WO2019105325A1 - 频偏预补偿方法及装置、通信设备 - Google Patents

频偏预补偿方法及装置、通信设备 Download PDF

Info

Publication number
WO2019105325A1
WO2019105325A1 PCT/CN2018/117511 CN2018117511W WO2019105325A1 WO 2019105325 A1 WO2019105325 A1 WO 2019105325A1 CN 2018117511 W CN2018117511 W CN 2018117511W WO 2019105325 A1 WO2019105325 A1 WO 2019105325A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency offset
remote radio
module
compensation
frequency
Prior art date
Application number
PCT/CN2018/117511
Other languages
English (en)
French (fr)
Inventor
薛强
曹琦
范毅
陈强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019105325A1 publication Critical patent/WO2019105325A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0018Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present disclosure relates to, but is not limited to, the field of communication technologies, and in particular, to a frequency offset pre-compensation method and apparatus, and a communication device.
  • the Doppler frequency offset can be above 800 Hz in the 2.6G frequency band, and the highest Doppler frequency offset can reach 1600 Hz or more for the overlapping coverage area of two cells.
  • Both the base station and the terminal must estimate and correct the Doppler frequency offset by an algorithm to correctly demodulate the data.
  • the processing capability is strong, and the frequency offset correction has no problem.
  • the terminal side limited by the processing capability and the algorithm, there may be an uncorrectable situation, resulting in easy off-network or poor user experience.
  • the downlink scheduling information used is common to all terminals (UE, User Equipment), and the demodulation uses a cell RS (Reference Signal), and cannot perform frequency offset for a certain UE.
  • the compensation causes the UE to have a higher demodulation error rate when demodulating the downlink scheduling information.
  • the embodiment of the present application provides a frequency offset pre-compensation method and device, and a communication device.
  • an embodiment of the present application provides a frequency offset pre-compensation method, including:
  • the embodiment of the present application provides a frequency offset pre-compensation method, which is applied to a communication device including at least two remote radio units (RRUs), including:
  • the embodiment of the present application provides a frequency offset pre-compensation device, including:
  • a configuration module configured to configure a dedicated downlink control channel for the first communication device
  • a frequency offset estimation module configured to perform uplink signal frequency offset estimation
  • the frequency offset pre-compensation module is configured to perform frequency offset pre-compensation on the downlink control channel and the dedicated reference signal according to the frequency offset estimation result.
  • the embodiment of the present application provides a frequency offset pre-compensation device, which is applied to a communication device including at least two remote radio frequency modules, including:
  • a determining module configured to determine a primary remote radio frequency module and a secondary remote radio frequency module according to an uplink signal receiving strength of the at least two remote radio frequency modules
  • the first processing module is configured to determine a frequency offset compensation value of the primary remote radio frequency module according to a frequency offset estimation result of the received signal on the primary remote radio frequency module; and perform frequency offset compensation according to the primary remote radio frequency module a value, a frequency offset estimation result of the received signal on the primary remote radio module, and a frequency offset estimation result of the received signal on the secondary remote radio module, to determine a frequency offset compensation value of the secondary remote radio module;
  • the second processing module is configured to adopt a frequency offset compensation value of the primary remote radio frequency module, perform frequency offset pre-compensation on the dedicated downlink channel on the primary remote radio frequency module, and adopt the secondary remote radio frequency module
  • the frequency offset compensation value is used to perform frequency offset pre-compensation on the dedicated downlink channel on the secondary remote radio module.
  • an embodiment of the present application provides a communications device, including: a first memory and a first processor, where the first memory is configured to store a frequency offset pre-compensation program, and the frequency offset pre-compensation program is The step of implementing the frequency offset pre-compensation method provided by the above first aspect is performed when a processor executes.
  • the embodiment of the present application provides a communications device, including: a second memory and a second processor, where the second memory is configured to store a frequency offset pre-compensation program, and the frequency offset pre-compensation program is The second processor executes the steps of the frequency offset precompensation method provided by the second aspect above.
  • the embodiment of the present application further provides a computer readable medium storing a frequency offset precompensation program, where the frequency offset precompensation program is executed by a processor to implement the steps of the frequency offset precompensation method provided by the first aspect.
  • the embodiment of the present application further provides a computer readable medium storing a frequency offset precompensation program, where the frequency offset precompensation program is executed by a processor to implement the steps of the frequency offset precompensation method provided by the second aspect.
  • a dedicated downlink control channel is configured for the first communications device; frequency offset estimation of the uplink signal is performed; and frequency offset prediction is performed on the downlink control channel and the dedicated reference signal (RS, Reference Signal) according to the frequency offset estimation result. make up.
  • RS Reference Signal
  • a method for determining a frequency offset compensation value of multiple RRUs in a single-cell multiple RRU scenario is provided, thereby implementing frequency offset pre-compensation on multiple RRUs.
  • FIG. 1 is a flowchart of a frequency offset pre-compensation method according to an embodiment of the present application
  • Figure 4 is a schematic view of an embodiment of the present application.
  • FIG. 5 is a flowchart of an implementation process of an embodiment of the present application.
  • Figure 6 is a schematic diagram of the calculation of the included angle in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a frequency offset pre-compensation device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another frequency offset pre-compensation device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 1 is a flowchart of a frequency offset pre-compensation method according to an embodiment of the present application. As shown in FIG. 1 , the frequency offset pre-compensation method provided in this embodiment includes:
  • the downlink control channel may include a physical downlink control channel (ePDCCH, for example, an enhanced physical downlink control channel (ePDCCH) in an LTE (Long Term Evolution) system.
  • ePDCCH physical downlink control channel
  • LTE Long Term Evolution
  • the first communication device may be a terminal (UE, User Equipment); after the terminal accesses the cell, the base station performs frequency offset detection or other detection processing to determine whether the terminal is in a frequency offset pre-compensation scenario (eg, high speed Scenario) (that is, whether the terminal needs to perform frequency offset pre-compensation); after determining that the terminal is in the frequency offset pre-compensation scenario, the base station detects whether a dedicated downlink control channel has been configured for the terminal, and if not, configures a dedicated downlink control channel for the terminal; If configured, the uplink frequency offset is estimated in real time when the terminal is scheduled, and then the frequency offset pre-compensation is performed on the downlink control channel and the corresponding dedicated RS. In this way, when the terminal detects the downlink control channel, the received downlink signals are all pre-compensated by a frequency offset pre-compensation scenario (eg, high speed Scenario) (that is, whether the terminal needs to perform frequency offset pre-compensation); after determining that the terminal
  • S102 may include: estimating an uplink frequency offset by using a random access channel (RACH), a sounding reference signal (SRS), and other uplink signals.
  • RACH random access channel
  • SRS sounding reference signal
  • the frequency offset pre-compensation method provided in this embodiment may further include: determining, according to the Doppler frequency offset of the uplink signal, whether the first communication device needs to perform frequency offset pre-compensation; If the Doppler frequency offset is greater than or equal to the threshold, it is determined that the first communication device needs to perform frequency offset pre-compensation.
  • the threshold value can be determined by a preset manner. However, this application is not limited thereto.
  • the frequency offset pre-compensation method provided by the embodiment may further include: determining, according to the traveling speed of the first communications device, whether the first communications device needs to perform frequency offset pre-compensation; If the traveling speed of a communication device is greater than or equal to the speed threshold, it is determined that the first communication device needs to perform frequency offset pre-compensation.
  • the speed threshold can be preset. However, this application is not limited thereto.
  • S101 can include:
  • a dedicated downlink control channel is configured for the first communications device by sending a radio resource control (RRC) connection reconfiguration message to the first communications device, for example, an enhanced physical downlink control channel (ePDCCH, enhanced Physical Downlink Control Channel) ); or,
  • RRC radio resource control
  • a dedicated downlink control channel is configured for the first communication device by transmitting configuration information to the first communication device.
  • the frequency offset pre-compensation method of the embodiment may be applied to a communication device including a primary remote radio frequency module and a secondary remote radio frequency module;
  • S103 may include:
  • the downlink signal received by the first communications device when detecting the dedicated downlink control channel has no frequency offset.
  • FIG. 2 is a flowchart of another frequency offset pre-compensation method according to an embodiment of the present application.
  • the frequency offset pre-compensation method provided in this embodiment is applied to a communication device (for example, a base station) including at least two remote radio units (RRUs), including:
  • the communications device determines the primary RRU and the secondary RRU according to the uplink signal receiving strength of the at least two RRUs;
  • S202 Determine, according to a frequency offset estimation result of the received signal on the primary RRU, a frequency offset compensation value of the primary RRU; a frequency offset compensation value according to the primary RRU, a frequency offset estimation result of the received signal on the primary RRU, and a frequency of the received signal on the secondary RRU. Deviating the estimation result, determining a frequency offset compensation value of the secondary RRU;
  • This embodiment provides a method for determining a frequency offset compensation value in a multiple RRU scenario, thereby implementing frequency offset pre-compensation on multiple RRUs.
  • the downlink channel may include at least one of the following: a downlink control channel, a downlink traffic channel.
  • the frequency offset pre-compensation method provided in this embodiment can be used for frequency offset pre-compensation of a dedicated downlink control channel, and can also be used for frequency offset pre-compensation of a dedicated downlink traffic channel.
  • this application is not limited thereto.
  • S201 may include:
  • the RRU with the highest uplink signal reception strength among the at least two RRUs is determined as the primary RRU; and one or more RRUs whose uplink signal reception strengths other than the primary RRU satisfy the set condition are determined as the secondary RRU.
  • the setting condition may include: the uplink signal receiving strength is greater than a set threshold, that is, one or more RRUs whose uplink signal receiving strength is greater than a set threshold and less than a maximum value may be determined as a secondary RRU.
  • determining the downlink frequency offset compensation value of the secondary RRU in S202 may include: determining a frequency offset compensation value of the secondary RRU according to the following formula:
  • ⁇ f s ⁇ f m + ⁇ f 1R - ⁇ f 2R ;
  • ⁇ f s represents the frequency offset compensation value of the secondary RRU
  • ⁇ f m represents the frequency offset compensation value of the primary RRU
  • ⁇ f 1R represents the frequency offset estimation result of the received signal on the primary RRU
  • ⁇ f 2R represents the frequency offset estimation of the received signal on the secondary RRU.
  • the first communication device is described by taking a terminal as an example.
  • This embodiment describes the application of the frequency offset pre-compensation method of the present application in an LTE system. As shown in FIG. 3, the embodiment includes the following steps:
  • S301 The terminal (UE) initiates a service
  • the base station determines whether the terminal is in a frequency offset pre-compensation scenario.
  • the frequency offset pre-compensation scenario is described by taking a high-speed scenario as an example. However, this application is not limited thereto.
  • the base station can estimate the Doppler frequency offset of the uplink signal of the terminal, and if the Doppler frequency offset is higher than the threshold, it is considered to be a high speed scene.
  • the present application is not limited thereto, and other high-speed scene determination methods such as the high-speed scene determination method in the foregoing embodiment may be used.
  • the threshold value can be determined by default.
  • the terminal if it is detected that the terminal does not satisfy the high-speed scene, the terminal is periodically detected whether the high-speed scene is satisfied, and S303 is performed after the terminal is in the high-speed scene.
  • the base station determines whether the terminal has configured a dedicated physical downlink control channel.
  • the dedicated physical downlink control channel may be an Enhanced Physical Downlink Control Channel (ePDCCH).
  • ePDCCH Enhanced Physical Downlink Control Channel
  • the base station sends an RRC connection reconfiguration message to the terminal, and configures the ePDCCH to the terminal, where the ePDCCH information is configured in the RRC connection reconfiguration message.
  • the base station estimates the uplink frequency offset in real time according to the received uplink signal, and performs frequency offset pre-compensation on the ePDCCH and the corresponding RS.
  • the value of the frequency offset pre-compensation may adopt different values according to different scenarios. This is not limited.
  • the real-time estimation of the uplink frequency offset here may include: performing uplink frequency offset estimation according to a sufficiently small time interval. For example, completing an uplink frequency offset estimation is followed by the next uplink frequency offset estimation.
  • the terminal detects a dedicated physical downlink control channel (ePDCCH in this example).
  • ePDCCH a dedicated physical downlink control channel
  • the terminal performs blind detection on the ePDCCH, the received downlink signals have been subjected to frequency offset pre-compensation, so the frequency offset Very small, the demodulation performance of the terminal can be guaranteed.
  • This embodiment illustrates the application of the frequency offset pre-compensation method of the present application in a 5G (Fifth Generation Mobile Communication Technology) system.
  • the 5G system is a LTE downlink evolution system, adding many features, such as massive multiple-input multiple-output (massive MIMO), which is likely to become standard, with higher bandwidth and higher peak rate.
  • massive MIMO massive multiple-input multiple-output
  • a dedicated RS is required for both the control channel and the traffic channel.
  • the terminal initiates a service
  • the base station determines whether the terminal is in the frequency offset pre-compensation scenario, that is, whether the terminal needs to perform the frequency offset pre-compensation.
  • the frequency offset pre-compensation scenario is described by taking a high-speed scenario as an example. However, this application is not limited thereto.
  • the base station estimates the Doppler frequency offset of the uplink signal of the terminal. If the Doppler frequency is higher than the threshold, it is considered to be a high-speed scene. However, this application is not limited thereto, and other high-speed scene determinations may also be used.
  • the method is, for example, the high-speed scene determination mode in the fourth embodiment.
  • the base station When the terminal does not have a dedicated physical downlink control channel, the base station sends configuration information.
  • the configuration information a physical downlink control channel dedicated to the 5G is configured, and the physical downlink control channel is used for channel estimation.
  • the base station estimates the uplink frequency offset in real time according to the received uplink signal, and performs frequency offset pre-compensation on the 5G dedicated physical downlink control channel and its corresponding reference signal.
  • the terminal performs channel estimation according to the reference signal and detects the dedicated physical downlink control channel.
  • the base station periodically detects whether the terminal meets the high-speed scenario, and configures a dedicated physical downlink control channel for the terminal by signaling when the terminal is in the high-speed scenario.
  • This embodiment describes the application of the frequency offset pre-compensation method of the present application in multiple RRU transmission signals in a single-cell multi-RRU mode.
  • a cell is often composed of multiple RRUs. These RRUs are connected in series to facilitate the coverage of the cell and reduce inter-cell handover. Between two adjacent RRUs, the base station detects the uplink signals simultaneously, and the downlink signals can also be sent on different RRUs at the same time. Different RRUs send the same signals at the same time and frequency. These signals are The terminal side is superimposed, so that the signal-to-noise ratio of the receiving side is improved.
  • the opposite two RRUs refer to two RRUs facing each other.
  • the signals sent by the two RRUs need to have the same or close frequency on the terminal side.
  • the signal received by the terminal side is optimal. Therefore, different frequency offset compensation values need to be added on the two RRU sides. .
  • the primary RRU determines its own frequency offset compensation value according to the frequency offset estimation result of the received signal on the primary RRU detected by the base station side;
  • the secondary RRU determines its own frequency offset compensation value according to the frequency offset compensation value of the primary RRU, the frequency offset estimation result of the received signal on the primary RRU, and the frequency offset estimation result of the received signal on the secondary RRU.
  • the calculation process of the frequency offset compensation value of the secondary RRU is as follows:
  • the frequency received by the terminal is:
  • the terminal uses this frequency to send an uplink signal, and the frequency received by the primary RRU is:
  • ⁇ f 1R is the frequency offset of the received signal on the primary RRU estimated by the base station side (ie, the frequency offset estimation result of the received signal on the primary RRU), thereby estimating the frequency offset ⁇ f 1 of the primary RRU received by the terminal.
  • the secondary RRU also has the following equation:
  • ⁇ f 2R is the frequency offset of the received signal on the secondary RRU estimated by the base station (ie, the frequency offset estimation result of the received signal on the secondary RRU);
  • f 2T is the actual transmission frequency of the secondary RRU.
  • the frequency offset compensation value on the secondary RRU may be:
  • ⁇ f m is a known quantity
  • ⁇ f 1R and ⁇ f 2R can be calculated. From the above equation, the frequency offset compensation value that the secondary RRU needs to compensate can be estimated. Since the two RRUs belong to one base station, the above required information base stations know. The frequency offset compensation value sent by the secondary RRU may be calculated.
  • FIG. 4 is a schematic diagram of an example of the embodiment
  • FIG. 5 is a flowchart of an implementation process of the embodiment.
  • the primary RRU does not perform frequency offset compensation, and the primary RRU transmission frequency is f 0 , and the uplink detects the received signal on each RRU.
  • the primary RRU is assumed to be ⁇ f 1R and the secondary RRU is ⁇ f 2R . Since the two RRUs belong to the same base station, it can be conveniently calculated that the transmission frequency on the secondary RRU should be f 0 + ⁇ f 1R - ⁇ f 2R .
  • the frequency offsets on the UE and the primary RRU and the secondary RRU are also constantly changing, and the transmission frequency offset on the secondary RRU can be continuously adjusted by continuously detecting the reception frequency offset on the primary RRU and the secondary RRU.
  • the frequency at which the primary RRU and the secondary RRU reach the UE side is the same to obtain the best superposition effect.
  • the primary RRU and the secondary RRU are different RRUs.
  • the primary RRU may be understood as a primary RRU serving the current user equipment
  • the secondary RRU may be understood as a current user.
  • the auxiliary RRU that the device provides for the service.
  • the primary and secondary relationships of the primary RRU and the secondary RRU may be embodied in one or more parameters such as the amount of data transmitted, the amount of traffic carried, and the degree of control of the wireless communication.
  • the distance of the user equipment relative to the primary RRU is closer than the distance relative to the secondary RRU.
  • the above is only an example of the primary RRU and the secondary RRU.
  • the base station selects the primary RRU and the secondary RRU according to the received strength of the uplink signal.
  • the RRU with the strongest uplink receiving strength is defined as the primary RRU, and the uplink signal receiving strength meets the set condition (for example, the uplink signal receiving strength is greater than the setting).
  • the RRU of the threshold and less than the maximum is included in the candidate RRU, defined as the secondary RRU.
  • S502 Perform frequency offset pre-compensation on the dedicated physical downlink control channel on the primary RRU according to the application scenario.
  • the frequency offset compensation value is ⁇ f m , and when ⁇ f m is 0, it means no compensation.
  • S503 Simultaneously detecting a frequency offset estimation result of the received signal (ie, an uplink frequency offset estimation result) on the primary RRU and the secondary RRU, and the detected results are ⁇ f 1R and ⁇ f 2R , respectively .
  • the calculation method of the frequency offset compensation value provided in this embodiment can be used not only in the frequency offset pre-compensation of the dedicated physical downlink control channel, but also in the case of other frequency offset compensation, such as dedicated downlink. In the traffic channel.
  • This embodiment illustrates the manner of determining a high speed scene.
  • the Doppler frequency offset can be detected by the uplink, but since the Doppler frequency offset is also related to the traveling direction, the detection by the Doppler shift is not accurate. Among them, the calculation formula of Doppler frequency offset is:
  • is the angle between the direction of travel of the terminal and the connection between the terminal and the base station
  • f 0 is the transmission frequency point of the base station
  • v is the traveling speed of the terminal
  • the terminal user takes the high-speed rail travel as an example for description, and the following steps may be used to determine whether the terminal is in a high-speed scene:
  • the terminal signal arrival angle (DOA, Direction of Arrival) is calculated by the uplink signal received by the base station (such as the RACH signal received during access, the DMRS (Demodulation Reference Signal) during normal service, and the SRS). );
  • the terminal signal received by the base station is calculated by the DOA value calculated in the first step.
  • the angle ⁇ between the direction (ie, the connection between the terminal and the base station) and the direction of travel of the terminal is calculated by the DOA value calculated in the first step.
  • the north direction is set to 0 degrees in advance
  • the DOA is the terminal signal arrival angle calculated in step 1
  • the Road_Angle is the railway route direction angle
  • the Ant_Angle is the direction angle of the base station antenna surface.
  • DOA+Road_Angle-Ant_angle-90.
  • the terminal is determined whether the terminal is in a high speed scene according to a preset speed threshold. Wherein, if the train travel speed is greater than or equal to the speed threshold, the terminal is considered to be in a high speed scene; otherwise, the terminal is considered not to be in a high speed scene.
  • FIG. 7 is a schematic diagram of a frequency offset pre-compensation device according to an embodiment of the present application.
  • the frequency offset pre-compensation apparatus provided in this embodiment, for example, is applied to a base station, and includes: a configuration module 701, a frequency offset estimation module 702, and a frequency offset pre-compensation module 703.
  • the configuration module 701 is configured to configure a dedicated downlink control channel for the first communication device, the frequency offset estimation module 702 is configured to perform uplink signal frequency offset estimation, and the frequency offset pre-compensation module 703 is configured to use the frequency offset estimation result. Frequency offset pre-compensation is performed on the downlink control channel and the dedicated reference signal.
  • the frequency offset pre-compensation module 703 may be further configured to determine whether the first communication device needs to perform frequency offset pre-compensation according to a Doppler frequency offset of the uplink signal, where the Doppler frequency offset is greater than or equal to a threshold. a value, determining that the first communication device needs to perform frequency offset pre-compensation; or determining, according to the traveling speed of the first communication device, whether the first communication device needs to perform frequency offset pre-compensation, wherein the traveling speed of the first communication device is greater than or Equal to the speed threshold, it is determined that the first communication device needs to perform frequency offset pre-compensation.
  • FIG. 8 is a schematic diagram of another frequency offset pre-compensation device according to an embodiment of the present application.
  • the frequency offset pre-compensation apparatus provided in this embodiment is applied to a communication device (for example, a base station) including at least two RRUs, including:
  • the determining module 801 is configured to determine a primary RRU and a secondary RRU according to an uplink signal receiving strength of the at least two RRUs;
  • the first processing module 802 is configured to determine, according to a frequency offset estimation result of the received signal on the primary RRU, a frequency offset compensation value of the primary RRU, a frequency offset compensation value according to the primary RRU, a frequency offset estimation result of the received signal on the primary RRU, and a second Determining a frequency offset estimation result of the received signal on the RRU, and determining a frequency offset compensation value of the secondary RRU;
  • the second processing module 803 is configured to adopt a frequency offset compensation value of the primary RRU, perform frequency offset pre-compensation on the dedicated downlink channel on the primary RRU, and use a frequency offset compensation value of the secondary RRU to perform a dedicated downlink channel on the secondary RRU. Perform frequency offset pre-compensation.
  • the determining module 801 may be configured to determine an RRU with the highest uplink signal reception strength among the at least two RRUs as the primary RRU; and determine one or more RRUs that the uplink signal reception strength except the primary RRU satisfies the set condition For the second RRU.
  • the downlink channel may include at least one of the following: a downlink control channel, a downlink traffic channel.
  • the embodiment of the present application further provides a communication device 900 (such as a base station), including: a first memory 901 and a first processor 902, where the first memory 901 is configured to store a frequency offset precompensation program.
  • a communication device 900 such as a base station
  • the first memory 901 is configured to store a frequency offset precompensation program.
  • the first processor 902 may include, but is not limited to, a processing device such as a microprocessor (MCU) or a Field Programmable Gate Array (FPGA).
  • the first memory 901 can be configured as a software program and a module for storing application software, such as program instructions or modules corresponding to the frequency offset pre-compensation method in the embodiment, and the first processor 902 runs the software stored in the first memory 901. The program and the module, thereby performing various function applications and data processing, such as implementing the frequency offset pre-compensation method provided by the embodiment.
  • the first memory 901 can include a high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • the first memory 901 can include memory remotely located relative to the first processor 902, which can be connected to the communication device 900 over a network.
  • networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the above communication device 900 may further include a first communication unit 903; the first communication unit 903 may receive or transmit data via a network.
  • the first communication unit 903 can be a Radio Frequency (RF) module for communicating with the network system in a wireless manner.
  • RF Radio Frequency
  • the embodiment of the present application further provides a communication device, including: a second memory and a second processor, where the second memory is configured to store a frequency offset pre-compensation program, and the frequency offset pre-compensation program is implemented by the second processor Figure 2 shows the steps of the frequency offset precompensation method.
  • the embodiment of the present application further provides a computer readable medium storing a frequency offset precompensation program, and the frequency offset precompensation program is implemented by the processor to implement the step of the frequency offset precompensation method corresponding to FIG. 1 .
  • the computer readable medium includes a non-transitory storage medium.
  • the embodiment of the present application further provides a computer readable medium storing a frequency offset pre-compensation program, where the frequency offset pre-compensation program is executed by the processor to implement the step of the frequency offset pre-compensation method corresponding to FIG. 2 .
  • the computer readable medium includes a non-transitory storage medium.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种频偏预补偿方法,包括:为第一通信设备配置专用的下行控制信道,进行上行信号频偏估计,根据频偏估计结果,对下行控制信道和专用参考信号进行频偏预补偿。如此,降低第一通信设备对于频偏解调能力的要求。

Description

频偏预补偿方法及装置、通信设备
相关申请的交叉引用
本申请基于申请号为201711242543.4、申请日为2017年11月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及但不限于通信技术领域,尤其涉及一种频偏预补偿方法及装置、通信设备。
背景技术
在无线通信系统的某些场景下,比如高速场景下,在2.6G频段,多普勒频偏可达800Hz以上,对于两个小区重叠覆盖的区域,最高多普勒频偏可达1600Hz以上。基站和终端都必须通过算法对多普勒频偏进行估计和纠正,才能正确解调数据。对于基站侧,其处理能力强大,频偏纠正不存在问题,但对于终端侧,受限于处理能力和算法,可能存在无法纠正的情况,导致容易脱网或者用户体验很差。
而且,目前的无线通信系统中,使用的下行调度信息是所有终端(UE,User Equipment)公用的,且解调使用的是小区RS(Reference Signal,参考信号),无法针对某个UE进行频偏补偿,导致UE在解调下行调度信息时,解调错误率较高。
发明内容
本申请实施例提供一种频偏预补偿方法及装置、通信设备。
第一方面,本申请实施例提供一种频偏预补偿方法,包括:
为第一通信设备配置专用的下行控制信道;
进行上行信号频偏估计;
根据频偏估计结果,对所述下行控制信道和专用参考信号进行频偏预补偿。
第二方面,本申请实施例提供一种频偏预补偿方法,应用于包括至少两个远端射频模块(RRU,Radio Remote Unit)的通信设备,包括:
所述通信设备根据所述至少两个远端射频模块的上行信号接收强度,确定主远端射频模块和次远端射频模块;
根据所述主远端射频模块上接收信号的频偏估计结果,确定所述主远端射频模块的频偏补偿值;
根据所述主远端射频模块的频偏补偿值、所述主远端射频模块上接收信号的频偏估计结果以及所述次远端射频模块上接收信号的频偏估计结果,确定所述次远端射频模块的频偏补偿值;
采用所述主远端射频模块的频偏补偿值,在所述主远端射频模块上对专用的下行信道进行频偏预补偿;采用所述次远端射频模块的频偏补偿值,在所述次远端射频模块上对专用的下行信道进行频偏预补偿。
第三方面,本申请实施例提供一种频偏预补偿装置,包括:
配置模块,配置为为第一通信设备配置专用的下行控制信道;
频偏估计模块,配置为进行上行信号频偏估计;
频偏预补偿模块,配置为根据频偏估计结果,对所述下行控制信道和专用参考信号进行频偏预补偿。
第四方面,本申请实施例提供一种频偏预补偿装置,应用于包括至少两个远端射频模块的通信设备,包括:
确定模块,配置为根据所述至少两个远端射频模块的上行信号接收强 度,确定主远端射频模块和次远端射频模块;
第一处理模块,配置为根据所述主远端射频模块上接收信号的频偏估计结果,确定所述主远端射频模块的频偏补偿值;根据所述主远端射频模块的频偏补偿值、所述主远端射频模块上接收信号的频偏估计结果以及所述次远端射频模块上接收信号的频偏估计结果,确定所述次远端射频模块的频偏补偿值;
第二处理模块,配置为采用所述主远端射频模块的频偏补偿值,在所述主远端射频模块上对专用的下行信道进行频偏预补偿;采用所述次远端射频模块的频偏补偿值,在所述次远端射频模块上对专用的下行信道进行频偏预补偿。
第五方面,本申请实施例提供一种通信设备,包括:第一存储器和第一处理器,所述第一存储器配置为存储频偏预补偿程序,所述频偏预补偿程序被所述第一处理器执行时实现上述第一方面提供的频偏预补偿方法的步骤。
第六方面,本申请实施例提供一种通信设备,包括:第二存储器和第二处理器,所述第二存储器配置为存储频偏预补偿程序,所述频偏预补偿程序被所述第二处理器执行时实现上述第二方面提供的频偏预补偿方法的步骤。
此外,本申请实施例还提供一种计算机可读介质,存储有频偏预补偿程序,所述频偏预补偿程序被处理器执行时实现上述第一方面提供的频偏预补偿方法的步骤。
此外,本申请实施例还提供一种计算机可读介质,存储有频偏预补偿程序,所述频偏预补偿程序被处理器执行时实现上述第二方面提供的频偏预补偿方法的步骤。
在本申请实施例中,为第一通信设备配置专用的下行控制信道;进行 上行信号频偏估计;根据频偏估计结果,对下行控制信道和专用参考信号(RS,Reference Signal)进行频偏预补偿。如此,通过对配置给第一通信设备的专用的下行控制信道及对应的RS进行频偏预补偿,使得第一通信设备在检测专用的下行控制信道时接收的下行信号已经没有频偏,从而降低第一通信设备对于频偏解调能力的要求,并提高无线通信网络的可靠性。
在本申请实施例中,提供了单小区多RRU场景下的多RRU的频偏补偿值的确定方式,从而实现在多RRU上的频偏预补偿。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1为本申请实施例提供的一种频偏预补偿方法的流程图;
图2为本申请实施例提供的另一种频偏预补偿方法的流程图;
图3为本申请实施例的实施处理流程图;
图4为本申请实施例的示意图;
图5为本申请实施例的实施处理流程图;
图6为本申请实施例中的夹角计算示意图;
图7为本申请实施例提供的一种频偏预补偿装置的示意图;
图8为本申请实施例提供的另一种频偏预补偿装置的示意图;
图9为本申请实施例提供的一种通信设备的示意图。
具体实施方式
以下结合附图对本申请实施例进行详细说明,应当理解,以下所说明的实施例仅用于说明和解释本申请,并不用于限定本申请。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况 下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1为本申请实施例提供的一种频偏预补偿方法的流程图。如图1所示,本实施例提供的频偏预补偿方法,包括:
S101、为第一通信设备配置专用的下行控制信道;
S102、进行上行信号频偏估计;
S103、根据频偏估计结果,对下行控制信道和专用参考信号(RS,Reference Signal)进行频偏预补偿。
其中,下行控制信道可以包括物理下行控制信道,比如,在长期演进(LTE,Long Term Evolution)系统中为增强物理下行控制信道(ePDCCH,enhanced Physical Downlink Control Channel)。
本实施例提供的频偏预补偿方法可以应用在通信设备,比如基站上。然而,本申请对此并不限定。在示例性实施方式中,第一通信设备可以为终端(UE,User Equipment);终端接入小区后,基站进行频偏检测或其他检测处理,判断终端是否处于频偏预补偿场景(比如,高速场景)(即终端是否需要进行频偏预补偿);基站确定终端处于频偏预补偿场景后,检测是否已给终端配置专用的下行控制信道,如果没有,则给终端配置专用的下行控制信道;若已配置,则在调度该终端时,实时估计上行频偏,然后对下行控制信道及对应的专用RS进行频偏预补偿。如此,当终端对下行控制信道进行检测时,收到的下行信号均已经进行频偏预补偿,因此频偏很小,终端的解调性能得到保障。
示例性地,S102可以包括:通过随机接入信道(RACH,Random Access Channel)、探测参考信号(SRS,Sounding Reference Signal)及其他上行信号估计上行频偏。
在示例性实施方式中,在S101之前,本实施例提供的频偏预补偿方法还可以包括:根据上行信号的多普勒频偏,确定第一通信设备是否需要进 行频偏预补偿;其中,多普勒频偏大于或等于门限值,则确定第一通信设备需要进行频偏预补偿。其中,门限值可以通过预设方式确定。然而,本申请对此并不限定。
在示例性实施方式中,在S101之前,本实施例提供的频偏预补偿方法还可以包括:根据第一通信设备的行进速度,确定第一通信设备是否需要进行频偏预补偿;其中,第一通信设备的行进速度大于或等于速度门限值,则确定第一通信设备需要进行频偏预补偿。
在本示例性实施方式中,以第一通信设备为终端为例;根据终端的上行信号,计算终端信号到达角(DOA,Direction of Arrival);根据终端信号到达角、终端的行进线路方向角以及基站天线面的方向角,确定终端的行进方向与基站接收到的上行信号来波方向之间的夹角;根据该夹角、基站检测到的上行信号的多普勒频偏以及基站的发送频率,计算终端的行进速度;在终端的行进速度大于或等于速度门限值时,确定该终端需要进行频偏预补偿。其中,速度门限值可以预设得到。然而,本申请对此并不限定。
示例性地,S101可以包括:
通过向第一通信设备发送无线资源控制(RRC,Radio Resource Control)连接重配置消息,为该第一通信设备配置专用的下行控制信道,比如,增强物理下行控制信道(ePDCCH,enhanced Physical Downlink Control Channel);或者,
通过向第一通信设备发送配置信息,为该第一通信设备配置专用的下行控制信道。
在示例性实施方式中,本实施例的频偏预补偿方法可以应用于包括主远端射频模块和次远端射频模块的通信设备;
此时,S103可以包括:
根据主远端射频模块(RRU,Radio Remote Unit)上接收信号的频偏估 计结果,确定主RRU的频偏补偿值;采用主RRU的频偏补偿值,在主RRU上对下行控制信道和专用参考信号进行频偏预补偿;
根据主RRU上的频偏补偿值、主RRU上接收信号的频偏估计结果以及次RRU上接收信号的频偏估计结果,确定次RRU的频偏补偿值;采用次RRU的频偏补偿值,在次RRU上对下行控制信道和专用参考信号进行频偏预补偿。
本实施例中,通过对配置给第一通信设备的专用的下行控制信道及对应的RS进行频偏预补偿,使得第一通信设备在检测专用的下行控制信道时接收的下行信号已经没有频偏,从而降低第一通信设备对于频偏解调能力的要求,并提高无线通信网络的可靠性。
图2为本申请实施例提供的另一种频偏预补偿方法的流程图。如图2所示,本实施例提供的频偏预补偿方法,应用于包括至少两个远端射频模块(RRU,Radio Remote Unit)的通信设备(比如,基站),包括:
S201、通信设备根据至少两个RRU的上行信号接收强度,确定主RRU和次RRU;
S202、根据主RRU上接收信号的频偏估计结果,确定主RRU的频偏补偿值;根据主RRU的频偏补偿值、主RRU上接收信号的频偏估计结果以及次RRU上接收信号的频偏估计结果,确定次RRU的频偏补偿值;
S203、采用主RRU的频偏补偿值,在主RRU上对专用的下行信道进行频偏预补偿;采用次RRU的频偏补偿值,在次RRU上对专用的下行信道进行频偏预补偿。
本实施例提供了多RRU场景下的频偏补偿值的确定方式,从而实现在多RRU上的频偏预补偿。
在示例性实施方式中,下行信道可以包括以下至少一项:下行控制信道、下行业务信道。换言之,本实施例提供的频偏预补偿方法可以用于专 用的下行控制信道的频偏预补偿,也可以用于专用下行业务信道的频偏预补偿。然而,本申请对此并不限定。
在示例性实施方式中,S201可以包括:
将至少两个RRU中的上行信号接收强度最高的RRU确定为主RRU;将除主RRU外的上行信号接收强度满足设定条件的一个或多个RRU确定为次RRU。比如,设定条件可以包括:上行信号接收强度大于设定阈值,即可以将上行信号接收强度大于设定阈值且小于最大值的一个或多个RRU确定为次RRU。
在示例性实施方式中,在S202中,确定次RRU的下行频偏补偿值,可以包括:根据下式确定次RRU的频偏补偿值:
Δf s=Δf m+Δf 1R-Δf 2R
其中,Δf s表示次RRU的频偏补偿值,Δf m表示主RRU的频偏补偿值,Δf 1R表示主RRU上接收信号的频偏估计结果,Δf 2R表示次RRU上接收信号的频偏估计结果。
下面通过多个实施例对本申请的方案进行说明。在下面的实施例中,第一通信设备以终端为例进行说明。
本实施例说明本申请的频偏预补偿方法在LTE系统中的应用。如图3所示,本实施例包括以下步骤:
S301、终端(UE)发起业务;
S302、基站判断终端是否处于频偏预补偿场景;在本实施例中,频偏预补偿场景以高速场景为例进行说明。然而,本申请对此并不限定。本步骤中判断是否需要进行频偏预补偿不仅限于判断是否为高速场景,也可以采用其他是否需要进行预补偿的场景的判断方式。
在本步骤中,基站可以估计终端上行信号的多普勒频偏,如果多普勒频偏高于门限值,则认为是高速场景。然而,本申请对此并不限定,也可 以使用其他的高速场景判断方式,比如前述实施例中的高速场景判断方式。其中,门限值可以预设确定。
本实施例中,如果检测到终端不满足高速场景,则周期性检测终端是否满足高速场景,在终端处于高速场景后再执行S303。
S303、基站判断终端是否已配置专用的物理下行控制信道;在本示例中,专用的物理下行控制信道可以为增强物理下行控制信道(ePDCCH,Enhanced Physical Downlink Control Channel)。
若终端已配置专用的物理下行控制信道,则执行S305,否则(即终端未配置专用的物理下行控制信道),执行S304。
S304、基站通过给终端下发RRC连接重配置消息,给终端配置ePDCCH,其中,在RRC连接重配消息消息中配置ePDCCH信息。
S305、基站根据接收的上行信号,实时估计上行频偏,并对ePDCCH及对应的RS进行频偏预补偿;其中,频偏预补偿的值可以根据不同场景采用不同的值,然而,本申请对此并不限定。此处的实时估计上行频偏,可包括:按照足够小的时间间隔进行上行频偏估计。例如,完成一次上行频偏估计就紧接着进行下一次上行频偏估计。
S306、终端对专用的物理下行控制信道(本示例中为ePDCCH)进行检测;本示例中,终端在对ePDCCH进行盲检时,收到的下行信号均已经进行过频偏预补偿,因此频偏很小,终端的解调性能可以得到保障。
本实施例说明本申请的频偏预补偿方法在5G(第五代移动通信技术)系统中的应用。5G系统是LTE后续演进系统,添加了很多特性,比如大规模多输入多输出(massive MIMO,massive Multiple-Input Multiple-Output)很可能成为标配,带宽更大,峰值速率也更高。这种情况下,无论是控制信道还是业务信道,都需要使用专用的RS。
本实施例包括以下过程:
终端发起业务;
基站判断终端是否处于频偏预补偿场景,即判断终端是否需要进行频偏预补偿;在本实施例中,频偏预补偿场景以高速场景为例进行说明。然而,本申请对此并不限定。
其中,基站估计终端上行信号的多普勒频偏,如果多普勒频偏高于门限值,则认为是高速场景,然而,本申请对此并不限定,也可以使用其他的高速场景判断方式,比如实施例四中的高速场景判断方式。
在终端没有配置专用的物理下行控制信道时,基站下发配置信息,在此配置信息中,配置5G专用的物理下行控制信道,该物理下行控制信道对应专用的参考信号用来做信道估计。
基站根据接收的上行信号,实时估计上行频偏,并对5G专用的物理下行控制信道和其对应的参考信号进行频偏预补偿。
终端根据参考信号进行信道估计,并对专用的物理下行控制信道进行检测。
本实施例中,对于不满足高速场景的终端,基站会周期性检测终端是否满足高速场景,并在终端处于高速场景时通过信令给终端配置专用的物理下行控制信道。
本实施例说明本申请的频偏预补偿方法在单小区多RRU模式下多RRU发送信号中的应用。
在高速场景中,一个小区往往由多个RRU组成,这些RRU串联成一串,有利于增加小区的覆盖范围,减少小区间切换。在两个相邻的RRU之间,基站对于上行信号是同时检测的,下行信号也可以同时在不同的RRU上发送,不同的RRU间在相同的时间和频点发送相同的信号,这些信号在终端侧叠加,使得接收侧的信噪比提升。
但是,在相对的两个RRU之间,会有不同的多普勒频移,且一个为正, 一个为负,此时,如果不进行频率矫正,则在接收端两个信号叠加时,会出现明显的波动。其中,相对的两个RRU指面对面的两个RRU。为了避免这种现象,两个RRU发送的信号,在终端侧需要有相同或者接近的频率,这时终端侧接收到的信号最优,因此,在两个RRU侧需要加不同的频偏补偿值。
本实施例中,估计不同RRU的频偏补偿值的方式如下:
根据RRU的上行信号接收强度,选择主RRU,以及一个或者多个次RRU;
根据基站侧检测的主RRU上接收信号的频偏估计结果,主RRU决定自己的频偏补偿值;
根据主RRU的频偏补偿值、主RRU上接收信号的频偏估计结果以及次RRU上接收信号的频偏估计结果,次RRU决定自己的频偏补偿值。
下面对次RRU的频偏补偿值的计算过程进行如下说明:
假设小区的RRU频点为f 0,主RRU下行发送的频偏补偿值为Δf  m,UE接收到的主RRU的频偏为Δf 1,则终端接收到的频率为:
f'=f 0+Δf m+Δf 1,(1)
此时终端使用此频率发送上行信号,则主RRU接收到的频率为:
f 1R=f 0+Δf m+2Δf 1=f 0+Δf 1R;(2)
其中,Δf 1R是在基站侧估计出的主RRU上接收信号的频偏(即,主RRU上接收信号的频偏估计结果),由此可以估计出终端接收到的主RRU的频偏Δf 1
Figure PCTCN2018117511-appb-000001
同样,次RRU也存在下面的等式:
f 2R=f'+Δf 2=f 0+Δf 2R;(4)
f'=f 2T+Δf 2;(5)
同样,Δf 2R是基站估计出的次RRU上接收信号的频偏(即,次RRU上接收信号的频偏估计结果);f 2T是次RRU实际的发送频率。
由式(4)可以估计出终端接收到的次RRU上的频偏为Δf 2
Δf 2=f 2R-f';(6)
下面将式(1)和式(3)代入式(6),可以得到:
Figure PCTCN2018117511-appb-000002
基于上述式子,为了使得次RRU上发送信号到达终端侧的频率和主RRU上发送信号到达终端侧的频率相同,次RRU上的频偏补偿值可以为:
Δf s=f 2T-f 0=f'-Δf 2-f 0=Δf m+Δf 1R-Δf 2R
由于Δf m为已知量,Δf 1R和Δf 2R可以计算出来,由上面的等式可以估计出次RRU需要补偿的频偏补偿值,由于两个RRU属于一个基站,上面所需信息基站都知道,可以计算出次RRU下行发送的频偏补偿值。
图4为本实施例的示例示意图,图5为本实施例的实施处理流程图。如图4所示,当UE从主RRU向次RRU运动时,为了简化说明,假设主RRU下行不做频偏补偿,此时主RRU发送频率为f 0,上行检测每个RRU上接收信号的上行频偏,主RRU假设为Δf 1R,次RRU为Δf 2R,由于这两个RRU同属于同一个基站,可以很方便地计算出在次RRU上的发送频率应该为f 0+Δf 1R-Δf 2R。随着UE沿行进路线不断运动,UE和主RRU以及次RRU上的频偏也不断变化,可以通过不断检测主RRU和次RRU上的接收频偏,来不断调整次RRU上的发送频偏,以使得主RRU和次RRU到达UE侧的频率相同,以得到最好的叠加效果。
在本实施例中,所述主RRU和所述次RRU为不同的RRU,在一些实施中,所述主RRU可理解是为当前用户设备提供服务的主要RRU,次RRU 可理解为为当前用户设备提供服务的辅助RRU。主RRU和次RRU的主次关系可以体现在传输的数据量、承载的业务量、无线通信的控制程度等一个或多个方面的参数。
在另一些实施例中,用户设备相对于主RRU的距离比相对于次RRU的距离更近。当然以上仅是对主RRU和次RRU的举例说明。
如图5所示,本示例的实现步骤如下:
S501、基站根据上行信号接收强度,选择主RRU和次RRU;其中,将上行信号接收强度最强的RRU定义为主RRU,上行信号接收强度满足设定条件(比如,上行信号接收强度大于设定阈值且小于最大值)的RRU纳入候选RRU,定义为次RRU。
S502、根据应用场景,在主RRU上对专用的物理下行控制信道进行频偏预补偿,本示例中,频偏补偿值为Δf m,Δf m为0时意味着不补偿。
S503、在主RRU和次RRU上同时检测接收信号的频偏估计结果(即上行频偏估计结果),检测的结果分别为Δf 1R和Δf 2R
S504、对次RRU按照Δf s=Δf m+Δf 1R-Δf 2R进行频偏矫正,使得到达UE侧的两个下行信号的频率一致或者接近。
需要说明的是,本实施例提供的频偏补偿值的计算方式不仅仅可以用在专用物理下行控制信道的频偏预补偿中,也可以用在其他频偏补偿的情况下,比如专用的下行业务信道中。
实施例四
本实施例说明高速场景的判断方式。
在判断终端是否处于高速场景时,可以通过上行的多普勒频偏进行检测,但是由于多普勒频偏还和行进方向相关,单纯通过多普勒频偏进行检测并不准确。其中,多普勒频偏的计算式为:
Δf=f 0vcos(α);
其中,α为终端行进方向和终端与基站连线之间的夹角,f 0为基站的发送频点,v为终端的行进速度;
由此可知:
Figure PCTCN2018117511-appb-000003
本实施例中,以终端用户坐高铁行进为例进行说明,可以通过以下步骤判断终端是否处于高速场景:
通过基站接收到的上行信号(比如接入时接收到的RACH信号,正常业务期间的上行DMRS(Demodulation Reference Signal,解调参考信号),以及SRS),计算终端信号到达角(DOA,Direction of Arrival);
根据预先设定的基站天线面的方向角,以及终端的行进线路方向角(本示例中即为铁路路线方向角),通过步骤一中计算的DOA值,计算出基站接收到的终端信号来波方向(即终端与基站之间连线)和终端行进方向之间的夹角α。
下面参照图6,说明夹角α的计算方式。如图6所示,在本示例中,预先设置正北方向为0度,DOA为步骤一计算出的终端信号到达角,Road_Angle为铁路路线方向角,Ant_Angle为基站天线面的方向角。
如图6所示,Road_Angle=α+90-DOA+Ant_angle;
因此,可以得到基站接收到的终端信号来波方向和终端行进方向之间的夹角为(单位度):
α=DOA+Road_Angle-Ant_angle-90。
按照公式
Figure PCTCN2018117511-appb-000004
计算列车行进速度(相当于坐在列车上的终端用户的行进速度)。
根据预先设定的速度门限值,判断终端是否处于高速场景。其中,若列车行进速度大于或等于速度门限值,则认为终端处于高速场景,否则, 认为终端未处于高速场景。
图7为本申请实施例提供的一种频偏预补偿装置的示意图。如图7所示,本实施例提供的频偏预补偿装置,比如,应用于基站,包括:配置模块701、频偏估计模块702以及频偏预补偿模块703。
其中,配置模块701,配置为为第一通信设备配置专用的下行控制信道;频偏估计模块702,配置为进行上行信号频偏估计;频偏预补偿模块703,用于根据频偏估计结果,对下行控制信道和专用参考信号进行频偏预补偿。
示例性地,频偏预补偿模块703,还可以配置为根据上行信号的多普勒频偏,确定第一通信设备是否需要进行频偏预补偿,其中,多普勒频偏大于或等于门限值,则确定第一通信设备需要进行频偏预补偿;或者,根据第一通信设备的行进速度,确定第一通信设备是否需要进行频偏预补偿,其中,第一通信设备的行进速度大于或等于速度门限值,则确定第一通信设备需要进行频偏预补偿。
关于本实施例提供的频偏预补偿装置的相关说明可以参照图1对应的方法实施例的描述,故于此不再赘述。
图8为本申请实施例提供的另一种频偏预补偿装置的示意图。如图8所示,本实施例提供的频偏预补偿装置,应用于包括至少两个RRU的通信设备(比如,基站),包括:
确定模块801,配置为根据至少两个RRU的上行信号接收强度,确定主RRU和次RRU;
第一处理模块802,配置为根据主RRU上接收信号的频偏估计结果,确定主RRU的频偏补偿值,根据主RRU的频偏补偿值、主RRU上接收信号的频偏估计结果以及次RRU上接收信号的频偏估计结果,确定次RRU的频偏补偿值;
第二处理模块803,配置为采用主RRU的频偏补偿值,在主RRU上对 专用的下行信道进行频偏预补偿;采用次RRU的频偏补偿值,在次RRU上对专用的下行信道进行频偏预补偿。
示例性地,确定模块801可以配置为将至少两个RRU中的上行信号接收强度最高的RRU确定为主RRU;将除主RRU外的上行信号接收强度满足设定条件的一个或多个RRU确定为次RRU。
示例性地,下行信道可以包括以下至少一项:下行控制信道、下行业务信道。
关于本实施例提供的频偏预补偿装置的相关说明可以参照图2对应的方法实施例的描述,故于此不再赘述。
此外,如图9所示,本申请实施例还提供一种通信设备900(比如,基站),包括:第一存储器901和第一处理器902,第一存储器901用于存储频偏预补偿程序,该频偏预补偿程序被第一处理器902执行时实现图1对应的频偏预补偿方法的步骤。
其中,第一处理器902可以包括但不限于微处理器(MCU,Microcontroller Unit)或可编程逻辑器件(FPGA,Field Programmable Gate Array)等的处理装置。第一存储器901可配置为存储应用软件的软件程序以及模块,如本实施例中的频偏预补偿方法对应的程序指令或模块,第一处理器902通过运行存储在第一存储器901内的软件程序以及模块,从而执行各种功能应用以及数据处理,比如实现本实施例提供的频偏预补偿方法。第一存储器901可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些示例中,第一存储器901可包括相对于第一处理器902远程设置的存储器,这些远程存储器可以通过网络连接至通信设备900。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
示例性地,上述通信设备900还可以包括第一通信单元903;第一通信 单元903可以经由一个网络接收或者发送数据。在一个实例中,第一通信单元903可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与网络系统进行通信。
此外,本申请实施例还提供一种通信设备,包括:第二存储器和第二处理器,第二存储器配置为存储频偏预补偿程序,该频偏预补偿程序被第二处理器执行时实现图2对应的频偏预补偿方法的步骤。
关于本实施例提供的第二存储器和第二处理器的说明可以参照上述第一存储器和第一处理器的说明,故于此不再赘述。
此外,本申请实施例还提供一种计算机可读介质,存储有频偏预补偿程序,该频偏预补偿程序被处理器执行时实现图1对应所述的频偏预补偿方法的步骤。该计算机可读介质包括非瞬间存储介质。
此外,本申请实施例还提供一种计算机可读介质,存储有频偏预补偿程序,该频偏预补偿程序被处理器执行时实现图2对应所述的频偏预补偿方法的步骤。该计算机可读介质包括非瞬间存储介质。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块或单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块或单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易 失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (18)

  1. 一种频偏预补偿方法,包括:
    为第一通信设备配置专用的下行控制信道;
    进行上行信号频偏估计;
    根据频偏估计结果,对所述下行控制信道和专用参考信号进行频偏预补偿。
  2. 根据权利要求1所述的方法,其中,所述下行控制信道包括:物理下行控制信道。
  3. 根据权利要求1所述的方法,其中,在为第一通信设备配置专用的下行控制信道之前,所述方法还包括:
    根据所述上行信号的多普勒频偏,确定所述第一通信设备是否需要进行频偏预补偿;其中,所述多普勒频偏大于或等于门限值,则确定所述第一通信设备需要进行频偏预补偿。
  4. 根据权利要求1所述的方法,其中,在为第一通信设备配置专用的下行控制信道之前,所述方法还包括:
    根据所述第一通信设备的行进速度,确定所述第一通信设备是否需要进行频偏预补偿;其中,所述第一通信设备的行进速度大于或等于速度门限值,则确定所述第一通信设备需要进行频偏预补偿。
  5. 根据权利要求1所述的方法,其中,所述为第一通信设备配置专用的下行控制信道,包括:
    通过向所述第一通信设备发送无线资源控制连接重配置消息,为所述第一通信设备配置专用的下行控制信道;或者,
    通过向所述第一通信设备发送配置信息,为所述第一通信设备配置专用的下行控制信道。
  6. 根据权利要求1所述的方法,其中,所述频偏预补偿方法应用于包 括主远端射频模块和次远端射频模块的通信设备;
    所述根据频偏估计结果,对所述下行控制信道和专用参考信号进行频偏预补偿,包括:
    根据所述主远端射频模块上接收信号的频偏估计结果,确定所述主远端射频模块的频偏补偿值;采用所述主远端射频模块的频偏补偿值,在所述主远端射频模块上对所述下行控制信道和专用参考信号进行频偏预补偿;
    根据所述主远端射频模块上的频偏补偿值、所述主远端射频模块上接收信号的频偏估计结果以及所述次远端射频模块上接收信号的频偏估计结果,确定所述次远端射频模块的频偏补偿值;采用所述次远端射频模块的频偏补偿值,在所述次远端射频模块上对所述下行控制信道和专用参考信号进行频偏预补偿。
  7. 一种频偏预补偿方法,应用于包括至少两个远端射频模块的通信设备,包括:
    所述通信设备根据所述至少两个远端射频模块的上行信号接收强度,确定主远端射频模块和次远端射频模块;
    根据所述主远端射频模块上接收信号的频偏估计结果,确定所述主远端射频模块的频偏补偿值;
    根据所述主远端射频模块的频偏补偿值、所述主远端射频模块上接收信号的频偏估计结果以及所述次远端射频模块上接收信号的频偏估计结果,确定所述次远端射频模块的频偏补偿值;
    采用所述主远端射频模块的频偏补偿值,在所述主远端射频模块上对专用的下行信道进行频偏预补偿;采用所述次远端射频模块的频偏补偿值,在所述次远端射频模块上对专用的下行信道进行频偏预补偿。
  8. 根据权利要求7所述的方法,其中,所述通信设备根据所述至少两 个远端射频模块的上行信号接收强度,确定主远端射频模块和次远端射频模块,包括:
    将所述至少两个远端射频模块中的上行信号接收强度最高的远端射频模块确定为主远端射频模块;
    将所述主远端射频模块外的上行信号接收强度满足设定条件的一个或多个远端射频模块确定为次远端射频模块。
  9. 根据权利要求7所述的方法,其中,所述根据所述主远端射频模块的频偏补偿值、所述主远端射频模块上接收信号的频偏估计结果以及所述次远端射频模块上接收信号的频偏估计结果,确定所述次远端射频模块的频偏补偿值,包括:
    根据下式确定所述次远端射频模块的频偏补偿值:
    Δf s=Δf m+Δf 1R-Δf 2R
    其中,Δf s表示所述次远端射频模块的频偏补偿值,Δf m表示所述主远端射频模块的频偏补偿值,Δf 1R表示所述主远端射频模块上接收信号的频偏估计结果,Δf 2R表示所述次远端射频模块上接收信号的频偏估计结果。
  10. 根据权利要求7所述的方法,其中,所述下行信道包括以下至少一项:下行控制信道、下行业务信道。
  11. 一种频偏预补偿装置,其中,包括:
    配置模块,配置为为第一通信设备配置专用的下行控制信道;
    频偏估计模块,配置为进行上行信号频偏估计;
    频偏预补偿模块,配置为根据频偏估计结果,对所述下行控制信道和专用参考信号进行频偏预补偿。
  12. 根据权利要求11所述的装置,其中,所述频偏预补偿模块,还配置为根据所述上行信号的多普勒频偏,确定所述第一通信设备是否需要进行频偏预补偿,其中,所述多普勒频偏大于或等于门限值,则确定所述第 一通信设备需要进行频偏预补偿;或者,
    根据所述第一通信设备的行进速度,确定所述第一通信设备是否需要进行频偏预补偿,其中,所述第一通信设备的行进速度大于或等于速度门限值,则确定所述第一通信设备需要进行频偏预补偿。
  13. 一种频偏预补偿装置,应用于包括至少两个远端射频模块的通信设备,包括:
    确定模块,配置为根据所述至少两个远端射频模块的上行信号接收强度,确定主远端射频模块和次远端射频模块;
    第一处理模块,配置为根据所述主远端射频模块上接收信号的频偏估计结果,确定所述主远端射频模块的频偏补偿值;根据所述主远端射频模块的频偏补偿值、所述主远端射频模块上接收信号的频偏估计结果以及所述次远端射频模块上接收信号的频偏估计结果,确定所述次远端射频模块的频偏补偿值;
    第二处理模块,配置为采用所述主远端射频模块的频偏补偿值,在所述主远端射频模块上对专用的下行信道进行频偏预补偿;采用所述次远端射频模块的频偏补偿值,在所述次远端射频模块上对专用的下行信道进行频偏预补偿。
  14. 根据权利要求13所述的装置,其中,所述确定模块,用于将所述至少两个远端射频模块中的上行信号接收强度最高的远端射频模块确定为主远端射频模块;将所述主远端射频模块外的上行信号接收强度满足设定条件的一个或多个远端射频模块确定为次远端射频模块。
  15. 一种通信设备,其中,包括:第一存储器和第一处理器,所述第一存储配置为存储频偏预补偿程序,所述频偏预补偿程序被所述第一处理器执行时实现如权利要求1至6中任一项所述的频偏预补偿方法的步骤。
  16. 一种通信设备,其中,包括:第二存储器和第二处理器,所述第 二存储器配置为存储频偏预补偿程序,所述频偏预补偿程序被所述第二处理器执行时实现如权利要求7至10中任一项所述的频偏预补偿方法的步骤。
  17. 一种计算机可读介质,其中,存储有频偏预补偿程序,所述频偏预补偿程序被处理器执行时实现如权利要求1至6中任一项所述的频偏预补偿方法的步骤。
  18. 一种计算机可读介质,其中,存储有频偏预补偿程序,所述频偏预补偿程序被处理器执行时实现如权利要求7至10中任一项所述的频偏预补偿方法的步骤。
PCT/CN2018/117511 2017-11-30 2018-11-26 频偏预补偿方法及装置、通信设备 WO2019105325A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711242543.4 2017-11-30
CN201711242543.4A CN107911325B (zh) 2017-11-30 2017-11-30 一种频偏预补偿方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2019105325A1 true WO2019105325A1 (zh) 2019-06-06

Family

ID=61848312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117511 WO2019105325A1 (zh) 2017-11-30 2018-11-26 频偏预补偿方法及装置、通信设备

Country Status (2)

Country Link
CN (1) CN107911325B (zh)
WO (1) WO2019105325A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107911325B (zh) * 2017-11-30 2020-02-07 中兴通讯股份有限公司 一种频偏预补偿方法及装置、通信设备
CN111181666B (zh) * 2018-11-12 2021-03-12 大唐移动通信设备有限公司 一种时频调整方法及装置
CN109510671B (zh) * 2018-12-29 2022-02-18 芯讯通无线科技(上海)有限公司 无线通信模块的设置方法及系统、测试方法及系统
WO2020199063A1 (zh) * 2019-03-30 2020-10-08 华为技术有限公司 一种通信方法及装置
CN113364714B (zh) * 2020-03-05 2023-02-17 大唐移动通信设备有限公司 频率补偿方法、装置、网络侧设备、终端及存储介质
CN113365349B (zh) * 2020-03-05 2023-07-04 大唐移动通信设备有限公司 一种信号的传输方法、终端、网络设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567708A (zh) * 2008-04-22 2009-10-28 中兴通讯股份有限公司 一种频偏补偿的方法和装置
CN102546495A (zh) * 2012-01-29 2012-07-04 中兴通讯股份有限公司 频偏补偿方法及装置
CN106411800A (zh) * 2015-07-29 2017-02-15 中兴通讯股份有限公司 一种频偏预补偿方法及装置
CN107911325A (zh) * 2017-11-30 2018-04-13 中兴通讯股份有限公司 一种频偏预补偿方法及装置、通信设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716075B (zh) * 2012-09-29 2016-12-21 华为技术有限公司 一种多个射频拉远单元间联合通道校正的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567708A (zh) * 2008-04-22 2009-10-28 中兴通讯股份有限公司 一种频偏补偿的方法和装置
CN102546495A (zh) * 2012-01-29 2012-07-04 中兴通讯股份有限公司 频偏补偿方法及装置
CN106411800A (zh) * 2015-07-29 2017-02-15 中兴通讯股份有限公司 一种频偏预补偿方法及装置
CN107911325A (zh) * 2017-11-30 2018-04-13 中兴通讯股份有限公司 一种频偏预补偿方法及装置、通信设备

Also Published As

Publication number Publication date
CN107911325B (zh) 2020-02-07
CN107911325A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2019105325A1 (zh) 频偏预补偿方法及装置、通信设备
CN107439033B (zh) 无线通信系统中执行测距有关的操作的方法
US10306524B2 (en) Radio cell arrangement in high speed scenario
US10869288B2 (en) Method for determining transmission timing in V2X UE
US20200084809A1 (en) Method and apparatus for configuring cell in wireless communication system
US9820244B2 (en) Time-advanced random access channel transmission
US20230032501A1 (en) Measurement Period for Beam Reporting
WO2021248431A1 (en) Measurement configuration for doppler shift reporting
WO2019213873A1 (zh) 无线通信方法和终端
US10142992B2 (en) Method, base station, and user terminal for using location information of user terminal
US10849188B2 (en) Data transmission device, method, and system
CN108702765A (zh) 双工通信
US20230269700A1 (en) Communication system and base station
US9986556B1 (en) Enhanced TTI bundling in TDD mode
WO2023044064A1 (en) Flexible random access channel configurations
US10419974B2 (en) Random access handling in single frequency network with unidirectional antenna node arrangement
US9750032B2 (en) Base station device, wireless communication system, and base station device control method
JP2023536293A (ja) 情報送信方法、リソース決定方法及び装置
US11799710B2 (en) Techniques for signaling a source of dominant noise at a user equipment
US9877329B2 (en) Methods for identifying mobile stations that are near neighbor cells
WO2022047733A1 (en) Techniques for sidelink resource exclusion with a multi-transmission and receive point (trp) enabled transmitter
WO2021026802A1 (en) Timing advance adjustment for downlink carrier aggregation
US11700081B1 (en) Channel aware set partitioning for multi-level coding
US11956171B2 (en) Cyclic shift reporting for a reference signal
US11664917B1 (en) Techniques for inter-base station messaging for inter-base station cross-link interference mitigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18883137

Country of ref document: EP

Kind code of ref document: A1