WO2019104749A1 - 减少飞机直流起动发电的主功率馈线供电系统及方法 - Google Patents

减少飞机直流起动发电的主功率馈线供电系统及方法 Download PDF

Info

Publication number
WO2019104749A1
WO2019104749A1 PCT/CN2017/114789 CN2017114789W WO2019104749A1 WO 2019104749 A1 WO2019104749 A1 WO 2019104749A1 CN 2017114789 W CN2017114789 W CN 2017114789W WO 2019104749 A1 WO2019104749 A1 WO 2019104749A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
pole double
throw switch
phase
diode
Prior art date
Application number
PCT/CN2017/114789
Other languages
English (en)
French (fr)
Inventor
武志勇
康元丽
回彦年
于贺平
Original Assignee
中国商用飞机有限责任公司北京民用飞机技术研究中心
中国商用飞机有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司北京民用飞机技术研究中心, 中国商用飞机有限责任公司 filed Critical 中国商用飞机有限责任公司北京民用飞机技术研究中心
Publication of WO2019104749A1 publication Critical patent/WO2019104749A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/30Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring the motor being controlled by a control effected upon an ac generator supplying it
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/30Special adaptation of control arrangements for generators for aircraft

Definitions

  • the present invention relates to an aircraft power supply system, a direct current power generation system, and a cable connection, and more particularly to a main power feeder power supply system and method for use in an aircraft, particularly but not limited to a civil aircraft to reduce aircraft DC starting power generation.
  • the DC starting power generation system refers to a system that starts the engine with DC power and emits DC power during the power generation phase.
  • the DC starting power generation system uses two different control devices to realize the starting and generating functions respectively in the starting and generating phases.
  • a three-phase bridge drive circuit and a microprocessor are used to convert DC power into three-phase AC power input to a three-phase AC generator to generate a torque-driven engine, and a three-phase rectifier bridge built in the generator is used in the power generation phase.
  • the circuit rectifies the electric energy generated by the three-phase alternator into DC power output to the electric load.
  • the cables used in the starting phase and the power generation phase cannot be reused, and two separate cables are required for power transmission.
  • the length of each main power feeder is not less than 30 meters, and the power in the DC starting power system. Larger, with longer power transmission distances, an increase in the number of main power feeder cables can significantly increase system weight and reduce power density.
  • FIG. 1 the main power feeder connection mode of the DC starting power generation system is shown in FIG. 1
  • FIG. 2 the system structure diagram of the existing solution is shown in FIG. 2 .
  • an object of the present invention is to reduce the number of main power feeders of a DC starting power generation system, thereby achieving the purpose of reducing the weight of the main power feeder, and the structure is simple to reduce the number of main power feeders of the aircraft DC starting power generation system. Power supply system.
  • the technical solution of the present invention is: a power supply system for reducing a main power feeder of an aircraft DC starting power generation, the system comprising a starting controller, a three-phase bridge rectifier, a DC load, and a three-phase AC starting generator, the system is starting One end of the controller is provided with a first single pole double throw switch and a start control contactor, and a second single pole double throw switch is arranged at one end of the three-phase alternating current start generator, the first single pole double throw switch and the start control contactor pass three main powers
  • the feeder is connected to the second single pole double throw switch and the three-phase alternating current start generator, and the first single pole double throw switch, the control contactor and the second single pole double are controlled
  • the throw-away switch multiplexes the main power feeder during the start-up and power generation phases, reducing the number of main power feeders.
  • the specific structure of the system is: one end of the starting controller is connected to the DC starting power source, and the other end is respectively connected to the second contact of the first single pole double throw switch and one end of the starting control contactor,
  • the DC load is connected to the first contact of the first single pole double throw switch, wherein one end of the two main power feeders is connected to one end of the first single pole double throw switch, and the other end is connected with the second single pole double One end of the throwing switch is connected, the other end of the other main power feeding line is connected to the other end of the starting control contactor, and the other end is connected with the three-phase alternating current starting generator, the three-phase alternating current starting generator and the a second contact connection of the second single pole double throw switch, the three phase bridge rectifier being connected to the first contact of the second single pole double throw switch, the three phase bridge rectifier and the three phase alternating current Start the generator connection.
  • system further includes a single-pole double-throw switch controller and a current sensor, the current sensor is disposed on the main power feed line, and is connected to the single-pole double-throw switch controller, and the single-pole double-throw switch controller respectively It is connected with the first single pole double throw switch, the start control contactor and the second single pole double throw switch control.
  • the single-pole double-throw switch controller includes an AC/DC module, a resistor R1, a resistor R2, a resistor R3, a resistor R4, a resistor R5, a resistor R6, a resistor R7, a resistor R8, a resistor R9, a resistor R10, a resistor R11, and a resistor.
  • R12 resistor R13, resistor R14, resistor R15, resistor R16, resistor R17, resistor R18, resistor R19, resistor R20, resistor R21, resistor R22, diode D1, diode D2, diode D3, diode D4, diode D5, diode D6, Diode D7, diode D8, diode D9, capacitor C1, capacitor C2, operational amplifier V1, operational amplifier V2, operational amplifier V3, and signal controller;
  • one end of the resistor R4 and the diode D1 receives the phase A voltage signal, the other end of the R4 is connected to one end of the diode D4, and the other end of the diode D1 is connected to one end of the resistor R1; the resistor R5 And one end of the diode D2 receives a B-phase voltage signal, the other end of the resistor R5 is connected to one end of the diode D5, the other end of the diode D2 is connected to one end of the resistor R2; and one ends of the R6 and D3 are Receiving a C-phase voltage signal, the other end of the resistor R6 is connected to one end of the diode D6, the other end of the D3 is connected to one end of the resistor R2, and the other ends of the diode D4, the diode D5 and the diode D6 are The other end of the resistor R1, the resistor R2 and the resistor R3 are connected to one end of the resistor R12, and one
  • the other end of the resistor C1 and the resistor R7 are grounded, the other end of the resistor R12 is connected to one end of the resistor R13, and the other end of the resistor R13 is connected to the positive input of the operational amplifier V2, the resistor R19 One end of the positive input of the operational amplifier V2 and the other end connected to ground;
  • the resistor R14 is connected to one end of the resistor R13, and the other end of the resistor R14 is respectively connected to an output of the operational amplifier V1 and one end of the resistor R16, and the other end of the resistor R16 is respectively connected to the operation Amplifier V1
  • the positive input is connected to one end of the resistor R17, and the other end of the resistor R17 is grounded;
  • One end of the resistors R7 and D7 receives an A-phase current signal, the other end of the resistor R7 is grounded, one end of the resistor R8 and the diode D8 receives an A-phase current signal, and the other end of the resistor R8 is grounded, the resistor R9 and One end of the diode D9 receives the A-phase current signal, the other end of the resistor R9 is grounded, and the other end of the diode D7, the diode D8 and the diode D9 are connected to one end of the resistor R11, and the other end of the resistor R11 is One end of the resistor R20 is connected, the other end of the resistor R20 is connected to a negative input of the operational amplifier V3, and one end of the capacitor C2 and the resistor R18 are connected to a negative input of the operational amplifier V3, the capacitor C2 And the other end of the resistor R18 is grounded separately;
  • An output of the operational amplifier V3 is connected to one end of the resistor R21.
  • the other end of the R21 is connected to a negative input of the operational amplifier V2, and an output of the operational amplifier V2 is connected to one end of the resistor R22.
  • the other end of the resistor R22 is connected to the signal controller.
  • Another object of the present invention is to provide a power supply control method for a system for reducing a main power feeder of a DC starting power generation of an aircraft, the method specifically comprising the following steps:
  • the starting controller inverts the DC power input from the DC starting power source into three-phase AC power, and switches the first single-pole double-throw switch and the first single-pole double-throw switch, and simultaneously closes the starting control contactor to make the three-phase alternating current
  • the generator generates torque to drive the engine to rotate to the starting speed
  • the three-phase alternator emits three-phase alternating current, switches the first single-pole double-throw switch and the second single-pole double-throw switch, and simultaneously disconnects the start control contactor, so that the three-phase alternating current is rectified through the three-phase rectifier bridge circuit.
  • DC power is delivered to the DC load through the main power feeder.
  • the DC power outputted by the DC starting power source is sent to a starting controller in the casing of the starting controller, and the starting controller inverts the DC power into three-phase AC power, and the first single-pole double-throw switch
  • the contact is dialed to the 2 position, the contact of the second single-pole double-throw switch is switched to the 2 position, and the start control contactor is closed, so that the three-phase alternating current outputted by the start controller enters the three-phase alternating current starter through the three main power feeders.
  • a three-phase AC starting generator in the casing, the three-phase alternator generates torque to drive the engine to rotate to the starting speed.
  • the three-phase alternator emits three-phase alternating current energy, respectively, the contacts of the first single-pole double-throw switch are turned to the 1 position, the contacts of the second single-pole double-throw switch are set to the 1 position, and the start is disconnected.
  • Control the contactor to control the three-phase AC power input into the three-phase rectifier bridge circuit in the three-phase AC starter generator casing.
  • the three-phase rectifier bridge circuit rectifies the three-phase AC power into DC power and passes through two mains.
  • the power feeder enters the DC load terminal.
  • the present invention further provides the power supply automatic control method of the power supply system, which specifically includes the following steps, the single-pole double-throw switch controller obtains a three-phase voltage V 0 on the main power feeder through a cable direct connection manner, and The current sensor on the main power feeder obtains the three-phase current value I on the main power feeder, and obtains the reference voltage value V 1 of the A-phase loop through the internal AC/DC module of the single-pole double-throw switch controller; The phase voltage V 0 is compared, and the automatic switching of the first single pole double throw switch and the second single pole double throw switch is realized according to the condition that is satisfied.
  • the first single pole double throw switch is switched to be in 2 positions.
  • the invention has the beneficial effects that the system of the invention changes the structure of the existing DC starting power generation system by adopting the above technical solution, and a single pole double throw switch is added inside the generator and the controller of the DC starting power generation system to realize The main power feeder is multiplexed in the startup and power generation phases.
  • the control loop of the single-pole double-throw switch is added in the motor casing, and the automatic switching of the single-pole double-throw switch is realized.
  • a control strategy is adopted to realize the multiplexing of the main power feeder, and the power density of the starting power generation system is improved. , reducing the amount of main power feeder cable by 40%, which can achieve the purpose of aircraft weight reduction.
  • FIG. 1 is a schematic diagram showing the connection structure of a DC starting power generation system in an existing aircraft.
  • FIG. 2 is a schematic structural view of a DC starting power generation system in the prior art solution.
  • FIG. 3 is a schematic diagram of a connection structure of a DC starting power generation system in a technical solution of the present invention.
  • FIG. 4 is a schematic structural view of a power supply system of a DC starting power generation system in a technical solution of the present invention.
  • FIG. 5 is a schematic structural view of another embodiment of a power supply system according to the present invention.
  • FIG. 6 is a schematic view showing the electrical structure of a single-pole double-throw switch controller according to the present invention.
  • Three-phase AC starter generator casing 110.
  • Three-phase AC starter generator 111.
  • DC load 30.
  • Start controller The casing, 31. starting controller, 32 is a DC starting power supply, 50. a main power feeder through which the current flows in the power generation phase, 51. a main power feeder through which the current flows in the starting phase, 40. a power generation control contactor, 41. Control contactor, 43.
  • Main power feeder, 70 is single pole double throw switch controller.
  • the present invention provides a power supply system for reducing a main power feeder of an aircraft DC starting power generation, the system comprising a starting controller, a three-phase bridge rectifier, a DC load, and a three-phase AC starting generator.
  • the system is starting One end of the dynamic controller is provided with a first single pole double throw switch and a start control contactor, and a second single pole double throw switch is arranged at one end of the three-phase alternating current starting generator, the first single pole double throw switch and the start control contactor pass through three mains
  • the power feeder is connected with the second single pole double throw switch and the three-phase alternating current start generator, and the main single power feeder is reused in the starting and power generation stages by controlling the first single pole double throw switch, the control contactor and the second single pole double throw switch. , reducing the number of main power feeders.
  • the system is specifically configured such that one end of the starting controller is connected to the DC starting power source, and the other end is respectively connected to the second contact of the first single pole double throw switch and one end of the starting control contactor, the DC a load is coupled to the first contact of the first single pole double throw switch, wherein one of the two main power feeders is connected to one end of the first single pole double throw switch, and the other end is connected to the second single pole double throw switch One end of the other main power feeding line is connected to the other end of the starting control contactor, and the other end is connected to the three-phase alternating current starting generator, the three-phase alternating current starting generator and the first a second contact connection of the two single-pole double-throw switch, the three-phase bridge rectifier being connected to the first contact of the second single-pole double-throw switch, the three-phase bridge rectifier and the three-phase alternating current starter Machine connection.
  • a control method for a power supply system for reducing a main power feeder of an aircraft DC starting power generation the method specifically comprising the following steps:
  • the starting controller inverts the DC power input from the DC starting power source into three-phase AC power, and switches the first single-pole double-throw switch and the first single-pole double-throw switch, and simultaneously closes the starting control contactor to make the three-phase alternating current
  • the generator generates torque to drive the engine to rotate to the starting speed
  • the three-phase alternator emits three-phase alternating current, switches the first single-pole double-throw switch and the second single-pole double-throw switch, and simultaneously disconnects the start control contactor, so that the three-phase alternating current is rectified through the three-phase rectifier bridge circuit.
  • DC power is delivered to the DC load through the main power feeder.
  • the DC power outputted by the DC starting power source is sent to a starting controller in the casing of the starting controller, and the starting controller inverts the DC power into three-phase AC power, and the first single-pole double-throw switch
  • the contact is dialed to the 2 position, the contact of the second single-pole double-throw switch is switched to the 2 position, and the start control contactor is closed, so that the three-phase alternating current outputted by the start controller enters the three-phase alternating current starter through the three main power feeders.
  • a three-phase AC starting generator in the casing the three-phase alternator generates torque to drive the engine to rotate to the starting speed;
  • the three-phase alternator emits three-phase AC power, respectively, the contact of the first single-pole double-throw switch is set to the 1 position, the contact of the second single-pole double-throw switch is set to the 1 position, and the start control contact is disconnected.
  • the three-phase alternating current power is input to the three-phase rectifier bridge circuit in the three-phase alternating current starting generator casing, and the three-phase rectifier bridge circuit rectifies the three-phase alternating current into direct current electric energy and passes through two main power feeding lines. Enter the DC load terminal.
  • the system further includes a single pole double throw switch controller and a current sensor, the current sensor being disposed on the main power feed line and connected to the single pole double throw switch controller, Single pole double throw switch controller It is respectively connected with the first single pole double throw switch, the start control contactor and the second single pole double throw switch.
  • the single-pole double-throw switch controller includes an AC/DC module, a resistor R1, a resistor R2, a resistor R3, a resistor R4, a resistor R5, a resistor R6, a resistor R7, a resistor R8, a resistor R9, a resistor R10, a resistor R11, and a resistor R12.
  • one end of the resistor R4 and the diode D1 receives an A-phase voltage signal
  • the other end of the R4 is connected to one end of the D4, and the other end of the D1 is connected to one end of the resistor R1
  • the resistor R5 and the diode One end of D2 receives a B-phase voltage signal
  • the other end of the resistor R5 is connected to one end of the diode D5
  • the other end of the diode D2 is connected to one end of the resistor R2
  • one end of the R6 and D3 receives C a phase voltage signal
  • the other end of the resistor R6 is connected to one end of the diode D6,
  • the other end of the D3 is connected to one end of the resistor R2, and the other end of the diode D4, the diode D5 and the diode D6 are connected with an operational amplifier
  • the other ends of the resistor R1, the resistor R2 and the resistor R3 are connected to one end of the resist
  • the resistor R14 is connected to one end of the R13, and the other end of the resistor R14 is respectively connected to an output of the operational amplifier V1 and one end of the resistor R16, and the other end of the resistor R16 is respectively connected to the operational amplifier
  • the positive input of V1 is connected to one end of the resistor R17, and the other end of the resistor R17 is grounded;
  • One end of the resistors R7 and D7 receives an A-phase current signal, the other end of the resistor R7 is grounded, one end of the resistor R8 and the diode D8 receives an A-phase current signal, and the other end of the resistor R8 is grounded, the resistor R9 and One end of the diode D9 receives the A-phase current signal, the other end of the resistor R9 is grounded, and the other end of the diode D7, the diode D8 and the diode D9 are connected to one end of the resistor R11, and the other end of the resistor R11 is One end of the resistor R20 is connected, the other end of the resistor R20 is connected to a negative input of the operational amplifier V3, and one end of the capacitor C2 and the resistor R18 are connected to a negative input of the operational amplifier V3, the capacitor C2 And the other end of the resistor R18 is grounded separately;
  • An output of the operational amplifier V3 is connected to one end of the resistor R21.
  • the other end of the R21 is connected to a negative input of the operational amplifier V2, and an output of the operational amplifier V2 is connected to one end of the resistor R22.
  • the other end of the resistor R22 is connected to the signal controller.
  • the single-pole double-throw switch controller obtains a three-phase voltage V 0 on a main power feed line through a cable direct connection manner, and is disposed on a main power feed line
  • the current sensor obtains a three-phase current value I on the main power feed line, and obtains a reference voltage value V 1 of the A-phase loop through the internal AC/DC module of the single-pole double-throw switch controller; and performs a comparison circuit with the three-phase voltage V 0 Comparing, the automatic switching of the first single pole double throw switch and the second single pole double throw switch is realized according to the condition that is satisfied.
  • the power generation allowable value is a voltage value that enables the three-phase alternator to generate torque to drive the engine to rotate to the starting speed
  • the first single pole double throw switch is switched to the 2 position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种减少飞机直流起动发电的主功率馈线供电系统及方法,该系统结构是:通过将起动控制器(30)和三相交流起动发电机(110)之间用于供电的主功率馈线(60)的两端设置第一单刀双掷开关(43)、起动控制接触器(41)和第二单刀双掷开关(44),在起动和发电阶段通过控制第一单刀双掷开关(43)、起动控制接触器(41)和第二单刀双掷开关(44)实现了主功率馈线(60)复用,减少主功率馈线(60)的数量。由于采用上述技术方案,实现了实现主功率馈线复用,减少主功率馈线数量,提高了起动发电系统功率密度,减少了40%的主功率馈线电缆用量,可达到飞机减重的目的。

Description

减少飞机直流起动发电的主功率馈线供电系统及方法 技术领域
本发明涉及飞机供电系统、直流起动发电系统、电缆连接,尤其涉及一种应用于一种飞机,具体到但不限于民航飞机的减少飞机直流起动发电的主功率馈线供电系统及方法。
背景技术
直流起动发电系统是指用直流电能起动发动机,在发电阶段发出直流电能的系统。直流起动发电系统在起动和发电阶段分别采用两套不同的控制装置分别实现起动和发电功能。在起动阶段采用三相桥式驱动电路及微处理器将直流电能转换为三相交流电能输入至三相交流发电机内产生扭矩驱动发动机,在发电阶段采用内置于发电机内部的三相整流桥式电路将三相交流发电机所发出的电能整流为直流电能输出至用电负载。
目前直流起发系统内,用于起动阶段和发电阶段的电缆之间不能复用,需分别采用两套独立电缆进行电能的传输。在大型民用飞机上,由于发电机位于发动机吊舱内,起动阶段的控制器以及用电设备均在飞机中舱部位,因此,每根主功率馈线长度不小于30米,在直流起动发电系统功率较大,电能传输距离较长的情况下,主功率馈线电缆数量的增加会显著增加系统重量,降低功率密度。
目前直流起动发电系统的主功率馈线连接方式如图1所示,现有方案的系统结构示意图如图2所示,
可以看到,现有方案所采用的主功率馈线有五根。主功率馈线之间不能复用造成了电缆的长距离冗余和重量的严重增加。本方案需通过起动发电系统的内部连接架构的改进达到减少主功率馈线根数,减少主功率馈线重量的目的。
发明内容
为了解决上述问题,本发明的目的是提出一种能够减少直流起动发电系统的主功率馈线根数,从而达到减小主功率馈线重量的目的且结构简单的减少飞机直流起动发电系统主功率馈线数量的供电系统。
本发明的技术方案是:一种减少飞机直流起动发电的主功率馈线的供电系统,所述系统包括起动控制器、三相桥式整流器、直流负载以及三相交流起动发电机,该系统在起动控制器一端设置第一单刀双掷开关和起动控制接触器,在三相交流起动发电机一端设置第二单刀双掷开关,所述第一单刀双掷开关和起动控制接触器通过3根主功率馈线与第二单刀双掷开关和三相交流起动发电机连接,通过控制第一单刀双掷开关、控制接触器和第二单刀双 掷开关的实现主功率馈线在起动和发电阶段的复用,减少主功率馈线的数量。
进一步,该系统的具体结构为:所述起动控制器一端与直流起动电源连接,另一端分别与所述第一单刀双掷开关的第2触点和所述起动控制接触器的一端连接,所述直流负载与所述第一单刀双掷开关的第1触点连接,其中2根所述主功率馈线一端与所述第一单刀双掷开关的一端连接,另一端与所述第二单刀双掷开关的一端连接,另一根所述主功率馈线的一端所述起动控制接触器的另一端连接,另一端与所述三相交流起动发电机连接,所述三相交流起动发电机与所述第二单刀双掷开关的第2触点连接,所述三相桥式整流器与所述第二单刀双掷开关的第1触点连接,所述三相桥式整流器与所述三相交流起动发电机连接。
进一步,该系统还包括单刀双掷开关控制器和电流传感器,所述电流传感器设置在所述主功率馈线上,并与所述单刀双掷开关控制器连接,所述单刀双掷开关控制器分别与第一单刀双掷开关、起动控制接触器和第二单刀双掷开关控制连接。
进一步,所述单刀双掷开关控制器包括AC/DC模块、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、电阻R19、电阻R20、电阻R21、电阻R22、二极管D1、二极管D2、二极管D3、二极管D4、二极管D5、二极管D6、二极管D7、二极管D8、二极管D9、电容C1、电容C2、运算放大器V1、运算放大器V2、运算放大器V3和信号控制器;
其中,所述电阻R4和二极管D1的一端均接收A相电压信号,所述R4另一端与二极管D4的一端连接,所述二极管D1的另一端与所述电阻R1的一端连接;所述电阻R5和二极管D2的一端均接收B相电压信号,所述电阻R5的另一端与二极管D5的一端连接,所述二极管D2的另一端与所述电阻R2的一端连接;所述R6和D3的一端均接收C相电压信号,所述电阻R6的另一端与二极管D6的一端连接,所述D3的另一端与所述电阻R2的一端连接,所述二极管D4、二极管D5和二极管D6的另一端均与运算放大器V1的负输入相连,所述电阻R1、电阻R2和电阻R3的另一端均与所述电阻R12的一端连接,所述电容C1和电阻R7的一端均与所述电阻R12的一端连接,所述电容C1和电阻R7的另一端均接地,所述电阻R12的另一端与所述电阻R13的一端连接,所述电阻R13的另一端与所述运算放大器V2的正输入相连,所述电阻R19的一端与所述运算放大器V2的正输入相连,另一端与地相连;
所述电阻R14的与所述电阻R13的一端连接,所述电阻R14的另一端分别与所述运算放大器V1输出和所述电阻R16的一端连接,所述电阻R16的另一端分别与所述运算放大器V1 的正输入和电阻R17的一端连接,所述电阻R17的另一端接地;
所述电阻R7和D7一端接收A相电流信号,所述电阻R7的另一端接地,所述电阻R8和二极管D8一端接收A相电流信号,所述电阻R8的另一端接地,所述电阻R9和二极管D9一端接收A相电流信号,所述电阻R9的另一端接地,所述二极管D7、二极管D8和二极管D9的另一端均与所述电阻R11的一端连接,所述电阻R11的另一端与所述电阻R20的一端连接,所述电阻R20的另一端与所述运算放大器V3的负输入相连,所述电容C2和电阻R18的一端均与所述运算放大器V3的负输入相连,所述电容C2和电阻R18的另一端分别接地;
所述运算放大器V3的输出与所述电阻R21一端连接,所述R21的另一端与所述运算放大器V2的负输入连接,所述运算放大器V2的输出与所述电阻R22的一端连接,所述电阻R22另一端与所述信号控制器连接。
本发明的另一目的是提供上述减少飞机直流起动发电的主功率馈线的系统的供电控制方法,该方法具体包括以下步骤:
在起动时,起动控制器将直流起动电源输入的直流电能逆变为三相交流电能,通过切换第一单刀双掷开关和第一单刀双掷开关,同时闭合起动控制接触器,使三相交流发电机产生扭矩驱动发动机转动至起动转速;
在发电时,三相交流发电机发出三相交流电,切换第一单刀双掷开关和第二单刀双掷开关,同时断开起动控制接触器,使三相交流电通过三相整流桥式电路整流为直流电能,通过主功率馈线输送给直流负载端。
进一步,该方法的具体步骤为:
所述在起动时,将直流起动电源输出的直流电能输送至起动控制器机壳内的起动控制器,所述起动控制器将直流电能逆变为三相交流电能,将第一单刀双掷开关的触点拨至2位置,将第二单刀双掷开关的触点拨至2位置,同时闭合起动控制接触器,使得起动控制器输出的三相交流电通过三根主功率馈线进入在三相交流起动发电机机壳内的三相交流起动发电机,三相交流发电机产生扭矩驱动发动机转动至起动转速。
进一步,在发电时,三相交流发电机发出三相交流电能,分别将第一单刀双掷开关的触点拨至1位置,将第二单刀双掷开关的触点拨至1位置,同时断开起动控制接触器,控制三相交流电能输入至在三相交流起动发电机机壳内的三相整流桥式电路中,三相整流桥式电路将三相交流电整流为直流电能,并通过两根主功率馈线进入直流负载端。
进一步,本发明还提供所述的供电系统的供电自动控制方法,具体包括以下步骤, 所述单刀双掷开关控制器通过线缆直连方式得到主功率馈线上的三相电压V0,通过设置在主功率馈线上的电流传感器得到主功率馈线上的三相电流值I,通过所述单刀双掷开关控制器内部AC/DC模块得到A相回路的基准电压值V1;通过比较电路与三相电压V0进行比较,根据比较满足的条件实现第一单刀双掷开关和第二单刀双掷开关的自动投切。
进一步,所述比较需要满足的条件:
当主功率馈线上的电压值V0小于发电允许值时,保持第一单刀双掷开关处于1位;
当主功率馈线的电压值V0大于发电允许值时,切换第一单刀双掷开关处于2位。
本发明的有益效果是:由于采用上述技术方案,本发明的系统对现有直流起动发电系统的架构进行了改变,在直流起动发电系统的发电机和控制器内部增加了单刀双掷开关,实现了主功率馈线在起动和发电阶段的复用。在电机机壳内增加了单刀双掷开关的控制回路,实现了单刀双掷开关的自动投切并根据此架构采用一种控制策略实现了主功率馈线的复用,提高了起动发电系统功率密度,减少了40%的主功率馈线电缆用量,可达到飞机减重的目的。
附图说明
图1为现有飞机中的直流起动发电系统连线结构示意图。
图2为现有技术方案中的直流起动发电系统结构示意图。
图3为本发明技术方案中的直流起动发电系统连线结构示意图。
图4为本发明技术方案中的直流起动发电系统的供电系统结构示意图。
图5为本发明的供电系统另一具体实施例的结构示意图。
图6为本发明中单刀双掷开关控制器的电气结构示意图。
图中:
5.发动机、10.三相交流起动发电机机壳、110.三相交流起动发电机、111.三相交流起动发电机内置的三相桥式整流器、215.直流负载、30.起动控制器机壳、31.起动控制器、32为直流起动电源,50.发电阶段电流流经的主功率馈线、51.起动阶段电流流经的主功率馈线、40.发电控制接触器,41.为起动控制接触器,43.第一单刀双掷开关,44.第二单刀双掷开关、60.主功率馈线,70为单刀双掷开关控制器。
具体实施方式
下面结合附图对本发明的技术方案做进一步说明。
如图3-图4所示,本发明一种减少飞机直流起动发电的主功率馈线的供电系统,所述系统包括起动控制器、三相桥式整流器、直流负载以及三相交流起动发电机,该系统在起 动控制器一端设置第一单刀双掷开关和起动控制接触器,在三相交流起动发电机一端设置第二单刀双掷开关,所述第一单刀双掷开关和起动控制接触器通过3根主功率馈线与第二单刀双掷开关和三相交流起动发电机连接,通过控制第一单刀双掷开关、控制接触器和第二单刀双掷开关的实现主功率馈线在起动和发电阶段的复用,减少主功率馈线的数量。
该系统额具体结构为,所述起动控制器一端与直流起动电源连接,另一端分别与所述第一单刀双掷开关的第2触点和所述起动控制接触器的一端连接,所述直流负载与所述第一单刀双掷开关的第1触点连接,其中2根所述主功率馈线一端与所述第一单刀双掷开关的一端连接,另一端与所述第二单刀双掷开关的一端连接,另一根所述主功率馈线的一端所述起动控制接触器的另一端连接,另一端与所述三相交流起动发电机连接,所述三相交流起动发电机与所述第二单刀双掷开关的第2触点连接,所述三相桥式整流器与所述第二单刀双掷开关的第1触点连接,所述三相桥式整流器与所述三相交流起动发电机连接。
一种上述减少飞机直流起动发电的主功率馈线的供电系统的控制方法,该方法具体包括以下步骤:
在起动时,起动控制器将直流起动电源输入的直流电能逆变为三相交流电能,通过切换第一单刀双掷开关和第一单刀双掷开关,同时闭合起动控制接触器,使三相交流发电机产生扭矩驱动发动机转动至起动转速;
在发电时,三相交流发电机发出三相交流电,切换第一单刀双掷开关和第二单刀双掷开关,同时断开起动控制接触器,使三相交流电通过三相整流桥式电路整流为直流电能,通过主功率馈线输送给直流负载端。
所述在起动时,将直流起动电源输出的直流电能输送至起动控制器机壳内的起动控制器,所述起动控制器将直流电能逆变为三相交流电能,将第一单刀双掷开关的触点拨至2位置,将第二单刀双掷开关的触点拨至2位置,同时闭合起动控制接触器,使得起动控制器输出的三相交流电通过三根主功率馈线进入在三相交流起动发电机机壳内的三相交流起动发电机,三相交流发电机产生扭矩驱动发动机转动至起动转速;
在发电时,三相交流发电机发出三相交流电能,分别将第一单刀双掷开关的触点拨至1位置,将第二单刀双掷开关的触点拨至1位置,同时断开起动控制接触器,控制三相交流电能输入至在三相交流起动发电机机壳内的三相整流桥式电路中,三相整流桥式电路将三相交流电整流为直流电能,并通过两根主功率馈线进入直流负载端。
如图5-图6所示,该系统还包括单刀双掷开关控制器和电流传感器,所述电流传感器设置在所述主功率馈线上,并与所述单刀双掷开关控制器连接,所述单刀双掷开关控制器 分别与第一单刀双掷开关、起动控制接触器和第二单刀双掷开关控制连接。
所述单刀双掷开关控制器控包括AC/DC模块、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、电阻R19、电阻R20、电阻R21、电阻R22、二极管D1、二极管D2、二极管D3、二极管D4、二极管D5、二极管D6、二极管D7、二极管D8、二极管D9、电容C1、电容C2、运算放大器V1、运算放大器V2、运算放大器V3和信号控制器;
其中,所述电阻R4和二极管D1的一端均接收A相电压信号,所述R4另一端与D4的一端连接,所述D1的另一端与所述电阻R1的一端连接;所述电阻R5和二极管D2的一端均接收B相电压信号,所述电阻R5的另一端与二极管D5的一端连接,所述二极管D2的另一端与所述电阻R2的一端连接;所述R6和D3的一端均接收C相电压信号,所述电阻R6的另一端与二极管D6的一端连接,所述D3的另一端与所述电阻R2的一端连接,所述二极管D4、二极管D5和二极管D6的另一端均与运算放大器V1的负输入相连,所述电阻R1、电阻R2和电阻R3的另一端均与所述电阻R12的一端连接,所述电容C1和电阻R7的一端均与所述电阻R12的一端连接,所述电容C1和电阻R7的另一端均接地,所述电阻R12的另一端与所述电阻R13的一端连接,所述电阻R13的另一端与所述运算放大器V2的正输入相连,所述电阻R19的一端与所述运算放大器V2的正输入相连,另一端与地相连;
所述电阻R14的与所述R13的一端连接,所述电阻R14的另一端分别与所述运算放大器V1输出和所述电阻R16的一端连接,所述电阻R16的另一端分别与所述运算放大器V1的正输入和电阻R17的一端连接,所述电阻R17的另一端接地;
所述电阻R7和D7一端接收A相电流信号,所述电阻R7的另一端接地,所述电阻R8和二极管D8一端接收A相电流信号,所述电阻R8的另一端接地,所述电阻R9和二极管D9一端接收A相电流信号,所述电阻R9的另一端接地,所述二极管D7、二极管D8和二极管D9的另一端均与所述电阻R11的一端连接,所述电阻R11的另一端与所述电阻R20的一端连接,所述电阻R20的另一端与所述运算放大器V3的负输入相连,所述电容C2和电阻R18的一端均与所述运算放大器V3的负输入相连,所述电容C2和电阻R18的另一端分别接地;
所述运算放大器V3的输出与所述电阻R21一端连接,所述R21的另一端与所述运算放大器V2的负输入连接,所述运算放大器V2的输出与所述电阻R22的一端连接,所述电阻R22另一端与所述信号控制器连接。
一种采用上述供电系统的供电自动控制方法,具体包括以下步骤,所述单刀双掷开关控制器通过线缆直连方式得到主功率馈线上的三相电压V0,通过设置在主功率馈线上的电流传感器得到主功率馈线上的三相电流值I,通过所述单刀双掷开关控制器内部AC/DC模块得到A相回路的基准电压值V1;通过比较电路与三相电压V0进行比较,根据比较满足的条件实现第一单刀双掷开关和第二单刀双掷开关的自动投切。
所述比较需要满足的条件:
当主功率馈线上的电压值V0小于发电允许值时,保持第一单刀双掷开关处于1位;
当主功率馈线的电压值大于发电允许值(所述发电允许值为可以使三相交流发电机产生扭矩驱动发动机转动至起动转速的电压值)时,切换第一单刀双掷开关处于2位。
以上对本发明的一个实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (9)

  1. 一种减少飞机直流起动发电的主功率馈线的供电系统,所述系统包括起动控制器、三相桥式整流器、直流负载以及三相交流起动发电机,其特征在于,该系统在起动控制器一端设置第一单刀双掷开关和起动控制接触器,在三相交流起动发电机一端设置第二单刀双掷开关,所述第一单刀双掷开关和起动控制接触器通过3根主功率馈线与第二单刀双掷开关和三相交流起动发电机连接,通过控制第一单刀双掷开关、控制接触器和第二单刀双掷开关的实现主功率馈线在起动和发电阶段的复用,减少主功率馈线的数量。
  2. 根据权利要求1所述的供电系统,其特征在于,所述起动控制器一端与直流起动电源连接,另一端分别与所述第一单刀双掷开关的第2触点和所述起动控制接触器的一端连接,所述直流负载与所述第一单刀双掷开关的第1触点连接,其中2根所述主功率馈线一端与所述第一单刀双掷开关的一端连接,另一端与所述第二单刀双掷开关的一端连接,另一根所述主功率馈线的一端所述起动控制接触器的另一端连接,另一端与所述三相交流起动发电机连接,所述三相交流起动发电机与所述第二单刀双掷开关的第2触点连接,所述三相桥式整流器与所述第二单刀双掷开关的第1触点连接,所述三相桥式整流器与所述三相交流起动发电机连接。
  3. 根据权利要求2所述的供电系统,其特征在于,该系统还包括单刀双掷开关控制器和电流传感器,所述电流传感器设置在所述主功率馈线上,并与所述单刀双掷开关控制器连接,所述单刀双掷开关控制器分别与第一单刀双掷开关、起动控制接触器和第二单刀双掷开关控制连接。
  4. 根据权利要求3所述的供电系统,其特征在于,所述单刀双掷开关控制器包括AC/DC模块、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、电阻R19、电阻R20、电阻R21、电阻R22、二极管D1、二极管D2、二极管D3、二极管D4、二极管D5、二极管D6、二极管D7、二极管D8、二极管D9、电容C1、电容C2、运算放大器V1、运算放大器V2、运算放大器V3和信号控制器;
    其中,所述电阻R4和二极管D1的一端均接收A相电压信号,所述R4另一端与二极管D4的一端连接,所述二极管D1的另一端与所述电阻R1的一端连接;所述电阻R5和二极管D2的一端均接收B相电压信号,所述电阻R5的另一端与二极管D5的一端连接,所述二极管D2的另一端与所述电阻R2的一端连接;所述R6和D3的一端均接收C相电压信号,所述电阻R6的另一端与二极管D6的一端连接,所述D3的另一端与所述电阻R2的一端连接,所述二极管D4、二极管D5和二极管D6的另一端均与运算放大器V1的负输入相连, 所述电阻R1、电阻R2和电阻R3的另一端均与所述电阻R12的一端连接,所述电容C1和电阻R7的一端均与所述电阻R12的一端连接,所述电容C1和电阻R7的另一端均接地,所述电阻R12的另一端与所述电阻R13的一端连接,所述电阻R13的另一端与所述运算放大器V2的正输入相连,所述电阻R19的一端与所述运算放大器V2的正输入相连,另一端与地相连;
    所述电阻R14的与所述电阻R13的一端连接,所述电阻R14的另一端分别与所述运算放大器V1输出和所述电阻R16的一端连接,所述电阻R16的另一端分别与所述运算放大器V1的正输入和电阻R17的一端连接,所述电阻R17的另一端接地;
    所述电阻R7和D7一端接收A相电流信号,所述电阻R7的另一端接地,所述电阻R8和二极管D8一端接收A相电流信号,所述电阻R8的另一端接地,所述电阻R9和二极管D9一端接收A相电流信号,所述电阻R9的另一端接地,所述二极管D7、二极管D8和二极管D9的另一端均与所述电阻R11的一端连接,所述电阻R11的另一端与所述电阻R20的一端连接,所述电阻R20的另一端与所述运算放大器V3的负输入相连,所述电容C2和电阻R18的一端均与所述运算放大器V3的负输入相连,所述电容C2和电阻R18的另一端分别接地;
    所述运算放大器V3的输出与所述电阻R21一端连接,所述R21的另一端与所述运算放大器V2的负输入连接,所述运算放大器V2的输出与所述电阻R22的一端连接,所述电阻R22另一端与所述信号控制器连接。
  5. 一种根据权利要求1或2任一项所述的减少飞机直流起动发电的主功率馈线的系统的供电控制方法,其特征在于,该方法具体包括以下步骤:
    在起动时,起动控制器将直流起动电源输入的直流电能逆变为三相交流电能,通过切换第一单刀双掷开关和第一单刀双掷开关,同时闭合起动控制接触器,使三相交流发电机产生扭矩驱动发动机转动至起动转速;
    在发电时,三相交流发电机发出三相交流电,切换第一单刀双掷开关和第二单刀双掷开关,同时断开起动控制接触器,使三相交流电通过三相整流桥式电路整流为直流电能,通过主功率馈线输送给直流负载端。
  6. 根据权利要求5所述的供电控制方法,其特征在于,所述在起动时,将直流起动电源输出的直流电能输送至起动控制器机壳内的起动控制器,所述起动控制器将直流电能逆变为三相交流电能,将第一单刀双掷开关的触点拨至2位置,将第二单刀双掷开关的触点拨至2位置,同时闭合起动控制接触器,使得起动控制器输出的三相交流电通过三根主功率馈线进入 在三相交流起动发电机机壳内的三相交流起动发电机,三相交流发电机产生扭矩驱动发动机转动至起动转速。
  7. 根据权利要求5所述的供电控制方法,其特征在于,在发电时,三相交流发电机发出三相交流电能,分别将第一单刀双掷开关的触点拨至1位置,将第二单刀双掷开关的触点拨至1位置,同时断开起动控制接触器,控制三相交流电能输入至在三相交流起动发电机机壳内的三相整流桥式电路中,三相整流桥式电路将三相交流电整流为直流电能,并通过两根主功率馈线进入直流负载端。
  8. 一种采用如权利要求3所述的供电系统的供电自动控制方法,其特征在于,具体包括以下步骤,所述单刀双掷开关控制器通过线缆直连方式得到主功率馈线上的三相电压V0,通过设置在主功率馈线上的电流传感器得到主功率馈线上的三相电流值I,通过所述单刀双掷开关控制器内部AC/DC模块得到A相回路的基准电压值V1;通过比较电路与三相电压V0进行比较,根据比较满足的条件实现第一单刀双掷开关和第二单刀双掷开关的自动投切。
  9. 根据权利要求8所述的供电控制方法,其特征在于,所述比较需要满足的条件:
    当主功率馈线上的电压值V0小于发电允许值时,保持第一单刀双掷开关处于1位;
    当主功率馈线的电压值V0大于发电允许值时,切换第一单刀双掷开关处于2位。
PCT/CN2017/114789 2017-12-01 2017-12-06 减少飞机直流起动发电的主功率馈线供电系统及方法 WO2019104749A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711250016.8 2017-12-01
CN201711250016.8A CN108054977B (zh) 2017-12-01 2017-12-01 减少飞机直流起动发电的主功率馈线供电系统及方法

Publications (1)

Publication Number Publication Date
WO2019104749A1 true WO2019104749A1 (zh) 2019-06-06

Family

ID=62121841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114789 WO2019104749A1 (zh) 2017-12-01 2017-12-06 减少飞机直流起动发电的主功率馈线供电系统及方法

Country Status (2)

Country Link
CN (1) CN108054977B (zh)
WO (1) WO2019104749A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113708679B (zh) * 2021-08-24 2023-05-09 中国商用飞机有限责任公司 一种飞机起动发电系统线缆分时复用电路及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761370B2 (ja) * 2006-03-20 2011-08-31 本田技研工業株式会社 自動二輪車用電動発電機の制御装置
CN102545754A (zh) * 2012-02-29 2012-07-04 南京航空航天大学 一种绕组开路式永磁双凸极起动发电系统
CN103684127A (zh) * 2013-11-28 2014-03-26 南京航空航天大学 一种复合式无刷直流起动发电机系统及其控制方法
CN104767466A (zh) * 2015-04-21 2015-07-08 山东理工大学 一种绕组自动切换的起动发电系统
CN104935143A (zh) * 2015-03-18 2015-09-23 中国科学院电工研究所 一种起动发电装置
WO2016143032A1 (ja) * 2015-03-09 2016-09-15 新電元工業株式会社 始動発電装置、及び始動発電方法
CN107276482A (zh) * 2017-07-17 2017-10-20 南京航空航天大学 一种起动/发电系统的起动/发电软切换方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003304A (en) * 1997-05-29 1999-12-21 Stmicroelectronics, Inc. Generator power electrically heated catalyst system
EP2362078B1 (en) * 2006-11-15 2016-03-23 Mitsubishi Electric Corporation Automotive Hybrid Engine Assist System
CN203278379U (zh) * 2013-05-27 2013-11-06 宋立明 应急发电车辆启动系统
CN204538971U (zh) * 2015-01-15 2015-08-05 山东艾诺仪器有限公司 一种具有直流输出功能的电网模拟电源
CN104539023B (zh) * 2015-01-19 2017-01-18 东北电力大学 基于网电互补的风力发电供电系统
CN106915316B (zh) * 2017-02-27 2019-05-03 东风汽车公司 用于怠速启停车辆的电源系统及电源控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761370B2 (ja) * 2006-03-20 2011-08-31 本田技研工業株式会社 自動二輪車用電動発電機の制御装置
CN102545754A (zh) * 2012-02-29 2012-07-04 南京航空航天大学 一种绕组开路式永磁双凸极起动发电系统
CN103684127A (zh) * 2013-11-28 2014-03-26 南京航空航天大学 一种复合式无刷直流起动发电机系统及其控制方法
WO2016143032A1 (ja) * 2015-03-09 2016-09-15 新電元工業株式会社 始動発電装置、及び始動発電方法
CN104935143A (zh) * 2015-03-18 2015-09-23 中国科学院电工研究所 一种起动发电装置
CN104767466A (zh) * 2015-04-21 2015-07-08 山东理工大学 一种绕组自动切换的起动发电系统
CN107276482A (zh) * 2017-07-17 2017-10-20 南京航空航天大学 一种起动/发电系统的起动/发电软切换方法

Also Published As

Publication number Publication date
CN108054977B (zh) 2020-06-02
CN108054977A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
KR101628592B1 (ko) 전기차의 추진 제어 장치 및 그 제어 방법
CN106208071B (zh) 混合式ac及dc分配系统和使用方法
CN103684127B (zh) 一种复合式无刷直流起动发电机系统及其控制方法
KR20120063003A (ko) 전류를 제한하여 전력을 공급하는 배터리 충전용 협력 및 출력 시스템
CN104993580B (zh) 油电混合直流供电装置
US20160359361A1 (en) Uninterruptible power supply and method of use
CN112005460A (zh) 供电设备
CA2621700A1 (en) Cogeneration system
CN112532128A (zh) 一种航空大功率复合无刷起动发电系统及其控制方法
US9637007B2 (en) Supplying electric traction motors of a rail vehicle with electrical energy using a plurality of internal combustion engines
US20160181909A1 (en) Electric unit for a pump-storage power plant
JP2016096714A (ja) 発電プラント
RU2623347C2 (ru) Электрическое устройство
WO2019104749A1 (zh) 减少飞机直流起动发电的主功率馈线供电系统及方法
KR20120100228A (ko) 풍력발전 시스템의 초기 구동을 위한 양방향 컨버터, 그를 포함한 초기 구동 장치 및 방법
RU119322U1 (ru) Судовая валогенераторная установка
KR20140001853A (ko) 약 그리드에 있는 모터를 시동시키기 위한 방법 및 장치
RU2493047C1 (ru) Судовая валогенераторная установка
JPWO2015145748A1 (ja) クレーン装置、クレーン装置用の電力供給ユニットおよびクレーン装置の改造方法
KR100429914B1 (ko) 플라이휠을 이용한 비상발전시스템
CN116365694B (zh) 一种基于双定子绕组电机的柴油发电车
CN111386654A (zh) 风力发电系统及电力转换装置
CN216929914U (zh) 一种交流驱动器保护系统
US11569768B2 (en) Generator control system and method of controlling the same
RU2544029C2 (ru) Судовая электроэнергетическая установка

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17933770

Country of ref document: EP

Kind code of ref document: A1