WO2019104924A1 - 一种便携式机械组合地上固定桩装置 - Google Patents

一种便携式机械组合地上固定桩装置 Download PDF

Info

Publication number
WO2019104924A1
WO2019104924A1 PCT/CN2018/081654 CN2018081654W WO2019104924A1 WO 2019104924 A1 WO2019104924 A1 WO 2019104924A1 CN 2018081654 W CN2018081654 W CN 2018081654W WO 2019104924 A1 WO2019104924 A1 WO 2019104924A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
ground
working
shaft
pulling force
Prior art date
Application number
PCT/CN2018/081654
Other languages
English (en)
French (fr)
Inventor
徐少钢
Original Assignee
徐少钢
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐少钢 filed Critical 徐少钢
Priority to CN201880000366.5A priority Critical patent/CN110023570B/zh
Priority to US16/768,717 priority patent/US11242664B2/en
Priority to DE112018006104.3T priority patent/DE112018006104T5/de
Publication of WO2019104924A1 publication Critical patent/WO2019104924A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/52Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments
    • E02D5/523Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments composed of segments
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/52Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments
    • E02D5/523Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments composed of segments
    • E02D5/526Connection means between pile segments
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • E02D5/803Ground anchors with pivotable anchoring members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a fixed pile mechanical device capable of withstanding a large tensile force under natural land conditions by utilizing the principle of restricting the ineffective part of the direction of the composite force in the engineering mechanics and using the principle of the sequential transmission of the effective direction force.
  • this method of using underground piling or precast concrete piles as a fixed point for temporary cables and steel cables is not an ideal method, and it cannot withstand a large pulling force, and cannot complete a large pulling force and cannot be removed. Walking will inevitably have an adverse impact on construction.
  • the technical problem to be solved by the present invention is to provide a portable mechanical combination ground anchoring device which is portable and can be easily installed anytime and anywhere, and which can be relatively stable and can withstand large lateral and oblique pulling forces.
  • the technical solution provided by the present invention is: a portable mechanical combination ground fixed pile device.
  • the materials constituting the entire system are composed of a rigid material having a certain strength, and the general rigid material is steel.
  • the structural member constituting the entire device must be a rigid body that cannot be deformed.
  • the shape and material of the rigid body are not limited, and may be various steels such as round steel, square steel, round pipe, square pipe, H steel, channel steel, angle steel, I-beam, and rail steel.
  • the portable mechanical combination grounding fixed pile device comprises a four-legged bracket composed of four steel columns, and the top end of the bracket is connected by a circular shaft so that the four brackets can rotate, in the middle of the circular shaft Also mounted is a relatively short rectangular block that can be rotated to convert the direction of the force, one end of the cuboid block is hinged to a rigid pressure rod having a length slightly shorter than four brackets for transmitting force into pressure, rigidity The pressure rod is then hinged to another protective protection column which is longer than the length of the four brackets, and a rectangular inner hole is opened at the other end of the rectangular block, and a circular shaft is placed in the square hole, A working column having a length longer than four brackets is connected to the round shaft, and the working cable or the cable is connected to the working pile through a lifting ring installed on the working pile, and the back of the working pile is also passed through the lifting ring and the cable Or a cable is attached to the protective pile.
  • the invention provides a portable mechanical combination grounding pile device which is portable and can be easily installed anytime and anywhere, and can be relatively stable and can withstand large lateral and oblique pulling forces. It comprises a floor-standing four-legged bracket consisting of a pair of steel column brackets (2a-b) and another pair of steel column brackets (4a-b) and a shaft (6), mounted in the middle of the shaft (6)
  • the cuboid block (15), the function of the cuboid block (15) is to convert the direction of the force through the shaft (6).
  • the shaft (6) and other mounted steel column blocks can be rotated, but they cannot be moved in the axial direction (pins can be mounted on the shaft to fix the steel column block so that it cannot move axially. Not indicated in the middle).
  • the steel block (15) forms an oblique direction, which serves to change the direction of the force.
  • a shaft (5) is used to articulate a pressure rod slightly shorter than the four legs at the upper part of the steel block (15). 7)
  • the lower part of the pressure rod (7) is hinged to the other protection pile (9) via the shaft (8), which protects the system from stability.
  • the length of the protective pile (9) is selected according to the working condition, and the lower half is inserted into the ground.
  • An inner hole of a rectangular parallelepiped is machined at the other end of the conversion force steel block (15), and a circular shaft (3) is placed in the square hole, and the working pile (1) is connected through the shaft (3), the shaft ( 3)
  • the working pile (1) can be driven to slide and rotate in the rectangular inner hole of the conversion force steel block (15).
  • the lower portion of the working pile (1) is inserted into the ground.
  • the working tension cable or cable (14) is connected to the working pile (1) by a lifting ring (12) fixed to the working pile (1), and is also fixed to the working pile at the back of the working pile (1) (
  • the connecting cable (11a-b) on the back of the 1) and the connecting cable or cable (13a-b) fixed between the lifting rings (10a-b) of the protective pile (9) are attached to the protective pile (9).
  • the lifting rings (11a-b) and (10a-b) and (12) are required to form or form a straight line during installation.
  • the working pile (1) forms an angle with the ground, and the angle is between 40 degrees and 65 degrees.
  • the working pile (1) forms a straight line with the rotating steel block (15) when installed.
  • the position of the slinger (10) is installed between a position just emerging from the ground and a 1/2 portion of the protective pile (9) deep into the ground.
  • the length of the brackets (4a-b) exceeds 10%-100% of (2a-b), and is selected to be short before the front or short before the installation according to the topography.
  • the angle between the brackets (2a-b) and (4a-b) is 90 degrees - 120 degrees, which is selected according to construction site conditions.
  • the bottom of the bracket (4a-b) is configured to be about 90 degrees, the configuration portion is inserted into the ground, and the length is adjustable.
  • the angle between the working pile (1) and the pressure rod (7) is close to 90 degrees.
  • the angle between the pressure rod (7) and the guard pile (9) is close to 90 degrees.
  • the length of the working pile (1) deep into the underground part is adjusted according to the construction geological conditions and the working tension. Generally, the dry soil conditions are deep underground between 1.5 meters and 3 meters.
  • the length of the aerial portion of the working pile (1) is shorter than the length of the underground portion.
  • the guard piles (9a-b) are inserted between the subterranean portion and the ground at an angle of between 30 and 50 degrees (two different angles are shown in Figure 2).
  • the length of the protective pile (9a-b) inserted into the underground portion is twice the length of the aerial portion, for example, the underground portion is 2 meters long and the aerial portion should be 1 meter long.
  • the connecting cable (13a-b) is controlled within an angle of 45 degrees from the ground.
  • the oblique angle of the working tension cable (14) with the ground when working is not more than 45 degrees (in the actual project, the situation is more than 40 degrees, and many cases are parallel to the ground) (shown in Figure 2) Three different pull direction angles).
  • the tension cable (14) in Fig. 2 represents three representative angles of the pulling force direction which may be formed during operation.
  • the direction angle is obliquely downward, the pulling force tends to drive the working pile (1) to move underground, due to There is no tendency for the working pile (1) to move horizontally or upwards, and there is no need to protect the protection function of the pile (9).
  • the whole system is still in equilibrium and stable state.
  • the direction of the tension cable (14) changes toward the parallel ground, the direction of this varying force will be transmitted to the working pile (1) through the lifting ring (12), so that the working pile (1) produces a soil to be inserted into the underground part.
  • the point of pressure action is the tendency of the center of the circle to rotate ( Figures 1, 2 are shown as clockwise rotation), this trend will break the balance and stability of the entire system.
  • the system will become the most unstable and form a pull up
  • the lifting eye (12) produces a tendency to move in the direction of the tension cable (14), which will drive the rotating steel block (15) through the shaft (3) to produce a counterclockwise rotation with the shaft (6) as the center. Since the shaft (5) and the shaft (3) are the two end points of the circular diameter of the circular motion along the axis (6), the tangential direction of the motion is opposite, and the speed and force of movement along the tangential direction are also equal and opposite. .
  • the pile (9) The lateral pressure applied to the surrounding soil by the underground part is called passive earth pressure.
  • the soil is in a state of sliding stress, called the passive Rankine state, and the position of this stress point is in the pile ( 9) 1/3 of the underground height.
  • the total length of the protective pile (9) is 3 meters
  • the underground part is 2 meters
  • the lifting ring (10) is at 1/2 of the underground part of the pile (9) (Fig. 2), that is, when the underground is 1 meter deep
  • the pressure point of the top end of the protection pile (9) is generated by the shaft (8) to the protection pile (9)
  • the distance from the point of application of the earth pressure to the underground part is 1.33 meters.
  • the protective pile (9) is already in a steady state when the pressure generated at the shaft (8) has not reached 24.8% of the tensile force at the lifting ring (10). This is because, according to the Technical Specification for Building Pile Foundation (JGJ94-2008), when the passive earth pressure value acting on the underground part of the pile (9) does not exceed the rated value, the pile (9) as a rigid body will not be pulled out. Out.
  • the pile (9) forms a certain angle with the ground.
  • the pile (9) is simultaneously subjected to the earth pressure and the pressure rod (7).
  • the pressure limit allows the pile (9) to move only along the horizontal component of the tension of the cable (13), while the vertical component of the pile (9) is simultaneously affected by the earth pressure and the shaft (8) pressure. Instead, it is counteracted, again forcing the pile (9) to move obliquely downward along the angle formed with the ground.
  • the balance of the pile (9) is more stable.
  • the angle between the rope (13) and the ground is 41 degrees, and the angle between the pile (9) and the ground is 49. Degree, the angle between the pile (9) and the rope (13) is 90 degrees.
  • the rope (13) starts to work to generate tension, as mentioned above, the pile (9) will produce a shape along the same ground.
  • the thrust of the 49 degree angle is shifted obliquely downward, and the displacement caused by this thrust causes the lifting ring (10) to generate a pulling force opposite to the pulling force of the working force cable (14) through the lifting rings (11) and (12) (it is not difficult to see
  • the lifting ring (10) fixed to the pile (9) is displaced to any point with the pile (9), and the distance from the point to the lifting ring (11) is greater than the length of the connecting cable (13), due to the connection of the cable (13)
  • the length is fixed, so this point produces a pulling force in the opposite direction of the pulling force of the working tension rope (14).
  • This pulling force limits the rotation or displacement of the working pile (15) around the point of action of the earth stress in the underground part, effectively Prevent the occurrence of unfavorable phenomena such as the loosening of the working piles (15) or the excessive displacement of the shallow soil layers into piles, causing the working piles to tip over. Permit the entire system more balanced and stable.
  • the present invention has the following effects: a portable mechanical combined ground fixed pile device, which uses only the auxiliary external force, uses only the mechanical transmission principle, and will work alone.
  • the pulling force is effectively converted into the pressure to the underground, that is, the original function as the working tension is realized, and the purpose of strengthening and protecting the device itself can be balanced and stable.
  • the conversion route of the force is (Fig. 1): when a pulling force is applied to the working cable (14), the lower half is inserted into the underground working pile (1) by the lifting ring (12) to displace the pulling force, due to the resistance of the underground earth pressure, The displacement is only about 2-6 mm, and this tension drives the shaft (3) mounted on the top of the working pile (1) to also move 4-8 mm toward the pulling force. This displacement and the force generating the displacement pass through the shaft.
  • a shaft (5) that is a center of the circle and a rotatable cuboid block (15) is transmitted to the other end because the position of the shaft (6) is fixed by the brackets (2) and (4), and the bracket (4) is inserted into the underground portion.
  • the shape is a barb type, which prevents the displacement of the bracket (4) and the shaft (6), and the distance from the shaft (3) to the shaft (6) is equal to the distance from the coaxial (5) to the shaft (6), therefore, the shaft
  • the displacement amount, direction and force of (5) are the same on the same axis (3), but in the opposite direction.
  • the pressure and displacement generated by the shaft (5) are pressed by the pressure rod (7) and the shaft (8) to protect the uppermost end of the pile (9).
  • the pile can be prevented with a small pressure (9).
  • a clockwise displacement of the center of the ground pressure is applied. It effectively protects the balance and stability of the whole device.
  • Figure 1 is a front elevational view showing the basic construction working state of the overall device of the present invention.
  • Figure 2 is a front view of the working state of the overall device of the present invention (the cable tension direction and the protection pile position angle are different)
  • Figure 3 is a top view of the working state of the overall device of Figure 1
  • Figure 4 is a three-dimensional view of the basic form of the working state of the overall device of Figure 1.
  • Figure 5 is a three-dimensional view of the working state of the three-legged bracket structure of the present invention
  • Figure 6 is a schematic view showing a erection mode of the product of the present invention in practical earthmoving engineering application.
  • the invention relates to a portable mechanical combined ground fixed pile device, which is mainly used for processing land earth and stone, water system dredging, excavating materials, moving, land, underwater heavy objects, civil engineering, port, river, lake construction and the like. It is used as a fixed pile for temporary cables, steel cables and steel ropes. Not suitable for use as permanent soil piles, bridge piles, piers, suspension bollards, etc.
  • the invention has different specifications and models of different sizes.
  • the appropriate specification and model will be selected according to the weight of materials generated during construction, and the selection must be based on the Technical Specification for Building Piles (JGJ94-2008).
  • the entire device is first considered to be a rigid body, to establish a mathematical model for determining the thrust of the surrounding soil during the operation of the entire device, and determining the critical value of the surrounding soil accumulation.
  • the method of establishing the mathematical model of earth pressure adopts the Rankine earth pressure theory and the Coulomb earth pressure theory which are relatively recognized in China.
  • Hik is the horizontal force acting on the top of the pile pile under the combination of load effect standards
  • Rh the horizontal bearing capacity characteristic value of the pile in the single pile foundation or group pile.
  • the horizontal bearing of the single pile can be taken.
  • the portable fixed combination of the portable mechanical device is suitable not only for the horizontal bearing capacity but also for the oblique bearing capacity within a certain angle (Figs 1, 2, 4, 5, 6). Shown).
  • the portable mechanical combination of the above-mentioned fixed pile device, the pile carrying the working load is not a pile, as can be clearly seen in conjunction with FIG. 4, there are four piles at this time. Together bear the working load. Due to the different angles and lengths of the four piles installed, the soil characteristics of the installation site are different, so it is not appropriate to consider the group pile effect.
  • the value obtained by dividing the total horizontal load by 4 is calculated as the horizontal load of one of the piles to obtain the required length and width of one pile, and is selected from the series of products of the present invention. The most suitable specifications are assembled and used.
  • the lifting ring (12) can move up and down according to the change of the direction angle of the load force.
  • the position of the lifting ring (12) can be moved downward, that is, The closer to the ground.
  • the connecting cables (13a-b) may be single or double depending on the location of the different soils and rings (10a-b).
  • the lifting ring (10a_b) selects two.
  • the cable (10a_b) selects a single root.
  • the four leg brackets (2a-b) and (4a-b) can be selected as three leg brackets (shown in Figure 5).
  • the product device of the invention is often used in a large-span three-dimensional elevated ropeway suspension excavation handling system in practical applications.
  • Figure 6 shows the combination of the product device of the present invention and the large-span three-dimensional elevated cableway suspension excavation handling system for excavating a foundation pit project with a span of more than 100 meters.
  • the boom, the hoisting system, (18) is the bucket of the large-span three-dimensional elevated ropeway suspension excavation handling system (the large-span three-dimensional elevated ropeway suspension excavation handling system is not the content of the present invention, and it is not necessary to elaborate), (14a) (14b) is the aforementioned working steel cable connected to the working pile of the apparatus of the present invention, and the other end of the working steel cables (14a), (14b) is connected to the large-span three-dimensional elevated ropeway suspension excavation handling system (19) The top of the boom.
  • Figure 6 shows a practical example of the installation of three sets of the inventive product in this project.
  • the boom height of the large-span three-dimensional elevated ropeway suspension excavation handling system (19) is 12 meters, and the top of the boom of the product device (16a), (16b) and the host (19) of the present invention is installed and erected.
  • the position of the three forms an isosceles triangle, and if the terrain is inconvenient, it must also ensure that the error does not exceed 10%, the connection on the product devices (16a), (16b) of the present invention.
  • the points are located in the middle of the respective working piles (1).
  • the cables (14a), (14b) connecting the ends (16a), (16b) to the top of the boom of the main unit (19) form an angle of 30 degrees with the ground.
  • the hoisting steel cable (21) of the main body of the excavation and handling system (19) is connected to the bucket (18) to control the forward, backward, ascending, descending and turning of the bucket (18).
  • the working tension generated by the steel cable (21) connected to the bucket (18) is transmitted through the top end of the boom to the working steel cables (14a), (14b) connecting the product devices (16a), (16b) of the present invention to the top end of the boom.
  • the direction of the pulling force generated by the working steel cables (14a), (14b) is at an angle of 30 degrees to the ground.
  • the portable mechanical combination ground fixed pile device of the present invention is assembled and linked with the large-span three-dimensional elevated cableway suspension excavation handling system (19) in this case, and once the whole system starts working, the working steel cable ( 14a), (14b) produces tension, because the working cables (14a), (14b) are obliquely upward and form an angle of 30 degrees with the ground, so with the working steel cables (14a), (14b) While the pulling force is generated, the protective functions of the devices (16a), (16b) of the present invention are awakened, and the reverse pulling force formed by the devices (16a), (16b) of the present invention is as described in the conversion route of the force recorded in the foregoing summary. On the working steel cables (14a), (14b).
  • the pulling force applied by the large-span three-dimensional elevated elevated ropeway excavation handling system to the device (17) of the present invention by the other side of the steel cables (20), (21) also awakens the automatic protection function of the device (17) of the present invention.
  • the entire system of three sets of the apparatus (16a), (16b), (17) of the present invention and the large-span three-dimensional elevated cableway suspension excavation handling system assembly link can complete the required engineering construction in a stable and balanced state. jobs.
  • the devices (16a), (16b), and (17) of the present invention are selected to select the same type of configuration.
  • the working pile (1), the protective pile (9) select 20a channel steel, the brackets (2), (4) and the pressure pile (7) select 110 angle steel.
  • the total weight of each unit is only 260 kg.
  • the invention has the characteristics of light weight, portable belt, easy installation, easy disassembly, simple structure, easy production and processing, wide application range and easy technical control.
  • the case is only one example of the practical case of the device of the present invention, and the application range is not limited by the use conditions of the case, for example, erecting a temporary cableway bridge, erecting a temporary fishing machine, temporary winch, off-hit and dragging, etc. can be used in various occasions.
  • the present invention can be used as long as it is necessary to use a temporary pile to use a temporary pile to function as a link cable.
  • FIG. 5 is a different structure that can perform the same work and uses three piles to form a bracket.
  • FIG. 5 is a different structure that can perform the same work and uses three piles to form a bracket.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)
  • Tents Or Canopies (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

一种便携式机械组合地上固定桩装置,应用于处理陆地土石方、水系清淤、挖掘物料、移动、陆地、水下重物、土建、港、河、湖修建等工程时,作为临时缆绳、钢索、钢绳的固定桩使用,其特点是,只利用工作拉力自身的作用就将整个装置固定住。整个装置有六根桩柱(2a,2b,4a,4b,9,1)安置在地上,其中有四根构成支架(2a,2b,4a,4b)支撑在地上,通过安装在支架(2a,2b,4a,4b)顶端的轴(6)以及轴(6)上长方体刚性块(15),由长方体(15)可绕中心轴转动的特点将承受到的缆绳(13a,13b)的拉力转换方向形成斜向下的压力从而使保护桩柱(9)在整体装置受到拉力同时又受到来自于压力桩柱的压力,由于拉力和压力同步,且拉力越大压力也同时增大,从而使整个装置达到固定桩的效果。由于其重量轻,便于携带,可以随处安装和拆卸。

Description

一种便携式机械组合地上固定桩装置 技术领域
本发明涉及一种利用工程力学中对复合力作用方向中无效部分的限制以及利用有效方向力的依次传递的原理,构建在自然的陆地条件下便可承受很大拉力的固定桩机械装置。
背景技术
在土建、土石方、水利水电等工程施工时,经常需要临时把缆绳、钢索或一些结构件的一端固定住以便在另一端可以施加很大的拉力来完成诸如拖拽、提升、加固等相应的工作。但是,在许多施工现场找不到能够固定缆绳、钢索或其它形式的结构件的固定点,为此,经常采用的方法是向地下打入一根木桩、或钢桩或混凝土桩作为固定点,再将缆绳、钢索或任何结构件与之连接上。这些缆绳的作用力方向经常是与地面大致平行的横向方向,或与地面形成一些角度的斜方向的拉力。但是这种方法并不能绝对保证固定点的稳定性,经常由于拉力的作用,使得打入地下的木桩或钢桩松动或由斜向上的拉力将桩体拔出,而混凝土桩是固定桩只能永久使用,无法拆卸移动,有许多不便之处。
因此,这种向地下打桩或预制混凝土桩用来作为临时缆绳、钢索的固定点的方法并不是理想的方法,也承受不了较大拉力的作用,无法完成较大拉力的工作以及无法拆卸移走,势必对施工造成不利的影响。
技术问题
在工程施工现场经常需要临时架设缆绳、钢索,必须找到一个固定缆绳或钢索的支撑点,许多情况下,施工现场没有这样的支撑点,如果向地下打桩或预制混凝土桩的话,桩柱太大就不便于移动,桩柱太小又缺乏稳定性,既浪费时间有不安全也不能随意移动。
技术解决方案
本发明要解决的技术问题是,提供一种便携的,可以随时随地简单安装,能够起到相对稳定并能够承受较大横向和斜向拉力的一种便携式机械组合地上固定桩装置。
为解决上述问题,本发明提供的技术方案为:一种便携式机械组合地上固定桩装置,一般情况下,组成整个系统的材料都由具有一定强度的刚性材料组成,一般情况的刚性材料都是钢材,但也可以由达到一定强度和硬度的合成材料构成,构成整套装置的结构件一定是不可发生变形的刚性体。刚性体的形状种类材料没有限制,可以是圆钢、方钢、圆管、方管、H钢、槽钢、角钢、工字钢、轨道钢等各种型钢。
所述的一种便携式机械组合地上固定桩装置,它包括四根钢柱组成的四腿支架,支架的顶端由一根圆轴贯穿连接,使四根支架可以转动,在所述圆轴的中部还安装一个可以转动的比较短的起到转换作用力方向的长方体块,所述长方体块的一端铰接一根长度略短于四根支架长度、用来传递作用力成为压力的刚性压力杆,刚性压力杆再铰接另一根长于四根支架长度的保护系统稳定的保护桩柱,在所述长方体块的另一端开出一个长方形的内孔,一根园 轴置于方孔内,在所述圆轴上接一根长度长于四根支架的工作桩柱,工作缆绳或钢索通过安装在工作桩柱上的吊环连接到工作桩柱上,在所述工作桩柱的背面也是通过吊环和缆绳或钢索连接到所述保护桩柱上。
本发明提供的一种便携式,可以随时随地简单安装的,能够起到相对稳定并能够承受较大横向和斜向拉力的一种便携式机械组合地上固定桩装置。它包括由一对钢柱支架(2a-b)、和另一对钢柱支架(4a-b)以及轴(6)组成的落地式四腿支架装置,在轴(6)的中间部位安装有长方体块(15),长方体块(15)的作用是将作用力的方向通过轴(6)转换。轴(6)和其它安装上的钢柱块之间可以旋转,但不可以沿轴向移动(可以在轴上安装销钉等方法来固定钢柱块使其不能轴向移动,因方法简单,图中未有表示)。工作时,钢块(15)形成斜向,起到转换作用力的方向的作用,在钢块(15)的上部用轴(5)铰接一根长度略短于四根支腿的压力杆(7),压力杆(7)的下部通过轴(8)铰接另一根保护桩柱(9),所述保护桩柱(9)起到保护系统稳定的作用。所述保护桩柱(9)的长度根据工作状况选择,其下半部插进地下。在转换作用力钢块(15)的另一端加工出一个长方体的内孔,一根园轴(3)置于方孔内,通过轴(3)连接工作桩柱(1),所述轴(3)可以带动工作桩柱(1)在转换作用力钢块(15)的长方形内孔中滑动和旋转。所述工作桩柱(1)的下部插入地下。工作拉力缆绳或钢索(14)通过固定在工作桩柱(1)上的吊环(12)连接到工作桩柱(1)上,在工作桩柱(1)的背面也是通过固定在工作桩(1)的背面的吊环(11a-b)和固定在保护桩柱(9)的吊环(10a-b)之间的连接缆绳或钢索(13a-b)接到保护桩柱(9)上。一般情况下吊环(11a-b)和(10a-b)和(12)在安装时要保证形成或接近形成一条直线。
所述工作桩柱(1)同地面形成角度,这个角度在40度-65度之间。
所述工作桩柱(1)同所述旋转钢块(15)安装时形成一条直线。
所述吊环(10)的位置安装在从刚刚露出地面的位置到保护桩柱(9)深入地下部分的1/2处之间。
所述支架(4a-b)的长度超过(2a-b)的10%-100%,安装时根据地形选择前长后短或前短后长。
所述支架(2a-b)与(4a-b)之间的角度90度-120度,根据施工现场条件选择。
所述支架(4a-b)的底部做成约90度的构型,构型部分插入地下,长度可调整。
所述工作桩(1)与压力杆(7)之间的角度接近90度前后。
所述压力杆(7)与保护桩(9)之间的角度接近90度前后。
所述工作桩柱(1)深入地下部分的长度根据施工地质条件和工作拉力大小调整,一般干泥土条件时深入地下长度在1.5米到3米之间。
所述工作桩柱(1)的地上部分长度短于地下部分长度。
所述保护桩柱(9a-b)插入地下部分与地面的夹角在30度与50度之间(图2中表示了两个不同的角度)。
所述保护桩柱(9a-b)插入地下部分的长度是地上部分长度两倍,例如,地下部分2 米长,地上部分应该1米长。
所述连接缆绳(13a-b)与地面夹角控制在45度以内。
所述工作拉力缆绳(14)工作时与地面形成的斜向上的角度不能大于45度(在实际工程中超过40度的情况已经很少,很多情况都是与地面平行)(图2中表示了三个不同的拉力方向角)。
图2中的拉力缆绳(14)表示在工作时可能形成的拉力方向的三个代表性角度,当方向角斜向下时,形成的拉力趋势是带动工作桩柱(1)向地下运动,由于工作桩柱(1)没有水平或向上运动的趋势,就不需要保护桩柱(9)的保护功能,这时整个系统仍处于平衡稳定状态。当拉力缆绳(14)的方向朝向平行地面的方向变动时,这个变动的力的方向将通过吊环(12)传递给工作桩(1),使得工作桩(1)产生一个以插入地下部分的土压力作用点为圆心转动的趋势(图1、2显示为顺时针方向转动),这个趋势将打破整个系统的平衡稳定。
随着工作缆绳(14)产生的拉力方向达到或接近连接缆绳(13a-b)与地面夹角的角度时(图1所示为40度),系统将变得最不稳定,形成被拉起的趋势,这时保护桩(9)的功能将被唤醒。首先吊环(12)产生了一个向拉力缆绳(14)的方向运动的趋势,这个趋势将通过轴(3)带动旋转钢块(15)以轴(6)为圆心产生逆时针转动的趋势。由于轴(5)和轴(3)是沿着轴(6)做圆周运动的圆直径的两个端点,因此运动的切线方向相反,沿着切线方向运动的速度和作用力也是大小相等方向相反。这时,在吊环(12)的位置产生的拉力通过轴(3)传递到轴(5)时,就改变了作用力的方向。这时,轴(5)产生的力压迫压力杆(7),所述压力杆(7)的压力通过轴(8)压迫保护桩柱(9)。
当把保护桩柱(9)在地下和地上的分界点作为支撑点的时(附图1),由于轴(8)到支撑点的距离远大于吊环(10)到支撑点的距离,因此轴(8)产生的压力力矩远大于吊环(10)产生的拉力力矩。
又由于地下土层土压力作用在保护桩柱(9)的地下部分,向下越深阻力越大,当桩(9)在吊环(10)处受到绳索(13)的拉力时,桩(9)的地下部分施加给周围的土的横向压力称为被动土压力,根据朗肯土压力理论,此时土体处于滑动应力状态,称为被动朗肯状态,这个应力作用点的位置在桩(9)地下高度的1/3处。
假设保护桩柱(9)的总长度为3米,地下部分为2米,吊环(10)处于桩(9)地下部分的1/2处(附图2),即地下1米深处时,土压力的作用点在地下1/3处的2x1/3=0.67米处。这时在吊环(10)的拉力位置到土压力作用点的距离是1-0.67=0.33米,而保护桩柱(9)的顶端由轴(8)产生的压力点到保护桩柱(9)地下部分受土压力的作用点的距离是1.33米。当轴(8)处的压力力矩和吊环(10)的拉力力矩相等时,保护桩柱(9)处于平衡稳定状态,根据力矩平衡法则,轴(8)处的压力值只是吊环(10)处的拉力值的24.8%。
实际上,在轴(8)处产生的压力还没有达到吊环(10)处的拉力值的24.8%时,保护桩柱(9)就已经处于稳定状态了。这是因为,根据《建筑桩基技术规范》(JGJ94-2008),作用在桩(9)地下部分的被动土压力值没有超过额定值时,作为刚性体的桩(9)就不会被拔 出。
此外,桩(9)和地面形成一定的角度,吊环(10)受拉力时,当拉力方向和桩(9)形成的角度小于90度时,桩(9)同时受到土压力和压力杆(7)的压力的限制,使桩(9)只能沿着缆绳(13)的拉力的水平分力方向移动,而桩(9)垂直方向的分力受土压力和轴(8)压力的同时作用而被抵消,再次迫使桩(9)沿着与地面形成的角度向斜下方位移。更加保证了桩(9)的平衡稳定。
作为优选方案,当安装桩(9)时,如(附图2虚线桩(9))所示,绳索(13)同地面的夹角为41度,桩(9)同地面的夹角为49度,桩(9)同绳索(13)之间的夹角为90度,所述绳索(13)开始工作产生拉力时,如前所述,桩(9)会产生一个沿着同地面形成的49度角度向斜下方位移的推力,这个推力产生的位移使得吊环(10)产生了一个通过吊环(11)和(12)同工作作用力缆绳(14)的拉力方向相反的拉力(不难看出固定在桩(9)上的吊环(10)随着桩(9)位移到任何一点,这个点到吊环(11)的距离都大于连接缆绳(13)的长度),由于连接缆绳(13)的长度固定的,因此这个点便产生了一个与工作拉力绳索(14)的拉力相反方向的拉力,这个拉力限制住工作桩柱(15)发生绕地下部分土应力作用点的旋转或位移,有效地防止工作桩柱(15)发生松动拔出或地下浅土层位移过大成堆积状使得工作桩倾翻等不利现象的产生,保证了整个装置更加平衡稳定。
有益效果
本发明在实际工作时,采用上述结构后,本发明具有如下效果:一种便携式机械组合地上固定桩装置,在未施加任何辅助外力的情况下,只利用力学的传递原理,就将单一的工作拉力有效地转换为向地下的压力,即实现了作为工作拉力的原有作用又起到了加固和保护装置本身能平衡稳定工作的目的。
力的转换路线是(图1):当对工作缆绳(14)施加拉力,通过吊环(12)带动下半部插入到地下的工作桩(1)向拉力方向位移,由于地下土压力的阻力,位移量只有2-6毫米左右,同时这个拉力带动安装在工作桩柱(1)顶部的轴(3)也向着拉力方向位移4-8毫米,这个位移量和产生位移量的力都通过以轴(6)为圆心、可以转动的长方体块(15)传递给另一端的轴(5),因为轴(6)的位置被支架(2)和(4)固定,支架(4)插入地下部分的形状是倒钩型,作用是防止支架(4)和轴(6)产生位移,并且轴(3)到轴(6)的距离同轴(5)到轴(6)的距离相等,因此,轴(5)的位移量、方向和力的大小同轴(3)相同,但是方向相反。轴(5)产生的压力和位移通过压力杆(7)和轴(8)压迫保护桩柱(9)的最上端,通过杠杆原理,可以用较小的压力便可以防止保护桩柱(9)发生以地下土压力作用点为圆心的顺时针方向的位移。有效保护了装置整体的平衡稳定。
附图说明
图1是本发明整体装置的基本构造工作状态主视示意图之一
图2是本发明整体装置工作状态主视示意图之二(缆绳拉力方向和保护桩柱位置角度不同)
图3是图1展示整体装置工作状态俯视图
图4是图1整体装置工作状态基本形态的三维示意图
图5是本发明采用三腿支架结构工作状态三维示意图
图6是本发明产品在实际土方工程应用中的一种架设方式示意图
本发明的最佳实施方式
下面结合附图和实施例,对本发明进行详细地描述。
本发明涉及一种便携式机械组合地上固定桩装置,比较多地应用于处理陆地土石方、水系清淤、挖掘物料、移动、陆地、水下重物、土建、港、河、湖修建等工程时,作为临时缆绳、钢索、钢绳的固定桩使用。不适合作为永久档土桩,桥桩、桥墩、悬挂缆桩等场合使用。
本发明作为产品,具有大小不一的不同规格型号,使用时将根据施工时产生的物料重量选择合适的规格型号,选择时必须依据《建筑桩基技术规范》(JGJ94-2008)。
本发明产品的规格型号的制定过程,首先将整个装置认为是刚性体,以建立整个装置工作时对土压力的推力,确定周围土发生堆积的临界值的数学模型开始。土压力的数学模型的建立方法采用在我国比较认可的朗肯土压力理论和库伦土压力理论。
在《建筑桩基技术规范》(JGJ94-2008)中5.7节中给出了单桩水平承载力特征值:
受水平荷载的一般建筑物和水平荷载较小的高大建筑物单桩基础和群桩中基桩应满足下式
要求:
Hik≤Rh(5.7.1)
式中Hik——在荷载效应标准组合下,作用于基桩i桩顶处的水平力;
Rh——单桩基础或群桩中基桩的水平承载力特征值,对于单桩基础,可取单桩的水平承
载力特征值Rha。
但是在本发明中,所述一种便携式机械组合地上固定桩装置,不但适合于水平承载力,还适合在一定角度之内的斜向上的承载力(附图1、2、4、5、6所示)。
结合图1,当承载力是非水平的斜向上的方向时,需求出其水平分力,即:
Hik*Cos α≤Rh
式中,α=41°(图1所示)
其中,Rh单桩的水平承载力特征值的确定和计算公式应按照《建筑桩基技术规范》(JGJ94-2008)中5.7.2节的规定,在此不需要列出。
在本发明中,需要说明的是,所述一种便携式机械组合地上固定桩装置,其承载工作载荷的桩柱并不是一根桩,结合图4可清晰看出,此时共有4根桩柱共同承载着工作载荷。由于4根桩柱安装的角度、长短各异,安装场地的土特性等都不一样,因此不宜按照群桩效应考虑。
经过实际应用,采用将总的水平荷载除以4得到的值,作为其中一根桩柱的水平荷载进行计算,得出一根桩柱需要的长度和宽度,在从本发明的系列产品中选择最合适的规格型号进行组装然后使用。
作为优选,所述吊环(12)可随着荷载作用力的方向角度的变化而上下移动,当作用力方向同地面的夹角越小,吊环(12)的位置可以越向下移动,也就是越接近地面。
作为优选,所述连接缆绳(13a_b)可以根据不同的土质和吊环(10a_b)的位置选择单根或双根。一般情况,吊环在地面处时,吊环(10a_b)选择两根,当吊环在地下时,缆绳(10a_b)选择单根。
作为优选,所述四条腿支架(2a_b)和(4a_b)可以根据需要选择三条腿支架(图5所示)。
本发明的实施方式
本发明产品装置在实际应用中经常用在大跨度立体高架索道悬挂挖掘搬运系统上。
结合图6,说明本发明产品装置在大跨度立体高架索道悬挂挖掘搬运系统上的实际应用案例。
图6所示为本发明产品装置与大跨度立体高架索道悬挂挖掘搬运系统结合应用在挖掘一条跨度超过100米的基坑工程上。
如图所示(16a)、(16b)、(17)为本发明产品装置,(19)为上述大跨度立体高架索道悬挂挖掘搬运系统的主机,在所述主机(19)上,装配有走行、吊臂、卷扬系统,(18)为所述大跨度立体高架索道悬挂挖掘搬运系统的挖斗(大跨度立体高架索道悬挂挖掘搬运系统非本发明内容,无必要详细说明),(14a)、(14b)为前述连接到本发明装置工作桩柱上的工作钢缆,所述工作钢缆(14a)、(14b)的另一端连接到所述大跨度立体高架索道悬挂挖掘搬运系统(19)的吊臂顶端。
图6展示了由三套本发明产品装置在这一工程上的实用案例。
本案例中所述大跨度立体高架索道悬挂挖掘搬运系统(19)的吊臂高度12米,安装架设时,所述本发明产品装置(16a)、(16b)与主机(19)的吊臂顶部用钢缆(14a)、(14b)连接,三者的位置形成等腰三角形,如果地形不方便,也必须确保误差不超过10%,在本发明产品装置(16a)、(16b)上的连接点位于各自工作桩柱(1)的中间部位。
连接(16a)、(16b)到主机(19)吊臂顶端的钢缆(14a)、(14b)与地面形成30度夹角。
连接主机(19)吊臂顶端到本发明产品装置(17)的工作桩柱(1)上的钢缆(20),由于钢缆(20)有一些下垂的弧度,因此在接近装置(17)的部分的钢缆(20)比较接近水平状态,因此连接点可选择位于工作桩柱(1)的底部,本案例选择在距离地面以上100毫米。
工作时,由大跨度立体高架索道悬挂挖掘搬运系统(19)主机的卷扬钢缆(21)连接挖斗(18),控制挖斗(18)前进、后退、上升、下降和翻转等动作,此时连接挖斗(18)的 钢缆(21)产生的工作拉力通过吊臂顶端传递给连接本发明产品装置(16a)、(16b)到吊臂顶端的工作钢缆(14a)、(14b)上,由工作钢缆(14a)、(14b)产生的拉力方向与地面成30度夹角。
结合图6,所述本发明一种便携式机械组合地上固定桩装置在本案例中同所述大跨度立体高架索道悬挂挖掘搬运系统(19)组装链接后,整个系统一旦开始工作,工作钢缆(14a)、(14b)便产生拉力,由于工作钢缆(14a)、(14b)的方向是斜向上的、同地面形成30度夹角,因此,随着工作钢缆(14a)、(14b)产生拉力的同时,本发明装置(16a)、(16b)的保护功能被唤醒,如前面发明内容中记录的力的转换路线所述,本发明装置(16a)、(16b)形成的反拉力作用在工作钢缆(14a)、(14b)上。同样,由所述大跨度立体高架索道悬挂挖掘搬运系统通过另一侧的钢缆(20)、(21)施加给本发明装置(17)的拉力同样唤醒本发明装置(17)的自动保护功能。此时,由三套本发明装置(16a)、(16b)、(17)同所述大跨度立体高架索道悬挂挖掘搬运系统组装链接的整个系统能够在稳定平衡安全的状态下完成要求的工程施工工作。
工业实用性
在所述实用案例中,采用的本发明装置(16a)、(16b)、(17)选择相同型号的配置,
结合图4,其中工作桩柱(1)、保护桩柱(9)选择20a槽钢,支架(2)、(4)和压力桩(7)选择110角钢。每套装置总重量仅为260公斤。
通过所述案例看出,本发明具有重量轻、便携带、易安装、易拆卸、结构简单、易生产加工,适用范围广,技术上也容易掌握的特点。
所述案例只是本发明装置实用案例中的一例,应用范围不受这一案例使用条件的限制,例如:架设临时索道桥,架设临时打捞机,临时绞盘,脱困拖拽等多种场合都可以使用本发明装置。只要是需要架设临时缆绳,需要使用临时桩以起到链接缆绳作用的场合,使用本发明都可以起到很好的作用。
以上对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发
明的实施方式之一,实际的结构并不局限于此,图5就是能够完成同样工作的使用三根桩柱构成支架的不同结构体。总而言之如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (8)

  1. 一种便携式机械组合地上固定桩装置,其特征在于:它包括四根钢柱(2a-b)与(4a-b)组成的四腿支架,支架的顶端由一根圆轴(6)贯穿连接,使四根支架可以转动,在所述圆轴的中部还安装一个可以转动的比较短的起到转换作用力方向作用的长方体块(15),所述长方体块的一端铰接一根长度略短于四根支架长度、用来传递作用力成为压力的刚性压力杆(7),刚性压力杆再铰接另一根长于四根支架长度的保护系统稳定的保护桩柱(9),在所述长方体块的另一端开出一个长方形的内孔,一根园轴(3)置于方孔内,在所述圆轴上接一根长度长于四根支架的工作桩柱(1),工作缆绳或钢索(14)通过安装在工作桩柱上的吊环(12)连接到工作桩柱上,在所述工作桩柱的背面也是通过吊环(11a-b)和缆绳或钢索(13a-b)连接到所述保护桩柱(9)上。
  2. 如权利要求1所述的一种便携式机械组合地上固定桩装置,其特征在于:所述支架(2a-b)与(4a-b)上部套在一根圆轴(6)上,支架的四根腿可以相对转动,不可轴向移动。
  3. 如权利要求1所述的一种便携式机械组合地上固定桩装置,其特征在于:所述支架腿前后叉开成三角形放置在地上,且后腿(4a-b)形成约90度折弯,折弯部分插入地下。
  4. 如权利要求1所述的一种便携式机械组合地上固定桩装置,其特征在于:所述支架(2a-b)与(4a-b)上部套在一根圆轴(6)上,在所述圆轴(6)的中间位置套上长方体块(15),所述长方体块的一端通过一个可以滑动的短轴(3)链接上工作桩柱(1)。
  5. 如权利要求4所述的一种便携式机械组合地上固定桩装置,其特征在于:所述工作桩柱(1)是斜向下插入地下,并在所述工作桩柱上下两面安装吊环(12)(11),所述上面的吊环(12)接受由缆绳(14)牵引的工作拉力,所述下面的吊环(11a-b)通过缆绳(13a-b)链接到保护桩柱(9)上。
  6. 如权利要求5所述的一种便携式机械组合地上固定桩装置,其特征在于:所述保护桩柱(9)是斜向下插入地下,所述保护桩柱的地上部分顶端同压力杆(7)的底部连接,所述压力杆的上部接受来自权利要求4所述由长方体快(15)传递来的压力,所述压力通过压力杆(9)压向保护桩柱(9)的顶端。
  7. 如权利要求1所述的一种便携式机械组合地上固定桩装置,其特征在于:整个装置有六根桩柱安置在地上,其中有四根(2a-b)(4a-b)构成支架支撑在地上,形成支架的构造没有固定的限制,根据施工现场需要设计成三条腿或四条腿或五条腿,但是支架的后腿需要弯折约90度并且插入地下,另两根桩柱构成工作桩柱(1)和保护桩柱(9),都斜插入地下,斜向的方向都要朝向拉力方向。
  8. 如权利要求1所述的一种便携式机械组合地上固定桩装置,其特征在于:通过安装在插入地下的支架(4a-b)顶部的轴(6)的中间的长方体块(15),将作用于整个装置上的斜向上的拉力转换成斜向下的压力从而使保护桩柱(9)在整体装置受到拉力同时又受到来自于压力杆(7)的压力,且拉力越大压力也同时增大,在加上插入地下部分受到的土压力的制约,使得保护桩柱(9)受到的合力是斜向下的推力,从而形成斜向上拉力(14)越大保护桩柱(9)越插向地下的构造。
PCT/CN2018/081654 2017-12-01 2018-04-02 一种便携式机械组合地上固定桩装置 WO2019104924A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880000366.5A CN110023570B (zh) 2017-12-01 2018-04-02 一种便携式机械组合地上固定桩装置
US16/768,717 US11242664B2 (en) 2017-12-01 2018-04-02 Portable mechanically assembled ground fixation stake device
DE112018006104.3T DE112018006104T5 (de) 2017-12-01 2018-04-02 Tragbare mechanische kombinierte oberirdische feste Pfahlvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711252689.7A CN107989028B (zh) 2017-12-01 2017-12-01 一种便携式机械组合地上固定桩装置
CN201711252689.7 2017-12-01

Publications (1)

Publication Number Publication Date
WO2019104924A1 true WO2019104924A1 (zh) 2019-06-06

Family

ID=62035235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081654 WO2019104924A1 (zh) 2017-12-01 2018-04-02 一种便携式机械组合地上固定桩装置

Country Status (4)

Country Link
US (1) US11242664B2 (zh)
CN (2) CN107989028B (zh)
DE (1) DE112018006104T5 (zh)
WO (1) WO2019104924A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112858052B (zh) * 2021-01-29 2022-05-03 北京工业大学 一种用于脉动式疲劳压缩试验机的拉伸疲劳试验装置
CN115180543A (zh) * 2022-06-29 2022-10-14 徐少钢 一种绞盘单向制动配套定位桩装置
CN115045175A (zh) * 2022-06-30 2022-09-13 徐少钢 一种单根钢绳构成的临时防爆悬空索道桥

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995552A (zh) * 2006-12-14 2007-07-11 南京工业大学 自张式人字形桩
CN201649102U (zh) * 2010-04-14 2010-11-24 江苏江中集团有限公司 一种门字型双排单向旋喷搅拌加筋组合支护桩
WO2012154724A1 (en) * 2011-05-11 2012-11-15 Imagine Tf, Llc. Anchoring system with post angular adjustment
CN103669365A (zh) * 2012-08-29 2014-03-26 张绍球 一种外斜拉内斜撑人字型基坑支护桩及其施工方法
US20170089025A1 (en) * 2015-09-24 2017-03-30 Keith Chilson Ground anchoring support apparatus

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604519A (en) * 1969-02-14 1971-09-14 Stephen V Chelminski Method of creating underwater thrusts to drive a member into the earth
US4662146A (en) * 1983-05-23 1987-05-05 Parry Rodger J Building frame support and method of erection
US4825604A (en) * 1987-12-22 1989-05-02 Helper Winch, Inc. Ground anchor
US5620402A (en) * 1995-03-01 1997-04-15 Cybex International, Inc. Rear deltoid and rowing exercise machine and method of exercising
KR100386223B1 (ko) * 1997-05-12 2003-06-02 도꾜덴료꾸가부시끼가이샤 지반 보강형의 기초 형성에 있어서의 보강재의 배치 방법및 기초 부재
US5975808A (en) * 1997-07-11 1999-11-02 Fujita; Yasuhiro Pile or pile assembly for engineering and construction works
US6256942B1 (en) * 1999-07-14 2001-07-10 Michael A. Schatz Stake system
JP4169758B2 (ja) * 2003-08-06 2008-10-22 保宏 藤田 土木工事用杭
GB0711903D0 (en) * 2007-06-20 2007-07-25 Anchor Systems Europ Ltd Post anchor
US9273441B2 (en) * 2007-12-12 2016-03-01 Paul R. Hashim Tree nail
ITPD20090091A1 (it) * 2009-04-16 2010-10-17 Agostino Bauletti Dispositivo di ancoraggio rapido ad inserti obliqui
CN201567532U (zh) * 2009-11-30 2010-09-01 中冶成工建设有限公司 一种桥梁盖梁的新型支撑结构
CN202406903U (zh) * 2011-05-09 2012-09-05 曾开宇 弹弓-活套式捕鼠器
ES2662770T3 (es) * 2011-06-28 2018-04-09 Surefoot Systems International Limited Placas de zapatas mejoradas
CN103225315B (zh) * 2013-05-11 2015-04-08 天津大学 一种由单桩、筒形基础和锚索组成的海上风电基础
CN203342292U (zh) * 2013-06-28 2013-12-18 燕山大学 升降可控式劈腿练习器
CN104234038A (zh) * 2014-03-03 2014-12-24 王磊 一种灌注桩免破碎桩头施工工艺
CN205242427U (zh) * 2015-10-30 2016-05-18 瀚川基业(北京)科技有限公司 新型铁塔基础
US10344443B2 (en) * 2016-05-09 2019-07-09 Gaétan GENEST Foundation for the support of a structure and method of installation
WO2020046614A1 (en) * 2018-08-30 2020-03-05 Exxonmobil Upstream Research Company Pile anchor reinforcement systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995552A (zh) * 2006-12-14 2007-07-11 南京工业大学 自张式人字形桩
CN201649102U (zh) * 2010-04-14 2010-11-24 江苏江中集团有限公司 一种门字型双排单向旋喷搅拌加筋组合支护桩
WO2012154724A1 (en) * 2011-05-11 2012-11-15 Imagine Tf, Llc. Anchoring system with post angular adjustment
CN103669365A (zh) * 2012-08-29 2014-03-26 张绍球 一种外斜拉内斜撑人字型基坑支护桩及其施工方法
US20170089025A1 (en) * 2015-09-24 2017-03-30 Keith Chilson Ground anchoring support apparatus

Also Published As

Publication number Publication date
DE112018006104T5 (de) 2020-09-10
CN107989028A (zh) 2018-05-04
CN110023570B (zh) 2021-07-02
CN107989028B (zh) 2023-08-01
US11242664B2 (en) 2022-02-08
US20210172143A1 (en) 2021-06-10
CN110023570A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2019104924A1 (zh) 一种便携式机械组合地上固定桩装置
CN102953341B (zh) 一种设置于深水急流无覆盖层陡峭裸岩上的高位栈桥结构
US3653167A (en) Anchorage apparatus
CN107401118A (zh) 一种悬索桥墩台式预应力锚碇
CN106351121A (zh) 一种悬索桥墩台式预应力锚碇
CN206706774U (zh) 拉森钢板配工字型钢基坑止水支撑系统
JP3518856B2 (ja) 風力発電装置
CN207660353U (zh) 一种用于土方开挖中的立杆加固装置
CN206591438U (zh) 一种悬索桥墩台式预应力锚碇
CN206376274U (zh) 一种单桩高位承台与锚索塔吊基础结构
CN210555475U (zh) 一种浮式钻孔平台
CN214460568U (zh) 一种顺层岩面上桥梁钢管支架基础
CN207727552U (zh) 一种便携式机械组合地上固定桩装置
CN206693242U (zh) 基坑工程中一种悬索式支撑梁竖向承载结构
CN205116239U (zh) 工程桩基静载检测阻力锚锄
CN215057096U (zh) 一种小型旋挖钻机
CN210421090U (zh) 一种中置式斜桩压桩机
CN108952568B (zh) 一种钻机
CN217602176U (zh) 一种用于人工挖孔桩施工的防护装置
CN206554106U (zh) 锥头筋体后张桩基础
CN218148481U (zh) 栈桥桩临时支撑结构和栈桥桩群
CN207700194U (zh) 降水井防护装置
CN218148482U (zh) 简易基桩结构及其系统和栈桥
CN112627731B (zh) 深水急流轻量型站立式智能化循环钻机及其使用方法
CN204632296U (zh) 一种广告牌

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883167

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18883167

Country of ref document: EP

Kind code of ref document: A1