WO2019106934A1 - Electrical power tool - Google Patents

Electrical power tool Download PDF

Info

Publication number
WO2019106934A1
WO2019106934A1 PCT/JP2018/036310 JP2018036310W WO2019106934A1 WO 2019106934 A1 WO2019106934 A1 WO 2019106934A1 JP 2018036310 W JP2018036310 W JP 2018036310W WO 2019106934 A1 WO2019106934 A1 WO 2019106934A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor core
motor
coil
shaft
housing
Prior art date
Application number
PCT/JP2018/036310
Other languages
French (fr)
Japanese (ja)
Inventor
健 宮澤
Original Assignee
工機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工機ホールディングス株式会社 filed Critical 工機ホールディングス株式会社
Priority to JP2019557031A priority Critical patent/JP7031684B2/en
Publication of WO2019106934A1 publication Critical patent/WO2019106934A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/02Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/10Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces
    • B24B47/12Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces by mechanical gearing or electric power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/04Balancing means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the present invention relates to a power tool that holds a motor inside a motor housing, and more particularly to an improvement in the assembly structure of a rotor core.
  • a handle connected so as to project rearward from the motor housing holding the motor is provided, and the operator holds the handle with one hand and the motor with the other hand Work while holding the housing itself or the side handle on which the motor housing is mounted.
  • the housing of the disc grinder has a metal or synthetic resin housing
  • the motor housing is not shaped so as to be divided in a plane passing through the axis because the size and output of the motor are large in medium to large disc grinders. It has a cylindrical integral shape, and the left and right split handle housing is attached to the rear side. The motor is inserted into the motor housing axially rearward from an opening on the front side (opposite to the handle housing) of the cylindrical motor housing.
  • Patent Document 1 is known as a grinder having such a motor attachment structure.
  • the motor housing is integrally molded of synthetic resin, and the rotary shaft of the motor is supported by a bearing fixed by the motor housing and a bearing fixed by a member covering the front opening of the motor housing.
  • the brushless DC motor is driven using an inverter circuit using a semiconductor switching element.
  • a semiconductor switching element used for the inverter circuit an FET (field effect transistor), an IGBT (insulated gate bipolar transistor) or the like is used.
  • the brushless DC motor is provided with a rotor having a permanent magnet inside and a stator having a coil wound on the outside.
  • the cooling fan is provided on the front side of the motor as viewed in the axial direction of the rotation shaft of the motor, and when the motor 5 rotates, the cooling fan rotates in conjunction with the rotation shaft. Generates a flow of wind to the side (cooling air).
  • the control circuit and motor are cooled by the cooling air.
  • the cooling air having flowed into the housing space of the motor passes axially through the gap between the outer peripheral side of the stator and the motor housing and the gap between the stator and the rotor from the rear in the axial direction Flow through the through hole of the fan cover and is discharged to the outside from the through hole of the gear case. Since a strong magnet such as neodymium is usually used for the rotor of a brushless DC motor, dust (metal powder) generated at the time of work is used as a cooling air when grinding work with iron or the like using a grinder. And there was a risk of getting into the product body.
  • an axially continuous V-shaped groove is formed in the outer peripheral portion of the rotor core, the air path of the cooling air is enlarged by the V-shaped groove, and the dust flowing inside is discharged to the outside of the housing.
  • the structure is easy to
  • a balance weight having the same diameter as the outer diameter of the stator core is disposed as a balance weight disposed adjacent to the rotor core.
  • the balance weight is a wall that closes the end of the V-shaped groove, making it difficult for dust to be discharged from the V-shaped groove and causing a problem that dust tends to be accumulated in the V-shaped groove.
  • the present invention has been made in view of the above background, and an object thereof is dust such as iron powder at an end of a stator core when attaching a balance weight to an end of a stator core having a groove continuously in the axial direction in an outer peripheral surface. It is an object of the present invention to provide a power tool which can prevent the adhesion of Another object of the present invention is to mount the sensor substrate radially outward on the balance weight by using a cylindrical balance weight having a circular cross-sectional shape and a small diameter on the stator core having a non-circular cross-sectional shape orthogonal to the axial direction And to provide a power tool. Still another object of the present invention is to provide an electric power tool in which iron powder and the like are less likely to adhere to the end face of the stator core by covering the entire end face of the stator core with a resin member.
  • a motor having a rotor core mounted on the rotary shaft and containing a permanent magnet and a stator core located on the outer periphery of the rotor core, a cylindrical housing for housing the motor, and a rotary shaft mounted
  • An electric power tool having a cooling fan to take in outside air by means of the fan and flowing cooling air around the motor in the housing in the direction of the rotational axis, which is cylindrical and is larger than the outer diameter of the rotor core
  • a small nonmagnetic metal balancer member is provided on one side or both sides in the axial direction of the rotor core, and a resin spacer member is interposed between the balancer member and the rotor core.
  • a plurality of axial grooves are formed continuously on the outer peripheral surface of the rotor core from one axial end face to the other axial end face of the rotor core, and the spacer member has a shape similar to the outer edge shape of the rotor core end face The outer edge of the
  • the spacer member is a substantially annular member having a through hole formed in the center, and the balancer member has a circular cross-sectional shape of the outer edge before making a radial hole for balance adjustment.
  • the spacer member and the balancer member are fixed to the rotation shaft by press-fitting the through holes of the spacer member and the balancer member to the rotation shaft in a state in which the rotor core is fixed.
  • Ru a coil for passing an exciting current is wound around the stator core
  • a shaft made of synthetic resin is molded on the outer surface of the rotary shaft to ensure insulation between the outer surface of the rotary shaft and the stator core, and the spacer member is It is formed by molding according to the time of shaft mold processing.
  • the cross-sectional shape of the outer edge before making a radial adjustment hole for balance adjustment is a perfect circle, a through hole extending in the axial direction is formed at the center, and it is pressed into the rotating shaft after the shaft molding is completed.
  • the rotor core is formed of a laminated core having a through hole at the center and a slot for accommodating a plate-like permanent magnet radially outward of the through hole.
  • the outer diameter of the balancer member is formed with a diameter smaller than the position of the outer surface of the permanent magnet in the normal direction of the permanent magnet passing through the rotation axis.
  • a hole for adjusting the rotational balance of the rotor is provided on the outer peripheral surface of the balancer member, and the thickness in the rotational axis direction of the spacer member is thinner than the thickness in the rotational axis direction of the balancer member.
  • a motor having a rotor core mounted on a rotary shaft and using a permanent magnet and a stator core positioned on the outer periphery of the rotor core, a cylindrical housing for housing the motor, and a rotary shaft
  • An electric power tool having a cooling fan for taking in outside air by the fan and flowing cooling air around the motor in the housing in the direction of the rotational axis, the outer peripheral surface of the rotational shaft and the inner peripheral surface of the rotor core
  • the shaft molding process is performed between the two, and the rotational shaft and the both end surfaces of the stator core are integrally molded by expanding the mold portion to a portion covering the both end surfaces of the stator core.
  • a balancer member which is cylindrical and smaller than the outer diameter of the rotor core is provided at the leeward end of the rotor core.
  • a spacer having the same shape as the V-shaped cross-sectional shape is disposed between the balance weight and the rotor core, and a balance weight having a diameter smaller than the V-groove bottom of the rotor core is disposed. It becomes possible to pass dust efficiently. In addition, metal dust of the brushless motor can be prevented from adhering to the rotor core, and the occurrence of motor lock can be suppressed.
  • FIG. 6 is an exploded perspective view showing a mounting state of an inverter circuit section 20 mounted on the rear side of the motor housing 10 of FIG. 1. It is a perspective view which shows the stator 30 of the motor 5 of FIG. 1 (state before winding of a coil). It is a figure which shows the stator 30 of FIG. 4, Comprising: (1) is a side view, (2) is a rear view. It is a figure for demonstrating how to wind the stator coil in a prior art example.
  • FIG. (1) is a side view of the rotor 70 and the cooling fan 13 of the motor 5, (2) is a cross-sectional view of the DD portion of (1) (a side view of the rotor core 71).
  • (1) is a cross-sectional view taken along the line AA in FIG. 1
  • (2) is a cross-sectional view taken along the line BB in FIG.
  • FIG. 1 is a cross-sectional view showing the overall configuration of a disk grinder 1 according to an embodiment of the present invention.
  • the disc grinder 1 operates a body 2 in which a motor 5 serving as a driving source is accommodated inside a cylindrical motor housing 10, and a working device driven by the motor 5 (here, a grinder using a grinding stone 98 as a tip tool) And a handle portion 4 provided on the rear side of the body portion 2 and gripped by an operator.
  • the handle portion 4 is configured to be rotatable (slidable) by a predetermined angle around the rotation axis A1 of the motor 5 by being connected to the body portion 2 via a rotation mechanism.
  • a brushless motor 5 is accommodated in the motor housing 10.
  • the motor 5 includes a stator 30 having a rotor 70 having permanent magnets disposed on the inner circumferential side and a coil on the outer circumferential side.
  • the rotating shaft 60 of the motor 5 is rotatably held by a bearing 15b provided near the central portion of the motor housing 10 and a bearing 15a on the front side held by the gear case 6 covering the front opening of the motor housing 10.
  • the power transmission unit 3 includes a disk-shaped grindstone 98 attached to a spindle 8 supported by bearings 9 a and 9 b in a gear case 6 and a wheel guard 29.
  • a pair of bevel gears 7 a and 7 b are disposed, and the rotational force of the rotation shaft 60 of the motor 5 is changed in direction and transmitted to the spindle 8.
  • a tip end tool holding portion is formed by the press fitting 14 b via the receiving fitting 14 a, and the grindstone 98 is fixed.
  • a side handle attachment hole 6b is provided at the top of the gear case 6, and similar side handle attachment holes (not shown) are provided on the right and left sides of the gear case 6 as well.
  • the inverter circuit portion 20 is inserted from the rear end side opening of the motor housing 10, and thereafter, the opening portion is covered by the support member 133 and the intermediate member 125.
  • the support member 133 is configured to be divisible in the left-right direction, and sandwiches the swing support shaft of the intermediate member 125 between the left and right divided pieces.
  • Two radially projecting flange portions 126 are formed on the outer peripheral surface of the intermediate member 125, and the handle housing 16 forming the grip portion is rotatably held along the flange portions.
  • the circuit board 27 of the inverter circuit unit 20 is a substantially annular multi-layered board having a diameter slightly larger than the outer shape of the motor 5, and the surface thereof is disposed in the direction orthogonal to the rotation axis A 1 of the motor 5.
  • Six switching elements (described later) such as six insulated gate bipolar transistors (IGBTs) are mounted on the circuit board 27.
  • the circuit board 27 on which the switching element is mounted is fixed inside the container-like cylindrical case 21.
  • the inner diameter of the motor housing 10 in the portion accommodating the inverter circuit portion 20 is formed to be slightly larger than that in the portion accommodating the motor 5.
  • a small annular ring shaped sensor substrate 122 is mounted between the bearing 15b and the stator 30 as viewed in the direction of the rotation axis A1.
  • the sensor substrate 122 has an annular substrate portion, and on the side facing the stator 30, three Hall ICs 121 (described later in FIG. 2) for directly detecting the magnetic field generated by the rotor 70 are mounted at intervals of 60 degrees
  • a cooling fan 13 is provided on the front side of the motor 5 and between the bearing 15a.
  • the cooling fan 13 is a centrifugal fan and sucks the air on the motor 5 side and discharges it radially outward.
  • a fan guide 12 is formed around the rotating shaft 60 to form a through hole of a predetermined size to form an inlet of the cooling fan.
  • the air taken up from the air hole (not shown) of the handle housing 16 is drawn into the motor housing 10 by the air flow generated by the cooling fan 13 and the air flow (air flow) from the rear side to the front side of the motor 5 is obtained.
  • outside air is taken in from the slit-like air intake hole (not shown) formed in the handle housing 16, and a through hole or a wind window (not shown in FIG. 1) formed in the intermediate member 125 and the support member 133. And flows into the internal space of the motor housing 10 from the rear side opening of the motor housing 10.
  • the air that has flowed in first cools the electronic components mounted in the inverter circuit unit 20, passes through the side notches of the inverter circuit unit 20, and is on the outer peripheral side of the cylindrical case 21 of the inverter circuit unit 20, It reaches near the bearing holder 109 through the gap with the motor housing 10.
  • a plurality of air windows are formed on the outer peripheral side of the bearing holder 109, and the air flow passing through the air windows reaches the motor 5 side.
  • the air flow reaching the motor 5 side flows so as to pass between the rotor 70 and the stator 30 and between the stator 30 and the inner wall portion of the motor housing 10, and is drawn from near the axial center of the cooling fan 13
  • the air flows radially outward of the cooling fan 13 and passes through an air hole formed on the outer peripheral side of the bearing holder 11.
  • a part of the cooling air discharged from the bearing holder 11 is discharged to the outside as indicated by an arrow 79 a through an exhaust port (not shown) formed in the gear case 6, and the remaining is near the lower side of the bearing holder 11.
  • the air is exhausted to the outside as indicated by an arrow 79 b through an exhaust port (not shown).
  • the motor housing 10 is integrally formed in a cylindrical shape, so that the motor 5 can be supported more firmly than supported by the motor housing divided by the cross section including the rotation axis A1, Sufficient rigidity was secured.
  • the handle portion 4 is a portion gripped by the operator at the time of operation, and its housing is composed of a handle housing 16 configured by left and right division by plastic molding and fixed by four screws (not shown). Ru.
  • the handle portion 4 can be rotated 90 degrees to one side and 90 degrees to the other side from the state of FIG. 1 around the rotation axis A1, and the handle portion 4 can be fixed to the motor housing 10 in the rotated state.
  • the rotation mechanism includes a flange portion 126 formed in a rib shape formed on the outer peripheral edge on the rear side of the intermediate member 125, and a rotation groove 125a formed in the handle housing 16. This is realized by fitting together.
  • the control circuit unit 19 is accommodated behind the intermediate member 125.
  • the control circuit portion 19 is held by the handle housing 16 so as to extend in a direction orthogonal to the rotation axis A1.
  • the control circuit unit 19 accommodates a control circuit board (not shown) as a second circuit board in a shallow case, and a control circuit (described later) of the motor 5 is mounted.
  • a power cord 99 for supplying commercial AC power is connected to the rear end side of the handle portion 4.
  • a trigger switch 18 for controlling on / off of the motor 5 is disposed at a central portion of the handle housing 16. The trigger switch 18 is switched on or off by operating the trigger lever 17.
  • the motor 5 Before mounting the power transmission unit 3, the motor 5 is inserted from the front side of the motor housing 10 toward the rear side in the direction of the rotation axis A 1, and inserts the motor 5 to a predetermined position abutting the motor housing 10. Then, the synthetic resin insulator 40 (described later in FIG. 4) located at the rear end of the stator 30 abuts on the bearing holder 109 of the motor housing 10.
  • the bearing 15 b for supporting the rear end portion of the rotating shaft 60 is a ball bearing, and the outer ring side thereof is held by the bearing holder 109.
  • the bearing holder 109 is manufactured integrally with the motor housing 10, and a plurality of ribs are formed in a grid shape between the inner wall of the motor housing 10 and the bearing holder 109 in order to support the bearing holder 109.
  • a commercial AC power supply 100 is externally supplied by a power supply cord 99 and rectified to direct current.
  • the bridge diode 112 full-wave rectifies the alternating current input from the commercial alternating current power supply 100 and outputs it to the smoothing circuit 113.
  • the smoothing circuit 113 smoothes the pulse current contained in the current rectified by the bridge diode 112 to a state close to direct current and outputs the smoothed current to the inverter circuit 118.
  • the smoothing circuit 113 includes an electrolytic capacitor 114, a capacitor 115, and a discharge resistor 116.
  • the inverter circuit 118 includes six switching elements Q1 to Q6, and the switching operation is controlled by the gate signals H1 to H6 supplied from the operation unit 110.
  • the switching elements Q1 to Q6 use insulated gate bipolar transistors (IGBTs), but field effect transistors (FETs) may be used.
  • IGBTs insulated gate bipolar transistors
  • FETs field effect transistors
  • the output of the inverter circuit 118 is connected to the U-phase, V-phase, and W-phase of the coil of the motor 5.
  • the low voltage power supply circuit 119 is connected to the output side of the bridge diode 112.
  • the low voltage power supply circuit 119 is a known power supply circuit that supplies direct current of a stable reference voltage (low voltage) for the operation unit 110 to operate.
  • a rotor 70 having permanent magnets rotates inside the stator 30 of the motor 5, a rotor 70 having permanent magnets rotates. In the vicinity of the rotor 70, rotational position detection elements by three Hall ICs 121 are provided, and the calculation unit 110 detects the rotational position of the rotor 70 by monitoring the output of the rotor 70.
  • a sensor substrate 122 (see FIG. 1) on which the Hall IC 121 is mounted is disposed at a position facing one end surface of the rotor 70.
  • the calculation unit 110 is a control unit for performing on / off control and rotation control of the motor 5, and is mainly configured using a microcomputer (not shown) (hereinafter, referred to as "microcomputer").
  • the arithmetic unit 110 is mounted on the circuit board of the control circuit unit 19 (see FIG. 1), and rotates the motor 5 based on the start signal input along with the operation of the trigger switch 18 to the coils U, V, W. Control the energizing time and drive voltage.
  • a speed change dial may be provided to set the rotational speed of the motor 5, and the calculation unit 110 may adjust the speed of the motor 5 to match the speed set by the speed change dial.
  • the output of operation unit 110 is connected to each gate of six switching elements Q1 to Q6 of inverter circuit 118.
  • the emitters or the collectors of the six switching elements Q1 to Q6 of the inverter circuit 118 are connected to the U phase, the V phase, and the W phase of the delta-connected coil.
  • Switching elements Q1 to Q6 perform switching operation based on gate signals H1 to H6 input from operation unit 110, and direct current voltage supplied from commercial AC power supply 100 via rectification circuit 111 is divided into three phases (U phase, It supplies to each phase of the motor 5 as V phase, W phase) voltage Vu, Vv, and Vw.
  • the magnitude of the current supplied to the motor 5 is detected by the operation unit 110 by detecting the voltage value across the shunt resistor 117 connected between the smoothing circuit 113 and the inverter circuit 118.
  • the motor housing 10 is manufactured by integral molding of synthetic resin, and a fan housing portion 101 having a large outer diameter is formed on the front side of the motor housing portion 102 for housing the motor 5.
  • the outer diameter is formed large, and in order to fix the gear case 6 (see FIG. 1) at four places on the outer periphery with screws.
  • the screw bosses 105a to 105d are formed.
  • a large diameter circuit board accommodating portion 104 for accommodating the inverter circuit portion 20 is formed in the vicinity of the rear opening of the motor housing 10.
  • the diameter of the circuit board accommodating portion 104 is formed to be larger than the diameter of the motor accommodating portion 102. Therefore, a connection portion from the motor housing portion 102 to the circuit board housing portion 104 is a tapered portion 103 which spreads in a tapered manner.
  • a bearing holder 109 (both shown in FIG. 1) which is a portion for holding the bearing 15b is formed.
  • a recess (described later in FIG. 11) is formed to prevent the stator 30 from rotating around the rotational axis A1.
  • the stator 30 by supporting the stator 30 with the motor housing 10 formed as an integral cylindrical mold, the stator 30 can be held more firmly than in the case of the left and right two-split motor housing. It is possible to cope with high output of In particular, since the stator 30 is formed of a laminated core and the specific gravity is large and the total weight is heavy, integrally forming the motor housing 10 is preferable in terms of strength.
  • the inverter circuit unit 20 is formed of an IGBT circuit element group 26 in which electronic components are mounted on a circuit board 27 and a container-like cylindrical case 21 for housing them.
  • the cylindrical case 21 is one in which one side (front side) of the substantially cylindrical outer peripheral surface 24 is closed by the bottom surface 23, and the IGBT circuit element group 26 is accommodated in the inner space thereof.
  • the switching element group for driving the motor in the cylindrical case 21 as described above, the switching element can be mounted on a portion close to the motor 5 and the wiring from the circuit board 27 to the motor 5 can be shortened.
  • the cylindrical case 21 is disposed such that the opening side is the handle portion 4 side (backward direction), that is, the air intake side, and the bottom surface 23, which is a closed surface, is disposed to be the motor 5 side (forward).
  • the support member 133 is a member that closes the rear opening of the motor housing 10. Through holes 134a and 134b are formed in the vicinity of the central axis of the support member 133, and a cone-shaped swing support member (not shown) constituting the front end of the handle portion 4 is sandwiched and connected.
  • the support member 133 uses the four screw holes 137a to 137d (in FIG. 3, the screw holes 137a and 137c can not be seen) in a state where the right side portion 133a and the left side portion 133b are joined. It is fixed to the opening.
  • the rear opening of the motor housing 10 is formed with screw bosses 106a to 106d formed with holes for passing screws. Further, in the vicinity of the screw bosses 106a to 106d, axially extending ribs 107a and 107b for holding the outer peripheral surface of the cylindrical case 21 and a rail portion 108 are formed.
  • Semi-cylindrical pressing members 136a to 136d extending to the front side are formed on the outer peripheral portion of the support member 133 and through which the screws pass. The pressing members 136a to 136d abut on the cylindrical outer peripheral surfaces of the screw bosses 106a to 106d on the motor housing 10 side, and hold a part of the rear side opening edge of the cylindrical case 21.
  • a plurality of wind windows 135a and 135b for flowing the wind in the axial direction are formed by the mesh structure on the radially outer side of the through holes 134a and 134b.
  • the outer peripheral shape of the cylindrical case 21 is formed with an axially continuous recess along the inner shape of the circuit board accommodating portion 104 of the motor housing 10.
  • the locking holding portions 25a to 25d are recessed portions to avoid the cylindrical screw bosses 106a to 106d of the motor housing 10.
  • the stepped portions 24a and the notched portions 24b on the left and right sides of the cylindrical case 21 act as an air passage which flows from the axial rear side of the support member 133 to the motor 5 side.
  • the main electronic components mounted on the circuit board 27 are six semiconductor switching elements Q1 to Q6 (Q4 and Q5 are not visible in the figure).
  • An independent metal heat sink is attached to the switching elements Q1 to Q3 and arranged so that the plane direction extends in the left and right and front and back directions, that is, parallel to the inflow direction of the cooling air.
  • Above the switching elements Q1 to Q3, three switching elements Q4 to Q6 (in the figure, Q4 and Q5 can not be seen) are arranged so that the surface direction extends in the left and right and front and back directions. Since the emitter terminals of these switching elements Q4 to Q6 are grounded in common, a common metal heat dissipation plate which is long in the lateral direction is provided.
  • the switching elements Q1, Q2, Q3, and Q4 to Q6 are shielded by a partition plate 28 made of a nonconductive member.
  • a bridge diode 112 is provided on the top of the circuit board 27. In the lower part of the bridge diode 112, two capacitors 114, 115 are mounted.
  • the circuit board 27 has a terminal for soldering a power line connected from the trigger switch 18 and a terminal for soldering a power line for transmitting drive power of U phase, V phase and W phase to the motor 5 (see FIG.
  • a connector terminal (not shown) of a wire harness for connection with the control circuit section 19 is provided.
  • Power lines connected to the motor 5 are connected to the lead wires 54a to 54c (see FIG. 1) of the stator 30 (see FIG. 1) via a space formed between the step 24a on the outer periphery of the cylindrical case 21 and the inner wall surface of the motor housing 10. 7) to be connected.
  • FIG. 4 is a perspective view showing the stator 30 of the motor 5 and shows a state before winding of the coil.
  • two insulators 35, 40 are provided on the front side and the rear side in the axial direction so as to surround the teeth 34a to 34f of the stator core 31 between the first insulator 35 and the second insulator 40.
  • Six coils are wound.
  • the insulators 35 and 40 are formed of non-conductive members such as synthetic resin.
  • a cylindrical portion is formed on the outer peripheral side of the insulator 40, and six wound portions 44a to 44f are provided so as to protrude toward the inner side, and along the outer peripheral side of the wound portions 44a to 44f A coil is wound.
  • the annular portion 41 of the insulator 40 is formed with a cylindrical outer peripheral surface 41 a and an annular end surface 41 c which is an annular flat surface orthogonal to the rotation axis A 1.
  • the shapes of the outer peripheral surface 41a and the annular end surface 41c will be described later with reference to FIG.
  • the projection shape of the insulator 40 viewed from the axial direction of the rotation axis A1 is the same as the projection shape of the stator 30. Therefore, the insulator 40 is formed with a plurality of wound portions 44a to 44f extending from the annular portion 41 to the inner peripheral side, and the innermost peripheral side of the wound portions 44a to 44f extends in the circumferential direction and the axial direction Thus, stoppers 45a to 45f (refer to FIG.
  • the coil (not shown) of the motor 5 winds a copper nichrome wire a plurality of times so as to extend over the winding portion of the front insulator 35 and the winding portions 44a to 44f of the rear insulator 40.
  • Six sets of coils formed by winding are wired in a delta connection.
  • the annular portion 41 of the insulator 40 is formed with three lead portions 46 to 48 that project in the axial direction.
  • the lead portions 46 to 48 serve to guide the winding of the delta-connected coil and, since they are intermediate points of the delta connection, serve as connection points for holding and connecting the lead wires for driving power supply.
  • the lead-out portions 46 to 48 are terminal attachment grooves for mounting the axial direction convex portions 46a, 47a, 48a, the depressed portions 46b, 47b, 48b, and the metal terminals 59a, 59b, 59c (described in detail in FIG. 9). 46c, 47c, 48c are formed.
  • Radially continuous radial grooves 43a to 43f are formed in the vicinity of the wound portions 44a to 44f of the insulator 40, ie, on the annular end face 41c on one side in the rotational direction from the wound portions 44a to 44f.
  • the radial grooves 43a to 43f are slot portions for wiring two lead wires (different phase crossover wires 56a to 56c) radially outward from the wound coil, and are in the axial direction with respect to the annular end surface 41c. It has a shape that is cut out on the front side.
  • Wall portions 49a to 49f substantially L-shaped when viewed from the rotational axis direction are formed on one circumferential side (side away from the wound portions 44a to 44f) of the radial grooves 43a to 43f Be done.
  • the wall portions 49a to 49f are formed to stably hold lead wires from the coil (different phase crossovers 56a to 56c), and have wall surfaces extending in the radial direction along the radial grooves 43a to 43f, and an annular end face It has a wall surface extending a predetermined distance in the circumferential direction along the inner peripheral surface of 41c, and has a substantially L-shaped shape in the axial direction.
  • FIG. 5 (1) is a side view of the stator 30, and (2) is a rear view.
  • keys 32a and 32b which project radially outward and are axially continuous projections are formed.
  • the outer shape of the stator core 31 is circular except for the keys 32a and 32b, and the outer shapes of the insulators 35 and 40 disposed in front of and behind the key 32a and 32b are circular.
  • the outer diameters of the insulators 35 and 40 appear to be slightly smaller than the outer diameter of the stator core 31, but the difference is that the stator 30 is inserted in the axial direction of the cylindrical motor housing 10.
  • stator core 31 stably contacts the inner wall portion of the motor housing 10 because the outer diameter of the stator core 31 is slightly larger than that of the insulators 35 and 40.
  • a circumferential groove 42 which is a concave portion which is recessed in the radial direction and which is continuously formed in the circumferential direction is formed. Further, radial grooves 43a to 43f are formed such that the outer peripheral surface is cut away in the direction of the rotation axis A1 so as to cross the circumferential groove 42. The radial grooves 43a to 43f are formed only on one side of the wound portions 44a to 44f of the insulator 40 as viewed from the rear side in the direction of the rotation axis A1.
  • the W-phase lead-out portion 48 is formed on the radially outer side of the wound portion 44a, and the U-phase drawn portion 46 is formed on the radially outer side of the wound portion 44c.
  • a V-phase lead-out portion 47 is formed on the radially outer side of 44e.
  • FIG. 6 (1) is a figure for demonstrating the conventional wire connection method of a coil.
  • the stator core 31 of the motor 5 of this embodiment has teeth of six poles, and six coils (51a to 53a) of U1, U2, V1, V2, W1, and W2 are formed there. Each of the six coils is formed by winding a nichrome wire several times to several tens times around each tooth.
  • the first coil (U1, V1, W1) and the second coil (U2, V2, W2) are provided between the U-phase, V-phase, and W-phase lead wires 54a to 54c.
  • three-phase alternating current excitation current is supplied to the three lead wires 54a to 54c.
  • U2 coil 51b and U1 coil 51a are connected in series between lead wires 54a and 54b, W2 coil 53b and W1 coil 53a are connected in series between lead wires 54b and 54c, and lead wires 54c and 54a are connected.
  • the V2 coil 52b and the V1 coil 52a are connected in series between them.
  • the portions wound around the teeth 34a to 34f of the stator core 31 become coils, but the portions drawn out from the coil portions and connected to another coil become “crossover wires".
  • crossing wires There are two types of “crossover wires”: “in-phase crossover wires” connecting between in-phase coils and “different-phase crossover wires” connecting between different-phase coils.
  • the in-phase crossovers include an in-phase junction 55a connecting the U2 coil 51b and the U1 coil 51a, an in-phase junction 55b connecting the W2 coil 53b and the W1 coil 53a, and an in-phase junction 55c connecting the V2 coil 52b and the V1 coil 52a. is there.
  • different phase crossovers are provided with different phase crossovers 56a connecting V1 coil 52a and U2 coil 51b, crossovers 56b between U1 coil 51a and W2 coil 53b, and crossovers 56c connecting W1 coil 53a and V2 coil 52b.
  • lead lines 54a to 54c for supplying current are connected in the vicinity of intermediate points of the different phase crossovers 56a to 56c different phase crossovers 56a, 56b, 56c.
  • the lead wires 54a to 54c may be replaced by metal terminals (not shown).
  • FIG. 6 (2) is a view for explaining how to wind and connect a conventional stator core.
  • Teeth 34a to 34f of stator core 31 are assigned to W2, U1, V1, W1, U2, and V2 in the circumferential direction (right to left) from U-phase lead-out portion 46.
  • the teeth 34a to 34f arranged in the circumferential direction are expanded and illustrated on the plane from the circumference, the wiring portions of the circle a and the circle b in the left and right direction are connected portions and electrically It is connected.
  • the teeth 34d for the W1 phase and the teeth 34c for the U2 phase are adjacent to the U2.
  • the lead portions 46 to 48 are fixing members for metal terminals (not shown) to which the lead wires 54a, 54b and 54c shown in FIG.
  • the wire connection method of FIG. 6 (1) is realized in teeth 34a to 34f, it becomes as shown in (2).
  • the winding direction in each tooth is the same direction, and for example, the first winding from the one side of the root of each tooth, for example, rightward winding, is completed a predetermined number of times, and then the coil portion is finished to move to the crossover portion.
  • the continuous single nichrome wire is wound like a one-stroke writing without being cut to the end until the winding portion 46 completes the winding.
  • the winding of the coil starts from the U-phase lead-out portion 46.
  • the wire is connected from the lead portion 46 to the U1 teeth 34b, and the U1 coil 51a is formed on the U1 teeth 34b.
  • the in-phase connecting wire 55a is wired in the circumferential direction about a half turn to the U2 teeth 34e.
  • the U2 coil 51b is wound around the U2 teeth 34e, the U2 teeth 34e are connected to the lead-out portion 47 adjacent to the U2 teeth 34e.
  • the lead-out portion 47 is wired in the circumferential direction about a half turn and is connected to the V1 teeth 34a by the different phase crossover wire 56a, and the V1 coil 52a is formed on the V1 teeth 34a.
  • the in-phase connecting wire 55c is wired in the circumferential direction about half a turn to the V2 teeth 34d and is connected to the V2 teeth 34d.
  • the V2 coil 52b is completely wound around the V2 teeth 34d, it is wired in the circumferential direction about a half turn by the different phase connecting wire 56c and is connected to the lead-out portion 48.
  • the lead-out portion 48 After passing through a predetermined portion (position in contact with a metal terminal not shown) of the lead-out portion 48, wiring is made to the W1 teeth 34f by the different phase crossover wire 56c, and the W1 coil 53a is formed on the W1 teeth 34f.
  • the wires are wired by the in-phase connecting wire 55b in the circumferential direction about half a turn until the W2 teeth 34c.
  • the W2 coil 53b is wound around the W2 teeth 34c, it is connected to the lead-out portion 46 adjacent to the W2 teeth 34c, and the winding ends.
  • the number of crossovers wired in the circumferential direction to connect in-phase or out-of-phase coils is the same as that of V2 teeth 34d and W2 teeth 34c, as surrounded by dotted lines in the figure.
  • the in-phase connecting wire 55c of the four connecting wires is wound in the reverse direction separately from the other connecting wires, the length required for the wiring becomes long.
  • FIG. 7 is a diagram for explaining a motor connection method according to the present embodiment.
  • the stator core 31 of the motor 5 of the present embodiment also has six poles of teeth as in the prior art, and six coils of U1, U2, V1, V2, W1, and W2 are formed there.
  • the wiring order of the V1 coil 52a and the V2 coil 52b in the delta connection is reversed.
  • the wiring order of the other U1, U2, W1, and W2 coils 53b in the delta connection is the same.
  • FIG. 7 (2) the physical arrangement positions of the teeth 34a to 34f of the stator core 31 are the same.
  • FIG. 8 is another view for explaining the winding method of the stator coil using the automatic coil winding machine, which is illustrated as being continuous in the circumferential direction unlike the developed view of FIG.
  • the contents and connection method are the same as in FIG.
  • the connecting wires (in-phase connecting wires 55 a to 55 c and different phase connecting wires 56 a to 56 c) of the stator coil of this embodiment face only in one circumferential direction, an automatic coil winding machine is used. It became possible to perform wiring automatically.
  • the stator coil starts winding the nichrome wire from the U-phase lead-out portion 46.
  • the U-phase lead-out portion 46, the V-phase lead-out portion 47, and the W-phase lead-out portion 48 are arranged at equal intervals in the circumferential direction as shown in FIG. 34f is defined as V1, U1, W2, V2, U2, W1 in order.
  • insulating materials 58a to 58f are disposed on the radial side surfaces of the teeth 34a to 34f, and the rotation axis direction of the teeth 34a to 34f
  • the insulators 35 and the insulators 40 are disposed on the end faces, and the teeth around the insulators 58a to 58f and the insulators 35 and 40 are wound around.
  • the nichrome wire When the winding start portion of the nichrome wire is fixed by the U-phase lead-out portion 46, the nichrome wire is wound about 60 degrees along the inside of the circumferential groove 42 to form a different phase crossover wire 56b. ) Is wound several times around U1 teeth 34b to form U1 coil 51a.
  • FIG. 8 illustrates that the U1 teeth 34b are wound only once around for the sake of explanation, actually, the winding is performed several times to several tens times.
  • the winding direction of the coil to each tooth of the stator core 31 is uniform, and when each tooth is viewed radially inward from the outer peripheral side, it is made to turn around a specific direction (for example, clockwise) of the teeth.
  • the coil of U1 teeth 34b returns to the original circumferential groove 42 again through the radial groove 43b (see also FIG. 4) and is wound about 180 degrees in the circumferential groove 42 as shown by the crossover 55a.
  • the U2 teeth 34e are made to reach the U2 teeth 34e through the radial grooves 43e, and wound around the U2 teeth 34e a plurality of times to form the U2 coil 51b. After the coil of U2 teeth 34e is wound, it returns to the original circumferential groove 42 through the radial groove 43e and reaches the V-phase lead-out portion 47.
  • the V-phase lead-out portion 47 is brought into conduction by bringing it into contact with a metal terminal (not shown) attached to the terminal attachment groove 46c, and returned to the circumferential groove 42 again as shown by arrow 56a without cutting the nichrome wire.
  • the V2 teeth 34 d are made to reach the V2 teeth 34 d through the radial grooves 43 d by winding 60 degrees.
  • the V2 coil 52b After the V2 coil 52b is formed by the V2 teeth 34d, it returns to the original circumferential groove 42 again through the radial groove 43d (see also FIG. 4), and as shown by the crossover 55c, Then, the V1 teeth 34a are allowed to reach the V1 teeth 34a through the radial grooves 43a, and wound around the V1 teeth 34a a plurality of times to form the V1 coil 52a. After the V1 coil 52a is wound, it returns to the original circumferential groove 42 through the radial groove 43a and reaches the W-phase lead-out portion 48.
  • the W-phase lead-out portion 48 is brought into conduction by bringing it into contact with a metal terminal (not shown) mounted in the terminal attachment groove 48c, and returned to the circumferential groove 42 again as shown by arrow 56c without cutting the nichrome wire.
  • the W1 teeth 34f are made to reach the W1 teeth 34f through the radial grooves 43f by winding 60 degrees.
  • the coil of W1 teeth 34f After forming the coil of W1 teeth 34f, it returns to the original circumferential groove 42 again through the radial groove 43f (see also FIG. 4), and is wound around the circumferential groove 42 by about 180 degrees as shown by the crossover 55b.
  • the W2 teeth 34c are made to reach the W2 teeth 34c through the radial grooves 43c, and wound around the W2 teeth 34c multiple times to form the U2 coil 51b.
  • the U-phase lead-out portion 46 is made to reach the U-phase lead-out portion 46 through the radial groove 43c and brought into conduction with the winding start portion by contacting with the metal terminal not shown.
  • FIG. 9 is a partial cross-sectional view showing the positional relationship between the shape of the circumferential groove 42 of FIG. 4 and the wiring of the nichrome wire 50, and (1) is a partially enlarged view of FIG.
  • the diameter is d, as shown by the cross section of the nichrome wire 50 at the upper right.
  • the width (length in the rotation axis A1 direction) of the circumferential groove 42 is W and the depth (depth in the radial direction of the groove) D
  • the dimensions are such that W> 2d and D> 2d. It is assumed.
  • the number of crossovers wired inside the circumferential groove 42 is two at the maximum.
  • FIG. 9 (2) shows a state in which the nichrome wire 50 is wired in the circumferential groove 42, and it can be understood that the in-phase connecting wire 55a and the different-phase connecting wire 56c are arranged in the axial direction. You see.
  • the outer edge position of the rib 41b is slightly smaller than the outer edge position of the outer peripheral surface 41a by the difference t as shown in (1).
  • FIG. 10 (1) is a side view of the rotor 70 and the cooling fan 13 of the motor 5, and (2) is a cross-sectional view (corresponding to a side view of the rotor core 71) of the DD part of (1).
  • the assembly of the rotor 70 and the cooling fan 13 is concentric with the rotation shaft 60 on the front side of the rotor core 71 and the substantially cylindrical rotor core 71 disposed around the rotation shaft 60 serving as the central axis. It comprises the cooling fan 13 fixed.
  • the rotating shaft 60 is pivotally supported by bearings 15a and 15b (see FIG. 1) at two front and rear points, and the outer peripheral surface is polished because the bearings are press-fit to the mounting portions of the bearings 15a and 15b.
  • the bearing holding portions 60b and 60e with improved coaxiality are formed.
  • the small diameter portion 60a for holding the bevel gear 7a (see FIG. 1) is formed on the front side of the bearing holding portion 60b, and on the rear side of the bearing holding portion 60b, on the outer peripheral surface of a part in the axial direction
  • a cooling fan attachment portion 60c in which the uneven portion 60f continuous in the circumferential direction is formed is formed.
  • the cooling fan 13 fixed to the cooling fan mounting portion 60c is a centrifugal fan, and when the cooling fan 13 rotates, the air taken in from the axial direction of the rotating shaft 60 is discharged radially outward.
  • the cooling fan 13 is manufactured by integral molding of a synthetic resin, and an attachment portion 13a having an uneven portion corresponding to the uneven portion 60f formed on the rotary shaft 60 is formed on the inner peripheral side.
  • the cooling fan 13 is fixed to the rotating shaft 60 so as to prevent idling by engagement of the unevenness.
  • the stator 30 is formed of a laminated core in which a plurality of steel plates are stacked.
  • the portion holding the rotor core 71 of the rotating shaft 60 is a shaft mold portion 60 d whose outer peripheral surface is covered by a mold member 65 made of an insulating material. Resin is used as the mold member 65. Since the rotor core 71 is fixed to the shaft mold portion 60d, the rotary shaft 60 and the metal portion of the rotor core 71 are connected via the mold member 65, so that electrical continuity is not established.
  • balancer members 85, 95 are coaxially provided to achieve rotational balance.
  • the balancer members 85 and 95 are nonmagnetic metal annular mass bodies having a predetermined thickness in the rotational axis direction, and predetermined drills in the radial direction at one or more locations in the circumferential direction of the outer peripheral surface By forming holes, grooves, chamfers and the like to reduce the local mass, the accuracy of the rotational balance of the rotating body shown in FIG. In FIG. 10 (1), small continuous grooves are formed in the circumferential direction as arrows 85a and 95a, but this makes it easy to determine the position of the tip of the drill in the axial direction when drilling. Provided in Therefore, the circumferential grooves 85a and 95a may not be provided.
  • a disc-shaped resin spacer 80 is interposed between the balancer member 85 and the front end face 71a of the rotor core 71, and a disc-shaped resin spacer 90 is interposed between the balancer member 95 and the rear end face 71b of the rotor core 71.
  • the outer diameter of the resin spacers 80, 90 is the same as the outer diameter of the rotor core 71, and the axial thickness is thinner than that of the resin spacers 80, 90.
  • t 1 0 outside diameter only t 1 than the outer diameter of the rotor core 71 is slightly smaller, the diameter of the rotor core 71 with respect to 39.8mm spacer member (resin spacer 80, 90). It is about 5 mm.
  • the diameter D 80 of the balancer member 85 for the rotor core 71 is constituted about 15% smaller, diameter D 80 of the balancer member 95 for the rotor core 71 is small composed of about 30%.
  • FIG. 10 (2) is a cross-sectional view of the DD part of (1). This figure corresponds to a front view of the end face of the rotor core 71 as viewed from the front side.
  • slots 73a to 73d are formed by cutting out laminated iron cores at equal intervals in the circumferential direction.
  • the slots 73a to 73d are arranged on the four sides of a square centered on the rotation axis 60 in the cross section of the rotor core 71.
  • four plate-like magnets 76a to 76d are press-fitted in the direction of the rotation axis A1 in the direction of the rotation axis A1, and fixed with an adhesive.
  • the small diameter portions 75a to 75d continuous in the axial direction are caulking for positioning when fixing a large number of steel plates constituting the rotor core 71.
  • V near the short side of each of the magnets 76a to 76d in such a manner that the outer peripheral surface of the rotor core 71 is depressed radially inward in a substantially V shape or valley shape.
  • the grooved grooves 74a to 74d are formed.
  • the V-shaped grooves 74a to 74d are axial grooves continuously formed from the front end surface 71a to the rear end surface 71b along the entire axial length of the rotor core 71.
  • the bottom portion is flat or curved so that it can be said to be substantially U-shaped.
  • the cooling air can easily pass to the outer peripheral side of the rotor core 71, and the magnetic characteristics by the magnets 76a to 76d can be improved to improve the disturbance of the magnetic flux generated from the rotor core 71.
  • a mold member 65 intervenes between the center hole 72 of the rotor core 71 on the outer peripheral side of the rotating shaft 60.
  • the mold member 65 is formed only on a specific portion on the outer peripheral side of the rotary shaft 60, that is, the shaft mold portion 60d. By interposing the mold member 65 in this manner, the rotor core 71 and the rotating shaft 60 are electrically insulated.
  • (1) is a cross-sectional view taken along the line AA in FIG. 1, (2) is a cross-sectional view taken along the line BB in FIG. 1, and (3) is a cross-sectional view taken along the line CC in FIG. It is.
  • (1) and (2) are views as viewed from the front in the direction of the rotation axis A1
  • (3) is a view as viewed from the rear side. Note that the left and right directions are different.
  • the stator core 31 has six pole pieces inward, and the rotor core 71 is disposed in the inner space of the pole pieces.
  • the rotor core 71 is adjacent to the pole piece of the stator core 31 such that the outer peripheral surface thereof has a slight gap.
  • the motor housing 10 holding the stator core 31 is formed in a cylindrical shape by integral molding of a synthetic resin, and there is no divided surface passing through the axial direction of the rotating shaft 60.
  • the stator core 31 is held by being inserted rearward from the axial front side of the motor housing 10.
  • a large number of axially continuous ribs (convex portions) are formed inside the motor housing 10, and a predetermined axial passage is formed outside the stator core 31 so that the cooling air flows on the outer peripheral side of the motor 5. It was made to flow from the rear in the axial direction to the front.
  • the keys 32 a and 32 b of the stator core 31 are positioned in the recesses (key grooves) formed in the motor housing 10, the motor 5 is held so as not to move in the rotational direction within the motor housing 10.
  • a portion AA in FIG. 11 (1) corresponds to a side view of the rotor 70 as viewed from the front side.
  • a resin spacer 80 having the same cross-sectional outer edge shape as the rotor core 71 (see FIG. 10) having a V-shaped cross-sectional shape is provided on the front end surface (windward end) of the rotor core 71.
  • a balancer member 85 is provided which has substantially the same diameter as the bottom of the grooves 74a to 74d. Thus, the metal surface of the front end face 71a (see FIG. 10) of the rotor core 71 is not exposed by arranging the resin spacer 80 having the same shape as the rotor core 71 having the V-shaped cross section between the balancer member 85 and the rotor core 71.
  • the outer diameter of the balancer member 85 is set to be equal to or smaller than the bottom of the V-shaped grooves 74 a to 74 d of the rotor core 71 (the point closest to the rotational axis). When viewed in the normal direction of the magnet, it is formed to be smaller than the position of the outer surface of the permanent magnet.
  • the balancer member 85 is on the downwind side of the rotor core 71, dust in the space surrounded by the balancer member 85 and the rotor core 71 when the outer diameter of the balancer member 85 is larger than the bottom of the V-shaped grooves 74a to 74d.
  • An insulator 35 is provided on the front end side of the rotor core 71, and coils 58a to 58f are formed on wound portions extending in the radial direction of the insulator 35.
  • FIG. 11 (3) is a view corresponding to a rear view of the rotor 70 as viewed from the rear side.
  • the size of the balancer member 95 is a diameter sufficiently smaller than that of the rotor core 71 and the resin spacer 90.
  • V-shaped grooves 91a to 91d are formed in the same manner as the outer edge shape of resin spacer 90 in the same manner as the outer edge shape of rotor core 71, so the metal surface of rear end face 71b (see FIG. 10) of rotor core 71 is not exposed. It is possible to prevent metal dust that has reached the inner space of the motor housing 10 from the inside of the handle housing 16 with the cooling air from adhering directly to the axial rear end surface 71b of the rotor core 71.
  • V-shaped groove is similarly formed in the resin spacer 90, the possibility of causing the motor lock due to the foreign matter attached to the end face of the rotor core 71 is substantially avoided without obstructing the flow of the cooling air in the axial direction. it can.
  • FIG. 12 is a perspective view showing the shape of the balancer members 85 and 95 alone.
  • the balancer members 85 and 95 are for the purpose of improving the rotational balance of the rotor 70, and therefore have an axially symmetrical substantially annular shape in the state before the radial adjustment holes for balance adjustment (the state before the balance adjustment).
  • Through holes 85 c and 95 c are formed at the centers of the respective members, and have thicknesses T 1 and T 2 in the axial direction.
  • the respective masses are equalized by setting T 1 ⁇ T 2 in consideration of the difference in outer diameter.
  • the inner diameter of the through holes 85c and 95c is set to an optimum size for press-fitting the shaft mold portion 60d (see FIG. 10) of the rotating shaft 60 after the shaft molding process is completed.
  • a not-shown drill blade is pushed against the outer peripheral surface of the balancer members 85 and 95 from the radial direction of the rotating shaft 60. It is applied to form minute holes in it so that the mass reduction of the metal part removed by the holes will eliminate irregularities in the mass distribution of the rotating body.
  • the drill since the drill is made of iron-based metal, it is attracted by the magnetic force to the magnets 76a to 76d provided on the rotor core 71, so that the drilling operation is likely to be hindered.
  • the resin spacers 80 and 90 in the present embodiment, the distance between the balancer members 85 and 95 and the rotor core 71 can be slightly separated, so that the workability of the balancing operation can be improved. Even if the drill bit is drawn to the end face of the rotor core 71, the presence of the resin spacers 80 and 90 makes it easier to separate than in the conventional case.
  • the resin spacers 80 and 90 are formed by integrally molding the rotary shaft 60 and the both end surfaces of the rotor core 71 by including the both end surfaces of the rotor core 71 as mold parts. It may be molded integrally with the mold member 65.
  • the basic structure of the second embodiment is the same as that of the first embodiment, except that the axial length of the stator core 131 is large and the shape of the second insulator 140 on the rear side is different.
  • the front side insulator 35 can use the same component as that of the first embodiment if the size of the annular portion 36 matches.
  • the insulator 140 not only realizes the delta connection method according to the present invention, but also has a total of six coil extraction parts 146 to 148 and 166 to 168 so as to be widely compatible with conventional star connection and the like. It is.
  • the circumferential groove 142 is formed on the outer peripheral surface 141 a of the insulator 140 according to the same idea as the first embodiment described above.
  • the circumferential groove 142 is a recess that is recessed in the radial direction, and is formed continuously in the circumferential direction. Further, radial grooves 143a to 143f are formed such that the annular end surface 141c and the rib 141b are cut in the direction of the rotation axis A1 so as to cross the circumferential groove 142.
  • the radial grooves 143a to 143f are formed clockwise of the wound portions 158a to 158f of the insulator 140 as viewed from the rear side in the direction of the rotation axis A1. Further, lead portions 146 to 148 and 166 to 168 are formed on the radially outer side of the wound portions 158 a to 158 f, respectively. Here, only the lead portions 146 to 148 are used, and the lead portions 166 to 168 are not used for winding and wiring of a coil. Note that which of the lead-out portions is used may be changed according to the shape of the housing portion to which the motor is attached and the position of the wiring for driving current to the motor.
  • the metal terminals 159a to 159c are attached to the lead portions 146 to 148, respectively, and the different phase connecting wires 156a to 156c are brought into contact with the metal terminals 159a to 159c and fixed in a conductive state.
  • a metal terminal 159 c is attached to the lead-out portion 147.
  • a coil wire holding portion 160c in which a cut out portion is bent outward is formed in a part of the metal terminal 159c, and the different phase crossover wire 156a is locked to the coil wire holding portion 160c.
  • wound portions 158a to 158f are members that cover the rear sides in the circumferential direction of the teeth of the stator core 131, and insulate between the coil and the teeth.
  • the coils of the motor are delta connected, and the shape of one end side (rear side) of the stator core is devised to efficiently wind using a coil automatic winding machine. It became possible. Further, since the circumferential crossover wires in the insulator 40 are wired so as not to be exposed to the cooling air, the power tool can be realized which has a long life and operates stably even in an environment where the metal powder is scattered. .
  • the power tool is not limited to the above-described grinder, and application to various other power tools using a motor is possible.
  • the present invention can be applied to other power machines and motors for power machines.
  • Irregularities (rotational axis) 65 mold member 70: rotor 71: rotor core 71a: front end face 71b: rear end face 71c: outer peripheral surface 72: central hole 73a to 73d slot 74a to 74d V-shaped groove 75a to 75d small diameter portion 76a to 76d magnet 80 resin spacer 80a through hole 80b outer circumferential surface 85 balancer member 85a circumferential groove 90 ... Resin spacer, 90a ... through hole, 91a to 91d ... (V of the resin spacer 90), 95 ... balancer member, 95a ... circumferential groove, 98 ... grindstone, 99 ... power cord, 100 ... commercial AC power supply, 101 ...
  • Fan housing portion 102 Motor housing portion 103: Taper portion 104: Circuit board housing portion 105a: Screw boss portion 106a to 106d: Screw boss, 107a, 107b: Rib, 108: Rail portion, 109: Bearing holder, DESCRIPTION OF SYMBOLS 110 ... Operation part, 111 ... Rectification circuit, 112 ... Bridge diode, 113 ... Smoothing circuit, 114 ... Electrolytic capacitor, 115 ... Capacitor, 116 ... Resistance, 117 ... Shunt resistance, 118 ... Inverter circuit, 119 ...
  • Low voltage power circuit 121: Hall IC, 122: sensor substrate, 125: intermediate member, 125a: rotational groove, 126: surface An encircling portion 130, a stator 131, a stator core 133, a support member 133a, a right side portion 133b, a left side portion 134a, a through hole 135a, a wind window 136a, a member 137a, a screw hole 140, an insulator 141a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Portable Power Tools In General (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

The present invention provides an electrical power tool which is capable of preventing adhesion of powder dust, such as iron powder, to edges of a stator core. Provided is an electrical power tool that includes: a motor having a rotor core 71 using a permanent magnet mounted to a rotary shaft 60; a cooling fan 13; and a motor housing for accommodating the motor and the cooling fan, wherein outside air is taken in by means of the cooling fan 13 so as to cause cooling air to flow in the direction of the rotary shaft 60 within the motor housing. Non-magnetic metal balancer members 85, 95 formed in a cylindrical shape having an outer diameter smaller than that of the rotor core 71 are provided on both ends, of the rotor core 71, in the axial direction. Further, resin spacer members 80, 90 are provided between the rotor core 71 and the balancer members 85, 95. The rotor core 71 has formed on the outer circumferential surface 71c thereof a plurality of axially-oriented grooves 74a-74d of a substantially V-shaped, while the spacer members 80, 90 are also configured to have substantially the same profile as the rotor core 71 so as to be able to cover a metal portion of the end faces 71a, 71b of the rotor core 71.

Description

電動工具Electric tool
本発明はモータハウジングの内部にモータを保持する電動工具に関し、特にロータコアの組立構造の改良に関する。 The present invention relates to a power tool that holds a motor inside a motor housing, and more particularly to an improvement in the assembly structure of a rotor core.
ディスクグラインダ等の携帯用電動工具では、モータを保持するモータハウジングから後方側に突出するように連結されたハンドルを設けて、作業者は一方の手でハンドルを把持して、他方の手でモータハウジング自体を又はモータハウジングの取り付けられるサイドハンドルを押さえながら作業を行う。ディスクグラインダのハウジングは金属製又は合成樹脂製のハウジングを有するが、中型以上の大きなディスクグラインダではモータのサイズや出力が大きくなるために、モータハウジングは軸線を通る平面にて分割する形状ではなく、円筒状の一体形状のものとし、その後方側に左右分割式のハンドルハウジングを取り付ける。モータは円筒状のモータハウジングの前方側(ハンドルハウジングとは反対側)の開口から、軸方向後方に向けてモータハウジング内に挿入される。このようなモータの取付け構造を有するグラインダとして、特許文献1が知られている。ここではモータハウジングは合成樹脂の一体成形として、モータハウジングによって固定される軸受と、モータハウジングの前方側開口を覆う部材にて固定される軸受によってモータの回転軸を軸支する。 In a portable power tool such as a disc grinder, a handle connected so as to project rearward from the motor housing holding the motor is provided, and the operator holds the handle with one hand and the motor with the other hand Work while holding the housing itself or the side handle on which the motor housing is mounted. Although the housing of the disc grinder has a metal or synthetic resin housing, the motor housing is not shaped so as to be divided in a plane passing through the axis because the size and output of the motor are large in medium to large disc grinders. It has a cylindrical integral shape, and the left and right split handle housing is attached to the rear side. The motor is inserted into the motor housing axially rearward from an opening on the front side (opposite to the handle housing) of the cylindrical motor housing. Patent Document 1 is known as a grinder having such a motor attachment structure. Here, the motor housing is integrally molded of synthetic resin, and the rotary shaft of the motor is supported by a bearing fixed by the motor housing and a bearing fixed by a member covering the front opening of the motor housing.
近年、電動工具はブラシレスDCモータを採用することで、高精度の回転制御を行うと共に更なる高出力化を図る傾向にある。ブラシレスDCモータは、半導体スイッチング素子を用いたインバータ回路を用いて駆動される。インバータ回路に用いられる半導体スイッチング素子は、FET(電界効果トランジスタ)やIGBT(絶縁ゲートバイポーラトランジスタ)等が用いられる。ブラシレスDCモータは内側に永久磁石を用いたロータを設け、外側にコイルを巻いたステータが設けられる。モータの回転軸の軸方向に見て、モータの前方側には冷却ファンが設けられ、モータ5が回転すると回転軸と連動して冷却ファンが回転することにより、ハウジングの内部において後方側から前方側への風の流れ(冷却風)を発生させる。冷却風によって制御回路やモータを冷却する。 In recent years, by adopting a brushless DC motor as an electric power tool, there is a tendency for achieving higher output as well as performing high-precision rotation control. The brushless DC motor is driven using an inverter circuit using a semiconductor switching element. As a semiconductor switching element used for the inverter circuit, an FET (field effect transistor), an IGBT (insulated gate bipolar transistor) or the like is used. The brushless DC motor is provided with a rotor having a permanent magnet inside and a stator having a coil wound on the outside. The cooling fan is provided on the front side of the motor as viewed in the axial direction of the rotation shaft of the motor, and when the motor 5 rotates, the cooling fan rotates in conjunction with the rotation shaft. Generates a flow of wind to the side (cooling air). The control circuit and motor are cooled by the cooling air.
特開2017-13141号公報JP, 2017-13141, A
特許文献1のような従来のグラインダにおいては、モータの収容空間に流入した冷却風は、ステータの外周側とモータハウジングとの隙間、及び、ステータとロータとの隙間を通って軸方向後方から前方に流れ、ファンカバーの貫通穴を通ってギヤケースの貫通穴から外部に排出される。ブラシレスDCモータのロータには、通常、ネオジウム等の強力なマグネットが使用されているため、グラインダを用いて鉄等の研削作業を行うと、作業の際に発生する粉塵(金属粉)が冷却風と共に製品本体に入り込む虞があった。入り込んだ粉塵のほとんどはロータに付着することなく外部に再び排出されるが、ロータコアに付着して堆積してしまうと堆積物がステータコアに接触して、最悪ではモータがロックする不具合が発生する虞がある。この現象を防ぐために、ロータコアの外周部分に、軸方向に連続するV字溝を形成して、V字溝によって冷却風の風路を大きして、内部に流入した粉塵がハウジングの外部に排出されやすい構造とした。しかしながら、ロータコアの外形断面形状を真円では無くV字溝を形成するような形状とし、ロータコアに隣接して配置するバランスウェイトとしてステータコアの外径と同径の真円断面形状のものを配置すると、バランスウェイトがV字溝部の端部を塞ぐ壁になって、V字溝内から粉塵が排出されにくくなり、V字溝内に粉塵が堆積しやすくなるという不具合が発生した。この現象を避けるために、バランスウェイトの直径をステータコアのV字溝部の底面位置よりも小さくすることが考えられる。しかしながら、その場合、ステータコアの軸方向の端面(回転軸と直交する端面)において外周側一部が露出するため、露出部分に鉄粉等の粉塵が磁力によって吸着され易くなるという問題が生じる。 In the conventional grinder like Patent Document 1, the cooling air having flowed into the housing space of the motor passes axially through the gap between the outer peripheral side of the stator and the motor housing and the gap between the stator and the rotor from the rear in the axial direction Flow through the through hole of the fan cover and is discharged to the outside from the through hole of the gear case. Since a strong magnet such as neodymium is usually used for the rotor of a brushless DC motor, dust (metal powder) generated at the time of work is used as a cooling air when grinding work with iron or the like using a grinder. And there was a risk of getting into the product body. Most of the dust that has entered is discharged to the outside without adhering to the rotor, but if it adheres to the rotor core and deposits, deposits may come in contact with the stator core, and in the worst case a motor locking failure may occur. There is. In order to prevent this phenomenon, an axially continuous V-shaped groove is formed in the outer peripheral portion of the rotor core, the air path of the cooling air is enlarged by the V-shaped groove, and the dust flowing inside is discharged to the outside of the housing The structure is easy to However, when the outer cross-sectional shape of the rotor core is not a perfect circle but a V-shaped groove is formed, a balance weight having the same diameter as the outer diameter of the stator core is disposed as a balance weight disposed adjacent to the rotor core. The balance weight is a wall that closes the end of the V-shaped groove, making it difficult for dust to be discharged from the V-shaped groove and causing a problem that dust tends to be accumulated in the V-shaped groove. In order to avoid this phenomenon, it is conceivable to make the diameter of the balance weight smaller than the bottom position of the V-shaped groove portion of the stator core. However, in that case, since a part of the outer peripheral side is exposed at the end face in the axial direction of the stator core (end face orthogonal to the rotation axis), a problem arises that dust such as iron powder is easily attracted to the exposed portion by magnetic force.
本発明は上記背景に鑑みてなされたもので、その目的は、外周面に軸方向に連続する溝部を有するステータコアの端部にバランスウェイトを取りつける際に、ステータコアの端部に鉄粉等の粉塵が付着することを防止できるようにした電動工具を提供することにある。
本発明の他の目的は、軸方向と直交する断面形状が非円形のステータコアに、断面形状が円形かつ小径の円筒形のバランスウェイトを用いて、バランスウェイトに径方向外側にセンサ基板を搭載可能とした電動工具を提供することにある。
本発明のさらに他の目的は、ステータコアの端面全体を樹脂部材で覆うことによってステータコアの端面への鉄粉等を付着しにくくした電動工具を提供することにある。
The present invention has been made in view of the above background, and an object thereof is dust such as iron powder at an end of a stator core when attaching a balance weight to an end of a stator core having a groove continuously in the axial direction in an outer peripheral surface. It is an object of the present invention to provide a power tool which can prevent the adhesion of
Another object of the present invention is to mount the sensor substrate radially outward on the balance weight by using a cylindrical balance weight having a circular cross-sectional shape and a small diameter on the stator core having a non-circular cross-sectional shape orthogonal to the axial direction And to provide a power tool.
Still another object of the present invention is to provide an electric power tool in which iron powder and the like are less likely to adhere to the end face of the stator core by covering the entire end face of the stator core with a resin member.
本願において開示される発明のうち代表的なものの特徴を説明すれば次の通りである。
本発明の一つの特徴によれば、回転軸に取り付けられ永久磁石を収容するロータコア及びロータコアの外周に位置するステータコアを有するモータと、モータを収容するための筒状のハウジングと、回転軸に取り付けられる冷却用のファンを有し、ファンによって外気を取り込み、ハウジング内においてモータの周囲を回転軸方向に冷却風を流すようにした電動工具であって、円筒形であってロータコアの外径よりも小さい非磁性金属製のバランサ部材をロータコアの軸方向の一方側又は双方側に設け、バランサ部材とロータコアの間に樹脂製のスペーサ部材を介在させるように構成した。また、ロータコアの外周面において、ロータコアの軸方向の一方側端面から他端側端面に至って連続して形成される軸方向溝を複数本形成し、スペーサ部材はロータコアの端面の外縁形状と相似形の外縁形状となるように構成した。
It will be as follows if the characteristic of a typical thing is demonstrated among the invention disclosed in this application.
According to one feature of the present invention, a motor having a rotor core mounted on the rotary shaft and containing a permanent magnet and a stator core located on the outer periphery of the rotor core, a cylindrical housing for housing the motor, and a rotary shaft mounted An electric power tool having a cooling fan to take in outside air by means of the fan and flowing cooling air around the motor in the housing in the direction of the rotational axis, which is cylindrical and is larger than the outer diameter of the rotor core A small nonmagnetic metal balancer member is provided on one side or both sides in the axial direction of the rotor core, and a resin spacer member is interposed between the balancer member and the rotor core. A plurality of axial grooves are formed continuously on the outer peripheral surface of the rotor core from one axial end face to the other axial end face of the rotor core, and the spacer member has a shape similar to the outer edge shape of the rotor core end face The outer edge of the
本発明の他の特徴によれば、スペーサ部材は中心に貫通穴が形成された略円環状の部材であり、バランサ部材はバランス調整用の径方向穴を開ける前の外縁の断面形状が真円であり、中心に軸方向に延びる貫通穴が形成され、ロータコアを固定した状態の回転軸に、スペーサ部材とバランサ部材の貫通穴を圧入することによって、スペーサ部材とバランサ部材が回転軸に固定される。また、ステータコアには励磁電流を流すためのコイルが巻かれ、回転軸の外面とステータコアとの絶縁状態を確保するために回転軸の外面には合成樹脂製のシャフトモールド加工がされ、スペーサ部材はシャフトモールド加工の際に合わせてモールド成型により形成される。バランサ部材はバランス調整用の径方向穴を開ける前の外縁の断面形状が真円であり、中心に軸方向に延びる貫通穴が形成され、シャフトモールド加工が終了した後に回転軸に圧入される。さらに、ロータコアは中心に貫通穴を有し、貫通穴よりも径方向外側に板状の永久磁石を収容するためのスロットが形成された積層鉄心にて構成される。バランサ部材の外径は、回転軸を通る永久磁石の法線方向でみて永久磁石の外側面の位置よりも小さい直径にて形成される。バランサ部材の外周面には、ロータの回転バランス調整用の穴が設けられ、スペーサ部材の回転軸方向の厚さは、バランサ部材の回転軸方向の厚さよりも薄く構成される。 According to another feature of the present invention, the spacer member is a substantially annular member having a through hole formed in the center, and the balancer member has a circular cross-sectional shape of the outer edge before making a radial hole for balance adjustment. The spacer member and the balancer member are fixed to the rotation shaft by press-fitting the through holes of the spacer member and the balancer member to the rotation shaft in a state in which the rotor core is fixed. Ru. In addition, a coil for passing an exciting current is wound around the stator core, a shaft made of synthetic resin is molded on the outer surface of the rotary shaft to ensure insulation between the outer surface of the rotary shaft and the stator core, and the spacer member is It is formed by molding according to the time of shaft mold processing. In the balancer member, the cross-sectional shape of the outer edge before making a radial adjustment hole for balance adjustment is a perfect circle, a through hole extending in the axial direction is formed at the center, and it is pressed into the rotating shaft after the shaft molding is completed. Further, the rotor core is formed of a laminated core having a through hole at the center and a slot for accommodating a plate-like permanent magnet radially outward of the through hole. The outer diameter of the balancer member is formed with a diameter smaller than the position of the outer surface of the permanent magnet in the normal direction of the permanent magnet passing through the rotation axis. A hole for adjusting the rotational balance of the rotor is provided on the outer peripheral surface of the balancer member, and the thickness in the rotational axis direction of the spacer member is thinner than the thickness in the rotational axis direction of the balancer member.
本発明の他の特徴によれば、回転軸に取り付けられ永久磁石を用いたロータコアとロータコアの外周に位置するステータコアを有するモータと、モータを収容するための筒状のハウジングと、回転軸に取り付けられる冷却用のファンを有し、ファンによって外気を取り込み、ハウジング内においてモータの周囲を回転軸方向に冷却風を流すようにした電動工具であって、回転軸の外周面とロータコアの内周面の間にシャフトモールド加工を行い、モールド箇所としてステータコアの両側端面を覆う部分まで拡張することにより回転軸とステータコアの両側端面を一体にモールドするようにした。また、円筒形であってロータコアの外径よりも小さいバランサ部材をロータコアの風下側端部に設けた。 According to another feature of the present invention, a motor having a rotor core mounted on a rotary shaft and using a permanent magnet and a stator core positioned on the outer periphery of the rotor core, a cylindrical housing for housing the motor, and a rotary shaft An electric power tool having a cooling fan for taking in outside air by the fan and flowing cooling air around the motor in the housing in the direction of the rotational axis, the outer peripheral surface of the rotational shaft and the inner peripheral surface of the rotor core The shaft molding process is performed between the two, and the rotational shaft and the both end surfaces of the stator core are integrally molded by expanding the mold portion to a portion covering the both end surfaces of the stator core. Further, a balancer member which is cylindrical and smaller than the outer diameter of the rotor core is provided at the leeward end of the rotor core.
本発明によれば、V字断面形状と同形状のスペーサをバランスウエイトとロータコアの間に配置し、ロータコアのV溝底部より小さい径のバランスウエイトを配置することにより、V溝を通る冷却風及び粉塵を効率よく通すことが可能になる。また、ブラシレスモータの金属粉塵がロータコアへ付着することを防止し、モータロックの発生を抑制することができる。
本発明の上記及び他の目的ならびに新規な特徴は、以下の明細書の記載及び図面から明らかになるであろう。
According to the present invention, a spacer having the same shape as the V-shaped cross-sectional shape is disposed between the balance weight and the rotor core, and a balance weight having a diameter smaller than the V-groove bottom of the rotor core is disposed. It becomes possible to pass dust efficiently. In addition, metal dust of the brushless motor can be prevented from adhering to the rotor core, and the occurrence of motor lock can be suppressed.
The above and other objects and novel features of the present invention will be apparent from the following description and the drawings.
本発明の実施例に係る電動工具であるディスクグラインダ1の全体構成を示す縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view which shows the whole structure of the disc grinder 1 which is an electric tool which concerns on the Example of this invention. 図1のディスクグラインダ1の駆動制御系の回路構成図である。It is a circuit block diagram of the drive control system of the disk grinder 1 of FIG. 図1のモータハウジング10の後方側に装着されるインバータ回路部20の搭載状況を示す展開斜視図である。FIG. 6 is an exploded perspective view showing a mounting state of an inverter circuit section 20 mounted on the rear side of the motor housing 10 of FIG. 1. 図1のモータ5のステータ30を示す斜視図である(コイルの巻回前の状態)。It is a perspective view which shows the stator 30 of the motor 5 of FIG. 1 (state before winding of a coil). 図4のステータ30を示す図であって、(1)は側面図、(2)は背面図である。It is a figure which shows the stator 30 of FIG. 4, Comprising: (1) is a side view, (2) is a rear view. 従来例におけるステータコイルの巻き方を説明するための図である。It is a figure for demonstrating how to wind the stator coil in a prior art example. 本実施例に係るステータコイルの巻き方を説明するための図である。It is a figure for demonstrating how to wind the stator coil which concerns on a present Example. 本実施例に係るステータコイルの自動コイル巻き機を用いた巻き方を説明するための図である。It is a figure for demonstrating the winding method using the automatic coil winding machine of the stator coil which concerns on a present Example. 図4の周方向溝42の形状とニクロム線50の配線との位置関係を示す図である。It is a figure which shows the positional relationship of the shape of the circumferential direction groove | channel 42 of FIG. 4, and the wiring of the nichrome wire 50. FIG. (1)はモータ5のロータ70及び冷却ファン13の側面図であり、(2)は(1)のD-D部の断面図(ロータコア71の側面図)である。(1) is a side view of the rotor 70 and the cooling fan 13 of the motor 5, (2) is a cross-sectional view of the DD portion of (1) (a side view of the rotor core 71). (1)は図1のA-A部の断面図であり、(2)は図1のB-B部の断面図であり、(3)は図1のC-C部の断面図である。(1) is a cross-sectional view taken along the line AA in FIG. 1, (2) is a cross-sectional view taken along the line BB in FIG. 1, and (3) is a cross-sectional view taken along the line CC in FIG. . 図9のバランサ部材85、95の形状を示す斜視図である。It is a perspective view which shows the shape of the balancer members 85 and 95 of FIG. 本発明の第2の実施例に係るステータ130を示す図であって、(1)は側面図、(2)は背面図である(コイルを巻回後の状態)It is a figure which shows the stator 130 which concerns on the 2nd Example of this invention, Comprising: (1) is a side view, (2) is a rear view (the state after winding a coil)
以下、本発明の実施形態について図面を参照して詳細に説明する。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、本明細書においては、前後左右、上下の方向は図中に示す方向であるとして説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings for describing the embodiments, members having the same function are denoted by the same reference numerals, and the repetitive description thereof will be omitted. Further, in the present specification, the front, rear, left, right, upper and lower directions will be described as directions shown in the drawings.
図1は本発明の実施例に係るディスクグラインダ1の全体構成を示す断面図である。ディスクグラインダ1は、円筒形のモータハウジング10の内部に駆動源たるモータ5が収容される胴体部2と、モータ5によって駆動される作業機器(ここでは先端工具として砥石98を用いるグラインダ)を作動させる動力伝達部3と、胴体部2の後方側に設けられ作業者が把持するためのハンドル部4を有して構成される。ハンドル部4は、胴体部2に対して回動機構を介して接続されることにより、モータ5の回転軸線A1を中心に所定角度だけ回動可能(摺動可能)なように構成される。 FIG. 1 is a cross-sectional view showing the overall configuration of a disk grinder 1 according to an embodiment of the present invention. The disc grinder 1 operates a body 2 in which a motor 5 serving as a driving source is accommodated inside a cylindrical motor housing 10, and a working device driven by the motor 5 (here, a grinder using a grinding stone 98 as a tip tool) And a handle portion 4 provided on the rear side of the body portion 2 and gripped by an operator. The handle portion 4 is configured to be rotatable (slidable) by a predetermined angle around the rotation axis A1 of the motor 5 by being connected to the body portion 2 via a rotation mechanism.
モータハウジング10の内部には、ブラシレス方式のモータ5が収容される。モータ5は、永久磁石を有するロータ70が内周側に配置され、外周側にコイルを有するステータ30を有する。モータ5の回転軸60は、モータハウジング10の中央部付近に設けられる軸受15bと、モータハウジング10の前方側開口を覆うギヤケース6によって保持される前方側の軸受15aにより回動可能に保持される。動力伝達部3は、ギヤケース6に軸受9a、9bによって軸支されるスピンドル8に取付けられたディスク状の砥石98と、ホイルガード29を備える。ギヤケース6内には、一対の傘歯車7a、7bが配置され、モータ5の回転軸60の回転力を方向変換してスピンドル8に伝達する。スピンドル8の下端には、受け金具14aを介して押さえ金具14bによって先端工具保持部が形成され、砥石98が固定される。ギヤケース6の上部にはサイドハンドル取付孔6bが設けられ、ギヤケース6右側面及び左側面にも同様のサイドハンドル取付孔(図示せず)が設けられる。 A brushless motor 5 is accommodated in the motor housing 10. The motor 5 includes a stator 30 having a rotor 70 having permanent magnets disposed on the inner circumferential side and a coil on the outer circumferential side. The rotating shaft 60 of the motor 5 is rotatably held by a bearing 15b provided near the central portion of the motor housing 10 and a bearing 15a on the front side held by the gear case 6 covering the front opening of the motor housing 10. . The power transmission unit 3 includes a disk-shaped grindstone 98 attached to a spindle 8 supported by bearings 9 a and 9 b in a gear case 6 and a wheel guard 29. In the gear case 6, a pair of bevel gears 7 a and 7 b are disposed, and the rotational force of the rotation shaft 60 of the motor 5 is changed in direction and transmitted to the spindle 8. At the lower end of the spindle 8, a tip end tool holding portion is formed by the press fitting 14 b via the receiving fitting 14 a, and the grindstone 98 is fixed. A side handle attachment hole 6b is provided at the top of the gear case 6, and similar side handle attachment holes (not shown) are provided on the right and left sides of the gear case 6 as well.
モータハウジング10の後端側開口からインバータ回路部20が挿入され、その後に開口部分は支持部材133と中間部材125によって覆われる。支持部材133は左右方向に分割可能に構成して、左右の分割片の間に中間部材125の揺動支持軸を挟み込む。中間部材125の外周面には2本の径方向に突出するフランジ部126が形成され、フランジ部に沿って把持部を形成するハンドルハウジング16が回動可能なように保持される。 The inverter circuit portion 20 is inserted from the rear end side opening of the motor housing 10, and thereafter, the opening portion is covered by the support member 133 and the intermediate member 125. The support member 133 is configured to be divisible in the left-right direction, and sandwiches the swing support shaft of the intermediate member 125 between the left and right divided pieces. Two radially projecting flange portions 126 are formed on the outer peripheral surface of the intermediate member 125, and the handle housing 16 forming the grip portion is rotatably held along the flange portions.
インバータ回路部20の回路基板27はモータ5の外形よりもわずかに大きい径の略円環形の多層基板であり、その面がモータ5の回転軸線A1と直交する向きに配置される。回路基板27上には6つの絶縁ゲートバイポーラトランジスタ(IGBT)等のスイッチング素子(後述)が搭載される。スイッチング素子を搭載した回路基板27は、容器状の円筒ケース21の内部に固定される。インバータ回路部20を収容する部分のモータハウジング10の内径は、モータ5を収容する部分に比べてやや太くなるように形成される。回転軸線A1方向にみて軸受15bとステータ30の間には、円環状の小さなセンサ基板122が搭載される。センサ基板122は円環状の基板部分を有し、ステータ30と面する側に、ロータ70により発生する磁界を直接検出するための3つのホールIC121(図2で後述)が60度間隔にて搭載される。 The circuit board 27 of the inverter circuit unit 20 is a substantially annular multi-layered board having a diameter slightly larger than the outer shape of the motor 5, and the surface thereof is disposed in the direction orthogonal to the rotation axis A 1 of the motor 5. Six switching elements (described later) such as six insulated gate bipolar transistors (IGBTs) are mounted on the circuit board 27. The circuit board 27 on which the switching element is mounted is fixed inside the container-like cylindrical case 21. The inner diameter of the motor housing 10 in the portion accommodating the inverter circuit portion 20 is formed to be slightly larger than that in the portion accommodating the motor 5. A small annular ring shaped sensor substrate 122 is mounted between the bearing 15b and the stator 30 as viewed in the direction of the rotation axis A1. The sensor substrate 122 has an annular substrate portion, and on the side facing the stator 30, three Hall ICs 121 (described later in FIG. 2) for directly detecting the magnetic field generated by the rotor 70 are mounted at intervals of 60 degrees. Be done.
モータ5の前方側であって軸受15aとの間には冷却ファン13が設けられる。冷却ファン13は遠心ファンであってモータ5側の空気を吸引して径方向外側に排出する。冷却ファン13の後方には、回転軸60の周囲に所定の大きさの貫通穴を形成し冷却ファンの流入口を形成するファンガイド12が設けられる。冷却ファン13によって起こされる空気流によって、ハンドルハウジング16の図示しない風穴から取り込まれた空気を、モータハウジング10内に吸引し、モータ5の後方側から前方側への空気の流れ(空気流)を生成する。最初に、ハンドルハウジング16に形成されるスリット状の空気取入孔(図示せず)から外気が取り込まれ、中間部材125と支持部材133に形成される貫通孔や風窓(図1では図示されない)を流れてモータハウジング10の後方側開口からモータハウジング10の内部空間に流入する。流入した空気は、最初にインバータ回路部20に搭載された電子部品を冷却し、インバータ回路部20の側方の切り込み部を通過し、インバータ回路部20の円筒ケース21の外周側であって、モータハウジング10との間の隙間を通って軸受ホルダ109付近に到達する。軸受ホルダ109の外周側には図示しない風窓が複数形成されており、その風窓を通過した空気流はモータ5側に到達する。 A cooling fan 13 is provided on the front side of the motor 5 and between the bearing 15a. The cooling fan 13 is a centrifugal fan and sucks the air on the motor 5 side and discharges it radially outward. At the rear of the cooling fan 13, a fan guide 12 is formed around the rotating shaft 60 to form a through hole of a predetermined size to form an inlet of the cooling fan. The air taken up from the air hole (not shown) of the handle housing 16 is drawn into the motor housing 10 by the air flow generated by the cooling fan 13 and the air flow (air flow) from the rear side to the front side of the motor 5 is obtained. Generate First, outside air is taken in from the slit-like air intake hole (not shown) formed in the handle housing 16, and a through hole or a wind window (not shown in FIG. 1) formed in the intermediate member 125 and the support member 133. And flows into the internal space of the motor housing 10 from the rear side opening of the motor housing 10. The air that has flowed in first cools the electronic components mounted in the inverter circuit unit 20, passes through the side notches of the inverter circuit unit 20, and is on the outer peripheral side of the cylindrical case 21 of the inverter circuit unit 20, It reaches near the bearing holder 109 through the gap with the motor housing 10. A plurality of air windows (not shown) are formed on the outer peripheral side of the bearing holder 109, and the air flow passing through the air windows reaches the motor 5 side.
モータ5側に到達した空気流は、ロータ70とステータ30の間、及び、ステータ30とモータハウジング10の内壁部分との間を通過するように流れ、冷却ファン13の軸心付近から吸引されて冷却ファン13の径方向外側に流れ、軸受ホルダ11の外周側に形成された空気孔を通過する。軸受ホルダ11から排出される冷却風の一部は、ギヤケース6に形成された排気口(図示せず)を介して矢印79aのように外部に排出され、残りは軸受ホルダ11の下側付近の排気口(図示せず)を介して矢印79bのように外部に排出される。以上のように本実施例ではモータハウジング10を筒型の一体型とすることで、回転軸線A1を含む断面にて分割したモータハウジングで支持するよりも、モータ5を強固に軸支可能とし、十分な剛性を確保できた。 The air flow reaching the motor 5 side flows so as to pass between the rotor 70 and the stator 30 and between the stator 30 and the inner wall portion of the motor housing 10, and is drawn from near the axial center of the cooling fan 13 The air flows radially outward of the cooling fan 13 and passes through an air hole formed on the outer peripheral side of the bearing holder 11. A part of the cooling air discharged from the bearing holder 11 is discharged to the outside as indicated by an arrow 79 a through an exhaust port (not shown) formed in the gear case 6, and the remaining is near the lower side of the bearing holder 11. The air is exhausted to the outside as indicated by an arrow 79 b through an exhaust port (not shown). As described above, in the present embodiment, the motor housing 10 is integrally formed in a cylindrical shape, so that the motor 5 can be supported more firmly than supported by the motor housing divided by the cross section including the rotation axis A1, Sufficient rigidity was secured.
ハンドル部4は、作業時に作業者が把持する部分となるもので、その筐体はプラスチックの成型によって左右二分割式にて構成されたハンドルハウジング16からなり、4本の図示しないネジによって固定される。ハンドル部4は回転軸線A1回りに図1の状態から一方側に90度、他方側に90度回転させることができ、その回転させた状態でハンドル部4をモータハウジング10に対して固定できる。この回転軸線A1まわりの回転を実現するために回動機構は、中間部材125の後方側外周縁に形成されたリブ状に形成されたフランジ部126と、ハンドルハウジング16に形成された回転溝125aが嵌め合わされることにより実現される。 The handle portion 4 is a portion gripped by the operator at the time of operation, and its housing is composed of a handle housing 16 configured by left and right division by plastic molding and fixed by four screws (not shown). Ru. The handle portion 4 can be rotated 90 degrees to one side and 90 degrees to the other side from the state of FIG. 1 around the rotation axis A1, and the handle portion 4 can be fixed to the motor housing 10 in the rotated state. In order to realize rotation around the rotation axis A1, the rotation mechanism includes a flange portion 126 formed in a rib shape formed on the outer peripheral edge on the rear side of the intermediate member 125, and a rotation groove 125a formed in the handle housing 16. This is realized by fitting together.
中間部材125の後方には、制御回路部19が収容される。制御回路部19は、回転軸線A1と直交する方向に延びるようにハンドルハウジング16により挟持される。制御回路部19は、浅い容器状のケースの内部に第2の回路基板たる制御回路基板(図示せず)を収容し、モータ5の制御回路(後述)が搭載される。このようにインバータ用と制御用の回路を別基板(回路基板27と制御回路部19内の図示しない回路基板)に分けることで、単一基板に全回路を集中させたときの回路基板の大型化を抑制できる。 The control circuit unit 19 is accommodated behind the intermediate member 125. The control circuit portion 19 is held by the handle housing 16 so as to extend in a direction orthogonal to the rotation axis A1. The control circuit unit 19 accommodates a control circuit board (not shown) as a second circuit board in a shallow case, and a control circuit (described later) of the motor 5 is mounted. By dividing the circuits for the inverter and the control into separate substrates (circuit boards 27 and the circuit boards (not shown) in the control circuit portion 19) in this manner, the large size of the circuit boards when all the circuits are concentrated on a single board. Can be suppressed.
ハンドル部4の後端側には商用交流電源供給用の電源コード99が接続される。ハンドルハウジング16の中央部分には、モータ5のオン・オフを制御するためのトリガスイッチ18が配置される。トリガスイッチ18は、トリガレバー17を操作させることでオン又はオフに切り換える。 A power cord 99 for supplying commercial AC power is connected to the rear end side of the handle portion 4. A trigger switch 18 for controlling on / off of the motor 5 is disposed at a central portion of the handle housing 16. The trigger switch 18 is switched on or off by operating the trigger lever 17.
モータ5は、動力伝達部3を取りつける前に、モータハウジング10の前方側から回転軸線A1方向後方側に向けて挿入され、モータ5をモータハウジング10に突き当たる所定位置まで挿入させる。すると、ステータ30の後端部に位置する合成樹脂製のインシュレータ40(図4にて後述)がモータハウジング10の軸受ホルダ109に突き当たる。回転軸60の後端部分を軸支する軸受15bはボールベアリングであり、その外輪側が軸受ホルダ109によって保持される。軸受ホルダ109はモータハウジング10と一体成形にて製造し、軸受ホルダ109を支えるためにモータハウジング10の内壁と軸受ホルダ109の間には複数のリブが格子状に形成される。 Before mounting the power transmission unit 3, the motor 5 is inserted from the front side of the motor housing 10 toward the rear side in the direction of the rotation axis A 1, and inserts the motor 5 to a predetermined position abutting the motor housing 10. Then, the synthetic resin insulator 40 (described later in FIG. 4) located at the rear end of the stator 30 abuts on the bearing holder 109 of the motor housing 10. The bearing 15 b for supporting the rear end portion of the rotating shaft 60 is a ball bearing, and the outer ring side thereof is held by the bearing holder 109. The bearing holder 109 is manufactured integrally with the motor housing 10, and a plurality of ribs are formed in a grid shape between the inner wall of the motor housing 10 and the bearing holder 109 in order to support the bearing holder 109.
次に図2を用いてモータ5の駆動制御系の主な回路構成を説明する。外部から商用交流電源100が電源コード99によって供給されて、直流に整流される。ブリッジダイオード112は商用交流電源100から入力される交流を全波整流し、平滑回路113へ出力する。平滑回路113は、ブリッジダイオード112によって整流された電流の中に含まれている脈流を、直流に近い状態に平滑化してインバータ回路118へ出力する。平滑回路113は、電解コンデンサ114とコンデンサ115と放電用の抵抗116を含んで構成される。インバータ回路118は6つのスイッチング素子Q1~Q6を含んで構成され、演算部110から供給されるゲート信号H1~H6によってスイッチング動作が制御される。スイッチング素子Q1~Q6は、絶縁ゲートバイポーラトランジスタ(IGBT)を用いているが、電界効果トランジスタ(FET)を用いるようにしても良い。インバータ回路118の出力は、モータ5のコイルのU相、V相、W相に接続される。ブリッジダイオード112の出力側には低電圧電源回路119が接続される。低電圧電源回路119は演算部110が稼働するための安定した基準電圧(低電圧)の直流を供給する公知の電源回路である。 Next, the main circuit configuration of the drive control system of the motor 5 will be described with reference to FIG. A commercial AC power supply 100 is externally supplied by a power supply cord 99 and rectified to direct current. The bridge diode 112 full-wave rectifies the alternating current input from the commercial alternating current power supply 100 and outputs it to the smoothing circuit 113. The smoothing circuit 113 smoothes the pulse current contained in the current rectified by the bridge diode 112 to a state close to direct current and outputs the smoothed current to the inverter circuit 118. The smoothing circuit 113 includes an electrolytic capacitor 114, a capacitor 115, and a discharge resistor 116. The inverter circuit 118 includes six switching elements Q1 to Q6, and the switching operation is controlled by the gate signals H1 to H6 supplied from the operation unit 110. The switching elements Q1 to Q6 use insulated gate bipolar transistors (IGBTs), but field effect transistors (FETs) may be used. The output of the inverter circuit 118 is connected to the U-phase, V-phase, and W-phase of the coil of the motor 5. The low voltage power supply circuit 119 is connected to the output side of the bridge diode 112. The low voltage power supply circuit 119 is a known power supply circuit that supplies direct current of a stable reference voltage (low voltage) for the operation unit 110 to operate.
モータ5のステータ30の内側では、永久磁石を有するロータ70が回転する。ロータ70の近傍には3つのホールIC121による回転位置検出素子が設けられ、演算部110はロータ70の出力を監視することによりロータ70の回転位置を検出する。ホールIC121を搭載するセンサ基板122(図1参照)は、ロータ70の片側端面に対面する位置に配置される。 Inside the stator 30 of the motor 5, a rotor 70 having permanent magnets rotates. In the vicinity of the rotor 70, rotational position detection elements by three Hall ICs 121 are provided, and the calculation unit 110 detects the rotational position of the rotor 70 by monitoring the output of the rotor 70. A sensor substrate 122 (see FIG. 1) on which the Hall IC 121 is mounted is disposed at a position facing one end surface of the rotor 70.
演算部110は、モータ5のオン・オフ及び回転制御を行うための制御部であって、図示しないマイクロコンピュータ(以下、「マイコン」と称する)を用いて主に構成される。演算部110は制御回路部19(図1参照)の回路基板に搭載され、トリガスイッチ18の操作に伴い入力される起動信号に基づき、モータ5を回転させるためにコイルU、V、Wへの通電時間と駆動電圧を制御する。尚、ここでは図示していないが、モータ5の回転速度を設定する変速ダイヤルを設けて、変速ダイヤルによって設定された速度に合わせるように演算部110がモータ5の速度調整をしても良い。 The calculation unit 110 is a control unit for performing on / off control and rotation control of the motor 5, and is mainly configured using a microcomputer (not shown) (hereinafter, referred to as "microcomputer"). The arithmetic unit 110 is mounted on the circuit board of the control circuit unit 19 (see FIG. 1), and rotates the motor 5 based on the start signal input along with the operation of the trigger switch 18 to the coils U, V, W. Control the energizing time and drive voltage. Although not shown here, a speed change dial may be provided to set the rotational speed of the motor 5, and the calculation unit 110 may adjust the speed of the motor 5 to match the speed set by the speed change dial.
演算部110の出力は、インバータ回路118の6個のスイッチング素子Q1~Q6の各ゲートに接続される。インバータ回路118の6個のスイッチング素子Q1~Q6の各エミッタ又は各コレクタは、デルタ結線されたコイルのU相、V相、W相に接続される。スイッチング素子Q1~Q6は、演算部110から入力されるゲート信号H1~H6に基づきスイッチング動作を行い、商用交流電源100から整流回路111を介して供給された直流電圧を、3相(U相、V相、W相)電圧Vu、Vv、Vwとして、モータ5の各相に供給する。モータ5に供給される電流の大きさは、平滑回路113とインバータ回路118との間に接続されたシャント抵抗117の両端の電圧値を検出することにより演算部110によって検出される。 The output of operation unit 110 is connected to each gate of six switching elements Q1 to Q6 of inverter circuit 118. The emitters or the collectors of the six switching elements Q1 to Q6 of the inverter circuit 118 are connected to the U phase, the V phase, and the W phase of the delta-connected coil. Switching elements Q1 to Q6 perform switching operation based on gate signals H1 to H6 input from operation unit 110, and direct current voltage supplied from commercial AC power supply 100 via rectification circuit 111 is divided into three phases (U phase, It supplies to each phase of the motor 5 as V phase, W phase) voltage Vu, Vv, and Vw. The magnitude of the current supplied to the motor 5 is detected by the operation unit 110 by detecting the voltage value across the shunt resistor 117 connected between the smoothing circuit 113 and the inverter circuit 118.
次に図3の部品展開図を用いてモータハウジング10とその後方側に収容されるインバータ回路部20の内部構造を説明する。モータハウジング10は、合成樹脂の一体成形によって製造されるもので、モータ5を収容するモータ収容部102の前方側に外径が大きく形成されたファン収容部101が形成される。ファン収容部101の内部には冷却ファン13(図1参照)を収容するために外径が大きく形成されるとともに、外周の4箇所には、ギヤケース6(図1参照)をネジで固定するためのネジボス部105a~105d(但し、図では105bは見えない)が形成される。モータハウジング10の後方開口部付近には、インバータ回路部20を収容するための大径の回路基板収容部104が形成される。ここでは、モータ収容部102の直径に対して回路基板収容部104の直径が大きいように形成される。そのため、モータ収容部102から回路基板収容部104に至る接続部分は、テーパー状に広がるテーパー部103となっている。テーパー部103の内側部分には、軸受15bを保持する部分となる軸受ホルダ109(ともに図1参照)が形成される。モータハウジング10の内側には、ステータ30の回転軸A1方向回りの回転を防ぐための凹部(図11にて後述)が形成される。本実施例では、一体の筒型として成形したモータハウジング10でステータ30を支持することで、左右二分割式のモータハウジングの場合と比較してステータ30を強固に保持することができ、モータ5の高出力化に対応できる。特に、ステータ30は積層鉄心で形成されて比重が大きく総重量が重いので、モータハウジング10を一体成型で形成するのは強度的に好適である。 Next, the internal structure of the motor housing 10 and the inverter circuit unit 20 housed behind the motor housing 10 will be described using the component development view of FIG. 3. The motor housing 10 is manufactured by integral molding of synthetic resin, and a fan housing portion 101 having a large outer diameter is formed on the front side of the motor housing portion 102 for housing the motor 5. In order to accommodate the cooling fan 13 (see FIG. 1) inside the fan accommodation portion 101, the outer diameter is formed large, and in order to fix the gear case 6 (see FIG. 1) at four places on the outer periphery with screws. The screw bosses 105a to 105d (wherein 105b is not visible in the figure) are formed. In the vicinity of the rear opening of the motor housing 10, a large diameter circuit board accommodating portion 104 for accommodating the inverter circuit portion 20 is formed. Here, the diameter of the circuit board accommodating portion 104 is formed to be larger than the diameter of the motor accommodating portion 102. Therefore, a connection portion from the motor housing portion 102 to the circuit board housing portion 104 is a tapered portion 103 which spreads in a tapered manner. At an inner portion of the tapered portion 103, a bearing holder 109 (both shown in FIG. 1) which is a portion for holding the bearing 15b is formed. Inside the motor housing 10, a recess (described later in FIG. 11) is formed to prevent the stator 30 from rotating around the rotational axis A1. In this embodiment, by supporting the stator 30 with the motor housing 10 formed as an integral cylindrical mold, the stator 30 can be held more firmly than in the case of the left and right two-split motor housing. It is possible to cope with high output of In particular, since the stator 30 is formed of a laminated core and the specific gravity is large and the total weight is heavy, integrally forming the motor housing 10 is preferable in terms of strength.
インバータ回路部20は、回路基板27に電子部品が搭載されたIGBT回路素子群26と、それらを収容するための容器状の円筒ケース21によって形成される。円筒ケース21は略円筒状の外周面24の一方側(前方側)を底面23にて塞いだもので、その内部空間にIGBT回路素子群26が収容される。このように円筒ケース21内にモータ駆動用のスイッチング素子群を配置することにより、モータ5に近い部分にスイッチング素子を搭載して回路基板27からモータ5への配線を短くすることができる。また、インバータ回路部20の製造とモータハウジング10への組立ては、モータ5のモータハウジング10への組み込みとは独立して行うことができるので効率の良い組立てが可能となる。円筒ケース21は、開口側がハンドル部4側(後向き)、即ち空気の吸気側になるように配置され、閉鎖面である底面23がモータ5側(前向き)になるように配置される。 The inverter circuit unit 20 is formed of an IGBT circuit element group 26 in which electronic components are mounted on a circuit board 27 and a container-like cylindrical case 21 for housing them. The cylindrical case 21 is one in which one side (front side) of the substantially cylindrical outer peripheral surface 24 is closed by the bottom surface 23, and the IGBT circuit element group 26 is accommodated in the inner space thereof. By arranging the switching element group for driving the motor in the cylindrical case 21 as described above, the switching element can be mounted on a portion close to the motor 5 and the wiring from the circuit board 27 to the motor 5 can be shortened. In addition, since the manufacturing of the inverter circuit unit 20 and the assembly into the motor housing 10 can be performed independently of the incorporation of the motor 5 into the motor housing 10, an efficient assembly is possible. The cylindrical case 21 is disposed such that the opening side is the handle portion 4 side (backward direction), that is, the air intake side, and the bottom surface 23, which is a closed surface, is disposed to be the motor 5 side (forward).
インバータ回路部20が、モータハウジング10の回路基板収容部104内に収容されると、その後方側から支持部材133が装着される。支持部材133は、モータハウジング10の後方側開口を閉鎖する部材である。支持部材133の中心軸付近には貫通孔134a、134bが形成され、ハンドル部4の前側端部を構成するコーン状の揺動支持部材(図示せず)を挟み込むにして接続する。支持部材133は右側部133aと左側部133bが接合された状態で4つのネジ穴137a~137d(図3ではネジ穴137aと137cは見えない)を用いて図示しないネジによりモータハウジング10の後方側開口部分に固定される。 When the inverter circuit portion 20 is accommodated in the circuit board accommodating portion 104 of the motor housing 10, the support member 133 is attached from the rear side. The support member 133 is a member that closes the rear opening of the motor housing 10. Through holes 134a and 134b are formed in the vicinity of the central axis of the support member 133, and a cone-shaped swing support member (not shown) constituting the front end of the handle portion 4 is sandwiched and connected. The support member 133 uses the four screw holes 137a to 137d (in FIG. 3, the screw holes 137a and 137c can not be seen) in a state where the right side portion 133a and the left side portion 133b are joined. It is fixed to the opening.
モータハウジング10の後方側開口部分にはネジを貫通させるに穴の形成されたネジボス106a~106dが形成される。またネジボス106a~106dの近傍には円筒ケース21の外周面を保持するための軸方向に延びるリブ107a、107bやレール部108が形成される。支持部材133の外周部であってネジが貫通する部分には、前方側に延在する半円筒状の押さえ部材136a~136dが形成される。押さえ部材136a~136dはモータハウジング10側のネジボス106a~106dの円筒状の外周面と当接すると共に、円筒ケース21の後方側開口縁の一部を保持する。貫通孔134a、134bよりも径方向外側には網状構成により、軸方向に風を流すための複数の風窓135a、135bが形成される。 The rear opening of the motor housing 10 is formed with screw bosses 106a to 106d formed with holes for passing screws. Further, in the vicinity of the screw bosses 106a to 106d, axially extending ribs 107a and 107b for holding the outer peripheral surface of the cylindrical case 21 and a rail portion 108 are formed. Semi-cylindrical pressing members 136a to 136d extending to the front side are formed on the outer peripheral portion of the support member 133 and through which the screws pass. The pressing members 136a to 136d abut on the cylindrical outer peripheral surfaces of the screw bosses 106a to 106d on the motor housing 10 side, and hold a part of the rear side opening edge of the cylindrical case 21. A plurality of wind windows 135a and 135b for flowing the wind in the axial direction are formed by the mesh structure on the radially outer side of the through holes 134a and 134b.
円筒ケース21の外周形状は、モータハウジング10の回路基板収容部104の内側形状に沿った形で軸方向に連続する窪みが形成される。回り止め保持部25a~25dは、モータハウジング10の円筒状のネジボス106a~106dを避けるために窪ませた部分である。円筒ケース21の左右両側の段差部24aや切り欠き部分24bは、支持部材133の軸方向後方側から流れてIGBT付近に当たった冷却風をモータ5側へ流す風路として作用する。 The outer peripheral shape of the cylindrical case 21 is formed with an axially continuous recess along the inner shape of the circuit board accommodating portion 104 of the motor housing 10. The locking holding portions 25a to 25d are recessed portions to avoid the cylindrical screw bosses 106a to 106d of the motor housing 10. The stepped portions 24a and the notched portions 24b on the left and right sides of the cylindrical case 21 act as an air passage which flows from the axial rear side of the support member 133 to the motor 5 side.
回路基板27に搭載される主要な電子部品は、6つの半導体スイッチング素子Q1~Q6(図ではQ4、Q5は見えない)である。スイッチング素子Q1~Q3には、独立した金属製の放熱板が取り付けられ、その面方向が左右及び前後方向に延びるように、即ち冷却風の流入方向に対して平行になるように配置される。スイッチング素子Q1~Q3の上方側には3つのスイッチング素子Q4~Q6(図ではQ4、Q5は見えない)がその面方向が左右及び前後方向に延びるように配置される。これらのスイッチング素子Q4~Q6のエミッタ端子は共通に接地されるため共通の左右方向に長い金属の放熱板が設けられる。スイッチング素子Q1とQ2とQ3とQ4~Q6は、非導電部材からなる仕切り板28によって遮蔽される。 The main electronic components mounted on the circuit board 27 are six semiconductor switching elements Q1 to Q6 (Q4 and Q5 are not visible in the figure). An independent metal heat sink is attached to the switching elements Q1 to Q3 and arranged so that the plane direction extends in the left and right and front and back directions, that is, parallel to the inflow direction of the cooling air. Above the switching elements Q1 to Q3, three switching elements Q4 to Q6 (in the figure, Q4 and Q5 can not be seen) are arranged so that the surface direction extends in the left and right and front and back directions. Since the emitter terminals of these switching elements Q4 to Q6 are grounded in common, a common metal heat dissipation plate which is long in the lateral direction is provided. The switching elements Q1, Q2, Q3, and Q4 to Q6 are shielded by a partition plate 28 made of a nonconductive member.
回路基板27の上部にはブリッジダイオード112が設けられる。ブリッジダイオード112の下側部分には、2つのコンデンサ114、115が搭載される。回路基板27には、トリガスイッチ18から接続される電力線を半田付けするための端子と、モータ5へU相、V相、W相の駆動電力を伝達する電力線を半田付けするための端子(図示せず)と、制御回路部19との接続用ワイヤハーネスのコネクタ端子(図示せず)が設けられる。モータ5に接続される電力線は、円筒ケース21の外周部の段差部24aとモータハウジング10の内壁面との間にできる空間を介してステータ30(図1参照)の引出し線54a~54c(図7にて後述)に接続される。 A bridge diode 112 is provided on the top of the circuit board 27. In the lower part of the bridge diode 112, two capacitors 114, 115 are mounted. The circuit board 27 has a terminal for soldering a power line connected from the trigger switch 18 and a terminal for soldering a power line for transmitting drive power of U phase, V phase and W phase to the motor 5 (see FIG. A connector terminal (not shown) of a wire harness for connection with the control circuit section 19 is provided. Power lines connected to the motor 5 are connected to the lead wires 54a to 54c (see FIG. 1) of the stator 30 (see FIG. 1) via a space formed between the step 24a on the outer periphery of the cylindrical case 21 and the inner wall surface of the motor housing 10. 7) to be connected.
図4はモータ5のステータ30を示す斜視図であって、コイルの巻回前の状態を示す。モータ5のステータ30には、軸方向の前側と後方側に2つのインシュレータ35、40が設けられ、第1のインシュレータ35と第2のインシュレータ40間において、ステータコア31のティース34a~34fを囲むようにして6つのコイルが巻かれる。インシュレータ35、40は、合成樹脂等の非導電体の部材により構成される。インシュレータ40の外周側には円筒部分が形成され、その内側に向けて6本の巻付部44a~44fが突出するようにして設けられ、巻付部44a~44fの外周側に沿うようにしてコイルが巻き付けられる。インシュレータ40の円環部41は、円柱状の外周面41aと、回転軸線A1と直交する円環状の平面たる円環端面41cが形成される。外周面41aと円環端面41cの形状については、図5にて後述する。回転軸線A1の軸方向から見たインシュレータ40の投影形状は、ステータ30の投影形状と同じとする。従って、インシュレータ40は円環部41から内周側に伸びる複数本の巻付部44a~44fが形成され、巻付部44a~44fの最内周側は周方向及び軸方向に延在することによって巻回したコイルの脱落を防ぐストッパ部45a~45f(符号は図5を参照)が形成される。モータ5のコイル(図示せず)は、前方のインシュレータ35の巻付部と、後方のインシュレータ40の巻付部44a~44fに渡るようにして銅製のニクロム線を複数回巻き付ける。巻き付けて形成された6組のコイルはデルタ結線となるように配線される。インシュレータ40の円環部41には、軸方向に突出する3つの引出し部46~48が形成される。引出し部46~48はデルタ結線されるコイルの巻き付けをガイドする役割を果たすと共に、デルタ結線の中間点となるため駆動電力供給用の引き出し線を保持・接続される接続箇所となる。引出し部46~48は、軸方向凸部46a、47a、48aと、窪み部46b、47b、48bと、金属端子59a、59b、59c(図9にて詳述)を装着するための端子取付け溝46c、47c、48cを含んで形成される。 FIG. 4 is a perspective view showing the stator 30 of the motor 5 and shows a state before winding of the coil. In the stator 30 of the motor 5, two insulators 35, 40 are provided on the front side and the rear side in the axial direction so as to surround the teeth 34a to 34f of the stator core 31 between the first insulator 35 and the second insulator 40. Six coils are wound. The insulators 35 and 40 are formed of non-conductive members such as synthetic resin. A cylindrical portion is formed on the outer peripheral side of the insulator 40, and six wound portions 44a to 44f are provided so as to protrude toward the inner side, and along the outer peripheral side of the wound portions 44a to 44f A coil is wound. The annular portion 41 of the insulator 40 is formed with a cylindrical outer peripheral surface 41 a and an annular end surface 41 c which is an annular flat surface orthogonal to the rotation axis A 1. The shapes of the outer peripheral surface 41a and the annular end surface 41c will be described later with reference to FIG. The projection shape of the insulator 40 viewed from the axial direction of the rotation axis A1 is the same as the projection shape of the stator 30. Therefore, the insulator 40 is formed with a plurality of wound portions 44a to 44f extending from the annular portion 41 to the inner peripheral side, and the innermost peripheral side of the wound portions 44a to 44f extends in the circumferential direction and the axial direction Thus, stoppers 45a to 45f (refer to FIG. 5) are formed to prevent the coil from being detached by the winding. The coil (not shown) of the motor 5 winds a copper nichrome wire a plurality of times so as to extend over the winding portion of the front insulator 35 and the winding portions 44a to 44f of the rear insulator 40. Six sets of coils formed by winding are wired in a delta connection. The annular portion 41 of the insulator 40 is formed with three lead portions 46 to 48 that project in the axial direction. The lead portions 46 to 48 serve to guide the winding of the delta-connected coil and, since they are intermediate points of the delta connection, serve as connection points for holding and connecting the lead wires for driving power supply. The lead-out portions 46 to 48 are terminal attachment grooves for mounting the axial direction convex portions 46a, 47a, 48a, the depressed portions 46b, 47b, 48b, and the metal terminals 59a, 59b, 59c (described in detail in FIG. 9). 46c, 47c, 48c are formed.
インシュレータ40の巻付部44a~44fの近傍、即ち巻付部44a~44fより回転方向の一方側の円環端面41cには、径方向に連続する径方向溝43a~43fが形成される。径方向溝43a~43fは巻き付けられたコイルから径方向外側への2本の引き出し線(異相渡り線56a~56c)を配線するためのスロット部となるもので、円環端面41cよりも軸方向前方側に切り欠かれた形状とされる。径方向溝43a~43fの円周方向一方側(巻付部44a~44fとは離れた側)には、回転軸方向から見た際の形状が略L字状の壁部49a~49fが形成される。壁部49a~49fは、コイルからの引き出し線(異相渡り線56a~56c)を安定して保持するために形成され、径方向溝43a~43fに沿って径方向に延びる壁面と、円環端面41cの内周面に沿って周方向に所定距離だけ延びる壁面を有し、軸方向視で略L字状の形状とされる。 Radially continuous radial grooves 43a to 43f are formed in the vicinity of the wound portions 44a to 44f of the insulator 40, ie, on the annular end face 41c on one side in the rotational direction from the wound portions 44a to 44f. The radial grooves 43a to 43f are slot portions for wiring two lead wires (different phase crossover wires 56a to 56c) radially outward from the wound coil, and are in the axial direction with respect to the annular end surface 41c. It has a shape that is cut out on the front side. Wall portions 49a to 49f substantially L-shaped when viewed from the rotational axis direction are formed on one circumferential side (side away from the wound portions 44a to 44f) of the radial grooves 43a to 43f Be done. The wall portions 49a to 49f are formed to stably hold lead wires from the coil (different phase crossovers 56a to 56c), and have wall surfaces extending in the radial direction along the radial grooves 43a to 43f, and an annular end face It has a wall surface extending a predetermined distance in the circumferential direction along the inner peripheral surface of 41c, and has a substantially L-shaped shape in the axial direction.
図5(1)はステータ30の側面図であり、(2)は背面図である。ステータコア31の外周面の左右方向両側には、径方向外側に突出するものであって軸方向に連続した凸部たるキー32a、32bが形成される。ステータコア31の外形は、キー32a、32bを除いて円形であって、その前後に配置されるインシュレータ35、40の外形は円形に形成される。図5(1)から見るとステータコア31の外径に対してインシュレータ35、40の外径がわずかに小さいように見えるが、この差は、ステータ30を筒状のモータハウジング10の軸方向に挿入する際に、インシュレータ35がモータハウジングの内壁面に強くあたることを避けるためである。このようにステータコア31の外径がインシュレータ35、40よりもほんのわずかだけ外径が大きいことで、ステータコア31がモータハウジング10の内壁部分に安定して接触する FIG. 5 (1) is a side view of the stator 30, and (2) is a rear view. On both sides in the left-right direction of the outer peripheral surface of the stator core 31, keys 32a and 32b which project radially outward and are axially continuous projections are formed. The outer shape of the stator core 31 is circular except for the keys 32a and 32b, and the outer shapes of the insulators 35 and 40 disposed in front of and behind the key 32a and 32b are circular. When viewed from FIG. 5 (1), the outer diameters of the insulators 35 and 40 appear to be slightly smaller than the outer diameter of the stator core 31, but the difference is that the stator 30 is inserted in the axial direction of the cylindrical motor housing 10. When doing this, it is to avoid that the insulator 35 strikes the inner wall surface of the motor housing strongly. Thus, the stator core 31 stably contacts the inner wall portion of the motor housing 10 because the outer diameter of the stator core 31 is slightly larger than that of the insulators 35 and 40.
インシュレータ40の外周面41aには、径方向に窪むような凹部であって、周方向に連続して形成される周方向溝42が形成される。また周方向溝42とクロスするようして回転軸線A1方向に外周面を切り欠いたような径方向溝43a~43fが形成される。径方向溝43a~43fは、回転軸線A1方向の後方側からみてインシュレータ40の巻付部44a~44fの一方側にだけ形成される。巻付部44a~44fのうち、巻付部44aの径方向外側にはW相引出し部48が形成され、巻付部44cの径方向外側にはU相引出し部46が形成され、巻付部44eの径方向外側にはV相引出し部47が形成される。 In the outer peripheral surface 41 a of the insulator 40, a circumferential groove 42 which is a concave portion which is recessed in the radial direction and which is continuously formed in the circumferential direction is formed. Further, radial grooves 43a to 43f are formed such that the outer peripheral surface is cut away in the direction of the rotation axis A1 so as to cross the circumferential groove 42. The radial grooves 43a to 43f are formed only on one side of the wound portions 44a to 44f of the insulator 40 as viewed from the rear side in the direction of the rotation axis A1. Of the wound portions 44a to 44f, the W-phase lead-out portion 48 is formed on the radially outer side of the wound portion 44a, and the U-phase drawn portion 46 is formed on the radially outer side of the wound portion 44c. A V-phase lead-out portion 47 is formed on the radially outer side of 44e.
図6(1)は、従来のコイルの結線方法を説明するための図である。本実施例のモータ5のステータコア31は、6極のティースを有し、そこにU1、U2、V1、V2、W1、W2の6つのコイル(51a~53a)が形成される。各ティースの周囲にはニクロム線が数回から数十回程度巻かれることにより6つのコイルのそれぞれが形成される。本実施例では、U相、V相、W相の引出し線54a~54cの間に、第1のコイル(U1、V1、W1)と第2のコイル(U2、V2、W2)の2つずつのコイルが配置されたデルタ結線としたものであり、3本の引出し線54a~54cに3相交流の励磁電流が供給される。引出し線54aと54bの間にはU2コイル51bとU1コイル51aが直列に接続され、引出し線54bと54cの間にはW2コイル53bとW1コイル53aが直列に接続され、引出し線54cと54aの間にはV2コイル52bとV1コイル52aが直列に接続される。ここで、ステータコア31の各ティース34a~34fに巻かれる部分がコイルになるが、コイル部分から引き出されて別のコイルと接続するための部分が“渡り線”となる。“渡り線”には、同相コイル間を接続する“同相渡り線”と、異相コイル間を接続する“異相渡り線”の2種類がある。同相渡り線は、U2コイル51bとU1コイル51aを接続する同相渡り線55a、W2コイル53bとW1コイル53aを接続する同相渡り線55b、V2コイル52bとV1コイル52aを接続する同相渡り線55cがある。一方、異相渡り線は、V1コイル52aとU2コイル51bを接続する異相渡り線56a、U1コイル51aとW2コイル53bを渡り線56b、W1コイル53aとV2コイル52bを接続する渡り線56cが設けられる。ここで、異相渡り線56a~56c異相渡り線56a、56b、56cの中間点付近には、電流供給用の引出し線54a~54cが接続される。引出し線54a~54cは金属端子(図示せず)にて置き換えても良い。 FIG. 6 (1) is a figure for demonstrating the conventional wire connection method of a coil. The stator core 31 of the motor 5 of this embodiment has teeth of six poles, and six coils (51a to 53a) of U1, U2, V1, V2, W1, and W2 are formed there. Each of the six coils is formed by winding a nichrome wire several times to several tens times around each tooth. In the present embodiment, the first coil (U1, V1, W1) and the second coil (U2, V2, W2) are provided between the U-phase, V-phase, and W-phase lead wires 54a to 54c. In the delta connection in which the coils of (1) are arranged, three-phase alternating current excitation current is supplied to the three lead wires 54a to 54c. U2 coil 51b and U1 coil 51a are connected in series between lead wires 54a and 54b, W2 coil 53b and W1 coil 53a are connected in series between lead wires 54b and 54c, and lead wires 54c and 54a are connected. The V2 coil 52b and the V1 coil 52a are connected in series between them. Here, the portions wound around the teeth 34a to 34f of the stator core 31 become coils, but the portions drawn out from the coil portions and connected to another coil become "crossover wires". There are two types of "crossover wires": "in-phase crossover wires" connecting between in-phase coils and "different-phase crossover wires" connecting between different-phase coils. The in-phase crossovers include an in-phase junction 55a connecting the U2 coil 51b and the U1 coil 51a, an in-phase junction 55b connecting the W2 coil 53b and the W1 coil 53a, and an in-phase junction 55c connecting the V2 coil 52b and the V1 coil 52a. is there. On the other hand, different phase crossovers are provided with different phase crossovers 56a connecting V1 coil 52a and U2 coil 51b, crossovers 56b between U1 coil 51a and W2 coil 53b, and crossovers 56c connecting W1 coil 53a and V2 coil 52b. . Here, lead lines 54a to 54c for supplying current are connected in the vicinity of intermediate points of the different phase crossovers 56a to 56c different phase crossovers 56a, 56b, 56c. The lead wires 54a to 54c may be replaced by metal terminals (not shown).
図6(2)は、従来のステータコアへの巻き方と結線方法を説明するための図である。ステータコア31のティース34a~34fは、U相引出し部46から周方向に(右から左方向に)、W2、U1、V1、W1、U2、V2に割り当てられる。ここでは円周方向に配置されるティース34a~34fを円周上から平面上に展開して図示したので、左右方向の丸aと丸bの配線部分は接続される部分であり、電気的に接続状態にある。また、W1相用のティース34dとU2相のティース34cはU2と隣接するものである。引出し部46~48は、図6(1)に示す引出し線54a、54b、54cが接続される金属端子(図示せず)の固定部材であり、これら引出し部46~48の金属端子に接触するようにしニクロム線を引出し部46~48にも巻き付けながら配線される。ティース34a~34fに図6(1)の結線方法を実現すると、(2)のようになる。各ティースにおける巻き方向は、同じ方向であり、各ティースの根元の一方側から例えば右巻きに巻き初めて、所定回数巻いたらコイル部分を巻き終え、渡り線部分へ移行する。尚、ここでは引出し部46から巻き初めて、引出し部46で巻き終えるまで、連続した1本のニクロム線を最後まで切断すること無く一筆書きのようにして巻き付ける。 FIG. 6 (2) is a view for explaining how to wind and connect a conventional stator core. Teeth 34a to 34f of stator core 31 are assigned to W2, U1, V1, W1, U2, and V2 in the circumferential direction (right to left) from U-phase lead-out portion 46. Here, since the teeth 34a to 34f arranged in the circumferential direction are expanded and illustrated on the plane from the circumference, the wiring portions of the circle a and the circle b in the left and right direction are connected portions and electrically It is connected. Further, the teeth 34d for the W1 phase and the teeth 34c for the U2 phase are adjacent to the U2. The lead portions 46 to 48 are fixing members for metal terminals (not shown) to which the lead wires 54a, 54b and 54c shown in FIG. 6A are connected, and contact the metal terminals of the lead portions 46 to 48. The wiring is performed while winding the nichrome wire around the lead portions 46 to 48 as well. If the wire connection method of FIG. 6 (1) is realized in teeth 34a to 34f, it becomes as shown in (2). The winding direction in each tooth is the same direction, and for example, the first winding from the one side of the root of each tooth, for example, rightward winding, is completed a predetermined number of times, and then the coil portion is finished to move to the crossover portion. In this case, for the first time from the drawing portion 46, the continuous single nichrome wire is wound like a one-stroke writing without being cut to the end until the winding portion 46 completes the winding.
コイルの巻き付けは、U相用の引出し部46から巻き付けを開始する。従来例のコイルの巻き線方法では、図6(2)に示すように引出し部46からU1ティース34bまで結線され、U1ティース34bにU1コイル51aが形成される。U1ティース34bにコイルを巻き終えると、U2ティース34eまで約半周ほど周方向に同相渡り線55aが配線される。U2ティース34eにU2コイル51bを巻き終えると、U2ティース34eに隣接する引出し部47に接続される。 The winding of the coil starts from the U-phase lead-out portion 46. In the coil winding method of the conventional example, as shown in FIG. 6 (2), the wire is connected from the lead portion 46 to the U1 teeth 34b, and the U1 coil 51a is formed on the U1 teeth 34b. When the coil has been wound around the U1 teeth 34b, the in-phase connecting wire 55a is wired in the circumferential direction about a half turn to the U2 teeth 34e. When the U2 coil 51b is wound around the U2 teeth 34e, the U2 teeth 34e are connected to the lead-out portion 47 adjacent to the U2 teeth 34e.
引き続いて引出し部47から、約半周ほど周方向に配線されV1ティース34aまで異相渡り線56aにて結線され、V1ティース34aにV1コイル52aが形成される。V1ティース34aにV1コイル52aを巻き終えると、V2ティース34dまで約半周ほど周方向に同相渡り線55cが配線されV2ティース34dまで結線される。V2ティース34dにV2コイル52bを巻き終わると異相渡り線56cにて約半周ほど周方向に配線され、引出し部48に接続される。引出し部48の所定箇所(図示しない金属端子と接触する位置)を通過させたあとに、異相渡り線56cにてW1ティース34fまで結線され、W1ティース34fにW1コイル53aが形成される。W1ティース34fにW1コイル53aを巻き終えると、W2ティース34cまで約半周ほど周方向に同相渡り線55bにて配線される。W2ティース34cにW2コイル53bを巻き終えると、W2ティース34cに隣接する引出し部46に接続され、巻き終わりとなる。 Subsequently, the lead-out portion 47 is wired in the circumferential direction about a half turn and is connected to the V1 teeth 34a by the different phase crossover wire 56a, and the V1 coil 52a is formed on the V1 teeth 34a. When the V1 coil 52a has been wound around the V1 teeth 34a, the in-phase connecting wire 55c is wired in the circumferential direction about half a turn to the V2 teeth 34d and is connected to the V2 teeth 34d. When the V2 coil 52b is completely wound around the V2 teeth 34d, it is wired in the circumferential direction about a half turn by the different phase connecting wire 56c and is connected to the lead-out portion 48. After passing through a predetermined portion (position in contact with a metal terminal not shown) of the lead-out portion 48, wiring is made to the W1 teeth 34f by the different phase crossover wire 56c, and the W1 coil 53a is formed on the W1 teeth 34f. When the W1 coil 53a is wound around the W1 teeth 34f, the wires are wired by the in-phase connecting wire 55b in the circumferential direction about half a turn until the W2 teeth 34c. When the W2 coil 53b is wound around the W2 teeth 34c, it is connected to the lead-out portion 46 adjacent to the W2 teeth 34c, and the winding ends.
以上のように結線されると、同相又は異相のコイル間を接続するために周方向に渡って配線される渡り線の数は、図中に点線で囲むようにV2ティース34dとW2ティース34cの間が4本、W2ティース34cとU1ティース34bの間が4本、U1ティース34bとV1ティース34aの間が4本となり、残りの区間が2本となる。つまり、従来のモータにおいて周方向に渡って配線される渡り線の数は、周方向の約半周で4本となり、残りが2本となっていた。また、4本の渡り線のうち同相渡り線55cは、他の渡り線とは別に逆方向に巻くことになるので、配線に必要とされる長さが長くなる。また、渡り線のうち逆方向に巻く部分があるため、各ティースにニクロム線を巻くための自動コイル巻き機を用いて、全自動で結線を行うことができなかった。 When wired as described above, the number of crossovers wired in the circumferential direction to connect in-phase or out-of-phase coils is the same as that of V2 teeth 34d and W2 teeth 34c, as surrounded by dotted lines in the figure. There are four intervals, four between W2 teeth 34c and U1 teeth 34b, four between U1 teeth 34b and V1 teeth 34a, and the remaining section is two. That is, in the conventional motor, the number of crossovers wired in the circumferential direction is four in about half of the circumferential direction, and the remaining number is two. In addition, since the in-phase connecting wire 55c of the four connecting wires is wound in the reverse direction separately from the other connecting wires, the length required for the wiring becomes long. In addition, because there is a part wound in the reverse direction among the crossover wires, it was not possible to perform fully automatic connection using an automatic coil winding machine for winding a nichrome wire around each tooth.
図7は本実施例に係るモータの結線方法を説明するための図である。本実施例のモータ5のステータコア31も従来と同様に6極のティースを有し、そこにU1、U2、V1、V2、W1、W2の6つのコイルが形成される。しかしながら、図6(1)と図7(1)のV1、V2のコイル位置を比較するとわかるように、デルタ結線におけるV1コイル52aとV2コイル52bの配線順を逆にした。デルタ結線におけるそれ以外のU1、U2、W1、W2コイル53bの配線順は同じである。一方、図7(2)に示すようにステータコア31のティース34a~34fの物理的な配置位置は同じである。このようにV1コイル52aとV2コイル52bの配線順序を逆にすると、引出し部47に到達した巻き付けは、異相渡り線56aによって隣接するV2ティース34dに結線され、V2ティース34dにV2コイル52bが形成される。V2ティース34dにV2コイル52bを巻き終えると、V1ティース34aまで約半周ほど周方向に同相渡り線55cが配線される。V1ティース34aにV1コイル52aを巻き終えると、V1ティース34aに隣接する引出し部48に接続される。それ以外のU1、U2、W1、W2への結線方法は図6で示した方法と同じである。このように配線すると、渡り線の周方向に向かう配線部分に関しては、点線にて囲むようにどの円周位置においても2本で済むので、全体に渡る配線長を短くすることができる。 FIG. 7 is a diagram for explaining a motor connection method according to the present embodiment. The stator core 31 of the motor 5 of the present embodiment also has six poles of teeth as in the prior art, and six coils of U1, U2, V1, V2, W1, and W2 are formed there. However, as can be seen by comparing the coil positions of V1 and V2 in FIG. 6A and FIG. 7A, the wiring order of the V1 coil 52a and the V2 coil 52b in the delta connection is reversed. The wiring order of the other U1, U2, W1, and W2 coils 53b in the delta connection is the same. On the other hand, as shown in FIG. 7 (2), the physical arrangement positions of the teeth 34a to 34f of the stator core 31 are the same. When the wiring order of the V1 coil 52a and the V2 coil 52b is reversed in this manner, the winding that has reached the lead-out portion 47 is wired to the adjacent V2 teeth 34d by the different phase crossover wire 56a, and the V2 coil 52b is formed on the V2 teeth 34d. Be done. When the V2 coil 52b is wound around the V2 teeth 34d, the in-phase connecting wire 55c is wired in the circumferential direction about half a turn to the V1 teeth 34a. When the V1 coil 52a is wound around the V1 teeth 34a, the V1 teeth 34a are connected to the lead-out portion 48 adjacent to the V1 teeth 34a. The connection method to the other U1, U2, W1, and W2 is the same as the method shown in FIG. When wiring is performed in this manner, the wiring length in the entire circumferential direction can be shortened because only two wiring portions in the circumferential direction of the connecting wire are required at any circumferential position as surrounded by the dotted line.
図8は自動コイル巻き機を用いたステータコイルの巻き方を説明するための別の図であり、図7の展開図とは異なって円周方向に連続するように図示したが、図示している内容と結線方法は図7と同じである。図7にて説明したように本実施例のステータコイルの渡り線(同相渡り線55a~55c、異相渡り線56a~56c)は、周方向の一方方向にだけ向くので、自動コイル巻き機を用いて、全自動で結線を行うことができるようになった。ステータコイルは、ニクロム線をU相引出し部46から巻き始める。U相引出し部46、V相引出し部47、W相引出し部48は図4に示すように周方向に等間隔に配置されており、ここでは各引き出し部に隣接するステータコア31の各ティース34a~34fを、順にV1、U1、W2、V2、U2、W1と定義した。ニクロム線をステータコア31の各ティース34a~34fに巻く際には、ティース34a~34fの径方向側面に絶縁材58a~58f(図11で後述)を配置し、ティース34a~34fの回転軸方向の端面にインシュレータ35とインシュレータ40を配置し、絶縁材58a~58fとインシュレータ35、40の各ティースの周囲を巻くようにする。 FIG. 8 is another view for explaining the winding method of the stator coil using the automatic coil winding machine, which is illustrated as being continuous in the circumferential direction unlike the developed view of FIG. The contents and connection method are the same as in FIG. As described in FIG. 7, since the connecting wires (in-phase connecting wires 55 a to 55 c and different phase connecting wires 56 a to 56 c) of the stator coil of this embodiment face only in one circumferential direction, an automatic coil winding machine is used. It became possible to perform wiring automatically. The stator coil starts winding the nichrome wire from the U-phase lead-out portion 46. The U-phase lead-out portion 46, the V-phase lead-out portion 47, and the W-phase lead-out portion 48 are arranged at equal intervals in the circumferential direction as shown in FIG. 34f is defined as V1, U1, W2, V2, U2, W1 in order. When winding a nichrome wire around the teeth 34a to 34f of the stator core 31, insulating materials 58a to 58f (described later in FIG. 11) are disposed on the radial side surfaces of the teeth 34a to 34f, and the rotation axis direction of the teeth 34a to 34f The insulators 35 and the insulators 40 are disposed on the end faces, and the teeth around the insulators 58a to 58f and the insulators 35 and 40 are wound around.
U相引出し部46にてニクロム線の巻き始め部分を固定したら、周方向溝42の内部にニクロム線が沿うように約60度巻いて異相渡り線56bとし、径方向溝43b(図4も参照)を通してU1ティース34bの周囲を複数回巻いてU1コイル51aを形成する。図8では説明のためにU1ティース34bの周囲を1回だけ巻くように図示しているが、実際には数回から数十回ほど巻かれる。ステータコア31の各ティースへのコイルの巻く方向は統一されており、各ティースを外周側から径方向内側に見たときに、ティースの特定方向回り(例えば時計回り)になるようにする。U1ティース34bのコイルを形成したらは、再び径方向溝43b(図4も参照)を通して元の周方向溝42に戻り、渡り線55aで示すように周方向溝42内に約180度這わせて、径方向溝43eを通してU2ティース34eに到達させて、U2ティース34eに複数回巻いてU2コイル51bを形成する。U2ティース34eのコイルを巻き終えたら、径方向溝43eを通して元の周方向溝42に戻り、V相引出し部47に到達させる。V相引出し部47では端子取付け溝46cに装着される図示しない金属端子と接触させることにより導通状態とし、そのままニクロム線を切断すること無く矢印56aのように再び周方向溝42に戻して、約60度這わせて径方向溝43dを介してV2ティース34dに到達させる。 When the winding start portion of the nichrome wire is fixed by the U-phase lead-out portion 46, the nichrome wire is wound about 60 degrees along the inside of the circumferential groove 42 to form a different phase crossover wire 56b. ) Is wound several times around U1 teeth 34b to form U1 coil 51a. Although FIG. 8 illustrates that the U1 teeth 34b are wound only once around for the sake of explanation, actually, the winding is performed several times to several tens times. The winding direction of the coil to each tooth of the stator core 31 is uniform, and when each tooth is viewed radially inward from the outer peripheral side, it is made to turn around a specific direction (for example, clockwise) of the teeth. Once the coil of U1 teeth 34b is formed, it returns to the original circumferential groove 42 again through the radial groove 43b (see also FIG. 4) and is wound about 180 degrees in the circumferential groove 42 as shown by the crossover 55a. The U2 teeth 34e are made to reach the U2 teeth 34e through the radial grooves 43e, and wound around the U2 teeth 34e a plurality of times to form the U2 coil 51b. After the coil of U2 teeth 34e is wound, it returns to the original circumferential groove 42 through the radial groove 43e and reaches the V-phase lead-out portion 47. The V-phase lead-out portion 47 is brought into conduction by bringing it into contact with a metal terminal (not shown) attached to the terminal attachment groove 46c, and returned to the circumferential groove 42 again as shown by arrow 56a without cutting the nichrome wire. The V2 teeth 34 d are made to reach the V2 teeth 34 d through the radial grooves 43 d by winding 60 degrees.
V2ティース34dにてV2コイル52bを形成したら、再び径方向溝43d(図4も参照)を通して元の周方向溝42に戻り、渡り線55cで示すように周方向溝42内に約180度這わせて、径方向溝43aを通してV1ティース34aに到達させて、V1ティース34aに複数回巻いてV1コイル52aを形成する。V1コイル52aを巻き終えたら、径方向溝43aを通して元の周方向溝42に戻り、W相引出し部48に到達させる。W相引出し部48では端子取付け溝48cに装着される図示しない金属端子と接触させることにより導通状態とし、そのままニクロム線を切断すること無く矢印56cのように再び周方向溝42に戻して、約60度這わせて径方向溝43fを介してW1ティース34fに到達させる。 After the V2 coil 52b is formed by the V2 teeth 34d, it returns to the original circumferential groove 42 again through the radial groove 43d (see also FIG. 4), and as shown by the crossover 55c, Then, the V1 teeth 34a are allowed to reach the V1 teeth 34a through the radial grooves 43a, and wound around the V1 teeth 34a a plurality of times to form the V1 coil 52a. After the V1 coil 52a is wound, it returns to the original circumferential groove 42 through the radial groove 43a and reaches the W-phase lead-out portion 48. The W-phase lead-out portion 48 is brought into conduction by bringing it into contact with a metal terminal (not shown) mounted in the terminal attachment groove 48c, and returned to the circumferential groove 42 again as shown by arrow 56c without cutting the nichrome wire. The W1 teeth 34f are made to reach the W1 teeth 34f through the radial grooves 43f by winding 60 degrees.
W1ティース34fのコイルを形成したらは、再び径方向溝43f(図4も参照)を通して元の周方向溝42に戻り、渡り線55bで示すように周方向溝42内に約180度這わせて、径方向溝43cを通してW2ティース34cに到達させて、W2ティース34cに複数回巻いてU2コイル51bを形成する。U2コイル51bのコイルを巻き終えたら、径方向溝43cを通してU相引出し部46に到達させて、図示しない金属端子と接触させることにより巻き始め部分と導通状態する。以上のようにしてニクロム線の巻き付け作業を行うことによって、周方向溝42内は一方方向への巻き付けだけですむ。 After forming the coil of W1 teeth 34f, it returns to the original circumferential groove 42 again through the radial groove 43f (see also FIG. 4), and is wound around the circumferential groove 42 by about 180 degrees as shown by the crossover 55b. The W2 teeth 34c are made to reach the W2 teeth 34c through the radial grooves 43c, and wound around the W2 teeth 34c multiple times to form the U2 coil 51b. When the coil of the U2 coil 51b is finished, the U-phase lead-out portion 46 is made to reach the U-phase lead-out portion 46 through the radial groove 43c and brought into conduction with the winding start portion by contacting with the metal terminal not shown. By carrying out the winding operation of the nichrome wire as described above, the inside of the circumferential groove 42 only needs to be wound in one direction.
図9は図4の周方向溝42の形状とニクロム線50の配線との位置関係を示すための部分断面図であり、(1)は図5の一部拡大図である。ここでは右上にニクロム線50の断面を示すように、その直径はdであるとする。周方向溝42は、その幅(回転軸線A1方向の長さ)がWで、深さ(溝の径方向の深さ)Dとすると、W>2d、D>2dの関係となるような寸法とされる。図7にて説明したように周方向溝42の内部に配線される渡り線の本数は最大で2本である。従って、径方向に2本のニクロム線50が重なったとしても、D>2の関係であればニクロム線50が外周面41aよりも外側に突出することを防止できる。また、W>2dの関係であれば、軸方向においても横に2本のニクロム線50を並べることができる。図9(2)は周方向溝42にニクロム線50を配線した状態を示す図であり、軸方向に並んだ同相渡り線55aと、異相渡り線56cが軸方向に並んでいることが理解できよう。尚、リブ41bの外縁位置は、(1)にて示すように外周面41aの外縁位置よりもその差tだけわずかに小さくなっている。これは、ステータを圧入する際にハウジングのリブとインシュレータのリブを接触させないためである。この状態であってもリブ41bよりニクロム線50が突出しないようにするためには、D>2d+tの関係とすると好ましい。このように、周方向溝42の深さを深めにすれば、冷却ファン13によって吸引された冷却風と共に金属粉塵が吸引されてモータ5の内部を流れるとしても、周方向に配線される渡り線にぶつかる虞を大幅に減らすことができるので、ニクロム線50の被覆部分が剥がれて周方向溝42内の渡り線どうしが短絡することをほぼ回避でき、モータの更なる長寿命化を実現できる。特に、金属加工を行うグラインダ等の電動工具では、作業によって金属粉が生じるため、より一層モータの長寿命化の効果が高い。 FIG. 9 is a partial cross-sectional view showing the positional relationship between the shape of the circumferential groove 42 of FIG. 4 and the wiring of the nichrome wire 50, and (1) is a partially enlarged view of FIG. Here, it is assumed that the diameter is d, as shown by the cross section of the nichrome wire 50 at the upper right. Assuming that the width (length in the rotation axis A1 direction) of the circumferential groove 42 is W and the depth (depth in the radial direction of the groove) D, the dimensions are such that W> 2d and D> 2d. It is assumed. As described with reference to FIG. 7, the number of crossovers wired inside the circumferential groove 42 is two at the maximum. Therefore, even if the two nichrome wires 50 overlap in the radial direction, it is possible to prevent the nichrome wire 50 from protruding outward beyond the outer peripheral surface 41a if D> 2. Also, if W> 2d, two nichrome wires 50 can be arranged side by side also in the axial direction. FIG. 9 (2) shows a state in which the nichrome wire 50 is wired in the circumferential groove 42, and it can be understood that the in-phase connecting wire 55a and the different-phase connecting wire 56c are arranged in the axial direction. You see. The outer edge position of the rib 41b is slightly smaller than the outer edge position of the outer peripheral surface 41a by the difference t as shown in (1). This is because the ribs of the housing and the ribs of the insulator are not in contact when the stator is press-fitted. Even in this state, in order to prevent the nichrome wire 50 from protruding from the rib 41b, it is preferable to satisfy a relationship of D> 2d + t. Thus, if the depth of the circumferential groove 42 is deepened, even if metal dust is sucked together with the cooling air sucked by the cooling fan 13 and flows inside the motor 5, a crossover wire wired in the circumferential direction Since the possibility of colliding can be greatly reduced, it is possible to substantially prevent the covering portion of the nichrome wire 50 from peeling off and shorting the crossover wires in the circumferential groove 42, and further prolonging the life of the motor can be realized. In particular, in the case of a power tool such as a grinder that performs metal processing, since metal powder is produced by the operation, the effect of prolonging the life of the motor is even higher.
図10(1)は、モータ5のロータ70及び冷却ファン13の側面図であり、(2)は(1)のD-D部の断面図(ロータコア71の側面図に相当)である。ロータ70及び冷却ファン13の組立体は、中心軸となる回転軸60と、回転軸60の周囲に配置される略円筒状のロータコア71と、ロータコア71の前方側において回転軸60と同心上に固定される冷却ファン13を含んで構成される。回転軸60は、前後の2箇所にて軸受15a、15b(図1参照)にて軸支されるものであり、軸受15a、15bの取り付け部には軸受が圧入されるために外周面を研磨して同軸度を向上させた軸受保持部60b、60eが形成される。軸受保持部60bの前方側は、傘歯車7a(図1参照)を保持するための細径部60aが形成され、軸受保持部60bの後方側には、軸方向の一部の外周面に、周方向に連続する凹凸部60fを形成した冷却ファン取付部60cが形成される。冷却ファン取付部60cに固定される冷却ファン13は遠心ファンであり、冷却ファン13が回転することにより回転軸60の軸方向から取り込んだ空気を半径方向外側に排出する。冷却ファン13は合成樹脂の一体成形で製造され、内周側には回転軸60に形成された凹凸部60fに対応する凹凸部を有する取付部13aが形成され、凹凸部60fと取付部13aの凹凸が嵌合することによって空転しないように冷却ファン13を回転軸60に固定する。 FIG. 10 (1) is a side view of the rotor 70 and the cooling fan 13 of the motor 5, and (2) is a cross-sectional view (corresponding to a side view of the rotor core 71) of the DD part of (1). The assembly of the rotor 70 and the cooling fan 13 is concentric with the rotation shaft 60 on the front side of the rotor core 71 and the substantially cylindrical rotor core 71 disposed around the rotation shaft 60 serving as the central axis. It comprises the cooling fan 13 fixed. The rotating shaft 60 is pivotally supported by bearings 15a and 15b (see FIG. 1) at two front and rear points, and the outer peripheral surface is polished because the bearings are press-fit to the mounting portions of the bearings 15a and 15b. Thus, the bearing holding portions 60b and 60e with improved coaxiality are formed. The small diameter portion 60a for holding the bevel gear 7a (see FIG. 1) is formed on the front side of the bearing holding portion 60b, and on the rear side of the bearing holding portion 60b, on the outer peripheral surface of a part in the axial direction A cooling fan attachment portion 60c in which the uneven portion 60f continuous in the circumferential direction is formed is formed. The cooling fan 13 fixed to the cooling fan mounting portion 60c is a centrifugal fan, and when the cooling fan 13 rotates, the air taken in from the axial direction of the rotating shaft 60 is discharged radially outward. The cooling fan 13 is manufactured by integral molding of a synthetic resin, and an attachment portion 13a having an uneven portion corresponding to the uneven portion 60f formed on the rotary shaft 60 is formed on the inner peripheral side. The cooling fan 13 is fixed to the rotating shaft 60 so as to prevent idling by engagement of the unevenness.
ステータ30は複数の鋼板を積層した積層鉄心にて構成される。回転軸60のロータコア71を保持する部分は、外周面を絶縁材によるモールド部材65によって覆われたシャフトモールド部60dである。モールド部材65としては樹脂が用いられる。シャフトモールド部60dにロータコア71が固定されることにより、回転軸60とロータコア71の金属部分はモールド部材65を介した接続となるため、電気的に非導通状態となる。ロータコア71の前側端部及び後側端部には、回転バランスを取るためにバランサ部材85、95が同軸上に設けられる。バランサ部材85、95は回転軸方向に所定の厚さを持った非磁性金属製の円環状の質量体であって、外周面の周方向の1カ所又は複数箇所に、径方向に所定のドリル穴、溝、面取り等を形成して局所的な質量を削減することによって、図10(1)にて示す回転体の回転バランスの精度を高める。図10(1)では矢印85a、95aのように周方向に連続する小さい溝部を形成しているが、これはドリル加工をする際に、ドリルの先端の位置を軸方向に決定し易くするために設けられるものである。従って、周方向溝85a、95aは設けなくても良い。本実施例ではバランサ部材85とロータコア71の前端面71aの間に円板状の樹脂スペーサ80を介在させ、バランサ部材95とロータコア71の後端面71bの間に円板状の樹脂スペーサ90を介在させた。樹脂スペーサ80、90の外径はロータコア71の外径と同じであって、軸方向の厚さは、樹脂スペーサ80、90に比べて薄い。本実施例では、スペーサ部材(樹脂スペーサ80、90)の外径をロータコア71の外径よりtだけわずかに小さくしており、ロータコア71の径が39.8mmに対してt=0.5mm程度である。一方、ロータコア71に対するバランサ部材85の径D80は15%程度小さく構成され、ロータコア71に対するバランサ部材95の径D80は30%程度小さく構成される。 The stator 30 is formed of a laminated core in which a plurality of steel plates are stacked. The portion holding the rotor core 71 of the rotating shaft 60 is a shaft mold portion 60 d whose outer peripheral surface is covered by a mold member 65 made of an insulating material. Resin is used as the mold member 65. Since the rotor core 71 is fixed to the shaft mold portion 60d, the rotary shaft 60 and the metal portion of the rotor core 71 are connected via the mold member 65, so that electrical continuity is not established. At the front end and the rear end of the rotor core 71, balancer members 85, 95 are coaxially provided to achieve rotational balance. The balancer members 85 and 95 are nonmagnetic metal annular mass bodies having a predetermined thickness in the rotational axis direction, and predetermined drills in the radial direction at one or more locations in the circumferential direction of the outer peripheral surface By forming holes, grooves, chamfers and the like to reduce the local mass, the accuracy of the rotational balance of the rotating body shown in FIG. In FIG. 10 (1), small continuous grooves are formed in the circumferential direction as arrows 85a and 95a, but this makes it easy to determine the position of the tip of the drill in the axial direction when drilling. Provided in Therefore, the circumferential grooves 85a and 95a may not be provided. In this embodiment, a disc-shaped resin spacer 80 is interposed between the balancer member 85 and the front end face 71a of the rotor core 71, and a disc-shaped resin spacer 90 is interposed between the balancer member 95 and the rear end face 71b of the rotor core 71. I did. The outer diameter of the resin spacers 80, 90 is the same as the outer diameter of the rotor core 71, and the axial thickness is thinner than that of the resin spacers 80, 90. In this embodiment, t 1 = 0 outside diameter only t 1 than the outer diameter of the rotor core 71 is slightly smaller, the diameter of the rotor core 71 with respect to 39.8mm spacer member (resin spacer 80, 90). It is about 5 mm. On the other hand, the diameter D 80 of the balancer member 85 for the rotor core 71 is constituted about 15% smaller, diameter D 80 of the balancer member 95 for the rotor core 71 is small composed of about 30%.
図10(2)は(1)のD-D部の断面図である。この図はロータコア71の端面を前方側から見た正面図に相当する。ロータコア71には、周方向に等間隔で積層鉄心を切り抜いたスロット73a~73dが形成される。スロット73a~73dは、ロータコア71の横断面で回転軸60を中心とした正方形の四辺にそれぞれ位置するように配置される。それらスロット73a~73dの内部には回転軸線A1方向に4つの板状のマグネット76a~76dが回転軸線A1方向に圧入され、接着剤にて固定される。軸方向に連続する小径部75a~75dは、ロータコア71を構成する多数の鋼板を固定する際の位置決め用のカシメである。 ここで、ロータコア71の外周面71cにおいて、各マグネット76a~76dの短辺が接近する付近には、ロータコア71の外周面を略V状または、谷状に径方向内側に向けて窪むようなV字溝74a~74dが形成される。V字溝74a~74dは、ロータコア71の軸方向の全長に亘って前端面71aから後端面71bまで連続して形成される軸方向溝である。軸方向溝の断面形状が略V字といっても、底部分が平面になる又は湾曲するような形状であるので、略U字状ともいえる形状であるが、このような谷状の溝部をロータコア71の軸方向の全長分形成することによって、ロータコア71の外周側に冷却風が通りやすくなる上に、マグネット76a~76dによる磁気特性を改善してロータコア71から発生する磁束の乱れを改善できる。回転軸60の外周側であって、ロータコア71の中心穴72との間にはモールド部材65が介在する。モールド部材65は、回転軸60の外周側の特定部分、即ちシャフトモールド部60dにだけ形成される。このようにモールド部材65を介在させることによってロータコア71と回転軸60が電気的に絶縁されることになる。 FIG. 10 (2) is a cross-sectional view of the DD part of (1). This figure corresponds to a front view of the end face of the rotor core 71 as viewed from the front side. In the rotor core 71, slots 73a to 73d are formed by cutting out laminated iron cores at equal intervals in the circumferential direction. The slots 73a to 73d are arranged on the four sides of a square centered on the rotation axis 60 in the cross section of the rotor core 71. Inside the slots 73a to 73d, four plate-like magnets 76a to 76d are press-fitted in the direction of the rotation axis A1 in the direction of the rotation axis A1, and fixed with an adhesive. The small diameter portions 75a to 75d continuous in the axial direction are caulking for positioning when fixing a large number of steel plates constituting the rotor core 71. Here, on the outer peripheral surface 71c of the rotor core 71, V near the short side of each of the magnets 76a to 76d in such a manner that the outer peripheral surface of the rotor core 71 is depressed radially inward in a substantially V shape or valley shape. The grooved grooves 74a to 74d are formed. The V-shaped grooves 74a to 74d are axial grooves continuously formed from the front end surface 71a to the rear end surface 71b along the entire axial length of the rotor core 71. Even though the cross-sectional shape of the axial groove is substantially V-shaped, the bottom portion is flat or curved so that it can be said to be substantially U-shaped. By forming the entire length of the rotor core 71 in the axial direction, the cooling air can easily pass to the outer peripheral side of the rotor core 71, and the magnetic characteristics by the magnets 76a to 76d can be improved to improve the disturbance of the magnetic flux generated from the rotor core 71. . A mold member 65 intervenes between the center hole 72 of the rotor core 71 on the outer peripheral side of the rotating shaft 60. The mold member 65 is formed only on a specific portion on the outer peripheral side of the rotary shaft 60, that is, the shaft mold portion 60d. By interposing the mold member 65 in this manner, the rotor core 71 and the rotating shaft 60 are electrically insulated.
図11(1)は図1のA-A部の断面図であり、(2)は図1のB-B部の断面図であり、(3)は図1のC-C部の断面図である。ここで(1)(2)は回転軸線A1方向の前方から見た図であり、(3)は後方側から見た図であるので、左右方向の向きが異なることに注意されたい。図11(2)の断面図にて示すように、ステータコア31は内向きに6つの磁極片を有し、それら磁極片の内側空間には、ロータコア71が配置される。ロータコア71は、その外周面がステータコア31の磁極片に対してわずかな隙間を有するように隣接する。ステータコア31を保持するモータハウジング10は、合成樹脂の一体成形にて筒状に形成され、回転軸60の軸方向を通る分割面が存在しない。ステータコア31はモータハウジング10の軸方向前方側から後方側に挿入されることによって保持される。モータハウジング10の内側には軸方向に連続する多数のリブ(凸部)が形成され、ステータコア31の外側に所定の軸方向通路が形成されるようにして、冷却風がモータ5の外周側の軸方向後方から前方側に流れるようにした。また、モータハウジング10に形成される凹部(キー溝)に、ステータコア31のキー32a、32bが位置するので、モータ5がモータハウジング10内で回転方向に移動しないように保持される。 11 (1) is a cross-sectional view taken along the line AA in FIG. 1, (2) is a cross-sectional view taken along the line BB in FIG. 1, and (3) is a cross-sectional view taken along the line CC in FIG. It is. Here, (1) and (2) are views as viewed from the front in the direction of the rotation axis A1, and (3) is a view as viewed from the rear side. Note that the left and right directions are different. As shown in the cross-sectional view of FIG. 11 (2), the stator core 31 has six pole pieces inward, and the rotor core 71 is disposed in the inner space of the pole pieces. The rotor core 71 is adjacent to the pole piece of the stator core 31 such that the outer peripheral surface thereof has a slight gap. The motor housing 10 holding the stator core 31 is formed in a cylindrical shape by integral molding of a synthetic resin, and there is no divided surface passing through the axial direction of the rotating shaft 60. The stator core 31 is held by being inserted rearward from the axial front side of the motor housing 10. A large number of axially continuous ribs (convex portions) are formed inside the motor housing 10, and a predetermined axial passage is formed outside the stator core 31 so that the cooling air flows on the outer peripheral side of the motor 5. It was made to flow from the rear in the axial direction to the front. Further, since the keys 32 a and 32 b of the stator core 31 are positioned in the recesses (key grooves) formed in the motor housing 10, the motor 5 is held so as not to move in the rotational direction within the motor housing 10.
図11(1)のA-A部は、ロータ70の前方側から見た側面図に相当する。ロータコア71の前端面(風下側端部)には、V字断面形状を有するロータコア71(図10参照)と同じ断面外縁形状の樹脂スペーサ80を設けられ、その前方側にはロータコア71のV字溝74a~74dの底部の直径とほぼ同径とされるバランサ部材85が設けられる。このように、V字断面形状を有するロータコア71と同形状の樹脂スペーサ80をバランサ部材85とロータコア71の間に配置することによってロータコア71の前端面71a(図10参照)の金属面が露出しない状態とすることができる。また、樹脂スペーサ80の前側に小径のバランサ部材85を配置することにより、回転バランス調整を従来と同様に行うことが可能である。バランサ部材85の外径は、ロータコア71のV字溝74a~74dの底部(回転軸心と一番近い点)と同じ又はそれよりも小さい径となるようにし、さらに、回転軸60を通る永久磁石の法線方向でみた際に、永久磁石の外側面の位置よりも小さくなるように形成される。このように形成することによって、V字溝74a~74d部分を通って軸方向後方から前方側に流れる冷却風が、樹脂スペーサ80によって流れが阻害されることなくスムーズに流れるようになった。特に、バランサ部材85はロータコア71の風下側にあるので、バランサ部材85の外径がV字溝74a~74dの底部よりも大きい場合には、バランサ部材85とロータコア71とで囲われる空間に粉塵が溜まってしまい、冷却ファン13による空気流でも除去が困難となってしまうが、本発明によれば、ロータコア71の風下側に粉塵が溜まってしまうことを抑制できる。ロータコア71の前端側にはインシュレータ35が設けられ,インシュレータ35の径方向に延びる巻付部にはコイル58a~58fが形成される。図11ではニクロム線によるコイル部分の詳細図示を省略し、コイルの占める部分を長方形にて図示している。また、ステータコア31の各磁極部分には第3のインシュレータを介して、磁極部分と非接触状態を保ってコイルを巻くが、図11では第3のインシュレータの図示も省略している。 A portion AA in FIG. 11 (1) corresponds to a side view of the rotor 70 as viewed from the front side. A resin spacer 80 having the same cross-sectional outer edge shape as the rotor core 71 (see FIG. 10) having a V-shaped cross-sectional shape is provided on the front end surface (windward end) of the rotor core 71. A balancer member 85 is provided which has substantially the same diameter as the bottom of the grooves 74a to 74d. Thus, the metal surface of the front end face 71a (see FIG. 10) of the rotor core 71 is not exposed by arranging the resin spacer 80 having the same shape as the rotor core 71 having the V-shaped cross section between the balancer member 85 and the rotor core 71. It can be in the state. Further, by arranging the small-diameter balancer member 85 on the front side of the resin spacer 80, it is possible to perform the rotation balance adjustment as in the conventional case. The outer diameter of the balancer member 85 is set to be equal to or smaller than the bottom of the V-shaped grooves 74 a to 74 d of the rotor core 71 (the point closest to the rotational axis). When viewed in the normal direction of the magnet, it is formed to be smaller than the position of the outer surface of the permanent magnet. By forming in this manner, the cooling air flowing from the rear in the axial direction to the front side through the V-shaped grooves 74a to 74d can smoothly flow without the flow being blocked by the resin spacer 80. In particular, since the balancer member 85 is on the downwind side of the rotor core 71, dust in the space surrounded by the balancer member 85 and the rotor core 71 when the outer diameter of the balancer member 85 is larger than the bottom of the V-shaped grooves 74a to 74d. In the present invention, it is possible to suppress the accumulation of dust on the leeward side of the rotor core 71 according to the present invention. An insulator 35 is provided on the front end side of the rotor core 71, and coils 58a to 58f are formed on wound portions extending in the radial direction of the insulator 35. In FIG. 11, the detailed illustration of the coil portion by nichrome wire is omitted, and the portion occupied by the coil is illustrated as a rectangle. Further, coils are wound around the magnetic pole portions of the stator core 31 via the third insulators while maintaining the non-contact state with the magnetic pole portions, but the illustration of the third insulators is also omitted in FIG.
図11(3)はロータ70の後方側から見た背面図に相当する図である。本図で明白なように、バランサ部材95の大きさはロータコア71や樹脂スペーサ90に比べて十分小さい径とされる。このようにバランサ部材95を小さくすれば、バランサ部材95の外周側に、ロータコア71の回転位置を検出するホールICを搭載するセンサ基板122(図1参照)を配置することができ、バランサ部材95の外周側の空間を有効利用できる。一方で、樹脂スペーサ90の外縁形状をロータコア71の外縁形状と同じようにV字溝91a~91dを形成したので、ロータコア71の後端面71b(図10参照)の金属面が露出しない状態とすることができ、冷却風と共にハンドルハウジング16内からモータハウジング10の内部空間に到達した金属粉塵が、ロータコア71の軸方向の後端面71bに直接付着することを防止できる。また、樹脂スペーサ90にもV字溝が同じように形成されるので、冷却風の軸方向の流れを阻害することなく、ロータコア71の端面に付着した異物によってモータロックを引き起こす虞を大幅に回避できる。 FIG. 11 (3) is a view corresponding to a rear view of the rotor 70 as viewed from the rear side. As apparent from this figure, the size of the balancer member 95 is a diameter sufficiently smaller than that of the rotor core 71 and the resin spacer 90. By thus making the balancer member 95 smaller, the sensor substrate 122 (see FIG. 1) on which the Hall IC for detecting the rotational position of the rotor core 71 is mounted can be disposed on the outer peripheral side of the balancer member 95. The space on the outer side of can be used effectively. On the other hand, V-shaped grooves 91a to 91d are formed in the same manner as the outer edge shape of resin spacer 90 in the same manner as the outer edge shape of rotor core 71, so the metal surface of rear end face 71b (see FIG. 10) of rotor core 71 is not exposed. It is possible to prevent metal dust that has reached the inner space of the motor housing 10 from the inside of the handle housing 16 with the cooling air from adhering directly to the axial rear end surface 71b of the rotor core 71. Further, since the V-shaped groove is similarly formed in the resin spacer 90, the possibility of causing the motor lock due to the foreign matter attached to the end face of the rotor core 71 is substantially avoided without obstructing the flow of the cooling air in the axial direction. it can.
図12はバランサ部材85、95の単体形状を示す斜視図である。ここでは外周面85b、95bに形成される周方向溝85a、95a(図10参照)の図示を省略している。バランサ部材85、95は、ロータ70の回転バランスを向上させる目的であるので、バランス調整用の径方向穴を開ける前の状態(バランス調整前の状態)では軸対称の略円環状の形状である。それぞれの中央には貫通穴85c、95cが形成され、軸方向にはそれぞれ厚さT、Tとされる。ここでは外径の差を考慮してT<Tとしたことによりそれぞれの質量を等しくしている。貫通穴85c、95cの内径は、シャフトモールド加工が終了した後に回転軸60のシャフトモールド部60d(図10参照)に圧入するのに最適な大きさとされる。回転バランスの調整行程においては、図10のように回転軸60にステータ70と冷却ファン13を組み立てた状態において回転軸60の径方向から図示しないドリル刃をバランサ部材85、95の外周面に押し当てて、そこに微小の穴を形成し、穴によって取り除かれた金属部分の質量軽減によって回転体の質量分布の不揃いをなくすようにする。この際、ドリルは鉄系の金属製であるため、ロータコア71に設けられているマグネット76a~76d側に磁力によって引きつけられるため、穿孔作業に支障が出やすい。本実施例で樹脂スペーサ80、90を設けたことによりバランサ部材85、95とロータコア71との距離をわずかに離すことができるので、バランス取り作業の作業性を向上させることができる。また、ドリル刃がロータコア71の端面に引き寄せられたとしても樹脂スペーサ80、90の存在により、従来よりも引き離しがし易い。 FIG. 12 is a perspective view showing the shape of the balancer members 85 and 95 alone. Here, illustration of the circumferential grooves 85a, 95a (see FIG. 10) formed on the outer peripheral surfaces 85b, 95b is omitted. The balancer members 85 and 95 are for the purpose of improving the rotational balance of the rotor 70, and therefore have an axially symmetrical substantially annular shape in the state before the radial adjustment holes for balance adjustment (the state before the balance adjustment). . Through holes 85 c and 95 c are formed at the centers of the respective members, and have thicknesses T 1 and T 2 in the axial direction. Here, the respective masses are equalized by setting T 1 <T 2 in consideration of the difference in outer diameter. The inner diameter of the through holes 85c and 95c is set to an optimum size for press-fitting the shaft mold portion 60d (see FIG. 10) of the rotating shaft 60 after the shaft molding process is completed. In the adjustment process of the rotation balance, with the stator 70 and the cooling fan 13 assembled to the rotating shaft 60 as shown in FIG. 10, a not-shown drill blade is pushed against the outer peripheral surface of the balancer members 85 and 95 from the radial direction of the rotating shaft 60. It is applied to form minute holes in it so that the mass reduction of the metal part removed by the holes will eliminate irregularities in the mass distribution of the rotating body. At this time, since the drill is made of iron-based metal, it is attracted by the magnetic force to the magnets 76a to 76d provided on the rotor core 71, so that the drilling operation is likely to be hindered. By providing the resin spacers 80 and 90 in the present embodiment, the distance between the balancer members 85 and 95 and the rotor core 71 can be slightly separated, so that the workability of the balancing operation can be improved. Even if the drill bit is drawn to the end face of the rotor core 71, the presence of the resin spacers 80 and 90 makes it easier to separate than in the conventional case.
以上、本実施例によれば樹脂スペーサ80、90の大きさが、ロータコア71とほぼ同じ大きさとすることで、ロータコア71の軸方向の端面が外部に露出しないように構成したので、ロータコア71の端面に鉄粉等をつきにくく構成することができた。また、バランサ部材85、95も従来同様に設けているので、ロータ70の回転の釣り合い調整は従来同様に行うことができる。尚、回転軸60にシャフトモールド成形を行う際に、モールド箇所としてロータコア71の両側端面も含めることにより回転軸60とロータコア71の両側端面を一体にモールドすることによって、樹脂スペーサ80、90部分をモールド部材65と一体に成形しても良い。 As described above, according to the present embodiment, by setting the size of the resin spacers 80 and 90 to be substantially the same as that of the rotor core 71, the axial end face of the rotor core 71 is not exposed to the outside. It was possible to make it hard to get iron powder etc. on the end face. Further, since the balancer members 85 and 95 are also provided in the same manner as in the prior art, the balance adjustment of the rotation of the rotor 70 can be performed in the same manner as in the prior art. When the shaft 60 is molded on the rotary shaft 60, the resin spacers 80 and 90 are formed by integrally molding the rotary shaft 60 and the both end surfaces of the rotor core 71 by including the both end surfaces of the rotor core 71 as mold parts. It may be molded integrally with the mold member 65.
次に図13を用いて本発明の第二の実施例を説明する。第二の実施例の基本的な構造は第一の実施例と同様であり、ステータコア131の軸方向の長さが大きい点と、後方側の第2のインシュレータ140の形状が異なる点である。前方側のインシュレータ35は、円環部36の大きさが一致すれば第一の実施例と同じ部品を用いることができる。インシュレータ140は、本発明によるデルタ結線の方法を実現するだけでなく、従来のスター結線などにも広く対応できるように、コイルの引出し部146~148、166~168が合計6カ所形成されたものである。インシュレータ140の外周面141aには、先述した第一の実施例と同様の思想により、周方向溝142が形成される。周方向溝142は、径方向に窪むような凹部であって、周方向に連続して形成される。また周方向溝142とクロスするようして回転軸線A1方向に円環端面141c及びリブ141bを切り欠いたような径方向溝143a~143fが形成される。 Next, a second embodiment of the present invention will be described using FIG. The basic structure of the second embodiment is the same as that of the first embodiment, except that the axial length of the stator core 131 is large and the shape of the second insulator 140 on the rear side is different. The front side insulator 35 can use the same component as that of the first embodiment if the size of the annular portion 36 matches. The insulator 140 not only realizes the delta connection method according to the present invention, but also has a total of six coil extraction parts 146 to 148 and 166 to 168 so as to be widely compatible with conventional star connection and the like. It is. The circumferential groove 142 is formed on the outer peripheral surface 141 a of the insulator 140 according to the same idea as the first embodiment described above. The circumferential groove 142 is a recess that is recessed in the radial direction, and is formed continuously in the circumferential direction. Further, radial grooves 143a to 143f are formed such that the annular end surface 141c and the rib 141b are cut in the direction of the rotation axis A1 so as to cross the circumferential groove 142.
径方向溝143a~143fは、回転軸線A1方向の後方側からみてインシュレータ140の巻付部158a~158fの時計回り側に形成される。また、各巻付部158a~158fの径方向外側にはそれぞれ、引出し部146~148、166~168が形成される。ここでは、引出し部146~148だけが用いられ、引出し部166~168はコイルの巻き付け及び配線用には用いられていない。尚、引出し部のどれを用いるかは、モータが装着されるハウジング部分の形状や、モータへの駆動電流用の配線の位置に応じて変更しても良い。引出し部146~148にはそれぞれ金属端子159a~159cが装着され、金属端子159a~159cには異相渡り線156a~156cを接触させて導通状態にて固定される。例えば図に示すように、引き出し部147には金属端子159cが取りつけられる。金属端子159cの一部には切り抜いた部分を外側に折り曲げたコイル線保持部160cが形成され、コイル線保持部160cに異相渡り線156aが係止される。 The radial grooves 143a to 143f are formed clockwise of the wound portions 158a to 158f of the insulator 140 as viewed from the rear side in the direction of the rotation axis A1. Further, lead portions 146 to 148 and 166 to 168 are formed on the radially outer side of the wound portions 158 a to 158 f, respectively. Here, only the lead portions 146 to 148 are used, and the lead portions 166 to 168 are not used for winding and wiring of a coil. Note that which of the lead-out portions is used may be changed according to the shape of the housing portion to which the motor is attached and the position of the wiring for driving current to the motor. The metal terminals 159a to 159c are attached to the lead portions 146 to 148, respectively, and the different phase connecting wires 156a to 156c are brought into contact with the metal terminals 159a to 159c and fixed in a conductive state. For example, as shown in the figure, a metal terminal 159 c is attached to the lead-out portion 147. A coil wire holding portion 160c in which a cut out portion is bent outward is formed in a part of the metal terminal 159c, and the different phase crossover wire 156a is locked to the coil wire holding portion 160c.
ステータコア131の各ティースの周囲には、合成樹脂製の巻付部158a~158fが設けられる。巻付部158a~158fはステータコア131の各ティースの周方向の後方側をカバーする部材であって、コイルと各ティースとの間を絶縁するものである。 Around each tooth of stator core 131, synthetic resin wound portions 158a to 158f are provided. The wound portions 158a to 158f are members that cover the rear sides in the circumferential direction of the teeth of the stator core 131, and insulate between the coil and the teeth.
以上のように第2の実施例では、モータのコイルをデルタ結線として、ステータコアの一端側(後側)の形状を工夫することによって、コイルの自動巻付け機を用いて効率良く巻回することが可能となった。また、インシュレータ40における周方向の渡り線が、冷却風に曝されないように配線されるので、金属粉が飛び散るような環境下においても、寿命が長くて安定して動作する電動工具を実現できた。 As described above, in the second embodiment, the coils of the motor are delta connected, and the shape of one end side (rear side) of the stator core is devised to efficiently wind using a coil automatic winding machine. It became possible. Further, since the circumferential crossover wires in the insulator 40 are wired so as not to be exposed to the cooling air, the power tool can be realized which has a long life and operates stably even in an environment where the metal powder is scattered. .
以上、本発明を実施例に基づいて説明したが、本発明は上述の実施例に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の変更が可能である。例えば、電動工具は上述したグラインダだけに限定されるものではなく、モータを用いたその他の種々な動力工具での適用が可能である。また、モータの他端側に延びる回転軸に動力伝達部が接続されるモータ機器であれば、その他の動力機械や、動力機械用のモータに適用できる。 As mentioned above, although this invention was demonstrated based on the Example, this invention is not limited to the above-mentioned Example, A various change is possible within the range which does not deviate from the meaning. For example, the power tool is not limited to the above-described grinder, and application to various other power tools using a motor is possible. Moreover, as long as it is a motor device in which the power transmission unit is connected to the rotary shaft extending to the other end side of the motor, the present invention can be applied to other power machines and motors for power machines.
1…ディスクグラインダ、2…胴体部、3…動力伝達部、4…ハンドル部、4b…サイドハンドル取付孔、5…モータ、6…ギヤケース、6b…サイドハンドル取付孔、7a,7b…傘歯車、8…スピンドル(出力軸)、9a,9b…軸受、10…モータハウジング、11…軸受ホルダ、12…ファンガイド、13…冷却ファン、13a…取付部、14a…受け金具、14b…押さえ金具、15a,15b…軸受、16…ハンドルハウジング、17…トリガレバー、18…トリガスイッチ、19…制御回路部、20…インバータ回路部、21…円筒ケース、23…底面、24…外周面、24a…段差部、24b…切り欠き部分、25a~25d…回り止め保持部、26…IGBT回路素子群、27…回路基板、28…仕切り板、29…ホイルガード、30…ステータ、31…ステータコア、32a,32b…キー、34a~34f…ティース、35…(第1の)インシュレータ、36…円環部、38a~38d…ストッパ部、40…(第2の)インシュレータ、41…円環部、41a…外周面、41b…リブ、41c…円環端面、42…周方向溝、43a~43f…径方向溝、44a~44f…巻付部4、5a~45f…ストッパ部、46…U相引出し部、47…V相引出し部、48…W相引出し部、46a,47a,48a…軸方向凸部、46b,47b,48b…窪み部、46c,47c,48c…端子取付け溝、49a~49f…壁部、50…ニクロム線、51a…U1コイル、51b…U2コイル、52a…V1コイル、52b…V2コイル、53a…W1コイル、53b…W2コイル、54a~54c…引出し線、55a~55c…同相渡り線、56a~56c…異相渡り線、58a~58f…絶縁材、57b…金属端子、59a,59b,59c…金属端子、60…回転軸60a…(回転軸の)細径部、60b,60e…(回転軸の)軸受保持部、60c…(回転軸の)冷却ファン取付部、60d…(回転軸の)シャフトモールド部、60f…(回転軸の)凹凸部、65…モールド部材、70…ロータ、71…ロータコア、71a…前端面、71b…後端面、71c…外周面、72…中心穴、73a~73d…スロット、74a~74d…V字溝、75a~75d…小径部、76a~76d…マグネット、80…樹脂スペーサ、80a…貫通穴、80b…外周面、85…バランサ部材、85a…周方向溝、90…樹脂スペーサ、90a…貫通穴、91a~91d…(樹脂スペーサ90の)V字溝、95…バランサ部材、95a…周方向溝、98…砥石、99…電源コード、100…商用交流電源、101…ファン収容部、102…モータ収容部、103…テーパー部、104…回路基板収容部、105a…ネジボス部、106a~106d…ネジボス、107a,107b…リブ、108…レール部、109…軸受ホルダ、110…演算部、111…整流回路、112…ブリッジダイオード、113…平滑回路、114…電解コンデンサ、115…コンデンサ、116…抵抗、117…シャント抵抗、118…インバータ回路、119…低電圧電源回路、121…ホールIC、122…センサ基板、125…中間部材、125a…回転溝、126…フランジ部、130…ステータ、131…ステータコア、133…支持部材、133a…右側部、133b…左側部、134a…貫通孔、135a…風窓、136a…部材、137a…ネジ穴、140…インシュレータ、141a…外周面、141b…リブ、141c…円環端面、142…周方向溝、143a~143f…径方向溝、146~148…引出し部、156a~156c…異相渡り線、158a~158f…巻付部、159a~159c…金属端子、166~168…引出し部、Q1~Q6…スイッチング素子、d…ニクロム線50の直径、W…(周方向溝52の)軸方向幅、D…(周方向溝52の径方向)深さ、t…外周面41aとリブ41bの外縁位置との差、A1…回転軸線、 DESCRIPTION OF SYMBOLS 1 ... Disc grinder, 2 ... Body part, 3 ... Power transmission part, 4 ... Handle part, 4b ... Side handle attachment hole, 5 ... Motor, 6 ... Gear case, 6b ... Side handle attachment hole, 7a, 7b ... Umbrella gear, 8: spindle (output shaft), 9a, 9b: bearing, 10: motor housing, 11: bearing holder, 12: fan guide, 13: cooling fan, 13a: mounting portion, 14a: receiving bracket, 14b: pressing bracket, 15a , 15b: bearing, 16: handle housing, 17: trigger lever, 18: trigger switch, 19: control circuit portion, 20: inverter circuit portion, 21: cylindrical case, 23: bottom surface, 24: outer peripheral surface, 24a: step portion 24b: Notched portion 25a to 25d: Non-rotation holding portion 26: IGBT circuit element group 27: circuit board 28: partition plate 29: foil 30: stator 31: stator core 32a, 32b: key 34a to 34f teeth 35: first insulator 36: annular portion 38a to 38d: stopper portion 40: second ) Insulator, 41 ring portion 41a outer circumferential surface 41b rib 41c ring end face 42 circumferential groove 43a to 43f radial groove 44a to 44f wound portion 4, 5a 45f ... stopper part, 46 ... U phase lead out part, 47 ... V phase lead out part, 48 ... W phase lead out part, 46a, 47a, 48a ... axial direction convex part, 46b, 47b, 48b ... dented part, 46c, 47c, 48c: Terminal mounting groove, 49a to 49f: Wall portion, 50: Nichrome wire, 51a: U1 coil, 51b: U2 coil, 52a: V1 coil, 52b: V2 coil, 53a: W1 coil, 53b W2 coil, 54a to 54c, lead wire, 55a to 55c, in-phase crossover wire, 56a to 56c, different phase crossover wire, 58a to 58f, insulation material, 57b, metal terminal, 59a, 59b, 59c, metal terminal, 60, rotation Shaft 60a: small diameter portion (of rotating shaft) 60b, 60e: bearing holding portion (of rotating shaft) 60c: cooling fan attachment portion of (rotational shaft) 60d: shaft mold portion of (rotational shaft), 60f ... Irregularities (rotational axis) 65: mold member 70: rotor 71: rotor core 71a: front end face 71b: rear end face 71c: outer peripheral surface 72: central hole 73a to 73d slot 74a to 74d V-shaped groove 75a to 75d small diameter portion 76a to 76d magnet 80 resin spacer 80a through hole 80b outer circumferential surface 85 balancer member 85a circumferential groove 90 ... Resin spacer, 90a ... through hole, 91a to 91d ... (V of the resin spacer 90), 95 ... balancer member, 95a ... circumferential groove, 98 ... grindstone, 99 ... power cord, 100 ... commercial AC power supply, 101 ... Fan housing portion 102: Motor housing portion 103: Taper portion 104: Circuit board housing portion 105a: Screw boss portion 106a to 106d: Screw boss, 107a, 107b: Rib, 108: Rail portion, 109: Bearing holder, DESCRIPTION OF SYMBOLS 110 ... Operation part, 111 ... Rectification circuit, 112 ... Bridge diode, 113 ... Smoothing circuit, 114 ... Electrolytic capacitor, 115 ... Capacitor, 116 ... Resistance, 117 ... Shunt resistance, 118 ... Inverter circuit, 119 ... Low voltage power circuit, 121: Hall IC, 122: sensor substrate, 125: intermediate member, 125a: rotational groove, 126: surface An encircling portion 130, a stator 131, a stator core 133, a support member 133a, a right side portion 133b, a left side portion 134a, a through hole 135a, a wind window 136a, a member 137a, a screw hole 140, an insulator 141a. Outer circumferential surface, 141b: rib, 141c: annular end face, 142: circumferential groove, 143a to 143f: radial groove, 146 to 148: lead portion, 156a to 156c, different phase crossover wire, 158a to 158f, wound portion, 159a to 159c: metal terminal, 166 to 168: lead-out portion, Q1 to Q6: switching element, d: diameter of nichrome wire 50, W: axial width of circumferential groove 52, D: circumferential groove 52 Radial direction depth, t: difference between the outer peripheral surface 41a and the outer edge position of the rib 41b, A1: rotation axis,

Claims (9)

  1. 回転軸に取り付けられ永久磁石を収容するロータコア及び前記ロータコアの外周に位置するステータコアを有するモータと、前記モータを収容するための筒状のハウジングと、
    前記回転軸に取り付けられる冷却用のファンを有し、
    前記ファンによって外気を取り込み、前記ハウジング内において前記モータの周囲を前記回転軸方向に冷却風を流すようにした電動工具であって、
    円筒形であって前記ロータコアの外径よりも小さい非磁性金属製のバランサ部材を前記ロータコアの軸方向の一方側又は双方側に設け、
    前記バランサ部材と前記ロータコアの間に樹脂製のスペーサ部材を介在させたことを特徴とする電動工具。
    A motor having a rotor core mounted on a rotary shaft and containing a permanent magnet, a stator core located on an outer periphery of the rotor core, and a cylindrical housing for containing the motor;
    It has a fan for cooling attached to the said rotating shaft,
    It is an electric tool in which outside air is taken in by the fan and cooling air flows in the direction of the rotation axis around the motor in the housing,
    A nonmagnetic metal balancer member which is cylindrical and smaller than the outer diameter of the rotor core is provided on one side or both sides in the axial direction of the rotor core,
    A resin-made spacer member is interposed between the balancer member and the rotor core.
  2. 前記ロータコアの外周面において、前記ロータコアの軸方向の一方側端面から他端側端面に至って連続して形成される軸方向溝を複数本形成し、
    前記スペーサ部材は前記ロータコアの端面の外縁形状と相似形の外縁形状とされることを特徴とする請求項1に記載の電動工具。
    On an outer peripheral surface of the rotor core, a plurality of axial grooves are formed continuously from the one end surface in the axial direction of the rotor core to the other end surface,
    The power tool according to claim 1, wherein the spacer member has an outer edge shape similar to the outer edge shape of the end face of the rotor core.
  3. 前記スペーサ部材は中心に貫通穴が形成された略円環状の部材であり、
    前記バランサ部材は、バランス調整用の径方向穴を開ける前の外縁の断面形状が真円であり、中心に軸方向に延びる貫通穴が形成され、
    前記ロータコアを固定した状態の前記回転軸に、前記スペーサ部材と前記バランサ部材の貫通穴を圧入することによって、前記スペーサ部材と前記バランサ部材が前記回転軸に固定されることを特徴とする請求項2に記載の電動工具。
    The spacer member is a substantially annular member having a through hole formed at the center,
    In the balancer member, the cross-sectional shape of the outer edge before making a radial adjustment hole for balance adjustment is a perfect circle, and an axially extending through hole is formed at the center,
    The spacer member and the balancer member are fixed to the rotation shaft by press-fitting the through holes of the spacer member and the balancer member to the rotation shaft in a state in which the rotor core is fixed. The power tool according to 2.
  4. 前記ステータコアには励磁電流を流すためのコイルが巻かれ、
    前記回転軸の外面と前記ステータコアとの絶縁状態を確保するために前記回転軸の外面には合成樹脂製のシャフトモールド加工がされ、
    前記スペーサ部材は、前記シャフトモールド加工の際に合わせてモールド成型により形成され、
    前記バランサ部材は、バランス調整用の径方向穴を開ける前の外縁の断面形状が真円であり、中心に軸方向に延びる貫通穴が形成され、前記シャフトモールド加工が終了した後に前記回転軸に圧入されることを特徴とする請求項2に記載の電動工具。
    A coil for passing an exciting current is wound around the stator core,
    In order to ensure insulation between the outer surface of the rotary shaft and the stator core, shaft molding of synthetic resin is performed on the outer surface of the rotary shaft,
    The spacer member is formed by molding according to the shaft molding process,
    In the balancer member, the cross-sectional shape of the outer edge before making a radial adjustment hole for balance adjustment is a perfect circle, a through hole extending in the axial direction is formed at the center, and after the shaft molding is finished The power tool according to claim 2, characterized in that it is press-fitted.
  5. 前記ロータコアは中心に貫通穴を有し、貫通穴よりも径方向外側に板状の前記永久磁石を収容するためのスロットが形成された積層鉄心にて構成され、
    前記バランサ部材の外径は、前記回転軸を通る前記永久磁石の法線方向でみて、前記永久磁石の外側面の位置よりも小さい直径にて形成されることを特徴とする請求項3又は4に記載の電動工具。
    The rotor core has a through hole in the center, and is formed of a laminated core in which a slot for accommodating the plate-like permanent magnet is formed radially outward of the through hole.
    The outer diameter of the balancer member is formed with a diameter smaller than the position of the outer surface of the permanent magnet in the normal direction of the permanent magnet passing through the rotation axis. Power tool described in.
  6. 前記バランサ部材の外周面に、ロータの回転バランス調整用の穴が設けられることを特徴とする請求項1から5のいずれか一項に記載の電動工具。 The electric tool according to any one of claims 1 to 5, wherein a hole for adjusting the rotational balance of the rotor is provided on the outer peripheral surface of the balancer member.
  7. 前記スペーサ部材の前記回転軸方向の厚さは、前記バランサ部材の前記回転軸方向の厚さよりも薄いことを特徴とする請求項6に記載の電動工具。 The power tool according to claim 6, wherein a thickness of the spacer member in the rotation axis direction is smaller than a thickness of the balancer member in the rotation axis direction.
  8. 回転軸に取り付けられ永久磁石を用いたロータコアと前記ロータコアの外周に位置するステータコアを有するモータと、前記モータを収容するための筒状のハウジングと、
    前記回転軸に取り付けられる冷却用のファンを有し、
    前記ファンによって外気を取り込み、前記ハウジング内において前記モータの周囲を前記回転軸方向に冷却風を流すようにした電動工具であって、
    前記回転軸の外周面と前記ロータコアの内周面の間にシャフトモールド加工を行い、
    前記シャフトモールド加工のモールド箇所として前記ステータコアの両側端面を覆う部分まで拡張することにより前記回転軸と前記ステータコアの両側端面を一体にモールドすることを特徴とする電動工具。
    A motor having a rotor core attached to a rotary shaft and using a permanent magnet, a stator core positioned on the outer periphery of the rotor core, and a cylindrical housing for housing the motor;
    It has a fan for cooling attached to the said rotating shaft,
    It is an electric tool in which outside air is taken in by the fan and cooling air flows in the direction of the rotation axis around the motor in the housing,
    Shaft molding is performed between the outer peripheral surface of the rotating shaft and the inner peripheral surface of the rotor core,
    An electric power tool characterized in that the shaft and the both end surfaces of the stator core are integrally molded by expanding to a portion covering the both end surfaces of the stator core as a molded portion of the shaft molding process.
  9. 回転軸に取り付けられ永久磁石を収容するロータコア及び前記ロータコアの外周に位置するステータコアを有するモータと、前記モータを収容するための筒状のハウジングと、
    前記回転軸に取り付けられる冷却用のファンを有し、
    前記ファンによって外気を取り込み、前記ハウジング内において前記モータの周囲を前記回転軸方向に冷却風を流すようにした電動工具であって、
    円筒形であって前記ロータコアの外径よりも小さいバランサ部材を前記ロータコアの風下側端部に設けたことを特徴とする電動工具。 
    A motor having a rotor core mounted on a rotary shaft and containing a permanent magnet, a stator core located on an outer periphery of the rotor core, and a cylindrical housing for containing the motor;
    It has a fan for cooling attached to the said rotating shaft,
    It is an electric tool in which outside air is taken in by the fan and cooling air flows in the direction of the rotation axis around the motor in the housing,
    An electric power tool characterized in that a balancer member which is cylindrical and smaller than the outer diameter of the rotor core is provided at the leeward end of the rotor core.
PCT/JP2018/036310 2017-11-30 2018-09-28 Electrical power tool WO2019106934A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019557031A JP7031684B2 (en) 2017-11-30 2018-09-28 Electric tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-230258 2017-11-30
JP2017230258 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019106934A1 true WO2019106934A1 (en) 2019-06-06

Family

ID=66663950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036310 WO2019106934A1 (en) 2017-11-30 2018-09-28 Electrical power tool

Country Status (2)

Country Link
JP (1) JP7031684B2 (en)
WO (1) WO2019106934A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021053736A (en) * 2019-09-30 2021-04-08 工機ホールディングス株式会社 Power tool
WO2023282176A1 (en) * 2021-07-08 2023-01-12 株式会社明電舎 Axial gap motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187760A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Motor and impact rotary tool
JP2013099038A (en) * 2011-10-28 2013-05-20 Mitsuba Corp Rotor for electric motor and brushless motor
JP2015126562A (en) * 2013-12-25 2015-07-06 株式会社マキタ Electric tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274587A (en) 2002-03-19 2003-09-26 Toyota Motor Corp Permanent-magnet motor
JP5722156B2 (en) 2011-08-02 2015-05-20 株式会社マキタ Electric tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187760A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Motor and impact rotary tool
JP2013099038A (en) * 2011-10-28 2013-05-20 Mitsuba Corp Rotor for electric motor and brushless motor
JP2015126562A (en) * 2013-12-25 2015-07-06 株式会社マキタ Electric tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021053736A (en) * 2019-09-30 2021-04-08 工機ホールディングス株式会社 Power tool
WO2023282176A1 (en) * 2021-07-08 2023-01-12 株式会社明電舎 Axial gap motor
JP2023009830A (en) * 2021-07-08 2023-01-20 株式会社明電舎 axial gap motor

Also Published As

Publication number Publication date
JP7031684B2 (en) 2022-03-08
JPWO2019106934A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
US11646626B2 (en) Brushless motor for a power tool
JP6973479B2 (en) Electric tool
US9692270B2 (en) Motor including brackets and fixing members
EP3287240B1 (en) Electric tool
JP2012131004A (en) Electric power tool
JP6851735B2 (en) Electric tool
WO2019106934A1 (en) Electrical power tool
JP5482274B2 (en) Electric tool
WO2020003696A1 (en) Electric tool
JP2017525581A (en) Handheld machine tool with electronically rectified electric motor as direct drive
JP2007104875A (en) Rotary machine
WO2019151395A1 (en) Brushless motor and electric apparatus using same
JP2017013141A (en) Electric power tool
JP2019103211A (en) Motor and power tool using the same
JP2016022555A (en) Power tool
JP2017013142A (en) Electric power tool
JP2017017770A (en) Electric power tool
US20230170768A1 (en) Brushless motor and electrically-powered tool
WO2021065273A1 (en) Power tool
JP6497237B2 (en) Electric tool
JP2021053736A (en) Power tool
US20060244328A1 (en) Brush motor having coreless assembly
US20170353074A1 (en) Rotor for rotating electric machine
US20230099488A1 (en) Electric motor for a power tool
WO2022091964A1 (en) Work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557031

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884024

Country of ref document: EP

Kind code of ref document: A1