WO2019104933A1 - 吸波复合材料及其制备方法 - Google Patents

吸波复合材料及其制备方法 Download PDF

Info

Publication number
WO2019104933A1
WO2019104933A1 PCT/CN2018/083691 CN2018083691W WO2019104933A1 WO 2019104933 A1 WO2019104933 A1 WO 2019104933A1 CN 2018083691 W CN2018083691 W CN 2018083691W WO 2019104933 A1 WO2019104933 A1 WO 2019104933A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
coating
intermediate layer
resin material
absorbing composite
Prior art date
Application number
PCT/CN2018/083691
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
林白阁
Original Assignee
洛阳尖端技术研究院
洛阳尖端装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洛阳尖端技术研究院, 洛阳尖端装备技术有限公司 filed Critical 洛阳尖端技术研究院
Publication of WO2019104933A1 publication Critical patent/WO2019104933A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof

Definitions

  • the present invention relates to the field of materials, and more particularly to a wave absorbing composite material and a method of preparing the same.
  • Electromagnetic technology has brought great convenience to people, and it has also caused serious electromagnetic radiation pollution. Electromagnetic radiation not only interferes with electronic instruments and equipment, but also causes it to malfunction. It also affects human health, interferes with normal physiological functions of the human body, and may even cause diseases. Therefore, absorbing materials for electromagnetic pollution have emerged.
  • coated absorbing materials are widely used, there is currently a higher demand for coated absorbing materials, that is, the requirements of "wide, thin, light, and strong” are required, but a single coating on the market It is difficult to achieve this requirement with a single absorbing agent. Therefore, it is urgent to develop a multifunctional composite absorbing material with the requirements of “wide, thin, light and strong”, which has good absorbing properties and good mechanical properties. .
  • the invention combines the advantages of three absorbing materials of ferrite, silicon carbide and graphite, and provides a multifunctional absorbing composite material with good absorbing properties and mechanical properties.
  • the invention provides a method for preparing an absorbing composite material, comprising: mixing a first diluent with a first resin material, stirring uniformly to obtain a first mixture; adding ferrite to the first mixture, stirring uniformly a second mixture is obtained; a first curing agent is added to the second mixture, and the mixture is uniformly stirred to obtain a primer; the primer is coated on the knitted fabric, dried, and a bottom layer is formed on the knitted fabric; Mixing the second diluent with the second resin material, stirring uniformly to obtain a third mixture; adding silicon carbide to the third mixture, stirring uniformly to obtain a fourth mixture; and adding a second curing agent to the fourth mixture Stirring uniformly to obtain an intermediate layer coating; coating the intermediate layer coating on the bottom layer, drying, forming an intermediate layer on the bottom layer; mixing the third diluent with the third resin material, stirring uniformly, and obtaining a fifth mixture; adding graphite to the fifth mixture, stirring uniformly to obtain a sixth mixture; adding a third cu
  • the ferrite has a mass fraction of 10% to 60% in the primer.
  • the silicon carbide has a mass fraction in the intermediate layer coating of 10% to 60%.
  • the mass fraction of the graphite in the top coat is from 10% to 60%.
  • the thickness of the underlayer, the intermediate layer and the top layer are both 0.4 mm to 0.6 mm.
  • the first diluent, the second diluent, and the third diluent each include one or more of methanol, absolute ethanol, propanol, and isopropanol.
  • the first resin material, the second resin material, and the third resin material each include one or more of an epoxy resin, a polyester resin, an amino resin, and a polyurethane.
  • the first curing agent, the second curing agent, and the third curing agent each include one or more of a polyamide resin, m-phenylenediamine, and xylylenediamine.
  • the mass ratio of the first diluent to the first resin material, the mass ratio of the second diluent to the second resin material, and the third diluent and the third The mass ratio of the resin materials is 2:1 to 3:1.
  • the mass fraction of the first curing agent in the primer, the mass fraction of the second curing agent in the interlayer coating, and the third curing agent in the top coating The quality score is 5% to 15%.
  • the present invention also provides a wave absorbing composite material comprising: a polyester knit fabric; a bottom layer formed on the polyester knit fabric, wherein the bottom layer comprises a first resin material and a ferrite; and an intermediate layer is formed at the In the underlayer, wherein the intermediate layer comprises a second resin material and silicon carbide; and a top layer is formed on the intermediate layer, wherein the top layer comprises a second resin material and graphite.
  • the first resin material, the second resin material, and the third resin material each include one or more of an epoxy resin, a polyester resin, an amino resin, and a polyurethane.
  • the invention adopts a polyester knitted fabric as a base fabric, an epoxy resin as a base body, a ferrite having a large magnetic loss rate as a bottom absorbing agent, and a dielectric loss absorbing material silicon carbide having an adjustable resistivity as a middle layer.
  • the absorbing agent uses a low-cost, low-density graphite as a surface absorbing agent to prepare a multifunctional absorbing composite material with good absorbing properties and mechanical properties, which can satisfy the coating absorbing material. Wide, thin, light and strong" comprehensive requirements.
  • Figure 1 shows a schematic of the absorbing composite of the present invention.
  • the invention adopts a polyester knitted fabric as a base fabric, an epoxy resin as a base body, a ferrite having a large magnetic loss rate as a bottom absorbing agent, and a dielectric loss absorbing material silicon carbide having an adjustable resistivity as a middle layer.
  • the absorbing agent uses a low-cost, low-density graphite as a surface absorbing agent to develop a multifunctional absorbing composite material with good absorbing properties and mechanical properties, which can meet the requirements of coated absorbing materials. Wide, thin, light and strong" comprehensive requirements.
  • the graphite/silicon carbide/ferrite three-layer composite coating of the present invention is shown in FIG.
  • a composite coating is formed on the base fabric 1.
  • the base fabric 1 may be a polyester knitted fabric, but the invention is not limited thereto.
  • the composite coating comprises a bottom layer 2, an intermediate layer 3 formed on the underlayer 2, and a top layer 4 formed on the intermediate layer 3.
  • Each layer of the composite coating is based on a resin material.
  • the resin material includes one or more of an epoxy resin, a polyester resin, an amino resin, and a polyurethane.
  • the absorbing agent in the bottom layer 2 is ferrite
  • the absorbing agent in the intermediate layer 3 is silicon carbide
  • the absorbing agent in the top layer 4 is graphite.
  • the thickness of the bottom layer 2, the intermediate layer and the top layer 4 are both 0.4 to 0.6 mm.
  • the method for preparing the absorbing composite material of the present invention is as follows: taking an appropriate amount of the resin material, and weighing a certain amount of a diluent (for example, one or more of methanol, absolute ethanol, propanol and isopropanol) and the resin, Mixing with a stirrer for 20 to 40 minutes to make it evenly mixed, wherein the mass ratio of the resin material to the diluent may be 1:2 to 1:3; and the absorbing agent of the specified mass (10%-60% by mass) Add to the mixture, stir with a stirrer for 10-20 minutes and mix well; finally, add a certain amount of curing agent (including one or more of polyamide resin, m-phenylenediamine and xylylenediamine) to the mixture.
  • a diluent for example, one or more of methanol, absolute ethanol, propanol and isopropanol
  • the coating agent is prepared.
  • the knitted fabric base cloth is fixed on the coating machine, and an appropriate amount of the coating agent is poured onto the surface of the knitted fabric and coated; after the coating is completed, the coated fabric is placed in an oven and kept at a temperature of 50 ° C to 70 ° C. 2 to 4h.
  • the undercoating of the coated fabric is completed, different absorbing agents are used to prepare different coatings, and the underlying coating operation is repeated to obtain the intermediate layer and the top layer, thereby preparing the absorbing composite material.
  • the ratio of the materials is the same, but for the same absorbing composite material, the material ratio of each layer can be varied within the respective ranges, and the material ratios of the respective layers can be mutually Same or different.
  • Ferrite is a magnetic loss type material, which mainly absorbs electromagnetic wave energy through hysteresis loss, ferromagnetic resonance and lithosphere loss, and converts electromagnetic energy into heat energy.
  • the ferrite and the added resin material can be synthesized into a composite material, that is, a complex effect of interdiffusion of ions between the two phases. Different ferrite contents have a great influence on the absorbing properties of the coating. ⁇
  • the loss mechanism of SiC ceramic absorbing materials is more complicated, mainly by absorbing electromagnetic waves through the polarization relaxation loss of the medium, which is generally considered to be a combination of various loss mechanisms. Different silicon carbide content, with different loss mechanisms as the main reason for absorption, affects the absorbing properties of the coating.
  • Graphite is a layered carbon material with high thermal conductivity, high dielectric constant, high electron mobility, and large specific surface area.
  • the higher dielectric constant of graphene and the easy-polarization relaxation properties of the outer layer make it a potential dielectric loss substrate. Reducing residual defects and groups in graphene oxide can not only improve its impedance matching characteristics, but also rapidly transform it into the Fermi level, and can also cause polarization relaxation of defects and electron dipole relaxation of groups. Yu, these are all conducive to scattering and absorbing electromagnetic waves. Different graphite content affects the absorbing properties of the coating.
  • the absorbing properties, tensile properties, bending properties, and shear properties of the absorbing composites prepared in Examples 1 to 5 were tested. Measurements can be made using any suitable measurement method commonly used in the art, wherein the frequency of the absorbing performance test is 2 to 18 GHz. The results of the measurements are shown in Table 1 below.
  • the absorbing composite material prepared by the present invention has good mechanical properties and absorbing properties.
  • the present invention uses a polyester knitted fabric as a base fabric, a resin material as a base body, a ferrite having a large magnetic loss rate as a bottom absorbing agent, and a dielectric loss absorbing material silicon carbide having an adjustable resistivity as a base material.
  • the middle absorbing agent uses low-cost, low-density graphite as the surface absorbing agent, and combines the advantages of the three absorbing materials to make the composite have certain mechanical properties such as stretching, bending and shearing.
  • a multi-functional absorbing composite material with good absorbing properties and mechanical properties can meet the requirements of “wide, thin, light and strong” for coated absorbing materials.
  • the invention can be applied to the technical fields of mobile phone, electronic equipment, high-frequency equipment, microwave active device, clutter suppression and anti-electromagnetic interference of radar and microwave communication systems, and the thickness of the functional material can be adjusted according to different application frequency bands. Formulated to make electromagnetic wave absorption film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

提供吸波复合材料及其制备方法,吸波复合材料包括:涤纶针织物;底层,形成在涤纶针织物上,其中,底层包括第一树脂材料和铁氧体;中间层,形成在底层上,其中,中间层包括第二树脂材料和碳化硅;以及顶层,形成在中间层上,其中,顶层包括第三树脂材料和石墨。由此制备出一种具备良好吸波性能和力学性能的多功能吸波复合材料。

Description

吸波复合材料及其制备方法 技术领域
本发明涉及材料领域,更具体地,涉及吸波复合材料及其制备方法。
背景技术
随着电子科学技术的发展,电子信息设备在各行各业都得到了广泛的应用。电磁波对人类的影响也已渗透到各个角落。其在机械、电子、生物领域都是不可替代的。电磁技术给人们带来了极大的便利的同时,也严重引来了的严重的电磁福射污染。电磁福射不仅干扰电子仪器和设备,导致其不能正常运转,还会影响人类的身体健康,干扰人体正常生理机能,甚至可能导致疾病。因此,治理电磁污染的吸波材料应运而生。
虽然,涂敷型吸波材料被广泛应用,但是目前对涂敷型吸波材料提出了更高的要求,即需要满足“宽、薄、轻、强”的要求,然而市场上单一涂层的单一吸波剂很难实现这一要求,因此亟需开发一种具备“宽、薄、轻、强”要求的多功能复合吸波材料,既具备良好的吸波性能,又具备良好的力学性能。
发明内容
本发明结合了铁氧体、碳化硅和石墨三种吸波材料的优势,提供了具备良好吸波性能和力学性能的多功能吸波复合材料。
本发明提供了一种制备吸波复合材料的方法,包括:将第一稀释剂与第一树脂材料混合,搅拌均匀,得到第一混合物;将铁氧体加入所述第一混合物中,搅拌均匀,得到第二混合物;在所述第二混合物中加入第一固化剂,搅拌均匀,得到底层涂料;将所述底层涂料涂布在针织物上,干燥,在所述针织物上形成底层;将第二稀释剂与第二树脂材料混合,搅拌均匀,得到第三混合物;将碳化硅加入所述第三混合物中,搅拌均匀,得到第四 混合物;在所述第四混合物中加入第二固化剂,搅拌均匀,得到中间层涂料;将所述中间层涂料涂布在所述底层上,干燥,在所述底层上形成中间层;将第三稀释剂与第三树脂材料混合,搅拌均匀,得到第五混合物;将石墨加入所述第五混合物中,搅拌均匀,得到第六混合物;在所述第六混合物中加入第三固化剂,搅拌均匀,得到顶层涂料;将所述顶层涂料涂布在所述中间层上,干燥,在所述中间层上形成顶层,从而形成所述吸波复合材料。
在上述方法中,所述铁氧体在所述底层涂料中的质量分数为10%~60%。
在上述方法中,所述碳化硅在所述中间层涂料中的质量分数为10%~60%。
在上述方法中,所述石墨在所述顶层涂料中的质量分数为10%~60%。
在上述方法中,所述底层、所述中间层和所述顶层的厚度均为0.4mm~0.6mm。
在上述方法中,所述第一稀释剂、所述第二稀释剂和所述第三稀释剂均包括甲醇、无水乙醇、丙醇和异丙醇中的一种或多种。
在上述方法中,所述第一树脂材料、所述第二树脂材料和所述第三树脂材料均包括环氧树脂、聚酯树脂、氨基树脂和聚氨酯中的一种或多种。
在上述方法中,所述第一固化剂、所述第二固化剂和所述第三固化剂均包括聚酰胺树脂、间苯二胺和苯二甲胺中的一种或多种。
在上述方法中,所述第一稀释剂与所述第一树脂材料的质量比、所述第二稀释剂与所述第二树脂材料的质量比以及所述第三稀释剂与所述第三树脂材料的质量比均为2:1~3:1。
在上述方法中,所述第一固化剂在所述底层涂料中的质量分数、所述第二固化剂在所述中间层涂料中的质量分数和所述第三固化剂在所述顶层涂料中的质量分数均为5%~15%。
本发明还提供了一种吸波复合材料,包括:涤纶针织物;底层,形成在所述涤纶针织物上,其中,所述底层包括第一树脂材料和铁氧体;中间层,形成在所述底层上,其中,所述中间层包括第二树脂材料和碳化硅;以及顶层,形成在所述中间层上,其中,所述顶层包括第二树脂材料和石 墨。
在上述吸波复合材料中,所述第一树脂材料、所述第二树脂材料和所述第三树脂材料均包括环氧树脂、聚酯树脂、氨基树脂和聚氨酯中的一种或多种。
本发明以涤纶针织物为基布,以环氧树脂为基体,选用磁损耗率较大的铁氧体作为底层吸波剂,选用电阻率可调的介电损耗型吸波材料碳化硅作为中层吸波剂,选用价格低廉、密度较小的石墨作为表层吸波剂,制备出一种具备良好吸波性能和力学性能的多功能吸波复合材料,能满足对涂敷型吸波材料的“宽、薄、轻、强”综合要求。
附图说明
图1示出了本发明的吸波复合材料的示意图。
具体实施方式
鉴于市场上的单一涂层单一吸波剂很难实现对涂敷型吸波材料的“宽、薄、轻、强”的综合要求。本发明以涤纶针织物为基布,以环氧树脂为基体,选用磁损耗率较大的铁氧体作为底层吸波剂,选用电阻率可调的介电损耗型吸波材料碳化硅作为中层吸波剂,选用价格低廉、密度较小的石墨作为表层吸波剂,开发出一种具备良好吸波性能和力学性能的多功能吸波复合材料,能满足对涂敷型吸波材料的“宽、薄、轻、强”综合要求。
本发明的石墨/碳化硅/铁氧体三层复合涂层如图1所示。复合涂层形成在基布1上。基布1可以为涤纶针织物,但本发明不限于此。复合涂层包括底层2、形成在底层2上的中间层3以及形成在中间层3上的顶层4。复合涂层的各个层均以树脂材料为基体。树脂材料包括环氧树脂、聚酯树脂、氨基树脂和聚氨酯中的一种或多种。底层2中的吸波剂为铁氧体,中间层3中的吸波剂为碳化硅,并且顶层4中的吸波剂为石墨。底层2、中间层和顶层4的厚度均为0.4~0.6mm。
本发明的吸波复合材料的制备方法如下:取适量树脂材料,称取一定量的稀释剂(例如,甲醇、无水乙醇、丙醇和异丙醇中的一种或多种)与 树脂混合,用搅拌器搅拌20~40min使之混合均匀,其中,树脂材料与稀释剂的质量比可以为1:2~1:3;再将规定质量(质量分数为10%-60%)的吸波剂加入混合物中,用搅拌器搅拌10~20min并使之混合均匀;最后,将一定量的固化剂(包括聚酰胺树脂、间苯二胺和苯二甲胺中的一种或多种)加入混合物中,用电动搅拌器搅拌一定时间并保证混合均匀,其中,每个涂层剂中固化剂的质量分数为5%~15%。至此,涂层剂制备完毕。将针织物基布固定在涂层机上,取适量的涂层剂倾倒在针织物表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度50℃~70℃烘燥2~4h。至此,涂层织物的底层涂层制备完毕,选用不同的吸波剂制得不同的涂层,重复底层的涂层操作,可制得中间层和顶层,从而制得吸波复合材料。在底层2、中间层3和顶层4中,材料的配比范围相同,但是针对同一吸波复合材料,各个层的材料配比可以在各自的范围内变化,并且各个层的材料配比可以彼此相同或不同。
铁氧体属于磁损耗型材料,主要是通过磁滞损耗、铁磁共振和窝流损耗等吸收电磁波能量,并将电磁能转化为热能。铁氧体与加入的树脂材料可以合成为复相材料,即两相之间发生离子的互扩散等复杂作用。不同铁氧体含量,对涂层的吸波性能影响很大。兙
碳化硅陶瓷吸波材料的损耗机理较为复杂,主要是通过介质的极化弛豫损耗吸收电磁波,一般认为是多种损耗机制的共同作用。不同碳化硅含量,以不同的损耗机制作为吸收的主要原因,影响涂层的吸波性能。
石墨是一种层状结构的碳材料,其具有高导热系数、高介电常数、高电子迁移率、超大比表面积等特性。其中,石墨烯较高的介电常数以及外层电子易极化弛豫特性使其可作为潜在的介电损耗基材。还原石墨烯氧化物中残余的缺陷和基团不仅可以提高其阻抗匹配特性,也能使其迅速转变到费米能级状态,还可发生缺陷的极化弛豫和基团的电子偶极弛豫,这些均有利于散射和吸收电磁波。不同石墨含量,影响涂层的吸波性能。
下面结合具体的实施例进行说明,以更好地理解本发明。
实施例1
称取100g稀释剂无水乙醇与50g环氧树脂混合,用搅拌器搅拌30min 使之混合均匀;再将300g的铁氧体加入混合物中,用搅拌器搅拌15min并使之混合均匀;最后,将50g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到底层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒在针织物表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度60℃干燥3h。至此,涂层织物的底层涂层制备完毕,底层的厚度为0.5mm。
称取155g稀释剂无水乙醇与70g环氧树脂混合,用搅拌器搅拌30min使之混合均匀;再将225g的碳化硅加入混合物中,用搅拌器搅拌15min并使之混合均匀;最后,将50g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到中间层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒在底层表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度60℃干燥3h。至此,涂层织物的中间层涂层制备完毕,中间层的厚度为0.5mm。
称取250g稀释剂无水乙醇与100g环氧树脂混合,用搅拌器搅拌30min使之混合均匀;再将100g的石墨加入混合物中,用搅拌器搅拌15min并使之混合均匀;最后,将50g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到顶层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒中间层表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度60℃干燥3h。至此,涂层织物的顶层涂层制备完毕,顶层的厚度为0.5mm,从而制得吸波复合材料。
实施例2
称取225g稀释剂甲醇与100g环氧树脂混合,用搅拌器搅拌20min使之混合均匀;再将150g的铁氧体加入混合物中,用搅拌器搅拌10min并使之混合均匀;最后,将25g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到底层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒在针织物表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度50℃干燥2h。至此,涂层织物的底层涂层制备完毕,底层的厚度为0.4mm。
称取140g稀释剂丙醇与60g聚氨酯混合,用搅拌器搅拌40min使之混合均匀;再将250g的碳化硅加入混合物中,用搅拌器搅拌20min并使之混合均匀;最后,将50g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到中间层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒在底层表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度50℃干燥4h。至此,涂层织物的中间层涂层制备完毕,中间层的厚度为0.6mm。
称取300g稀释剂无水乙醇与100g氨基树脂混合,用搅拌器搅拌30min使之混合均匀;再将50g的石墨加入混合物中,用搅拌器搅拌15min并使之混合均匀;最后,将50g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到顶层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒中间层表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度60℃干燥3h。至此,涂层织物的顶层涂层制备完毕,顶层的厚度为0.5mm,从而制得吸波复合材料。
实施例3
称取240g稀释剂甲醇与80g环氧树脂混合,用搅拌器搅拌20min使之混合均匀;再将150g的铁氧体加入混合物中,用搅拌器搅拌10min并使之混合均匀;最后,将30g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到底层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒在针织物表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度50℃干燥2h。至此,涂层织物的底层涂层制备完毕,底层的厚度为0.4mm。
称取240g稀释剂丙醇与80g聚氨酯混合,用搅拌器搅拌40min使之混合均匀;再将150g的碳化硅加入混合物中,用搅拌器搅拌20min并使之混合均匀;最后,将50g固化剂间苯二胺加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到中间层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒在底层表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度50℃干燥4h。至此,涂层织物的中间层 涂层制备完毕,中间层的厚度为0.6mm。
称取240g稀释剂无水乙醇与80g氨基树脂混合,用搅拌器搅拌30min使之混合均匀;再将150g的石墨加入混合物中,用搅拌器搅拌15min并使之混合均匀;最后,将50g固化剂苯二甲胺加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到顶层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒中间层表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度60℃干燥3h。至此,涂层织物的顶层涂层制备完毕,顶层的厚度为0.5mm,从而制得吸波复合材料。
实施例4
称取250g稀释剂甲醇与125g聚酯树脂混合,用搅拌器搅拌20min使之混合均匀;再将50g的铁氧体加入混合物中,用搅拌器搅拌10min并使之混合均匀;最后,将75g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到底层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒在针织物表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度50℃干燥2h。至此,涂层织物的底层涂层制备完毕,底层的厚度为0.4mm。
称取250g稀释剂丙醇与125g聚氨酯混合,用搅拌器搅拌40min使之混合均匀;再将50g的碳化硅加入混合物中,用搅拌器搅拌20min并使之混合均匀;最后,将75g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到中间层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒在底层表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度50℃干燥4h。至此,涂层织物的中间层涂层制备完毕,中间层的厚度为0.6mm。
称取250g稀释剂无水乙醇与125g氨基树脂混合,用搅拌器搅拌30min使之混合均匀;再将50g的石墨加入混合物中,用搅拌器搅拌15min并使之混合均匀;最后,将75g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到顶层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒中间层表面并进行涂层整理;涂层完毕后将 涂层织物置于烘箱内,保持温度60℃干燥3h。至此,涂层织物的顶层涂层制备完毕,顶层的厚度为0.5mm,从而制得吸波复合材料。
实施例5
称取100g稀释剂甲醇与50g环氧树脂混合,用搅拌器搅拌20min使之混合均匀;再将300g的铁氧体加入混合物中,用搅拌器搅拌10min并使之混合均匀;最后,将50g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到底层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒在针织物表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度50℃干燥2h。至此,涂层织物的底层涂层制备完毕,底层的厚度为0.4mm。
称取100g稀释剂丙醇与50g聚氨酯混合,用搅拌器搅拌40min使之混合均匀;再将300g的碳化硅加入混合物中,用搅拌器搅拌20min并使之混合均匀;最后,将50g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到中间层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒在底层表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度50℃干燥4h。至此,涂层织物的中间层涂层制备完毕,中间层的厚度为0.6mm。
称取100g稀释剂无水乙醇与50g氨基树脂混合,用搅拌器搅拌30min使之混合均匀;再将300g的石墨加入混合物中,用搅拌器搅拌15min并使之混合均匀;最后,将50g固化剂聚酰胺树脂加入混合物中,用搅拌器搅拌一定时间并保证混合均匀,得到顶层涂料。将涤纶针织物基布固定在涂层机上,取定量的涂层剂倾倒中间层表面并进行涂层整理;涂层完毕后将涂层织物置于烘箱内,保持温度60℃干燥3h。至此,涂层织物的顶层涂层制备完毕,顶层的厚度为0.5mm,从而制得吸波复合材料。
之后,对实施例1~5制得的吸波复合材料的吸波性能、拉伸性能、弯曲性能以及剪切性能进行测试。可以采用本领域常用的任何合适的测量方法进行测量,其中,吸波性能测试的频率为2~18GHz。测量的结果如下表 1所示。
表1
Figure PCTCN2018083691-appb-000001
由表1可知,本发明制备的吸波复合材料的力学性能和吸波性能良好。
因此,本发明以涤纶针织物为基布,以树脂材料为基体,选用磁损耗率较大的铁氧体作为底层吸波剂,选用电阻率可调的介电损耗型吸波材料碳化硅作为中层吸波剂,选用价格低廉、密度较小的石墨作为表层吸波剂,综合了三种吸波材料各自的优势又使得复合材料具有了一定的拉伸、弯曲、剪切等力学性能,制备出了具备良好吸波性能和力学性能的多功能吸波复合材料,能满足对涂敷型吸波材料的“宽、薄、轻、强”综合要求。
本发明可应用于手机、电子仪器设备、高频设备、微波有源器件、雷达及微波通信系统的杂波抑制、抗电磁干扰等技术领域,根据不同的应用频段,可调整功能材料的厚度和配方,制成电磁波吸收胶片。

Claims (10)

  1. 一种制备吸波复合材料的方法,其特征在于,包括:
    将第一稀释剂与第一树脂材料混合,搅拌均匀,得到第一混合物;
    将铁氧体加入所述第一混合物中,搅拌均匀,得到第二混合物;
    在所述第二混合物中加入第一固化剂,搅拌均匀,得到底层涂料;
    将所述底层涂料涂布在针织物上,干燥,在所述针织物上形成底层;
    将第二稀释剂与第二树脂材料混合,搅拌均匀,得到第三混合物;
    将碳化硅加入所述第三混合物中,搅拌均匀,得到第四混合物;
    在所述第四混合物中加入第二固化剂,搅拌均匀,得到中间层涂料;
    将所述中间层涂料涂布在所述底层上,干燥,在所述底层上形成中间层;
    将第三稀释剂与第三树脂材料混合,搅拌均匀,得到第五混合物;
    将石墨加入所述第五混合物中,搅拌均匀,得到第六混合物;
    在所述第六混合物中加入第三固化剂,搅拌均匀,得到顶层涂料;
    将所述顶层涂料涂布在所述中间层上,干燥,在所述中间层上形成顶层,从而形成所述吸波复合材料。
  2. 根据权利要求1所述的制备吸波复合材料的方法,其特征在于,所述铁氧体在所述底层涂料中的质量分数为10%~60%。
  3. 根据权利要求1所述的制备吸波复合材料的方法,其特征在于,所述碳化硅在所述中间层涂料中的质量分数为10%~60%。
  4. 根据权利要求1所述的制备吸波复合材料的方法,其特征在于,所述石墨在所述顶层涂料中的质量分数为10%~60%。
  5. 根据权利要求1所述的制备吸波复合材料的方法,其特征在于,所述底层、所述中间层和所述顶层的厚度均为0.4mm~0.6mm。
  6. 根据权利要求1所述的制备吸波复合材料的方法,其特征在于,所述第一固化剂、所述第二固化剂和所述第三固化剂均包括聚酰胺树脂、间苯二胺和苯二甲胺中的一种或多种。
  7. 根据权利要求1所述的制备吸波复合材料的方法,其特征在于,所 述第一稀释剂与所述第一树脂材料的质量比、所述第二稀释剂与所述第二树脂材料的质量比以及所述第三稀释剂与所述第三树脂材料的质量比均为2:1~3:1。
  8. 根据权利要求1所述的制备吸波复合材料的方法,其特征在于,所述第一固化剂在所述底层涂料中的质量分数、所述第二固化剂在所述中间层涂料中的质量分数和所述第三固化剂在所述顶层涂料中的质量分数均为5%~15%。
  9. 一种吸波复合材料,其特征在于,包括:
    涤纶针织物;
    底层,形成在所述涤纶针织物上,其中,所述底层包括第一树脂材料和铁氧体;
    中间层,形成在所述底层上,其中,所述中间层包括第二树脂材料和碳化硅;
    顶层,形成在所述中间层上,其中,所述顶层包括第二树脂材料和石墨。
  10. 根据权利要求9所述的吸波复合材料,其特征在于,所述第一树脂材料、所述第二树脂材料和所述第三树脂材料均包括环氧树脂、聚酯树脂、氨基树脂和聚氨酯中的一种或多种。
PCT/CN2018/083691 2017-11-30 2018-04-19 吸波复合材料及其制备方法 WO2019104933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711235701.3A CN109853252A (zh) 2017-11-30 2017-11-30 吸波复合材料及其制备方法
CN201711235701.3 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019104933A1 true WO2019104933A1 (zh) 2019-06-06

Family

ID=66665346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083691 WO2019104933A1 (zh) 2017-11-30 2018-04-19 吸波复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN109853252A (zh)
WO (1) WO2019104933A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029376B (zh) * 2020-08-18 2022-03-04 集美大学 一种高性能雷达复合吸波涂层材料及其制备方法
CN112281503A (zh) * 2020-10-10 2021-01-29 天津工业大学 一种柔性石墨烯/钡铁氧体复合织物及其制备方法
CN112281508A (zh) * 2020-10-26 2021-01-29 天津工业大学 一种多层电磁吸波纺织复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179965A (zh) * 2010-12-28 2011-09-14 中国航空工业集团公司北京航空材料研究院 三层复合吸波薄膜及其制备方法
CN102504659A (zh) * 2011-09-29 2012-06-20 湖南金戈新材料有限责任公司 一种厘米波-毫米波兼容吸波的复合材料
CN102952367A (zh) * 2011-08-31 2013-03-06 深圳光启高等理工研究院 一种超材料基板及其制备方法
CN203876309U (zh) * 2014-04-10 2014-10-15 苏州驭奇材料科技有限公司 一种吸波散热双功能复合装置
CN204151285U (zh) * 2014-05-20 2015-02-11 江阴市诺科科技有限公司 一种多层结构雷达吸波布

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104029459B (zh) * 2014-05-28 2016-01-27 中国船舶重工集团公司第七二五研究所 一种耐海洋环境且低增重吸波复合材料的制备方法
CN106280247B (zh) * 2015-05-25 2020-11-10 深圳光启尖端技术有限责任公司 电磁波吸波材料用树脂组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179965A (zh) * 2010-12-28 2011-09-14 中国航空工业集团公司北京航空材料研究院 三层复合吸波薄膜及其制备方法
CN102952367A (zh) * 2011-08-31 2013-03-06 深圳光启高等理工研究院 一种超材料基板及其制备方法
CN102504659A (zh) * 2011-09-29 2012-06-20 湖南金戈新材料有限责任公司 一种厘米波-毫米波兼容吸波的复合材料
CN203876309U (zh) * 2014-04-10 2014-10-15 苏州驭奇材料科技有限公司 一种吸波散热双功能复合装置
CN204151285U (zh) * 2014-05-20 2015-02-11 江阴市诺科科技有限公司 一种多层结构雷达吸波布

Also Published As

Publication number Publication date
CN109853252A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
Feng et al. Fabrication of NiFe 2 O 4@ carbon fiber coated with phytic acid-doped polyaniline composite and its application as an electromagnetic wave absorber
Xu et al. Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding
Cheng et al. Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites
WO2019104933A1 (zh) 吸波复合材料及其制备方法
Ding et al. Core-shell Fe3O4@ SiO2@ PANI composite: Preparation, characterization, and applications in microwave absorption
Liu et al. Facile synthesis of Fe3O4/C composites for broadband microwave absorption properties
Wei et al. The effect of Ag nanoparticles content on dielectric and microwave absorption properties of β-SiC
Wang et al. A novel plate-like BaFe12O19@ MoS2 core-shell structure composite with excellent microwave absorbing properties
Wang et al. Combined use of lightweight magnetic Fe3O4-coated hollow glass spheres and electrically conductive reduced graphene oxide in an epoxy matrix for microwave absorption
He et al. Electromagnetic matching and microwave absorption abilities of Ti3SiC2 encapsulated with Ni0. 5Zn0. 5Fe2O4 shell
Shukla Role of spin disorder in magnetic and EMI shielding properties of Fe3O4/C/PPy core/shell composites
Yao et al. The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites
Zhang et al. Synthesis of graphene/thorns-like polyaniline/α-Fe2O3@ SiO2 nanocomposites for lightweight and highly efficient electromagnetic wave absorber
Li et al. Synthesis and significantly enhanced microwave absorption properties of cobalt ferrite hollow microspheres with protrusions/polythiophene composites
Chen et al. Preparation and microwave absorbing properties of nickel-coated carbon fiber with polyaniline via in situ polymerization
Zhang et al. Preparation and microwave absorbing performance of MoS 2@ Fe 3 O 4@ PANI composites
Chen et al. Fabrication of Nd-doped Ni–Zn ferrite/multi-walled carbon nanotubes composites with effective microwave absorption properties
Guo et al. Magnetic sputtering of FeNi/C bilayer film on SiC fibers for effective microwave absorption in the low-frequency region
Zubair et al. Effect of barium hexaferrites and thermally reduced graphene oxide on EMI shielding properties in polymer composites
Qing et al. NiFe2O4 nanoparticles filled BaTiO3 ceramics for high-performance electromagnetic interference shielding applications
Chen et al. Preparation and microwave absorbing properties of polyaniline/NiFe 2 O 4/graphite nanosheet composites via sol–gel reaction and in situ polymerization
Yin et al. Structural engineering of porous biochar loaded with ferromagnetic/anti-ferromagnetic NiCo2O4/CoO for excellent electromagnetic dissipation with flexible and self-cleaning properties
Lan et al. Electromagnetic shielding effectiveness and mechanical property of polymer–matrix composites containing metallized conductive porous flake-shaped diatomite
Xu et al. Dispersion of LiZnTiBi ferrite particles into PMDS film for miniaturized flexible antenna application
Hu et al. Lewis acidic molten salts etching route driven construction of double-layered MXene-Fe/carbon nanotube/silicone rubber composites for high-performance microwave absorption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883617

Country of ref document: EP

Kind code of ref document: A1