300 r 5 = ∞ d 5 = 0.6200 n 3 = 1.51400 ν 3 = 75.00 r 6 = ∞ d 6 = 0.0500 r 7 = 16.9172 d 7 = 0.6000 n 4 = 1.51633 ν 4 = 64.14 r 8 = -1.5139 d 8 = 0.0500 r 9 = 5.5489 d 9 = 0.5000 n 5 = 1.51633 ν 5 = 64.14 r 10 = -2.7205 d 10 = 0.5000 r 10 = ∞ ( stop) d 11 = D 1 (variable) r 12 = -6.2390 d 12 = 0.2500 n 6 = 1.88300 ν 6 = 40.76 r 13 = 2.6147 d 13 = D 2 ( (Variable) r 14 = 6.1306 d 14 = 1.1000 n 7 = 1.72916 ν 7 = 54.68 r 15 = -1.5473 d 15 = 0.2500 n 8 = 1.84666 ν 8 = 23.78 r 16 = -3.6654 d 16 = 0.0500 r 17 = 6.0286 d 17 = 0.6288 n 9 = 1.51633 ν 9 = 64.14 r 18 = ∞ d 18 = 2.9631 r 19 = ∞ d 19 = 1.5000 n 10 = 1.51633 ν 10 = 64.14 r 20 = ∞ d 20 = 1.0000 n 11 = 1.51633 ν 11 = 64.14 r 21 = ∞ f 1.35 2.04 D 0 12.00000 2.10000 D 1 0.20000 1.54000 D 2 1.59000 0.25000 | 1 / {f 2 (D W -D T )} | = 0.36 | (f W · f T ) 1/2 / f 1 | = 1.17, H u / H s = 0.52, d 0T / f T = 1.03, β 2W = 1.14

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0063[Correction target item name] 0063

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0063】 実施例12 f=1.21〜1.48, F/6.8 〜9.7, 2ω=149.6 °〜76.3° 物体距離=12〜1.9 ,像高=1.1 r1 =∞ d1 =0.2500 n1 =1.88300 ν1 =40.78 r2 =0.7403 d2 =0.4194 r3 =∞ d3 =0.2000 n2 =1.52287 ν2 =59.89 r4 =∞ d4 =0.0500 r5 =2.1275 d5 =1.7387 n3 =1.68893 ν3 =31.07 r6 =-1.3323 d6 =0.0500 r7 =∞(絞り) d7=D1 (可変) r8 =282.6298 d8 =0.2000 n4 =1.84666 ν4 =23.78 r9 =2.6319 d9 =D2 (可変) r10 =4.5636 d10 =0.8674 n5 =188300 ν5 =40.76 r11=-1.7560 d11=0.2000 n6 =1.84666 ν6 =23.78 r12=-4.2149 d12=0.1000 r13=∞ d13=0.6200 n7 =1.51400 ν7 =75.00 r14=∞ d14=1.2120 r15=∞ d15=1.0000 n8 =1.51633 ν8 =64.14 r16=∞ d16=0.5000 n9 =1.51633 ν9 =64.14 r17=∞ f 1.21 1.48 D0 12.00000 1.90000 D1 0.10000 1.35581 D2 1.40581 0.15000 |1/{f2 (DW -DT )}|=0.25 |(fW ・fT )1/2 /f1 |=0.79, Hu /Hs =0.45, d0T/fT =1.28,β2W=3.63 ただしr1 ,r2 ,・・・ はレンズ各面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚又はレンズ間隔、n
1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2,・・・
は各レンズのアッベ数である。D0は物体距離である。
データ中長さの単位はmmである。
Example 12 f = 1.21 to 1.48, F / 6.8 to 9.7, 2ω = 149.6 ° to 76.3 ° Object distance = 12 to 1.9, Image height = 1.1 r 1 = ∞ d 1 = 0.2500 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7403 d 2 = 0.4194 r 3 = ∞ d 3 = 0.2000 n 2 = 1.52287 ν 2 = 59.89 r 4 = ∞ d 4 = 0.0500 r 5 = 2.1275 d 5 = 1.7387 n 3 = 1.68893 ν 3 = 31.07 r 6 = -1.3323 d 6 = 0.0500 r 7 = ∞ (aperture) d 7 = D 1 (variable) r 8 = 282.6298 d 8 = 0.2000 n 4 = 1.84666 ν 4 = 23.78 r 9 = 2.6319 d 9 = D 2 ( (Variable) r 10 = 4.5636 d 10 = 0.8674 n 5 = 188300 ν 5 = 40.76 r 11 = -1.7560 d 11 = 0.2000 n 6 = 1.84666 ν 6 = 23.78 r 12 = -4.2149 d 12 = 0.1000 r 13 = ∞d 13 = 0.6200 n 7 = 1.51400 ν 7 = 75.00 r 14 = ∞ d 14 = 1.2120 r 15 = ∞ d 15 = 1.0000 n 8 = 1.51633 ν 8 = 64.14 r 16 = ∞ d 16 = 0.5000 n 9 = 1.51633 ν 9 = 64.14 r 17 = ∞ f 1.21 1.48 D 0 12.00000 1.90000 D 1 0.10000 1.35581 D 2 1.40581 0.15000 | 1 / {f 2 (D W -D T )} | = 0.25 | (f W · f T ) 1/2 / f 1 | = 0.79, H u / H s = 0.45, d 0T / f T = 1.28, β 2W = 3.63 where r 1 , r 2 ,... are the radii of curvature of the respective surfaces of the lens, d
.. , D 2 ,...
1 , n 2 ,... Are the refractive indices of each lens, ν 1 , ν 2 ,.
Is the Abbe number of each lens. D 0 is the object distance.
The unit of the length in the data is mm.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、正の屈折力の第1群と負
の屈折力の第2群と正の屈折力の第3群とよりなり、第
2群が光軸上を移動することによって変倍作用を行な
い、下記条件(1)、(2)を満足することを特徴とす
る対物光学系。 (1) 0.1<|1/{f2 (DW −DT )}|<2 (2) 1<|(fW ・fT1/2 /f1 |<2 ただし、f1 ,f2 は夫々第1群および第2群の焦点距
離、DW ,DT は夫々広角端および望遠端における第1
群と第2群の間隔、fW ,fT は広角端および望遠端に
おける全系の焦点距離である。
1. A first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power. The second lens unit moves on the optical axis. An objective optical system which performs a zooming operation by satisfying the following conditions (1) and (2). (1) 0.1 <| 1 / {f 2 (D W −D T )} | <2 (2) 1 <| (f W · f T ) 1/2 / f 1 | <2 where f 1 , F 2 are the focal lengths of the first and second lens units, respectively, and D W and D T are the first and second lens units at the wide-angle end and the telephoto end, respectively.
Group and spacing of the second group, f W, is f T is a focal length of the entire system at the wide-angle end and the telephoto end.
【請求項2】複数の群と明るさ絞りとにより構成され少
なくとも一つの群が光軸上を移動することにより変倍作
用を行ない、下記条件(3)を満足することを特徴とす
る対物光学系。 (3) 0<Hu /Hs <0.8 ただし、Hu は明るさ絞り位置における軸外上側光線
高、Hs は明るさ絞りの半径である。
2. An objective optical system comprising a plurality of groups and a brightness stop, wherein at least one group performs a zooming operation by moving on an optical axis, and satisfies the following condition (3). system. (3) 0 <H u / H s <0.8 , however, off-axis upper ray height in H u is the aperture stop position, H s is the radius of the aperture stop.
JP11053708A 1998-03-03 1999-03-02 Objective optical system Pending JPH11316339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11053708A JPH11316339A (en) 1998-03-03 1999-03-02 Objective optical system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6602798 1998-03-03
JP10-66027 1998-03-03
JP11053708A JPH11316339A (en) 1998-03-03 1999-03-02 Objective optical system

Publications (1)

Publication Number Publication Date
JPH11316339A true JPH11316339A (en) 1999-11-16

Family

ID=26394422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11053708A Pending JPH11316339A (en) 1998-03-03 1999-03-02 Objective optical system

Country Status (1)

Country Link
JP (1) JPH11316339A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6618205B2 (en) 2001-05-14 2003-09-09 Pentax Corporation Endoscope objective optical system
JP2007301227A (en) * 2006-05-12 2007-11-22 Olympus Medical Systems Corp Imaging device
US7499226B2 (en) 2006-03-01 2009-03-03 Olympus Medical Systems Corp. Magnifying optical system for endoscope
US7511892B2 (en) 2006-03-29 2009-03-31 Olympus Medical Systems Corp. Image-acquisition optical system
JP2009251432A (en) * 2008-04-09 2009-10-29 Olympus Medical Systems Corp Objective optical system for endoscope
EP2131225A2 (en) 2008-06-06 2009-12-09 Olympus Medical Systems Corporation Objective optical system
WO2010119640A1 (en) 2009-04-16 2010-10-21 オリンパスメディカルシステムズ株式会社 Objective optical system
WO2011070930A1 (en) 2009-12-11 2011-06-16 オリンパスメディカルシステムズ株式会社 Objective optical system
US8130454B2 (en) 2008-07-28 2012-03-06 Olympus Medical Systems Corp. Endoscope objective optical system
WO2014017030A1 (en) * 2012-07-23 2014-01-30 富士フイルム株式会社 Imaging lens and imaging device
WO2014132494A1 (en) 2013-02-28 2014-09-04 オリンパスメディカルシステムズ株式会社 Objective optical system
JP5718527B2 (en) * 2012-07-23 2015-05-13 富士フイルム株式会社 Imaging lens and imaging apparatus
WO2016006486A1 (en) * 2014-07-11 2016-01-14 オリンパス株式会社 Objective optical system
JP2016062020A (en) * 2014-09-19 2016-04-25 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2016062021A (en) * 2014-09-19 2016-04-25 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2016062019A (en) * 2014-09-19 2016-04-25 富士フイルム株式会社 Imaging lens and imaging apparatus
EP2980624A4 (en) * 2013-03-26 2016-11-23 Olympus Corp Optical system for endoscope
US9739997B2 (en) 2012-12-07 2017-08-22 Olympus Corporation Objective lens and observation apparatus having the same
WO2017199614A1 (en) * 2016-05-16 2017-11-23 オリンパス株式会社 Objective optical system
JP2018526661A (en) * 2016-08-08 2018-09-13 ゼァージァン サニー オプティクス カンパニー リミテッドZhejiang Sunny Optics Co.,Ltd. Wide angle lens
US10095013B2 (en) 2014-11-26 2018-10-09 Olympus Corporation Objective optical system
WO2019107153A1 (en) * 2017-11-28 2019-06-06 京セラ株式会社 Imaging lens, imaging device, and vehicle-mounted camera system
JP2019168493A (en) * 2018-03-22 2019-10-03 コニカミノルタ株式会社 Optical system, lens unit and image capturing device
US10649201B2 (en) 2016-01-06 2020-05-12 Olympus Corporation Objective optical system
US10739577B2 (en) 2016-06-20 2020-08-11 Olympus Corporation Objective optical system for endoscope
US11150462B2 (en) 2016-11-16 2021-10-19 Olympus Corporation Objective optical system

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6618205B2 (en) 2001-05-14 2003-09-09 Pentax Corporation Endoscope objective optical system
US7499226B2 (en) 2006-03-01 2009-03-03 Olympus Medical Systems Corp. Magnifying optical system for endoscope
US7511892B2 (en) 2006-03-29 2009-03-31 Olympus Medical Systems Corp. Image-acquisition optical system
JP2007301227A (en) * 2006-05-12 2007-11-22 Olympus Medical Systems Corp Imaging device
JP2009251432A (en) * 2008-04-09 2009-10-29 Olympus Medical Systems Corp Objective optical system for endoscope
US7982975B2 (en) 2008-06-06 2011-07-19 Olympus Medical Systems Corp. Objective optical system
EP2131225A2 (en) 2008-06-06 2009-12-09 Olympus Medical Systems Corporation Objective optical system
JP2009294496A (en) * 2008-06-06 2009-12-17 Olympus Medical Systems Corp Objective optical system
JP4653823B2 (en) * 2008-06-06 2011-03-16 オリンパスメディカルシステムズ株式会社 Objective optical system
US8130454B2 (en) 2008-07-28 2012-03-06 Olympus Medical Systems Corp. Endoscope objective optical system
US8203798B2 (en) 2009-04-16 2012-06-19 Olympus Medical Systems Corp. Objective optical system
WO2010119640A1 (en) 2009-04-16 2010-10-21 オリンパスメディカルシステムズ株式会社 Objective optical system
WO2011070930A1 (en) 2009-12-11 2011-06-16 オリンパスメディカルシステムズ株式会社 Objective optical system
US8456767B2 (en) 2009-12-11 2013-06-04 Olympus Medical Systems Corp. Objective optical system
JP5718527B2 (en) * 2012-07-23 2015-05-13 富士フイルム株式会社 Imaging lens and imaging apparatus
JP5718528B2 (en) * 2012-07-23 2015-05-13 富士フイルム株式会社 Imaging lens and imaging apparatus
WO2014017030A1 (en) * 2012-07-23 2014-01-30 富士フイルム株式会社 Imaging lens and imaging device
JPWO2014017029A1 (en) * 2012-07-23 2016-07-07 富士フイルム株式会社 Imaging lens and imaging apparatus
US9383555B2 (en) 2012-07-23 2016-07-05 Fujifilm Corporation Imaging lens and imaging apparatus
JPWO2014017030A1 (en) * 2012-07-23 2016-07-07 富士フイルム株式会社 Imaging lens and imaging apparatus
US9739997B2 (en) 2012-12-07 2017-08-22 Olympus Corporation Objective lens and observation apparatus having the same
WO2014132494A1 (en) 2013-02-28 2014-09-04 オリンパスメディカルシステムズ株式会社 Objective optical system
JP5802847B2 (en) * 2013-02-28 2015-11-04 オリンパス株式会社 Objective optical system
JPWO2014132494A1 (en) * 2013-02-28 2017-02-02 オリンパス株式会社 Objective optical system
US9341838B2 (en) 2013-02-28 2016-05-17 Olympus Corporation Objective optical system
EP2980624A4 (en) * 2013-03-26 2016-11-23 Olympus Corp Optical system for endoscope
US9846295B2 (en) 2014-07-11 2017-12-19 Olympus Corporation Objective optical system
JPWO2016006486A1 (en) * 2014-07-11 2017-04-27 オリンパス株式会社 Objective optical system
WO2016006486A1 (en) * 2014-07-11 2016-01-14 オリンパス株式会社 Objective optical system
JP5948530B2 (en) * 2014-07-11 2016-07-06 オリンパス株式会社 Objective optical system
JP2016062019A (en) * 2014-09-19 2016-04-25 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2016062021A (en) * 2014-09-19 2016-04-25 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2016062020A (en) * 2014-09-19 2016-04-25 富士フイルム株式会社 Imaging lens and imaging apparatus
US10095013B2 (en) 2014-11-26 2018-10-09 Olympus Corporation Objective optical system
US10649201B2 (en) 2016-01-06 2020-05-12 Olympus Corporation Objective optical system
WO2017199614A1 (en) * 2016-05-16 2017-11-23 オリンパス株式会社 Objective optical system
JP6266189B1 (en) * 2016-05-16 2018-01-24 オリンパス株式会社 Objective optical system
US10914935B2 (en) 2016-05-16 2021-02-09 Olympus Corporation Objective optical system
US10739577B2 (en) 2016-06-20 2020-08-11 Olympus Corporation Objective optical system for endoscope
JP2018526661A (en) * 2016-08-08 2018-09-13 ゼァージァン サニー オプティクス カンパニー リミテッドZhejiang Sunny Optics Co.,Ltd. Wide angle lens
US10203477B2 (en) 2016-08-08 2019-02-12 Zhejiang Sunny Optics Co., Ltd. Wide angle lens
US11150462B2 (en) 2016-11-16 2021-10-19 Olympus Corporation Objective optical system
WO2019107153A1 (en) * 2017-11-28 2019-06-06 京セラ株式会社 Imaging lens, imaging device, and vehicle-mounted camera system
JPWO2019107153A1 (en) * 2017-11-28 2020-11-19 京セラ株式会社 Imaging lens and imaging device and in-vehicle camera system
JP2019168493A (en) * 2018-03-22 2019-10-03 コニカミノルタ株式会社 Optical system, lens unit and image capturing device

Similar Documents

Publication Publication Date Title
JPH11316339A (en) Objective optical system
JP3765500B2 (en) Endoscope objective lens
EP1526398B1 (en) Endoscope with an objective lens
JP4914136B2 (en) Zoom lens and imaging apparatus having the same
JP5414205B2 (en) Zoom lens and imaging apparatus having the same
JP4909089B2 (en) Zoom lens and imaging apparatus having the same
JP5071380B2 (en) Imaging device, imaging method, and high zoom lens
JP2876252B2 (en) Endoscope objective lens
JP2009169414A (en) Zoom lens and image pickup apparatus having the same
JP4173977B2 (en) Zoom lens system
JP6025440B2 (en) Zoom lens and imaging apparatus having the same
JP6493896B2 (en) Zoom lens and imaging device
JP4902179B2 (en) Zoom lens and imaging apparatus having the same
JPH10133115A (en) Compact zoom lens
JP2007178825A (en) Zoom lens and imaging device having the same
JP6411678B2 (en) Zoom lens and imaging device
JPH05297274A (en) Kepler type zoom finder optical system
JPH1010423A (en) Near infrared luminous flux transmission preventing lens system
JPH10206734A (en) Zoom lens
JP4770007B2 (en) Zoom lens
JP3723643B2 (en) High zoom ratio zoom lens system
JPH06130290A (en) Compact fixed focus lens
JP4817551B2 (en) Zoom lens
JPH09211323A (en) Zoom lens for finite distance
JP3392881B2 (en) Zoom lens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421