WO2019107087A1 - Method for producing resin particles and toner - Google Patents

Method for producing resin particles and toner Download PDF

Info

Publication number
WO2019107087A1
WO2019107087A1 PCT/JP2018/041205 JP2018041205W WO2019107087A1 WO 2019107087 A1 WO2019107087 A1 WO 2019107087A1 JP 2018041205 W JP2018041205 W JP 2018041205W WO 2019107087 A1 WO2019107087 A1 WO 2019107087A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polyester resin
parts
acid
dispersion
Prior art date
Application number
PCT/JP2018/041205
Other languages
French (fr)
Japanese (ja)
Inventor
前田 真一
康弘 小野
雄太 田畠
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to JP2019557099A priority Critical patent/JP6818162B2/en
Publication of WO2019107087A1 publication Critical patent/WO2019107087A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles

Definitions

  • the present invention relates to a method of producing resin particles and toner.
  • the toner In order to pass through these processes without problems, it is necessary for the toner to first maintain a stable charge, and then to have good fixability to paper. In addition, since the device has a heater at the fixing portion, the temperature is increased in the device, so that the toner is required not to be blocked in the device.
  • the improvement of the low temperature fixability of the toner is strongly demanded.
  • a transfer material to be used many types of paper such as recycled paper with large surface irregularities and coated paper with a smooth surface are used.
  • a wide nip fixing device such as a soft roller or a belt roller is preferably used.
  • the toner binder greatly affects the toner characteristics as described above, and polystyrene resin, styrene-acrylic resin, polyester resin, epoxy resin, polyurethane resin, polyamide resin, etc. are known, but recently, storage Polyester resins are of particular interest because they tend to balance the properties and fixability.
  • Patent Document 1 As a method of expanding the fixing temperature range, a toner using a reaction product of a mixture of a resin for polymerization and a polyester resin and an isocyanate has been proposed (Patent Document 1).
  • Patent Document 1 Even if this method can prevent the offset phenomenon at high temperatures to some extent, the lower limit temperature for fixing is also raised at the same time, and low temperature fixing becomes difficult, and the high aggregation of urea groups and urethane groups derived from isocyanate makes the resin There is a problem that the crushability of the Furthermore, the uniformity of the resin is impaired and the heat resistant storage stability is also deteriorated, and the demands for speeding up and energy saving have not been sufficiently answered yet.
  • a toner, a charge control agent, a releasing agent, and the like are melt mixed and uniformly dispersed in a toner binder, and the obtained composition is pulverized and classified to produce a toner.
  • a toner having excellent characteristics to some extent can be produced, but there is a limitation in selecting a material for toner.
  • the composition obtained by melt mixing should be one that can be crushed and classified by an economically usable device. From this, the melt-blended composition must be sufficiently brittle.
  • the toner binder when the toner binder is actually crushed into particles, a wide range of particle size distribution is easily formed, and when it is intended to obtain an image with good resolution and gradation, the fine powder and the coarse powder are classified. It has the disadvantage that it has to be removed and the toner yield is very low. Further, in the pulverizing method, it is difficult to uniformly disperse the coloring agent, the charge control agent, and the like in the thermoplastic resin, and there is a problem of becoming nonuniform. Unevenness adversely affects toner fluidity, charging stability, image quality and the like.
  • a method of producing a toner by a polymerization method has been proposed and practiced.
  • Techniques for producing a toner for electrostatic charge image development by a polymerization method are known, and for example, toner particles are obtained by an emulsion polymerization aggregation method (patent document 2) or a dissolution suspension method (patent document 3) .
  • Patent Document 2 proposes a toner obtained by an emulsion polymerization aggregation method.
  • this method uses a styrene-acrylic resin, the low temperature fixability of the toner is insufficient, and the demands for high image quality, high speed and energy saving have not been sufficiently answered yet.
  • a polyester resin is used, the low temperature fixability is improved, but the use of a high molecular weight type polyester resin is limited from the viewpoint of the solubility and dispersibility of the resin, and it is difficult to expand the fixing temperature range.
  • Patent Document 3 proposes a toner obtained by the dissolution suspension method.
  • a polyester resin, an extending agent, a coloring agent, a releasing agent and the like are added to an aqueous phase containing a dispersion stabilizer with stirring to form oil droplets, and then the temperature is raised to carry out a polymerization reaction. Is a method of obtaining toner particles.
  • the present invention provides a method for producing resin particles and toner that are excellent in low temperature fixability, glossiness, hot offset resistance, chargeability and particle size distribution, and satisfy all of heat resistance storage stability, charge stability and cleaning properties. With the goal.
  • the present invention provides a polyester resin having a glass transition temperature (Tg a ) of ⁇ 20 to 57 ° C. obtained by polycondensation of a component containing an alcohol component (y) and an unsaturated carboxylic acid component (z)
  • the method is a method for producing resin particles in which resin fine particles containing a) are obtained, and then the resin fine particles are aggregated and fused, and after obtaining the resin fine particles, unsaturated carboxylic acid component (z) in the polyester resin (a)
  • a process for producing resin particles including the step of crosslinking the carbon-carbon double bonds derived from each other to form a modified resin, and a process for producing a toner comprising resin particles obtained by the above process for producing resin particles .
  • the method for producing resin particles of the present invention has a glass transition temperature (Tg a ) of ⁇ 20 to 57 ° C. obtained by polycondensation of a component containing an alcohol component (y) and an unsaturated carboxylic acid component (z).
  • Tg a glass transition temperature obtained by polycondensation of a component containing an alcohol component (y) and an unsaturated carboxylic acid component (z).
  • the resin fine particles containing the polyester resin (a) of the present invention are obtained, and then the resin fine particles are coagulated and coalesced, and after the resin fine particles are obtained, unsaturated carbon in the polyester resin (a) is obtained.
  • a step of crosslinking the carbon-carbon double bonds derived from the acid component (z) to form a modified resin is characterized. Below, the manufacturing method of the resin particle of this invention is demonstrated one by one.
  • the resin particle obtained by the production method of the present invention is a modified resin in which a polyester resin (a) obtained by polycondensation of a component containing an alcohol component (y) and an unsaturated carboxylic acid component (z) is crosslinked. Include as an essential ingredient.
  • the modified resin in which the polyester resin (a) is crosslinked means an unsaturated carbon in the polyester resin (a) after the polyester resin (a) substantially having carbon-carbon double bonds in its molecule is obtained by polycondensation.
  • the non-linear polyester modified resin (A) is a chemically bonded non-linear polyester modified resin (A) in which a crosslinking reaction occurs at carbon-carbon double bonds derived from the acid component (z).
  • the resin contained in the resin particles may be one type or a mixture of two or more types of resins.
  • a modified resin obtained by crosslinking the polyester resin (a) and a polyester resin (b) ⁇ polyester resin described later It may be a combination of a polyester resin except for (a) and a polyester resin obtained by polycondensation of a component containing an alcohol component (y) and a saturated carboxylic acid component (x).
  • the polyester resin (a) and the polyester resin (b) may be used alone or in combination of two or more.
  • the polyester resin (a) in the present invention is obtained by polycondensation of a component containing one or more alcohol components (y) and one or more unsaturated carboxylic acid components (z), and is an unsaturated carboxylic acid. It has a carbon-carbon double bond in the molecule derived from the component (z). Furthermore, the polyester resin (a) is obtained by polycondensation in combination with one or more kinds of saturated carboxylic acid components (x) as a constituent raw material in addition to the alcohol component (y) and the unsaturated carboxylic acid component (z) It may be a polyester resin.
  • Examples of the alcohol component (y) include monools (y1), diols (y2) and polyols having a valence of 3 or more (y3).
  • Examples of monools (y1) include alkanols having 1 to 30 carbon atoms (methanol, ethanol, isopropanol, dodecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol and the like) and the like.
  • alkanols having 8 to 24 carbon atoms preferred are alkanols having 8 to 24 carbon atoms, and more preferred are dodecyl alcohol, myristyl alcohol, stearyl alcohol, behenyl alcohol, and combinations of two or more of these.
  • the diol (y2) is an alkylene glycol having 2 to 36 carbon atoms (ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, neopentyl glycol, 3-methyl-1, 5-Pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, etc.), C4-36 alkylene ether glycol (diethylene glycol, triethylene glycol) , Dipropylene glycol, polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol, etc.), alicyclic diols having 6 to 36 carbon atoms (1,4-cyclohexanedimethanol, hydrogenated bisphenol A, etc.), Alkylene oxide ((poly) oxyalkylene) adducts (preferably having an average added mo
  • alkylene oxide adducts of bisphenols are preferable from the viewpoint of low temperature fixing ability and heat resistant storage stability.
  • the carbon number of the alkylene group is preferably 2 to 4 (such as ethylene oxide and propylene oxide).
  • alkylene oxide adduct of bisphenols is generally obtained by adding an alkylene oxide (hereinafter, “alkylene oxide” may be abbreviated as AO) to bisphenols.
  • alkylene oxide may be abbreviated as AO
  • AO alkylene oxide
  • bisphenols examples include bisphenol A, bisphenol F, bisphenol B, bisphenol AD, bisphenol S, trichlorobisphenol A, tetrachlorobisphenol A, dibromobisphenol F, 2-methylbisphenol A, 2,6-dimethylbisphenol A and 2 And 2'-diethyl bisphenol F etc., and two or more of these can be used in combination.
  • an alkylene oxide having 2 to 4 carbon atoms is preferable, and, for example, ethylene oxide (hereinafter sometimes “ethylene oxide” may be abbreviated as EO), propylene oxide (“1 (Hereinafter, sometimes abbreviated as PO), 1,3-propylene oxide, 1,2-, 2,3-, 1,3- or iso-butylene oxide, tetrahydrofuran And combinations of two or more of these.
  • EO ethylene oxide
  • propylene oxide 1
  • 1,3-propylene oxide 1,2-, 2,3-, 1,3- or iso-butylene oxide
  • tetrahydrofuran And combinations of two or more of these tetrahydrofuran And combinations of two or more of these.
  • AO constituting an AO adduct of bisphenols is preferably EO and PO.
  • the average added mole number of AO is preferably 2 to 30 moles, more preferably 2 to 10 moles.
  • alkylene oxide adducts of bisphenols preferred are EO adducts of bisphenol A and PO adducts of bisphenol A (the average addition mole number is preferably 2 to 4, more preferably 2) from the viewpoint of toner fixability. To 3).
  • trivalent or higher valence polyols examples include trivalent or higher aliphatic polyhydric alcohols having 3 to 36 carbon atoms (y31), saccharides and their derivatives (y32), and aliphatic polyhydric alcohols.
  • AO adduct average added mole number is preferably 1 to 30) (y33)
  • AO adduct of trisphenols such as trisphenol PA
  • novolac resin Phenol novolak and cresol novolac etc. are included, and the average degree of polymerization is preferably 3 to 60
  • AO adducts average added mole number is preferably 2 to 30) (y35), etc. may be mentioned.
  • trivalent or higher aliphatic polyhydric alcohol (y31) having 3 to 36 carbon atoms examples include alkane polyols and intramolecular or intermolecular dehydrated products thereof, and more specifically glycerin, trimethylolethane, Examples thereof include trimethylolpropane, pentaerythritol, sorbitol, sorbitan, polyglycerin and dipentaerythritol.
  • saccharide and its derivative examples include sucrose and methyl glucoside.
  • the AO adduct of aliphatic polyhydric alcohol (y33) the AO adduct of trivalent or higher valence aliphatic polyhydric alcohol (y31) having 3 to 36 carbon atoms as described above (the average addition mole number is preferably 1 to 30).
  • a combination of a divalent diol (y2) and a trivalent or higher valence polyol (y3) as the alcohol component (y) is used.
  • the preferred ones from the viewpoint of achieving both low temperature fixing ability and hot offset resistance are alkylene glycols having 2 to 12 carbon atoms; AO adducts of bisphenols (the average addition mole number is preferably AO adducts of 2 to 30); trivalent or higher aliphatic polyhydric alcohols having 3 to 36 carbon atoms; and novolak resins (including phenol novolaks and cresol novolacs, preferably having an average degree of polymerization of 3 to 60) (The average addition mole number is preferably 2 to 30).
  • alkylene glycols having 2 to 10 carbon atoms AO adducts of bisphenols (average addition mole number is preferably 2 to 5), trivalent to tetravalent compounds having 3 to 15 carbon atoms
  • Aliphatic polyhydric alcohols and novolak resins including phenol novolak and cresol novolac, etc., preferably 3 to 60 as the average degree of polymerization
  • AO adducts average added mole number is preferably 2 to 30.
  • the unsaturated carboxylic acid (z) has a polymerizable carbon-carbon double bond.
  • binding of an aromatic ring is not considered in determining whether it is the unsaturated carboxylic acid component (z) or the saturated carboxylic acid component (x).
  • a compound in which the portion other than the aromatic ring portion is unsaturated carboxylic acid is determined as the unsaturated carboxylic acid component (z), and a compound in which the portion other than the aromatic ring portion is a saturated carboxylic acid is determined as the saturated carboxylic acid component (x).
  • unsaturated carboxylic acid component (z) unsaturated monocarboxylic acid (z1), unsaturated dicarboxylic acid (z2), unsaturated polycarboxylic acid (z3), anhydrides and lower alkyl esters of these acids, etc. may be mentioned.
  • unsaturated carboxylic acid component (z) Be One type of unsaturated carboxylic acid component (z) may be used, or two or more types may be used in combination.
  • Examples of unsaturated monocarboxylic acids (z1) include unsaturated monocarboxylic acids having 2 to 30 carbon atoms, and specific examples include acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, 3-butenoic acid, and angelic acid. , Tiglic acid, 4-pentenoic acid, 2-ethyl-2-butenoic acid, 10-undecenoic acid, 2,4-hexadienoic acid, myristoleic acid, palmitoleic acid, sapienic acid, oleic acid, elaidic acid, vacenic acid, gadeau Examples include acids, eicosenoic acids, erucic acid and nervonic acid.
  • Examples of unsaturated dicarboxylic acids (z2) include alkene dicarboxylic acids having 4 to 50 carbon atoms.
  • alkenyl succinic acids such as dodecenyl succinic acid and pentadecenyl succinic acid, maleic acid, fumaric acid and citraconic acid And mesaconic acid, itaconic acid and glutaconic acid.
  • Examples of unsaturated polycarboxylic acids (z3) include trivalent or higher unsaturated polycarboxylic acids, and examples thereof include trivalent or higher alkene polycarboxylic acids having 6 to 50 carbon atoms (specifically, aconitic acid, 3 Alkene tricarboxylic acids such as -butene-1,2,3-tricarboxylic acid and 4-pentene-1,2,4-tricarboxylic acid, 1-pentene-1,1,4,4-tetracarboxylic acid, 4-pentene And alkene tetracarboxylic acids such as 1,2,3,4-tetracarboxylic acid and 3-hexene-1,1,6,6-tetracarboxylic acid.
  • the unsaturated polycarboxylic acid (z3) is preferably a trivalent or tetravalent unsaturated polycarboxylic acid.
  • unsaturated carboxylic acid components (z) preferred are acrylic acid, methacrylic acid, alkenylsuccinic acid, maleic acid and fumaric acid, and two or more of them, from the viewpoint of achieving both low temperature fixability and hot offset resistance. In combination. More preferable are acrylic acid, methacrylic acid, maleic acid, fumaric acid and a combination of two or more of them. Anhydrides and lower alkyl esters of these acids are also preferred.
  • a saturated carboxylic acid component (x) may be used in combination as a constituent raw material.
  • the saturated carboxylic acid component (x) may be used alone or in combination of two or more. Examples of such saturated carboxylic acid component (x) include aliphatic carboxylic acids and aromatic carboxylic acids.
  • aliphatic carboxylic acids examples include aliphatic monocarboxylic acids having 2 to 50 carbon atoms (acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthate, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, Palmitic acid, margaric acid, stearic acid and behenic acid etc.) Aliphatic dicarboxylic acids having 2 to 50 carbon atoms (such as oxalic acid, malonic acid, succinic acid, adipic acid, repargic acid, sebacic acid and dodecanedioic acid), carbon And aliphatic tricarboxylic acids (eg, hexane tricarboxylic acid etc.) and the like.
  • aromatic carboxylic acid examples include aromatic monocarboxylic acids having 7 to 37 carbon atoms (benzoic acid, toluic acid, 4-ethylbenzoic acid, 4-propylbenzoic acid and the like), and aromatic dicarboxylic acids having 8 to 36 carbon atoms Phthalic acid, isophthalic acid, terephthalic acid and naphthalene dicarboxylic acid etc., and trivalent or higher aromatic polycarboxylic acids having 9 to 20 carbon atoms (trimellitic acid and pyromellitic acid etc.) can be mentioned.
  • saturated carboxylic acid component (x) an anhydride of these carboxylic acids, lower alkyl (1 to 4 carbon atoms) esters (such as methyl ester, ethyl ester and isopropyl ester) may be used, or the anhydride or the lower ones. You may use together an alkyl ester and the said carboxylic acid.
  • aliphatic dicarboxylic acids having 2 to 50 carbon atoms and aromatic monocarbons having 7 to 37 carbon atoms are preferable from the viewpoint of achieving both low temperature fixing ability and hot offset resistance. It is an acid, an aromatic dicarboxylic acid having 8 to 20 carbon atoms and a trivalent or higher aromatic polycarboxylic acid having 9 to 20 carbon atoms. More preferably, benzoic acid, adipic acid, terephthalic acid, isophthalic acid, trimellitic acid, pyromellitic acid and a combination of two or more of them are preferable from the viewpoint of heat resistant storage stability, chargeability and charge stability. More preferable are adipic acid, terephthalic acid, isophthalic acid, trimellitic acid and a combination of two or more of them. Anhydrides and lower alkyl esters of these acids are likewise preferred.
  • the polyester resin (a) in the present invention is not particularly limited, but is preferably a non-linear polyester resin from the viewpoint of improving the elasticity at high temperature.
  • the method for producing the polyester resin (a) in the present invention is not particularly limited, but as described above, it is obtained by polycondensing a component containing the alcohol component (y) and the unsaturated carboxylic acid component (z).
  • a saturated carboxylic acid component (x) As trivalent or higher carboxylic acid or acid anhydride or lower alkyl ester thereof.
  • the polyester resin (a) which is a non-linear polyester resin can also be obtained by using a trivalent or higher unsaturated polycarboxylic acid (z3) as the unsaturated carboxylic acid component (z).
  • a trivalent or higher unsaturated polycarboxylic acid (z3) as the unsaturated carboxylic acid component (z).
  • the polyester resin (a) and the like can be produced in the same manner as known polyester resins.
  • the reaction temperature of the component containing the alcohol component (y) and the unsaturated carboxylic acid component (z) in an inert gas (nitrogen gas etc.) atmosphere is preferably 150 to 280 ° C., more preferably 160 to It can be carried out by reacting at 250 ° C., more preferably at 170 to 235 ° C.
  • the reaction time is preferably 30 minutes or more, more preferably 2 to 40 hours, from the viewpoint of reliably performing the polycondensation reaction.
  • esterification catalysts include tin-containing catalysts (eg, dibutyltin oxide etc.), antimony trioxide, titanium-containing catalysts [eg titanium alkoxide, potassium oxalate titanate, titanium terephthalate, titanium terephthalate alkoxide, JP-A-2006-243715 Catalysts described in Japanese Patent Application Publication No.
  • tin-containing catalysts eg, dibutyltin oxide etc.
  • antimony trioxide titanium-containing catalysts [eg titanium alkoxide, potassium oxalate titanate, titanium terephthalate, titanium terephthalate alkoxide, JP-A-2006-243715 Catalysts described in Japanese Patent Application Publication No.
  • JP-A-2006-147-99 [Titanium diisopropoxy bis (triethanolaminate), titanium dihydroxy bis (triethanolaminate), titanium monohydroxytris (triethanolaminate), titanyl bis (triethanolaminate) and their compounds Intramolecular polycondensate etc.], and catalysts described in JP 2007-11307 A (titanium tributoxy terephthalate, titanium triisopropoxy terephthalate, and titanium diisopropoxy diterephthalate) ), Etc.], zirconium-containing catalysts (e.g. zirconyl acetate, etc.), and zinc acetate, and the like. Among these, preferred is a titanium-containing catalyst. It is also effective to reduce the pressure to improve the reaction rate at the end of the reaction.
  • a stabilizer may be added for the purpose of obtaining polyester polymerization stability.
  • hydroquinone, methylhydroquinone and hindered phenol compounds may, for example, be mentioned.
  • the preparation ratio of the alcohol component (y) to the total of the unsaturated carboxylic acid component (z) and the saturated carboxylic acid component (x) is preferably 2 as the equivalent ratio [OH] / [COOH] of hydroxyl group and carboxyl group. It is preferably 1/1/2 to 1/2, more preferably 1.5 / 1 to 1 / 1.3, and still more preferably 1.4 / 1 to 1 / 1.2.
  • the said hydroxyl group is a hydroxyl group derived from alcohol component (y), and a carboxyl group is the sum total of the carboxyl group derived from unsaturated carboxylic acid component (z) and saturated carboxylic acid component (x).
  • the unsaturated carboxylic acid component (z) used for producing the polyester resin (a) is 3 to 50 moles based on the total number of moles of the unsaturated carboxylic acid component (z) and the saturated carboxylic acid component (x) % Is preferable, 4 to 40 mol% is more preferable, and 5 to 35 mol% is more preferable.
  • the glass transition temperature (Tg a ) of the polyester resin (a) is -20 to 57 ° C. When the Tg a is 57 ° C. or less, the low-temperature fixability is good, and when it is ⁇ 20 ° C. or more, the heat resistant storage property is good.
  • the Tg a is preferably ⁇ 18 to 50 ° C., more preferably ⁇ 15 to 45 ° C., and still more preferably ⁇ 10 to 40 ° C.
  • the glass transition temperature (Tg a and Tg) can be measured by the method (DSC method) defined in ASTM D3418-82. Glass transition temperature (Tg a and Tg), for example TA Instruments (Co., Ltd.), can be measured using a DSC Q20.
  • the peak top molecular weight of the polyester resin (a) is preferably from 2,000 to 20,000, more preferably from 3,000 to 18, from the viewpoint of coexistence of hot offset resistance, low temperature fixability and glossiness. 000, more preferably 3,500 to 16,000, and particularly preferably a peak top molecular weight of 4,000 to 11,900.
  • the peak top molecular weight of the resin is the peak top molecular weight in gel permeation chromatography (GPC).
  • the peak top molecular weight (hereinafter sometimes abbreviated as Mp) is obtained by calculating the molecular weight distribution of the sample from the relationship between the logarithmic value of the calibration curve prepared by the standard polystyrene sample and the count number. It is the molecular weight determined from the peak maximum value in the chart of the molecular weight distribution. Since the number of peaks in the chart is not limited to one, when there are a plurality of peaks, it is determined from the peak showing the maximum value among the peak values.
  • the measurement conditions of GPC measurement are as follows.
  • the peak top molecular weight, number average molecular weight (hereinafter sometimes abbreviated as Mn) and weight average molecular weight (hereinafter abbreviated as Mw) of resins such as polyester resins are measured using GPC. Measurement under the following conditions.
  • the peak top molecular weight, weight average molecular weight and number average molecular weight are the peak top molecular weight, weight average molecular weight and number average molecular weight of the THF soluble matter.
  • HLC-8120 manufactured by Tosoh Corporation
  • Column one example: Two TSK GEL GMH6 (made by Tosoh Corp.) Measurement temperature: 40 ° C
  • Sample solution 0.25 wt% THF solution
  • Injection volume 100 ⁇ L
  • Detector Refractive index detector Reference material: Tosoh Co., Ltd.
  • TSK standard POLYSTYRENE product standard polystyrene 12 points (molecular weight 500 1,050 2,800 5,970 9,100 18,100 37,900 96,400 190,000 355,000 1,090,000 2,890,000)
  • THF product standard polystyrene
  • a polyester resin or the like is dissolved in THF so as to be 0.25% by weight, and the insoluble matter is filtered off with a glass filter to obtain a sample solution.
  • the acid value of the polyester resin (a) is preferably 0 to 30 mg KOH / g, more preferably 0 to 25 mg KOH / g, and still more preferably 0 to 10 mg KOH / g from the viewpoint of chargeability stability.
  • the acid value of polyester resin (a) etc. can be measured by the method prescribed in JIS K 0070 (1992 version).
  • the modified resin obtained by crosslinking the polyester resin (a) is, for example, a radical reaction initiator (c) after the polyester resin (a) having carbon-carbon double bonds in the molecule is obtained by polycondensation. It is a modified resin in which a carbon-carbon double bond derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) causes a cross-linking reaction to cause a chemical bond using the generated radicals.
  • the radical reaction initiator (c) used for the crosslinking reaction of the polyester resin (a) in the present invention is not particularly limited, and inorganic peroxide (c1), organic peroxide (c2) and azo compound (c3) Etc.).
  • the radical reaction initiator (c) may be used alone or in combination of two or more.
  • the inorganic peroxide (c1) is not particularly limited, and examples thereof include hydrogen peroxide, ammonium persulfate, potassium persulfate and sodium persulfate.
  • the organic peroxide (c2) is not particularly limited, but benzoyl peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, ⁇ , ⁇ -bis (t-butylperoxy) ) Diisopropylbenzene, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di-t-butylper Oxyhexyne-3, acetyl peroxide, isobutyryl peroxide, octaninor peroxide, decanolyl peroxide, lauroyl peroxide, 3,3,5-trimethylhexanoyl peroxide, m-toluyl peroxide, t-butyl Peroxyisobutyrate, t-butylperoxyneodecanoate, cumy
  • Examples of the azo compound and the diazo compound (c3) include, but are not limited to, for example, 2,2'-azobis- (2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile, 2,2 '-Azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile and azobisisobutyric acid Ronitrile etc. are mentioned.
  • the amount of the radical reaction initiator (c) used is not particularly limited, but 100 parts by weight of the unsaturated carboxylic acid component (z) constituting the polyester resin (a) when making the polyester resin (a) a modified resin
  • the preferred amount is 0.1 to 50 parts by weight.
  • the crosslinking reaction is likely to proceed when the amount of the radical reaction initiator used is 0.1 parts by weight or more based on 100 parts by weight of the unsaturated carboxylic acid component (z) constituting the polyester resin (a) There is a tendency, and when the amount is 50 parts by weight or less, the odor tends to be good.
  • the amount of the radical reaction initiator (c) used is more preferably 30 parts by weight or less, and 20 parts by weight or less based on 100 parts by weight of the unsaturated carboxylic acid component (z) constituting the polyester resin (a) Is more preferably 10 parts by weight or less.
  • the weight ratio of the tetrahydrofuran insoluble matter to the tetrahydrofuran soluble matter (soluble matter) in the resin particle obtained by the production method of the present invention is the hot offset resistance, low temperature fixability, From the viewpoint of compatibility with glossiness, it is preferably 5/95 to 60/40, more preferably 5/95 to 50/50, still more preferably 7/93 to 50/50, particularly preferably 9/91 to 40/60.
  • the polyester resin (a) in addition to the modified resin in which the polyester resin (a) is crosslinked in the resin particles, it is an optional component as needed ⁇ polyester resin (b) described later, coloring agent, release agent, charge control agent, fluidizing agent, etc. ⁇ If the resin particle contains optional components, the THF insoluble matter and / or the THF solution also contain these optional components.
  • the weight ratio of the THF insoluble matter to the THF dissolved matter in the resin particle obtained by the production method of the present invention is determined by the following method. Add 50 mL of THF to 0.5 g of sample and stir at reflux for 3 hours. After cooling, the insolubles are filtered off with a glass filter, and the resin on the glass filter is dried under reduced pressure at 80 ° C. for 3 hours. The weight of the dried resin on the glass filter is the weight of the THF insolubles, and the weight of the weight of the sample minus the weight of the THF insolubles is the weight of the THF dissolved, the THF insolubles and the THF dissolved Calculate the weight ratio.
  • the resin particle obtained by the manufacturing method of this invention contains the polyester resin (b) obtained by polycondensing the component containing saturated carboxylic acid component (x) and alcohol component (y).
  • the resin particles obtained by the production method of the present invention contain a polyester resin (b), the low temperature fixability is improved.
  • the polyester resin (b) in the present invention is a polyester resin (other than the polyester resin (a)) excluding the polyester resin (a).
  • the polyester resin (b) does not use the above-mentioned unsaturated carboxylic acid component (z) as a carboxylic acid component, and one or more types of alcohol components (y) and one or more types of saturated carboxylic acid components (x) What is obtained by polycondensing the component containing and the like are mentioned.
  • polyester resin (b) amorphous polyester resin (b1) and crystalline polyester resin (C) are mentioned.
  • the crystalline polyester resin (C) indicates crystallinity and means that the temperature Tp (° C.) indicating the endothermic peak top is in the range of 40 to 100 ° C.
  • the amorphous polyester resin (b1) used in the present invention is a polyester resin (b) other than the crystalline polyester resin (C).
  • the polyester resin (b) is a polyester resin containing an amorphous polyester resin (b1) obtained by polycondensation of a component containing an alcohol component (y) and a saturated carboxylic acid component (x) Is preferred.
  • crystalstallinity refers to a resin having a clear endothermic peak, not a stepwise endothermic change in the second temperature rising process of differential scanning calorimeter (DSC) measurement described later.
  • DSC differential scanning calorimeter
  • Examples of the alcohol component (y) of the amorphous polyester resin (b1) include the same as the alcohol component (y) of the polyester resin (a).
  • these alcohol components (y) preferred from the viewpoint of achieving both low temperature fixability and heat resistant storage stability are AO adducts of alkylene glycols having 2 to 12 carbon atoms and bisphenols (the average addition mole number is preferably 2 To 30). More preferable from the viewpoint of heat resistant storage stability are alkylene glycols having 2 to 10 carbon atoms and AO adducts of bisphenols (the average addition mole number is preferably 2 to 5).
  • the alcohol component (y) preferably contains 80 mol% or more, more preferably 90 mol% or more of aromatic diol based on the total number of moles of alcohol component. More preferably, it is 95% or more.
  • Examples of the carboxylic acid component (x) of the amorphous polyester resin (b1) include the same as the saturated carboxylic acid component (x) of the polyester resin (a).
  • saturated carboxylic acid components (x) aliphatic carboxylic acids having 2 to 50 carbon atoms and aromatic monocarboxylic acids having 7 to 37 carbon atoms are preferable from the viewpoint of achieving both low temperature fixing ability and heat resistant storage stability.
  • the saturated carboxylic acid component (x) preferably contains 80 mol% or more of aromatic dicarboxylic acid based on the total number of moles of the saturated carboxylic acid component. Is 90 mol% or more, more preferably 95 mol% or more.
  • alcohol component (y) of crystalline polyester resin (C) As alcohol component (y) of crystalline polyester resin (C), the thing similar to alcohol component (y) of polyester resin (a) is mentioned.
  • these alcohol components (y) preferred are alkylene glycols having 2 to 36 carbon atoms from the viewpoint of achieving both low temperature fixability and heat resistant storage stability. More preferably, it is an alkylene glycol having 2 to 12 carbon atoms. More preferred are alkylene glycols having 2 to 9 carbon atoms, and particularly preferred are 1,6-hexanediol, 1,9-nonanediol and 1,10-decanediol.
  • carboxylic acid component (x) of crystalline polyester resin (C) As a carboxylic acid component (x) of crystalline polyester resin (C), the thing similar to the saturated carboxylic acid component (x) of polyester resin (a) is mentioned.
  • saturated carboxylic acid components (x) aliphatic dicarboxylic acids having 2 to 50 carbon atoms are preferable from the viewpoint of achieving both low temperature fixing ability and heat resistant storage stability. More preferred are succinic acid, adipic acid, sebacic acid and dodecanedioic acid. More preferred are sebacic acid and dodecanedioic acid.
  • the polyester resin (b) may be linear or non-linear, but is preferably linear from the viewpoint of low-temperature fixability and heat resistant storage stability. Moreover, as polyester resin (b), what does not contain a THF insoluble part substantially is preferable. If it does not contain a THF insoluble matter, it may have a trace amount of crosslinking points, and trimellitic anhydride, phthalic anhydride, and anhydride of saturated polycarboxylic acid (which may be trivalent or higher) at the molecular end It may be modified with maleic anhydride or the like.
  • the weight ratio (a) / (b) of the polyester resin (a) -derived structural portion in the resin particles to the polyester resin (b) is from the viewpoint of coexistence of low temperature fixability, hot offset resistance and heat resistant storage stability.
  • the ratio is preferably 5/95 to 50/50, more preferably 7/93 to 45/60, and still more preferably 9/90 to 40/60.
  • the structural part derived from the polyester resin (a) is a modified resin obtained by crosslinking the polyester resin (a) and the polyester resin (a).
  • the amounts of each component and polyester resin (b) used to obtain the polyester resin (a) should be set such that the weight ratio (a) / (b) falls within the above range. Is preferred.
  • the weight ratio (b1) / (C) of the non-crystalline polyester resin (b1) to the crystalline polyester resin (C) in the resin particle is from the point of coexistence of low temperature fixability, hot offset resistance and heat resistant storage stability 100/0 to 50/50 is preferable, more preferably 95/5 to 70/30, and still more preferably 90/10 to 80/20.
  • the resin particles contain the polyester resin (b), carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) in the presence of the polyester resin (b) It is preferable to obtain a modified resin in which the polyester resin (a) is crosslinked by crosslinking reaction between each other, from the viewpoint of coexistence of low temperature fixability, hot offset resistance, and heat resistant storage stability.
  • the THF soluble portion Mn of the polyester resin (b) is preferably 1,000 to 15,000, more preferably 1,200 to 10,000, from the viewpoint of achieving both the heat resistant storage stability of the toner and the low temperature fixability. More preferably, it is 1,500 to 5,000.
  • the peak top molecular weight of the THF soluble component of the polyester resin (b) is preferably 2,000 to 30,000, more preferably from the viewpoint of achieving both the hot offset resistance of the toner, the heat resistant storage stability, and the low temperature fixability. It is preferably 2,500 to 20,000, more preferably 3,000 to 10,000.
  • the temperature Tp showing the endothermic peak top of the crystalline polyester resin (C) is preferably 50 to 90 ° C., more preferably 55 to 85 ° C., still more preferably 60 from the viewpoint of the heat resistant storage stability of the finally obtained toner. It is ⁇ 80 ° C.
  • the softening point [Tm] of the crystalline polyester resin (C) by a flow tester is preferably 30 to 170 ° C., more preferably 40 to 130 ° C., still more preferably 50 to 150 ° C. from the viewpoint of low temperature fixability and hot offset resistance. It is 100 ° C.
  • the softening point [Tm] of the crystalline polyester resin (C) is measured under the following conditions. ⁇ Method of measuring softening point [Tm]> Using a drop-down flow tester [CFT-500D manufactured by Shimadzu Corporation, for example, apply a load of 1.96 MPa by the plunger while heating 1 g of the measurement sample at a heating rate of 6 ° C./min It extrudes from a nozzle of 1 mm in diameter and 1 mm in length and draws a graph of “Plunger drop amount (flow value)” and “temperature”, and graph the temperature corresponding to half of the maximum drop amount of plunger This value (temperature at which half of the measurement sample flowed out) is taken as the softening point [Tm].
  • the resin particles obtained by the production method of the present invention are heat resistant to have at least one inflection point indicating a glass transition temperature (Tg) in a chart by differential scanning calorimetry (DSC) in a temperature range of -20 ° C to 80 ° C.
  • the above temperature range is more preferably 30 ° C. to 70 ° C., and still more preferably 40 ° C. to 65 ° C. from the viewpoint of storage stability and low temperature fixability.
  • the resin particles may have two or more inflection points indicating a glass transition temperature (Tg), and one of them may be in this temperature range.
  • the glass transition temperature (Tg) can be determined by the method (DSC method) defined in ASTM D3418-82 as described above. The conditions for measuring the glass transition temperature (Tg) are as described above.
  • At least one known additive selected from the group consisting of a colorant, a mold release agent, a charge control agent, a fluidizing agent and the like is used as needed in addition to the polyester resin. May be
  • colorants all dyes and pigments used as colorants for toners can be used. Specifically, carbon black, iron black, sudan black SM, fast yellow G, benzidine yellow, pigment yellow, indofirst orange, irgasine red, paranitroaniline red, toluidine red, carmine FB, pigment orange R, lake red 2G, Rhodamine FB, Rhodamine B Lake, Methyl Violet B Lake, Phthalocyanine Blue, Pigment Blue, Brilliant Green, Phthalocyanine Green, Oil Yellow GG, Kayaset YG, Orazol Brown B, Oil Pink OP, etc. Or 2 or more types can be mixed and used.
  • magnetic powder (powder of a ferromagnetic metal such as iron, cobalt, nickel or the like or a compound such as magnetite, hematite or ferrite) can be contained as well as the function as a colorant.
  • the content of the colorant is preferably 1 to 40% by weight, more preferably 3 to 10% by weight, based on the weight of resin particles obtained by the production method of the present invention, from the viewpoint of toner image density and low temperature fixability.
  • the content of the magnetic powder is preferably 20 to 70% by weight, more preferably 40 to 60% by weight, based on the weight of the resin particles.
  • aliphatic hydrocarbon waxes such as low molecular weight polypropylene, low molecular weight polyethylene, low molecular weight polypropylene polyethylene copolymer, polyolefin wax, microcrystalline wax, paraffin wax, Fischer-Tropsch wax, and oxides thereof, carnauba Wax, montan wax, sazole wax and their deacidified waxes, ester waxes such as fatty acid ester waxes, fatty acid amides, fatty acids, higher alcohols, fatty acid metal salts and the like.
  • Polyolefin waxes include (co) polymers [(co) polymerization of olefins (for example, ethylene, propylene, 1-butene, isobutylene, 1-hexene, 1-dodecene, 1-octadecene, and a mixture of two or more of these, etc.) Products obtained and thermally-deformed polyolefins], oxides of (co) polymers of olefins with oxygen and / or ozone, maleic acid modified products of (co) polymers of olefins [eg maleic acid and its derivatives (anhydride Maleic acid, monomethyl maleate, monobutyl maleate and dimethyl maleate etc.)), olefins and unsaturated carboxylic acids [(meth) acrylic acid, itaconic acid and maleic anhydride etc] and / or unsaturated carboxylic acid alkyl esters [Alkyl (meth) acrylate (the carbon number of the al
  • microcrystalline wax, paraffin wax, Fischer-Tropsch wax, carnauba wax and ester wax are preferable from the viewpoint of low temperature fixing property and hot offset resistance.
  • the release agent preferably has a softening point [Tm] of 50 to 170 ° C. by a flow tester, and more preferably 50 to 140 ° C., from the viewpoint of low temperature fixing property and hot offset resistance. More preferably, the temperature is 50 to 120 ° C.
  • the softening point [Tm] can be measured under the same conditions as for the crystalline polyester resin (C).
  • the content of the release agent is preferably 1 to 20% by weight, more preferably 2 to 10% by weight based on the weight of the resin particles obtained by the production method of the present invention, from the viewpoint of low temperature fixability and hot offset resistance. %.
  • nigrosine dye triphenylmethane dye having tertiary amine as a side chain, quaternary ammonium salt, polyamine resin, imidazole derivative, polymer containing quaternary ammonium base, metal-containing azo dye, copper phthalocyanine dye, Examples thereof include metal salts of salicylic acid, boron complexes of benzyl acid, sulfonic acid group-containing polymers, fluorine-containing polymers, and halogen-substituted aromatic ring-containing polymers.
  • colloidal silica, alumina powder, titanium oxide powder, calcium carbonate powder, barium titanate, magnesium titanate, calcium titanate, calcium titanate, strontium titanate, zinc oxide, silica sand, clay, mica, wollastonite examples thereof include diatomaceous earth, chromium oxide, cerium oxide, bengala, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate and barium carbonate.
  • the charge control agent may be 0 to 20% by weight, preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, based on the weight of the resin particles.
  • the fluidizing agent may be 0 to 10% by weight, preferably 0 to 5% by weight, more preferably 0.1 to 4% by weight, based on the weight of the resin particles.
  • the total amount of additives such as colorant, mold release agent, charge control agent, fluidizing agent and the like may be 3 to 70% by weight, preferably 4 to 58% by weight, based on the weight of resin particles. Preferably, it is 5 to 50% by weight.
  • the method for producing resin particles of the present invention has a glass transition temperature (Tg a ) of ⁇ 20 to 57 ° C. obtained by polycondensation of a component containing an alcohol component (y) and an unsaturated carboxylic acid component (z).
  • Tg a glass transition temperature obtained by polycondensation of a component containing an alcohol component (y) and an unsaturated carboxylic acid component (z).
  • the resin fine particles containing the polyester resin (a) of the present invention are obtained, and then the resin fine particles are coagulated and coalesced, and after the resin fine particles are obtained, unsaturated carbon in the polyester resin (a) is obtained.
  • step of crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) to form a modified resin resin fine particles of the present invention are finally obtained. It may be carried out at any stage until particles are obtained.
  • the step of crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) to a modified resin may be performed, for example, before aggregation of the resin fine particles, It may be performed at the time of aggregating the resin fine particles, or may be performed at the time of fusing the aggregated resin fine particles.
  • Step (1) Step of obtaining a dispersion containing resin fine particles (X1) containing polyester resin (a)
  • the fine resin particles (X2) containing the modified resin obtained by crosslinking the carbon-carbon double bonds derived from the acid component (z) are aggregated to form aggregates (Y1) of the fine resin particles (X1) or the fine resin particles (X2)
  • Step (4) of obtaining fused resin particles (Z2) step which can be carried out at any stage after completion of the step (1), and may be conducted simultaneously with the
  • the production method includes the following steps (1), (2-1) and (3-1), and the production method includes the following steps (1), (2-2) and (3-2). .
  • Steps (2-1) and (2-2) are preferred embodiments of the above step (2), and steps (3-1) and (3-2) are preferred embodiments of the above step (3). It is an example.
  • a step of forming a aggregate (Y2) by aggregating the resin fine particles (X2) after obtaining a dispersion liquid (D2) of resin fine particles (X2) containing the modified resin as a denatured resin Resin containing a modified resin by fusing the aggregate (Y1) and simultaneously crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) into a modified resin
  • an additive dispersion (colorant dispersion, release agent dispersion, etc.) is prepared in advance as a method of incorporating additives (colorant, release agent, etc.) in resin particles, and dispersion (D1)
  • the dispersion liquid (D2) and the additive dispersion liquid are mixed to obtain the dispersion liquid (W1) or (W2), and the dispersion liquids (W1) and (W2) are substituted for the dispersion liquids (D1) and (D2) in the above step. )
  • the dispersion liquid (D2) and the additive dispersion liquid are mixed to obtain the dispersion liquid (W1) or (W2), and the dispersion liquids (W1) and (W2) are substituted for the dispersion liquids (D1) and (D2) in the above step.
  • additives coloring agent, releasing agent, etc.
  • resin particles so that low temperature fixing property, glossiness, hot offset resistance, charging From the viewpoint of toner properties, toner fluidity, heat resistant storage stability and charge stability.
  • a dispersion medium which comprises dispersion liquid (D1), (D2), (W1) and (W2)
  • an aqueous solvent any liquid containing water as an essential component can be used without limitation, and water, an aqueous solution of an organic solvent, an aqueous solution of surfactant (s), an aqueous solution of water-soluble polymer (t) and these A mixture of two or more of the above can be used.
  • an organic solvent may be used to dissolve the resin in order to improve the dispersibility of the resin in the aqueous solvent.
  • organic solvent for example, aromatic hydrocarbon solvent, aliphatic or alicyclic hydrocarbon solvent, halogen solvent, ester or ester ether solvent, ether solvent, ketone solvent, alcohol solvent, amide solvent, sulfoxide solvent, heterocyclic Compound solvents and mixed solvents of two or more of them and the like can be mentioned.
  • organic solvent examples include aromatic hydrocarbon solvents (toluene, xylene, ethylbenzene and tetralin etc.); aliphatic or alicyclic hydrocarbon solvents (n-hexane, n-heptane, mineral spirits and cyclohexane etc); Halogen solvents such as methyl, methyl bromide, methyl iodide, methylene dichloride, carbon tetrachloride, trichloroethylene and perchloroethylene; esters or ester ethers such as ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate and ethyl cellosolve acetate Solvents; Ether solvents such as diethyl ether, tetrahydrofuran, dioxane, ethyl cellosolve, butyl cellosolve and propylene glycol monomethyl ether; acetone
  • the amount of the organic solvent used is preferably 0 to 300 parts by weight based on 100 parts by weight of the polyester resin (a) obtained by polycondensation of a component containing the alcohol component (y) and the unsaturated carboxylic acid component (z). More preferably, it is 0 to 100 parts by weight, still more preferably 25 to 70 parts by weight.
  • an organic solvent it is preferable to remove by heating under normal pressure or reduced pressure after step (1) or step (2).
  • a neutralizing agent may be used to neutralize the carboxyl groups of the polyester resin in order to improve the dispersibility of the resin in the aqueous solvent.
  • the neutralizing agent include organic compounds such as ammonia and triethylamine, and inorganic compounds such as sodium hydroxide.
  • the amount of the neutralizing agent used is preferably 1 to 150 mol%, more preferably 5 to 100 mol%, from the viewpoint of dispersibility with respect to the carboxyl group of the polyester resin.
  • surfactants (s) and inorganic dispersants can be used as an emulsifying agent or dispersing agent. It is preferable to use the surfactant (s) and the inorganic dispersant because the volume average particle diameter of the resin fine particles tends to be small.
  • the surfactant (s) is not particularly limited, and the anionic surfactant (s-1), the cationic surfactant (s-2), the amphoteric surfactant (s-3) and the non-ionic surfactant (s) s-4) and the like.
  • the surfactant (s) may be a combination of two or more surfactants.
  • Examples of the anionic surfactant (s-1) include carboxylic acids or salts thereof, sulfuric acid ester salts, salts of carboxymethylated substances, sulfonic acid salts and phosphoric acid ester salts.
  • Examples of the cationic surfactant (s-2) include quaternary ammonium salt surfactants and amine salt surfactants.
  • Examples of amphoteric surfactants (s-3) include carboxylate-type amphoteric surfactants, sulfate-ester-type amphoteric surfactants, sulfonate-type amphoteric surfactants, and phosphate-ester-type amphoteric surfactants. It can be mentioned.
  • Examples of the nonionic surfactant (s-4) include AO-added nonionic surfactants and polyhydric alcohol type nonionic surfactants. Specific examples of these surfactants (s) include those described in JP-A-2002-284881.
  • the amount of surfactant (s) used per 100 parts by weight of water as an aqueous solvent is preferably 0 to 300 parts by weight, more preferably 0.001 to 10 parts by weight, still more preferably 0.01 to 5 parts by weight is there.
  • inorganic dispersant tricalcium phosphate, magnesium phosphate, aluminum phosphate, zinc phosphate, polyphosphate metal salts such as hydroxyapatite, etc. carbonates such as calcium carbonate and magnesium carbonate, calcium metaborate, sulfuric acid Inorganic salts such as calcium and barium sulfate; and inorganic compounds such as calcium hydroxide, magnesium hydroxide and aluminum hydroxide.
  • the amount of the inorganic dispersant used per 100 parts by weight of water as the aqueous solvent is preferably 0 to 300 parts by weight, more preferably 0.001 to 10 parts by weight.
  • a known water-soluble polymer (t) can be used as an emulsifying agent or a dispersing agent.
  • the use of the water-soluble polymer (t) is preferable in that the volume average particle size of the resin fine particles is smaller and the particle size distribution (volume average particle size / number average particle size) tends to be smaller.
  • water-soluble polymers (t) include cellulose compounds (eg methylcellulose, ethylcellulose, hydroxyethylcellulose, ethylhydroxyethylcellulose, carboxymethylcellulose, hydroxypropylcellulose and saponified compounds thereof), gelatin, starch, dextrin, gum arabic, chitin, chitosan , Polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polyethylene imine, polyacrylamide, acrylic acid (salt) containing polymer (sodium polyacrylate, potassium polyacrylate, ammonium polyacrylate, sodium hydroxide partially neutralized of polyacrylic acid And sodium acrylate-acrylic acid ester copolymer etc., sodium hydroxide of styrene-maleic anhydride copolymer Partial) neutralization product, water-soluble polyurethane (polyethylene glycol, and the reaction product of polycaprolactone diol with polyisocyanate etc.) and the like.
  • the amount of water-soluble polymer (t) used is preferably 0 to 5 parts by weight with respect to 100 parts by weight of water as an aqueous solvent.
  • the volume-based median diameter of the resin fine particles is preferably 0.050 to 1 ⁇ m, more preferably 0.07 to 0.5 ⁇ m, still more preferably 0.09 to 0, from the viewpoint of controlling the volume particle size and particle size distribution of the resin particles. .3 ⁇ m.
  • the volume-based median diameter of the resin fine particles can be measured using a dynamic light scattering type particle size distribution measuring apparatus “SZ-100” (manufactured by Horiba, Ltd.).
  • the amount of resin fine particles in 100 parts by weight of the dispersion is preferably 1 to 70 parts by weight (solid content concentration of the resin fine particles in the dispersion is 1 to 70% by weight) from the viewpoint of controlling the volume particle diameter and particle size distribution of the resin particles. More preferably, it is 5 to 65 parts by weight, still more preferably 10 to 60 parts by weight.
  • the solid content concentration and volatile content of resin particles or resin fine particles in the dispersion obtained by the production method of the present invention are determined by the following method. About 2.00 g of the sample before drying is weighed and carefully dried at 120 ° C. for 1 hour, taking care not to cause precipitation of resin particles or resin fine particles and the like. The sample after drying is taken out and the weight is measured to the second decimal place, and the solid concentration (% by weight) is calculated from (weight of sample after drying / weight of sample before drying) ⁇ 100, ⁇ (before drying) The volatile content (% by weight) is calculated from the weight of the sample ⁇ the weight of the sample after drying) / the weight of the sample before drying ⁇ ⁇ 100.
  • the method for obtaining the dispersion liquid (D1) of the resin fine particles (X1) containing the polyester resin (a) in the step (1) is not particularly limited, and the following [1] to [7] may be mentioned.
  • a method of producing a dispersion (D1) by dispersing a component containing a polyester resin (a) and optionally a radical reaction initiator (c), if necessary, in an aqueous solvent in the presence of a suitable dispersant a suitable dispersant .
  • An organic solvent solution of a component containing a polyester resin (a) and optionally a radical reaction initiator (c) is dispersed, if necessary, in an aqueous solvent in the presence of a suitable dispersant, to obtain a dispersion (D1) How to manufacture.
  • An organic solvent solution of a component containing a polyester resin (a) and optionally a radical reaction initiator (c) is dispersed in an aqueous solvent in the presence of a suitable dispersant, if necessary, and then the organic solvent is added
  • a precursor of polyester resin (a) and optionally an organic solvent solution of a component containing a radical reaction initiator (c) is dispersed in an aqueous solvent in the presence of a suitable dispersant, if necessary, and thereafter A method of producing a dispersion (D1) by producing a polyester resin (a) from the precursor of (a).
  • the polyester resin (a) is pulverized using a pulverizer such as a mechanical rotary type or jet type, and then classified, if necessary, a component containing a radical initiator (c) and the presence of a suitable dispersant A method of dispersing in aqueous solvent below to produce a dispersion (D1).
  • a resin solution obtained by dissolving a polyester resin (a) in an organic solvent is sprayed in the form of a mist to obtain particles, if necessary a component containing a radical reaction initiator (c) and a suitable dispersant And dispersion in an aqueous solvent to produce a dispersion (D1).
  • the poor solvent is added to the resin solution in which the polyester resin (a) is dissolved in the organic solvent, or the resin solution in which the resin solution is heated and dissolved in the organic solvent in advance is cooled to precipitate particles. After that, if necessary, it is dispersed in an aqueous solvent in the presence of a component containing a radical reaction initiator (c) and a suitable dispersant, to produce a dispersion (D1).
  • the method of [3] is preferable from the viewpoint of easiness of production of the resin fine particles (X1).
  • the “component containing polyester resin (a) and optionally radical reaction initiator (c)” may optionally contain polyester resin (b). It is preferable to contain a polyester resin (b) from the viewpoint of coexistence of low temperature fixability, hot offset resistance and heat resistant storage stability.
  • a dispersion (D1) of resin fine particles (X1) containing a polyester resin (a) and an additive dispersion (colorant dispersion, release agent dispersion, etc.) are mixed to obtain a dispersion (W1).
  • the dispersion liquid (W1) may be used instead of the dispersion liquid (D1).
  • the additive dispersion (colorant dispersion, release agent dispersion, etc.) is obtained by dispersing an additive such as a colorant in an aqueous solvent by a known method, and a dispersant is used if necessary. You may
  • step (2-2) carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) are cross-linked to form resin fine particles (X2) containing a modified resin as a modified resin
  • the method to obtain the dispersion liquid (D2) of is not particularly limited, for example, the following [8] can be mentioned.
  • [8] A method of producing a dispersion (D2) of resin fine particles (X2) by adding a radical reaction initiator (c) if necessary to the dispersion (D1) and adjusting the temperature to 5 to 200 ° C. if necessary .
  • the dispersion (W1) may be used instead of the dispersion (D1).
  • dispersion liquid (D2) and the crystalline polyester resin (C) dispersion liquid and / or the additive dispersion liquid are mixed to obtain a dispersion liquid (W2), which is replaced with the dispersion liquid (D2) below.
  • Dispersion liquid (W2) may be used.
  • the crystalline polyester resin (C) dispersion is obtained by dispersing the crystalline polyester resin (C) in an aqueous solvent by a known method, and a dispersing agent may be used if necessary. Specifically as a method of obtaining a dispersion liquid (W2), the method of following [9] is mentioned preferably.
  • An organic solvent solution containing a polyester resin (a) and an amorphous polyester resin (b1) and a radical reaction initiator (c) is dispersed in an aqueous solvent, if necessary, in the presence of a suitable dispersant.
  • the dispersion (abD1) of resin fine particles (X1) is obtained, and if necessary, the temperature is adjusted to 5 to 200 ° C., and unsaturated carbon in the polyester resin (a) in the amorphous polyester resin (b1)
  • the carbon-carbon double bonds derived from the acid component (z) are cross-linked to form a modified resin, and the organic solvent is removed to obtain a dispersion (abD2) of resin fine particles (X2).
  • aqueous solvent for example, coloring in which colorant is dispersed in aqueous solvent
  • Agent dispersion and aqueous solution How releasing agent to produce a dispersion by mixing becomes releasing agent dispersion and the like) are dispersed (W2) in the.
  • the dispersion method in the above methods [1] to [9] is not particularly limited, but known equipment such as low speed shear type, high speed shear type, friction type, high pressure jet type, and ultrasonic waves may be applied. it can.
  • a high speed shear type is preferable.
  • the rotational speed is not particularly limited, but is generally 1000 to 30000 rpm, preferably 5000 to 20000 rpm.
  • the dispersion time is not particularly limited, but in the case of a batch system, it is generally 0.1 to 5 minutes.
  • the controlled temperature is selected according to the molecular weight of the radical initiator (c) and the polyester resin (a) used.
  • the temperature is preferably 5 to 200 ° C., more preferably 20 to 100 ° C.
  • the dispersing apparatus is, for example, a batch type emulsification machine such as a homogenizer (manufactured by IKA), Polytron (manufactured by Kinematica), a TK autohomomixer [manufactured by Tokushu Kika Kogyo Co., Ltd.], Ebara Milder [manufactured by SHINOHARA MFG.
  • TK film mix TK pipeline homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.), colloid mill (manufactured by Shinko Pantec Co., Ltd.), ultravisco mill (manufactured by Imex Co., Ltd.), slasher, trigonal wet fine Continuous emulsification machine such as crusher [Nippon Coke Kogyo Co., Ltd.], Capitron (Eurotech Co., Ltd.), Fine Flow Mill [Pacific Kiko Co., Ltd.], Microfluidizer [Mizuho Kogyo Co., Ltd.], Membrane emulsification such as Nanomizer (made by Nanomizer), APV Gaulin (made by Gaulin) etc., high-pressure emulsifying machine, membrane emulsifying machine (made by Cooling Industry Co., Ltd.) etc.
  • TK pipeline homomixer manufactured by Tokushu Kika Kogyo Co., Ltd.
  • colloid mill manufactured
  • Vibro Mixer [Hiyaka Kogyo Co., Ltd.] vibrating emulsifier such as, ultrasonic emulsifier such as an ultrasonic homogenizer (manufactured by Branson Co., Ltd.).
  • ultrasonic emulsifier such as an ultrasonic homogenizer (manufactured by Branson Co., Ltd.).
  • preferred from the viewpoint of particle size uniformity are APV Gaulin, homogenizer, TK auto homomixer, Ebara milder, TK film mix and TK pipeline homo mixer.
  • step (2) the “step of forming an aggregate (Y1) of resin fine particles (X1) or an aggregate (Y2) of resin fine particles (X2)” in step (2) will be described.
  • the resin fine particles (X1) or (X2) in the dispersion ⁇ (D1), (D2), (W1) or (W2) ⁇ are aggregated to aggregate (Y1) or (Y2)
  • the method to obtain is not particularly limited, a method of adding an aggregating agent to the dispersion may be mentioned.
  • Flocculants include acids (hydrochloric acid, sulfuric acid, nitric acid, acetic acid and oxalic acid etc.), metal salts of inorganic acids (sodium chloride, magnesium chloride, calcium chloride, aluminum chloride, aluminum sulfate, calcium sulfate, calcium sulfate, ammonium sulfate, aluminum nitrate, silver nitrate , Copper sulfate and sodium carbonate etc., metal salts of fatty acids (sodium acetate, potassium formate and sodium oxalate etc), metal salts of aromatic fatty acids (sodium benzoate, sodium phthalate and potassium salicylate etc), metals of phenols Salts (sodium phenolate etc.), amine salts (metal salts of amino acids, triethanolamine hydrochloride, aniline hydrochloride etc.) and the like can be mentioned. Among these, metal salts of inorganic acids and metal salts of fatty acids are preferred, and metal
  • the temperature of the dispersion in the step (2) is preferably 5 to 100 ° C., more preferably 20 to 100 ° C., from the viewpoint of controlling the volume average particle diameter and the particle size distribution of the resin particles.
  • the pH of the dispersion is preferably 2 to 10, more preferably 3 to 6 from the viewpoint of controlling the volume average particle diameter and particle size distribution of the resin particles.
  • the addition amount of the coagulant is preferably 1 to 20 parts by weight, and more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the resin fine particles from the viewpoint of controlling the volume average particle diameter and particle size distribution of the resin particles. .
  • the temperature at the time of coalescence is preferably 5 to 200 ° C., more preferably 30 to 100 ° C., from the viewpoint of shape controllability of the obtained resin particles and toner.
  • the pH of the solution at the time of fusing the aggregates is preferably 3 to 10, more preferably 5 to 10.
  • the step (3-2) will be described below.
  • the temperature in the step of fusing the aggregates (Y2) in the step (3-2) to obtain resin particles is preferably 30 to 100 ° C., more preferably 40 to 100 ° C.
  • the step (3-1) will be described below.
  • the aggregate (Y1) is fused and simultaneously the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) are crosslinked to form a modified resin And the step of obtaining resin particles containing the modified resin.
  • the resin fine particles (X1) are added in advance to the resin fine particles (X1) in the radical reaction initiator (c) or in the step (2) of producing the aggregate (Y1).
  • the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the resin (a) are preferably fused while being crosslinked.
  • the temperature is chosen according to the molecular weight of the radical initiator (c) used and the polyester resin (a). In the step (3-1), the temperature is preferably 5 to 200 ° C., more preferably 20 to 100 ° C.
  • the reaction time is preferably 0.1 to 48 hours, more preferably 1 to 24 hours.
  • the method for producing resin particles of the present invention preferably further comprises the step of removing the aqueous solvent from the dispersion of resin particles from the viewpoint of chargeability, charge stability, and heat resistant storage stability.
  • [10] A method of drying the dispersion under reduced pressure or under normal pressure.
  • [11] A method of solid-liquid separation of the dispersion by a centrifugal separator, a spatula filter and / or a filter press, adding water etc. as necessary, repeating solid-liquid separation, and then drying the obtained solid.
  • [12] A method of freezing and drying the dispersion (so-called freeze drying).
  • drying can be performed using a known apparatus such as a fluid bed dryer, a reduced pressure dryer, and a circulating dryer as the dryer.
  • classification can be performed using an air classifier or sieve to obtain a predetermined particle size distribution.
  • the amount of the aqueous solvent remaining relative to 100 parts by weight of the resin particles is preferably 0 to 2 parts by weight, more preferably 0 to 1 part by weight, and further preferably from the viewpoint of chargeability, charge stability, flowability of the toner and heat resistant storage stability. Is 0 to 0.1 parts by weight, particularly preferably 0 to 0.01 parts by weight.
  • the particle diameter of the resin particles obtained by the production method of the present invention is preferably 2 to 20 ⁇ m, more preferably 3 to 15 ⁇ m, still more preferably 4 to 8 ⁇ m, from the viewpoint of developability and resolution.
  • the number average particle diameter is preferably 2 to 20 ⁇ m, more preferably 3 to 15 ⁇ m, and still more preferably 4 to 8 ⁇ m.
  • the particle size distribution (volume average particle diameter / number average particle diameter) is preferably 1.0 to 2.0, more preferably 1.0 to 1.8, and still more preferably 1.0 to 1.5.
  • the shape is preferably spherical in view of fluidity. Further, it is preferable from the viewpoint of the cleaning property to control the fusion state and to have appropriate unevenness.
  • the volume average particle diameter and the number average particle diameter of the resin particles can be measured with "Multisizer IV" (manufactured by Beckman Coulter, Inc.) or the like.
  • a method of producing a toner comprising the resin particle obtained by the method of producing a resin particle of the present invention is also one of the present invention.
  • the toner obtained by the production method of the present invention contains resin particles obtained by the production method of the present invention.
  • the toner obtained by the production method of the present invention is optionally selected from colorants, release agents, charge control agents, fluidizing agents, etc., as well as resin particles, except in the case where it is previously contained in resin particles. More than one known additive may be included. By containing these, it is possible to easily obtain one having good hot offset resistance, chargeability, toner flowability, heat resistant storage stability, charge stability, image strength, folding resistance and document offsetability.
  • the content of the colorant is preferably 1 to 40% by weight, more preferably 3 to 10% by weight, based on the weight of the toner obtained by the production method of the present invention, from the viewpoint of toner image density and low temperature fixability.
  • the content of the magnetic powder is preferably 20 to 70% by weight, more preferably 40 to 60% by weight, based on the weight of the toner.
  • the same one as in the case of the resin particle can be mentioned.
  • microcrystalline wax, paraffin wax, Fischer-Tropsch wax, carnauba wax and ester wax are preferable from the viewpoint of low temperature fixing property and hot offset resistance.
  • the release agent preferably has a softening point [Tm] of 50 to 170 ° C. by the flow tester, and more preferably 50 to 140 ° C., from the viewpoint of low temperature fixing property and hot offset resistance. More preferably, the temperature is 50 to 120 ° C.
  • the content of the releasing agent is preferably 1 to 20% by weight, more preferably 2 to 10% by weight, based on the weight of the toner obtained by the production method of the present invention, from the viewpoint of low temperature fixability and hot offset resistance. is there.
  • the charge control agent may be dispersed inside the toner, may coat the toner surface, or may be dispersed inside the toner and coat the toner surface.
  • the content of the charge control agent may be 0 to 20% by weight, preferably 0.1 to 10% by weight, and more preferably 0.5 to 5% by weight, based on the weight of the toner.
  • the content of the fluidizing agent may be 0 to 10% by weight, preferably 0 to 5% by weight, more preferably 0.1 to 4% by weight, based on the weight of the toner.
  • the toner obtained by the production method of the present invention is mixed with carrier particles such as iron powder, glass beads, nickel powder, ferrite, magnetite, and ferrite coated on the surface with resin (acrylic resin, silicone resin etc.) as necessary. It is used as a developer for an electric latent image.
  • the weight ratio of toner to carrier particles is preferably 1/99 to 100/0. Also, instead of the carrier particles, they can be rubbed with a member such as a charging blade to form an electric latent image.
  • the method of producing a toner of the present invention is a method of producing a toner comprising resin particles obtained by the method of producing resin particles.
  • the resin particles obtained by the above-mentioned production method may be used as a toner as it is, or the above-mentioned additives may be added by a known method.
  • the above-described method for producing resin particles of the present invention can be used as a method for producing a toner.
  • the toner obtained by the production method of the present invention is fixed on a support (paper, polyester film or the like) by a copying machine, a printer or the like to be used as a recording material.
  • a method of fixing on a support a known heat roll fixing method, flash fixing method and the like can be applied.
  • the toner obtained by the production method of the present invention can be preferably used to develop an electrostatic charge image or a magnetic latent image in electrophotography, electrostatic recording, electrostatic printing, and the like. More preferably, it can be used for developing an electrostatic charge image or a magnetic latent image for full color.
  • the acid value was measured by the method prescribed in JIS K 0070 (1992 version).
  • the glass transition temperature was measured by a method (DSC method) defined in ASTM D3418-82 using a differential scanning calorimeter (manufactured by TA Instruments, DSC Q20).
  • DSC method differential scanning calorimeter
  • the differential scanning calorimetry curve measured in the process of temperature rising to 150 ° C. at 20 ° C./min (6) and (5) was analyzed to determine the glass transition temperature.
  • the peak top molecular weight was measured using gel permeation chromatography (GPC) under the following conditions.
  • the sample solution was prepared by dissolving the sample (resin) in THF to 0.25 wt% and filtering off the insoluble matter with a glass filter.
  • Device HLC-8120 (manufactured by Tosoh Corporation) Column: Two TSK GEL GMH6 (made by Tosoh Corp.) Measurement temperature: 40 ° C
  • Sample solution THF solution of sample Injection amount of solution: 100 ⁇ L
  • Detection device Refractive index detector
  • Reference material Tosoh Co., Ltd. product standard polystyrene (TSK standard POLYSTYRENE) 12 points (molecular weight 500 1,050 2,800 5,970 9,100 18,100 37,900 96,400 190,000 355,000 1,090,000 2,890,000)
  • the volume-based median diameter of the resin fine particles was measured using a dynamic light scattering type particle size distribution measuring apparatus “SZ-100” (manufactured by Horiba, Ltd.).
  • the solid content concentration of the dispersion was measured by the above method.
  • the volume average particle size of the resin particles was measured by Coulter Counter Multisizer IV (manufactured by Beckman Coulter, Inc.).
  • polyester resin (a-1) The acid value of the polyester resin (a-1) was 5 mg KOH / g, the glass transition temperature (Tg a ) was 55 ° C., and the peak top molecular weight was 12,300.
  • the mixture was further reacted for 10 hours under a reduced pressure of 0.5 to 2.5 kPa, and taken out when the acid value reached 6 mg KOH / g, to obtain a polyester resin (a-2).
  • the acid value of the polyester resin (a-2) was 6 mg KOH / g
  • the glass transition temperature (Tg a ) was 25 ° C.
  • the peak top molecular weight was 12,000.
  • the mixture was further reacted for 10 hours under a reduced pressure of 0.5 to 2.5 kPa, and taken out when the acid value reached 7 mg KOH / g, to obtain a polyester resin (a-3).
  • the acid value of the polyester resin (a-3) was 7 mg KOH / g
  • the glass transition temperature (Tg a ) was 55 ° C.
  • the peak top molecular weight was 8,000.
  • the mixture was further reacted for 10 hours under a reduced pressure of 0.5 to 2.5 kPa, and taken out when the acid value reached 5 mg KOH / g, to obtain a polyester resin (a-4).
  • the acid value of the polyester resin (a-4) was 5 mg KOH / g
  • the glass transition temperature (Tg a ) was ⁇ 20 ° C.
  • the peak top molecular weight was 12,500.
  • polyester resin (a-5) was 6 mg KOH / g, the glass transition temperature (Tg a ) was 57 ° C., and the peak top molecular weight was 20,000.
  • polyester resin (a-6) was 5 mg KOH / g
  • glass transition temperature (Tg a ) was 50 ° C.
  • peak top molecular weight was 4,800.
  • the mixture was further reacted for 10 hours under a reduced pressure of 0.5 to 2.5 kPa, and taken out when the acid value reached 5 mg KOH / g, to obtain a polyester resin (a-7).
  • the acid value of the polyester resin (a-7) was 5 mg KOH / g
  • the glass transition temperature (Tg a ) was 55 ° C.
  • the peak top molecular weight was 12,100.
  • the mixture was further reacted for 10 hours under a reduced pressure of 0.5 to 2.5 kPa, and taken out when the acid value reached 6 mg KOH / g, to obtain a polyester resin (a-8).
  • the acid value of the polyester resin (a-8) was 6 mg KOH / g
  • the glass transition temperature (Tg a ) was 56 ° C.
  • the peak top molecular weight was 12,400.
  • Table 1 shows Tg a , acid value and peak top molecular weight of polyester resins (a-1) to (a-8).
  • the reaction was further allowed to proceed under reduced pressure of 0.5 to 2.5 kPa for 4 hours, and when the acid value reached 10 mg KOH / g, it was taken out to obtain an amorphous polyester resin (b1-1).
  • the acid value of the amorphous polyester resin (b1-1) was 10 mg KOH / g
  • the glass transition temperature (Tg) was 57 ° C.
  • the peak top molecular weight was 6,200.
  • the reaction was carried out for 4 hours while distilling off.
  • the reaction was further allowed to proceed under reduced pressure of 0.5 to 2.5 kPa for 4 hours, and when the acid value reached 10 mg KOH / g, it was taken out to obtain an amorphous polyester resin (b1-2).
  • the acid value of the amorphous polyester resin (b1-2) was 10 mg KOH / g, the Tg was 56 ° C., and the peak top molecular weight was 6,100.
  • Hymer BP-2P 214 parts (25.0 mol%) of bisphenol A • PO 3 mol adduct (“Hymer BP-3P” manufactured by Sanyo Chemical Industries, Ltd.), 31 parts (11.2 mol%) of terephthalic acid, 190 parts of isophthalic acid 69.1 mol%), 48 parts (19.7 mol%) of adipic acid, 2.5 parts of titanium dihydroxy bis (triethanol aminate) as a condensation catalyst, and the water formed at 230 ° C. under a nitrogen stream The reaction was carried out for 4 hours while distilling off.
  • the reaction was further allowed to proceed under reduced pressure of 0.5 to 2.5 kPa for 4 hours, and when the acid value reached 10 mg KOH / g, it was taken out to obtain an amorphous polyester resin (b1-3).
  • the acid value of the amorphous polyester resin (b1-3) was 10 mg KOH / g, the Tg was 57 ° C., and the peak top molecular weight was 6,500.
  • the temperature is gradually raised to 220 ° C., and reaction is performed for 4 hours while distilling off generated water under a nitrogen stream, and reaction is further performed under reduced pressure of 0.5 to 2.5 kPa, and the acid value is 0.5 mg KOH
  • the softening point of the crystalline polyester resin (C-1) was 78 ° C., and the temperature showing the endothermic peak top was 72 ° C.
  • the softening point was measured by the method of measuring the above-mentioned softening point [Tm] using a descent type flow tester [CFT-500D, manufactured by Shimadzu Corporation].
  • the temperature showing the endothermic peak top of the crystalline polyester resin (C-1) was measured using DSC Q20 manufactured by TA Instruments. The temperature is raised to 180 ° C. under the conditions of 10 ° C./min (the first temperature rising process) and then left at 180 ° C. for 10 minutes, then the temperature is raised to 0 ° C. under the conditions of 10 ° C./min. It cooled down (the 1st cooling process). Next, after standing at 0 ° C. for 10 minutes, the temperature was raised to 180 ° C. under the condition of 10 ° C./min (second temperature rising process).
  • a modified resin obtained by crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a-1) and the amorphous polyester resin (b1-1) are contained.
  • a dispersion (abD2-1) of resin fine particles (X2-1) was obtained.
  • the volume based median diameter of the resin fine particles (X2-1) was 0.15 ⁇ m, and the solid concentration of the dispersion (abD2-1) was 20% by weight.
  • ⁇ Production Example 14> [Production of Dispersion of Resin Fine Particles (X2-2) (abD2-2)]
  • a polyester resin (a-2) was prepared in the same manner as in Production Example 13 except that 5.2 parts of the polyester resin (a-1) was replaced by 5.2 parts of the polyester resin (a-2).
  • the volume based median diameter of the resin fine particles (X2-2) was 0.15 ⁇ m, and the solid concentration of the dispersion (abD2-2) was 20% by weight.
  • a dispersion (abD2-3) of resin fine particles (X2-3) containing the modified resin and the amorphous polyester resin (b1-1) was obtained.
  • the volume-based median diameter of the resin fine particles (X2-3) was 0.15 ⁇ m, and the solid concentration of the dispersion (abD2-3) was 20% by weight.
  • ⁇ Production Example 21> [Dispersion liquid of resin fine particles (X2-9) (abD2-9)]
  • a polyester resin (a-4) was prepared in the same manner as in Production Example 13 except that 5.2 parts of the polyester resin (a-1) was replaced by 5.2 parts of the polyester resin (a-4).
  • Dispersion liquid of resin fine particles (X2-9) containing modified resin formed by crosslinking carbon-carbon double bonds derived from unsaturated carboxylic acid component (z) and non-crystalline polyester resin (b1-1) (X2-9) abD2-9) was obtained.
  • the volume-based median diameter of the resin fine particles (X2-9) was 0.15 ⁇ m, and the solid concentration of the dispersion (abD2-9) was 20% by weight.
  • ⁇ Production Example 22> [Dispersion liquid of resin fine particles (X2-10) (abD2-10)]
  • a polyester resin (a-5) is contained in the same manner as in Production Example 13 except that 5.2 parts of the polyester resin (a-1) is replaced by 5.2 parts of the polyester resin (a-5).
  • Dispersion liquid of resin fine particles (X2-10) containing modified resin formed by crosslinking carbon-carbon double bonds derived from unsaturated carboxylic acid component (z) and amorphous polyester resin (b1-1) (X2-10) abD2-10) was obtained.
  • the volume-based median diameter of the resin fine particles (X2-10) was 0.15 ⁇ m, and the solid concentration of the dispersion (abD2-10) was 20% by weight.
  • ⁇ Production Example 23> [Dispersion liquid of resin fine particles (X2-11) (abD2-11)]
  • a polyester resin (a-6) is contained in the same manner as in Production Example 13 except that 5.2 parts of the polyester resin (a-1) is replaced by 5.2 parts of the polyester resin (a-6).
  • the volume based median diameter of the resin fine particles (X2-11) was 0.15 ⁇ m, and the solid concentration of the dispersion (abD2-11) was 20% by weight.
  • ⁇ Production example 25> [Dispersion liquid of resin fine particles (X2-13) (abD2-13)]
  • a polyester resin (a-8) is contained in the same manner as in Production Example 13 except that 5.2 parts of the polyester resin (a-1) is replaced by 5.2 parts of the polyester resin (a-8).
  • Dispersion liquid of resin fine particles (X2-13) containing modified resin formed by crosslinking carbon-carbon double bonds derived from unsaturated carboxylic acid component (z) and amorphous polyester resin (b1-1) (X2-13) abD2-13) was obtained.
  • the volume based median diameter of the resin fine particles (X2-13) was 0.15 ⁇ m, and the solid concentration of the dispersion (abD2-13) was 20% by weight.
  • Production Example 28 Production of Dispersion of Amorphous Polyester Resin (b1-1) Except that in Production Example 17, 8.3 parts of polyester resin (a-1) and 12.4 parts of amorphous polyester resin (b1-1) were replaced with 20.7 parts of amorphous polyester resin (b1-1).
  • Example 1 Preparation of Toner (T-1) A reaction vessel equipped with a stirrer, heating / cooling device, cooling pipe, thermometer and nitrogen introducing pipe crosslinks carbon-carbon double bonds derived from unsaturated carboxylic acid component (z) in polyester resin (a-1) Dispersion liquid (abD2-1) of resin fine particles (X2-1) containing modified resin and amorphous polyester resin (b1-1) which are caused to react, dispersion liquid of crystalline resin (C-1), colorant dispersion The solution and the release agent dispersion are charged so that the solid content becomes the number of parts in Table 2, 300 parts of ion exchanged water is charged, and the solution temperature is adjusted to 30 ° C.
  • the pH was adjusted to 10 by adding an aqueous sodium solution to obtain a dispersion (W2-1).
  • a modified resin obtained by crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a-1) and the amorphous polyester resin (b1-1) are contained.
  • Toner according to the present invention having a volume average particle diameter of 5 ⁇ m by uniformly mixing 99 parts by weight of the obtained resin particles (Z-1) and 1 part by weight of colloidal silica (Aerosil R-972) (manufactured by Nippon Aerosil Co., Ltd.) Obtained (T-1).
  • Examples 2 to 4 Preparation of Toners (T-2) to (T-4) Dispersions (W2-2) to (W2) are carried out in the same manner as in Example 1 except that dispersion (abD2-1) is replaced with dispersions (abD2-2) to (abD2-4) respectively.
  • -4) After obtaining resin particles (Z-2) to (Z-4), toners (T-2) to (T-4) of the present invention having a volume average particle diameter of 5 ⁇ m were obtained.
  • Example 5 Preparation of Toner (T-5) Of resin fine particles (X1-5) containing polyester resin (a-1) and amorphous polyester resin (b1-1) in a reaction vessel equipped with a stirrer, heating / cooling device, cooling pipe, thermometer and nitrogen introducing pipe Dispersion (abD1-5), dispersion of crystalline resin (C-1), colorant dispersion, and releasing agent dispersion are charged so that the solid content becomes the number of parts in Table 2, and 300 parts of ion-exchanged water After adjusting the liquid temperature to 30.degree.
  • a 25 wt.% Aqueous sodium hydroxide solution was added while stirring at a rotational speed of 300 rpm to adjust the pH to 10 to obtain a dispersion liquid (W1-1).
  • the resin fine particles (X1-5) containing the polyester resin (a-1) and the amorphous polyester resin (b1-1), the crystalline resin (C-1), the colorant, and the release agent are coagulated. Therefore, while stirring at a rotational speed of 300 rpm, add an aqueous solution of magnesium chloride with a concentration of 10% by weight, and after sampling appropriately to confirm that the volume average particle diameter is 5 ⁇ m, adjust the system temperature to 60 ° C.
  • the pH was then adjusted to 4.5 by addition of a 0.3 M aqueous nitric acid solution, and after 30 minutes it was adjusted to 4.0. Then, the cross-linking reaction between carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a-1) is maintained by gradually raising the temperature to 80 ° C. while stirring for 3 hours. The fusion (fusion) and spheronization of the aggregates were performed simultaneously. Then, it cooled to 30 degreeC and obtained the aqueous dispersion liquid of the resin particle containing a coloring agent.
  • Toner according to the present invention having a volume average particle diameter of 5 ⁇ m by uniformly mixing 99 parts by weight of the obtained resin particles (Z-5) and 1 part by weight of colloidal silica (Aerosil R-972) (manufactured by Nippon Aerosil Co., Ltd.) I got (T-5).
  • Example 6 Preparation of Toner (T-6)
  • the dispersion (abD1-5) of resin fine particles (X1-5) containing the polyester resin (a-1) and the amorphous polyester resin (b1-1) is replaced with the dispersion (abD1-6)
  • the dispersion (W1-2) and the resin particles (Z-6) are obtained in the same manner as in Example 5 except that the dispersion of the crystalline resin (C-1) is not added, the volume average particle diameter is obtained.
  • a 5 ⁇ m toner of the present invention (T-6) was obtained.
  • Examples 7 to 15 [Preparation of Toners (T-7) to (T-15)] Dispersions (W2-7) to (W2) were prepared in the same manner as in Example 1 except that dispersion (abD2-1) was replaced with dispersions (abD2-7) to (abD2-15), respectively. After obtaining resin particles (Z-7) to (Z-15), toners (T-7) to (T-15) of the present invention having a volume average particle diameter of 5 ⁇ m were obtained.
  • Example 5 a dispersion (abD1-5) of resin fine particles (X1-5) containing a polyester resin (a-1) and an amorphous polyester resin (b1-1) is dispersed in a polyester resin (b1-1) Dispersion (W1'-1), resin particles (Z'-1) in the same manner as in Example 5 except that the dispersion (bD-1) was replaced and the dispersion of the crystalline resin (C-1) was not added. After that, a toner (T'-1) having a volume average particle diameter of 5 .mu.m was obtained.
  • the resultant was cooled to obtain a toner binder. Furthermore, 7 parts of pigment carbon black MA-100 [Mitsubishi Chemical Corporation] and 7 parts of paraffin wax as a releasing agent are added to 100 parts of toner binder, and Henschel mixer [Japan coke industry FM10B] After pre-mixing using the mixture, the mixture was kneaded using a twin-screw kneader [PCM-30 manufactured by Ikegai Co., Ltd.]. Next, the mixture is finely pulverized using a supersonic jet crusher Rabojet (manufactured by Nippon Pneumatic Mfg. Co., Ltd.), and then classified by an air flow classifier (MDS-I manufactured by Japan Pneumatic Mfg.
  • Rabojet manufactured by Nippon Pneumatic Mfg. Co., Ltd.
  • the obtained resin particles (Z'-2) were 5 .mu.m and the particle size distribution was 1.8. 99 parts of the obtained resin particles (Z'-2) and 1 part of colloidal silica (Aerosil R 972: Nippon Aerosil Co., Ltd.) as a fluidizing agent are mixed in a sample mill to obtain a toner (T'-2) Obtained.
  • Table 2 shows the composition of the polyester resin (a), the polyester resin (b), the radical reaction initiator (c), the coloring agent and the releasing agent for the toners of Examples and Comparative Examples.
  • Table 2 also shows the THF insoluble matter (%) of the resin particles and the glass transition temperature (Tg).
  • the THF insoluble matter (%) was determined by the method described above.
  • the weight ratio of (a) / (b) is the weight ratio of the polyester resin (a) -derived structural portion in the resin particle to the polyester resin (b), and the weight ratio of (b1) / (C) is It is a weight ratio of amorphous polyester resin (b1) and crystalline polyester resin (C).
  • the toners of Examples and Comparative Examples were evaluated, and the results are shown in Table 3.
  • ⁇ Hot offset resistance (hot offset occurrence temperature)> The fixation was evaluated in the same manner as the low temperature fixation, and the presence or absence of the hot offset to the fixed image was visually evaluated. After passing through the pressure roller, the temperature at which the hot offset occurred was taken as the hot offset resistance (° C.). In this evaluation condition, it means that the offset is less likely to occur as the temperature is higher, and if the temperature is 180 ° C. or more, the occurrence of the offset can be suppressed in an actual use mode.
  • the bulk density (g / 100 mL) of the toner was measured with a powder tester manufactured by Hosokawa Micron Corporation, and the flowability was determined based on the following criteria.
  • Heat resistant storage stability 1 g of the toner was placed in a closed container and allowed to stand in an atmosphere of temperature 50 ° C. and humidity 50% for 24 hours, the degree of blocking was visually judged, and heat resistance storage stability was evaluated according to the following judgment criteria. Judgment criteria ⁇ : No blocking occurred at all. Fair: Blocking has occurred in part. X: Blocking has occurred on the whole.
  • ⁇ Charging stability> (1) 0.5 g of toner and 20 g of ferrite carrier (F-150, manufactured by Powder Tech Co., Ltd.) were placed in a 50 mL glass bottle, and conditioned at 23 ° C. and 50% relative humidity for 8 hours or more. (2) Friction stirring was carried out at 50 rpm ⁇ 20 minutes and 60 minutes with a Tumbler shaker mixer, and the charge amount at each time was measured. For the measurement, a blow-off charge amount measuring apparatus [manufactured by Toshiba Chemical Co., Ltd.] was used. The “charge amount for 60 minutes of friction time / charge amount for 10 minutes of friction time” was calculated and used as an indicator of charge stability.
  • Judgment criteria Volume average particle diameter less than 5.5 ⁇ m and particle size distribution 1.0 or more and less than 1.8 ⁇ : Volume average particle diameter 5.5 ⁇ m or more and less than 6.0 ⁇ m and particle size distribution 1.0 or more and less than 1.8 ⁇ : Volume average Particle size 6.0 ⁇ m or more or particle size distribution 1.8 or more
  • Judgment criteria no resistance :: a crisp sound but the image does not separate from the paper surface x: the image separates from the paper surface
  • the resin particles and toner obtained by the production method of the present invention are excellent in low temperature fixability, glossiness, hot offset resistance, chargeability and particle size distribution, excellent in heat resistant storage stability, charge stability and cleanability, electrophotography It can be suitably used as a toner used for electrostatic recording, electrostatic printing and the like. Furthermore, it is suitable as applications such as additives for paints, additives for adhesives, and particles for electronic paper.

Abstract

The present invention relates to a method for producing resin particles by: obtaining resin microparticles that contain a polyester resin (a) which has a glass transition temperature (Tga) of -20 to 57˚C and which is obtained by polycondensation of an alcohol component (y) and an unsaturated carboxylic acid component (z); and then aggregating and fusing the resin micro particles. The method for producing resin particles comprises a step of producing a modified resin by cross linking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) of the polyester resin (a) after the resin microparticles have been obtained.

Description

樹脂粒子及びトナーの製造方法Resin particle and method for producing toner
本発明は、樹脂粒子及びトナーの製造方法に関する。 The present invention relates to a method of producing resin particles and toner.
近年、電子写真システムの発展に伴い、複写機やレーザープリンター等の電子写真装置の需要は急速に増加しており、それらの性能に対する要求も高度化している。
フルカラー電子写真用には従来、電子写真感光体等の潜像坦持体に色画像情報に基づく潜像を形成し、該潜像を対応する色のトナーにより現像し、次いで該トナー像を転写材上に転写するといった画像形成工程を繰り返した後、転写材上のトナー像を加熱定着して多色画像を得る方法や装置が知られている。
In recent years, with the development of electrophotographic systems, the demand for electrophotographic apparatuses such as copying machines and laser printers has been rapidly increasing, and the demand for their performance has also been advanced.
Conventionally, for full-color electrophotography, a latent image based on color image information is formed on a latent image carrier such as an electrophotographic photosensitive member, the latent image is developed with a toner of a corresponding color, and then the toner image is transferred There is known a method and apparatus for obtaining a multi-color image by heating and fixing a toner image on a transfer material after repeating an image forming process of transferring onto a material.
これらのプロセスを問題なく通過するためには、トナーはまず安定した帯電量を保持することが必要であり、次に紙への定着性が良好であることが必要とされる。また、装置は定着部に加熱体を有するため、装置内で温度が上昇することから、トナーは、装置内でブロッキングしないことが要求される。 In order to pass through these processes without problems, it is necessary for the toner to first maintain a stable charge, and then to have good fixability to paper. In addition, since the device has a heater at the fixing portion, the temperature is increased in the device, so that the toner is required not to be blocked in the device.
更に、電子写真装置の小型化、高速化、高画質化の促進とともに、定着工程における消費エネルギーを低減するという省エネルギーの観点から、トナーの低温定着性の向上が強く求められている。
また、最近では用いられる転写材として、表面凹凸の大きい再生紙や、表面が平滑なコート紙など多くの種類の紙が用いられる。これらの転写材の表面性に対応するために、ソフトローラーやベルトローラーなどのニップ幅の広い定着器が好ましく用いられている。しかし、ニップ幅を広くすると、トナーと定着ローラーとの接触面積が増え、定着ローラーに溶融トナーが付着する、いわゆる高温オフセット現象が発生するため、耐オフセット性が要求されるのが前提である。
上記に加えて、多色画像(フルカラー)は写真画像などの再現等から白黒画像(モノクロ)に比べて高い光沢が必要とされ、得られる画像のトナー層が平滑になるようにする必要がある。
したがって、トナーは、高い光沢を有しながら耐オフセット性を維持しつつ、低温定着性を発現できる必要があり、広いワーキングレンジで高光沢なトナー画像を形成できることが要求されるようになってきている。
Further, from the viewpoint of energy saving in which the consumption energy in the fixing step is reduced while the miniaturization, speeding up and image quality enhancement of the electrophotographic apparatus are promoted, the improvement of the low temperature fixability of the toner is strongly demanded.
Recently, as a transfer material to be used, many types of paper such as recycled paper with large surface irregularities and coated paper with a smooth surface are used. In order to cope with the surface properties of these transfer materials, a wide nip fixing device such as a soft roller or a belt roller is preferably used. However, when the nip width is increased, the contact area between the toner and the fixing roller is increased, and a so-called high temperature offset phenomenon occurs in which the molten toner adheres to the fixing roller, so it is premised that offset resistance is required.
In addition to the above, a multi-color image (full color) is required to have a higher gloss than a black and white image (monochrome) from the reproduction of photographic images etc., and it is necessary to make the toner layer of the obtained image smooth. .
Therefore, it is necessary for the toner to be able to exhibit low-temperature fixability while maintaining offset resistance while having high gloss, and it has been required to be able to form high gloss toner images in a wide working range. There is.
トナーバインダーは、上述のようなトナー特性に大きな影響を与えるものであり、ポリスチレン樹脂、スチレン-アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリアミド樹脂等が知られているが、最近では、保存性と定着性のバランスを取りやすいことから、ポリエステル樹脂が特に注目されている。 The toner binder greatly affects the toner characteristics as described above, and polystyrene resin, styrene-acrylic resin, polyester resin, epoxy resin, polyurethane resin, polyamide resin, etc. are known, but recently, storage Polyester resins are of particular interest because they tend to balance the properties and fixability.
定着温度幅を拡大させる方法として、高分子化用樹脂とポリエステル樹脂の混合物とイソシアネートとの反応生成物を用いたトナーが提案されている(特許文献1)。
しかしながら、この方法は高温でのオフセット現象はある程度防止できても、同時に定着下限温度も上昇するため低温定着が困難となり、また、イソシアネートから誘導されるウレア基やウレタン基の高凝集性により、樹脂の粉砕性が著しく悪くなる問題がある。更に、樹脂の均一性が損なわれ耐熱保存性も悪化し、未だ高速化、省エネルギー化の要求には充分に答えられていない。
As a method of expanding the fixing temperature range, a toner using a reaction product of a mixture of a resin for polymerization and a polyester resin and an isocyanate has been proposed (Patent Document 1).
However, even if this method can prevent the offset phenomenon at high temperatures to some extent, the lower limit temperature for fixing is also raised at the same time, and low temperature fixing becomes difficult, and the high aggregation of urea groups and urethane groups derived from isocyanate makes the resin There is a problem that the crushability of the Furthermore, the uniformity of the resin is impaired and the heat resistant storage stability is also deteriorated, and the demands for speeding up and energy saving have not been sufficiently answered yet.
一方において、静電荷像現像に使用されるトナーの製造方法には、大別して粉砕法と重合法とがある。 On the other hand, methods for producing a toner used for electrostatic charge image development are roughly classified into a pulverization method and a polymerization method.
粉砕法では、トナーバインダー中に、着色剤、帯電制御剤、離型剤などを溶融混合して均一に分散させ、得られた組成物を粉砕、分級することによりトナーを製造している。粉砕法によれば、ある程度優れた特性を有するトナーを製造することができるが、トナー用材料の選択に制限がある。例えば、溶融混合により得られる組成物は、経済的に使用可能な装置により粉砕し、分級できるものでなければならない。このことから、溶融混合した組成物は、充分に脆くせざるを得ない。このため、実際にトナーバインダーを粉砕して粒子にする際に、広範囲の粒径分布が形成され易く、良好な解像度と階調性のある画像を得ようとすると、微粉と粗粉を分級により除去しなければならず、トナー収率が非常に低くなるという欠点がある。また、粉砕法では、着色剤や帯電制御剤などを熱可塑性樹脂中に均一に分散することが困難であり、不均一になる問題がある。不均一であると、トナーの流動性、帯電安定性、画像品質などに悪影響を及ぼす。 In the pulverizing method, a toner, a charge control agent, a releasing agent, and the like are melt mixed and uniformly dispersed in a toner binder, and the obtained composition is pulverized and classified to produce a toner. According to the pulverizing method, a toner having excellent characteristics to some extent can be produced, but there is a limitation in selecting a material for toner. For example, the composition obtained by melt mixing should be one that can be crushed and classified by an economically usable device. From this, the melt-blended composition must be sufficiently brittle. For this reason, when the toner binder is actually crushed into particles, a wide range of particle size distribution is easily formed, and when it is intended to obtain an image with good resolution and gradation, the fine powder and the coarse powder are classified. It has the disadvantage that it has to be removed and the toner yield is very low. Further, in the pulverizing method, it is difficult to uniformly disperse the coloring agent, the charge control agent, and the like in the thermoplastic resin, and there is a problem of becoming nonuniform. Unevenness adversely affects toner fluidity, charging stability, image quality and the like.
これらの粉砕法における問題点を克服するために、重合法によるトナーの製造方法が提案され、実施されている。静電荷像現像用のトナーを重合法によって製造する技術は公知であり、例えば乳化重合凝集法(特許文献2)や溶解懸濁法(特許文献3)によってトナー粒子を得ることが行われている。 In order to overcome these problems in the pulverizing method, a method of producing a toner by a polymerization method has been proposed and practiced. Techniques for producing a toner for electrostatic charge image development by a polymerization method are known, and for example, toner particles are obtained by an emulsion polymerization aggregation method (patent document 2) or a dissolution suspension method (patent document 3) .
特許文献2では、乳化重合凝集法により得られるトナーが提案されている。しかしながら、この方法はスチレン-アクリル樹脂を使用しているためトナーの低温定着性が不充分であり、未だ高画質化、高速化、省エネルギー化の要求には充分に答えられていない。またポリエステル樹脂を使用した場合、低温定着性は改良されるものの、樹脂の溶解性や分散性の観点から高分子量タイプのポリエステル樹脂の使用に制限があり、定着温度幅を拡大させることが難しい。 Patent Document 2 proposes a toner obtained by an emulsion polymerization aggregation method. However, since this method uses a styrene-acrylic resin, the low temperature fixability of the toner is insufficient, and the demands for high image quality, high speed and energy saving have not been sufficiently answered yet. When a polyester resin is used, the low temperature fixability is improved, but the use of a high molecular weight type polyester resin is limited from the viewpoint of the solubility and dispersibility of the resin, and it is difficult to expand the fixing temperature range.
一方で、特許文献3では、溶解懸濁法により得られるトナーが提案されている。この方法は、ポリエステル樹脂、伸張剤、着色剤、離型剤等を、分散安定剤を含む水相中に撹拌しながら加えて油滴を形成させ、その後、昇温して重合反応を行わせることにより、トナー粒子を得る方法である。この溶解懸濁法によれば、ポリエステル樹脂を使用しながらトナー粒子の小粒径化や樹脂の均一化ができることで低温定着性、耐ホットオフセット性の両立も可能であるものの、伸張剤から誘導されるウレア基やウレタン基の(1)高凝集性によって光沢性を低下させる、(2)正帯電性によって帯電制御性を低下させるという問題がある。 On the other hand, Patent Document 3 proposes a toner obtained by the dissolution suspension method. In this method, a polyester resin, an extending agent, a coloring agent, a releasing agent and the like are added to an aqueous phase containing a dispersion stabilizer with stirring to form oil droplets, and then the temperature is raised to carry out a polymerization reaction. Is a method of obtaining toner particles. According to this dissolution and suspension method, it is possible to achieve both the low temperature fixing property and the hot offset resistance by reducing the particle diameter of the toner particles and making the resin uniform while using the polyester resin, but it is derived from the stretching agent There is a problem that the glossiness is lowered due to (1) high aggregation property of the urea group or the urethane group, and (2) the charge control property is lowered due to the positive chargeability.
以上、述べたように、低温定着性、光沢性、耐ホットオフセット性、帯電性及び粒度分布に優れ、耐熱保存性及び帯電安定性のすべてを満足する優れたトナーは、これまでなかった。 As described above, there has been no excellent toner which is excellent in low-temperature fixability, glossiness, hot offset resistance, chargeability and particle size distribution, and which satisfies all of heat-resistant storage stability and charge stability.
特開平4-211272号公報Unexamined-Japanese-Patent No. 4-211272 特許第2537503号公報Patent No. 2537503 特開2010-152002号公報JP, 2010-152002, A
本発明は、低温定着性、光沢性、耐ホットオフセット性、帯電性及び粒度分布に優れ、耐熱保存性、帯電安定性及びクリニーング性のすべてを満足する樹脂粒子及びトナーの製造方法を提供することを目的とする。 The present invention provides a method for producing resin particles and toner that are excellent in low temperature fixability, glossiness, hot offset resistance, chargeability and particle size distribution, and satisfy all of heat resistance storage stability, charge stability and cleaning properties. With the goal.
上記の目的を達成するべく検討を行った結果、本発明に到達した。
すなわち、本発明は、アルコール成分(y)と不飽和カルボン酸成分(z)とを含有する成分を重縮合して得られたガラス転移温度(Tg)が-20~57℃のポリエステル樹脂(a)を含有する樹脂微粒子を得た後、樹脂微粒子を凝集させ、融合させる樹脂粒子の製造方法であって、樹脂微粒子を得た後、ポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させて変性樹脂にする工程を含む樹脂粒子の製造方法及び上記樹脂粒子の製造方法で得られた樹脂粒子を含んでなるトナーの製造方法である。
As a result of studying to achieve the above object, the present invention has been achieved.
That is, the present invention provides a polyester resin having a glass transition temperature (Tg a ) of −20 to 57 ° C. obtained by polycondensation of a component containing an alcohol component (y) and an unsaturated carboxylic acid component (z) The method is a method for producing resin particles in which resin fine particles containing a) are obtained, and then the resin fine particles are aggregated and fused, and after obtaining the resin fine particles, unsaturated carboxylic acid component (z) in the polyester resin (a) A process for producing resin particles including the step of crosslinking the carbon-carbon double bonds derived from each other to form a modified resin, and a process for producing a toner comprising resin particles obtained by the above process for producing resin particles .
本発明により、低温定着性、光沢性、耐ホットオフセット性、帯電性及び粒度分布に優れ、耐熱保存性、帯電安定性及びクリーニング性のすべてを満足する樹脂粒子及びトナー製造方法を提供することが可能になる。 It is an object of the present invention to provide a resin particle and a toner manufacturing method which are excellent in low temperature fixability, glossiness, hot offset resistance, chargeability and particle size distribution and satisfy all of heat resistance storage stability, charge stability and cleanability. It will be possible.
本発明の樹脂粒子の製造方法は、アルコール成分(y)と不飽和カルボン酸成分(z)とを含有する成分を重縮合して得られたガラス転移温度(Tg)が-20~57℃のポリエステル樹脂(a)を含有する樹脂微粒子を得た後、樹脂微粒子を凝集させ、融合させる樹脂粒子の製造方法であって、樹脂微粒子を得た後、ポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させて変性樹脂にする工程を含むことを特徴とする。
以下に、本発明の樹脂粒子の製造方法を順次、説明する。
The method for producing resin particles of the present invention has a glass transition temperature (Tg a ) of −20 to 57 ° C. obtained by polycondensation of a component containing an alcohol component (y) and an unsaturated carboxylic acid component (z). The resin fine particles containing the polyester resin (a) of the present invention are obtained, and then the resin fine particles are coagulated and coalesced, and after the resin fine particles are obtained, unsaturated carbon in the polyester resin (a) is obtained. A step of crosslinking the carbon-carbon double bonds derived from the acid component (z) to form a modified resin is characterized.
Below, the manufacturing method of the resin particle of this invention is demonstrated one by one.
本発明の製造方法により得られる樹脂粒子は、アルコール成分(y)と不飽和カルボン酸成分(z)とを含有する成分を重縮合して得られたポリエステル樹脂(a)が架橋した変性樹脂を必須成分として含む。
ポリエステル樹脂(a)が架橋した変性樹脂とは、実質的に分子内に炭素-炭素二重結合を有するポリエステル樹脂(a)を重縮合で得た後に、ポリエステル樹脂(a)中の不飽和カルボン酸成分(z)に起因する炭素-炭素二重結合同士で架橋反応が起って化学結合した非線形ポリエステル変性樹脂(A)のことである。
樹脂粒子が非線形ポリエステル変性樹脂(A)を含有することにより、該樹脂粒子及びこれを含んでなるトナーの耐ホットオフセット性、耐折り曲げ性、ドキュメントオフセット性及び画像強度が良好になる。
また、樹脂粒子中に含有される樹脂は1種類でもよいし、2種類以上の樹脂の混合物でもよく、例えばポリエステル樹脂(a)が架橋した変性樹脂と、後述するポリエステル樹脂(b){ポリエステル樹脂(a)を除くポリエステル樹脂であり、アルコール成分(y)と飽和カルボン酸成分(x)とを含有する成分を重縮合して得られたポリエステル樹脂}との組み合わせでもよい。
また、ポリエステル樹脂(a)、ポリエステル樹脂(b)はそれぞれ1種類を用いてもよく、2種類以上を併用してもよい。
また、本発明におけるポリエステル樹脂(a)は1種類以上のアルコール成分(y)と1種類以上の不飽和カルボン酸成分(z)とを含有する成分を重縮合して得られ、不飽和カルボン酸成分(z)に起因する炭素-炭素二重結合を分子内に有する。
さらに、ポリエステル樹脂(a)は、アルコール成分(y)と不飽和カルボン酸成分(z)以外に、1種類以上の飽和カルボン酸成分(x)を構成原料として併用して重縮合して得られるポリエステル樹脂であってもよい。
The resin particle obtained by the production method of the present invention is a modified resin in which a polyester resin (a) obtained by polycondensation of a component containing an alcohol component (y) and an unsaturated carboxylic acid component (z) is crosslinked. Include as an essential ingredient.
The modified resin in which the polyester resin (a) is crosslinked means an unsaturated carbon in the polyester resin (a) after the polyester resin (a) substantially having carbon-carbon double bonds in its molecule is obtained by polycondensation. The non-linear polyester modified resin (A) is a chemically bonded non-linear polyester modified resin (A) in which a crosslinking reaction occurs at carbon-carbon double bonds derived from the acid component (z).
When the resin particles contain the non-linear polyester modified resin (A), the hot offset resistance, the bending resistance, the document offset property and the image strength of the resin particles and the toner comprising the resin particles become good.
The resin contained in the resin particles may be one type or a mixture of two or more types of resins. For example, a modified resin obtained by crosslinking the polyester resin (a) and a polyester resin (b) {polyester resin described later It may be a combination of a polyester resin except for (a) and a polyester resin obtained by polycondensation of a component containing an alcohol component (y) and a saturated carboxylic acid component (x).
The polyester resin (a) and the polyester resin (b) may be used alone or in combination of two or more.
The polyester resin (a) in the present invention is obtained by polycondensation of a component containing one or more alcohol components (y) and one or more unsaturated carboxylic acid components (z), and is an unsaturated carboxylic acid. It has a carbon-carbon double bond in the molecule derived from the component (z).
Furthermore, the polyester resin (a) is obtained by polycondensation in combination with one or more kinds of saturated carboxylic acid components (x) as a constituent raw material in addition to the alcohol component (y) and the unsaturated carboxylic acid component (z) It may be a polyester resin.
アルコール成分(y)としては、モノオール(y1)、ジオール(y2)及び3価以上の価数のポリオール(y3)等が挙げられる。 Examples of the alcohol component (y) include monools (y1), diols (y2) and polyols having a valence of 3 or more (y3).
モノオール(y1)としては、炭素数1~30のアルカノール(メタノール、エタノール、イソプロパノール、ドデシルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール及びベヘニルアルコール等)等が挙げられる。
これらモノオールのうち好ましいものは炭素数8~24のアルカノールであり、より好ましくはドデシルアルコール、ミリスチルアルコール、ステアリルアルコール、ベヘニルアルコール、およびこれらの2以上の併用である。
Examples of monools (y1) include alkanols having 1 to 30 carbon atoms (methanol, ethanol, isopropanol, dodecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol and the like) and the like.
Among these monools, preferred are alkanols having 8 to 24 carbon atoms, and more preferred are dodecyl alcohol, myristyl alcohol, stearyl alcohol, behenyl alcohol, and combinations of two or more of these.
ジオール(y2)としては、炭素数2~36のアルキレングリコール(エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール及び1,12-ドデカンジオール等)、炭素数4~36のアルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレンエーテルグリコール等)、炭素数6~36の脂環式ジオール(1,4-シクロヘキサンジメタノール及び水素添加ビスフェノールA等)、上記脂環式ジオールのアルキレンオキサイド((ポリ)オキシアルキレン)付加物(好ましくは平均付加モル数1~30)、芳香族ジオール[単環2価フェノール(例えばハイドロキノン等)及びビスフェノール類等]及び上記芳香族ジオールのアルキレンオキサイド付加物(好ましくは平均付加モル数2~30)等が挙げられる。
これらのうち、低温定着性と耐熱保存性の観点から、ビスフェノール類のアルキレンオキサイド付加物が好ましい。アルキレンオキサイドにおいて、アルキレン基の炭素数は好ましくは2~4(エチレンオキサイド及びプロピレンオキサイド等)である。
The diol (y2) is an alkylene glycol having 2 to 36 carbon atoms (ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, neopentyl glycol, 3-methyl-1, 5-Pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, etc.), C4-36 alkylene ether glycol (diethylene glycol, triethylene glycol) , Dipropylene glycol, polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol, etc.), alicyclic diols having 6 to 36 carbon atoms (1,4-cyclohexanedimethanol, hydrogenated bisphenol A, etc.), Alkylene oxide ((poly) oxyalkylene) adducts (preferably having an average added mole number of 1 to 30), aromatic diols [monocyclic dihydric phenols (eg hydroquinone etc.) and bisphenols etc.] and alkylenes of the above aromatic diols Oxide adducts (preferably, the average addition mole number 2 to 30) and the like can be mentioned.
Among them, alkylene oxide adducts of bisphenols are preferable from the viewpoint of low temperature fixing ability and heat resistant storage stability. In the alkylene oxide, the carbon number of the alkylene group is preferably 2 to 4 (such as ethylene oxide and propylene oxide).
ビスフェノール類のアルキレンオキサイド付加物は、一般的に、ビスフェノール類にアルキレンオキサイド(以下、「アルキレンオキサイド」をAOと略記することがある。)を付加して得られる。ビスフェノール類としては、下記一般式(1)で示されるものが挙げられる。 The alkylene oxide adduct of bisphenols is generally obtained by adding an alkylene oxide (hereinafter, "alkylene oxide" may be abbreviated as AO) to bisphenols. As bisphenols, what is shown by following General formula (1) is mentioned.
HO-Ar-P-Ar-OH          (1)
[式中、Pは炭素数1~3のアルキレン基、-SO-、-O-、-S-、又は直接結合を表し、Arは、水素原子がハロゲン原子又は炭素数1~30のアルキル基で置換されていてもよいフェニレン基を表す。]
HO-Ar-P-Ar-OH (1)
[Wherein, P represents an alkylene group having 1 to 3 carbon atoms, -SO 2- , -O-, -S-or a direct bond, and Ar represents a halogen atom or an alkyl having 1 to 30 carbon atoms] Represents a phenylene group which may be substituted by a group. ]
ビスフェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールB、ビスフェノールAD、ビスフェノールS、トリクロロビスフェノールA、テトラクロロビスフェノールA、ジブロモビスフェノールF、2-メチルビスフェノールA、2,6-ジメチルビスフェノールA及び2,2’-ジエチルビスフェノールF等が挙げられ、これらは2種以上を併用することもできる。 Examples of bisphenols include bisphenol A, bisphenol F, bisphenol B, bisphenol AD, bisphenol S, trichlorobisphenol A, tetrachlorobisphenol A, dibromobisphenol F, 2-methylbisphenol A, 2,6-dimethylbisphenol A and 2 And 2'-diethyl bisphenol F etc., and two or more of these can be used in combination.
これらビスフェノール類に付加するアルキレンオキサイドとしては、炭素数が2~4のアルキレンオキサイドが好ましく、例えば、エチレンオキサイド(以下、「エチレンオキサイド」をEOと略記することがある。)、プロピレンオキサイド(「1,2-プロピレンオキサイド」を意味し、以下、POと略記することがある。)、1,3-プロピレンオキサイド、1,2-、2,3-、1,3-又はiso-ブチレンオキサイド、テトラヒドロフラン及びこれらの2種以上の併用が挙げられる。
耐熱保存性及び低温定着性の観点から、ビスフェノール類のAO付加物を構成するAOは、好ましくはEO及びPOである。AOの平均付加モル数は、好ましくは2~30モル、より好ましくは2~10モルである。
ビスフェノール類のアルキレンオキサイド付加物のうち、トナーの定着性の観点から好ましいものは、ビスフェノールAのEO付加物及びビスフェノールAのPO付加物(平均付加モル数は好ましくは2~4、より好ましくは2~3)である。
As the alkylene oxide to be added to these bisphenols, an alkylene oxide having 2 to 4 carbon atoms is preferable, and, for example, ethylene oxide (hereinafter sometimes "ethylene oxide" may be abbreviated as EO), propylene oxide ("1 (Hereinafter, sometimes abbreviated as PO), 1,3-propylene oxide, 1,2-, 2,3-, 1,3- or iso-butylene oxide, tetrahydrofuran And combinations of two or more of these.
In terms of heat resistant storage stability and low temperature fixability, AO constituting an AO adduct of bisphenols is preferably EO and PO. The average added mole number of AO is preferably 2 to 30 moles, more preferably 2 to 10 moles.
Among the alkylene oxide adducts of bisphenols, preferred are EO adducts of bisphenol A and PO adducts of bisphenol A (the average addition mole number is preferably 2 to 4, more preferably 2) from the viewpoint of toner fixability. To 3).
3価以上の価数のポリオール(y3)としては、炭素数3~36の3価以上の価数の脂肪族多価アルコール(y31)、糖類及びその誘導体(y32)、脂肪族多価アルコールのAO付加物(平均付加モル数は好ましくは1~30)(y33)、トリスフェノール類(トリスフェノールPA等)のAO付加物(平均付加モル数は好ましくは2~30)(y34)、ノボラック樹脂(フェノールノボラック及びクレゾールノボラック等が含まれ、平均重合度としては好ましくは3~60)のAO付加物(平均付加モル数は好ましくは2~30)(y35)等が挙げられる。 Examples of trivalent or higher valence polyols (y3) include trivalent or higher aliphatic polyhydric alcohols having 3 to 36 carbon atoms (y31), saccharides and their derivatives (y32), and aliphatic polyhydric alcohols. AO adduct (average added mole number is preferably 1 to 30) (y33), AO adduct of trisphenols (such as trisphenol PA) (average added mole number is preferably 2 to 30) (y34), novolac resin (Phenol novolak and cresol novolac etc. are included, and the average degree of polymerization is preferably 3 to 60) AO adducts (average added mole number is preferably 2 to 30) (y35), etc. may be mentioned.
炭素数3~36の3価以上の価数の脂肪族多価アルコール(y31)としては、アルカンポリオール及びその分子内又は分子間脱水物が挙げられ、より具体的にはグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ソルビタン、ポリグリセリン及びジペンタエリスリトール等が挙げられる。 Examples of trivalent or higher aliphatic polyhydric alcohol (y31) having 3 to 36 carbon atoms include alkane polyols and intramolecular or intermolecular dehydrated products thereof, and more specifically glycerin, trimethylolethane, Examples thereof include trimethylolpropane, pentaerythritol, sorbitol, sorbitan, polyglycerin and dipentaerythritol.
糖類及びその誘導体(y32)としては、具体的にはショ糖及びメチルグルコシド等が挙げられる。脂肪族多価アルコールのAO付加物(y33)としては、上記の炭素数3~36の3価以上の価数の脂肪族多価アルコール(y31)のAO付加物(平均付加モル数は好ましくは1~30)が挙げられる。 Specific examples of the saccharide and its derivative (y32) include sucrose and methyl glucoside. As the AO adduct of aliphatic polyhydric alcohol (y33), the AO adduct of trivalent or higher valence aliphatic polyhydric alcohol (y31) having 3 to 36 carbon atoms as described above (the average addition mole number is preferably 1 to 30).
アルコール成分(y)として2価のジオール(y2)と3価以上の価数のポリオール(y3)を併用することは、耐熱保存性と耐ホットオフセット性観点から好ましい。 It is preferable from the viewpoints of heat resistant storage stability and hot offset resistance that a combination of a divalent diol (y2) and a trivalent or higher valence polyol (y3) as the alcohol component (y) is used.
これらのアルコール成分(y)のうち、低温定着性と耐ホットオフセット性の両立の観点から好ましいものは、炭素数2~12のアルキレングリコール;ビスフェノール類のAO付加物(平均付加モル数は好ましくは2~30);炭素数3~36の3価以上の脂肪族多価アルコール;及びノボラック樹脂(フェノールノボラック及びクレゾールノボラック等が含まれ、平均重合度としては好ましくは3~60)のAO付加物(平均付加モル数は好ましくは2~30)である。 Among these alcohol components (y), the preferred ones from the viewpoint of achieving both low temperature fixing ability and hot offset resistance are alkylene glycols having 2 to 12 carbon atoms; AO adducts of bisphenols (the average addition mole number is preferably AO adducts of 2 to 30); trivalent or higher aliphatic polyhydric alcohols having 3 to 36 carbon atoms; and novolak resins (including phenol novolaks and cresol novolacs, preferably having an average degree of polymerization of 3 to 60) (The average addition mole number is preferably 2 to 30).
耐熱保存性の観点からさらに好ましいものは、炭素数2~10のアルキレングリコール、ビスフェノール類のAO付加物(平均付加モル数は好ましくは2~5)、炭素数3~15の3~4価の脂肪族多価アルコール及びノボラック樹脂(フェノールノボラック及びクレゾールノボラック等が含まれ、平均重合度としては好ましくは3~60)のAO付加物(平均付加モル数は好ましくは2~30)である。
さらに好ましくは、炭素数2~6のアルキレングリコール;炭素数3~10の3価の脂肪族多価アルコール;及びビスフェノールAのAO付加物(平均付加モル数は好ましくは2~5)であり、特に好ましくは、エチレングリコール、プロピレングリコール、3-メチル-1,5-ペンタンジオール、トリメチロールプロパン及びビスフェノールAのアルキレンオキサイド付加物(平均付加モル数2~3)である。
From the viewpoint of heat resistant storage stability, more preferable are alkylene glycols having 2 to 10 carbon atoms, AO adducts of bisphenols (average addition mole number is preferably 2 to 5), trivalent to tetravalent compounds having 3 to 15 carbon atoms Aliphatic polyhydric alcohols and novolak resins (including phenol novolak and cresol novolac, etc., preferably 3 to 60 as the average degree of polymerization) are AO adducts (average added mole number is preferably 2 to 30).
More preferably, they are alkylene glycols having 2 to 6 carbons; trivalent aliphatic polyhydric alcohols having 3 to 10 carbons; and AO adducts of bisphenol A (average added mole number is preferably 2 to 5), Particularly preferred are ethylene oxide, propylene glycol, 3-methyl-1,5-pentanediol, trimethylolpropane and alkylene oxide adducts of bisphenol A (average added mole number: 2 to 3).
不飽和カルボン酸(z)は重合性の炭素-炭素二重結合を有する。
本発明において、不飽和カルボン酸成分(z)であるか、飽和カルボン酸成分(x)であるかの判断に、芳香環の結合は考慮しない。芳香環部分以外が不飽和カルボン酸である化合物は、不飽和カルボン酸成分(z)と判断し、芳香環部分以外が飽和カルボン酸である化合物は、飽和カルボン酸成分(x)と判断する。
The unsaturated carboxylic acid (z) has a polymerizable carbon-carbon double bond.
In the present invention, binding of an aromatic ring is not considered in determining whether it is the unsaturated carboxylic acid component (z) or the saturated carboxylic acid component (x). A compound in which the portion other than the aromatic ring portion is unsaturated carboxylic acid is determined as the unsaturated carboxylic acid component (z), and a compound in which the portion other than the aromatic ring portion is a saturated carboxylic acid is determined as the saturated carboxylic acid component (x).
不飽和カルボン酸成分(z)としては、不飽和モノカルボン酸(z1)、不飽和ジカルボン酸(z2)、不飽和ポリカルボン酸(z3)及びこれらの酸の無水物や低級アルキルエステル等が挙げられる。不飽和カルボン酸成分(z)は1種を用いてもよく、2種以上を併用してもよい。 As the unsaturated carboxylic acid component (z), unsaturated monocarboxylic acid (z1), unsaturated dicarboxylic acid (z2), unsaturated polycarboxylic acid (z3), anhydrides and lower alkyl esters of these acids, etc. may be mentioned. Be One type of unsaturated carboxylic acid component (z) may be used, or two or more types may be used in combination.
不飽和モノカルボン酸(z1)としては、炭素数2~30の不飽和モノカルボン酸等が挙げられ、具体的にはアクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、3-ブテン酸、アンゲリカ酸、チグリン酸、4-ペンテン酸、2-エチル-2-ブテン酸、10-ウンデセン酸、2,4-ヘキサジエン酸、ミリストレイン酸、パルミトレイン酸、サピエン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸及びネルボン酸等が挙げられる。 Examples of unsaturated monocarboxylic acids (z1) include unsaturated monocarboxylic acids having 2 to 30 carbon atoms, and specific examples include acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, 3-butenoic acid, and angelic acid. , Tiglic acid, 4-pentenoic acid, 2-ethyl-2-butenoic acid, 10-undecenoic acid, 2,4-hexadienoic acid, myristoleic acid, palmitoleic acid, sapienic acid, oleic acid, elaidic acid, vacenic acid, gadeau Examples include acids, eicosenoic acids, erucic acid and nervonic acid.
不飽和ジカルボン酸(z2)としては、炭素数4~50のアルケンジカルボン酸が挙げられ、具体的にはドデセニルコハク酸、ペンタデセニルコハク酸等のアルケニルコハク酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸及びグルタコン酸等が挙げられる。 Examples of unsaturated dicarboxylic acids (z2) include alkene dicarboxylic acids having 4 to 50 carbon atoms. Specifically, alkenyl succinic acids such as dodecenyl succinic acid and pentadecenyl succinic acid, maleic acid, fumaric acid and citraconic acid And mesaconic acid, itaconic acid and glutaconic acid.
不飽和ポリカルボン酸(z3)としては、3価以上の不飽和ポリカルボン酸が挙げられ、例えば、炭素数6~50の3価以上のアルケンポリカルボン酸(具体的には、アコニット酸、3-ブテン-1,2,3-トリカルボン酸及び4-ペンテン-1,2,4-トリカルボン酸等のアルケントリカルボン酸、1-ペンテン-1,1,4,4-テトラカルボン酸、4-ペンテン-1,2,3,4-テトラカルボン酸及び3-ヘキセン-1,1,6,6-テトラカルボン酸等のアルケンテトラカルボン酸等)が挙げられる。不飽和ポリカルボン酸(z3)は、好ましくは3価又は4価の不飽和ポリカルボン酸である。 Examples of unsaturated polycarboxylic acids (z3) include trivalent or higher unsaturated polycarboxylic acids, and examples thereof include trivalent or higher alkene polycarboxylic acids having 6 to 50 carbon atoms (specifically, aconitic acid, 3 Alkene tricarboxylic acids such as -butene-1,2,3-tricarboxylic acid and 4-pentene-1,2,4-tricarboxylic acid, 1-pentene-1,1,4,4-tetracarboxylic acid, 4-pentene And alkene tetracarboxylic acids such as 1,2,3,4-tetracarboxylic acid and 3-hexene-1,1,6,6-tetracarboxylic acid. The unsaturated polycarboxylic acid (z3) is preferably a trivalent or tetravalent unsaturated polycarboxylic acid.
これらの不飽和カルボン酸成分(z)のうち、低温定着性と耐ホットオフセット性の両立の観点から好ましいものは、アクリル酸、メタクリル酸、アルケニルコハク酸、マレイン酸及びフマル酸及びこれらの2以上の併用である。
さらに好ましくは、アクリル酸、メタクリル酸、マレイン酸、フマル酸及びこれらの2以上の併用である。また、これらの酸の無水物や低級アルキルエステルも、同様に好ましい。
Among these unsaturated carboxylic acid components (z), preferred are acrylic acid, methacrylic acid, alkenylsuccinic acid, maleic acid and fumaric acid, and two or more of them, from the viewpoint of achieving both low temperature fixability and hot offset resistance. In combination.
More preferable are acrylic acid, methacrylic acid, maleic acid, fumaric acid and a combination of two or more of them. Anhydrides and lower alkyl esters of these acids are also preferred.
ポリエステル樹脂(a)を構成するカルボン酸成分として、不飽和カルボン酸成分(z)は必須であるが、飽和カルボン酸成分(x)を構成原料として併用してもよい。また、飽和カルボン酸成分(x)は1種を用いてもよく、2種以上を併用してもよい。
このような飽和カルボン酸成分(x)としては、脂肪族カルボン酸と芳香族カルボン酸が挙げられる。
脂肪族カルボン酸としては、炭素数2~50の脂肪族モノカルボン酸(酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸及びベヘン酸等)、炭素数2~50の脂肪族ジカルボン酸(シュウ酸、マロン酸、コハク酸、アジピン酸、レパルギン酸、セバシン酸及びドデカン二酸等)、炭素数6~36の脂肪族トリカルボン酸(ヘキサントリカルボン酸等)等が挙げられる。
芳香族カルボン酸としては、炭素数7~37の芳香族モノカルボン酸(安息香酸、トルイル酸、4-エチル安息香酸及び4-プロピル安息香酸等)、炭素数8~36の芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸及びナフタレンジカルボン酸等)、炭素数9~20の3価以上の芳香族ポリカルボン酸(トリメリット酸及びピロメリット酸等)が挙げられる。
Although the unsaturated carboxylic acid component (z) is essential as the carboxylic acid component constituting the polyester resin (a), a saturated carboxylic acid component (x) may be used in combination as a constituent raw material. The saturated carboxylic acid component (x) may be used alone or in combination of two or more.
Examples of such saturated carboxylic acid component (x) include aliphatic carboxylic acids and aromatic carboxylic acids.
Examples of aliphatic carboxylic acids include aliphatic monocarboxylic acids having 2 to 50 carbon atoms (acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthate, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, Palmitic acid, margaric acid, stearic acid and behenic acid etc.) Aliphatic dicarboxylic acids having 2 to 50 carbon atoms (such as oxalic acid, malonic acid, succinic acid, adipic acid, repargic acid, sebacic acid and dodecanedioic acid), carbon And aliphatic tricarboxylic acids (eg, hexane tricarboxylic acid etc.) and the like.
Examples of the aromatic carboxylic acid include aromatic monocarboxylic acids having 7 to 37 carbon atoms (benzoic acid, toluic acid, 4-ethylbenzoic acid, 4-propylbenzoic acid and the like), and aromatic dicarboxylic acids having 8 to 36 carbon atoms Phthalic acid, isophthalic acid, terephthalic acid and naphthalene dicarboxylic acid etc., and trivalent or higher aromatic polycarboxylic acids having 9 to 20 carbon atoms (trimellitic acid and pyromellitic acid etc.) can be mentioned.
飽和カルボン酸成分(x)として、これらのカルボン酸の無水物、低級アルキル(炭素数1~4)エステル(メチルエステル、エチルエステル及びイソプロピルエステル等)を用いてもよいし、該無水物又は低級アルキルエステルと、上記カルボン酸とを併用してもよい。 As the saturated carboxylic acid component (x), an anhydride of these carboxylic acids, lower alkyl (1 to 4 carbon atoms) esters (such as methyl ester, ethyl ester and isopropyl ester) may be used, or the anhydride or the lower ones. You may use together an alkyl ester and the said carboxylic acid.
これらの飽和カルボン酸成分(x)のうち、低温定着性と耐ホットオフセット性の両立の観点から好ましいものは、炭素数2~50の脂肪族ジカルボン酸、炭素数7~37の芳香族モノカルボン酸、炭素数8~20の芳香族ジカルボン酸及び炭素数9~20の3価以上の芳香族ポリカルボン酸である。
耐熱保存性、帯電性及び帯電安定性の観点からより好ましくは、安息香酸、アジピン酸、テレフタル酸、イソフタル酸、トリメリット酸、ピロメリット酸及びこれらの2以上の併用である。
さらに好ましくは、アジピン酸、テレフタル酸、イソフタル酸、トリメリット酸及びこれらの2以上の併用である。これらの酸の無水物や低級アルキルエステルも、同様に好ましい。
Among these saturated carboxylic acid components (x), aliphatic dicarboxylic acids having 2 to 50 carbon atoms and aromatic monocarbons having 7 to 37 carbon atoms are preferable from the viewpoint of achieving both low temperature fixing ability and hot offset resistance. It is an acid, an aromatic dicarboxylic acid having 8 to 20 carbon atoms and a trivalent or higher aromatic polycarboxylic acid having 9 to 20 carbon atoms.
More preferably, benzoic acid, adipic acid, terephthalic acid, isophthalic acid, trimellitic acid, pyromellitic acid and a combination of two or more of them are preferable from the viewpoint of heat resistant storage stability, chargeability and charge stability.
More preferable are adipic acid, terephthalic acid, isophthalic acid, trimellitic acid and a combination of two or more of them. Anhydrides and lower alkyl esters of these acids are likewise preferred.
本発明におけるポリエステル樹脂(a)は、特に限定はしないが高温下での弾性を向上させる観点から非線形ポリエステル樹脂であることが好ましい。
また、本発明におけるポリエステル樹脂(a)の製造方法は特に限定はしないが、前述のようにアルコール成分(y)と不飽和カルボン酸成分(z)とを含有する成分を重縮合することにより得られる。さらにポリエステル樹脂(a)が非線形ポリエステル樹脂である場合は、例えば不飽和カルボン酸成分(z)に加えて、アルコール成分(y)として3価以上のポリオールを用いる場合や、飽和カルボン酸成分(x)として3価以上のカルボン酸またはこの酸無水物もしくは低級アルキルエステルを用いる場合などが挙げられる。また、不飽和カルボン酸成分(z)として、3価以上の不飽和ポリカルボン酸(z3)を用いることによっても、非線形ポリエステル樹脂であるポリエステル樹脂(a)を得ることができる。非線形であることにより、樹脂粒子及びトナーの耐熱保存性と耐ホットオフセット性が向上する。
The polyester resin (a) in the present invention is not particularly limited, but is preferably a non-linear polyester resin from the viewpoint of improving the elasticity at high temperature.
The method for producing the polyester resin (a) in the present invention is not particularly limited, but as described above, it is obtained by polycondensing a component containing the alcohol component (y) and the unsaturated carboxylic acid component (z). Be Furthermore, when the polyester resin (a) is a non-linear polyester resin, for example, when a trivalent or higher polyol is used as the alcohol component (y) in addition to the unsaturated carboxylic acid component (z), a saturated carboxylic acid component (x) As trivalent or higher carboxylic acid or acid anhydride or lower alkyl ester thereof. The polyester resin (a) which is a non-linear polyester resin can also be obtained by using a trivalent or higher unsaturated polycarboxylic acid (z3) as the unsaturated carboxylic acid component (z). By being non-linear, the heat resistant storage stability and the hot offset resistance of the resin particles and the toner are improved.
本発明において、ポリエステル樹脂(a)等は、公知のポリエステル樹脂と同様にして製造することができる。
例えば、アルコール成分(y)と不飽和カルボン酸成分(z)とを含有する成分を、不活性ガス(窒素ガス等)雰囲気中で、反応温度が好ましくは150~280℃、より好ましくは160~250℃、さらに好ましくは170~235℃で反応させることにより行うことができる。また反応時間は、重縮合反応を確実に行う観点から、好ましくは30分以上、より好ましくは2~40時間である。
In the present invention, the polyester resin (a) and the like can be produced in the same manner as known polyester resins.
For example, the reaction temperature of the component containing the alcohol component (y) and the unsaturated carboxylic acid component (z) in an inert gas (nitrogen gas etc.) atmosphere is preferably 150 to 280 ° C., more preferably 160 to It can be carried out by reacting at 250 ° C., more preferably at 170 to 235 ° C. The reaction time is preferably 30 minutes or more, more preferably 2 to 40 hours, from the viewpoint of reliably performing the polycondensation reaction.
このとき必要に応じてエステル化触媒を使用することができる。エステル化触媒の例には、スズ含有触媒(例えばジブチルスズオキシド等)、三酸化アンチモン、チタン含有触媒[例えばチタンアルコキシド、シュウ酸チタン酸カリウム、テレフタル酸チタン、テレフタル酸チタンアルコキシド、特開2006-243715号公報に記載の触媒〔チタニウムジイソプロポキシビス(トリエタノールアミネート)、チタニウムジヒドロキシビス(トリエタノールアミネート)、チタニウムモノヒドロキシトリス(トリエタノールアミネート)、チタニルビス(トリエタノールアミネート)及びそれらの分子内重縮合物等〕、及び特開2007-11307号公報に記載の触媒(チタントリブトキシテレフタレート、チタントリイソプロポキシテレフタレート、及びチタンジイソプロポキシジテレフタレート等)等]、ジルコニウム含有触媒(例えば酢酸ジルコニル等)、及び酢酸亜鉛等が挙げられる。これらの中で好ましくはチタン含有触媒である。反応末期の反応速度を向上させるために減圧することも有効である。 At this time, an esterification catalyst can be used as needed. Examples of esterification catalysts include tin-containing catalysts (eg, dibutyltin oxide etc.), antimony trioxide, titanium-containing catalysts [eg titanium alkoxide, potassium oxalate titanate, titanium terephthalate, titanium terephthalate alkoxide, JP-A-2006-243715 Catalysts described in Japanese Patent Application Publication No. JP-A-2006-147-99 [Titanium diisopropoxy bis (triethanolaminate), titanium dihydroxy bis (triethanolaminate), titanium monohydroxytris (triethanolaminate), titanyl bis (triethanolaminate) and their compounds Intramolecular polycondensate etc.], and catalysts described in JP 2007-11307 A (titanium tributoxy terephthalate, titanium triisopropoxy terephthalate, and titanium diisopropoxy diterephthalate) ), Etc.], zirconium-containing catalysts (e.g. zirconyl acetate, etc.), and zinc acetate, and the like. Among these, preferred is a titanium-containing catalyst. It is also effective to reduce the pressure to improve the reaction rate at the end of the reaction.
また、ポリエステル重合安定性を得る目的で、安定剤を添加してもよい。安定剤としては、ハイドロキノン、メチルハイドロキノン及びヒンダードフェノール化合物等が挙げられる。 Further, a stabilizer may be added for the purpose of obtaining polyester polymerization stability. As the stabilizer, hydroquinone, methylhydroquinone and hindered phenol compounds may, for example, be mentioned.
アルコール成分(y)と、不飽和カルボン酸成分(z)及び飽和カルボン酸成分(x)の合計との仕込み比率は、水酸基とカルボキシル基の当量比[OH]/[COOH]として、好ましくは2/1~1/2、より好ましくは1.5/1~1/1.3、さらに好ましくは1.4/1~1/1.2である。上記水酸基は、アルコール成分(y)由来の水酸基であり、カルボキシル基は、不飽和カルボン酸成分(z)及び飽和カルボン酸成分(x)由来のカルボキシル基の合計である。
ポリエステル樹脂(a)の製造に使用される不飽和カルボン酸成分(z)は、不飽和カルボン酸成分(z)と飽和カルボン酸成分(x)との合計モル数を基準として、3~50モル%が好ましく、4~40モル%であることがより好ましく、5~35モル%がさらに好ましい。
The preparation ratio of the alcohol component (y) to the total of the unsaturated carboxylic acid component (z) and the saturated carboxylic acid component (x) is preferably 2 as the equivalent ratio [OH] / [COOH] of hydroxyl group and carboxyl group. It is preferably 1/1/2 to 1/2, more preferably 1.5 / 1 to 1 / 1.3, and still more preferably 1.4 / 1 to 1 / 1.2. The said hydroxyl group is a hydroxyl group derived from alcohol component (y), and a carboxyl group is the sum total of the carboxyl group derived from unsaturated carboxylic acid component (z) and saturated carboxylic acid component (x).
The unsaturated carboxylic acid component (z) used for producing the polyester resin (a) is 3 to 50 moles based on the total number of moles of the unsaturated carboxylic acid component (z) and the saturated carboxylic acid component (x) % Is preferable, 4 to 40 mol% is more preferable, and 5 to 35 mol% is more preferable.
ポリエステル樹脂(a)のガラス転移温度(Tg)は、-20~57℃である。Tgが57℃以下であると低温定着性が良好になり、-20℃以上であると耐熱保存性が良好になる。Tgは、好ましくは-18~50℃、より好ましくは-15~45℃であり、さらに好ましくは-10~40℃である。
なお、ガラス転移温度(Tg及びTg)は、ASTM D3418-82に規定の方法(DSC法)で測定することができる。ガラス転移温度(Tg及びTg)は、例えばTA Instruments(株)製、DSC Q20を用いて測定することができる。ガラス転移温度の測定条件を記載する。
<測定条件>
(1)30℃から20℃/分で150℃まで昇温
(2)150℃で10分間保持
(3)20℃/分で-35℃まで冷却
(4)-35℃で10分間保持
(5)20℃/分で150℃まで昇温
(6)(5)の過程にて測定される示差走査熱量曲線を解析する。
The glass transition temperature (Tg a ) of the polyester resin (a) is -20 to 57 ° C. When the Tg a is 57 ° C. or less, the low-temperature fixability is good, and when it is −20 ° C. or more, the heat resistant storage property is good. The Tg a is preferably −18 to 50 ° C., more preferably −15 to 45 ° C., and still more preferably −10 to 40 ° C.
The glass transition temperature (Tg a and Tg) can be measured by the method (DSC method) defined in ASTM D3418-82. Glass transition temperature (Tg a and Tg), for example TA Instruments (Co., Ltd.), can be measured using a DSC Q20. The measurement conditions of glass transition temperature are described.
<Measurement conditions>
(1) Temperature increase from 30 ° C to 20 ° C / min to 150 ° C (2) Hold at 150 ° C for 10 minutes (3) Cool to -35 ° C at 20 ° C / min (4) Hold at -35 ° C for 10 minutes (5 2.) Analyze the differential scanning calorimetry curve measured in the process of heating up to 150 ° C at 20 ° C / min (6) (5).
ポリエステル樹脂(a)のピークトップ分子量は、耐ホットオフセット性、低温定着性及び光沢性の両立の点から、2,000~20,000であることが好ましく、より好ましくは3,000~18,000であり、さらに好ましくは3,500~16,000であり、特に好ましくはピークトップ分子量が4,000~11,900である。本発明において、樹脂のピークトップ分子量は、ゲルパーミエーションクロマトグラフィー(GPC)におけるピークトップ分子量である。 The peak top molecular weight of the polyester resin (a) is preferably from 2,000 to 20,000, more preferably from 3,000 to 18, from the viewpoint of coexistence of hot offset resistance, low temperature fixability and glossiness. 000, more preferably 3,500 to 16,000, and particularly preferably a peak top molecular weight of 4,000 to 11,900. In the present invention, the peak top molecular weight of the resin is the peak top molecular weight in gel permeation chromatography (GPC).
ここでピークトップ分子量(以下、Mpと略称することがある。)とは、試料の有する分子量分布を、標準ポリスチレン試料により作製された検量線の対数値とカウント数との関係から算出し、得られた分子量分布のチャート中のピーク最大値から求められた分子量である。チャート中のピークは1つとは限らないので、複数のピークがある場合はピーク値の中で最大値を示すピークから求める。なお、GPC測定の測定条件は、以下のとおりである。 Here, the peak top molecular weight (hereinafter sometimes abbreviated as Mp) is obtained by calculating the molecular weight distribution of the sample from the relationship between the logarithmic value of the calibration curve prepared by the standard polystyrene sample and the count number. It is the molecular weight determined from the peak maximum value in the chart of the molecular weight distribution. Since the number of peaks in the chart is not limited to one, when there are a plurality of peaks, it is determined from the peak showing the maximum value among the peak values. In addition, the measurement conditions of GPC measurement are as follows.
本発明において、ポリエステル樹脂等の樹脂のピークトップ分子量、数平均分子量(以下、Mnと略称することがある。)、重量平均分子量(以下、Mwと略称することがある。)は、GPCを用いて以下の条件で測定することができる。本発明において、ピークトップ分子量、重量平均分子量及び数平均分子量は、THF可溶分のピークトップ分子量、重量平均分子量及び数平均分子量である。
 装置(一例) : HLC-8120〔東ソー(株)製〕
 カラム(一例): TSK GEL GMH6 2本 〔東ソー(株)製〕
 測定温度   : 40℃
 試料溶液   : 0.25重量%のTHF溶液
 溶液注入量  : 100μL
 検出装置   : 屈折率検出器
 基準物質   : 東ソー(株)製 標準ポリスチレン(TSKstandard POLYSTYRENE)12点(分子量 500 1,050 2,800 5,970 9,100 18,100 37,900 96,400 190,000 355,000 1,090,000 2,890,000)
分子量の測定は、0.25重量%になるようにポリエステル樹脂等をTHFに溶解し、不溶解分をグラスフィルターでろ別したものを試料溶液とする。
In the present invention, the peak top molecular weight, number average molecular weight (hereinafter sometimes abbreviated as Mn) and weight average molecular weight (hereinafter abbreviated as Mw) of resins such as polyester resins are measured using GPC. Measurement under the following conditions. In the present invention, the peak top molecular weight, weight average molecular weight and number average molecular weight are the peak top molecular weight, weight average molecular weight and number average molecular weight of the THF soluble matter.
Device (example): HLC-8120 (manufactured by Tosoh Corporation)
Column (one example): Two TSK GEL GMH6 (made by Tosoh Corp.)
Measurement temperature: 40 ° C
Sample solution: 0.25 wt% THF solution Injection volume: 100 μL
Detector: Refractive index detector Reference material: Tosoh Co., Ltd. product standard polystyrene (TSK standard POLYSTYRENE) 12 points (molecular weight 500 1,050 2,800 5,970 9,100 18,100 37,900 96,400 190,000 355,000 1,090,000 2,890,000)
To measure the molecular weight, a polyester resin or the like is dissolved in THF so as to be 0.25% by weight, and the insoluble matter is filtered off with a glass filter to obtain a sample solution.
ポリエステル樹脂(a)の酸価は、帯電性安定性の観点から好ましくは0~30mgKOH/g、より好ましくは0~25mgKOH/g、さらに好ましくは0~10mgKOH/gである。
ポリエステル樹脂(a)等の酸価は、JIS K0070(1992年版)に規定の方法で測定することができる。
The acid value of the polyester resin (a) is preferably 0 to 30 mg KOH / g, more preferably 0 to 25 mg KOH / g, and still more preferably 0 to 10 mg KOH / g from the viewpoint of chargeability stability.
The acid value of polyester resin (a) etc. can be measured by the method prescribed in JIS K 0070 (1992 version).
ポリエステル樹脂(a)が架橋した変性樹脂とは、実質的に分子内に炭素-炭素二重結合を有するポリエステル樹脂(a)を重縮合で得た後に、例えば、ラジカル反応開始剤(c)から発生するラジカルを利用して、ポリエステル樹脂(a)中の不飽和カルボン酸成分(z)に起因する炭素-炭素二重結合同士で架橋反応が起って化学結合した変性樹脂のことである。 The modified resin obtained by crosslinking the polyester resin (a) is, for example, a radical reaction initiator (c) after the polyester resin (a) having carbon-carbon double bonds in the molecule is obtained by polycondensation. It is a modified resin in which a carbon-carbon double bond derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) causes a cross-linking reaction to cause a chemical bond using the generated radicals.
本発明でポリエステル樹脂(a)の架橋反応のために用いるラジカル反応開始剤(c)としては、特に制限されず、無機過酸化物(c1)、有機過酸化物(c2)及びアゾ化合物(c3)等が挙げられる。ラジカル反応開始剤(c)は1種を用いてもよく、2種以上を併用してもよい。 The radical reaction initiator (c) used for the crosslinking reaction of the polyester resin (a) in the present invention is not particularly limited, and inorganic peroxide (c1), organic peroxide (c2) and azo compound (c3) Etc.). The radical reaction initiator (c) may be used alone or in combination of two or more.
無機過酸化物(c1)としては、特に限定されないが、例えば過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等が挙げられる。 The inorganic peroxide (c1) is not particularly limited, and examples thereof include hydrogen peroxide, ammonium persulfate, potassium persulfate and sodium persulfate.
有機過酸化物(c2)としては、特に制限されないが、ベンゾイルパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、α、α-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)へキサン、ジ-t-へキシルパーオキシド、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシへキシン-3、アセチルパーオキシド、イソブチリルパーオキシド、オクタニノルパーオキシド、デカノリルパーオキシド、ラウロイルパーオキシド、3,3,5-トリメチルヘキサノイルパーオキシド、m-トルイルパーオキシド、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシネオデカノエート、クミルパーオキシネオデカノエート、t-ブチルパーオキシ2-エチルヘキサノエート、t-ブチルパーオキシ3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルカーボネート及びt-ブチルパーオキシアセテート等が挙げられる。 The organic peroxide (c2) is not particularly limited, but benzoyl peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, α, α-bis (t-butylperoxy) ) Diisopropylbenzene, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di-t-butylper Oxyhexyne-3, acetyl peroxide, isobutyryl peroxide, octaninor peroxide, decanolyl peroxide, lauroyl peroxide, 3,3,5-trimethylhexanoyl peroxide, m-toluyl peroxide, t-butyl Peroxyisobutyrate, t-butylperoxyneodecanoate, cumylperoxyneodecano Aate, t-Butylperoxy 2-ethylhexanoate, t-Butylperoxy 3,5,5-trimethylhexanoate, t-Butylperoxylaurate, t-Butylperoxybenzoate, t-Butylperoxy Isopropyl carbonate and t-butyl peroxy acetate etc. may be mentioned.
アゾ化合物及びジアゾ化合物(c3)としては、特に制限されないが、例えば、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル及びアゾビスイソブチロニトリル等が挙げられる。 Examples of the azo compound and the diazo compound (c3) include, but are not limited to, for example, 2,2'-azobis- (2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile, 2,2 '-Azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile and azobisisobutyric acid Ronitrile etc. are mentioned.
ラジカル反応開始剤(c)の使用量は、特に制限されないが、ポリエステル樹脂(a)を変性樹脂にする際のポリエステル樹脂(a)を構成する不飽和カルボン酸成分(z)の重量100重量部に対して、0.1~50重量部が好ましい。
ポリエステル樹脂(a)を構成する不飽和カルボン酸成分(z)の重量100重量部に対して、ラジカル反応開始剤の使用量が、0.1重量部以上の場合に架橋反応が進行し易くなる傾向にあり、50重量部以下の場合に、臭気が良好となる傾向にある。ラジカル反応開始剤(c)の使用量は、ポリエステル樹脂(a)を構成する不飽和カルボン酸成分(z)100重量部に対して、30重量部以下であることがより好ましく、20重量部以下であることがさらに好ましく、10重量部以下であることが特に好ましい。
The amount of the radical reaction initiator (c) used is not particularly limited, but 100 parts by weight of the unsaturated carboxylic acid component (z) constituting the polyester resin (a) when making the polyester resin (a) a modified resin The preferred amount is 0.1 to 50 parts by weight.
The crosslinking reaction is likely to proceed when the amount of the radical reaction initiator used is 0.1 parts by weight or more based on 100 parts by weight of the unsaturated carboxylic acid component (z) constituting the polyester resin (a) There is a tendency, and when the amount is 50 parts by weight or less, the odor tends to be good. The amount of the radical reaction initiator (c) used is more preferably 30 parts by weight or less, and 20 parts by weight or less based on 100 parts by weight of the unsaturated carboxylic acid component (z) constituting the polyester resin (a) Is more preferably 10 parts by weight or less.
本発明の製造方法により得られる樹脂粒子中のテトラヒドロフラン不溶解分とテトラヒドロフラン溶解分(可溶分)との重量比(THF不溶解分/THF溶解分)は、耐ホットオフセット性、低温定着性、光沢性両立の点から、5/95~60/40であることが好ましく、より好ましくは5/95~50/50であり、さらに好ましくは7/93~50/50であり、特に好ましくは、9/91~40/60である。
ここで樹脂粒子中にはポリエステル樹脂(a)が架橋した変性樹脂の他に、必要により任意成分{後述するポリエステル樹脂(b)、着色剤、離型剤、荷電制御剤及び流動化剤等}を含んでいてもよく、樹脂粒子中に任意成分を含んでいる場合は、THF不溶解分及び/又はTHF溶解分にもこれらの任意成分が含まれる。
The weight ratio of the tetrahydrofuran insoluble matter to the tetrahydrofuran soluble matter (soluble matter) in the resin particle obtained by the production method of the present invention (THF insoluble matter / THF dissolved matter) is the hot offset resistance, low temperature fixability, From the viewpoint of compatibility with glossiness, it is preferably 5/95 to 60/40, more preferably 5/95 to 50/50, still more preferably 7/93 to 50/50, particularly preferably 9/91 to 40/60.
Here, in addition to the modified resin in which the polyester resin (a) is crosslinked in the resin particles, it is an optional component as needed {polyester resin (b) described later, coloring agent, release agent, charge control agent, fluidizing agent, etc.} If the resin particle contains optional components, the THF insoluble matter and / or the THF solution also contain these optional components.
本発明の製造方法により得られる樹脂粒子中のTHF不溶解分とTHF溶解分の重量比は、以下の方法で求めたものである。
試料0.5gに50mLのTHFを加え、3時間撹拌還流させる。冷却後、グラスフィルターにて不溶解分をろ別し、グラスフィルター上の樹脂分を80℃で3時間減圧乾燥する。グラスフィルター上の乾燥した樹脂分の重量をTHF不溶解分の重量とし、試料の重量からTHF不溶解分の重量を引いた重量をTHF溶解分の重量とし、THF不溶解分とTHF溶解分の重量比を算出する。
The weight ratio of the THF insoluble matter to the THF dissolved matter in the resin particle obtained by the production method of the present invention is determined by the following method.
Add 50 mL of THF to 0.5 g of sample and stir at reflux for 3 hours. After cooling, the insolubles are filtered off with a glass filter, and the resin on the glass filter is dried under reduced pressure at 80 ° C. for 3 hours. The weight of the dried resin on the glass filter is the weight of the THF insolubles, and the weight of the weight of the sample minus the weight of the THF insolubles is the weight of the THF dissolved, the THF insolubles and the THF dissolved Calculate the weight ratio.
本発明の製造方法により得られる樹脂粒子は、飽和カルボン酸成分(x)とアルコール成分(y)とを含有する成分を重縮合して得られたポリエステル樹脂(b)を含有することが好ましい。
本発明の製造方法により得られる樹脂粒子がポリエステル樹脂(b)を含有すると、低温定着性が向上する。
It is preferable that the resin particle obtained by the manufacturing method of this invention contains the polyester resin (b) obtained by polycondensing the component containing saturated carboxylic acid component (x) and alcohol component (y).
When the resin particles obtained by the production method of the present invention contain a polyester resin (b), the low temperature fixability is improved.
本発明におけるポリエステル樹脂(b)は、ポリエステル樹脂(a)を除く(ポリエステル樹脂(a)以外の)ポリエステル樹脂である。ポリエステル樹脂(b)は、カルボン酸成分として上記不飽和カルボン酸成分(z)を用いていないものであり、1種類以上のアルコール成分(y)と、1種類以上の飽和カルボン酸成分(x)とを含有する成分を重縮合して得られるもの等が挙げられる。 The polyester resin (b) in the present invention is a polyester resin (other than the polyester resin (a)) excluding the polyester resin (a). The polyester resin (b) does not use the above-mentioned unsaturated carboxylic acid component (z) as a carboxylic acid component, and one or more types of alcohol components (y) and one or more types of saturated carboxylic acid components (x) What is obtained by polycondensing the component containing and the like are mentioned.
また、ポリエステル樹脂(b)としては非晶性ポリエステル樹脂(b1)と結晶性ポリエステル樹脂(C)が挙げられる。 Moreover, as polyester resin (b), amorphous polyester resin (b1) and crystalline polyester resin (C) are mentioned.
本発明において、結晶性ポリエステル樹脂(C)は、結晶性を示し、吸熱ピークトップを示す温度Tp(℃)の範囲が40~100℃であるものを意味する。
本発明に使用する非晶性ポリエステル樹脂(b1)は、結晶性ポリエステル樹脂(C)以外のポリエステル樹脂(b)のことである。一態様において、ポリエステル樹脂(b)は、アルコール成分(y)と飽和カルボン酸成分(x)とを含有する成分を重縮合して得られた非晶性ポリエステル樹脂(b1)を含有するポリエステル樹脂であることが好ましい。
なお、本発明における「結晶性」とは後述の示差走査熱量計(DSC)測定の第2回目の昇温過程において、階段状の吸熱量変化ではなく、明確な吸熱ピークを有する樹脂をいう。
本発明において、吸熱ピークトップを示す温度TpをDSCにより測定する際は、例えばTA Instruments(株)製、DSC Q20を用いることができる。また、昇温・冷却条件としては、10℃/分の条件で180℃まで昇温する(第1回目の昇温過程)。次いで、180℃で10分間放置後、10℃/分の条件で0℃まで冷却する(第1回目の冷却過程)。次いで、0℃で10分間放置した後、10℃/分の条件で180℃まで昇温する(第2回目の昇温過程)。
In the present invention, the crystalline polyester resin (C) indicates crystallinity and means that the temperature Tp (° C.) indicating the endothermic peak top is in the range of 40 to 100 ° C.
The amorphous polyester resin (b1) used in the present invention is a polyester resin (b) other than the crystalline polyester resin (C). In one aspect, the polyester resin (b) is a polyester resin containing an amorphous polyester resin (b1) obtained by polycondensation of a component containing an alcohol component (y) and a saturated carboxylic acid component (x) Is preferred.
In the present invention, “crystallinity” refers to a resin having a clear endothermic peak, not a stepwise endothermic change in the second temperature rising process of differential scanning calorimeter (DSC) measurement described later.
In the present invention, when measuring the temperature Tp indicating the endothermic peak top by DSC, for example, DSC Q20 manufactured by TA Instruments Co., Ltd. can be used. Further, as the temperature raising / cooling conditions, the temperature is raised to 180 ° C. under the condition of 10 ° C./min (first temperature raising process). Next, after standing at 180 ° C. for 10 minutes, it is cooled to 0 ° C. under the condition of 10 ° C./min (first cooling process). Next, after standing at 0 ° C. for 10 minutes, the temperature is raised to 180 ° C. under the condition of 10 ° C./min (second temperature rising process).
非晶性ポリエステル樹脂(b1)のアルコール成分(y)としては、ポリエステル樹脂(a)のアルコール成分(y)と同様のものが挙げられる。
これらのアルコール成分(y)のうち、低温定着性と耐熱保存性の両立の観点から好ましいものは、炭素数2~12のアルキレングリコール及びビスフェノール類のAO付加物(平均付加モル数は好ましくは2~30)である。
耐熱保存性の観点からより好ましいものは、炭素数2~10のアルキレングリコール及びビスフェノール類のAO付加物(平均付加モル数は好ましくは2~5)である。
さらに好ましくは、炭素数2~6のアルキレングリコール及びビスフェノールAのAO付加物(平均付加モル数は好ましくは2~5)であり、特に好ましくは、プロピレングリコール及びビスフェノールAのアルキレンオキサイド付加物(平均付加モル数2~3)である。
また、低温定着性と耐熱保存性両立の観点から、アルコール成分(y)がアルコール成分の合計モル数を基準として芳香族ジオールを80モル%以上含有することが好ましく、より好ましくは90モル%以上、さらに好ましくは95%以上である。
Examples of the alcohol component (y) of the amorphous polyester resin (b1) include the same as the alcohol component (y) of the polyester resin (a).
Among these alcohol components (y), preferred from the viewpoint of achieving both low temperature fixability and heat resistant storage stability are AO adducts of alkylene glycols having 2 to 12 carbon atoms and bisphenols (the average addition mole number is preferably 2 To 30).
More preferable from the viewpoint of heat resistant storage stability are alkylene glycols having 2 to 10 carbon atoms and AO adducts of bisphenols (the average addition mole number is preferably 2 to 5).
More preferably, it is an AO adduct of alkylene glycol having 2 to 6 carbon atoms and bisphenol A (average added mole number is preferably 2 to 5), and particularly preferably, an alkylene oxide adduct of propylene glycol and bisphenol A (average The added mole number is 2 to 3).
Further, from the viewpoint of achieving both low temperature fixability and heat resistant storage stability, the alcohol component (y) preferably contains 80 mol% or more, more preferably 90 mol% or more of aromatic diol based on the total number of moles of alcohol component. More preferably, it is 95% or more.
非晶性ポリエステル樹脂(b1)のカルボン酸成分(x)としては、ポリエステル樹脂(a)の飽和カルボン酸成分(x)と同様のものが挙げられる。
これらの飽和カルボン酸成分(x)のうち、低温定着性と耐熱保存性の両立の観点から好ましいものは、炭素数2~50の脂肪族カルボン酸、炭素数7~37の芳香族モノカルボン酸、炭素数8~20の芳香族ジカルボン酸及び炭素数9~20の3価以上の芳香族ポリカルボン酸である。
耐熱保存性、帯電性及び帯電安定性の観点からより好ましくは、安息香酸、アジピン酸、テレフタル酸、イソフタル酸、トリメリット酸及びこれらの2以上の併用である。
さらに好ましくは、テレフタル酸、イソフタル酸、トリメリット酸及びこれらの2以上の併用である。これらの酸の無水物や低級アルキルエステルも、同様に好ましい。
また、低温定着性と耐熱保存性両立の観点から、飽和カルボン酸成分(x)が飽和カルボン酸成分の合計モル数を基準として芳香族ジカルボン酸を80モル%以上含有することが好ましく、より好ましくは90モル%以上、さらに好ましくは95モル%以上である。
Examples of the carboxylic acid component (x) of the amorphous polyester resin (b1) include the same as the saturated carboxylic acid component (x) of the polyester resin (a).
Among these saturated carboxylic acid components (x), aliphatic carboxylic acids having 2 to 50 carbon atoms and aromatic monocarboxylic acids having 7 to 37 carbon atoms are preferable from the viewpoint of achieving both low temperature fixing ability and heat resistant storage stability. C 8-20 aromatic dicarboxylic acids and C 9-20 trivalent or higher aromatic polycarboxylic acids.
More preferably, benzoic acid, adipic acid, terephthalic acid, isophthalic acid, trimellitic acid and a combination of two or more of them are preferable from the viewpoint of heat resistant storage stability, chargeability and charge stability.
More preferable are terephthalic acid, isophthalic acid, trimellitic acid and a combination of two or more of them. Anhydrides and lower alkyl esters of these acids are likewise preferred.
Further, from the viewpoint of achieving both low temperature fixing ability and heat resistant storage stability, the saturated carboxylic acid component (x) preferably contains 80 mol% or more of aromatic dicarboxylic acid based on the total number of moles of the saturated carboxylic acid component. Is 90 mol% or more, more preferably 95 mol% or more.
結晶性ポリエステル樹脂(C)のアルコール成分(y)としては、ポリエステル樹脂(a)のアルコール成分(y)と同様のものが挙げられる。
これらのアルコール成分(y)のうち、低温定着性と耐熱保存性両立の観点から好ましいものは、炭素数2~36のアルキレングリコールである。より好ましくは、炭素数2~12のアルキレングリコールである。さらに好ましくは、炭素数2~9のアルキレングリコールであり、特に好ましくは、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオールである。
As alcohol component (y) of crystalline polyester resin (C), the thing similar to alcohol component (y) of polyester resin (a) is mentioned.
Among these alcohol components (y), preferred are alkylene glycols having 2 to 36 carbon atoms from the viewpoint of achieving both low temperature fixability and heat resistant storage stability. More preferably, it is an alkylene glycol having 2 to 12 carbon atoms. More preferred are alkylene glycols having 2 to 9 carbon atoms, and particularly preferred are 1,6-hexanediol, 1,9-nonanediol and 1,10-decanediol.
結晶性ポリエステル樹脂(C)のカルボン酸成分(x)としては、ポリエステル樹脂(a)の飽和カルボン酸成分(x)と同様のものが挙げられる。
これらの飽和カルボン酸成分(x)のうち、低温定着性と耐熱保存性の両立の観点から好ましいものは、炭素数2~50の脂肪族ジカルボン酸である。より好ましくは、コハク酸、アジピン酸、セバシン酸及びドデカン二酸である。さらに好ましくは、セバシン酸及びドデカン二酸である。
As a carboxylic acid component (x) of crystalline polyester resin (C), the thing similar to the saturated carboxylic acid component (x) of polyester resin (a) is mentioned.
Among these saturated carboxylic acid components (x), aliphatic dicarboxylic acids having 2 to 50 carbon atoms are preferable from the viewpoint of achieving both low temperature fixing ability and heat resistant storage stability. More preferred are succinic acid, adipic acid, sebacic acid and dodecanedioic acid. More preferred are sebacic acid and dodecanedioic acid.
また、ポリエステル樹脂(b)は線形であっても非線形であってもよいが、低温定着性及び耐熱保存性の観点から線形が好ましい。
また、ポリエステル樹脂(b)としては、THF不溶解分を実質的に含まないものが好ましい。THF不溶解分を含まなければ微量の架橋点を有していても構わないし、分子末端を飽和ポリカルボン酸(3価以上のものでもよい)の無水物の無水トリメリット酸、無水フタル酸及び無水マレイン酸等で変性したものであってもよい。
The polyester resin (b) may be linear or non-linear, but is preferably linear from the viewpoint of low-temperature fixability and heat resistant storage stability.
Moreover, as polyester resin (b), what does not contain a THF insoluble part substantially is preferable. If it does not contain a THF insoluble matter, it may have a trace amount of crosslinking points, and trimellitic anhydride, phthalic anhydride, and anhydride of saturated polycarboxylic acid (which may be trivalent or higher) at the molecular end It may be modified with maleic anhydride or the like.
樹脂粒子中のポリエステル樹脂(a)由来の構造部分とポリエステル樹脂(b)との重量比(a)/(b)は、低温定着性、耐ホットオフセット性及び耐熱保存性の両立の点から、5/95~50/50が好ましく、より好ましくは7/93~45/60であり、さらに好ましくは、9/90~40/60である。ポリエステル樹脂(a)由来の構造部分とは、ポリエステル樹脂(a)が架橋した変性樹脂及びポリエステル樹脂(a)である。樹脂粒子の製造においては、上記重量比(a)/(b)が上記範囲となるように、ポリエステル樹脂(a)を得るために用いる各成分及びポリエステル樹脂(b)の使用量を設定することが好ましい。 The weight ratio (a) / (b) of the polyester resin (a) -derived structural portion in the resin particles to the polyester resin (b) is from the viewpoint of coexistence of low temperature fixability, hot offset resistance and heat resistant storage stability. The ratio is preferably 5/95 to 50/50, more preferably 7/93 to 45/60, and still more preferably 9/90 to 40/60. The structural part derived from the polyester resin (a) is a modified resin obtained by crosslinking the polyester resin (a) and the polyester resin (a). In the production of resin particles, the amounts of each component and polyester resin (b) used to obtain the polyester resin (a) should be set such that the weight ratio (a) / (b) falls within the above range. Is preferred.
樹脂粒子中の非晶性ポリエステル樹脂(b1)と結晶性ポリエステル樹脂(C)との重量比(b1)/(C)は、低温定着性、耐ホットオフセット性及び耐熱保存性の両立の点から、100/0~50/50が好ましく、より好ましくは95/5~70/30であり、さらに好ましくは、90/10~80/20である。 The weight ratio (b1) / (C) of the non-crystalline polyester resin (b1) to the crystalline polyester resin (C) in the resin particle is from the point of coexistence of low temperature fixability, hot offset resistance and heat resistant storage stability 100/0 to 50/50 is preferable, more preferably 95/5 to 70/30, and still more preferably 90/10 to 80/20.
また、樹脂粒子がポリエステル樹脂(b)を含有するものである場合、ポリエステル樹脂(b)の存在下でポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応しポリエステル樹脂(a)が架橋した変性樹脂を得るのが低温定着性、耐ホットオフセット性、耐熱保存性の両立の点から好ましい方法である。 When the resin particles contain the polyester resin (b), carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) in the presence of the polyester resin (b) It is preferable to obtain a modified resin in which the polyester resin (a) is crosslinked by crosslinking reaction between each other, from the viewpoint of coexistence of low temperature fixability, hot offset resistance, and heat resistant storage stability.
ポリエステル樹脂(b)のTHF可溶分のMnは、トナーの耐熱保存性と低温定着性との両立の観点から、1,000~15,000が好ましく、より好ましくは1,200~10,000、さらに好ましくは1,500~5,000である。 The THF soluble portion Mn of the polyester resin (b) is preferably 1,000 to 15,000, more preferably 1,200 to 10,000, from the viewpoint of achieving both the heat resistant storage stability of the toner and the low temperature fixability. More preferably, it is 1,500 to 5,000.
ポリエステル樹脂(b)のTHF可溶分のピークトップ分子量は、トナーの耐ホットオフセット性と耐熱保存性と低温定着性との両立の観点から、2,000~30,000が好ましく、より好ましくは2,500~20,000、さらに好ましくは3,000~10,000である。 The peak top molecular weight of the THF soluble component of the polyester resin (b) is preferably 2,000 to 30,000, more preferably from the viewpoint of achieving both the hot offset resistance of the toner, the heat resistant storage stability, and the low temperature fixability. It is preferably 2,500 to 20,000, more preferably 3,000 to 10,000.
結晶性ポリエステル樹脂(C)の吸熱ピークトップを示す温度Tpは、最終的に得られるトナーの耐熱保存性の観点から、50~90℃が好ましく、より好ましくは55~85℃、さらに好ましくは60~80℃である。 The temperature Tp showing the endothermic peak top of the crystalline polyester resin (C) is preferably 50 to 90 ° C., more preferably 55 to 85 ° C., still more preferably 60 from the viewpoint of the heat resistant storage stability of the finally obtained toner. It is ~ 80 ° C.
結晶性ポリエステル樹脂(C)のフローテスターによる軟化点〔Tm〕は、低温定着性及び耐ホットオフセット性の観点から、30~170℃が好ましく、より好ましくは40~130℃、さらに好ましくは50~100℃である。 The softening point [Tm] of the crystalline polyester resin (C) by a flow tester is preferably 30 to 170 ° C., more preferably 40 to 130 ° C., still more preferably 50 to 150 ° C. from the viewpoint of low temperature fixability and hot offset resistance. It is 100 ° C.
結晶性ポリエステル樹脂(C)の軟化点〔Tm〕は以下の条件で測定される。
<軟化点〔Tm〕の測定方法>
降下式フローテスター[例えば、(株)島津製作所製、CFT-500D]を用いて、1gの測定試料を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出して、「プランジャー降下量(流れ値)」と「温度」とのグラフを描き、プランジャーの降下量の最大値の1/2に対応する温度をグラフから読み取り、この値(測定試料の半分が流出したときの温度)を軟化点〔Tm〕とする。
The softening point [Tm] of the crystalline polyester resin (C) is measured under the following conditions.
<Method of measuring softening point [Tm]>
Using a drop-down flow tester [CFT-500D manufactured by Shimadzu Corporation, for example, apply a load of 1.96 MPa by the plunger while heating 1 g of the measurement sample at a heating rate of 6 ° C./min It extrudes from a nozzle of 1 mm in diameter and 1 mm in length and draws a graph of “Plunger drop amount (flow value)” and “temperature”, and graph the temperature corresponding to half of the maximum drop amount of plunger This value (temperature at which half of the measurement sample flowed out) is taken as the softening point [Tm].
本発明の製造方法により得られる樹脂粒子は-20℃~80℃の温度範囲に示差走査熱量測定(DSC)によるチャートでガラス転移温度(Tg)を示す変曲点を少なくとも1個有することが耐熱保存性と低温定着性の点から好ましく、上記温度範囲は、より好ましくは30℃~70℃、さらに好ましくは40℃~65℃である。樹脂粒子は、ガラス転移温度(Tg)を示す変曲点を2個以上有してもよく、そのうちの1個がこの温度範囲であればよい。なお、ガラス転移温度(Tg)は、上記のようにASTM D3418-82に規定の方法(DSC法)により決定することができる。ガラス転移温度(Tg)の測定条件は上記の通りである。 The resin particles obtained by the production method of the present invention are heat resistant to have at least one inflection point indicating a glass transition temperature (Tg) in a chart by differential scanning calorimetry (DSC) in a temperature range of -20 ° C to 80 ° C. The above temperature range is more preferably 30 ° C. to 70 ° C., and still more preferably 40 ° C. to 65 ° C. from the viewpoint of storage stability and low temperature fixability. The resin particles may have two or more inflection points indicating a glass transition temperature (Tg), and one of them may be in this temperature range. The glass transition temperature (Tg) can be determined by the method (DSC method) defined in ASTM D3418-82 as described above. The conditions for measuring the glass transition temperature (Tg) are as described above.
本発明で製造される樹脂粒子には、ポリエステル樹脂以外に、必要により着色剤、離型剤、荷電制御剤及び流動化剤等からなる群より選ばれる1種以上の公知の添加剤を使用してもよい。 In the resin particles produced in the present invention, at least one known additive selected from the group consisting of a colorant, a mold release agent, a charge control agent, a fluidizing agent and the like is used as needed in addition to the polyester resin. May be
着色剤としては、トナー用着色剤として使用されている染料及び顔料等のすべてを使用することができる。具体的には、カーボンブラック、鉄黒、スーダンブラックSM、ファーストイエローG、ベンジジンイエロー、ピグメントイエロー、インドファーストオレンジ、イルガシンレッド、パラニトロアニリンレッド、トルイジンレッド、カーミンFB、ピグメントオレンジR、レーキレッド2G、ローダミンFB、ローダミンBレーキ、メチルバイオレットBレーキ、フタロシアニンブルー、ピグメントブルー、ブリリアントグリーン、フタロシアニングリーン、オイルイエローGG、カヤセットYG、オラゾールブラウンB及びオイルピンクOP等が挙げられ、これらは単独で又は2種以上を混合して用いることができる。また、必要により磁性粉(鉄、コバルト、ニッケル等の強磁性金属の粉末若しくはマグネタイト、ヘマタイト及びフェライト等の化合物)を着色剤としての機能を兼ねて含有させることができる。
着色剤の含有量はトナーの画像濃度及び低温定着性の観点から、本発明の製造方法により得られる樹脂粒子重量に基づき、好ましくは1~40重量%、より好ましくは3~10重量%である。なお、磁性粉を用いる場合は、磁性粉の含有量は、樹脂粒子重量に基づき、好ましくは20~70重量%、より好ましくは40~60重量%である。
As colorants, all dyes and pigments used as colorants for toners can be used. Specifically, carbon black, iron black, sudan black SM, fast yellow G, benzidine yellow, pigment yellow, indofirst orange, irgasine red, paranitroaniline red, toluidine red, carmine FB, pigment orange R, lake red 2G, Rhodamine FB, Rhodamine B Lake, Methyl Violet B Lake, Phthalocyanine Blue, Pigment Blue, Brilliant Green, Phthalocyanine Green, Oil Yellow GG, Kayaset YG, Orazol Brown B, Oil Pink OP, etc. Or 2 or more types can be mixed and used. If necessary, magnetic powder (powder of a ferromagnetic metal such as iron, cobalt, nickel or the like or a compound such as magnetite, hematite or ferrite) can be contained as well as the function as a colorant.
The content of the colorant is preferably 1 to 40% by weight, more preferably 3 to 10% by weight, based on the weight of resin particles obtained by the production method of the present invention, from the viewpoint of toner image density and low temperature fixability. . When magnetic powder is used, the content of the magnetic powder is preferably 20 to 70% by weight, more preferably 40 to 60% by weight, based on the weight of the resin particles.
離型剤としては、低分子量ポリプロピレン、低分子量ポリエチレン、低分子量ポリプロピレンポリエチレン共重合体、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックス等の脂肪族炭化水素系ワックス及びそれらの酸化物、カルナバワックス、モンタンワックス、サゾールワックス及びそれらの脱酸ワックス、脂肪酸エステルワックス等のエステルワックス、脂肪酸アミド類、脂肪酸類、高級アルコール類並びに脂肪酸金属塩等が挙げられる。 As a mold release agent, aliphatic hydrocarbon waxes such as low molecular weight polypropylene, low molecular weight polyethylene, low molecular weight polypropylene polyethylene copolymer, polyolefin wax, microcrystalline wax, paraffin wax, Fischer-Tropsch wax, and oxides thereof, carnauba Wax, montan wax, sazole wax and their deacidified waxes, ester waxes such as fatty acid ester waxes, fatty acid amides, fatty acids, higher alcohols, fatty acid metal salts and the like.
ポリオレフィンワックスとしては、オレフィン(例えばエチレン、プロピレン、1-ブテン、イソブチレン、1-ヘキセン、1-ドデセン、1-オクタデセン及びこれらの2以上の混合物等)の(共)重合体[(共)重合により得られるものおよび熱減成型ポリオレフィンを含む]、オレフィンの(共)重合体の酸素及び/又はオゾンによる酸化物、オレフィンの(共)重合体のマレイン酸変性物[例えばマレイン酸及びその誘導体(無水マレイン酸、マレイン酸モノメチル、マレイン酸モノブチル及びマレイン酸ジメチル等)変性物]、オレフィンと不飽和カルボン酸[(メタ)アクリル酸、イタコン酸及び無水マレイン酸等]及び/又は不飽和カルボン酸アルキルエステル[(メタ)アクリル酸アルキル(アルキルの炭素数1~18)エステル及びマレイン酸アルキル(アルキルの炭素数1~18)エステル等]等との共重合体、並びにサゾールワックス等が挙げられる。 Polyolefin waxes include (co) polymers [(co) polymerization of olefins (for example, ethylene, propylene, 1-butene, isobutylene, 1-hexene, 1-dodecene, 1-octadecene, and a mixture of two or more of these, etc.) Products obtained and thermally-deformed polyolefins], oxides of (co) polymers of olefins with oxygen and / or ozone, maleic acid modified products of (co) polymers of olefins [eg maleic acid and its derivatives (anhydride Maleic acid, monomethyl maleate, monobutyl maleate and dimethyl maleate etc.)), olefins and unsaturated carboxylic acids [(meth) acrylic acid, itaconic acid and maleic anhydride etc] and / or unsaturated carboxylic acid alkyl esters [Alkyl (meth) acrylate (the carbon number of the alkyl is 1 to 18) Copolymers of ether and maleic acid alkyl (number of carbon atoms in the alkyl 1-18) ester, etc.] or the like, and Sasol wax.
上記の中では低温定着性や耐ホットオフセット性の観点から、マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックス、カルナバワックス及びエステルワックスが好ましい。 Among them, microcrystalline wax, paraffin wax, Fischer-Tropsch wax, carnauba wax and ester wax are preferable from the viewpoint of low temperature fixing property and hot offset resistance.
離型剤としては、低温定着性及び耐ホットオフセット性の観点から、フローテスターによる軟化点〔Tm〕が50~170℃のものが好ましく、軟化点〔Tm〕は、より好ましくは50~140℃、さらに好ましくは50~120℃である。軟化点〔Tm〕は結晶性ポリエステル樹脂(C)と同様の条件で測定することができる。 The release agent preferably has a softening point [Tm] of 50 to 170 ° C. by a flow tester, and more preferably 50 to 140 ° C., from the viewpoint of low temperature fixing property and hot offset resistance. More preferably, the temperature is 50 to 120 ° C. The softening point [Tm] can be measured under the same conditions as for the crystalline polyester resin (C).
離型剤の含有量は、低温定着性及び耐ホットオフセット性の観点から、本発明の製造方法により得られる樹脂粒子の重量に基づき、好ましくは1~20重量%、より好ましくは2~10重量%である。 The content of the release agent is preferably 1 to 20% by weight, more preferably 2 to 10% by weight based on the weight of the resin particles obtained by the production method of the present invention, from the viewpoint of low temperature fixability and hot offset resistance. %.
荷電制御剤としては、ニグロシン染料、3級アミンを側鎖として含有するトリフェニルメタン染料、4級アンモニウム塩、ポリアミン樹脂、イミダゾール誘導体、4級アンモニウム塩基含有ポリマー、含金属アゾ染料、銅フタロシアニン染料、サリチル酸金属塩、ベンジル酸のホウ素錯体、スルホン酸基含有ポリマー、含フッ素ポリマー及びハロゲン置換芳香環含有ポリマー等が挙げられる。 As a charge control agent, nigrosine dye, triphenylmethane dye having tertiary amine as a side chain, quaternary ammonium salt, polyamine resin, imidazole derivative, polymer containing quaternary ammonium base, metal-containing azo dye, copper phthalocyanine dye, Examples thereof include metal salts of salicylic acid, boron complexes of benzyl acid, sulfonic acid group-containing polymers, fluorine-containing polymers, and halogen-substituted aromatic ring-containing polymers.
流動化剤としては、コロイダルシリカ、アルミナ粉末、酸化チタン粉末、炭酸カルシウム粉末、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム及び炭酸バリウム等が挙げられる。 As a fluidizing agent, colloidal silica, alumina powder, titanium oxide powder, calcium carbonate powder, barium titanate, magnesium titanate, calcium titanate, calcium titanate, strontium titanate, zinc oxide, silica sand, clay, mica, wollastonite, Examples thereof include diatomaceous earth, chromium oxide, cerium oxide, bengala, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate and barium carbonate.
荷電制御剤は樹脂粒子の重量に基づき、0~20重量%であってよく、好ましくは0.1~10重量%、より好ましくは0.5~5重量%である。
流動化剤は樹脂粒子の重量に基づき、0~10重量%であってよく、好ましくは0~5重量%、より好ましくは0.1~4重量%である。
また、着色剤、離型剤、荷電制御剤、流動化剤等の添加剤の合計量は樹脂粒子の重量に基づき、3~70重量%であってよく、好ましくは4~58重量%、より好ましくは5~50重量%である。樹脂粒子に含まれる添加剤の合計量が上記の範囲であることで、耐ホットオフセット性、帯電性、トナーの流動性、耐熱保存性及び帯電安定性が良好なものを容易に得ることができる。
The charge control agent may be 0 to 20% by weight, preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, based on the weight of the resin particles.
The fluidizing agent may be 0 to 10% by weight, preferably 0 to 5% by weight, more preferably 0.1 to 4% by weight, based on the weight of the resin particles.
In addition, the total amount of additives such as colorant, mold release agent, charge control agent, fluidizing agent and the like may be 3 to 70% by weight, preferably 4 to 58% by weight, based on the weight of resin particles. Preferably, it is 5 to 50% by weight. When the total amount of additives contained in the resin particles is in the above range, it is possible to easily obtain one having good hot offset resistance, chargeability, toner flowability, heat resistant storage stability and charge stability. .
本発明の樹脂粒子の製造方法は、アルコール成分(y)と不飽和カルボン酸成分(z)とを含有する成分を重縮合して得られたガラス転移温度(Tg)が-20~57℃のポリエステル樹脂(a)を含有する樹脂微粒子を得た後、樹脂微粒子を凝集させ、融合させる樹脂粒子の製造方法であって、樹脂微粒子を得た後、ポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させて変性樹脂にする工程を含む樹脂粒子の製造方法である。ポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させて変性樹脂にする工程は、樹脂微粒子を得た後、最終的に本発明の樹脂粒子を得るまでのいずれかの段階で実施すればよい。ポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させて変性樹脂にする工程は、例えば、樹脂微粒子を凝集させる前に行ってもよく、樹脂微粒子を凝集させる際に行ってもよく、凝集した樹脂微粒子を融合させる際に行ってもよい。 The method for producing resin particles of the present invention has a glass transition temperature (Tg a ) of −20 to 57 ° C. obtained by polycondensation of a component containing an alcohol component (y) and an unsaturated carboxylic acid component (z). The resin fine particles containing the polyester resin (a) of the present invention are obtained, and then the resin fine particles are coagulated and coalesced, and after the resin fine particles are obtained, unsaturated carbon in the polyester resin (a) is obtained. It is a method for producing resin particles, including the step of crosslinking the carbon-carbon double bonds derived from the acid component (z) to form a modified resin. In the step of crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) to form a modified resin, resin fine particles of the present invention are finally obtained. It may be carried out at any stage until particles are obtained. The step of crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) to a modified resin may be performed, for example, before aggregation of the resin fine particles, It may be performed at the time of aggregating the resin fine particles, or may be performed at the time of fusing the aggregated resin fine particles.
本発明の製造方法としては、得られる樹脂粒子及びトナーの粒径制御、粒度分布制御、形状制御、低温定着性、耐ホットオフセット性、耐熱保存性の観点から、以下の工程(1)~(4)を含むことが好ましい。
工程(1):ポリエステル樹脂(a)を含有する樹脂微粒子(X1)を含む分散液を得る工程
工程(2):分散液中の樹脂微粒子(X1)又はポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂を含有する樹脂微粒子(X2)を凝集させて樹脂微粒子(X1)の凝集体(Y1)又は樹脂微粒子(X2)の凝集体(Y2)を形成させる工程
工程(3):凝集体(Y1)又は(Y2)を融合させて凝集体(Y1)を融合させた樹脂粒子(Z1)又は凝集体(Y2)を融合させた樹脂粒子(Z2)を得る工程
工程(4):前記工程(1)終了後任意の段階で実施可能であり、前記工程(2)又は(3)と同時に実施してもよい工程であって、樹脂微粒子(X1)中、凝集体(Y1)中又は樹脂粒子(Z1)中のポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させる工程
From the viewpoints of particle size control, particle size distribution control, shape control, low temperature fixability, hot offset resistance and heat resistant storage stability of the resin particles and toner obtained according to the present invention, the following steps (1) to (1) It is preferable to include 4).
Step (1): Step of obtaining a dispersion containing resin fine particles (X1) containing polyester resin (a) Step (2): Unsaturated carbon in resin fine particles (X1) or polyester resin (a) in dispersion The fine resin particles (X2) containing the modified resin obtained by crosslinking the carbon-carbon double bonds derived from the acid component (z) are aggregated to form aggregates (Y1) of the fine resin particles (X1) or the fine resin particles (X2) Step (3) of forming the aggregate (Y2) of (a) resin particles (Z1) or aggregates (Y2) obtained by fusing the aggregates (Y1) or (Y2) and fusing the aggregates (Y1) Step (4) of obtaining fused resin particles (Z2): step which can be carried out at any stage after completion of the step (1), and may be conducted simultaneously with the step (2) or (3) In the resin fine particles (X1), aggregates (Y1 Polyester resin (a) an unsaturated carboxylic acid component in the (z) from the carbon in or resin particles (Z1) in - a step of crosslinking the carbon-carbon double bond between
さらに好ましくは、下記工程(1)、(2-1)及び(3-1)を含む製造方法と、下記工程(1)、(2-2)及び(3-2)を含む製造方法である。なお、工程(2-1)及び(2-2)は、上記工程(2)の好ましい具体例であり、工程(3-1)及び(3-2)は、上記工程(3)の好ましい具体例である。
工程(1):ポリエステル樹脂(a)を含有する樹脂微粒子(X1)の分散液(D1)を得る工程
工程(2-1):分散液(D1)中の樹脂微粒子(X1)を凝集させて凝集体(Y1)を形成させる工程
工程(2-2):分散液(D1)のポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させて変性樹脂として、変性樹脂を含有する樹脂微粒子(X2)の分散液(D2)を得た後、樹脂微粒子(X2)を凝集させて凝集体(Y2)を形成させる工程
工程(3-1):凝集体(Y1)を融合させると同時にポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させて変性樹脂にして、変性樹脂を含む樹脂粒子を得る工程
工程(3-2):凝集体(Y2)を融合させて樹脂粒子を得る工程
ここで、樹脂粒子中には添加剤(例えば、着色剤及び/又は離型剤)を含んでいてもよい。樹脂粒子中に添加剤(着色剤及び離型剤等)を含有させる方法として好ましくは、あらかじめ添加剤分散液(着色剤分散液及び離型剤分散液等)を作製し、分散液(D1)又は分散液(D2)と添加剤分散液とを混合し、分散液(W1)又は(W2)とし、上記工程において分散液(D1)及び(D2)に代えて分散液(W1)及び(W2)をそれぞれ用いることである。分散液(W1)及び(W2)を用いると、樹脂粒子中に添加剤(着色剤及び離型剤等)を均一に分散させることができることから低温定着性、光沢性、耐ホットオフセット性、帯電性、トナーの流動性、耐熱保存性及び帯電安定性の点で好ましい。
More preferably, the production method includes the following steps (1), (2-1) and (3-1), and the production method includes the following steps (1), (2-2) and (3-2). . Steps (2-1) and (2-2) are preferred embodiments of the above step (2), and steps (3-1) and (3-2) are preferred embodiments of the above step (3). It is an example.
Step (1): Step of obtaining dispersion liquid (D1) of resin fine particles (X1) containing polyester resin (a) Step (2-1): aggregation of resin fine particles (X1) in dispersion liquid (D1) Step (2-2) of Forming Aggregate (Y1): Crosslinking Reaction of Carbon-Carbon Double Bonds Derived from Unsaturated Carboxylic Acid Component (z) in Polyester Resin (a) of Dispersion (D1) A step of forming a aggregate (Y2) by aggregating the resin fine particles (X2) after obtaining a dispersion liquid (D2) of resin fine particles (X2) containing the modified resin as a denatured resin : Resin containing a modified resin by fusing the aggregate (Y1) and simultaneously crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) into a modified resin Process of obtaining particles (3-2): Aggregate ( Here to obtain by fusing resin particles 2), the additive in the resin particles (e.g., coloring agents and / or mold release agents) may be contained. Preferably, an additive dispersion (colorant dispersion, release agent dispersion, etc.) is prepared in advance as a method of incorporating additives (colorant, release agent, etc.) in resin particles, and dispersion (D1) Alternatively, the dispersion liquid (D2) and the additive dispersion liquid are mixed to obtain the dispersion liquid (W1) or (W2), and the dispersion liquids (W1) and (W2) are substituted for the dispersion liquids (D1) and (D2) in the above step. ) Respectively. When the dispersions (W1) and (W2) are used, additives (coloring agent, releasing agent, etc.) can be uniformly dispersed in resin particles, so that low temperature fixing property, glossiness, hot offset resistance, charging From the viewpoint of toner properties, toner fluidity, heat resistant storage stability and charge stability.
以下に工程(1)及び(2)について説明する。
分散液(D1)、(D2)、(W1)及び(W2)を構成する分散媒としては、水性溶媒が挙げられる。
水性溶媒としては、水を必須構成成分とする液体であれば制限なく使用でき、後述する、水、有機溶剤の水溶液、界面活性剤(s)の水溶液、水溶性ポリマー(t)の水溶液及びこれらの2以上の混合物等が用いることができる。また、水性溶媒への樹脂の分散性を良くするため、有機溶剤を樹脂の溶解に使用してもよい。
The steps (1) and (2) will be described below.
As a dispersion medium which comprises dispersion liquid (D1), (D2), (W1) and (W2), an aqueous solvent is mentioned.
As the aqueous solvent, any liquid containing water as an essential component can be used without limitation, and water, an aqueous solution of an organic solvent, an aqueous solution of surfactant (s), an aqueous solution of water-soluble polymer (t) and these A mixture of two or more of the above can be used. In addition, an organic solvent may be used to dissolve the resin in order to improve the dispersibility of the resin in the aqueous solvent.
有機溶剤としては、例えば、芳香族炭化水素溶剤、脂肪族又は脂環式炭化水素溶剤、ハロゲン溶剤、エステル又はエステルエーテル溶剤、エーテル溶剤、ケトン溶剤、アルコール溶剤、アミド溶剤、スルホキシド溶剤、複素環式化合物溶剤及びこれらの2種以上の混合溶剤等が挙げられる。
有機溶剤の具体例としては、芳香族炭化水素溶剤(トルエン、キシレン、エチルベンゼン及びテトラリン等);脂肪族又は脂環式炭化水素溶剤(n-ヘキサン、n-ヘプタン、ミネラルスピリット及びシクロヘキサン等);塩化メチル、臭化メチル、ヨウ化メチル、メチレンジクロライド、四塩化炭素、トリクロロエチレン及びパークロロエチレン等のハロゲン溶剤;酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート及びエチルセロソルブアセテート等のエステル又はエステルエーテル溶剤;ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチルセロソルブ、ブチルセロソルブ及びプロピレングリコールモノメチルエーテル等のエーテル溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン及びシクロヘキサノン等のケトン溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、2-エチルヘキシルアルコール及びベンジルアルコール等のアルコール溶剤;ジメチルホルムアミド及びジメチルアセトアミド等のアミド溶剤;ジメチルスルホキシド等のスルホキシド溶剤、N-メチルピロリドン等の複素環式化合物溶剤、並びにこれらの2種以上の混合溶剤等が挙げられる。上記の有機溶剤の中でも沸点が100℃未満の揮発性のものが好ましい。好ましい有機溶剤としては、酢酸エチル、アセトン及びメチルエチルケトン等が挙げられる。
As an organic solvent, for example, aromatic hydrocarbon solvent, aliphatic or alicyclic hydrocarbon solvent, halogen solvent, ester or ester ether solvent, ether solvent, ketone solvent, alcohol solvent, amide solvent, sulfoxide solvent, heterocyclic Compound solvents and mixed solvents of two or more of them and the like can be mentioned.
Specific examples of the organic solvent include aromatic hydrocarbon solvents (toluene, xylene, ethylbenzene and tetralin etc.); aliphatic or alicyclic hydrocarbon solvents (n-hexane, n-heptane, mineral spirits and cyclohexane etc); Halogen solvents such as methyl, methyl bromide, methyl iodide, methylene dichloride, carbon tetrachloride, trichloroethylene and perchloroethylene; esters or ester ethers such as ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate and ethyl cellosolve acetate Solvents; Ether solvents such as diethyl ether, tetrahydrofuran, dioxane, ethyl cellosolve, butyl cellosolve and propylene glycol monomethyl ether; acetone, methyl ethyl ketone, methyl isobutyl ketone Ketone solvents such as di-n-butyl ketone and cyclohexanone; alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, 2-ethylhexyl alcohol and benzyl alcohol; Amide solvents such as dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide; heterocyclic compound solvents such as N-methyl pyrrolidone; and mixed solvents of two or more of these, and the like. Among the above organic solvents, volatile solvents having a boiling point of less than 100 ° C. are preferable. Preferred organic solvents include ethyl acetate, acetone and methyl ethyl ketone.
アルコール成分(y)と不飽和カルボン酸成分(z)とを含有する成分を重縮合して得られたポリエステル樹脂(a)100重量部に対する有機溶剤の使用量は、好ましくは0~300重量部、より好ましくは0~100重量部、さらに好ましくは25~70重量部である。有機溶剤を使用した場合は、工程(1)又は工程(2)後、常圧または減圧下にて加温し除去することが好ましい。 The amount of the organic solvent used is preferably 0 to 300 parts by weight based on 100 parts by weight of the polyester resin (a) obtained by polycondensation of a component containing the alcohol component (y) and the unsaturated carboxylic acid component (z). More preferably, it is 0 to 100 parts by weight, still more preferably 25 to 70 parts by weight. When an organic solvent is used, it is preferable to remove by heating under normal pressure or reduced pressure after step (1) or step (2).
水性溶媒への樹脂の分散性を良くするため、ポリエステル樹脂のカルボキシル基を中和するために中和剤を使用してもよい。中和剤としては、アンモニア、トリエチルアミン等の有機化合物、水酸化ナトリウム等の無機化合物が挙げられる。 A neutralizing agent may be used to neutralize the carboxyl groups of the polyester resin in order to improve the dispersibility of the resin in the aqueous solvent. Examples of the neutralizing agent include organic compounds such as ammonia and triethylamine, and inorganic compounds such as sodium hydroxide.
中和剤の使用量は、ポリエステル樹脂のカルボキシル基に対して、分散性の観点から、好ましくは1~150モル%、より好ましくは5~100モル%である。 The amount of the neutralizing agent used is preferably 1 to 150 mol%, more preferably 5 to 100 mol%, from the viewpoint of dispersibility with respect to the carboxyl group of the polyester resin.
ポリエステル樹脂(a)を水性溶媒に分散させる際、乳化剤又は分散剤として、公知の界面活性剤(s)及び無機分散剤を用いることができる。界面活性剤(s)及び無機分散剤を用いた方が樹脂微粒子の体積平均粒径が小さくなり易い点で好ましい。 When dispersing the polyester resin (a) in an aqueous solvent, known surfactants (s) and inorganic dispersants can be used as an emulsifying agent or dispersing agent. It is preferable to use the surfactant (s) and the inorganic dispersant because the volume average particle diameter of the resin fine particles tends to be small.
界面活性剤(s)としては、特に限定されず、アニオン界面活性剤(s-1)、カチオン界面活性剤(s-2)、両性界面活性剤(s-3)及び非イオン界面活性剤(s-4)等が挙げられる。界面活性剤(s)は2種以上の界面活性剤を併用したものであってもよい。 The surfactant (s) is not particularly limited, and the anionic surfactant (s-1), the cationic surfactant (s-2), the amphoteric surfactant (s-3) and the non-ionic surfactant (s) s-4) and the like. The surfactant (s) may be a combination of two or more surfactants.
アニオン界面活性剤(s-1)としては、カルボン酸又はその塩、硫酸エステル塩、カルボキシメチル化物の塩、スルホン酸塩及びリン酸エステル塩等が挙げられる。
カチオン界面活性剤(s-2)としては、4級アンモニウム塩型界面活性剤及びアミン塩型界面活性剤等が挙げられる。
両性界面活性剤(s-3)としては、カルボン酸塩型両性界面活性剤、硫酸エステル塩型両性界面活性剤、スルホン酸塩型両性界面活性剤及びリン酸エステル塩型両性界面活性剤等が挙げられる。
非イオン界面活性剤(s-4)としては、AO付加型非イオン界面活性剤及び多価アルコ-ル型非イオン界面活性剤等が挙げられる。
これらの界面活性剤(s)の具体例としては、特開2002-284881号公報に記載のもの等が挙げられる。
Examples of the anionic surfactant (s-1) include carboxylic acids or salts thereof, sulfuric acid ester salts, salts of carboxymethylated substances, sulfonic acid salts and phosphoric acid ester salts.
Examples of the cationic surfactant (s-2) include quaternary ammonium salt surfactants and amine salt surfactants.
Examples of amphoteric surfactants (s-3) include carboxylate-type amphoteric surfactants, sulfate-ester-type amphoteric surfactants, sulfonate-type amphoteric surfactants, and phosphate-ester-type amphoteric surfactants. It can be mentioned.
Examples of the nonionic surfactant (s-4) include AO-added nonionic surfactants and polyhydric alcohol type nonionic surfactants.
Specific examples of these surfactants (s) include those described in JP-A-2002-284881.
水性溶媒としての水100重量部に対する界面活性剤(s)の使用量は、好ましくは0~300重量部、より好ましくは0.001~10重量部、さらに好ましくは0.01~5重量部である。 The amount of surfactant (s) used per 100 parts by weight of water as an aqueous solvent is preferably 0 to 300 parts by weight, more preferably 0.001 to 10 parts by weight, still more preferably 0.01 to 5 parts by weight is there.
無機分散剤としては、リン酸三カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛、ヒドロキシアパタイト等のリン酸多価金属塩、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、メタ硅酸カルシウム、硫酸カルシウム、硫酸バリウム等の無機塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等の無機化合物が挙げられる。 As the inorganic dispersant, tricalcium phosphate, magnesium phosphate, aluminum phosphate, zinc phosphate, polyphosphate metal salts such as hydroxyapatite, etc. carbonates such as calcium carbonate and magnesium carbonate, calcium metaborate, sulfuric acid Inorganic salts such as calcium and barium sulfate; and inorganic compounds such as calcium hydroxide, magnesium hydroxide and aluminum hydroxide.
水性溶媒としての水100重量部に対する無機分散剤の使用量は、好ましくは0~300重量部、より好ましくは0.001~10重量部である。 The amount of the inorganic dispersant used per 100 parts by weight of water as the aqueous solvent is preferably 0 to 300 parts by weight, more preferably 0.001 to 10 parts by weight.
ポリエステル樹脂(a)を水性溶媒に分散させる際、乳化剤又は分散剤として、公知の水溶性ポリマー(t)を用いることができる。水溶性ポリマー(t)を用いた方が樹脂微粒子の体積平均粒径が小さくなり、粒度分布(体積平均粒径/個数平均粒径)小さくなり易い点で好ましい。 When the polyester resin (a) is dispersed in an aqueous solvent, a known water-soluble polymer (t) can be used as an emulsifying agent or a dispersing agent. The use of the water-soluble polymer (t) is preferable in that the volume average particle size of the resin fine particles is smaller and the particle size distribution (volume average particle size / number average particle size) tends to be smaller.
水溶性ポリマー(t)としては、セルロース化合物(例えばメチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース及びそれらのケン化物等)、ゼラチン、デンプン、デキストリン、アラビアゴム、キチン、キトサン、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミン、ポリアクリルアミド、アクリル酸(塩)含有ポリマー(ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム、ポリアクリル酸の水酸化ナトリウム部分中和物及びアクリル酸ナトリウム-アクリル酸エステル共重合体等)、スチレン-無水マレイン酸共重合体の水酸化ナトリウム(部分)中和物、水溶性ポリウレタン(ポリエチレングリコール、及びポリカプロラクトンジオール等とポリイソシアネートの反応生成物等)等が挙げられる。 Examples of water-soluble polymers (t) include cellulose compounds (eg methylcellulose, ethylcellulose, hydroxyethylcellulose, ethylhydroxyethylcellulose, carboxymethylcellulose, hydroxypropylcellulose and saponified compounds thereof), gelatin, starch, dextrin, gum arabic, chitin, chitosan , Polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polyethylene imine, polyacrylamide, acrylic acid (salt) containing polymer (sodium polyacrylate, potassium polyacrylate, ammonium polyacrylate, sodium hydroxide partially neutralized of polyacrylic acid And sodium acrylate-acrylic acid ester copolymer etc., sodium hydroxide of styrene-maleic anhydride copolymer Partial) neutralization product, water-soluble polyurethane (polyethylene glycol, and the reaction product of polycaprolactone diol with polyisocyanate etc.) and the like.
水性溶媒としての水100重量部に対する水溶性ポリマー(t)の使用量は、好ましくは0~5重量部である。 The amount of water-soluble polymer (t) used is preferably 0 to 5 parts by weight with respect to 100 parts by weight of water as an aqueous solvent.
樹脂微粒子の体積基準のメジアン径は樹脂粒子の体積粒径及び粒度分布制御の観点から、好ましくは0.050~1μm、より好ましくは0.07~0.5μm、さらに好ましくは0.09~0.3μmである。
樹脂微粒子の体積基準のメジアン径は、動的光散乱式粒子径分布測定装置「SZ-100」(株式会社堀場製作所製)を用いて測定することができる。
The volume-based median diameter of the resin fine particles is preferably 0.050 to 1 μm, more preferably 0.07 to 0.5 μm, still more preferably 0.09 to 0, from the viewpoint of controlling the volume particle size and particle size distribution of the resin particles. .3 μm.
The volume-based median diameter of the resin fine particles can be measured using a dynamic light scattering type particle size distribution measuring apparatus “SZ-100” (manufactured by Horiba, Ltd.).
分散液100重量部中の樹脂微粒子の量は樹脂粒子の体積粒径及び粒度分布制御の観点から、好ましくは1~70重量部(分散液中の樹脂微粒子の固形分濃度1~70重量%)、より好ましくは5~65重量部、さらに好ましくは10~60重量部である。 The amount of resin fine particles in 100 parts by weight of the dispersion is preferably 1 to 70 parts by weight (solid content concentration of the resin fine particles in the dispersion is 1 to 70% by weight) from the viewpoint of controlling the volume particle diameter and particle size distribution of the resin particles. More preferably, it is 5 to 65 parts by weight, still more preferably 10 to 60 parts by weight.
本発明の製造方法により得られる分散液中の樹脂粒子又は樹脂微粒子等の固形分濃度及び揮発分は、以下の方法で求めたものである。
樹脂粒子又は樹脂微粒子等の沈澱が起こらないよう注意しながら、乾燥前の試料約2.00gをはかりとり、120℃で1時間の条件で乾燥する。乾燥後の試料を取り出し重量を小数点第2位まで測定し、(乾燥後の試料の重量/乾燥前の試料の重量)×100から固形分濃度(重量%)を算出し、{(乾燥前の試料の重量-乾燥後の試料の重量)/乾燥前の試料の重量}×100から揮発分(重量%)を算出する。
The solid content concentration and volatile content of resin particles or resin fine particles in the dispersion obtained by the production method of the present invention are determined by the following method.
About 2.00 g of the sample before drying is weighed and carefully dried at 120 ° C. for 1 hour, taking care not to cause precipitation of resin particles or resin fine particles and the like. The sample after drying is taken out and the weight is measured to the second decimal place, and the solid concentration (% by weight) is calculated from (weight of sample after drying / weight of sample before drying) × 100, {(before drying) The volatile content (% by weight) is calculated from the weight of the sample−the weight of the sample after drying) / the weight of the sample before drying} × 100.
工程(1)のポリエステル樹脂(a)を含有する樹脂微粒子(X1)の分散液(D1)を得る方法は特に限定されないが、以下の〔1〕~〔7〕が挙げられる。
〔1〕ポリエステル樹脂(a)及び必要によりラジカル反応開始剤(c)を含む成分を、必要であれば適当な分散剤存在下で水性溶媒中に分散させ、分散液(D1)を製造する方法。
〔2〕ポリエステル樹脂(a)及び必要によりラジカル反応開始剤(c)を含む成分の有機溶剤溶液を、必要であれば適当な分散剤存在下で水性溶媒中に分散させ、分散液(D1)を製造する方法。
〔3〕ポリエステル樹脂(a)及び必要によりラジカル反応開始剤(c)を含む成分の有機溶剤溶液を、必要であれば適当な分散剤存在下で水性溶媒中に分散させた後、有機溶剤を除去して分散液(D1)を製造する方法。
〔4〕ポリエステル樹脂(a)の前駆体及び必要によりラジカル反応開始剤(c)を含む成分の有機溶剤溶液を、必要であれば適当な分散剤存在下で水性溶媒中に分散させ、その後に(a)の前駆体からポリエステル樹脂(a)を生成させて、分散液(D1)を製造する方法。
〔5〕ポリエステル樹脂(a)を、機械回転式又はジェット式等の微粉砕機を用いて粉砕し、次いで分級した後、必要によりラジカル反応開始剤(c)を含む成分及び適当な分散剤存在下で水性溶媒中に分散させ、分散液(D1)を製造する方法。
〔6〕ポリエステル樹脂(a)を有機溶剤に溶解した樹脂溶液を、霧状に噴霧することにより粒子を得た後、必要によりラジカル反応開始剤(c)を含む成分及び適当な分散剤存在下で水性溶媒中に分散させ、分散液(D1)を製造する方法。
〔7〕ポリエステル樹脂(a)を有機溶剤に溶解した樹脂溶液に貧溶剤を添加するか、又はあらかじめ有機溶剤に加熱溶解した樹脂溶液を冷却することにより粒子を析出させ、次いで有機溶剤を除去した後、必要によりラジカル反応開始剤(c)を含む成分及び適当な分散剤存在下で水性溶媒中に分散させ、分散液(D1)を製造する方法。
上記〔1〕~〔7〕の方法のうち、樹脂微粒子(X1)の製造しやすさの観点から、好ましくは〔3〕の方法である。
また、上記〔1〕~〔7〕の方法において、「ポリエステル樹脂(a)及び必要によりラジカル反応開始剤(c)を含む成分」中には、必要によりポリエステル樹脂(b)を含んでもよい。低温定着性、耐ホットオフセット性、耐熱保存性の両立の観点から、ポリエステル樹脂(b)を含むことが好ましい。
また、ポリエステル樹脂(a)を含有する樹脂微粒子(X1)の分散液(D1)と添加剤分散液(着色剤分散液及び離型剤分散液等)とを混合して分散液(W1)として、以下において分散液(D1)に代えて分散液(W1)を用いてもよい。
なお、添加剤分散液(着色剤分散液及び離型剤分散液等)は、公知の方法により、着色剤等の添加剤を水性溶媒中に分散させることにより得られ、必要により分散剤を使用してもよい。
The method for obtaining the dispersion liquid (D1) of the resin fine particles (X1) containing the polyester resin (a) in the step (1) is not particularly limited, and the following [1] to [7] may be mentioned.
[1] A method of producing a dispersion (D1) by dispersing a component containing a polyester resin (a) and optionally a radical reaction initiator (c), if necessary, in an aqueous solvent in the presence of a suitable dispersant .
[2] An organic solvent solution of a component containing a polyester resin (a) and optionally a radical reaction initiator (c) is dispersed, if necessary, in an aqueous solvent in the presence of a suitable dispersant, to obtain a dispersion (D1) How to manufacture.
[3] An organic solvent solution of a component containing a polyester resin (a) and optionally a radical reaction initiator (c) is dispersed in an aqueous solvent in the presence of a suitable dispersant, if necessary, and then the organic solvent is added A method of producing a dispersion (D1) by removing it.
[4] A precursor of polyester resin (a) and optionally an organic solvent solution of a component containing a radical reaction initiator (c) is dispersed in an aqueous solvent in the presence of a suitable dispersant, if necessary, and thereafter A method of producing a dispersion (D1) by producing a polyester resin (a) from the precursor of (a).
[5] The polyester resin (a) is pulverized using a pulverizer such as a mechanical rotary type or jet type, and then classified, if necessary, a component containing a radical initiator (c) and the presence of a suitable dispersant A method of dispersing in aqueous solvent below to produce a dispersion (D1).
[6] After a resin solution obtained by dissolving a polyester resin (a) in an organic solvent is sprayed in the form of a mist to obtain particles, if necessary a component containing a radical reaction initiator (c) and a suitable dispersant And dispersion in an aqueous solvent to produce a dispersion (D1).
[7] The poor solvent is added to the resin solution in which the polyester resin (a) is dissolved in the organic solvent, or the resin solution in which the resin solution is heated and dissolved in the organic solvent in advance is cooled to precipitate particles. After that, if necessary, it is dispersed in an aqueous solvent in the presence of a component containing a radical reaction initiator (c) and a suitable dispersant, to produce a dispersion (D1).
Among the methods of [1] to [7], the method of [3] is preferable from the viewpoint of easiness of production of the resin fine particles (X1).
In the above-mentioned methods [1] to [7], the “component containing polyester resin (a) and optionally radical reaction initiator (c)” may optionally contain polyester resin (b). It is preferable to contain a polyester resin (b) from the viewpoint of coexistence of low temperature fixability, hot offset resistance and heat resistant storage stability.
Also, a dispersion (D1) of resin fine particles (X1) containing a polyester resin (a) and an additive dispersion (colorant dispersion, release agent dispersion, etc.) are mixed to obtain a dispersion (W1). Hereinafter, the dispersion liquid (W1) may be used instead of the dispersion liquid (D1).
The additive dispersion (colorant dispersion, release agent dispersion, etc.) is obtained by dispersing an additive such as a colorant in an aqueous solvent by a known method, and a dispersant is used if necessary. You may
工程(2-2)において、ポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させて変性樹脂として、変性樹脂を含有する樹脂微粒子(X2)の分散液(D2)を得る方法は特に限定されないが、例えば、以下の〔8〕が挙げられる。
〔8〕分散液(D1)に、必要によりラジカル反応開始剤(c)を含有させ、必要により5~200℃に温調して、樹脂微粒子(X2)の分散液(D2)を製造する方法。
上記〔8〕において、分散液(D1)に代えて分散液(W1)を用いてもよい。
また、得られた分散液(D2)と、結晶性ポリエステル樹脂(C)分散液及び/又は添加剤分散液とを混合して分散液(W2)として、以下において分散液(D2)に代えて分散液(W2)を用いてもよい。
なお、結晶性ポリエステル樹脂(C)分散液は、公知の方法により、結晶性ポリエステル樹脂(C)を水性溶媒中に分散させることにより得られ、必要により分散剤を使用してもよい。
分散液(W2)を得る方法として、具体的には、下記〔9〕の方法が好ましく挙げられる。
〔9〕ポリエステル樹脂(a)及び非晶性ポリエステル樹脂(b1)及びラジカル反応開始剤(c)を含有する有機溶剤溶液を、必要であれば適当な分散剤存在下で水性溶媒中に分散させて樹脂微粒子(X1)の分散液(abD1)を得た後、必要であれば5~200℃に温調して非晶性ポリエステル樹脂(b1)中でポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させて変性樹脂とし、有機溶剤を除去して樹脂微粒子(X2)の分散液(abD2)を得て、水性溶媒中に結晶性ポリエステル樹脂(C)が分散されてなる結晶性ポリエステル樹脂(C)分散液、水性溶媒中に添加剤が分散されてなる添加剤分散液(例えば、水性溶媒中に着色剤が分散されてなる着色剤分散液、及び水性溶媒中に離型剤が分散されてなる離型剤分散液等)を混合して分散液(W2)を製造する方法。
In the step (2-2), carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) are cross-linked to form resin fine particles (X2) containing a modified resin as a modified resin Although the method to obtain the dispersion liquid (D2) of is not particularly limited, for example, the following [8] can be mentioned.
[8] A method of producing a dispersion (D2) of resin fine particles (X2) by adding a radical reaction initiator (c) if necessary to the dispersion (D1) and adjusting the temperature to 5 to 200 ° C. if necessary .
In the above [8], the dispersion (W1) may be used instead of the dispersion (D1).
Also, the obtained dispersion liquid (D2) and the crystalline polyester resin (C) dispersion liquid and / or the additive dispersion liquid are mixed to obtain a dispersion liquid (W2), which is replaced with the dispersion liquid (D2) below. Dispersion liquid (W2) may be used.
The crystalline polyester resin (C) dispersion is obtained by dispersing the crystalline polyester resin (C) in an aqueous solvent by a known method, and a dispersing agent may be used if necessary.
Specifically as a method of obtaining a dispersion liquid (W2), the method of following [9] is mentioned preferably.
[9] An organic solvent solution containing a polyester resin (a) and an amorphous polyester resin (b1) and a radical reaction initiator (c) is dispersed in an aqueous solvent, if necessary, in the presence of a suitable dispersant. The dispersion (abD1) of resin fine particles (X1) is obtained, and if necessary, the temperature is adjusted to 5 to 200 ° C., and unsaturated carbon in the polyester resin (a) in the amorphous polyester resin (b1) The carbon-carbon double bonds derived from the acid component (z) are cross-linked to form a modified resin, and the organic solvent is removed to obtain a dispersion (abD2) of resin fine particles (X2). Crystalline polyester resin (C) dispersion in which polyester resin (C) is dispersed, additive dispersion in which additives are dispersed in aqueous solvent (for example, coloring in which colorant is dispersed in aqueous solvent) Agent dispersion and aqueous solution How releasing agent to produce a dispersion by mixing becomes releasing agent dispersion and the like) are dispersed (W2) in the.
前記の〔1〕~〔9〕の方法における分散の方法としては特に限定されるものではないが、低速せん断式、高速せん断式、摩擦式、高圧ジェット式、超音波などの公知の設備が適用できる。分散体中の微粒子の粒径を0.05~1μmにするために高速せん断式が好ましい。高速せん断式分散機を使用した場合、回転数は特に限定はないが、一般的に1000~30000rpm、好ましくは5000~20000rpmである。分散時間は特に限定はないが、バッチ方式の場合は、一般的に0.1~5分である。温調温度は、使用するラジカル反応開始剤(c)およびポリエステル樹脂(a)の分子量によって選択される。温度は5~200℃が好ましく、より好ましくは20~100℃である。
分散装置は、例えばホモジナイザー(IKA社製)、ポリトロン(キネマティカ社製)、TKオートホモミキサー[特殊機化工業(株)製]等のバッチ式乳化機、エバラマイルダー[(株)荏原製作所製]、TKフィルミックス、TKパイプラインホモミキサー[特殊機化工業(株)製]、コロイドミル[神鋼パンテック(株)製]、ウルトラビスコミル(アイメックス(株)製)、スラッシャー、トリゴナル湿式微粉砕機[日本コークス工業(株)製]、キャピトロン(ユーロテック社製)、ファインフローミル[太平洋機工(株)製]等の連続式乳化機、マイクロフルイダイザー[みずほ工業(株)製]、ナノマイザー(ナノマイザー社製)、APVガウリン(ガウリン社製)等の高圧乳化機、膜乳化機[冷化工業(株)製]等の膜乳化機、バイブロミキサー[冷化工業(株)製]等の振動式乳化機、超音波ホモジナイザー(ブランソン社製)等の超音波乳化機等が挙げられる。これらのうち粒径の均一性の観点から好ましいのは、APVガウリン、ホモジナイザー、TKオートホモミキサー、エバラマイルダー、TKフィルミックス及びTKパイプラインホモミキサーである。
The dispersion method in the above methods [1] to [9] is not particularly limited, but known equipment such as low speed shear type, high speed shear type, friction type, high pressure jet type, and ultrasonic waves may be applied. it can. In order to make the particle size of the fine particles in the dispersion 0.05 to 1 μm, a high speed shear type is preferable. When using a high-speed shear disperser, the rotational speed is not particularly limited, but is generally 1000 to 30000 rpm, preferably 5000 to 20000 rpm. The dispersion time is not particularly limited, but in the case of a batch system, it is generally 0.1 to 5 minutes. The controlled temperature is selected according to the molecular weight of the radical initiator (c) and the polyester resin (a) used. The temperature is preferably 5 to 200 ° C., more preferably 20 to 100 ° C.
The dispersing apparatus is, for example, a batch type emulsification machine such as a homogenizer (manufactured by IKA), Polytron (manufactured by Kinematica), a TK autohomomixer [manufactured by Tokushu Kika Kogyo Co., Ltd.], Ebara Milder [manufactured by SHINOHARA MFG. ], TK film mix, TK pipeline homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.), colloid mill (manufactured by Shinko Pantec Co., Ltd.), ultravisco mill (manufactured by Imex Co., Ltd.), slasher, trigonal wet fine Continuous emulsification machine such as crusher [Nippon Coke Kogyo Co., Ltd.], Capitron (Eurotech Co., Ltd.), Fine Flow Mill [Pacific Kiko Co., Ltd.], Microfluidizer [Mizuho Kogyo Co., Ltd.], Membrane emulsification such as Nanomizer (made by Nanomizer), APV Gaulin (made by Gaulin) etc., high-pressure emulsifying machine, membrane emulsifying machine (made by Cooling Industry Co., Ltd.) etc. , Vibro Mixer [Hiyaka Kogyo Co., Ltd.] vibrating emulsifier such as, ultrasonic emulsifier such as an ultrasonic homogenizer (manufactured by Branson Co., Ltd.). Among them, preferred from the viewpoint of particle size uniformity are APV Gaulin, homogenizer, TK auto homomixer, Ebara milder, TK film mix and TK pipeline homo mixer.
以下に工程(2)における「樹脂微粒子(X1)の凝集体(Y1)又は樹脂微粒子(X2)の凝集体(Y2)を形成させる工程」について説明する。
工程(2)において、分散液{(D1)、(D2)、(W1)又は(W2)}中の樹脂微粒子(X1)又は(X2)を凝集させて凝集体(Y1)又は(Y2)を得る方法は特に限定されないが、分散液に、凝集剤を添加する方法が挙げられる。
凝集剤としては、酸(塩酸、硫酸、硝酸、酢酸及びシュウ酸等)、無機酸の金属塩(塩化ナトリウム、塩化マグネシウム、塩化カルシウム、塩化アルミニウム、硫酸アルミニウム、硫酸カルシウム、硫酸アンモニウム、硝酸アルミニウム、硝酸銀、硫酸銅及び炭酸ナトリウム等)、脂肪酸の金属塩(酢酸ナトリウム、蟻酸カリウム及びシュウ酸ナトリウム等)、芳香族脂肪酸の金属塩(安息香酸ナトリウム、フタル酸ナトリウム及びサリチル酸カリウム等)、フェノール類の金属塩(ナトリウムフェノレート等)、アミン塩(アミノ酸の金属塩、トリエタノールアミン塩酸塩及びアニリン塩酸塩等)等が挙げられる。
これらのうち好ましいのは、無機酸の金属塩及び脂肪酸の金属塩であり、より好ましいのは無機酸の金属塩である。
Hereinafter, the “step of forming an aggregate (Y1) of resin fine particles (X1) or an aggregate (Y2) of resin fine particles (X2)” in step (2) will be described.
In the step (2), the resin fine particles (X1) or (X2) in the dispersion {(D1), (D2), (W1) or (W2)} are aggregated to aggregate (Y1) or (Y2) Although the method to obtain is not particularly limited, a method of adding an aggregating agent to the dispersion may be mentioned.
Flocculants include acids (hydrochloric acid, sulfuric acid, nitric acid, acetic acid and oxalic acid etc.), metal salts of inorganic acids (sodium chloride, magnesium chloride, calcium chloride, aluminum chloride, aluminum sulfate, calcium sulfate, calcium sulfate, ammonium sulfate, aluminum nitrate, silver nitrate , Copper sulfate and sodium carbonate etc., metal salts of fatty acids (sodium acetate, potassium formate and sodium oxalate etc), metal salts of aromatic fatty acids (sodium benzoate, sodium phthalate and potassium salicylate etc), metals of phenols Salts (sodium phenolate etc.), amine salts (metal salts of amino acids, triethanolamine hydrochloride, aniline hydrochloride etc.) and the like can be mentioned.
Among these, metal salts of inorganic acids and metal salts of fatty acids are preferred, and metal salts of inorganic acids are more preferred.
上記工程(2)における上記分散液の温度は、樹脂粒子の体積平均粒径及び粒度分布制御の観点から、好ましくは5~100℃、より好ましくは20~100℃である。
また、工程(2)における凝集体を形成させる工程において、分散液のpHは樹脂粒子の体積平均粒径及び粒度分布制御の観点から、好ましくは2~10、より好ましくは3~6である。
The temperature of the dispersion in the step (2) is preferably 5 to 100 ° C., more preferably 20 to 100 ° C., from the viewpoint of controlling the volume average particle diameter and the particle size distribution of the resin particles.
Further, in the step of forming aggregates in the step (2), the pH of the dispersion is preferably 2 to 10, more preferably 3 to 6 from the viewpoint of controlling the volume average particle diameter and particle size distribution of the resin particles.
凝集剤の添加量は、樹脂粒子の体積平均粒径及び粒度分布制御の観点から、樹脂微粒子100重量部に対して好ましくは1~20重量部であり、より好ましくは1~15重量部である。 The addition amount of the coagulant is preferably 1 to 20 parts by weight, and more preferably 1 to 15 parts by weight with respect to 100 parts by weight of the resin fine particles from the viewpoint of controlling the volume average particle diameter and particle size distribution of the resin particles. .
以下に工程(3)について説明する。
工程(3)において、融合させる際の温度は、得られる樹脂粒子及びトナーの形状制御性の観点から、5~200℃が好ましく、さらに好ましくは30~100℃である。工程(3)において、凝集体を融合させる際の液のpHは、好ましくは3~10、より好ましくは5~10である。
The step (3) will be described below.
In the step (3), the temperature at the time of coalescence is preferably 5 to 200 ° C., more preferably 30 to 100 ° C., from the viewpoint of shape controllability of the obtained resin particles and toner. In the step (3), the pH of the solution at the time of fusing the aggregates is preferably 3 to 10, more preferably 5 to 10.
以下に工程(3-2)について説明する。
工程(3-2)において、凝集体(Y2)を融合させて樹脂粒子を得る工程における温度は、好ましくは30~100℃、より好ましくは40~100℃である。
The step (3-2) will be described below.
The temperature in the step of fusing the aggregates (Y2) in the step (3-2) to obtain resin particles is preferably 30 to 100 ° C., more preferably 40 to 100 ° C.
以下に工程(3-1)について説明する。
工程(3-1)は凝集体(Y1)を融合させると同時にポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させて変性樹脂にして、変性樹脂を含む樹脂粒子を得る工程である。融合と架橋反応とを同時に実施する場合は、あらかじめラジカル反応開始剤(c)を樹脂微粒子(X1)に含有させるか、又は凝集体(Y1)を製造する工程(2)において、樹脂微粒子(X1)とラジカル反応開始剤(c)とを共存させ、樹脂微粒子(X1)及びラジカル反応開始剤(c)を含む凝集体(Y1)として、凝集体(Y1)を凝集体(Y1)中のポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させながら融合させるのが好ましい。温度は、使用するラジカル反応開始剤(c)およびポリエステル樹脂(a)の分子量によって選択される。工程(3-1)において、温度は、5~200℃が好ましく、より好ましくは20~100℃である。反応時間は、0.1~48時間が好ましく、より好ましくは1~24時間である。
The step (3-1) will be described below.
In the step (3-1), the aggregate (Y1) is fused and simultaneously the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) are crosslinked to form a modified resin And the step of obtaining resin particles containing the modified resin. In the case of simultaneously carrying out the fusion and the crosslinking reaction, the resin fine particles (X1) are added in advance to the resin fine particles (X1) in the radical reaction initiator (c) or in the step (2) of producing the aggregate (Y1). ) And the radical reaction initiator (c) to form an aggregate (Y1) as an aggregate (Y1) containing resin fine particles (X1) and a radical reaction initiator (c), and the polyester in the aggregate (Y1) The carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the resin (a) are preferably fused while being crosslinked. The temperature is chosen according to the molecular weight of the radical initiator (c) used and the polyester resin (a). In the step (3-1), the temperature is preferably 5 to 200 ° C., more preferably 20 to 100 ° C. The reaction time is preferably 0.1 to 48 hours, more preferably 1 to 24 hours.
本発明の樹脂粒子の製造方法は、さらに樹脂粒子の分散体から水性溶媒を除去する工程を有していることが帯電性、帯電安定性、耐熱保存性の点から好ましい。 The method for producing resin particles of the present invention preferably further comprises the step of removing the aqueous solvent from the dispersion of resin particles from the viewpoint of chargeability, charge stability, and heat resistant storage stability.
分散体から水性溶媒を除去する方法としては、以下の〔10〕~〔12〕及びこれらの2以上の組合せの方法等が適用できる。
〔10〕分散体を減圧下又は常圧下で乾燥する方法。
〔11〕分散体を遠心分離器、スパクラフィルター及び/又はフィルタープレスなどにより固液分離し、必要に応じて水等を加え固液分離を繰り返した後、得られた固体を乾燥する方法。
〔12〕分散体を凍結させて乾燥させる方法(いわゆる凍結乾燥)。
As a method of removing the aqueous solvent from the dispersion, the following [10] to [12] and a method of combining two or more of them can be applied.
[10] A method of drying the dispersion under reduced pressure or under normal pressure.
[11] A method of solid-liquid separation of the dispersion by a centrifugal separator, a spatula filter and / or a filter press, adding water etc. as necessary, repeating solid-liquid separation, and then drying the obtained solid.
[12] A method of freezing and drying the dispersion (so-called freeze drying).
上記〔10〕及び〔11〕の方法において、乾燥機として、流動層式乾燥機、減圧乾燥機及び循風乾燥機等公知の設備を用いて乾燥を行うことができる。また、必要に応じ、風力分級器又はふるい等を用いて分級し、所定の粒度分布とすることもできる。 In the methods of the above [10] and [11], drying can be performed using a known apparatus such as a fluid bed dryer, a reduced pressure dryer, and a circulating dryer as the dryer. In addition, if necessary, classification can be performed using an air classifier or sieve to obtain a predetermined particle size distribution.
樹脂粒子100重量部に対する残存する水性溶媒量は帯電性、帯電安定性、トナーの流動性及び耐熱保存性の観点から、好ましくは0~2重量部、より好ましくは0~1重量部、さらに好ましくは0~0.1重量部、特に好ましくは0~0.01重量部である。 The amount of the aqueous solvent remaining relative to 100 parts by weight of the resin particles is preferably 0 to 2 parts by weight, more preferably 0 to 1 part by weight, and further preferably from the viewpoint of chargeability, charge stability, flowability of the toner and heat resistant storage stability. Is 0 to 0.1 parts by weight, particularly preferably 0 to 0.01 parts by weight.
本発明の製造方法により得られる樹脂粒子の粒径は、現像性と解像度の観点から、体積平均粒径が好ましくは2~20μm、より好ましくは3~15μm、さらに好ましくは4~8μmである。個数平均粒径が好ましくは2~20μm、より好ましくは3~15μm、さらに好ましくは4~8μmである。粒度分布(体積平均粒径/個数平均粒径)は好ましくは1.0~2.0、より好ましくは1.0~1.8、さらに好ましくは1.0~1.5である。形状は球状であるほうが流動性の観点から好ましい。また、融合状態を制御し適度な凹凸があるほうがクリーニング性の観点から好ましい。樹脂粒子の体積平均粒径、個数平均粒径は「マルチサイザーIV」(ベックマン・コールター(株)製)等で測定することができる。 The particle diameter of the resin particles obtained by the production method of the present invention is preferably 2 to 20 μm, more preferably 3 to 15 μm, still more preferably 4 to 8 μm, from the viewpoint of developability and resolution. The number average particle diameter is preferably 2 to 20 μm, more preferably 3 to 15 μm, and still more preferably 4 to 8 μm. The particle size distribution (volume average particle diameter / number average particle diameter) is preferably 1.0 to 2.0, more preferably 1.0 to 1.8, and still more preferably 1.0 to 1.5. The shape is preferably spherical in view of fluidity. Further, it is preferable from the viewpoint of the cleaning property to control the fusion state and to have appropriate unevenness. The volume average particle diameter and the number average particle diameter of the resin particles can be measured with "Multisizer IV" (manufactured by Beckman Coulter, Inc.) or the like.
上記の本発明の樹脂粒子の製造方法で得られた樹脂粒子を含んでなるトナーの製造方法も、本発明の1つである。
本発明の製造方法により得られるトナーは、本発明の製造方法により得られる樹脂粒子を含有する。
A method of producing a toner comprising the resin particle obtained by the method of producing a resin particle of the present invention is also one of the present invention.
The toner obtained by the production method of the present invention contains resin particles obtained by the production method of the present invention.
本発明の製造方法により得られるトナーは、樹脂粒子以外に、樹脂粒子にあらかじめ含有している場合を除き、必要により、着色剤、離型剤、荷電制御剤及び流動化剤等から選ばれる1種以上の公知の添加剤を含有してもよい。これらを含有することで、耐ホットオフセット性、帯電性、トナーの流動性、耐熱保存性、帯電安定性、画像強度、耐折り曲げ性及びドキュメントオフセット性が良好なものを容易に得ることができる。 The toner obtained by the production method of the present invention is optionally selected from colorants, release agents, charge control agents, fluidizing agents, etc., as well as resin particles, except in the case where it is previously contained in resin particles. More than one known additive may be included. By containing these, it is possible to easily obtain one having good hot offset resistance, chargeability, toner flowability, heat resistant storage stability, charge stability, image strength, folding resistance and document offsetability.
着色剤としては、樹脂粒子の場合と同様のものが挙げられ、好ましいものも同様である。
着色剤の含有量はトナーの画像濃度及び低温定着性の観点から、本発明の製造方法により得られるトナー重量に基づき、好ましくは1~40重量%、より好ましくは3~10重量%である。なお、磁性粉を用いる場合は、磁性粉の含有量は、トナー重量に基づき、好ましくは20~70重量%、より好ましくは40~60重量%である。
As a coloring agent, the thing similar to the case of the resin particle is mentioned, A preferable thing is also the same.
The content of the colorant is preferably 1 to 40% by weight, more preferably 3 to 10% by weight, based on the weight of the toner obtained by the production method of the present invention, from the viewpoint of toner image density and low temperature fixability. When magnetic powder is used, the content of the magnetic powder is preferably 20 to 70% by weight, more preferably 40 to 60% by weight, based on the weight of the toner.
離型剤としては、樹脂粒子の場合と同様のものが挙げられる。上記の中では低温定着性や耐ホットオフセット性の観点から、マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックス、カルナバワックス及びエステルワックスが好ましい。 As the release agent, the same one as in the case of the resin particle can be mentioned. Among them, microcrystalline wax, paraffin wax, Fischer-Tropsch wax, carnauba wax and ester wax are preferable from the viewpoint of low temperature fixing property and hot offset resistance.
離型剤としては、低温定着性及び耐ホットオフセット性の観点から、フローテスターによる軟化点〔Tm〕が50~170℃のものが好ましく、軟化点〔Tm〕はより好ましくは50~140℃、さらに好ましくは50~120℃である。 The release agent preferably has a softening point [Tm] of 50 to 170 ° C. by the flow tester, and more preferably 50 to 140 ° C., from the viewpoint of low temperature fixing property and hot offset resistance. More preferably, the temperature is 50 to 120 ° C.
離型剤の含有量は、低温定着性及び耐ホットオフセット性の観点から、本発明の製造方法により得られるトナー重量に基づき、好ましくは1~20重量%、より好ましくは2~10重量%である。 The content of the releasing agent is preferably 1 to 20% by weight, more preferably 2 to 10% by weight, based on the weight of the toner obtained by the production method of the present invention, from the viewpoint of low temperature fixability and hot offset resistance. is there.
荷電制御剤としては、樹脂粒子の場合と同様のものが挙げられる。荷電制御剤は、トナーの内部に分散していてもよく、トナー表面を被覆していてもよく、トナー内部に分散しかつトナー表面を被覆していてもよい。
荷電制御剤の含有量はトナー重量に基づき、0~20重量%であってよく、好ましくは0.1~10重量%、より好ましくは0.5~5重量%である。
As the charge control agent, the same ones as in the case of the resin particles can be mentioned. The charge control agent may be dispersed inside the toner, may coat the toner surface, or may be dispersed inside the toner and coat the toner surface.
The content of the charge control agent may be 0 to 20% by weight, preferably 0.1 to 10% by weight, and more preferably 0.5 to 5% by weight, based on the weight of the toner.
流動化剤としては、樹脂粒子の場合と同様のものが挙げられる。流動化剤の含有量はトナー重量に基づき、0~10重量%であってよく、好ましくは0~5重量%、より好ましくは0.1~4重量%である。 As the fluidizing agent, the same ones as in the case of the resin particles can be mentioned. The content of the fluidizing agent may be 0 to 10% by weight, preferably 0 to 5% by weight, more preferably 0.1 to 4% by weight, based on the weight of the toner.
本発明の製造方法により得られるトナーは、必要に応じて鉄粉、ガラスビーズ、ニッケル粉、フェライト、マグネタイト、および樹脂(アクリル樹脂、シリコーン樹脂等)により表面をコーティングしたフェライト等のキャリア粒子と混合されて電気的潜像の現像剤として用いられる。トナーとキャリア粒子との重量比は、好ましくは1/99~100/0である。また、キャリア粒子の代わりに帯電ブレード等の部材と摩擦し、電気的潜像を形成することもできる。 The toner obtained by the production method of the present invention is mixed with carrier particles such as iron powder, glass beads, nickel powder, ferrite, magnetite, and ferrite coated on the surface with resin (acrylic resin, silicone resin etc.) as necessary. It is used as a developer for an electric latent image. The weight ratio of toner to carrier particles is preferably 1/99 to 100/0. Also, instead of the carrier particles, they can be rubbed with a member such as a charging blade to form an electric latent image.
本発明のトナーの製造方法は、樹脂粒子の製造方法で得られた樹脂粒子を含んでなるトナーの製造方法である。上記製造方法で得られる樹脂粒子をそのままトナーとして用いてもよく、上記の添加剤を公知の方法で添加してもよい。上記の本発明の樹脂粒子の製造方法は、トナーの製造方法として使用することができる。 The method of producing a toner of the present invention is a method of producing a toner comprising resin particles obtained by the method of producing resin particles. The resin particles obtained by the above-mentioned production method may be used as a toner as it is, or the above-mentioned additives may be added by a known method. The above-described method for producing resin particles of the present invention can be used as a method for producing a toner.
本発明の製造方法により得られるトナーは、複写機、プリンター等により支持体(紙、ポリエステルフィルム等)に定着して記録材料とされる。支持体に定着する方法としては、公知の熱ロール定着方法、フラッシュ定着方法等が適用できる。 The toner obtained by the production method of the present invention is fixed on a support (paper, polyester film or the like) by a copying machine, a printer or the like to be used as a recording material. As a method of fixing on a support, a known heat roll fixing method, flash fixing method and the like can be applied.
本発明の製造方法により得られるトナーは電子写真法、静電記録法や静電印刷法等において、静電荷像又は磁気潜像の現像に好ましく用いることができる。更に好ましくは、フルカラー用の静電荷像又は磁気潜像の現像に用いることができる。 The toner obtained by the production method of the present invention can be preferably used to develop an electrostatic charge image or a magnetic latent image in electrophotography, electrostatic recording, electrostatic printing, and the like. More preferably, it can be used for developing an electrostatic charge image or a magnetic latent image for full color.
以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り部は重量部を示す。 Hereinafter, the present invention will be further described by way of examples and comparative examples, but the present invention is not limited thereto. Hereinafter, parts indicate parts by weight unless otherwise specified.
酸価は、JIS K0070(1992年版)に規定の方法で測定した。
ガラス転移温度は、示差走査熱量計(TA Instruments(株)製、DSC Q20)を用いて、ASTM D3418-82に規定の方法(DSC法)で測定した。
<ガラス転移温度の測定条件>
(1)30℃から20℃/分で150℃まで昇温
(2)150℃で10分間保持
(3)20℃/分で-35℃まで冷却
(4)-35℃で10分間保持
(5)20℃/分で150℃まで昇温
(6)(5)の過程にて測定される示差走査熱量曲線を解析しガラス転移温度を求めた。
The acid value was measured by the method prescribed in JIS K 0070 (1992 version).
The glass transition temperature was measured by a method (DSC method) defined in ASTM D3418-82 using a differential scanning calorimeter (manufactured by TA Instruments, DSC Q20).
<Measurement conditions of glass transition temperature>
(1) Temperature increase from 30 ° C to 20 ° C / min to 150 ° C (2) Hold at 150 ° C for 10 minutes (3) Cool to -35 ° C at 20 ° C / min (4) Hold at -35 ° C for 10 minutes (5 2.) The differential scanning calorimetry curve measured in the process of temperature rising to 150 ° C. at 20 ° C./min (6) and (5) was analyzed to determine the glass transition temperature.
ピークトップ分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定した。試料溶液は、0.25重量%になるように試料(樹脂)をTHFに溶解し、不溶解分をグラスフィルターでろ別して調製した。
 装置:HLC-8120〔東ソー(株)製〕
 カラム:TSK GEL GMH6 2本 〔東ソー(株)製〕
 測定温度:40℃
 試料溶液:試料のTHF溶液
 溶液注入量:100μL
 検出装置:屈折率検出器
 基準物質:東ソー(株)製 標準ポリスチレン(TSKstandard POLYSTYRENE)12点(分子量 500 1,050 2,800 5,970 9,100 18,100 37,900 96,400 190,000 355,000 1,090,000 2,890,000)
The peak top molecular weight was measured using gel permeation chromatography (GPC) under the following conditions. The sample solution was prepared by dissolving the sample (resin) in THF to 0.25 wt% and filtering off the insoluble matter with a glass filter.
Device: HLC-8120 (manufactured by Tosoh Corporation)
Column: Two TSK GEL GMH6 (made by Tosoh Corp.)
Measurement temperature: 40 ° C
Sample solution: THF solution of sample Injection amount of solution: 100 μL
Detection device: Refractive index detector Reference material: Tosoh Co., Ltd. product standard polystyrene (TSK standard POLYSTYRENE) 12 points (molecular weight 500 1,050 2,800 5,970 9,100 18,100 37,900 96,400 190,000 355,000 1,090,000 2,890,000)
樹脂微粒子の体積基準のメジアン径は、動的光散乱式粒子径分布測定装置「SZ-100」(株式会社堀場製作所製)を用いて測定した。分散液の固形分濃度は、上記の方法で測定した。
樹脂粒子の体積平均粒径は、コールターカウンターマルチサイザーIV(ベックマン・コールター(株)製)で測定した。
The volume-based median diameter of the resin fine particles was measured using a dynamic light scattering type particle size distribution measuring apparatus “SZ-100” (manufactured by Horiba, Ltd.). The solid content concentration of the dispersion was measured by the above method.
The volume average particle size of the resin particles was measured by Coulter Counter Multisizer IV (manufactured by Beckman Coulter, Inc.).
<製造例1>[ポリエステル樹脂(a-1)の合成]
冷却管、撹拌機および窒素導入管の付いた反応槽中に、ビスフェノールA・PO3モル付加物(三洋化成工業(株)製、「ハイマーBP-3P」)772部(100モル%)、テレフタル酸236部(78.4モル%)、フマル酸37部(17.5モル%)、無水トリメリット酸14部(4.0モル%)、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)2.5部、重合禁止剤としてtert-ブチルカテコール1部を入れ、180℃で窒素気流下に、生成する水を留去しながら4時間反応させた。さらに、0.5~2.5kPaの減圧下に10時間反応させ、酸価が5mgKOH/gになった時点で取り出し、ポリエステル樹脂(a-1)を得た。
ポリエステル樹脂(a-1)の酸価は5mgKOH/g、ガラス転移温度(Tg)は55℃、ピークトップ分子量は12,300だった。
<Production Example 1> [Synthesis of Polyester Resin (a-1)]
In a reaction vessel equipped with a condenser, a stirrer and a nitrogen introduction pipe, 772 parts (100 mol%) of bisphenol A · PO3 molar adduct (manufactured by Sanyo Chemical Industries, Ltd., “Hymer BP-3P”), terephthalic acid 236 parts (78.4 mol%), 37 parts (17.5 mol%) of fumaric acid, 14 parts (4.0 mol%) of trimellitic anhydride, titanium dihydroxy bis (triethanolaminate) as a condensation catalyst. 5 parts and 1 part of tert-butyl catechol as a polymerization inhibitor were added, and reacted at 180 ° C. for 4 hours while distilling off generated water under nitrogen stream. The reaction was further allowed to proceed under reduced pressure of 0.5 to 2.5 kPa for 10 hours, and when the acid value reached 5 mg KOH / g, it was taken out to obtain a polyester resin (a-1).
The acid value of the polyester resin (a-1) was 5 mg KOH / g, the glass transition temperature (Tg a ) was 55 ° C., and the peak top molecular weight was 12,300.
<製造例2>[ポリエステル樹脂(a-2)の合成] 
冷却管、撹拌機および窒素導入管の付いた反応槽中に、ビスフェノールA・PO3モル付加物(三洋化成工業(株)製、「ハイマーBP-3P」)755部(100モル%)、アジピン酸165部(75.0モル%)、フマル酸44部(25.0モル%)、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)2.5部、重合禁止剤としてtert-ブチルカテコール1部を入れ、180℃で窒素気流下に、生成する水を留去しながら4時間反応させた。さらに、0.5~2.5kPaの減圧下に10時間反応させ、酸価が6mgKOH/gになった時点で取り出し、ポリエステル樹脂(a-2)を得た。
ポリエステル樹脂(a-2)の酸価は6mgKOH/g、ガラス転移温度(Tg)は25℃、ピークトップ分子量は12,000だった。
<Production Example 2> [Synthesis of Polyester Resin (a-2)]
In a reaction vessel equipped with a condenser, a stirrer and a nitrogen introduction pipe, 755 parts (100 mol%) of bisphenol A · PO3 molar adduct (manufactured by Sanyo Chemical Industries, Ltd., “Hymer BP-3P”), adipic acid 165 parts (75.0 mol%), 44 parts (25.0 mol%) of fumaric acid, 2.5 parts of titanium dihydroxy bis (triethanol aminate) as a condensation catalyst, 1 part of tert-butyl catechol as a polymerization inhibitor The reaction was carried out for 4 hours while distilling off generated water at 180 ° C. under a nitrogen stream. The mixture was further reacted for 10 hours under a reduced pressure of 0.5 to 2.5 kPa, and taken out when the acid value reached 6 mg KOH / g, to obtain a polyester resin (a-2).
The acid value of the polyester resin (a-2) was 6 mg KOH / g, the glass transition temperature (Tg a ) was 25 ° C., and the peak top molecular weight was 12,000.
<製造例3>[ポリエステル樹脂(a-3)の合成]
冷却管、撹拌機および窒素導入管の付いた反応槽中に、ビスフェノールA・PO2モル付加物(三洋化成工業(株)製、「ハイマーBP-2P」)72部(10.0モル%)、ビスフェノールA・PO3モル付加物(三洋化成工業(株)製、「ハイマーBP-3P」)720部(90.0モル%)、テレフタル酸218部(78.5モル%)、フマル酸34部(17.5モル%)、無水トリメリット酸13部(4.0モル%)、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)2.5部、重合禁止剤としてtert-ブチルカテコール1部を入れ、180℃で窒素気流下に、生成する水を留去しながら4時間反応させた。さらに、0.5~2.5kPaの減圧下に10時間反応させ、酸価が7mgKOH/gになった時点で取り出し、ポリエステル樹脂(a-3)を得た。
ポリエステル樹脂(a-3)の酸価は7mgKOH/g、ガラス転移温度(Tg)は55℃、ピークトップ分子量は8,000だった。
<Production Example 3> [Synthesis of Polyester Resin (a-3)]
72 parts (10.0 mol%) of bisphenol A • PO2 molar adduct (manufactured by Sanyo Chemical Industries, Ltd. “Hymer BP-2P”) in a reaction vessel equipped with a condenser, stirrer and nitrogen introduction pipe, 720 parts (90.0 mol%) of bisphenol A • PO 3 mol adduct (“Hymer BP-3P” manufactured by Sanyo Chemical Industries, Ltd.), 218 parts (78.5 mol%) of terephthalic acid, 34 parts of fumaric acid ( 17.5 mol%), 13 parts (4.0 mol%) of trimellitic anhydride, 2.5 parts of titanium dihydroxy bis (triethanol aminate) as a condensation catalyst, 1 part of tert-butyl catechol as a polymerization inhibitor The reaction was carried out for 4 hours while distilling off generated water under a nitrogen stream at 180 ° C. The mixture was further reacted for 10 hours under a reduced pressure of 0.5 to 2.5 kPa, and taken out when the acid value reached 7 mg KOH / g, to obtain a polyester resin (a-3).
The acid value of the polyester resin (a-3) was 7 mg KOH / g, the glass transition temperature (Tg a ) was 55 ° C., and the peak top molecular weight was 8,000.
<製造例4>[ポリエステル樹脂(a-4)の合成]
冷却管、撹拌機および窒素導入管の付いた反応槽中に、ビスフェノールA・PO5モル付加物(三洋化成工業(株)製、「ハイマーBP-5P」)995部(100モル%)、テレフタル酸118部(39.2モル%)、イソフタル酸118部(39.2モル%)、フマル酸37部(17.5モル%)、無水トリメリット酸14部(4.0モル%)、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)2.5部、重合禁止剤としてtert-ブチルカテコール1部を入れ、180℃で窒素気流下に、生成する水を留去しながら4時間反応させた。さらに、0.5~2.5kPaの減圧下に10時間反応させ、酸価が5mgKOH/gになった時点で取り出し、ポリエステル樹脂(a-4)を得た。
ポリエステル樹脂(a-4)の酸価は5mgKOH/g、ガラス転移温度(Tg)は-20℃、ピークトップ分子量は12,500だった。
<Production Example 4> [Synthesis of Polyester Resin (a-4)]
In a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introducing pipe, 995 parts (100 mol%) of bisphenol A · PO5 molar adduct (manufactured by Sanyo Chemical Industries, Ltd., “Hymer BP-5P”), terephthalic acid 118 parts (39.2 mol%), 118 parts (39.2 mol%) of isophthalic acid, 37 parts (17.5 mol%) of fumaric acid, 14 parts (4.0 mol%) of trimellitic anhydride, a condensation catalyst Then, 2.5 parts of titanium dihydroxybis (triethanolaminate) and 1 part of tert-butyl catechol as a polymerization inhibitor were added, and reaction was carried out for 4 hours while distilling off generated water under a nitrogen stream at 180.degree. The mixture was further reacted for 10 hours under a reduced pressure of 0.5 to 2.5 kPa, and taken out when the acid value reached 5 mg KOH / g, to obtain a polyester resin (a-4).
The acid value of the polyester resin (a-4) was 5 mg KOH / g, the glass transition temperature (Tg a ) was −20 ° C., and the peak top molecular weight was 12,500.
<製造例5>[ポリエステル樹脂(a-5)の合成]
冷却管、撹拌機および窒素導入管の付いた反応槽中に、ビスフェノールA・PO3モル付加物(三洋化成工業(株)製、「ハイマーBP-3P」)771部(100モル%)、テレフタル酸244部(78.4モル%)、無水マレイン酸32部(17.5モル%)、無水トリメリット酸14部(4.0モル%)、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)2.5部、重合禁止剤としてtert-ブチルカテコール1部を入れ、180℃で窒素気流下に、生成する水を留去しながら4時間反応させた。さらに、0.5~2.5kPaの減圧下に10時間反応させ、酸価が6mgKOH/gになった時点で取り出し、ポリエステル樹脂(a-5)を得た。
ポリエステル樹脂(a-5)の酸価は6mgKOH/g、ガラス転移温度(Tg)は57℃、ピークトップ分子量は20,000だった。
<Production Example 5> [Synthesis of Polyester Resin (a-5)]
771 parts (100 mol%) of bisphenol A · PO3 molar adduct (manufactured by Sanyo Chemical Industries, Ltd., “Hymer BP-3P”) in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introducing pipe, terephthalic acid 244 parts (78.4 mol%), 32 parts (17.5 mol%) of maleic anhydride, 14 parts (4.0 mol%) of trimellitic anhydride, titanium dihydroxy bis (triethanolaminate) 2 as a condensation catalyst .5 parts, and 1 part of tert-butyl catechol as a polymerization inhibitor were added, and reacted at 180 ° C. for 4 hours while distilling off generated water under nitrogen stream. The mixture was further reacted for 10 hours under a reduced pressure of 0.5 to 2.5 kPa, and taken out when the acid value reached 6 mg KOH / g, to obtain a polyester resin (a-5).
The acid value of the polyester resin (a-5) was 6 mg KOH / g, the glass transition temperature (Tg a ) was 57 ° C., and the peak top molecular weight was 20,000.
<製造例6>[ポリエステル樹脂(a-6)の合成]
冷却管、撹拌機および窒素導入管の付いた反応槽中に、ビスフェノールA・PO3モル付加物(三洋化成工業(株)製、「ハイマーBP-3P」)812部(100モル%)、テレフタル酸201部(78.4モル%)、フマル酸32部(17.5モル%)、無水トリメリット酸12部(4.0モル%)、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)2.5部、重合禁止剤としてtert-ブチルカテコール1部を入れ、180℃で窒素気流下に、生成する水を留去しながら4時間反応させた。さらに、0.5~2.5kPaの減圧下に10時間反応させ、酸価が5mgKOH/gになった時点で取り出し、ポリエステル樹脂(a-6)を得た。
ポリエステル樹脂(a-6)の酸価は5mgKOH/g、ガラス転移温度(Tg)は50℃、ピークトップ分子量は4,800だった。
<Production Example 6> [Synthesis of Polyester Resin (a-6)]
812 parts (100 mol%) of bisphenol A · PO3 molar adduct (manufactured by Sanyo Chemical Industries, Ltd., “Hymer BP-3P”), terephthalic acid in a reaction vessel equipped with a condenser, stirrer and nitrogen introduction pipe 201 parts (78.4 mol%), 32 parts (17.5 mol%) of fumaric acid, 12 parts (4.0 mol%) of trimellitic anhydride, titanium dihydroxy bis (triethanol aminate) as a condensation catalyst. 5 parts and 1 part of tert-butyl catechol as a polymerization inhibitor were added, and reacted at 180 ° C. for 4 hours while distilling off generated water under nitrogen stream. The reaction was further allowed to proceed under reduced pressure of 0.5 to 2.5 kPa for 10 hours, and when the acid value reached 5 mg KOH / g, it was taken out to obtain a polyester resin (a-6).
The acid value of the polyester resin (a-6) was 5 mg KOH / g, the glass transition temperature (Tg a ) was 50 ° C., and the peak top molecular weight was 4,800.
<製造例7>[ポリエステル樹脂(a-7)の合成]
冷却管、撹拌機および窒素導入管の付いた反応槽中に、ビスフェノールA・PO3モル付加物(三洋化成工業(株)製、「ハイマーBP-3P」)708部(80モル%)、1,2-プロピレングリコール34部(20モル%)、テレフタル酸274部(78.4モル%)、フマル酸43部(17.5モル%)、無水トリメリット酸16部(4.0モル%)、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)2.5部、重合禁止剤としてtert-ブチルカテコール1部を入れ、180℃で窒素気流下に、生成する水を留去しながら4時間反応させた。さらに、0.5~2.5kPaの減圧下に10時間反応させ、酸価が5mgKOH/gになった時点で取り出し、ポリエステル樹脂(a-7)を得た。
ポリエステル樹脂(a-7)の酸価は5mgKOH/g、ガラス転移温度(Tg)は55℃、ピークトップ分子量は12,100だった。
<Production Example 7> [Synthesis of Polyester Resin (a-7)]
In a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introducing pipe, 708 parts (80 mol%) of bisphenol A · PO3 molar adduct (manufactured by Sanyo Chemical Industries, Ltd., “Hymer BP-3P”), 1, 1 34 parts (20 mol%) of 2-propylene glycol, 274 parts (78.4 mol%) of terephthalic acid, 43 parts (17.5 mol%) of fumaric acid, 16 parts (4.0 mol%) of trimellitic anhydride, 2.5 parts of titanium dihydroxy bis (triethanolaminate) as a condensation catalyst and 1 part of tert-butyl catechol as a polymerization inhibitor are added and reacted for 4 hours while distilling off generated water under nitrogen stream at 180 ° C. The The mixture was further reacted for 10 hours under a reduced pressure of 0.5 to 2.5 kPa, and taken out when the acid value reached 5 mg KOH / g, to obtain a polyester resin (a-7).
The acid value of the polyester resin (a-7) was 5 mg KOH / g, the glass transition temperature (Tg a ) was 55 ° C., and the peak top molecular weight was 12,100.
<製造例8>[ポリエステル樹脂(a-8)の合成]
冷却管、撹拌機および窒素導入管の付いた反応槽中に、ビスフェノールA・PO2モル付加物(三洋化成工業(株)製、「ハイマーBP-2P」)284部(40モル%)、ビスフェノールA・PO3モル付加物(三洋化成工業(株)製、「ハイマーBP-3P」)486部(60モル%)、テレフタル酸201部(62.7モル%)、アジピン酸44部(15.7モル%)、フマル酸39部(17.6モル%)、無水トリメリット酸15部(4.0モル%)、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)2.5部、重合禁止剤としてtert-ブチルカテコール1部を入れ、180℃で窒素気流下に、生成する水を留去しながら4時間反応させた。さらに、0.5~2.5kPaの減圧下に10時間反応させ、酸価が6mgKOH/gになった時点で取り出し、ポリエステル樹脂(a-8)を得た。
ポリエステル樹脂(a-8)の酸価は6mgKOH/g、ガラス転移温度(Tg)は56℃、ピークトップ分子量は12,400だった。
<Production Example 8> [Synthesis of Polyester Resin (a-8)]
284 parts (40 mol%) of bisphenol A · PO 2 molar adduct (manufactured by Sanyo Chemical Industries, Ltd., “Hymer BP-2P”), bisphenol A in a reaction vessel equipped with a condenser, stirrer and nitrogen introduction pipe · PO 3 molar adduct ("Hymer BP-3P" manufactured by Sanyo Chemical Industries, Ltd.) 486 parts (60 mol%), 201 parts (62.7 mol%) terephthalic acid, 44 parts (15.7 mol) adipic acid %, Fumaric acid 39 parts (17.6 mol%), trimellitic anhydride 15 parts (4.0 mol%), as a condensation catalyst 2.5 parts of titanium dihydroxy bis (triethanol aminate), as a polymerization inhibitor One part of tert-butyl catechol was added, and reaction was performed for 4 hours while distilling off generated water under a nitrogen stream at 180 ° C. The mixture was further reacted for 10 hours under a reduced pressure of 0.5 to 2.5 kPa, and taken out when the acid value reached 6 mg KOH / g, to obtain a polyester resin (a-8).
The acid value of the polyester resin (a-8) was 6 mg KOH / g, the glass transition temperature (Tg a ) was 56 ° C., and the peak top molecular weight was 12,400.
表1にポリエステル樹脂(a-1)~(a-8)のTg、酸価、ピークトップ分子量を記載した。 Table 1 shows Tg a , acid value and peak top molecular weight of polyester resins (a-1) to (a-8).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<製造例9>[非晶性ポリエステル樹脂(b1-1)の合成]
冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・PO2モル付加物(三洋化成工業(株)製、「ハイマーBP-2P」)281部(43.1モル%)、ビスフェノールA・PO3モル付加物(三洋化成工業(株)製、「ハイマーBP-3P」)471部(64.7モル%)、テレフタル酸31部(10モル%)、イソフタル酸279部(90モル%)、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)2.5部を入れ、230℃で窒素気流下に、生成する水を留去しながら4時間反応させた。さらに、0.5~2.5kPaの減圧下に4時間反応させ、酸価が10mgKOH/gになった時点で取り出し、非晶性ポリエステル樹脂(b1-1)を得た。
非晶性ポリエステル樹脂(b1-1)の酸価は10mgKOH/g、ガラス転移温度(Tg)は57℃、ピークトップ分子量は6200だった。
Production Example 9 Synthesis of Amorphous Polyester Resin (b1-1)
281 parts (43.1 mol%) of bisphenol A • PO 2 molar adduct (manufactured by Sanyo Chemical Industries, Ltd. “Hymer BP-2P”) in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introducing pipe, 471 parts (64.7 mol%) of bisphenol A • PO 3 mol adduct (“Hymer BP-3P” manufactured by Sanyo Chemical Industries, Ltd.), 31 parts (10 mol%) terephthalic acid, 279 parts (90 mol) isophthalic acid %, 2.5 parts of titanium dihydroxybis (triethanolaminate) as a condensation catalyst, and reacted at 230 ° C. for 4 hours while distilling off generated water under nitrogen stream. The reaction was further allowed to proceed under reduced pressure of 0.5 to 2.5 kPa for 4 hours, and when the acid value reached 10 mg KOH / g, it was taken out to obtain an amorphous polyester resin (b1-1).
The acid value of the amorphous polyester resin (b1-1) was 10 mg KOH / g, the glass transition temperature (Tg) was 57 ° C., and the peak top molecular weight was 6,200.
<製造例10>[非晶性ポリエステル樹脂(b1-2)の合成]
冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・PO2モル付加物(三洋化成工業(株)製、「ハイマーBP-2P」)308部(37.3モル%)、ビスフェノールA・PO3モル付加物(三洋化成工業(株)製、「ハイマーBP-3P」)421部(45.6モル%)、1,2-プロピレングリコール31部(17.0モル%)、テレフタル酸30部(10モル%)、イソフタル酸273部(90モル%)、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)2.5部を入れ、230℃で窒素気流下に、生成する水を留去しながら4時間反応させた。さらに、0.5~2.5kPaの減圧下に4時間反応させ、酸価が10mgKOH/gになった時点で取り出し、非晶性ポリエステル樹脂(b1-2)を得た。
非晶性ポリエステル樹脂(b1-2)の酸価は10mgKOH/g、Tgは56℃、ピークトップ分子量は6100だった。
<Production Example 10> [Synthesis of Amorphous Polyester Resin (b1-2)]
308 parts (37.3 mol%) of bisphenol A · PO2 molar adduct (manufactured by Sanyo Chemical Industries, Ltd., “Hymer BP-2P”) in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introducing pipe, 421 parts (45.6 mol%) of bisphenol A • PO 3 mol adduct (“Hymer BP-3P” manufactured by Sanyo Chemical Industries, Ltd.), 31 parts (17.0 mol%) of 1,2-propylene glycol, terephthal 30 parts (10 mol%) of acid, 273 parts (90 mol%) of isophthalic acid, 2.5 parts of titanium dihydroxy bis (triethanol aminate) as a condensation catalyst, and water generated at 230 ° C. under nitrogen stream The reaction was carried out for 4 hours while distilling off. The reaction was further allowed to proceed under reduced pressure of 0.5 to 2.5 kPa for 4 hours, and when the acid value reached 10 mg KOH / g, it was taken out to obtain an amorphous polyester resin (b1-2).
The acid value of the amorphous polyester resin (b1-2) was 10 mg KOH / g, the Tg was 56 ° C., and the peak top molecular weight was 6,100.
<製造例11>[非晶性ポリエステル樹脂(b1-3)の合成]
冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールA・PO2モル付加物(三洋化成工業(株)製、「ハイマーBP-2P」)574部(75.0モル%)、ビスフェノールA・PO3モル付加物(三洋化成工業(株)製、「ハイマーBP-3P」)214部(25.0モル%)、テレフタル酸31部(11.2モル%)、イソフタル酸190部(69.1モル%)、アジピン酸48部(19.7モル%)、縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)2.5部を入れ、230℃で窒素気流下に、生成する水を留去しながら4時間反応させた。さらに、0.5~2.5kPaの減圧下に4時間反応させ、酸価が10mgKOH/gになった時点で取り出し、非晶性ポリエステル樹脂(b1-3)を得た。
非晶性ポリエステル樹脂(b1-3)の酸価は10mgKOH/g、Tgは57℃、ピークトップ分子量は6500だった。
Preparation Example 11 Synthesis of Amorphous Polyester Resin (b1-3)
In a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introducing pipe, 574 parts (75.0 mol%) of bisphenol A • PO2 molar adduct (manufactured by Sanyo Chemical Industries, Ltd. “Hymer BP-2P”), 214 parts (25.0 mol%) of bisphenol A • PO 3 mol adduct (“Hymer BP-3P” manufactured by Sanyo Chemical Industries, Ltd.), 31 parts (11.2 mol%) of terephthalic acid, 190 parts of isophthalic acid 69.1 mol%), 48 parts (19.7 mol%) of adipic acid, 2.5 parts of titanium dihydroxy bis (triethanol aminate) as a condensation catalyst, and the water formed at 230 ° C. under a nitrogen stream The reaction was carried out for 4 hours while distilling off. The reaction was further allowed to proceed under reduced pressure of 0.5 to 2.5 kPa for 4 hours, and when the acid value reached 10 mg KOH / g, it was taken out to obtain an amorphous polyester resin (b1-3).
The acid value of the amorphous polyester resin (b1-3) was 10 mg KOH / g, the Tg was 57 ° C., and the peak top molecular weight was 6,500.
<製造例12>[結晶性ポリエステル樹脂(C-1)の合成]
冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ドデカン二酸614部(100.0モル%)と1,9-ノナンジオール482部(113.0モル%)及び縮合触媒としてテトラブトキシチタネート0.5部を入れ、170℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下に、生成する水を留去しながら4時間反応させ、さらに0.5~2.5kPaの減圧下に反応させ、酸価が0.5mgKOH/g以下になった時点で取り出し、結晶性ポリエステル樹脂(C-1)を得た。結晶性ポリエステル樹脂(C-1)の軟化点は78℃、吸熱ピークトップを示す温度は72℃であった。
軟化点は、降下式フローテスター[(株)島津製作所製、CFT-500D]を用いて、上記の軟化点〔Tm〕の測定方法で測定した。結晶性ポリエステル樹脂(C-1)の吸熱ピークトップを示す温度は、TA Instruments(株)製、DSC Q20を用いて測定した。昇温・冷却条件としては、10℃/分の条件で180℃まで昇温し(第1回目の昇温過程)、次いで、180℃で10分間放置後、10℃/分の条件で0℃まで冷却した(第1回目の冷却過程)。次いで、0℃で10分間放置した後、10℃/分の条件で180℃まで昇温した(第2回目の昇温過程)。
<Production Example 12> [Synthesis of Crystalline Polyester Resin (C-1)]
In a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introducing pipe, 614 parts (100.0 mol%) of dodecanedioic acid and 482 parts (113.0 mol%) of 1,9-nonanediol and tetramer as a condensation catalyst 0.5 parts of butoxytitanate was added, and reaction was performed for 8 hours while distilling off generated water under a nitrogen stream at 170 ° C. Next, the temperature is gradually raised to 220 ° C., and reaction is performed for 4 hours while distilling off generated water under a nitrogen stream, and reaction is further performed under reduced pressure of 0.5 to 2.5 kPa, and the acid value is 0.5 mg KOH When it became / g or less, it took out and obtained crystalline polyester resin (C-1). The softening point of the crystalline polyester resin (C-1) was 78 ° C., and the temperature showing the endothermic peak top was 72 ° C.
The softening point was measured by the method of measuring the above-mentioned softening point [Tm] using a descent type flow tester [CFT-500D, manufactured by Shimadzu Corporation]. The temperature showing the endothermic peak top of the crystalline polyester resin (C-1) was measured using DSC Q20 manufactured by TA Instruments. The temperature is raised to 180 ° C. under the conditions of 10 ° C./min (the first temperature rising process) and then left at 180 ° C. for 10 minutes, then the temperature is raised to 0 ° C. under the conditions of 10 ° C./min. It cooled down (the 1st cooling process). Next, after standing at 0 ° C. for 10 minutes, the temperature was raised to 180 ° C. under the condition of 10 ° C./min (second temperature rising process).
<製造例13>[樹脂微粒子(X2-1)の分散液(abD2-1)の製造]
撹拌装置、加熱冷却装置、冷却管および温度計を備えた反応容器に非晶性ポリエステル樹脂(b1-1)15.5部、ポリエステル樹脂(a-1)5.2部、メチルエチルケトン15.1部及びイソプロピルアルコール1.7部を仕込み、撹拌、均一化を行い有機溶剤溶液を得て、25℃に温調した。これに中和剤として10.0重量%アンモニア水を0.87重量部、ラジカル反応開始剤(c)として2,2’-アゾビス-(2,4-ジメチルバレロニトリル)0.4部を添加し、5分間撹拌した。その後、25℃の水61.7部を1時間かけて滴下して転相乳化させ樹脂微粒子(X1-1)の分散液(abD1-1)を得た後、80℃まで徐々に昇温しながら、1時間架橋反応させた。その後40℃において30kPaの減圧下でメチルエチルケトンとイソプロピルアルコールを留去した。これによりポリエステル樹脂(a-1)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X2-1)の分散液(abD2-1)を得た。樹脂微粒子(X2-1)の体積基準のメジアン径は0.15μm、分散液(abD2-1)の固形分濃度は20重量%であった。 
<Production Example 13> [Production of Dispersion of Resin Fine Particles (X2-1) (abD2-1)]
15.5 parts of amorphous polyester resin (b1-1), 5.2 parts of polyester resin (a-1), 15.1 parts of methyl ethyl ketone in a reaction vessel equipped with a stirrer, heating / cooling device, cooling pipe and thermometer And 1.7 parts of isopropyl alcohol were charged, stirred and homogenized to obtain an organic solvent solution, and the temperature was adjusted to 25 ° C. To this was added 0.87 parts by weight of 10.0% by weight ammonia water as a neutralizing agent, and 0.4 parts of 2,2'-azobis- (2,4-dimethylvaleronitrile) as a radical reaction initiator (c). And stirred for 5 minutes. Thereafter, 61.7 parts of water at 25 ° C. is added dropwise over 1 hour, phase inversion emulsification is carried out to obtain a dispersion liquid (abD1-1) of resin fine particles (X1-1), and the temperature is gradually raised to 80 ° C. The reaction was allowed to crosslink for 1 hour. Thereafter, methyl ethyl ketone and isopropyl alcohol were distilled off at 40 ° C. under a reduced pressure of 30 kPa. Thus, a modified resin obtained by crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a-1) and the amorphous polyester resin (b1-1) are contained. A dispersion (abD2-1) of resin fine particles (X2-1) was obtained. The volume based median diameter of the resin fine particles (X2-1) was 0.15 μm, and the solid concentration of the dispersion (abD2-1) was 20% by weight.
<製造例14>[樹脂微粒子(X2-2)の分散液(abD2-2)の製造]
製造例13において、ポリエステル樹脂(a-1)5.2部をポリエステル樹脂(a-2)5.2部に置き換えた以外は製造例13と同様にして、ポリエステル樹脂(a-2)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X2-2)の分散液(abD2-2)を得た。樹脂微粒子(X2-2)の体積基準のメジアン径は0.15μm、分散液(abD2-2)の固形分濃度は20重量%であった。
<Production Example 14> [Production of Dispersion of Resin Fine Particles (X2-2) (abD2-2)]
In Production Example 13, a polyester resin (a-2) was prepared in the same manner as in Production Example 13 except that 5.2 parts of the polyester resin (a-1) was replaced by 5.2 parts of the polyester resin (a-2). Dispersion liquid of resin fine particles (X2-2) containing modified resin obtained by crosslinking carbon-carbon double bonds derived from unsaturated carboxylic acid component (z) and non-crystalline polyester resin (b1-1) (X2-2) abD2-2). The volume based median diameter of the resin fine particles (X2-2) was 0.15 μm, and the solid concentration of the dispersion (abD2-2) was 20% by weight.
<製造例15>[樹脂微粒子(X2-3)の分散液(abD2-3)の製造]
撹拌装置、加熱冷却装置、冷却管および温度計を備えた反応容器に非晶性ポリエステル樹脂(b1-1)15.5部、ポリエステル樹脂(a-3)5.2部、メチルエチルケトン15.1部及びイソプロピルアルコール1.7部を仕込み、撹拌、均一化を行い有機溶剤溶液を得て、25℃に温調した。これに中和剤として10.0重量%アンモニア水を0.87部、ラジカル反応開始剤として2,2’-アゾビス-(2,4-ジメチルバレロニトリル)0.4部を添加し、5分間撹拌した。その後、25℃の水61.7部を1時間かけて滴下して転相乳化させ樹脂微粒子(X1-3)の分散液(abD1-3)を得た後、40℃において30kPaの減圧下でメチルエチルケトンとイソプロピルアルコールを留去した。その後、80℃まで徐々に昇温しながら、1時間架橋反応させることで、ポリエステル樹脂(a-3)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X2-3)の分散液(abD2-3)を得た。樹脂微粒子(X2-3)の体積基準のメジアン径は0.15μm、分散液(abD2-3)の固形分濃度は20重量%であった。
<Production example 15> [Production of dispersion liquid (abD2-3) of resin fine particles (X2-3)]
15.5 parts of amorphous polyester resin (b1-1), 5.2 parts of polyester resin (a-3), 15.1 parts of methyl ethyl ketone in a reaction vessel equipped with a stirrer, heating / cooling device, cooling pipe and thermometer And 1.7 parts of isopropyl alcohol were charged, stirred and homogenized to obtain an organic solvent solution, and the temperature was adjusted to 25 ° C. To this, 0.87 parts of 10.0% by weight ammonia water as a neutralizing agent and 0.4 parts of 2,2'-azobis- (2,4-dimethylvaleronitrile) as a radical reaction initiator are added for 5 minutes. It stirred. Thereafter, 61.7 parts of water at 25 ° C. is added dropwise over 1 hour to perform phase inversion emulsification to obtain a dispersion liquid (abD1-3) of resin fine particles (X1-3), and then under reduced pressure of 30 kPa at 40 ° C. Methyl ethyl ketone and isopropyl alcohol were distilled off. Thereafter, while gradually raising the temperature to 80 ° C., the crosslinking reaction is performed for 1 hour to crosslink the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a-3). A dispersion (abD2-3) of resin fine particles (X2-3) containing the modified resin and the amorphous polyester resin (b1-1) was obtained. The volume-based median diameter of the resin fine particles (X2-3) was 0.15 μm, and the solid concentration of the dispersion (abD2-3) was 20% by weight.
<製造例16>[樹脂微粒子(X2-4)の分散液(abD2-4)の製造]
製造例15において、ポリエステル樹脂(a-3)5.2部及び非晶性ポリエステル樹脂(b1-1)15.5部をポリエステル樹脂(a-1)2.1部及び非晶性ポリエステル樹脂(b1-1)18.6部に置き換えた以外は製造例15と同様にして、ポリエステル樹脂(a-1)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X2-4)の分散液(abD2-4)を得た。樹脂微粒子(X2-4)の体積基準のメジアン径は0.15μm、分散液(abD2-4)の固形分濃度は20重量%であった。
<Production Example 16> [Production of Dispersion of Resin Fine Particles (X2-4) (abD2-4)]
In Production Example 15, 5.2 parts of polyester resin (a-3) and 15.5 parts of amorphous polyester resin (b1-1), 2.1 parts of polyester resin (a-1) and amorphous polyester resin ( b1-1) A reaction of crosslinking carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a-1) is carried out in the same manner as in Production Example 15 except that 18.6 parts are substituted. Thus, a dispersion (abD2-4) of resin fine particles (X2-4) containing the modified resin and the amorphous polyester resin (b1-1) was obtained. The volume based median diameter of the resin fine particles (X2-4) was 0.15 μm, and the solid concentration of the dispersion (abD2-4) was 20% by weight.
<製造例17>[樹脂微粒子(X1-5)の分散液(abD1-5)の製造]
撹拌装置、加熱冷却装置、冷却管および温度計を備えた反応容器に非晶性ポリエステル樹脂(b1-1)12.4部、ポリエステル樹脂(a-1)8.3部、メチルエチルケトン15.1部及びイソプロピルアルコール1.7部を仕込み、撹拌、均一化を行い有機溶剤溶液を得て、25℃に温調した。これに中和剤として10.0重量%アンモニア水を0.87部、ラジカル反応開始剤として2,2’-アゾビス(2-メチルブチロニトリル)0.4部を添加し、5分間撹拌した。その後、25℃の水61.7部を1時間かけて滴下して転相乳化させた。その後40℃において30kPaの減圧下でメチルエチルケトンとイソプロピルアルコールを留去した。これによりポリエステル樹脂(a-1)と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X1-5)の分散液(abD1-5)を得た。樹脂微粒子(X1-5)の体積基準のメジアン径は0.15μm、分散液(abD1-5)の固形分濃度は20重量%であった。
<Production Example 17> [Production of Dispersion of Resin Fine Particles (X1-5) (abD1-5)]
12.4 parts of amorphous polyester resin (b1-1), 8.3 parts of polyester resin (a-1), 15.1 parts of methyl ethyl ketone in a reaction vessel equipped with a stirrer, heating / cooling device, cooling pipe and thermometer And 1.7 parts of isopropyl alcohol were charged, stirred and homogenized to obtain an organic solvent solution, and the temperature was adjusted to 25 ° C. To this, 0.87 parts of 10.0% by weight ammonia water as a neutralizing agent and 0.4 parts of 2,2'-azobis (2-methylbutyronitrile) as a radical reaction initiator were added and stirred for 5 minutes. . Thereafter, 61.7 parts of water at 25 ° C. was added dropwise over 1 hour to cause phase inversion emulsification. Thereafter, methyl ethyl ketone and isopropyl alcohol were distilled off at 40 ° C. under a reduced pressure of 30 kPa. Thus, a dispersion (abD1-5) of resin fine particles (X1-5) containing the polyester resin (a-1) and the amorphous polyester resin (b1-1) was obtained. The volume based median diameter of the resin fine particles (X1-5) was 0.15 μm, and the solid concentration of the dispersion (abD1-5) was 20% by weight.
<製造例18>[樹脂微粒子(X1-6)の分散液(abD1-6)]
製造例17において、ポリエステル樹脂(a-1)8.3部及び非晶性ポリエステル樹脂(b1-1)12.4部を(a-1)5.2部及び(b1-1)15.5部に置き換えた以外は製造例17と同様にして、ポリエステル樹脂(a-1)と非晶性ポリエステル樹脂(b1-1)を含む樹脂微粒子(X1-6)の分散液(abD1-6)を得た。樹脂微粒子(X1-2)の体積基準のメジアン径は0.15μm、分散液(abD1-6)の固形分濃度は20重量%であった。
<Production Example 18> [Dispersion liquid of resin fine particles (X1-6) (abD1-6)]
In Production Example 17, 8.3 parts of polyester resin (a-1) and 12.4 parts of amorphous polyester resin (b1-1), 5.2 parts of (a-1), and (b1-1) 15.5 A dispersion (abD1-6) of resin fine particles (X1-6) containing a polyester resin (a-1) and an amorphous polyester resin (b1-1) was prepared in the same manner as in Production Example 17 except that parts were replaced by Obtained. The volume-based median diameter of the resin fine particles (X1-2) was 0.15 μm, and the solid concentration of the dispersion (abD1-6) was 20% by weight.
<製造例19>[樹脂微粒子(X2-7)の分散液(abD2-7)]
製造例13において、ポリエステル樹脂(a-1)5.2部及び非晶性ポリエステル樹脂(b1-1)15.5部を(a-1)1.5部及び(b1-1)19.2部に置き換えた以外は製造例13と同様にして、ポリエステル樹脂(a-1)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X2-7)の分散液(abD2-7)を得た。樹脂微粒子(X2-7)の体積基準のメジアン径は0.15μm、分散液(abD2-7)の固形分濃度は20重量%であった。
<Production Example 19> [Dispersion liquid of resin fine particles (X2-7) (abD2-7)]
In Production Example 13, 5.2 parts of polyester resin (a-1) and 15.5 parts of amorphous polyester resin (b1-1), 1.5 parts of (a-1), and (b1-1) 19.2 The modified resin obtained by crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a-1) and the non-modified resin are the same as in Production Example 13 except that A dispersion (abD2-7) of resin fine particles (X2-7) containing a crystalline polyester resin (b1-1) was obtained. The volume-based median diameter of the resin fine particles (X2-7) was 0.15 μm, and the solid concentration of the dispersion (abD2-7) was 20% by weight.
<製造例20>[樹脂微粒子(X2-8)の分散液(abD2-8)]
製造例19において、ポリエステル樹脂(a-1)1.5部及び非晶性ポリエステル樹脂(b1-1)19.2部を(a-1)10.4部及び(b1-1)10.3部に置き換えた以外は製造例19と同様にして、ポリエステル樹脂(a-1)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X2-8)の分散液(abD2-8)を得た。樹脂微粒子(X2-8)の体積基準のメジアン径は0.15μm、分散液(abD2-8)の固形分濃度は20重量%であった。
<Production example 20> [Dispersion liquid of resin fine particles (X2-8) (abD2-8)]
In Production Example 19, 1.5 parts of a polyester resin (a-1) and 19.2 parts of an amorphous polyester resin (b1-1) (1. 1 parts of (a-1) and (b1-1) 10.3) A modified resin obtained by crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a-1) is produced in the same manner as in Production Example 19 except that the substituted resin is replaced with A dispersion (abD2-8) of resin fine particles (X2-8) containing a crystalline polyester resin (b1-1) was obtained. The volume based median diameter of the resin fine particles (X2-8) was 0.15 μm, and the solid concentration of the dispersion (abD2-8) was 20% by weight.
<製造例21>[樹脂微粒子(X2-9)の分散液(abD2-9)]
製造例13において、ポリエステル樹脂(a-1)5.2部をポリエステル樹脂(a-4)5.2部に置き換えた以外は製造例13と同様にして、ポリエステル樹脂(a-4)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X2-9)の分散液(abD2-9)を得た。樹脂微粒子(X2-9)の体積基準のメジアン径は0.15μm、分散液(abD2-9)の固形分濃度は20重量%であった。
<Production Example 21> [Dispersion liquid of resin fine particles (X2-9) (abD2-9)]
In Production Example 13, a polyester resin (a-4) was prepared in the same manner as in Production Example 13 except that 5.2 parts of the polyester resin (a-1) was replaced by 5.2 parts of the polyester resin (a-4). Dispersion liquid of resin fine particles (X2-9) containing modified resin formed by crosslinking carbon-carbon double bonds derived from unsaturated carboxylic acid component (z) and non-crystalline polyester resin (b1-1) (X2-9) abD2-9) was obtained. The volume-based median diameter of the resin fine particles (X2-9) was 0.15 μm, and the solid concentration of the dispersion (abD2-9) was 20% by weight.
<製造例22>[樹脂微粒子(X2-10)の分散液(abD2-10)]
製造例13において、ポリエステル樹脂(a-1)5.2部をポリエステル樹脂(a-5)5.2部に置き換えた以外は製造例13と同様にして、ポリエステル樹脂(a-5)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X2-10)の分散液(abD2-10)を得た。樹脂微粒子(X2-10)の体積基準のメジアン径は0.15μm、分散液(abD2-10)の固形分濃度は20重量%であった。
<Production Example 22> [Dispersion liquid of resin fine particles (X2-10) (abD2-10)]
In Production Example 13, a polyester resin (a-5) is contained in the same manner as in Production Example 13 except that 5.2 parts of the polyester resin (a-1) is replaced by 5.2 parts of the polyester resin (a-5). Dispersion liquid of resin fine particles (X2-10) containing modified resin formed by crosslinking carbon-carbon double bonds derived from unsaturated carboxylic acid component (z) and amorphous polyester resin (b1-1) (X2-10) abD2-10) was obtained. The volume-based median diameter of the resin fine particles (X2-10) was 0.15 μm, and the solid concentration of the dispersion (abD2-10) was 20% by weight.
<製造例23>[樹脂微粒子(X2-11)の分散液(abD2-11)]
製造例13において、ポリエステル樹脂(a-1)5.2部をポリエステル樹脂(a-6)5.2部に置き換えた以外は製造例13と同様にして、ポリエステル樹脂(a-6)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X2-11)の分散液(abD2-11)を得た。樹脂微粒子(X2-11)の体積基準のメジアン径は0.15μm、分散液(abD2-11)の固形分濃度は20重量%であった。
<Production Example 23> [Dispersion liquid of resin fine particles (X2-11) (abD2-11)]
In Production Example 13, a polyester resin (a-6) is contained in the same manner as in Production Example 13 except that 5.2 parts of the polyester resin (a-1) is replaced by 5.2 parts of the polyester resin (a-6). Dispersion liquid of resin fine particles (X2-11) containing modified resin formed by crosslinking carbon-carbon double bonds derived from unsaturated carboxylic acid component (z) and non-crystalline polyester resin (b1-1) (X2-11) ab D2-11). The volume based median diameter of the resin fine particles (X2-11) was 0.15 μm, and the solid concentration of the dispersion (abD2-11) was 20% by weight.
<製造例24>[樹脂微粒子(X2-12)の分散液(abD2-12)]
製造例13において、ポリエステル樹脂(a-1)5.2部をポリエステル樹脂(a-7)5.2部に置き換えた以外は製造例13と同様にして、ポリエステル樹脂(a-7)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X2-12)の分散液(abD2-12)を得た。樹脂微粒子(X2-12)の体積基準のメジアン径は0.15μm、分散液(abD2-12)の固形分濃度は20重量%であった。
<Production example 24> [Dispersion liquid of resin fine particles (X2-12) (abD2-12)]
In the same manner as in Production Example 13 except that 5.2 parts of the polyester resin (a-1) is replaced with 5.2 parts of the polyester resin (a-7) in Production Example 13, Dispersion liquid of resin fine particles (X2-12) containing modified resin obtained by crosslinking carbon-carbon double bonds derived from unsaturated carboxylic acid component (z) and non-crystalline polyester resin (b1-1) abD2-12) was obtained. The volume based median diameter of the resin fine particles (X2-12) was 0.15 μm, and the solid concentration of the dispersion (abD2-12) was 20% by weight.
<製造例25>[樹脂微粒子(X2-13)の分散液(abD2-13)]
製造例13において、ポリエステル樹脂(a-1)5.2部をポリエステル樹脂(a-8)5.2部に置き換えた以外は製造例13と同様にして、ポリエステル樹脂(a-8)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X2-13)の分散液(abD2-13)を得た。樹脂微粒子(X2-13)の体積基準のメジアン径は0.15μm、分散液(abD2-13)の固形分濃度は20重量%であった。
<Production example 25> [Dispersion liquid of resin fine particles (X2-13) (abD2-13)]
In Production Example 13, a polyester resin (a-8) is contained in the same manner as in Production Example 13 except that 5.2 parts of the polyester resin (a-1) is replaced by 5.2 parts of the polyester resin (a-8). Dispersion liquid of resin fine particles (X2-13) containing modified resin formed by crosslinking carbon-carbon double bonds derived from unsaturated carboxylic acid component (z) and amorphous polyester resin (b1-1) (X2-13) abD2-13) was obtained. The volume based median diameter of the resin fine particles (X2-13) was 0.15 μm, and the solid concentration of the dispersion (abD2-13) was 20% by weight.
<製造例26>[樹脂微粒子(X2-14)の分散液(abD2-14)]
製造例13において、非晶性ポリエステル樹脂(b1-1)15.5部を非晶性ポリエステル樹脂(b1-2)15.5部に置き換えた以外は製造例13と同様にして、ポリエステル樹脂(a-1)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-2)とを含む樹脂微粒子(X2-14)の分散液(abD2-14)を得た。樹脂微粒子(X2-14)の体積基準のメジアン径は0.15μm、分散液(abD2-14)の固形分濃度は20重量%であった。
<Production example 26> [Dispersion liquid of resin fine particles (X2-14) (abD2-14)]
A polyester resin was prepared in the same manner as in Preparation Example 13 except that 15.5 parts of the amorphous polyester resin (b1-1) was replaced with 15.5 parts of the amorphous polyester resin (b1-2). Fine resin particles (X2-) containing a modified resin obtained by crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in a-1) and a non-crystalline polyester resin (b1-2) 14) dispersion liquid (abD2-14) was obtained. The volume based median diameter of the resin fine particles (X2-14) was 0.15 μm, and the solid concentration of the dispersion (abD2-14) was 20% by weight.
<製造例27>[樹脂微粒子(X2-15)の分散液(abD2-15)]
製造例13において、非晶性ポリエステル樹脂(b1-1)15.5部を非晶性ポリエステル樹脂(b1-3)15.5部に置き換えた以外は製造例13と同様にして、ポリエステル樹脂(a-1)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-3)とを含む樹脂微粒子(X2-15)の分散液(abD2-15)を得た。樹脂微粒子(X2-15)の体積基準のメジアン径は0.15μm、分散液(abD2-15)の固形分濃度は20重量%であった。
<Production Example 27> [Dispersion liquid of resin fine particles (X2-15) (abD2-15)]
A polyester resin was prepared in the same manner as in Preparation Example 13 except that 15.5 parts of the amorphous polyester resin (b1-1) was replaced with 15.5 parts of the amorphous polyester resin (b1-3). Resin fine particles (X2-) containing a modified resin obtained by crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in a-1) and a non-crystalline polyester resin (b1-3) A dispersion (abD2-15) of 15) was obtained. The volume-based median diameter of the resin fine particles (X2-15) was 0.15 μm, and the solid concentration of the dispersion (abD2-15) was 20% by weight.
<製造例28>[非晶性ポリエステル樹脂(b1-1)の分散液の製造]
製造例17において、ポリエステル樹脂(a-1)8.3部及び非晶性ポリエステル樹脂(b1-1)12.4部を非晶性ポリエステル樹脂(b1-1)20.7部に置き換えた以外は製造例17と同様にして、樹脂微粒子の体積基準のメジアン径が0.15μm、固形分濃度が20重量%である非晶性ポリエステル樹脂(b1-1)の分散液(bD-1)を得た。
Production Example 28 Production of Dispersion of Amorphous Polyester Resin (b1-1)
Except that in Production Example 17, 8.3 parts of polyester resin (a-1) and 12.4 parts of amorphous polyester resin (b1-1) were replaced with 20.7 parts of amorphous polyester resin (b1-1). A dispersion (bD-1) of an amorphous polyester resin (b1-1) having a volume based median particle diameter of 0.15 μm of resin fine particles and a solid content concentration of 20% by weight in the same manner as in Production Example 17 Obtained.
<製造例29>[結晶性ポリエステル樹脂(C-1)の分散液の製造]
撹拌装置、加熱冷却装置、冷却管および温度計を備えた反応容器に、結晶性ポリエステル樹脂(C-1)15部およびイオン交換水20部を仕込み、撹拌下90℃に昇温し、同温度で30分間撹拌後、1時間かけて10℃まで冷却して結晶性ポリエステル樹脂を微粒子状に晶析させ、更にウルトラビスコミル(アイメックス製)で湿式粉砕し、結晶性ポリエステル樹脂(C-1)の分散液(CD-1)を得た。結晶性ポリエステル樹脂(C-1)の体積基準のメジアン径は0.10μm、分散液(CD-1)の固形分濃度は50重量%であった。
<Production Example 29> [Production of Dispersion of Crystalline Polyester Resin (C-1)]
15 parts of crystalline polyester resin (C-1) and 20 parts of ion-exchanged water are charged into a reaction vessel equipped with a stirrer, heating / cooling device, a cooling pipe and a thermometer, and the temperature is raised to 90 ° C. with stirring. After stirring for 30 minutes, the solution is cooled to 10 ° C. over 1 hour to crystallize the crystalline polyester resin in the form of fine particles, and further wet-pulverized with Ultravisco Mill (manufactured by IMEX) to obtain crystalline polyester resin (C-1) Dispersion (CD-1) was obtained. The volume-based median diameter of the crystalline polyester resin (C-1) was 0.10 μm, and the solid concentration of the dispersion (CD-1) was 50% by weight.
<製造例30>[着色剤分散液の製造]
撹拌装置、加熱冷却装置、冷却管および温度計を備えた反応容器に、カーボンブラック「MA100」[三菱化学(株)製]10部、ドデシルベンゼンスルホン酸ナトリウム0.5部、イオン交換水40部を投入し、回転数300rpmで撹拌下30℃に昇温し、同温度で30分間撹拌後、更にウルトラビスコミルで湿式粉砕し、黒色着色剤分散液を得た。得られた黒色着色剤分散液の着色剤微粒子の体積基準のメジアン径は0.05μm、分散液の固形分濃度は20重量%であった。
<Production Example 30> [Production of Colorant Dispersion]
In a reaction vessel equipped with a stirrer, heating / cooling device, cooling pipe and thermometer, 10 parts of carbon black "MA 100" (manufactured by Mitsubishi Chemical Corporation), 0.5 parts of sodium dodecylbenzene sulfonate, 40 parts of ion exchanged water The temperature was raised to 30 ° C. with stirring at a rotational speed of 300 rpm, and after stirring for 30 minutes at the same temperature, wet pulverization was further performed with an ultravisco mill to obtain a black colorant dispersion. The volume based median diameter of the colorant fine particles of the obtained black colorant dispersion was 0.05 μm, and the solid concentration of the dispersion was 20% by weight.
<製造例31>[離型剤分散液の製造]
撹拌装置、加熱冷却装置、冷却管および温度計を備えた反応容器に、パラフィンワックス「HNP-9」[融解熱最大ピーク温度:73℃、日本精蝋(株)製]10部、ドデシルベンゼンスルホン酸ナトリウム0.5部、イオン交換水15部を投入し、回転数300rpmで撹拌下78℃に昇温し、同温度で30分間撹拌後、1時間かけて30℃まで冷却してパラフィンワックスを微粒子状に晶析させ、更にウルトラビスコミルで湿式粉砕し、離型剤分散液を得た。得られた離型剤分散液の離型剤微粒子の体積基準のメジアン径は0.25μm、分散液の固形分濃度は50重量%であった。
<Production Example 31> [Production of Release Agent Dispersion]
In a reaction vessel equipped with a stirrer, heating / cooling device, condenser and thermometer, paraffin wax "HNP-9" (maximum heat of fusion heat: 73 ° C, manufactured by Nippon Seiwa Co., Ltd.) 10 parts, dodecylbenzene sulfone Add 0.5 parts of sodium acid and 15 parts of ion-exchanged water, raise the temperature to 78 ° C with stirring at 300 rpm, stir for 30 minutes at the same temperature and cool to 30 ° C over 1 hour to obtain paraffin wax The fine particles were crystallized and further wet-pulverized using an ultravisco mill to obtain a releasing agent dispersion. The volume-based median diameter of the release agent fine particles of the obtained release agent dispersion was 0.25 μm, and the solid content concentration of the dispersion was 50% by weight.
<実施例1>[トナー(T-1)の作製]
撹拌装置、加熱冷却装置、冷却管、温度計および窒素導入管の付いた反応容器にポリエステル樹脂(a-1)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)を含む樹脂微粒子(X2-1)の分散液(abD2-1)、結晶性樹脂(C-1)の分散液、着色剤分散液、および離型剤分散液を固形分が表2の部数となるように仕込み、イオン交換水300部を仕込み、液温を30℃に調整した後、撹拌しながら濃度25重量%の水酸化ナトリウム水溶液を加えてpHを10に調整して分散液(W2-1)を得た。
次いで、ポリエステル樹脂(a-1)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させてなる変性樹脂と非晶性ポリエステル樹脂(b1-1)とを含む樹脂微粒子(X2-1)、結晶性樹脂(C-1)、着色剤、および離型剤の凝集を行うため、回転数300rpmで撹拌しながら凝集剤として濃度10重量%の塩化マグネシウム水溶液を加えていき、適宜にサンプリングを行い体積平均粒径5μmになったことを確認した後、系の温度を60℃に調整し、続いて0.3M硝酸水溶液を添加することにより、pHを4.5に調節し、30分後に4.0に調節した。撹拌を3時間保持することにより融着(融合)および球状化を行った。
その後、30℃まで冷却して着色剤を含有する樹脂粒子の水性分散液を得た。次いで樹脂粒子を濾過と水による洗浄を3回繰り返したあと、濾別し、40℃の送風循環式乾燥機で18時間乾燥を行い、揮発分を0.5重量%以下とした樹脂粒子(Z-1)を得た。得られた樹脂粒子(Z-1)99重量部とコロイダルシリカ(アエロジルR-972)(日本アエロジル(株)製)1重量部とを均一混合して、体積平均粒径5μmの本発明のトナー(T-1)を得た。
Example 1 Preparation of Toner (T-1)
A reaction vessel equipped with a stirrer, heating / cooling device, cooling pipe, thermometer and nitrogen introducing pipe crosslinks carbon-carbon double bonds derived from unsaturated carboxylic acid component (z) in polyester resin (a-1) Dispersion liquid (abD2-1) of resin fine particles (X2-1) containing modified resin and amorphous polyester resin (b1-1) which are caused to react, dispersion liquid of crystalline resin (C-1), colorant dispersion The solution and the release agent dispersion are charged so that the solid content becomes the number of parts in Table 2, 300 parts of ion exchanged water is charged, and the solution temperature is adjusted to 30 ° C. The pH was adjusted to 10 by adding an aqueous sodium solution to obtain a dispersion (W2-1).
Next, a modified resin obtained by crosslinking the carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a-1) and the amorphous polyester resin (b1-1) are contained. In order to coagulate resin fine particles (X2-1), crystalline resin (C-1), coloring agent, and releasing agent, add 10 wt% magnesium chloride aqueous solution as flocculant while stirring at 300 rpm After sampling, it was confirmed that the volume average particle diameter was 5 μm, and then the temperature of the system was adjusted to 60 ° C., and then a pH of 4.5 was obtained by adding a 0.3 M aqueous nitric acid solution. And adjusted to 4.0 after 30 minutes. Fusion (fusion) and spheronization were performed by holding the stirring for 3 hours.
Then, it cooled to 30 degreeC and obtained the aqueous dispersion liquid of the resin particle containing a coloring agent. Next, the resin particles are filtered and washed with water three times, and then separated by filtration and dried for 18 hours with a blower circulating drier at 40 ° C. to reduce volatile matter to 0.5 wt% or less (Z) I got -1). Toner according to the present invention having a volume average particle diameter of 5 μm by uniformly mixing 99 parts by weight of the obtained resin particles (Z-1) and 1 part by weight of colloidal silica (Aerosil R-972) (manufactured by Nippon Aerosil Co., Ltd.) Obtained (T-1).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例2~4>[トナー(T-2)~(T-4)の作製]
実施例1において、分散液(abD2-1)を分散液(abD2-2)~(abD2-4)に各々置き換えた以外は実施例1と同様にして、分散液(W2-2)~(W2-4)、樹脂粒子(Z-2)~(Z-4)を得た後、体積平均粒径5μmの本発明のトナー(T-2)~(T-4)を得た。
Examples 2 to 4 Preparation of Toners (T-2) to (T-4)
Dispersions (W2-2) to (W2) are carried out in the same manner as in Example 1 except that dispersion (abD2-1) is replaced with dispersions (abD2-2) to (abD2-4) respectively. -4) After obtaining resin particles (Z-2) to (Z-4), toners (T-2) to (T-4) of the present invention having a volume average particle diameter of 5 μm were obtained.
<実施例5>[トナー(T-5)の作製]
撹拌装置、加熱冷却装置、冷却管、温度計および窒素導入管の付いた反応容器にポリエステル樹脂(a-1)と非晶性ポリエステル樹脂(b1-1)を含む樹脂微粒子(X1-5)の分散液(abD1-5)、結晶性樹脂(C-1)の分散液、着色剤分散液、および離型剤分散液を固形分が表2の部数となるように仕込み、イオン交換水300部を仕込み、液温を30℃に調整した後、回転数300rpmで撹拌しながら濃度25重量%の水酸化ナトリウム水溶液を加えてpHを10に調整し分散液(W1-1)を得た。
次いで、ポリエステル樹脂(a-1)と非晶性ポリエステル樹脂(b1-1)を含む樹脂微粒子(X1-5)、結晶性樹脂(C-1)、着色剤、および離型剤の凝集を行うため、回転数300rpmで撹拌しながら濃度10重量%の塩化マグネシウム水溶液を加えていき、適宜にサンプリングを行い体積平均粒径5μmになったことを確認した後、系の温度を60℃に調整し、続いて0.3M硝酸水溶液を添加することにより、pHを4.5に調節し、30分後に4.0に調節した。その後、撹拌下80℃まで徐々に昇温しながら3時間保持することによりポリエステル樹脂(a-1)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士の架橋反応と、凝集体の融着(融合)及び球状化とを同時に行った。
その後、30℃まで冷却して着色剤を含む樹脂粒子の水性分散液を得た。次いで濾過と水による洗浄を3回繰り返したあと、濾別し、40℃の送風循環式乾燥機で18時間乾燥を行い、揮発分を0.5重量%以下とした。得られた樹脂粒子(Z-5)99重量部とコロイダルシリカ(アエロジルR-972)(日本アエロジル(株)製)1重量部とを均一混合して、体積平均粒径5μmの本発明のトナー(T-5)を得た。
Example 5 Preparation of Toner (T-5)
Of resin fine particles (X1-5) containing polyester resin (a-1) and amorphous polyester resin (b1-1) in a reaction vessel equipped with a stirrer, heating / cooling device, cooling pipe, thermometer and nitrogen introducing pipe Dispersion (abD1-5), dispersion of crystalline resin (C-1), colorant dispersion, and releasing agent dispersion are charged so that the solid content becomes the number of parts in Table 2, and 300 parts of ion-exchanged water After adjusting the liquid temperature to 30.degree. C., a 25 wt.% Aqueous sodium hydroxide solution was added while stirring at a rotational speed of 300 rpm to adjust the pH to 10 to obtain a dispersion liquid (W1-1).
Next, the resin fine particles (X1-5) containing the polyester resin (a-1) and the amorphous polyester resin (b1-1), the crystalline resin (C-1), the colorant, and the release agent are coagulated. Therefore, while stirring at a rotational speed of 300 rpm, add an aqueous solution of magnesium chloride with a concentration of 10% by weight, and after sampling appropriately to confirm that the volume average particle diameter is 5 μm, adjust the system temperature to 60 ° C. The pH was then adjusted to 4.5 by addition of a 0.3 M aqueous nitric acid solution, and after 30 minutes it was adjusted to 4.0. Then, the cross-linking reaction between carbon-carbon double bonds derived from the unsaturated carboxylic acid component (z) in the polyester resin (a-1) is maintained by gradually raising the temperature to 80 ° C. while stirring for 3 hours. The fusion (fusion) and spheronization of the aggregates were performed simultaneously.
Then, it cooled to 30 degreeC and obtained the aqueous dispersion liquid of the resin particle containing a coloring agent. Subsequently, filtration and washing with water were repeated three times, followed by filtration, followed by drying for 18 hours with a blower circulating drier at 40 ° C., and the volatile content was adjusted to 0.5 wt% or less. Toner according to the present invention having a volume average particle diameter of 5 μm by uniformly mixing 99 parts by weight of the obtained resin particles (Z-5) and 1 part by weight of colloidal silica (Aerosil R-972) (manufactured by Nippon Aerosil Co., Ltd.) I got (T-5).
<実施例6>[トナー(T-6)の作製]
実施例5において、ポリエステル樹脂(a-1)と非晶性ポリエステル樹脂(b1-1)を含む樹脂微粒子(X1-5)の分散液(abD1-5)を分散液(abD1-6)に置き換え、結晶性樹脂(C-1)の分散液を添加しなかった以外は実施例5と同様にして分散液(W1-2)、樹脂粒子(Z-6)を得た後、体積平均粒径5μmの本発明のトナー(T-6)を得た。
Example 6 Preparation of Toner (T-6)
In Example 5, the dispersion (abD1-5) of resin fine particles (X1-5) containing the polyester resin (a-1) and the amorphous polyester resin (b1-1) is replaced with the dispersion (abD1-6) After the dispersion (W1-2) and the resin particles (Z-6) are obtained in the same manner as in Example 5 except that the dispersion of the crystalline resin (C-1) is not added, the volume average particle diameter is obtained. A 5 μm toner of the present invention (T-6) was obtained.
<実施例7~15>[トナー(T-7)~(T-15)の作製]
実施例1において、分散液(abD2-1)を分散液(abD2-7)~(abD2-15)に各々置き換えた以外は実施例1と同様にして、分散液(W2-7)~(W2-15)、樹脂粒子(Z-7)~(Z-15)を得た後、体積平均粒径5μmの本発明のトナー(T-7)~(T-15)を得た。
Examples 7 to 15 [Preparation of Toners (T-7) to (T-15)]
Dispersions (W2-7) to (W2) were prepared in the same manner as in Example 1 except that dispersion (abD2-1) was replaced with dispersions (abD2-7) to (abD2-15), respectively. After obtaining resin particles (Z-7) to (Z-15), toners (T-7) to (T-15) of the present invention having a volume average particle diameter of 5 μm were obtained.
<比較例1>[トナー(T’-1)の作製]
実施例5において、ポリエステル樹脂(a-1)と非晶性ポリエステル樹脂(b1-1)を含む樹脂微粒子(X1-5)の分散液(abD1-5)をポリエステル樹脂(b1-1)の分散液(bD-1)に置き換え、結晶性樹脂(C-1)の分散液を添加しなかった以外は実施例5と同様にして分散液(W1’-1)、樹脂粒子(Z’-1)を得た後、体積平均粒径5μmのトナー(T’-1)を得た。
<Comparative Example 1> [Production of Toner (T'-1)]
In Example 5, a dispersion (abD1-5) of resin fine particles (X1-5) containing a polyester resin (a-1) and an amorphous polyester resin (b1-1) is dispersed in a polyester resin (b1-1) Dispersion (W1'-1), resin particles (Z'-1) in the same manner as in Example 5 except that the dispersion (bD-1) was replaced and the dispersion of the crystalline resin (C-1) was not added. After that, a toner (T'-1) having a volume average particle diameter of 5 .mu.m was obtained.
<比較例2>[トナー(T’-2)の製造]
製造例1で得たポリエステル樹脂(a-1)25部と製造例9で得た非晶性ポリエステル樹脂(b1-1)75部を二軸混練器(株式会社栗本鐵工所製、S5KRCニーダー)に10kg/毎時で供給し、同時にラジカル反応開始剤(c)として2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)へキサン(c-2)1.0部を0.10kg/時で供給して160℃で15分間混練押出して架橋反応を行った。得られたものを冷却し、トナーバインダーを得た。
さらにトナーバインダー100部に対して、顔料のカーボンブラックMA-100[三菱化学(株)製]7部、離型剤のパラフィンワックス7部を加え、ヘンシェルミキサ[日本コークス工業(株)製 FM10B]を用いて予備混合した後、二軸混練機[(株)池貝製 PCM-30]で混練した。
ついで超音速ジェット粉砕機ラボジェット[日本ニューマチック工業(株)製]を用いて微粉砕した後、気流分級機[日本ニューマチック工業(株)製 MDS-I]で分級し、体積平均粒径が5μm、粒度分布が1.8の樹脂粒子(Z’-2)を得た。得られた樹脂粒子(Z’-2)99部に流動化剤のコロイダルシリカ(アエロジルR972:日本アエロジル(株)製)1部をサンプルミルにて混合して、トナー(T’-2)を得た。
<Comparative Example 2> [Production of Toner (T'-2)]
Twin-screw kneader (S5 KRC kneader, Kurimoto Co., Ltd., 25 parts of the polyester resin (a-1) obtained in Production Example 1 and 75 parts of the amorphous polyester resin (b1-1) obtained in Production Example 9 ) At the same time as the radical initiator (c) and 1.0 part of 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane (c-2) as the radical initiator (c). The crosslinking reaction was carried out by feeding at 10 kg / hour and kneading and extruding at 160 ° C. for 15 minutes. The resultant was cooled to obtain a toner binder.
Furthermore, 7 parts of pigment carbon black MA-100 [Mitsubishi Chemical Corporation] and 7 parts of paraffin wax as a releasing agent are added to 100 parts of toner binder, and Henschel mixer [Japan coke industry FM10B] After pre-mixing using the mixture, the mixture was kneaded using a twin-screw kneader [PCM-30 manufactured by Ikegai Co., Ltd.].
Next, the mixture is finely pulverized using a supersonic jet crusher Rabojet (manufactured by Nippon Pneumatic Mfg. Co., Ltd.), and then classified by an air flow classifier (MDS-I manufactured by Japan Pneumatic Mfg. Co., Ltd.) to obtain volume average particle size. The obtained resin particles (Z'-2) were 5 .mu.m and the particle size distribution was 1.8. 99 parts of the obtained resin particles (Z'-2) and 1 part of colloidal silica (Aerosil R 972: Nippon Aerosil Co., Ltd.) as a fluidizing agent are mixed in a sample mill to obtain a toner (T'-2) Obtained.
実施例及び比較例のトナーについて、ポリエステル樹脂(a)、ポリエステル樹脂(b)、ラジカル反応開始剤(c)、着色剤及び離型剤の配合組成を表2に示す。表2には、樹脂粒子のTHF不溶解分(%)、ガラス転移温度(Tg)も示した。THF不溶解分(%)は、上記に記載の方法で求めた。(a)/(b)の重量比は、樹脂粒子中のポリエステル樹脂(a)由来の構造部分とポリエステル樹脂(b)との重量比であり、(b1)/(C)の重量比は、非晶性ポリエステル樹脂(b1)と結晶性ポリエステル樹脂(C)との重量比である。
つぎに実施例と比較例のトナーを評価し、その結果を表3に示した。
Table 2 shows the composition of the polyester resin (a), the polyester resin (b), the radical reaction initiator (c), the coloring agent and the releasing agent for the toners of Examples and Comparative Examples. Table 2 also shows the THF insoluble matter (%) of the resin particles and the glass transition temperature (Tg). The THF insoluble matter (%) was determined by the method described above. The weight ratio of (a) / (b) is the weight ratio of the polyester resin (a) -derived structural portion in the resin particle to the polyester resin (b), and the weight ratio of (b1) / (C) is It is a weight ratio of amorphous polyester resin (b1) and crystalline polyester resin (C).
Next, the toners of Examples and Comparative Examples were evaluated, and the results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[評価方法]
以下に、得られたトナーの低温定着性、光沢性、耐ホットオフセット性、流動性、耐熱保存性、帯電性、帯電安定性、粒度分布、耐折り曲げ性、ドキュメントオフセット性、画像強度、クリーニング性の測定方法と評価方法を、判定基準を含めて説明する。
[Evaluation method]
The following are the low temperature fixability, glossiness, hot offset resistance, fluidity, heat resistant storage stability, chargeability, charge stability, particle size distribution, folding resistance, document offsetability, image strength, and cleaning ability of the obtained toner. The measurement method and evaluation method will be described including the determination criteria.
<低温定着性>
トナーを紙面上に0.85mg/cmとなるよう均一に載せた。このとき粉体を紙面に載せる方法は、熱定着機を外したプリンターを用いた。
この紙を加圧ローラーに定着速度(加熱ローラ周速)213mm/秒、定着圧力(加圧ローラ圧)10kg/cmの条件で通したときのコールドオフセットの発生温度(MFT)を測定した。
コールドオフセットの発生温度が低いほど、低温定着性に優れることを意味する。
<Low temperature fixability>
The toner was uniformly loaded on the paper so as to be 0.85 mg / cm 2 . At this time, the powder was put on the paper by using a printer from which the heat fixing device was removed.
The temperature (MFT) at which cold offset occurred when this paper was passed through a pressure roller under the conditions of a fixing speed (heat roller circumferential speed) of 213 mm / sec and a fixing pressure (pressure roller pressure) of 10 kg / cm 2 was measured.
The lower the cold offset occurrence temperature, the better the low-temperature fixability.
<光沢性>
低温定着性と同様に定着評価を行った。画像の下に白色の厚紙を敷き、光沢度計(株式会社堀場製作所製、「IG-330」)を用いて、入射角度60度にて、印字画像の光沢度(%)を測定した。光沢度が高いほど、光沢性に優れることを意味する。
<Glossy>
The fixing evaluation was performed in the same manner as the low temperature fixing property. A white cardboard was laid under the image, and the glossiness (%) of the printed image was measured at an incident angle of 60 degrees using a gloss meter ("IG-330" manufactured by Horiba, Ltd.). The higher the degree of gloss, the better the gloss.
<耐ホットオフセット性(ホットオフセット発生温度)>
低温定着性と同様に定着評価し、定着画像へのホットオフセットの有無を目視評価した。加圧ローラー通過後、ホットオフセットが発生した温度を耐ホットオフセット性(℃)とした。この評価条件では、温度が高いほどオフセットが発生しにくいことを意味し、180℃以上であると実際の使用態様でオフセットの発生を抑制できる。
<Hot offset resistance (hot offset occurrence temperature)>
The fixation was evaluated in the same manner as the low temperature fixation, and the presence or absence of the hot offset to the fixed image was visually evaluated. After passing through the pressure roller, the temperature at which the hot offset occurred was taken as the hot offset resistance (° C.). In this evaluation condition, it means that the offset is less likely to occur as the temperature is higher, and if the temperature is 180 ° C. or more, the occurrence of the offset can be suppressed in an actual use mode.
<流動性>
ホソカワミクロン(株)製パウダーテスターでトナーのかさ密度(g/100mL)を測定し、流動性を下記の判定基準で判定した。
<Flowability>
The bulk density (g / 100 mL) of the toner was measured with a powder tester manufactured by Hosokawa Micron Corporation, and the flowability was determined based on the following criteria.
[判定基準]
○:かさ密度が33g/100mL以上
△:かさ密度が25g/100mL以上33g/100mL未満
×:かさ密度が25g/100mL未満 
Judgment criteria
○: bulk density is 33 g / 100 mL or more Δ: bulk density is 25 g / 100 mL or more and 33 g / 100 mL or less ×: bulk density is less than 25 g / 100 mL
<耐熱保存性>
トナー1gを密閉容器に入れ、温度50℃、湿度50%の雰囲気で24時間静置し、ブロッキングの程度を目視で判断し、下記判定基準で耐熱保存性を評価した。
[判定基準]
○:ブロッキングが全く発生していない。
△:一部にブロッキングが発生している。
×:全体にブロッキングが発生している。
<Heat resistant storage stability>
1 g of the toner was placed in a closed container and allowed to stand in an atmosphere of temperature 50 ° C. and humidity 50% for 24 hours, the degree of blocking was visually judged, and heat resistance storage stability was evaluated according to the following judgment criteria.
Judgment criteria
○: No blocking occurred at all.
Fair: Blocking has occurred in part.
X: Blocking has occurred on the whole.
<帯電性>(帯電量)
(1)トナー0.5gとフェライトキャリア(パウダーテック社製、F-150)10gとを50mLのガラス瓶に入れ、これを23℃、相対湿度50%で8時間以上調湿した。
(2)ターブラーシェーカーミキサーにて90rpm×2分間摩擦撹拌し、撹拌後の混合粉体0.2gを目開き20μmステンレス金網がセットされたブローオフ粉体帯電量測定装置に装填し、ブロー圧10KPa、吸引圧5KPaの条件で、残存フェライトキャリアの帯電量を測定し、定法により樹脂粒子の帯電量(μC/g)を算出した。なお、トナー用としてはマイナス帯電量が高いほど帯電特性が優れている。
測定にはブローオフ帯電量測定装置[東芝ケミカル(株)製]を用いた。
<Chargeability> (Charge amount)
(1) 0.5 g of a toner and 10 g of a ferrite carrier (F-150 manufactured by Powder Tech Co., Ltd.) were placed in a 50 mL glass bottle and conditioned at 23 ° C. and 50% relative humidity for 8 hours or more.
(2) Friction stir with 90 rpm x 2 minutes with a Tumbler shaker mixer, 0.2 g of the mixed powder after stirring is loaded into a blow-off powder charge amount measuring apparatus in which a 20 μm mesh stainless steel mesh is set, and a blow pressure is 10 KPa The charge amount of the remaining ferrite carrier was measured under the condition of suction pressure 5 KPa, and the charge amount (μC / g) of the resin particles was calculated by a standard method. For toners, the higher the negative charge amount, the better the charging characteristics.
For the measurement, a blow-off charge amount measuring apparatus [manufactured by Toshiba Chemical Co., Ltd.] was used.
[判定基準]
○:帯電量-15μC/g未満
△:帯電量-15μC/g以上-5μC/g未満
×:帯電量-5μC/g以上
Judgment criteria
○: charge amount-less than 15 μC / g Δ: charge amount-15 μC / g or more-less than 5 μC / g ×: charge amount-5 μC / g or more
<帯電安定性>
(1)トナー0.5gとフェライトキャリア(パウダーテック社製、F-150)20gとを50mLのガラス瓶に入れ、これを23℃、相対湿度50%で8時間以上調湿した。
(2)ターブラーシェーカーミキサーにて50rpm×20分間と60分間摩擦撹拌し、それぞれの時間での帯電量を測定した。
測定にはブローオフ帯電量測定装置[東芝ケミカル(株)製]を用いた。
「摩擦時間60分の帯電量/摩擦時間10分の帯電量」を計算し、これを帯電安定性の指標とした。
<Charging stability>
(1) 0.5 g of toner and 20 g of ferrite carrier (F-150, manufactured by Powder Tech Co., Ltd.) were placed in a 50 mL glass bottle, and conditioned at 23 ° C. and 50% relative humidity for 8 hours or more.
(2) Friction stirring was carried out at 50 rpm × 20 minutes and 60 minutes with a Tumbler shaker mixer, and the charge amount at each time was measured.
For the measurement, a blow-off charge amount measuring apparatus [manufactured by Toshiba Chemical Co., Ltd.] was used.
The “charge amount for 60 minutes of friction time / charge amount for 10 minutes of friction time” was calculated and used as an indicator of charge stability.
[判定基準]
○:0.7以上
△:0.6以上0.7未満
×:0.6未満
Judgment criteria
○: 0.7 or more Δ: 0.6 or more and less than 0.7 ×: less than 0.6
<粒度分布>
比較例2において、二軸混練機で混練、冷却した粗粉砕物(8.6メッシュパス~30メッシュオンのもの)を、超音速ジェット粉砕機ラボジェット[日本ニューマチック工業(株)製]により下記の条件で微粉砕した。
粉砕圧:0.5MPa
粉砕時間:15分
アジャスターリング:15mm
ルーバーの大きさ:中
これを分級せずに、体積平均粒径(μm)、個数平均粒径(μm)、粒度分布(体積平均粒径/個数平均粒径)をコールターカウンター「マルチサイザーIV」(ベックマン・コールター(株)製)により測定し、下記の判定基準で粒度分布を評価した。
なお、粉砕工程を実施しない実施例1~15、比較例1は、樹脂粒子の分散液を測定した。
<Particle size distribution>
In Comparative Example 2, coarsely pulverized material (from 8.6 mesh pass to 30 mesh on) kneaded and cooled by a twin-screw kneader was subjected to supersonic jet crusher Rabojet (manufactured by Nippon Pneumatic Mfg. Co., Ltd.) It ground finely under the following conditions.
Grinding pressure: 0.5MPa
Grinding time: 15 minutes Adjuster ring: 15 mm
Size of louver: Without classifying this, volume average particle diameter (μm), number average particle diameter (μm), particle size distribution (volume average particle diameter / number average particle diameter) Coulter Counter "Multisizer IV" It measured by (Beckman Coulter Co., Ltd. product), and the particle size distribution was evaluated by the following determination criteria.
In Examples 1 to 15 and Comparative Example 1 in which the pulverizing step was not performed, the dispersion liquid of resin particles was measured.
[判定基準]
○:体積平均粒径5.5μm未満かつ粒度分布1.0以上1.8未満
△:体積平均粒径5.5μm以上6.0μm未満かつ粒度分布1.0以上1.8未満
×:体積平均粒径6.0μm以上又は粒度分布1.8以上
Judgment criteria
○: Volume average particle diameter less than 5.5 μm and particle size distribution 1.0 or more and less than 1.8 Δ: Volume average particle diameter 5.5 μm or more and less than 6.0 μm and particle size distribution 1.0 or more and less than 1.8 ×: Volume average Particle size 6.0 μm or more or particle size distribution 1.8 or more
<耐折り曲げ性>
低温定着性の評価で定着した画像を画像面が内側になるように紙を折り曲げ、30gの加重で2往復擦った。
紙を広げて、画像上の折り曲げたあとの白すじの有無を目視で判定した。
[判定基準]
○:白すじなし
△:わずかに白すじあり
×:白すじあり
<Bending resistance>
The paper was bent so that the image surface was on the inside, and the image fixed by the low temperature fixing evaluation was rubbed twice with a weight of 30 g.
The paper was spread, and the presence or absence of white streaks after bending on the image was visually determined.
Judgment criteria
○: no white streaks △: slightly white streaks ×: white streaks
<ドキュメントオフセット性>
低温定着性の評価で得られた画像が定着されたA4の紙2枚を、定着面同士で重ね合わせ、420gの加重(0.68g/cm)をかけ、60℃で60分間静置した。
重ね合わせた紙同士を引き離したときの状態について、下記の判定基準でドキュメントオフセット性を評価した。
<Document offset property>
Two sheets of A4 paper on which the images obtained in the low temperature fixing evaluation were fixed were superimposed on each other between fixing surfaces, applied with a weight of 420 g (0.68 g / cm 2 ) and allowed to stand at 60 ° C. for 60 minutes .
The document offset property was evaluated according to the following judgment criteria for the state in which the superposed papers were pulled apart.
[判定基準]
○:抵抗なし
△:パリパリと音がするが、紙面から画像は剥がれない
×:紙面から画像が剥がれる
Judgment criteria
:: no resistance :: a crisp sound but the image does not separate from the paper surface x: the image separates from the paper surface
<画像強度>
低温定着性の評価で定着した画像を、JIS K5600に準じて、斜め45度に固定した鉛筆の真上から10gの荷重をかけ引っ掻き試験を行い、傷のつかない鉛筆硬度から画像強度を評価した。鉛筆硬度が高いほど画像強度に優れることを意味する。
<Image intensity>
According to JIS K5600, the image fixed by the evaluation of low-temperature fixability was subjected to a scratch test by applying a load of 10 g directly above the pencil fixed at 45 degrees diagonally, and the image strength was evaluated from pencil hardness not scratched. . The higher the pencil hardness, the better the image strength.
[判定基準]
○: H以上
△: B~F
×: 2B以下
Judgment criteria
○: H or more △: B to F
×: 2 B or less
<クリーニング性>
市販複写機[AR5030;シャープ(株)製]を用いて清掃工程を通過した感光体上の転写残トナーを目視で観察し、下記の判定基準でクリーニング性を評価した。
[判定基準]
○: トナーのすり抜けがなかった
△: トナーのすり抜けが少し観察された
×: トナーのすり抜けがあった
<Cleanability>
The transfer residual toner on the photosensitive member which passed the cleaning process was visually observed using a commercial copying machine [AR 5030; manufactured by Sharp Corp.], and the cleaning property was evaluated according to the following judgment criteria.
Judgment criteria
:: no toner slipped △: toner slipped slightly observed x: toner slipped
[評価結果]
表3の評価結果から明らかなように、本発明の製造方法で得られたトナーはいずれもすべての性能評価において優れた結果が得られた。一方、ポリエステル樹脂(a)を含まない比較例1のトナーや含んだとしても粉砕法で製造した比較例2のトナーは、いくつかの性能項目で不良であり満足のいくものではなかった。
[Evaluation results]
As is clear from the evaluation results of Table 3, all the toners obtained by the production method of the present invention obtained excellent results in all performance evaluations. On the other hand, the toner of Comparative Example 1 which does not contain the polyester resin (a) and the toner of Comparative Example 2 manufactured by the pulverization method even if it is contained are not satisfactory in some performance items.
本発明の製造方法により得られる樹脂粒子及びトナーは、低温定着性、光沢性、耐ホットオフセット性、帯電性及び粒度分布に優れ、耐熱保存性、帯電安定性及びクリーニング性に優れ、電子写真、静電記録及び静電印刷等に用いるトナーとして好適に使用できる。さらに、塗料用添加剤、接着剤用添加剤及び電子ペーパー用粒子などの用途として好適である。 The resin particles and toner obtained by the production method of the present invention are excellent in low temperature fixability, glossiness, hot offset resistance, chargeability and particle size distribution, excellent in heat resistant storage stability, charge stability and cleanability, electrophotography It can be suitably used as a toner used for electrostatic recording, electrostatic printing and the like. Furthermore, it is suitable as applications such as additives for paints, additives for adhesives, and particles for electronic paper.

Claims (7)

  1. アルコール成分(y)と不飽和カルボン酸成分(z)とを含有する成分を重縮合して得られたガラス転移温度(Tg)が-20~57℃のポリエステル樹脂(a)を含有する樹脂微粒子を得た後、樹脂微粒子を凝集させ、融合させる樹脂粒子の製造方法であって、樹脂微粒子を得た後、ポリエステル樹脂(a)中の不飽和カルボン酸成分(z)由来の炭素-炭素二重結合同士を架橋反応させて変性樹脂にする工程を含む樹脂粒子の製造方法。 Resin containing polyester resin (a) having a glass transition temperature (Tg a ) of −20 to 57 ° C. obtained by polycondensation of a component containing an alcohol component (y) and an unsaturated carboxylic acid component (z) The method is a method for producing resin particles in which resin particles are aggregated and fused after obtaining the particles, and after obtaining the resin particles, carbon-carbon derived from the unsaturated carboxylic acid component (z) in the polyester resin (a) The manufacturing method of the resin particle including the process of making cross-linking reaction of double bond and making it into modified resin.
  2. 樹脂粒子中のテトラヒドロフラン不溶解分とテトラヒドロフラン溶解分との重量比が5/95~50/50である請求項1に記載の樹脂粒子の製造方法。 The method for producing resin particles according to claim 1, wherein the weight ratio of the tetrahydrofuran insoluble matter to the tetrahydrofuran dissolved matter in the resin particles is 5/95 to 50/50.
  3. ポリエステル樹脂(a)のピークトップ分子量が2,000~20,000である請求項1又は2に記載の樹脂粒子の製造方法。 The method for producing resin particles according to claim 1 or 2, wherein the peak top molecular weight of the polyester resin (a) is 2,000 to 20,000.
  4. 樹脂微粒子が、ポリエステル樹脂(a)を除く、ポリエステル樹脂(b)をさらに含む樹脂粒子であって、ポリエステル樹脂(b)はアルコール成分(y)と飽和カルボン酸成分(x)とを含有する成分を重縮合して得られたポリエステル樹脂である請求項1~3いずれかに記載の樹脂粒子の製造方法。 The resin fine particles are resin particles further including a polyester resin (b) except the polyester resin (a), wherein the polyester resin (b) is a component containing an alcohol component (y) and a saturated carboxylic acid component (x) The method for producing resin particles according to any one of claims 1 to 3, which is a polyester resin obtained by polycondensation of
  5. ポリエステル樹脂(b)がアルコール成分(y)と飽和カルボン酸成分(x)とを含有する成分を重縮合して得られた非晶性ポリエステル樹脂(b1)を含有するポリエステル樹脂であって、アルコール成分(y)が芳香族ジオールを80モル%以上含有し、飽和カルボン酸成分(x)が芳香族ジカルボン酸を80モル%以上含有する請求項4に記載の樹脂粒子の製造方法。 The polyester resin (b) is a polyester resin containing an amorphous polyester resin (b1) obtained by polycondensation of a component containing an alcohol component (y) and a saturated carboxylic acid component (x), wherein the alcohol is an alcohol The method for producing resin particles according to claim 4, wherein the component (y) contains 80 mol% or more of an aromatic diol, and the saturated carboxylic acid component (x) contains 80 mol% or more of an aromatic dicarboxylic acid.
  6. 樹脂粒子中のポリエステル樹脂(a)由来の構造部分とポリエステル樹脂(b)との重量比が5/95~50/50である請求項4又は5に記載の樹脂粒子の製造方法。 6. The method for producing resin particles according to claim 4, wherein the weight ratio of the polyester resin (a) -derived structural portion in the resin particles to the polyester resin (b) is 5/95 to 50/50.
  7. 請求項1~6いずれかに記載の樹脂粒子の製造方法で得られた樹脂粒子を含んでなるトナーの製造方法。
     
    A method for producing a toner comprising resin particles obtained by the method for producing resin particles according to any one of claims 1 to 6.
PCT/JP2018/041205 2017-11-28 2018-11-06 Method for producing resin particles and toner WO2019107087A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019557099A JP6818162B2 (en) 2017-11-28 2018-11-06 Manufacturing method of resin particles and toner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017227314 2017-11-28
JP2017-227314 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019107087A1 true WO2019107087A1 (en) 2019-06-06

Family

ID=66665602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041205 WO2019107087A1 (en) 2017-11-28 2018-11-06 Method for producing resin particles and toner

Country Status (2)

Country Link
JP (1) JP6818162B2 (en)
WO (1) WO2019107087A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210325795A1 (en) * 2020-04-17 2021-10-21 Sharp Kabushiki Kaisha Toner and two-component developer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071994A (en) * 2004-09-02 2006-03-16 Fuji Xerox Co Ltd Toner for electrostatic image development, method for manufacturing same, and developer for electrostatic image development, and image forming method using same
JP2011085935A (en) * 2009-10-15 2011-04-28 Xerox Corp Curable toner composition and process
JP2011090022A (en) * 2009-10-20 2011-05-06 Konica Minolta Business Technologies Inc Method for producing toner
JP2012058488A (en) * 2010-09-09 2012-03-22 Konica Minolta Business Technologies Inc Toner and manufacturing method thereof, and image forming method
JP2013083854A (en) * 2011-10-12 2013-05-09 Canon Inc Method of manufacturing toner
JP2015038585A (en) * 2013-08-19 2015-02-26 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071994A (en) * 2004-09-02 2006-03-16 Fuji Xerox Co Ltd Toner for electrostatic image development, method for manufacturing same, and developer for electrostatic image development, and image forming method using same
JP2011085935A (en) * 2009-10-15 2011-04-28 Xerox Corp Curable toner composition and process
JP2011090022A (en) * 2009-10-20 2011-05-06 Konica Minolta Business Technologies Inc Method for producing toner
JP2012058488A (en) * 2010-09-09 2012-03-22 Konica Minolta Business Technologies Inc Toner and manufacturing method thereof, and image forming method
JP2013083854A (en) * 2011-10-12 2013-05-09 Canon Inc Method of manufacturing toner
JP2015038585A (en) * 2013-08-19 2015-02-26 富士ゼロックス株式会社 Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210325795A1 (en) * 2020-04-17 2021-10-21 Sharp Kabushiki Kaisha Toner and two-component developer
US11947313B2 (en) * 2020-04-17 2024-04-02 Sharp Kabushiki Kaisha Toner and two-component developer

Also Published As

Publication number Publication date
JPWO2019107087A1 (en) 2020-04-02
JP6818162B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6773702B2 (en) Toner binder and toner
JP6123451B2 (en) Electrostatic image forming toner, developer, and image forming apparatus
JP6018684B2 (en) Toner for electrostatic image development
JP6391626B2 (en) Toner binder and toner
WO2019225207A1 (en) Toner binder
JP6316855B2 (en) Toner binder and toner
JP6965296B2 (en) Toner binder
JP6703156B2 (en) Toner binder and toner
JP7256679B2 (en) toner binder
JP7195707B2 (en) toner binder
JP2012042930A (en) Method for producing toner
JP6818162B2 (en) Manufacturing method of resin particles and toner
JP6632066B2 (en) Method for producing toner for developing electrostatic images
JP7300309B2 (en) toner binder
JP6764846B2 (en) Method for manufacturing resin particles, composite resin particles and toner
JP6316863B2 (en) Manufacturing method of toner binder
JP6829102B2 (en) Toner binder manufacturing method and toner manufacturing method
JP7478087B2 (en) Binder resin composition for toner
JP7463481B2 (en) Toner Binder
JP7198639B2 (en) Toner for electrostatic charge image development
JP6826576B2 (en) Toner manufacturing method
JP7198640B2 (en) Toner for electrostatic charge image development
JP6748128B2 (en) Toner binder and toner
JP6316862B2 (en) Manufacturing method of toner binder
JP6713492B2 (en) Toner binder and toner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882566

Country of ref document: EP

Kind code of ref document: A1