WO2019104449A1 - Composition for intratumoral injection comprising a dna vector encapsulated in chitosan nanoparticles and use thereof in cancer treatment - Google Patents

Composition for intratumoral injection comprising a dna vector encapsulated in chitosan nanoparticles and use thereof in cancer treatment Download PDF

Info

Publication number
WO2019104449A1
WO2019104449A1 PCT/CL2018/050115 CL2018050115W WO2019104449A1 WO 2019104449 A1 WO2019104449 A1 WO 2019104449A1 CL 2018050115 W CL2018050115 W CL 2018050115W WO 2019104449 A1 WO2019104449 A1 WO 2019104449A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
cells
pharmaceutical composition
nanoparticles
cancer
Prior art date
Application number
PCT/CL2018/050115
Other languages
Spanish (es)
French (fr)
Inventor
Claudia Julieta ROBLES PLANELLS
Giselle Estefani SANCHEZ GUERRERO
Claudio Antonio ACUÑA CASTILLO
Marcelo Cortez San Martin
Silvia Beatriz MATIACEVICH
Original Assignee
Universidad De Santiago De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Santiago De Chile filed Critical Universidad De Santiago De Chile
Publication of WO2019104449A1 publication Critical patent/WO2019104449A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to the pharmaceutical area, and especially, to a pharmaceutical composition for intratumoral injection comprising nanoparticles of natural origin (chitosan) that are used as vectors for the encapsulation of protein genes that are capable of controlling tumor development , create immune response or both.
  • the pharmaceutical composition for intratumoral injection comprises nanoparticles of chitosan that encapsulates DNA from the fusion protein of Avian Reovirus (REO), which delays tumor growth and eventually leads to its elimination via generation of syncytia, and its use in the treatment of cancer by transfection in vivo.
  • REO Avian Reovirus
  • Cancer is the second leading cause of death worldwide according to the World Health Organization (WHO, World Health Organization - ENT Country Profiles, 2014. http: //VAyw.who.int/nhh/studies/en/ #C).
  • WHO World Health Organization - ENT Country Profiles, 2014. http: //VAyw.who.int/nhh/studies/en/ #C).
  • This disease is caused by a dysfunction in the cell cycle, which leads to the uncontrolled growth of transformed cells, leading to the formation of a cell mass or tumor.
  • the tumor cells eventually acquire the ability to invade and colonize the surrounding tissue, leading to even metastasis, which corresponds to secondary tumors at distant points in the body.
  • metastasis which corresponds to secondary tumors at distant points in the body.
  • the TNM system is the most widely used cancer staging system, comprising 5 main stages: stage 0 contains localized abnormal cells that have not spread to nearby tissue.
  • stage I and II the cancer affects nearby tissues
  • stage III the cancer has invaded organs close to the primary tumor affecting the lymph nodes.
  • stage IV cancer has spread to distant parts of the primary tumor invading multiple organs of the body (metastasis)
  • metalastasis National Cancer Institute / What Is Cancer? Http://www.cancer.gov/about-cancer/what -is-cancer, American Cancer Soclety, Colorectal Cancer Facts & Figures 2014-2016, Atlanta, Ga: American Cancer Soclety, 2014. http://www.cancer.org/espanol/cancer/colonyrecto/guladetallada/spanlsh-colon- detalled-toc-df).
  • a recurring problem of cancer therapy is the incomplete eradication of the tumor mass or the lack of effect when it has already occurred mlcrometástasis, which will eventually lead to recurrence of the disease. That is why, in order to develop a powerful and long-lasting tumor therapy, it is desirable to eradicate the primary tumor, together with the induction of a mechanism that allows the eradication of non-detectable metastatic foci or micrometastases.
  • chemotherapy has tried to be the mechanism to achieve this process through its antiproliferative or cytotoxic effects, it has been extensively characterized that tumor cells acquire the ability to resist the effect of drugs through tumor editing, leading to the selection of cells increasingly resistant to treatments (Hanahan D., Weinberg RA. (2011).
  • the search is now under way for strategies that allow the specific recognition of these cancer foci not only by drugs but also by the body's own cells.
  • the search for therapies has focused on stimulating the Individual's immune response to allow the body itself to respond to the disease, which is currently known as immunotherapy. It seeks to stimulate the Individual's own immune system to allow an effector response against highly specific and specific tumor cells (Farkona, Sof ⁇ a y cois, Cancer, mmunotherapy: the begining of the end of cancer, BMC Medicine, 2016, Vol .14, No. 73. DOI: 10.1186 / s12916-016-0623-5).
  • the process of induction of the immunological response as an antitumor strategy takes advantage of the characteristics of this response, such as immunological memory and the ability to migrate and homing to find the antigens, both in order to prevent the spread and the recurrence of the tumor cells or finding them in places where they have settled.
  • Some strategies based on the activation or induction of the immunological response against the tumor propose vaccination as a treatment against cancer. For this, tumor antigens are required and a series of antigen carriers have been used, including used tumors, purified tumor antigens, whole tumor cells or dead tumor cells.
  • Viroterapla Another methodology that has begun to be thoroughly studied to promote its clinical use is Viroterapla, which is based on the use of modified non-pathogenic viral strains that are capable of infecting tumor cells and replicating selectively causing direct death of these It can lead to the activation of an antitumor immune response (Pol, Jonathan et al .. Trial Watch- Oncolytlc viruses and cancer therapy, Oncolmmunology, 2016, Vol. 5, No. 2. DOI: 10.1080 / 2162402X.2015.1117740; Workenhe ST and cois.The role of oncolytlc virus
  • Oncolytic virus therapies use their ability to replicate and use tumor cells by specifically taking advantage of the molecular alterations of tumors that do not prevent the replication of the virus (Russell S. et al., Oncolytlc vlrotherapy, Nature blotechnology, 2012, Vol. 30, No 7, pp. 658-670, DOI: 10.1038 / nbt.2287).
  • fusogenic viruses which are capable of killing their target cells by induction of fusion between the infected and uninfected cells.
  • fusogenic viruses which are capable of killing their target cells by induction of fusion between the infected and uninfected cells.
  • the characteristics of these can be specific to certain virus species or a result of directed genetic engineering.
  • viruses can spread in the treated patient and mutate, recovering their pathogenic potential; the malignant cells can become resistant to the vlroterapla product of its genomic instability; in addition to heterogeneous and relatively Incomplete diffusion of virus in neoplastic lesions.
  • the antiviral immune response (either innate or adaptive) is often an obstacle to the efficient application of vlroterapla in patients with cancer, mainly because it sequesters or neutralizes viral particles before they reach the tumor (Pol Jonathan, Buqué Aitziber, Aranda Fernando, Bloy Norma, Cremer Isabelle, Eggermont Alexande, Erbs Phlllppe, Fuclkova Jltka, Galón Jéróme, Llraum Jean-Marc, Prevllle Xavier, Sautés-Frldman Catherlne, Splsek Radek, Zltvogel Laurence, Kroemer Guido & Galluzzl Lorenzo, Trlal Watch- Oncolytlc vlruses and cancer therapy, Oncolmmunology, 2016, Vol. 5, No. 2. DOI: 10.1080 / 2162402X.2015.1117740).
  • This viral fusion protein (ISAV-F) is classified as a type 1 fusion protein, which is characterized by being synthesized as an inactive precursor molecule, which requires a proteolytic cut to acquire its conformation. active fusogenic, which is triggered by a conformational change induced by a decrease in pH (ISAV-F).
  • FAST non-structural fusion-associated membrane protein
  • syncytia proteins are capable of generating the virus-cell fusion process (necessary for the entry of a virus enveloped into the target cell) or cell-cell fusion, which leads to the formation of cellular agglomerates that are biologically, structurally and biochemically highly unstable, known as syncytia.
  • the cell death mediated by syncytia occurs through non-apoptotic mechanisms, through a process of recruitment, fusion and disintegration.
  • FMGs viral fusogencal membrane glycoproteins
  • fusion proteins would be highly immunogenic by itself, and its ability to generate syncytia and cell death would generate a strategy to combat tumor development. However, for this to occur, the tumor cells must express these fusion proteins, so they must be transfected in situ or in vitro with the genes that code for these fusion proteins.
  • genes coding for viral proteins as gene therapy demonstrated that the expression of these proteins alone results in a significant increase in the control of tumor growth (Bateman, Andrew R. et al., Viral fusogenlc membrane glycoproteins klll solid tumor cells by nonapoptotic mechanlsms that promote cross presentation of tumor antigens by dendritic cells, Cancer Research, 2002, Vol 62, No. 22, pp. 6566-78, http://cancerres.aacrlournals.org/content/62/22/6566.long) .
  • electroporation which consists of small electrical pulses to induce the formation of pores, is an effective method, but unfortunately generates cell destruction due to the heat produced by the application of high voltage.
  • Other types of transfection use viruses as vectors for the introduction of a gene of interest, but are limited by the pathogenicity of the virus and its high genetic instability (Peer, D., Karp, JM, Hong, S., Farokhzad, OC, Margallt , R., Langer, R. Nanocarriers as an emerging platform for cancer therapy, Nature Nanotechnology, 2007, Vol.2, 751-760, DOI: 10.1038 / nnano.2007.387).
  • Nanotechnology is used as a transfection method. Nanotechnology is tradclclonally defined as submicron-sized molecular devices or nanoparticles that are predominantly found between 5 to 500 nm in at least one dimension.
  • Polymeric nanoparticles are capable of protecting nucleic acids from endonucleases, in addition to condensing the negative phosphate of nucleic acids with cationic polymers in polypeptides. After escaping from the vascular space in the tumors, the particle must traverse the interstitial space towards the target cell. Therefore, the effectiveness of nanoparticles depends on a variety of physicochemical bio-characteristics of the particle and the cell surface, so that the uptake of the vector in the cells depends both on the opportunity for interaction and on the dynamics of the particles (Khodabandehloo H., Zahednasab H, Ashrafi hafez A. Nanocarriers Usage for Drug Delivery in Cancer Therapy, Iranlan Journal of Cancer Prevention, 2016, Vol. 9, No. 2, pp. 65-91. DOI: 10.17795 / ijcp- 3966).
  • Chitosan is the most important derivative of chitin obtained from crustaceans, shrimps and crabs, it can be solubilized in acid medium (pH ⁇ 6.5) due to the protonation of its NH- 2 group .
  • This polymer is inexpensive, has a strong affinity for DNA by charge interaction, and has a low toxicity (Sun, Y.
  • TM Llpofectamlna
  • the preferred polymers are non-viral colloidal systems as they are susceptible to chemical modification.
  • Chitosan is chosen for chemical conjugation with the amino acid ornithine to generate the chitosan-ornithine (CON) conjugate to release the gene.
  • FTIR and 1 H NMR spectrum were used to confirm the chemical composition of the chitosan derivative. An improved cushioning capacity was found in the synthetic chitosan derivatives when compared to the original unmodified chitosan.
  • the cationic derivative formed nanoparticles when mixed with negatively charged DNA.
  • the derivative in interaction with blood plasma showed a negligible adsorption of protein and did not cause hemolysis or RBC aggregation in the blood.
  • the CON derivative was not toxic to the cells and was capable of transfecting with an explicit increase in the cellular uptake of nanoparticles.
  • clatrin mediates the route and plays a dynamic role in the internalization of nanoparticles.
  • the preparations were stable up to 3 months at 4 S C and showed reproducible transfection efficiencies in vitro in HEK293 cells.
  • a methodology was developed that increased the efficiency of in vitro transfection of complexes of Chitosan / 150% pDNA.
  • the intracellular pDNA release and the transfected cells reached maximum 5 days after the transfixion of active cells mltotically, thus improving the potential of gene therapy mediated by polymeric nanoparticles.
  • Two methods are used to obtain the nanoparticles of nucleic acid-qultosan: Simple complexation (of depollution of qultosan or of different salts of qultosan with plasmid) and ionic gelaclon (by adsorption of plasmid in the nanoparticles or by encapsulation of the plasmid in the nanoparticles) .
  • Simple complexation of depollution of qultosan or of different salts of qultosan with plasmid
  • ionic gelaclon by adsorption of plasmid in the nanoparticles or by encapsulation of the plasmid in the nanoparticles
  • the polyplexes were found to be spherical and of manometric size (between 100-230 nm) with a zeta potential between 37 and 48 mV. Positive results were obtained in the agarose gel electrophoresis in all the studied cases: a concentration between 20 and 30 mg / mL of qultosan salts was required while for the remaining samples of qultosan studied, 100% efficiency did not occur. Load up to a concentration equal to 100 mg / mL (regardless of previous depollution and the method performed).
  • CS NPs can serve as an effective non-viral vehicle for the release of eukaryotic cells.
  • cancer is one of the diseases with the highest incidence and mortality rates worldwide.
  • a type of therapy has emerged that takes advantage of the pathogenic activity of viruses in eukaryotic cells, using lytic and fusogenic viruses, called vlroterapla.
  • the fusogenic viruses are able to carry out cell-cell fusion by fused membrane glycoproteins (FMGs), producing highly unstable tumors of tumor cells, which leads to their cell death. This only occurs in cells that express FMG and, therefore, the incorporation of the gene has been used as anti-tumor therapy.
  • FMGs fused membrane glycoproteins
  • the transfection is carried out using catholic lines which, although efficient, are highly toxic, and their use in vivo is not feasible.
  • the present invention relates to a pharmaceutical composition for intratumoral injection comprising nanoparticles of a blocompatible, bloodegradable, non-immunogenic and non-toxic polymer, of natural origin, which can be used as vectors for the encapsulation of genes whose proteins are capable of control tumor development, create an immune response against the tumor or both, by direct injection into the tumor.
  • the present invention is relates to an intratumoral injection composition comprising nanoparticles for encapsulating the gene (DNA, SEQ ID No.:1) of the Avian Reovirus fusion protein (REO, SEQ ID No.:2), inserted into an expression vector ( plRES2), which allows the expression of the gene, in mammalian cells.
  • Chitosan protects DNA from degradation and facilitates the entry of this into tumor cells, thus allowing them to express the fusion protein, which produces the formation of large multinucleated cells, by the fusion of tumor cells between yes.
  • These multinucleated cells are highly unstable, and have a short life (120 h), which makes them more sensitive to any treatment.
  • the present invention consists of a pharmaceutical composition for Intratumoral Injection useful in the treatment of cancer, which is of direct administration.
  • the present pharmaceutical composition for Intratumoral Injection allows the treatment of detected tumors that are in the early stages of development.
  • the present composition comprises nanoparticles of a cathlonic polymer selected from chitosan, which is blocompatible, bloodegradable, non-immunogenic and non-toxic. This polymer encapsulates the gene (DNA) of proteins that are able to control tumor development, create an immune response against this or both, by direct injection of the tumor.
  • this polymer encapsulates the gene (SEQ ID No.:1) of the Avian Reovirus fusion protein (REO, SEQ ID No.:2), inserted into an expression vector (plRES2), which allows expression of the gene in mammalian cells.
  • Chitosan protects DNA from degradation and facilitates the entry of DNA, so that after Intratumoral Injection, it is captured by the cells tumors, thus allowing them to express the mentioned fusion protein, which will produce the formation of large multinucleated cells, by the fusion of the tumor cells with each other.
  • Pre-clinical trials were conducted in immunocompetent animals, using the strain of C57 mice to which Murine B16 Melanoma Indujo was induced, and with animals of the Balb / ca strain, which induced CT26 murine colon carcinoma.
  • the tumor volume reached a volume of 2 mm 3
  • the mouse was treated with an nanoparticle injection composition QuItosano / pDNA-REO, in an intratumoral manner and the animals were monitored daily, until they had completed 60 days off of tumor or otherwise a tumor volume of 260 mm 3 . Where it was observed that the treatment with nanoparticles was able to cause a delay in the tumor growth and / or a regression of the tumor.
  • the present invention proposes a pharmaceutical composition comprising nanoparticles (NPs) of qultosan (CH) for transfection in vivo, achieving high efficiency and low toxicity.
  • the present invention proposes in particular, to prepare NPs of CH-pDNA and once characterized, subsequently, generate NPs containing separately, the gene of the FMGs of two different viruses, REO and ISAV, which were transfected in the CT26 colon carcinoma tumor model.
  • the effect of the expression of FMG genes on tumor development was evaluated and it is demonstrated that CH-FMG NPs allow an efficient incorporation and expression of pDNA by tumor cells, both in vitro and in vivo, showing partial effects on the control of tumor development, and therefore, an alternative for treatment or therapy against cancer.
  • Figures 1 A-1 C Characterization of the chitosan / pDNA complex.
  • Figures 2A-2D Distribution of the zeta potential. Chitosan / pDNA nanoparticles prepared at different N / P ratios.
  • Figure 2A, ratio N / P 4.
  • Figure 2B, ratio N / P 20.
  • Figures 5A-5C Chitosan transfection efficiency.
  • Figure 5A Representative histograms of cells expressing GFP, in black the control is observed (cells without transfecting) and in red the corresponding treatment.
  • Figure 5B Percentage of CT26 cells transfected with pcDNA-GFP using chitosan with different N / P ratios. Three repetitions of each condition were performed, where * indicates the significant differences (p ⁇ 0.05) with respect to the control.
  • Figure 6 Analysis of gel migration delay.
  • NPs formed by chitosan with the pIRES plasmids containing the genes (SEQ ID No.: 1) for the fusion proteins (SEQ ID No.:2) with an N / P ratio 28, using as controls the plasmids without chitosan.
  • the + sign means that there is DNA encapsulation.
  • Figures 7A and 7B Determination of gene expression of viral fusion proteins in CT26 cells. Determination by means of RT-PCR.
  • Figure 7A REO amplex of 201 bp and Figure 7B ISAV amplex of 304 bp.
  • the molecular weight standard O ' gene ruler 100pb is observed, in the second the control of PCR without cDNA, the other conditions correspond to the cells without transfecting (negative transfection control), cells transfected with llpofectamlna (positive control of transfection) and cells transfected with chitosan.
  • Figures 8A and 8B Cell viability CT26 cells transfected with chitosan nanoparticles and genes coding for viral fusion proteins
  • Figure 8A REO SEQ ID No.2
  • Figure 8B ISAV, at 24, 48 and 72 hours post transfection Incubating with the MTT reagent. The viability of the control cells (untreated) was determined arbitrarily as 100%.
  • Figure 9. Tumor appearance using the CT26 tumor line in Balb / c mice.
  • the data is represented in a Kaplan Meier survival graph. This graph shows a curve for each type of treatment and each drop indicates the tumor appearance of a mouse for the corresponding treatment.
  • FIGS 10A and 10B Effect of in vivo transfection with nanoparticles on tumor growth.
  • FIG. 1 Animals with necrosis. Graph of tumor growth of mice that presented necrosis in the post-treatment tumor.
  • Figures 12A and 12B CD4 + and CD8 + lymphocyte populations present in spleen.
  • Figure 12A Representative histograms of each marking where in black corresponds to autofluorescence of the splenoclines and in red to the evaluated condition.
  • Figures 12B Variation of percentage of CD8 + and CD4 + lymphocytes in spleen. Each bar represents a treatment maintaining the slmbology of previous figures. The data are plotted as mean ⁇ standard error, * represents p ⁇ 0.05, compared with the control.
  • Figures 13A and 13B Effect of treatment with nanoparticles on Th1 lymphocytes in spleen.
  • Figure 13A Representative histograms of the CD4 + TBET + populations for each labeling treatment where black corresponds to autofluorescence of splenoclines and red to the evaluated condition.
  • Figure 13B shows the percentage of the sub-population of Th1 lymphocytes present in spleen. The data are plotted as mean ⁇ standard error, * represents p ⁇ 0.05, compared with the control.
  • Figures 14A and 14B Effect of nanoparticle treatment on Th17 lymphocytes in spleen.
  • Figure 14A Representative histograms of CD4 + RORY + populations for each labeling treatment where black corresponds to autofluorescence of splenocytes and red to the evaluated condition.
  • Figure 14B shows the percentage of the sub-population of Th17 lymphocytes present in spleen. The data are plotted as mean ⁇ standard error, * represents p ⁇ 0.05, compared against the control.
  • Figures 15A and 15B Effect of treatment with nanoparticles on Treg lymphocytes in spleen.
  • Figure 15A Representative histograms of CD4 + CD25 + FOXP3 populations.
  • Figure 15B shows the percentage of the sub population of Treg lymphocytes present in spleen. The data are plotted as mean ⁇ standard error, * represents p ⁇ 0.05, compared to the control.
  • Figures 16A and 16B CD4 + and CD8 + lymphocyte populations present in Tumor.
  • Figure 16A Representative histograms of each marking where the black color corresponds to autofluorescence and in red to the evaluated condition.
  • Figure 16B Variation of percentage of CD8 + and CD4 + lymphocytes in tumor, each bar represents a treatment maintaining the symbology of previous figures. The data are plotted as mean ⁇ standard error, * represents ap ⁇ 0.05, compared with the control.
  • the present invention relates to a pharmaceutical composition for intratumoral injection comprising nanoparticles of a biocompatible, biodegradable, non-immunogenic and non-toxic polymer to encapsulate the gene of proteins that are capable of controlling tumor development, create immune response against this or both .
  • the present invention relates to a pharmaceutical composition for intratumoral injection comprising chitosan nanoparticles that encapsulate a gene (SEQ ID No.:1) of the fusion protein of Avian Reovlrus. (REO, SEQ ID No.:2), inserted into an expression vector (plRES2), which allows the expression of the gene, in mammalian cells.
  • the qultosano protects the DNA of the degradation and facilitates the entrance of this one in the tumor cells, allowing in this way that they express the protein of fusion, which produces the formation of multnucleated cells of great size, by the fusion of the tumor cells between yes.
  • These multinucleated cells are highly unstable, and have a short life (120 h), which makes them more sensitive to any treatment.
  • the present invention relates to a pharmaceutical composition for intratumoral injection comprising viral fusion proteins expressed on the surface of mammalian cells, which are capable of inducing cell fusion.
  • the present invention shows that the hRSV fusion protein in Hek cells (ccHek-hRSV) increases the cross-presentation of antigens.
  • the present invention also relates to a pharmaceutical composition for intratumoral injection comprising nanoparticles - which have emerged in recent years as a method of high efficiency and low toxicity, as a treatment against cancer (Peer, D. et al., Nanocarriers as An emerging platform for cancer therapy, Nature Nanotechnology, 2007, Vol.2, 751-760 DOI:
  • the present invention relates to an intratumoral pharmaceutical composition comprising nanoparticles of qultosan (CH) / pDNA for the transfection of genes from the fusion proteins of Reo, which was tested in vitro in the tumor cell line CT26.
  • the present invention also relates to a pharmaceutical composition for direct administration on the tumor mass, comprising nanoparticles composed of chitosan and the gene (SEQ ID No .: 1) of the viral fusion proteins (SEQ ID No. 2), and the antitumor and lymphocyte population response, which was tested in a CT26 tumor model.
  • the present invention relates to a pharmaceutical composition of intratumoral injection that allows the expression of viral fusion proteins by transfection with nanoparticles of chitosan and promotes an anti-tumor immunity, which was demonstrated in a murine colon cancer model CT26.
  • chitosan NPs were prepared and characterized, and their efficiency for transfection was evaluated in the CT26 cell line.
  • the effect of the expression of viral fusion proteins in vitro on the CT26 tumor cell line transfected with chitosan NPs was evaluated.
  • the effect of the expression of the viral fusion proteins in vivo, on the tumor development and the lymphocyte population, in the spleen and tumor of mice was evaluated.
  • plasmid pCDNA3.1 -eGFP (Addgene) containing the gene coding for the green fluorescent protein was used, this was amplified in E. coli DH5-a bacteria and purified using the Favor Prep Plasmid DNA extractlon midl Kit, according to the manufacturer's recommendations, collect bacteria and proceed to the used of these, to then purify the plasmid by means of an elution column.
  • the purified plasmid was dissolved in molecular grade deionized water and its concentration was determined by spectroscopy, measuring the absorbance at 260 nm using the Tecan Infinite M200PRO equipment.
  • Low molecular weight chitosan (Sigma) with a degree of deacetylation greater than 75.0% was used. This was dissolved in 1% acetic acid by slightly heating the solution and adjusting the pH to 5.5 with sodium hydroxide. Subsequently, the chitosan solutions were filtered sterile with a syringe filter of 0.2 um.
  • the chitosan solutions were diluted with deionized water to achieve the desired ratio of quatose amine to DNA / phosphate ("N / P" ratio), then 100 ml of chitosan was mixed with 100 ml of pDNA.
  • the concentration of pDNA was kept constant 0.025 mg / mL.
  • the nanoparticles were prepared by the coacervation technique (Turan Suna, Aral Cenk, Kabasakal Levent, Keyer-Uysal Meral and Akbuga Wennlide) Co-encapsulation of two plasmlds n chltosan mlcropheres as a non-viral gene delivery vehicle J Pharm Pharmaceut Sci.
  • the initial formation of the complexes was evaluated by determining the delay in agarose gels.
  • the samples with the different nanoparticles were loaded on a 1% agarose gel with TAE 1 X buffer, run on the gel at 120 V for 30 minutes, the gel was stained with Gel Red (Blotium) and visualized under light UV After the formation, a sample of the solution was centrifuged at 13000g per 10 mln and the supernatant was collected to determine the amount of non-complexed pDNA using a spectrophotometer.
  • the loading efficiency was calculated according to the following equation (Sun, 2011, Turan Suna et al, Co-encapsulatlon of two plasmlds chltosan mlcropheres as a non-viral gene dellvery vehlcle, J Pharm Pharmaceut Sel. 2003, Vol. 6, .. No. 1, pp 27-32 bttps: // sites jaiber ⁇ a ca / ⁇ CSPs / JPPS6; 1 j / STuran / encapsulation.htm)..:
  • Load efficiency (%) [(total amount of pDNA) - (non-trapped pDNA / total quantity pDNA) x 100.
  • the zeta potential is indicative of the surface charge that the nanoparticles possess, this was determined using the Zetazalser Nano equipment (Malvern Inst. Ltd. Malvern, UK). Qultosan nanoparticles with different N / P ratios (4, 20, 28 and 40) were synthesized and the zeta potential and the size of the particles obtained were measured. For a more accurate determination of the size and morphology of the NPs, the sample underwent atomic force microscopy. The measurement was made in the Nanoscope Illa Atomlc Forcé Mlcroscope team. For this experiment, qultosan nanoparticles were prepared at an N / P ratio of 20 and 28 with 2.5 pg of pcDNA.3.1 EGFP
  • CTR Colon carcinoma cells
  • RPMI fetal bovine serum
  • FBS fetal bovine serum
  • 24-well plates Falcon
  • 5 x 10 5 cells / pocillus were incubated at 3713 with 5% C0 2 -
  • the cells were transfected 24 hours later, at 70% confluence.
  • the cells were washed with sterile PBS (1X, pH 7.4).
  • Cells with llpofectamlna 2000 and naked pDNA were transfected as control.
  • the quantification of the transfection efficiency was performed by the identification of GFP-positive cells by means of flow cltometry using the BD AccurP equipment (BD Blosclence, San Jose, California, USA). For this, the cells of the 24-well culture plate were harvested, washed with sterile 1X PBS, added 1X trypsin and collected in eppendorf tubes. Then, 500 pL of culture medium was added and centrifuged at 1200g for 10 mln. Subsequently the supernatant was removed, PBS was added and centrifuged again at 1200g for 10 minutes, the pellet was resuspended in sterile 1X PBS and analyzed by flow cltometry.
  • BD AccurP equipment BD Blosclence, San Jose, California, USA.
  • Trlzol® Reagent Gibco, Life Technologies, New York, USA
  • cell llsls to subsequently perform a phenol-chloroform extraction and precipitate the RNA with ⁇ -propanol.
  • the total extracted RNA was resuspended in molecular grade deionized water.
  • RNA (1 pg) was treated with RNase-out (Promega, Wlsconsln, USA) and cDNA synthesis was carried out, which was carried out using reverse transcrlptase M-MLV and OllgodT20 (both from Promega, Wlsconsln, USA). Both procedures were performed according to the supplier's protocol, which was treated with RNase 1 ug / 1 ug of RNA to then synthesize the cDNA using an activation temperature of the enzyme at 60 for one hour and then at 72 for 10 minutes.
  • a PCR was carried out from the cDNA obtained, using gene splitters (SEQ ID No .: 1) coding for the REO fusion proteins (SEQ ID No.:2) and ISAV.
  • the forward primers 5 ' -CAG GGT CAT GTA ACG GAG CTA -3 ' (SEQ ID No. 3) and reverse 5 ' were used -GCT GCG TCA GCC TTA ATT TTG-3 ' (SEQ ID No. : 4) with an annealng temperature of 570.
  • the 5 ' forward splitter was used -ATC AGC ATG GCT GGA GCA AGT A -3 ' ((SEQ ID No .: 5) and reverse 5 ' -TCT CCA ATC AGC CCG ATT TCC A -3 ' (SEQ ID No .: 6) with an annealng temperature of 630.
  • MTT assay 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazole bromide.
  • CT26 cells were cultured in 96-well plates at a density of 5x10 3 cells / well in 100 pL of RPMI culture medium supplemented with 10% FBS, after 24 hours the cells were transfected with NPs that they possessed.
  • the genes for the fusion proteins ISAV and REO, according to said genes are described in the previous sections.
  • Cell viability was determined by the MTT assay at 24, 48 and 72 hours post transfection. To this they were withdrawn culture medium and the cells were added 20 pL of MTT leaving Incubate for 3 hours at 370 to 5% C0 2.
  • mice of strain C57 and Balb / c from 6 to 8 weeks were maintained with feeding ad libitum and under a cycle of light and dark, and a treatment was applied to them with the composition of the invention that comprised the nanoparticles and the volumes were determined of tumor size used (2 mm 3 for the time of treatment and 260 mm 3 for the sacrifice of the animal), as well as monotherapy was performed by measuring the tumor size using a foot meter.
  • mice were injected with the CT26 tumor cells in the lumbar region subcutaneously. Once injected, the time of appearance of the tumor, the tumor size and the characteristics of the state of the mouse, including appearance, weight and behavior, are monitored. A maximum growth parameter of 261 mm 3 , or a maximum period of 60 days without tumor, was determined as the criterion of the end point of the experiment. At the end of this process, the mice were sacrificed by cervical dislocation.
  • composition of the invention is administered by direct intratumoral injection.
  • the composition of the invention comprised in particular qultosan nanoparticles in an N / P 28 ratio containing 10 pg of pDNA with the genes (SEQ ID No.:1) for the viral fusion proteins and then the animal was monotreated until which reaches a tumor volume of 261 mm 3 or 60 days free of tumor.
  • the tumor When the tumor reached the volume corresponding to the maximum criterion of end point of 261 m 3 or 60 days free of tumor, it proceeded to sacrifice it by dislocation cervical. Subsequently, the spleen and tumor were extracted. The spleens were disintegrated on a 0.150 mm (100 mesh) metal grid, then the erythrocytes were removed by differential lysls using ACK buffer (155mM NH 4 CI, 10mM KHC0 3 , 1 mM Na 2 EDTA, pH 7.3) for 5 hours. min in gentle agitation. On the other hand, the tumors were disintegrated and then incubated in 1 x trypsin under gentle agitation for 30 minutes at 3713. Subsequently, the supernatant was removed, centrifuged at 1200 xg for 10 min and the supernatant was discarded.
  • ACK buffer 155mM NH 4 CI, 10mM KHC0 3 , 1 mM Na 2
  • the splenoclines and cells extracted from the tumor were resuspended in cold blocking buffer (IF; SFBal 2% in PBS) with a density of 1 x 10 6 cells / mL for 30 min at 413.
  • IF cold blocking buffer
  • BDpharmingen BD Biosclences, San Jose, California, USA
  • CD4 + populations the FITC Anti-mouse CD4 antibody (eBioscence) was used; for the populations CD4 + CD25 + Foxp3Ant ⁇ -mouse CD25 PE (eBiosclence) and Antl-mouse Foxp3 PCP (eBiosclence), for CD4 + RORY (t + ) (anti- human / mouse RORY (t + ) AFKJS-9 (eBioscence )) and for CD4 + populations T-betse used antl-human / mouse T-bet (eBioscence).
  • the Mann Whitney test was applied to compare the different treatments and all data are presented with standard error.
  • an anova two-way analysis was performed.
  • the analyzes were performed using the GraphPad Prism 5.01 software (GraphPad Software, Inc., San Diego, California, USA). For all the analyzes a 95% confidence in the data was considered, to evaluate if the effect corresponded to a statistically significant effect, that is, a value of p ⁇ 0.05.
  • the generated nanoparticles were analyzed by agarose gel electrophoresis.
  • the encapsulated pDNA showed no migration in the gel for all N / P ratios, as can observe in Figures 1 B and 1 C, contrary to what was observed in the migration of the soluble plasmid.
  • the above is explained by a complete encapsulation, represented as a retention in the well because the pDNA is forming a complex with qultosan and this is not able to migrate through the gel.
  • the Z-potential measurement was performed.
  • the nanoparticles qultosan / pDNA were evaluated at different N / P ratios, as shown in Figure 2.
  • the hlstograms with respect to the potential indicate that all the nanoparticles evaluated had a positive Z potential (range between +10 and + 58mV), without a direct relationship between the N / P ratio of the nanoparticles with qultosan and the zeta potential (Flg. 2).
  • the size analysis of the qultosan NPs / pDNA showed that they also have a size range between 25-56 nm radius (Flg. 3), compatible with a nanoparticle.
  • the complexes with a ratio N / P 40 a size of 40 nm radius (table 2).
  • the nanoparticles are capable of allowing DNA transfection, it was evaluated using the cDNA coding for GFP cloned in the pcDNA plasmid, as described in section 1 .4 above.
  • the efficiency of transfection of the GFP gene by chitosan nanoparticles was evaluated in the CT26 colon carcinoma cell line. After 48 hours post-transfection, the expression of GFP was evaluated by flow cltometry, in all cases it was expressed as the percentage of transfected cells of the total cells. Untransfected cells, a commercial transfection agent Llpofectamlna 2000 and the naked plasmid were used as controls.
  • Electrophoretic migration assay of chitosan-qen complexes or NPs from fusion proteins Electrophoretic migration assay of chitosan-qen complexes or NPs from fusion proteins.
  • FIG. 7A shows the PCR performed for the cDNA of the REO protein, where there is a band around 202 bp which corresponds to the size of the expected amplicon for the codon coding for this protein.
  • Figure 7B shows the PCR performed for the cDNA coding for the ISAV protein where a 304 bp amplicon is observed both in the positive control (LF) and in the cDNA coming from cells transfected with qultosan (CH-ISAV).
  • Figure 10 shows a graph of tumor volume versus post-emergence days, and compares the different experimental conditions.
  • the effect of the treatment with chitosan alone is compared, no differences are observed in the tumor growth compared to the control, also the treatment with CH-ISAV does not present great differences compared to the control.
  • the analysis of the tumor growth is performed in the animals treated with CH-REO, it can be observed that there is a delay with respect to the control of chitosan and the untreated animals, this is supported by the analysis of Intersection with the x-axis (Table 3 ).
  • the analysis of slopes that once the growth reaches an exponential phase the growth speed increases tumor in mice treated with CH-REO (Table 4).
  • Table 5 Analysis of survival of the animals. Comparison of the days of survival of the animal between the chitosan vehicle control and the treatments performed. The cut-off point was taken from the graphs of tumor growth including animals with necrosis. A Flsher Test was performed for the statistical analysis.
  • lymphocyte populations CD4 +, CD8 +, Th17 were quantified. Th1 and Treg in spleen.
  • Figure 12B shows the percentage of CD8 and CD4 lymphocyte populations present in the spleen. A significant decrease of the CD4 + population is observed in the treatments with CH-REO in relation to that obtained in mice without treatment. For the CD8 + population, a significant decrease was observed with respect to the control in the CH-ISAV treatment.
  • Figure 13 shows an analysis of the Th1 sub-population present in the spleen
  • nanoparticles were generated and characterized in order to be used as in vivo transfection mechanisms for their therapeutic use in tumors, expressing deleterious genes in these.
  • the use of nanoparticles of qultosan as a vector for the release of genes was characterized by the complex coacervation technique. This process is presented as a concrete alternative to the attempts made in recent years that have proposed various gene delivery systems for gene therapy as alternatives to the viral vectors commonly used.
  • the qultosano has been used as a vehicle for the transference of genes in cells due to its intrinsic characteristics.
  • This molecule is able to condense and encapsulate DNA to form complexes that are captured on the cell surface, endocycled and transported, being able to migrate to the nucleus through pathways that, to date have not yet been elucidated (Robert S Cofflin. to oncolytlc mmunotherapy: where are we now? Current Opinion in Vlrology 2015, Vol.13, pp. 93-100, DOI: 10.1016 / j.covlro.2015.06.005).
  • viruses have been used to treat cancer, thanks to the characteristics of cancer cells, which make them particularly sensitive to viral infection and replication.
  • a key advantage of the use of viruses as an anti-cancer agent is that to use the treatment it is not necessary to know the particular genetic alterations of each type of cancer, since this strategy is based on the fact that the tumor cells are mostly susceptible to death by selective viral infection based on underlying mutations in the tumor, which can be considerably different in different tumor cells (Robert S Coffln, From vlrotherapy to oncolytlc mmunotherapy: where are we now? Current Opinion in Vlrology 2015, Vol.13, pp. 93-100, DOI: 10.1016 / j.covlro.2015.06.005).
  • the clitoxicity produced by the FMGs is observed early 24 hours post-transfection of their genes, because at this time they begin to form slnclclos producing cell death, which increases gradually with time (Bateman Andrew R., Harrlngton Kevln J., Kottke Tlm, Ahmed Atlque, Melcher Alan A., Gough Mlchael J., Llnardakls Emmanouela, Riddle David, Dletz Alian, Lohse Chrlstlne M., Strome Scott, Peterson Tlm, Robert Slmarl and Vile Richard G.
  • CT26 cells were transfected by means of the chitosan NPs with the genes coding for the viral fusion proteins of REO and ISAV, their effect on cell viability was evaluated where the formation of syncytia should lead to cell death.
  • CH-REO a significant decrease in cell viability was observed at 72 hours, which could be attributable to the formation of syncytia.
  • syncytia by action of these fusion proteins is also relevant, since this may be greater than those of other fusogenic proteins described in literature such as the F proteins of the GALV virus (6, Dunn, Gavln et al. mmunoediting: from mmuno-surveillance to tumor scape, Nature mmunology, 2002, Vol. 3, No. 11. Pgs .: 991 -998, DOI: 10.1038 / ni1102-991) where it is shown that the formation of syncytia occurs between 24 and 72 hours post transfection and the disintegration of the syncytium occurs within 120 hours post transfection. So without adhering to any theory it would seem that, for the fusion proteins used, it must evaluate longer post-transfection times to observe changes in cell viability.
  • NPs were resuspended in PBS, it is known from literature that the phosphate and sulfate groups decrease the solubility of qultosan (Berthold A et al., Prepared and characterized by chltosan as drug carriers for prednisolone sodium phosphate as model for antiflammatory drugs. Release 1996, Vol. 39, No.1, pp. 17-25.bttp: //vwAv.sclencedlrect.com/science/artlcle/pii/0168365995001298), which would favor its precipitation and with this will diminish its ability to spread for the micro tumor, so the most optimal solution for resuspending the nanoparticles should have been found.
  • Another point to consider is that the efficiency of encapsulation of pDNA by qultosan is not 100%, so that the amount of plasmid that binds to qultosan can vary and thereby affect the transfection of the tumor cells.
  • necroptosls Loves-Aaes, Tania and cois. Vaccination with Necroptotlc Cancer Cells Induces Efficlent Anti- tumor Immunity, Cell Reports, 2016, Vol.15, No. 2, pp. 274-287, DOI: 10.1016 / j.celrep.2016.03.037).
  • necroptosls showed that cells can execute necrosis in a programmed manner and that apoptosis is not always preferable to necrotic cell death.
  • the immunogenic nature of the necroptosls favors its use in certain circumstances, such as helping the orientation of pathogens by the immunological system.
  • necroptotic CT26 cells can be immunogenic in vitro and in vivo, generating an immune response through cytotoxic CD8 + lymphocytes, promoting cross-presentation; and by means of the production of interferon and in response to tumor antigens of necrotic cells (Loves-Aaes, Tania et al., Vaccination with Necroptotlc Cancer Cells Induces Efficiency Anti- tumor Immunity, Cell Reports, 2016, Vol. 15, No 2, pp. 274-287, DOI: 10.1016 / j .celrep.2016.03.037).
  • the REO fusion protein corresponds to a small fusion-associated membrane protein, which retains within its structure all that it requires for the fusion process. This protein does not need others to mediate cell fusion, since the interaction of its endodomain with the cadherins mediates the initial binding to the membrane and the ectodomain with the target membrane, being able to maintain the formation of the pore.
  • composition comprising NPs with the genes coding for the fusion protein ISAV, showed no significant effects on tumor growth, without adhering to any theory, this could be due to the need for post-translational modifications for the protein to be active, specific pH requirements for its action, since ISAV that acts optimally at low pH (Cook D. Jonathan, Soto- Montoya Hazel, Korpela Markus, Lee E. Jeffrey, Electrostatlc Architecture of the Infectlous Salmon Anemia Virus (ISAV) Core Fusion Proteln lllustrates a CarboxyhCarboxylate pH Sensor, Journal of Biologcal Chemistry, 2015, Vol. 290, No. 30, pp. 18495-18504, DOI: 10.1074 / jbc.M115.644781), or it could also be, the need for accessory proteins for carry out your action.
  • ISAV Infectlous Salmon Anemia Virus
  • Treg lymphocytes are CD4 + CD25 OXP3 + cells and their main characteristics are their ability to actively inhibit CD8 + lymphocytes, dendritic cells, Natural Killer (NK) cells and B cells, promoting tumor growth (Sundstrom, Patrik and cois, Regulatory T cells from colon cancer patiens inhibit effector T cell migratlon through an adenosine-dependent mechanism, Cancer Immunology Research, 2016, Vol.4, No.
  • the Th1 population has been associated with a potent anti-tumor response in various types of cancer.
  • this population was analyzed in the spleen, although no significant difference was obtained between the treated and untreated mice, a tendency to increase this population was observed in the treated mice.
  • Th17 lymphocytes play a complex and controversial role in tumor immunity, since they can act by favoring tumor development or an anti-tumor response depending on the malignancy and temporality of tumor growth (Bailey, Stefanle et al., Th17 cells n cancer: the ult ⁇ mate dentlty crisis Frontlers n Immunology 2014, Vol 5, Artlcle 276. DOI 10.3389 / flmmu.2014.00276). In the evaluation of this subpopulation in spleen, a significant increase of Th17 was obtained in all the treatments used. In the literature it has been shown that Th17 cells are negatively correlated with the presence of Treg cells and positively with Immune effector cells, including Th1, these observations are supported by data from studies in human and mouse model.
  • Th1 and Th17 their increase in the treated mice could explain it obtained in the tumoral growth curves, because these two subpopulations promote a antitumor response from the Immune system (Balley, Stefanle et al., Th17 cells cancer: the last crisis, Frontlers Immunology, 2014, Vol. 5, Artcle 276. DOI: 10.3389 / flmmu.2014.00276). It may be an additional contribution to determine exactly what happens with the decrease in the population of CD4 + lymphocytes in both spleen and tumor since it is unknown which CD4 + lymphocyte sub-population is the one that is decreasing. However, for this it would be necessary to carry out the analysis of a greater number of CD4 + sub-populations to relate them to the effect of the treatments tested.
  • composition of the invention comprising nanoparticles of natural origin can be used as vectors for the encapsulation of genes whose proteins are capable of controlling tumor development, creating an immune response against this or both, by direct treatment of the tumor.
  • the expression of the REO protein in the tumor caused a delay in tumor growth, which would be associated with the death of the tumor by the generation of syncytia, rather than the induction of an immune response by the T lymphocytes evaluated.
  • the present composition also comprises nanoparticles that can optionally encapsulate genes whose proteins are able to control tumor development and create an immune response against it, by direct treatment of the tumor, where the gene has a sequence comprising an identity of at least 50% , preferably at least 60%, and more preferably at least 70%, still more preferably at least 80%, and more preferably at least 90% of the nucleotides (ie, sample sequence identity) shown in SEQ ID NO: 1; or wherein the protein has a sequence comprising an identity of at least 50%, preferably at least 60%, and more preferably at least 70%, even more preferably at least 80%, and more preferably at least 90% of the amino acids (ie, sequence identity sample) shown in SEQ ID NO: 2.
  • the gene has a sequence comprising an identity of at least 50% , preferably at least 60%, and more preferably at least 70%, still more preferably at least 80%, and more preferably at least 90% of the nucleotides (ie, sample sequence identity) shown in SEQ ID NO: 1;
  • the present invention also comprises fragments and derivatives of the nucleotide sequences shown in SEQ ID No .: 1 or of the amino acid sequences shown in SEQ ID No: 2. Also, the present invention comprises functional equivalents of the above sequences.
  • a "fragment" of a nucleotide sequence is defined as a contiguous sequence of about at least 6, preferably at least 8, more preferably at least 10 nucleotides, and even more preferably at least 15 nucleotides that correspond to a region of the specific nucleotide sequence.

Abstract

The present invention is related to the pharmaceutical field, and particularly to a pharmaceutical composition for intratumoral injection comprising nanoparticles of natural origin (chitosan), which are used as vectors for encapsulation of genes for proteins that are able to control tumour growth, generate an immune response, or both. In particular, the pharmaceutical composition for intratumoral injection comprises chitosan nanoparticles encapsulating DNA from the fusion protein from avian reovirus (REO), which slows tumour growth and finally leads to elimination thereof by generation of syncytia, and the use thereof in cancer treatment by in vivo transfection.

Description

i  i
COMPOSICIÓN PARA INYECCIÓN INTRATUMORAL QUE COMPRENDECOMPOSITION FOR INTRATUMORAL INJECTION COMPRISING
VECTOR DEVECTOR OF
ADN ENCAPSULADO EN NANOPARTÍCULAS DE QUITOSANO Y SU USO EN ELENCAPSULATED DNA IN QUITOSAN NANOPARTICLES AND ITS USE IN THE
TRATAMIENTO DEL CÁNCER TREATMENT OF CANCER
CAMPO DE LA INVENCION FIELD OF THE INVENTION
La presente invención se relaciona con el área farmacéutica, y especialmente, con una composición farmacéutica para Inyección ¡ntratumoral que comprende nanopartículas de origen natural (quitosano) que se usan como vectores para la encapsulación de genes de proteínas que son capaces de controlar el desarrollo tumoral, crear respuesta Inmune o ambos. En particular, la composición farmacéutica para inyección ¡ntratumoral comprende nanopartículas de quitosano que encapsula ADN de la proteína de fusión de Reovirus Aviar (REO), la que retrasa el crecimiento tumoral y eventualmente conduce a su eliminación vía generación de sincicios, y su uso en el tratamiento del cáncer por transfecclón in vivo.  The present invention relates to the pharmaceutical area, and especially, to a pharmaceutical composition for intratumoral injection comprising nanoparticles of natural origin (chitosan) that are used as vectors for the encapsulation of protein genes that are capable of controlling tumor development , create immune response or both. In particular, the pharmaceutical composition for intratumoral injection comprises nanoparticles of chitosan that encapsulates DNA from the fusion protein of Avian Reovirus (REO), which delays tumor growth and eventually leads to its elimination via generation of syncytia, and its use in the treatment of cancer by transfection in vivo.
ANTECEDENTES BACKGROUND
El cáncer es la segunda causa de muerte a nivel mundial según la organización mundial de la salud (OMS, Organización Mundial de la Salud - ENT Perfiles de países, 2014. http://VAyw.who. int/nmh/countrles/es/#C). Esta enfermedad se origina por una disfunción en el ciclo celular, lo cual lleva al crecimiento descontrolado de las células transformadas, llevando a la formación de una masa celular o tumor. Una vez establecida la lesión primaria, las células tumorales, con el tiempo adquieren la capacidad de invadir y colonizar el tejido circundante, llevando Incluso a originar metástasis, que corresponde a tumores secundarios en puntos distantes del organismo. Esta diseminación además de otras características ha permitido clasificar al cáncer, en diferentes estadios. El sistema TNM es el sistema de estadlflcaclón de cáncer de mayor uso, comprende 5 cinco estadios principales: en el estadio 0 se encuentran células anormales localizadas, que no se han diseminado al tejido cercano. En el estadio I y II el cáncer afecta tejidos cercanos, en el estadio III el cáncer ha Invadido órganos cercanos al tumor primarlo afectando los ganglios linfáticos. Por último, en el estadio IV el cáncer se ha diseminado a partes distantes del tumor primarlo Invadiendo múltiples órganos del cuerpo (metástasis) (National Cáncer institute/ What Is Cáncer? http://www.cancer.gov/about-cancer/what-is-cancer; American Cáncer Soclety. Colorectal Cáncer Facts & Figures 2014-2016. Atlanta, Ga: American Cáncer Soclety; 2014. http://www.cancer.org/espanol/cancer/colonyrecto/guladetallada/spanlsh-colon- detalled-toc-df). Cancer is the second leading cause of death worldwide according to the World Health Organization (WHO, World Health Organization - ENT Country Profiles, 2014. http: //VAyw.who.int/nhh/studies/en/ #C). This disease is caused by a dysfunction in the cell cycle, which leads to the uncontrolled growth of transformed cells, leading to the formation of a cell mass or tumor. Once the primary lesion is established, the tumor cells eventually acquire the ability to invade and colonize the surrounding tissue, leading to even metastasis, which corresponds to secondary tumors at distant points in the body. This dissemination, in addition to other characteristics, has allowed the classification of cancer, in different stages. The TNM system is the most widely used cancer staging system, comprising 5 main stages: stage 0 contains localized abnormal cells that have not spread to nearby tissue. In stage I and II the cancer affects nearby tissues, in stage III the cancer has invaded organs close to the primary tumor affecting the lymph nodes. Finally, in stage IV cancer has spread to distant parts of the primary tumor invading multiple organs of the body (metastasis) (National Cancer Institute / What Is Cancer? Http://www.cancer.gov/about-cancer/what -is-cancer, American Cancer Soclety, Colorectal Cancer Facts & Figures 2014-2016, Atlanta, Ga: American Cancer Soclety, 2014. http://www.cancer.org/espanol/cancer/colonyrecto/guladetallada/spanlsh-colon- detalled-toc-df).
A pesar de los Importantes progresos realizados en terapias contra el cáncer, las tasas de mortalidad para la mayoría de los tumores malignos siguen siendo alarmantemente altas. Por lo cual, la Inhibición del crecimiento y progresión del cáncer, resulta ser uno de los grandes desafíos que enfrenta la medicina moderna. A modo de ejemplo, un estudio realizado por el Instituto nacional del cáncer (http://www.lncancer.cl/), Indica que un 21 % de la población chilena muere a causa de esta enfermedad, las terapias convencionales utilizadas tienen las desventajas que poseen un estrecho índice terapéutico (quimioterapia), elevados efectos secundarlos (radioterapia y quimioterapia) y que muchas veces son Incapaces de eliminar por completo la enfermedad a causa de la mlcrometástasls, y por sobre todo, tienen un elevado costo. A nivel terapéutico el tratamiento contra esta enfermedad ha generado un protocolo que Incorpora medios mecánicos, radiológicos, químicos y recientemente se ha sumado la búsqueda de blancos celulares y moleculares (A. Urrutlcoechea, R. Alemany, J. Balart, A. Vlllanueva, F. Vlnals y G. Capella, Recent advances ¡n cáncer therapy: an overview. Current Pharmaceutical Design. 2010, Vol. 16, No.1 , págs. 3-10. DOI: 10.2174/138161210789941847). Las terapias convencionales contra el cáncer son en primera Instancia la cirugía, que resulta resolutiva en estadios primarlos, y está asociada a radioterapia cuando se sospecha de metástasis cercanas. Por otro lado, cuando se sospecha metástasis o se caracteriza ésta en ganglios centinelas o por las características fisiopatológicas del tumor, se aplica un tratamiento sistémlco llamado quimioterapia. Esta última posee una serle de Inconvenientes como el estrecho índice terapéutico en estadios avanzados, el cual se reduce aún más a medida que avanza el tratamiento cuando el tumor adquiere resistencia a los medicamentos (Jia-Hui Xu, Shl-Llan Hu, Guo-Dong Shen, Tumor suppressor genes and their underlylng interactions in paclitaxel resistance in cáncer therapy, Cáncer Cell Int. 2016, Vol.20, No. 16:13. doi: 10.1 186/s12935-016-0290-9). Despite the significant progress made in cancer therapies, mortality rates for most malignancies remain alarmingly high. Therefore, the inhibition of the growth and progression of cancer, turns out to be one of the great challenges facing modern medicine. As an example, a study conducted by the National Cancer Institute (http://www.lncancer.cl/), Indicates that 21% of the Chilean population dies from this disease, the conventional therapies used have the disadvantages that have a narrow therapeutic index (chemotherapy), high secondary effects (radiotherapy and chemotherapy) and that are often unable to completely eliminate the disease because of the microchromatástasls, and above all, have a high cost. At the therapeutic level, the treatment against this disease has generated a protocol that incorporates mechanical, radiological, chemical means and recently the search of cellular and molecular targets has been added (A. Urrutlcoechea, R. Alemany, J. Balart, A. Vlllanueva, F Vlnals and G. Capella, Recent advances in cancer therapy: an overview. Current Pharmaceutical Design. 2010, Vol. 16, No.1, p. 3-10. DOI: 10.2174 / 138161210789941847). Conventional anti-cancer therapies are surgery in the first instance, which is resolutive in primary stages, and is associated with radiotherapy when near metastasis is suspected. On the other hand, when metastasis is suspected or is characterized in sentinel lymph nodes or by the physiopathological characteristics of the tumor, a systemic treatment called chemotherapy is applied. The latter has a series of disadvantages as the narrow therapeutic index in advanced stages, which is further reduced as the treatment progresses when the tumor acquires resistance to the drugs (Jia-Hui Xu, Shl-Llan Hu, Guo-Dong Shen, Tumor suppressor genes and their underlylng interactions in paclitaxel resistance in cancer therapy, Cancer Cell Int. 2016, Vol.20, No. 16:13. Doi: 10.1 186 / s12935-016-0290-9).
Un problema recurrente de la terapia del cáncer es la erradicación Incompleta de la masa tumoral o la falta de efecto cuando ya ha ocurrido mlcrometástasis, lo que finalmente llevará a la recurrencia de la enfermedad. Es por ello, que para que se desarrolle una terapia tumoral potente y de larga duración, es deseable erradicar el tumor primarlo, junto a la Inducción de un mecanismo que permita la erradicación de focos metastásicos no detectables o mlcrometastásis. Si bien la quimioterapia ha intentado ser el mecanismo para conseguir este proceso mediante sus efectos antiproliferativos o citotóxicos, se ha caracterizado extensamente que las células tumorales adquieren la capacidad de resistir al efecto de los fármacos a través de editing tumoral, llevando a la selección de células cada vez más resistentes a los tratamientos (Hanahan D., Weinberg RA. (2011 ). Hallmarks of Cáncer: The Next Generation. Cell. 2011 , 144, No. 5, págs. 646-674. DOI 10.1016/j.cell.2011.02.013). Otra problemática de ésta terapia es que no solo destruye las células cancerosas que crecen con rapidez, sino que también destruye y/o disminuye el crecimiento de células sanas que crecen y se dividen con rapidez. En las últimas décadas, se ha demostrado que las células tumorales son capaces de eludir la vigilancia ¡nmunológlca a través de diferentes estrategias, ya sea modulando mecanismos de procesamiento y presentación antlgénlca, o regulando negativamente la proliferación, activación y señalización de linfocitos T específicos (Hanahan D., Welnberg RA. (2011 ). Hallmarks of Cáncer: The Next Generatlon. Cell. 2011 , 144, No. 5, págs. 646-674. DOI 10.1016/j. cell.2011 .02.013). Tomando en cuenta esto, actualmente se está llevando a cabo la búsqueda de estrategias que permitan reconocer específicamente estos focos de cáncer no tan solo por parte de fármacos sino también por las propias células del organismo. En base a lo anterior, la búsqueda de terapias se ha enfocado en estimular la respuesta Inmune del Individuo para permitir que el propio organismo responda ante la enfermedad, lo que se conoce actualmente como ¡nmunoterapla. Ésta busca estimular el sistema Inmune del propio Individuo para permitir una respuesta efectora contra las células tumorales de tipo slstémlca y altamente específica (Farkona, Sofía y cois, Cáncer ¡mmunotherapy: the beglnnlng of the end of cáncer?. BMC Medicine. 2016, Vol. 14, No. 73. DOI: 10.1186/s12916-016-0623-5). Tomando en cuenta esto, es que se está llevando a cabo la búsqueda de estrategias que permitan reconocer específicamente estos focos de cáncer no tan solo por parte de fármacos sino también por las propias células del organismo. Por lo que se ha planteado el uso del propio sistema Inmune como alternativa, surgiendo el concepto de ¡nmunovlgllancla, el cual se refiere a los procesos por los cuales las células del sistema Inmune buscan y reconocen patógenos extraños, tales como bacterias y virus, o células pre-cancerosas y cancerosas en el cuerpo (Dunn Gavln, Bruce Alien, Ikeda Hlroakl, Oíd Lloyd y Schrelber Robert. Cáncer ¡mmunoedltlng: from ¡mmuno-survelllance to tumor scape. Nature ¡mmunology. 2002, Vol. 3, No. 11. págs. 991 -998. DOI : 10.1038/n¡1102-991 ). Otros antecedentes derivados del efecto de agentes quimloterapéuticos, han determinado que la regresión del crecimiento tumoral inducido por algunos de éstos, se debe a la activación específica de respuesta Inmune contra el tumor (Haynes N., Van der Most, Lake, R. A. y Smyth, M. J. Immunogenlc anti-cancer chemotherapy as an emerglng concept. Current Opinión ¡n Immunology, 2008, Vol. 20, No. 5, págs. 545- 557. DOI: 10.1016/j. coi.2008.05.008). El proceso de Inducción de la respuesta ¡nmunológica como estrategia antitumoral, aprovecha las características de esta respuesta como la memoria ¡nmunológica y la capacidad de migrar y realizar“homing” para encontrar los antígenos, ambos con el fin de llevar a prevenir la propagación y la recurrencia de las células tumorales o encontrarlas en sitios donde se han radicado. Algunas estrategias basadas en la activación o inducción de la respuesta ¡nmunológica contra el tumor plantean la vacunación como tratamiento contra el cáncer. Para esto se requieren antígenos tumorales y se han utilizado una serie de portadores de antígenos, incluyendo Usados tumorales, antígenos tumorales purificados, células tumorales completas o células tumorales muertas. Todos estos pueden ser utilizados en combinación con adyuvantes, cltoqulnas, además de los mismos antígenos (Yaddanapudl K, Mitchell RA, Eaton JW. Cáncer vacclnes: Looking to the future. Oncolmmunology, 2013. Vol. 2, No. 3. DOI : 10.4161 /onci.23403). A recurring problem of cancer therapy is the incomplete eradication of the tumor mass or the lack of effect when it has already occurred mlcrometástasis, which will eventually lead to recurrence of the disease. That is why, in order to develop a powerful and long-lasting tumor therapy, it is desirable to eradicate the primary tumor, together with the induction of a mechanism that allows the eradication of non-detectable metastatic foci or micrometastases. Although chemotherapy has tried to be the mechanism to achieve this process through its antiproliferative or cytotoxic effects, it has been extensively characterized that tumor cells acquire the ability to resist the effect of drugs through tumor editing, leading to the selection of cells increasingly resistant to treatments (Hanahan D., Weinberg RA. (2011). Hallmarks of Cancer: The Next Generation, Cell., 2011, 144, No. 5, pp. 646-674, DOI 10.1016 / j.cell. 2011.02.013). Another problem with this therapy is that it not only destroys rapidly growing cancer cells, but also destroys and / or slows the growth of healthy cells that grow and divide rapidly. In recent decades, it has been shown that tumor cells are capable of eluding immunological surveillance through different strategies, either modulating antigenic processing and presentation mechanisms, or negatively regulating the proliferation, activation and signaling of specific T lymphocytes ( Hanahan D., Welnberg RA (2011) Hallmarks of Cancer: The Next Generatlon, Cell., 2011, 144, No. 5, pp. 646-674, DOI 10.1016 / J. cell.2011 .02.013). Taking this into account, the search is now under way for strategies that allow the specific recognition of these cancer foci not only by drugs but also by the body's own cells. Based on the foregoing, the search for therapies has focused on stimulating the Individual's immune response to allow the body itself to respond to the disease, which is currently known as immunotherapy. It seeks to stimulate the Individual's own immune system to allow an effector response against highly specific and specific tumor cells (Farkona, Sofía y cois, Cancer, mmunotherapy: the begining of the end of cancer, BMC Medicine, 2016, Vol .14, No. 73. DOI: 10.1186 / s12916-016-0623-5). Taking this into account, it is that the search for strategies that allow specifically recognizing these cancer foci is being carried out not only by drugs but also by the body's own cells. Therefore, the use of the Immune system itself has been proposed as an alternative, with the concept of immunoblot, which refers to the processes by which the cells of the Immune system seek and recognize foreign pathogens, such as bacteria and viruses, or pre-cancerous and cancerous cells in the body (Dunn Gavln, Bruce Alien, Ikeda Hlroakl, Old Lloyd and Schrelber Robert.) Cancer mmunoedltlng: from immuno-survelllance to tumor scape, Nature mmunology, 2002, Vol. 3, No. 11. pp. 991 -998 DOI: 10.1038 / n1102-991). Other antecedents derived from the effect of chemo-therapeutic agents, have determined that the regression of the tumor growth induced by some of these, is due to the specific activation of the immune response against the tumor (Haynes N., Van der Most, Lake, RA and Smyth, MJ Immunogencc anti-cancer chemotherapy as an emergent concept, Current Opinion, Immunology, 2008, Vol.20, No. 5, pp. 545-557 DOI: 10.1016 / j.coi.2008.05.008). The process of induction of the immunological response as an antitumor strategy takes advantage of the characteristics of this response, such as immunological memory and the ability to migrate and homing to find the antigens, both in order to prevent the spread and the recurrence of the tumor cells or finding them in places where they have settled. Some strategies based on the activation or induction of the immunological response against the tumor propose vaccination as a treatment against cancer. For this, tumor antigens are required and a series of antigen carriers have been used, including used tumors, purified tumor antigens, whole tumor cells or dead tumor cells. All these can be used in combination with adjuvants, clots, in addition to the same antigens (Yaddanapudl K, Mitchell RA, Eaton JW Vaccine Cancer: Looking to the Future, Oncolmmunology, 2013. Vol. 2, No. 3. DOI: 10.4161 /onci.23403).
Otra metodología que ha comenzado a ser estudiada a fondo para promover su utilización clínica es la Viroterapla, la cual se basa en el uso de cepas virales no patogénicas modificadas que son capaces de Infectar células tumorales y replicarse de forma selectiva provocando la muerte directa de estas células, lo puede llevar a la activación de una respuesta inmune antitumoral (Pol, Jonathan y cois. Trial Watch- Oncolytlc viruses and cáncer therapy, Oncolmmunology, 2016, Vol. 5, No. 2. DOI: 10.1080/2162402X.2015.1117740; y Workenhe S T y cois. The role of oncolytlc virus Another methodology that has begun to be thoroughly studied to promote its clinical use is Viroterapla, which is based on the use of modified non-pathogenic viral strains that are capable of infecting tumor cells and replicating selectively causing direct death of these It can lead to the activation of an antitumor immune response (Pol, Jonathan et al .. Trial Watch- Oncolytlc viruses and cancer therapy, Oncolmmunology, 2016, Vol. 5, No. 2. DOI: 10.1080 / 2162402X.2015.1117740; Workenhe ST and cois.The role of oncolytlc virus
¡mmunotheraples to subvert cáncer ¡mmune evasión. Future Oncology. 2015, Vol. 11 , No. 4, págs. 675-689, DOI:10.2217/fon.14.254). La selectividad hacia el tumor ha sido lograda mediante el uso de virus atenuados que preferenclalmente se replican en células tumorales, esto mediante la Inactivación de genes virales que son necesarios para la repllcaclón en las células normales, pero prescindibles en células tumorales, o por el uso de virus modificados por medio de Ingeniería genética en el que los genes esenciales para la repllcaclón se han dispuesto en los promotores específicos de tumor (Barzón L. y cois. Cllnlcal triáis of gene therapy, vlrotherapy, and ¡mmunotherapy for mallgnant gllomas. Cáncer Gene Therapy. 2006, Vol. 13, págs. 539-554. DOI: 10.1038/sj.cgt.7700930). Immunotherapies to subvert cancer immune evasion. Future Oncology. 2015, Vol. 11, No. 4, pgs. 675-689, DOI: 10.2217 / fon.14.254). The selectivity towards the tumor has been achieved through the use of attenuated viruses that preferentially replicate in tumor cells, this through the inactivation of viral genes that are necessary for replication in normal cells, but dispensable in tumor cells, or by the use of modified viruses by means of genetic engineering in which the genes essential for repliccation have been disposed in tumor-specific promoters (Barzón L. et al., Cllnlcal triais of gene therapy, vlrotherapy, and immunotherapy for major gonomas, Cancer Gene Therapy, 2006, Vol. 13, pp. 539-554. DOI: 10.1038 / sj .cgt.7700930).
En general, esta terapia se divide en dos tipos dependiendo de las características de los virus utilizados, siendo virus fusogénlcos o lítlcos. Las terapias con virus oncolítlcos, utilizan su capacidad de replicarse y Usar las células tumorales aprovechando específicamente las alteraciones moleculares de tumores que no Impiden la repllcaclón del virus (Russell S. y cois. Oncolytlc vlrotherapy. Nature blotechnology. 2012, Vol. 30, No. 7, págs. 658-670. DOI:10.1038/nbt.2287). Por otro lado, está el uso de virus fusogénlcos, los cuales son capaces de matar a sus células blanco mediante la Inducción de fusión entre las células Infectadas y no Infectadas (Klasse, P. J. y cois. Mechanlsms of enveloped virus entry ¡nto animal cells. Advanced Drug Dellvery Revlews, 1998, Vol. 34, No. 1 , págs. 65-91. DOLI O.1016/S0169- 409X(98)00002-7). Las características de estos pueden ser propias de ciertas especies de virus o un resultado de Ingeniería genética dirigida. SI bien está terapia viral ha sido ampliamente utilizada, presenta desventajas propias de la utilización de virus activos, como su ¡nmunogenlcldad, toxicidad, los virus pueden propagarse en el paciente tratado y mutar recuperando su potencial patogénico; las células malignas pueden volverse resistente a la vlroterapla producto de su Inestabilidad genómlca; además de ocurrir difusión heterogénea y relativamente Incompleta de virus en lesiones neopláslcas. Además la respuesta Inmune antiviral (ya sea Innata o adaptatlva) constituye a menudo un obstáculo contra la aplicación eficaz de la vlroterapla en pacientes con cáncer, sobre todo porque secuestra o neutraliza partículas virales antes de que lleguen al tumor (Pol Jonathan, Buqué Aitziber, Aranda Fernando, Bloy Norma, Cremer Isabelle, Eggermont Alexande, Erbs Phlllppe, Fuclkova Jltka, Galón Jéróme, Llmacher Jean-Marc, Prevllle Xavier, Sautés-Frldman Catherlne, Splsek Radek, Zltvogel Laurence, Kroemer Guido & Galluzzl Lorenzo. Trlal Watch- Oncolytlc vlruses and cáncer therapy, Oncolmmunology, 2016, Vol. 5, No. 2. DOI: 10.1080/2162402X.2015.1117740). In general, this therapy is divided into two types depending on the characteristics of the viruses used, being fusogenic or lytic viruses. Oncolytic virus therapies use their ability to replicate and use tumor cells by specifically taking advantage of the molecular alterations of tumors that do not prevent the replication of the virus (Russell S. et al., Oncolytlc vlrotherapy, Nature blotechnology, 2012, Vol. 30, No 7, pp. 658-670, DOI: 10.1038 / nbt.2287). On the other hand, there is the use of fusogenic viruses, which are capable of killing their target cells by induction of fusion between the infected and uninfected cells (Klasse, PJ et al., Mechanlsms of enveloped virus entry in animal cells. Advanced Drug Dellvery Revolves, 1998, Vol. 34, No. 1, pp. 65-91, DOLI O.1016 / S0169-409X (98) 00002-7). The characteristics of these can be specific to certain virus species or a result of directed genetic engineering. Although viral therapy has been widely used, it has disadvantages inherent to the use of active viruses, such as immunogenicity, toxicity, viruses can spread in the treated patient and mutate, recovering their pathogenic potential; the malignant cells can become resistant to the vlroterapla product of its genomic instability; in addition to heterogeneous and relatively Incomplete diffusion of virus in neoplastic lesions. In addition, the antiviral immune response (either innate or adaptive) is often an obstacle to the efficient application of vlroterapla in patients with cancer, mainly because it sequesters or neutralizes viral particles before they reach the tumor (Pol Jonathan, Buqué Aitziber, Aranda Fernando, Bloy Norma, Cremer Isabelle, Eggermont Alexande, Erbs Phlllppe, Fuclkova Jltka, Galón Jéróme, Llmacher Jean-Marc, Prevllle Xavier, Sautés-Frldman Catherlne, Splsek Radek, Zltvogel Laurence, Kroemer Guido & Galluzzl Lorenzo, Trlal Watch- Oncolytlc vlruses and cancer therapy, Oncolmmunology, 2016, Vol. 5, No. 2. DOI: 10.1080 / 2162402X.2015.1117740).
Existen diversos virus que matan a sus células blanco mediante la Inducción de fusión entre las células (Klasse, P. J. y cois. Mechanlsms of enveloped virus entry ¡nto animal cells. Advanced Drug Dellvery Revlews, 1998, Vol. 34, No. 1 , págs. 65-91 . DOI :10.1016/S0169-409X(98)00002-7). Este proceso es llevado a cabo por proteínas virales específicas, como la proteína de fusión (F) de los Orthomyxovlrus (W. Welssenhorn, A. Dessen, L. J. Calder, S. C. Harrlson, J. J. Skehel y D. C. Wlley. Structural basls for membrane fusión by enveloped vlruses. Molecular Membrane Blology. 1999, Vol. 16, No. 1 , págs. 3-9. http ://crysta i . harvard . edu/iib-
Figure imgf000008_0001
There are several viruses that kill their target cells by induction of fusion between cells (Klasse, PJ and co., Mechanicsms of enveloped virus entry in animal cells, Advanced Drug Dellvery Revolves, 1998, Vol. 34, No. 1, p. 65-91, DOI: 10.1016 / S0169-409X (98) 00002-7). This process is carried out by specific viral proteins, such as the fusion protein (F) of Orthomyxovlrus (W. Welssenhorn, A. Dessen, LJ Calder, SC Harrlson, JJ Skehel and DC Wlley.) Structural basls for membrane fusion by enveloped vlruses, Molecular Membrane Blology, 1999, Vol.16, No. 1, pp. 3-9, http: // crysta i.harvard.edu / iib-
Figure imgf000008_0001
Kempf. Entry and uncoatlng of enveloped vlruses. Blochemlcal Journal. 1994, Vol. 302, No. 2, págs. 313-20. http://www.biOchemj.Org/content/302/2/313. long16). En los orthomlxovlrus, encontramos al virus de la anemia Infecciosa del salmón (ISAV), este virus posee genes que codifican para gllcoproteínas de fusión (F) de membrana, que media la fusión virus-célula para permitir la entrada del virus a la célula blanco (Aspehaug Vldar, Mlkalsen Aase, Snow Mlchael, Biering Eirik y Vlllolng Stéphane. Characterlzatlon of the ¡nfectlous salmón anemia virus fusión proteln. Journal of Vlrology, 2005, Vol. 79, No. 19, págs. 12544-53. DOI :10.1128/JVI .79.19.12544- 12553.2005). Esta proteína de fusión viral (ISAV-F) se clasifica como una proteína de fusión de tipo 1 , las que se caracterizan por ser sintetizadas como una molécula precursora Inactiva, que requiere de un corte proteolítico para adquirir su conformación fusogénica activa, la cual es gatillada por un cambio conformacional inducido por una disminución de pH (ISAV-F). Kempf. Entry and uncoatlng of enveloped vlruses. Blochemlcal Journal. 1994, Vol. 302, No. 2, pgs. 313-20. http://www.biOchemj.Org/content/302/2/313. long16). In orthomlxovlrus, we find the Infectious salmon anemia virus (ISAV), this virus possesses genes encoding membrane fusion (F) glycoproteins, which mediates the virus-cell fusion to allow the virus to enter the target cell (Aspehaug Vldar, Mlkalsen Aase, Snow Mlchael, Biering Eirik and Vlllolng Stéphane. Characterlzatlon of the Influenza Salmon Anemia Virus Fusion Proteln, Journal of Vlrology, 2005, Vol. 79, No. 19, pp. 12544-53 DOI: 10.1128 / JVI .79.19.12544- 12553.2005). This viral fusion protein (ISAV-F) is classified as a type 1 fusion protein, which is characterized by being synthesized as an inactive precursor molecule, which requires a proteolytic cut to acquire its conformation. active fusogenic, which is triggered by a conformational change induced by a decrease in pH (ISAV-F).
Otro tipo de proteína con actividad fusogénica es la proteína p10 de Reovirus Aviar (REO) perteneciente a la familia de los Reovirus. Esta proteína se clasifica como una proteína pequeña de membrana asociada a fusión (FAST) no estructural, clasificando a este virus como uno de los pocos virus sin envoltura que inducen fusión célula-célula (Clechonska M. y cois. Reovirus FAST protelns: virus-encoded cellular fusogens. Trends ¡n Microblology. 2014, Vol. 22, No. 12, DOI: 10.1016/j .tim .2014.08.005). Estas proteínas son capaces de generar el proceso de fusión virus-célula (necesario para la entrada de un virus envuelto a la célula blanco) o fusión célula-célula, lo que lleva a la formación de aglomerados celulares que biológica, estructural y bioquímicamente son altamente inestables, conocidos como sincicios. La muerte celular mediada por sincicios ocurre por mecanismos no apoptóticos, a través de un proceso de reclutamiento, fusión y desintegración. El aumento del tamaño de un sincicio, las constantes señales asociadas al ciclo celular y/o la depleción severa del metabolismo celular que se produce como resultado al intentar mantener la gran estructura celular, llevaría a la auto-digestión de los sincicios, provocando su muerte (Bateman Andrew R., Harrlngton Kevln J., Kottke Tlm, Ahmed Atique, Melcher Alan A., Gough Mlchael J., Llnardakls Emmanouela, Riddle David, Dletz Alian, Lohse Chrlstine M., StromeAnother type of protein with fusogenic activity is the p10 protein of Avian Reovirus (REO) belonging to the Reovirus family. This protein is classified as a small non-structural fusion-associated membrane protein (FAST), classifying this virus as one of the few non-enveloped viruses that induce cell-cell fusion (Clechonska M. and cois.) Reovirus FAST protelns: virus- encoded cellular fusogens, Trends in Microblology 2014, Vol. 22, No. 12, DOI: 10.1016 / j .tim .2014.08.005). These proteins are capable of generating the virus-cell fusion process (necessary for the entry of a virus enveloped into the target cell) or cell-cell fusion, which leads to the formation of cellular agglomerates that are biologically, structurally and biochemically highly unstable, known as syncytia. The cell death mediated by syncytia occurs through non-apoptotic mechanisms, through a process of recruitment, fusion and disintegration. The increase in the size of a syncytium, the constant signals associated with the cell cycle and / or the severe depletion of the cellular metabolism that occurs as a result of trying to maintain the large cellular structure, would lead to the self-digestion of the syncytia, causing death (Bateman Andrew R., Harrlngton Kevln J., Kottke Tlm, Ahmed Atique, Melcher Alan A., Gough Mlchael J., Llnardakls Emmanouela, David Riddle, Dletz Alian, Lohse Chrlstine M., Strome
Scott Peterson Tlm, Simarl Robert y Vlle, Richard G. Viral fusogenlc membrane glycoproteins klll solid tumor cells by nonapoptotic mechanlsms that promote cross presentation of tumor antigens by dendritic cells. Cáncer Research. 2002, Vol. 62, No. 22, págs. 6566-78. hitp://cancerres.aacriournals.orq/content/62/22/6566.!onq). Scott Peterson Tlm, Simarl Robert and Vlle, Richard G. Viral fusogenlc membrane glycoproteins klll solid tumor cells by nonapoptotic mechanlsms that promote cross presentation of tumor antigens by dendritic cells. Cancer Research. 2002, Vol. 62, No. 22, p. 6566-78. hitp: //cancerres.aacriournals.orq/content/62/22/6566.! onq).
Sumado a lo anterior, se propone que la expresión de glicoproteínas de membrana fusogenlcas (FMGs) virales sería altamente ¡nmunogénlca per se (independiente de cualquier efecto de Inducción de sincicios), promoviendo la generación de Inmunidad tumoral específica (Bateman Andrew, Bullough Francis, Murphy Stephen, Emlllusen Lisa, Lavlllette Dimitri, Cosset Frangois-Loic, Cattaneo Roberto, Russell Stephen y Vlle Richard. Fusogenlc membrane glycoproteins as a novel class of genes for the local and Immune-mediated control of tumor growth. Cáncer Research. 2006, Vol. 60, No. 6, págs. 1492-7. http://cancerres.aacrjournals.Org/coriient/60/6/1492. lona). In addition to the above, it is proposed that the expression of viral fusogencal membrane glycoproteins (FMGs) would be highly immunogenic per se (independent of any effect of induction of syncytia), promoting the generation of immunity specific tumor (Bateman Andrew, Bullough Francis, Murphy Stephen, Emlllusen Lisa, Lavlllette Dimitri, Cosset Frangois-Loic, Cattaneo Roberto, Russell Stephen and Vlle Richard .Fusogenlc membrane glycoproteins as a novel class of genes for the local and Immune-mediated control of tumor growth, Cancer Research, 2006, Vol 60, No. 6, pp. 1492-7, http://cancerres.aacrjournals.Org/coriient/60/6/1492, canvas).
La expresión de proteínas de fusión sería por si misma altamente ¡nmunogénica, y su capacidad de generar sincicios y muerte celular, generaría una estrategia para combatir el desarrollo tumoral. Sin embargo, para que esto ocurra las células tumorales deben expresar estas proteínas de fusión, por lo cual deben ser transfectadas in situ o in vitro con el/los genes que codifican para estas proteínas de fusión. The expression of fusion proteins would be highly immunogenic by itself, and its ability to generate syncytia and cell death would generate a strategy to combat tumor development. However, for this to occur, the tumor cells must express these fusion proteins, so they must be transfected in situ or in vitro with the genes that code for these fusion proteins.
El uso de genes codificantes para proteínas virales como terapia génlca demostró que la expresión de estas proteínas por si solas resulta en aumento significativo del control del crecimiento tumoral (Bateman, Andrew R. y cois. Viral fusogenlc membrane glycoproteins klll solid tumor cells by nonapoptotic mechanlsms that promote cross presentation of tumor antigens by dendritic cells. Cáncer Research. 2002, Vol. 62, No. 22, págs. 6566-78. http://cancerres.aacrlournals.org/content/62/22/6566.long). Por otra parte, trabajos realizados por Hoffman y cois en el año 2008 (Hoffmann D y cois. Immune-mediated anti-neoplastic effect of intratumoral RSV envelope glycoprotein expression ¡s related to apoptotic death of tumor cells but not to the size of syncytia. World Journal Gastroenterology. 2008, Vol.14, No. 12, págs: 1842-1850. DOLI O.3748/wjg.14.1842), realizan la transfección de líneas tumorales con genes que codifican para proteínas provenientes del virus respiratorio sincicial utilizando adenovlrus como vector de la transfección, demostró que genera respuestas asociadas a linfocitos T citotóxicos y que produce una Infiltración en el tumor por parte de células natural“klller” y macrófagos (Hoffmann D, Grunwald T, Bayer W, Wlldner O. Immune-medlated antl-neoplastlc effect of ¡ntratumoral RSV envelope glycoproteln expresslon ¡s related to apoptotlc death of tumor cells but not to the slze of syncytla. World Journal Gastroenterology. 2008, Vol.14, No. 12, págs: 1842-1850.The use of genes coding for viral proteins as gene therapy demonstrated that the expression of these proteins alone results in a significant increase in the control of tumor growth (Bateman, Andrew R. et al., Viral fusogenlc membrane glycoproteins klll solid tumor cells by nonapoptotic mechanlsms that promote cross presentation of tumor antigens by dendritic cells, Cancer Research, 2002, Vol 62, No. 22, pp. 6566-78, http://cancerres.aacrlournals.org/content/62/22/6566.long) . On the other hand, work carried out by Hoffman and cois in the year 2008 (Hoffmann D et al., Immune-mediated anti-neoplastic effect of intratumoral RSV envelope glycoprotein expression is related to apoptotic death of tumor cells but not to the size of syncytia. World Journal Gastroenterology, 2008, Vol.14, No. 12, pp. 1842-1850, DOLI O.3748 / wjg.14.1842), perform the transfection of tumor lines with genes that encode proteins from the respiratory syncytial virus using adenovlrus as transfection vector, demonstrated that generates responses associated with cytotoxic T lymphocytes and that it produces an infiltration in the tumor by natural cells "klller" and macrophages (Hoffmann D, Grunwald T, Bayer W, Wlldner O. Immune-medlated antl-neoplastlc effect of ntratumoral RSV envelope glycoproteln expresslon s related to apoptotlc death of tumor cells but not to the slze of syncytla. World Journal Gastroenterology. 2008, Vol.14, No. 12, pages: 1842-1850.
DOI :10.3748/wjg.14.1842). DOI: 10.3748 / wjg.14.1842).
El principal problema de aplicar estos tratamientos radica en las metodologías de transfecclón, en su eficiencia y en cómo estas podrían llegar a ser perjudiciales para las células. Por ejemplo, el uso de biobalística es altamente tóxico, dado que provoca la muerte de células por daño mecánico (O’Brlen John y Lumrnls Sarah. Nano- biolistics: a method of biolistic transfectlon of cells and tlssues uslng a gene gun wlth novel nanometer-slzed projectlles. BMC Blotechnology. 2011 , Vol. 1 1 , No. 66. DOI: 10.1186/1472-6750-11 -66). Por otro lado, la electroporaclón, que consiste en pequeños pulsos eléctricos para Inducir la formación de poros, es un método eficaz, pero desafortunadamente genera destrucción de células debido al calor producido por la aplicación de alto voltaje. Otros tipos de transfecclón utilizan virus como vectores para la Introducción de un gen de Interés, pero está limitado por la patogenlcldad del virus y su alta Inestabilidad genética (Peer, D., Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margallt, R.; Langer, R. Nanocarñers as an emerglng platform for cáncer therapy. Nature Nanotechnology. 2007, Vol. 2, 751 -760. DOI: 10.1038/nnano.2007.387). The main problem in applying these treatments lies in the transfection methodologies, in their efficiency and in how they could be harmful to the cells. For example, the use of biobalistics is highly toxic, since it causes the death of cells by mechanical damage (O'Brlen John and Sarah Lumrnls, Nanobiolistics: a method of biolistic transfectlon of cells and tlssues uslng a gene gun wlth novel nanometer -slzed projectlles, BMC Blotechnology, 2011, Vol. 1 1, No. 66. DOI: 10.1186 / 1472-6750-11 -66). On the other hand, electroporation, which consists of small electrical pulses to induce the formation of pores, is an effective method, but unfortunately generates cell destruction due to the heat produced by the application of high voltage. Other types of transfection use viruses as vectors for the introduction of a gene of interest, but are limited by the pathogenicity of the virus and its high genetic instability (Peer, D., Karp, JM, Hong, S., Farokhzad, OC, Margallt , R., Langer, R. Nanocarriers as an emerging platform for cancer therapy, Nature Nanotechnology, 2007, Vol.2, 751-760, DOI: 10.1038 / nnano.2007.387).
Dentro de los métodos altamente utilizados para la transfecclón de células in vitro, es el uso de lípldos catlónlcos como la llpofectamlna, los cuales se asocian a las moléculas de DNA formando complejos que son capaces de atravesar la membrana celular. SI bien estos métodos presentan altos niveles de eficiencia de transfecclón, estos vectores poseen un alto costo y elevada toxicidad, lo cual no es aplicable para una transfecclón tumoral in vivo. Es por ello, que existe la necesidad de encontrar vectores alternativos para la Incorporación de material genético exógeno por parte de las células tumorales. Considerando lo anterior, se usa la nanotecnología como método de transfecclón. La nanotecnología es tradlclonalmente definida como dispositivos moleculares de tamaño submicrónico o nanopartículas que se encuentran predominantemente entre los 5 a 500 nm en al menos una dimensión. Investigaciones han dado lugar a métodos para incorporar agentes terapéuticos en nanodlsposltlvos blocompatlbles que incluyen nanopartículas pollméricas, llposomas, sistemas mlcelares, nanopartículas inorgánicas, nanotubos, y dendrímeros (Khodabandehloo H., Zahednasab H, Ashrafi hafez A. Nanocarñers Usage for Drug Delivery ¡n Cáncer Therapy. Iranlan Journal of Cáncer Prevention. 2016, Vol. 9, No. 2, págs. 65-91 . DOI: 10.17795/ijcp-3966) . Among the highly used methods for the transfection of cells in vitro, is the use of cathodic cells such as llpofectamna, which are associated with DNA molecules forming complexes that are able to cross the cell membrane. Although these methods have high levels of transfection efficiency, these vectors have a high cost and high toxicity, which is not applicable for a tumor transfection in vivo. That is why there is a need to find alternative vectors for the incorporation of exogenous genetic material by tumor cells. Considering the above, nanotechnology is used as a transfection method. Nanotechnology is tradclclonally defined as submicron-sized molecular devices or nanoparticles that are predominantly found between 5 to 500 nm in at least one dimension. Research has led to methods for incorporating therapeutics into blocompatible nanoparticles that include polymeric nanoparticles, liposomes, mlcelar systems, inorganic nanoparticles, nanotubes, and dendrimers (Khodabandehloo H., Zahednasab H, Ashrafi hafez A. Nanocarriers Usage for Drug Delivery Cancer Therapy, Iranlan Journal of Cancer Prevention, 2016, Vol.9, No. 2, pp. 65-91, DOI: 10.17795 / ijcp-3966).
Las nanopartículas polimérlcas son capaces de proteger los ácidos nucleicos de endonucleasas, además de condensar el fosfato negativo de los ácidos nucleicos con polímeros catiónlcos en poliplexos. Después de escapar del espacio vascular en los tumores, la partícula debe atravesar el espacio intersticial hacia la célula diana. Por lo tanto, la eficacia de nanopartículas depende de una variedad de bio-características fisicoquímicas de la partícula y de la superficie celular, por lo que la captación del vector en las células depende tanto de la oportunidad de interacción y de la dinámica de las partículas (Khodabandehloo H., Zahednasab H, Ashrafi hafez A. Nanocarñers Usage for Drug Delivery ¡n Cáncer Therapy. Iranlan Journal of Cáncer Prevention. 2016, Vol. 9, No. 2, págs. 65-91 . DOI: 10.17795/ijcp-3966). Polymeric nanoparticles are capable of protecting nucleic acids from endonucleases, in addition to condensing the negative phosphate of nucleic acids with cationic polymers in polypeptides. After escaping from the vascular space in the tumors, the particle must traverse the interstitial space towards the target cell. Therefore, the effectiveness of nanoparticles depends on a variety of physicochemical bio-characteristics of the particle and the cell surface, so that the uptake of the vector in the cells depends both on the opportunity for interaction and on the dynamics of the particles (Khodabandehloo H., Zahednasab H, Ashrafi hafez A. Nanocarriers Usage for Drug Delivery in Cancer Therapy, Iranlan Journal of Cancer Prevention, 2016, Vol. 9, No. 2, pp. 65-91. DOI: 10.17795 / ijcp- 3966).
Dentro de las nanopartículas polimérlcas es posible mencionar un polisacárldo lineal denominado quitosano (CH) que consiste en residuos de D-glucosamlna (2-amlno-2- deoxl-glucosa) y N-acetil-glucosamlna (2-N-acetil-2-deoxi-glucosa) unidos por un enlace b (1 -4). El quitosano es el derivado más importante de la quitina que se obtiene a partir de crustáceos, camarones y cangrejos, puede ser solubilizado en medio ácido (pH < 6,5) debido a la protonación de su grupo-NH2. Este polímero es de bajo costo, posee una fuerte afinidad por el DNA por Interacción de cargas, y tiene una baja toxicidad (Sun, Y. y cois, Preparation, characterization and transfection efficacy of chitosan nanoparticles containing the intestinal trefoil factor gene. Molecular Biology Report, 2012, Vol. 39, No. 2, págs. 945-52. DOI: 10.1007/s1 1033-011 -0820-4; y Carrillo, Carolina y cois, Chitosan nanoparticles as non-viral gene delivery Systems: Determlnation of loading efficiency. Blomedicine & Pharmacotherapy. 2014, Vol. 68, No. 6, págs. 775-783, DOI: 10.1016/j.biopha.2014.07.009). Además la carga positiva del CH le permite interaccionar con los proteoglicanos con carga negativa de la membrana plasmática, Induciendo la ¡nternalización de nanopartículas de quitosano por endocitosis. Within the polymeric nanoparticles it is possible to mention a linear polysaccharide called chitosan (CH) consisting of residues of D-glucosamine (2-amino-2-deoxl-glucose) and N-acetyl-glucosamine (2-N-acetyl-2) deoxy glucose) linked by a b bond (1-4). Chitosan is the most important derivative of chitin obtained from crustaceans, shrimps and crabs, it can be solubilized in acid medium (pH <6.5) due to the protonation of its NH- 2 group . This polymer is inexpensive, has a strong affinity for DNA by charge interaction, and has a low toxicity (Sun, Y. and cois, Preparation, characterization and transfection efficacy of chitosan nanoparticles containing the intestinal trefoil gene factor Molecular Biology Report, 2012, Vol. 39, No. 2, pp. 945-52 DOI: 10.1007 / s1 1033-011 -0820-4; and Carrillo, Carolina et al., Chitosan nanoparticles as non-viral gene delivery Systems: Determinenation of loading efficiency, Blomedicine & Pharmacotherapy, 2014, Vol. 68, No. 6, pp. 775-783, DOI: 10.1016 / j.biopha.2014.07.009). In addition, the positive charge of the CH allows it to interact with the negatively charged proteoglycans of the plasma membrane, inducing the normalization of chitosan nanoparticles by endocytosis.
En el arte previo es posible mencionar la publicación científica titulada“Preparation, characterization and transfection efficacy of chitosan nanoparticles containing the intestinal trefoil factor gene”, Yong Sun y col Mol Biol Rep (2012) 39:945-952 DOI 10.1007/s1 1033-011 -0820-4 que se refiere a un polipeptido con valor farmacológico potencial para la prevención y curación de tejidos dañados pero que tiene baja capacidad de producción, lo que limita su aplicación. Se escoge quitosano como un vehículo no viral para la liberación de genes por sus características intrínsecas. Se preparan nanopartículas de quitosano para envolver ITF cDNA y se estudia su tamaño, potencial zeta, estabilidad, perfil de liberación y eficiencia y capacidad de carga. Se evaluó la capacidad de transferir genes en células HEK293. Los datos revelaron que las nanopartículas de quitosano/ADN fueron preparadas exitosamente con tamaños menores a 500 nm y potenciales zeta positivos. Las nanopartículas protegerían el ADN de la degradación de nucleasa y tiene perfiles de liberación de ADN dependientes de las razones N/P. Además, la eficiencia de transfección de nanopartículas de quitosano/ADN fue equivalente a Llpofectamlna (TM). Propone las nanoparticuals de quitosano/ADN para la terapia génlca ITF. “Enhanced intracellular uptake and endocytic pathway selection mediated by hemocompatible ornithine grafted chitosan polycationfor gene delivery”, Susan. M. Alex y col Collolds and Surfaces B: Blolnterfaces 122 (2014) 792-800, se refiere a la creación de vectores génicos que facilitarían la transferencia de genes a células, con mayor eficacia y seguridad. Para el diseño del vector, los polímeros preferidos son los sistemas coloidales no virales por ser susceptibles a modificación química. Se escoge quitosano para someterlo a conjugación química con el amino ácido ornitina para generar el conjugado quitosano-ornitina (CON) para liberar el gen. Se usó FTIR y espectro 1H NMR para confirmar la composición química del derivado de quitosano. Se encontró una capacidad de amortiguar mejorada en los derivados de quitosano sintético si se compara con el quitosano sin modificar original. El derivado catiónico formó nanoparticulas cuando se mezcló con ADN cargado negativamente. El derivado en interacción con plasma sanguíneo mostró una adsorción despreciable de proteína y no causó hemolisis o agregación RBC, en la sangre. En un cultivo in vitro se confirmó que el derivado CON no era tóxico para las células y era capaz de transfectar con un incremento explícito en la captación celular de nanoparticulas. Además, se demostró que clatrin media la ruta y juega un rol dinámico en la internalización de las nanoparticulas. “Improved stability and efficacy of chitosan/pDNA complexes for gene delivery”, Noemi Cifani y cois Biotechnol Lett (2015) 37:557-565 DOI 10.1007/s10529-014-1727-7 describe policationes poliméricos siendo quitosano el vehículo más poderoso para la liberación de genes. Estudia la estabilidad del complejo quitosano/ADN bajo almacenamiento. Se sintetizan complejos polielectroliticos en una razón de carga de 10 usando 50 kDa de quitosano y plasmido (p) DNA que codifica un GFP reportero.In the prior art it is possible to mention the scientific publication entitled "Preparation, characterization and transfection efficacy of chitosan nanoparticles containing the intestinal trefoil factor gene", Yong Sun et al Mol Biol Rep (2012) 39: 945-952 DOI 10.1007 / s1 1033- 011 -0820-4 which refers to a polypeptide with potential pharmacological value for the prevention and healing of damaged tissues but which has low production capacity, which limits its application. Chitosan is chosen as a non-viral vehicle for the release of genes due to its intrinsic characteristics. Chitosan nanoparticles are prepared to wrap ITF cDNA and their size, zeta potential, stability, release profile and efficiency and loading capacity are studied. The ability to transfer genes in HEK293 cells was evaluated. The data revealed that the chitosan / DNA nanoparticles were successfully prepared with sizes less than 500 nm and positive zeta potentials. The nanoparticles would protect the DNA from nuclease degradation and have DNA release profiles dependent on the N / P ratios. In addition, the transfection efficiency of chitosan / DNA nanoparticles was equivalent to Llpofectamlna (TM). It proposes the chitosan / DNA nanoparticles for ITF gene therapy. "Enhanced intracellular uptake and endocytic pathway selection mediated by hemocompatible ornithine grafted chitosan polycationfor gene delivery", Susan. M. Alex et al Collolds and Surfaces B: Blolnterfaces 122 (2014) 792-800, refers to the creation of gene vectors that would facilitate the transfer of genes to cells, with greater efficacy and safety. For the design of the vector, the preferred polymers are non-viral colloidal systems as they are susceptible to chemical modification. Chitosan is chosen for chemical conjugation with the amino acid ornithine to generate the chitosan-ornithine (CON) conjugate to release the gene. FTIR and 1 H NMR spectrum were used to confirm the chemical composition of the chitosan derivative. An improved cushioning capacity was found in the synthetic chitosan derivatives when compared to the original unmodified chitosan. The cationic derivative formed nanoparticles when mixed with negatively charged DNA. The derivative in interaction with blood plasma showed a negligible adsorption of protein and did not cause hemolysis or RBC aggregation in the blood. In an in vitro culture it was confirmed that the CON derivative was not toxic to the cells and was capable of transfecting with an explicit increase in the cellular uptake of nanoparticles. In addition, it was shown that clatrin mediates the route and plays a dynamic role in the internalization of nanoparticles. "Improved stability and efficacy of chitosan / pDNA complexes for gene delivery", Noemi Cifani and cois Biotechnol Lett (2015) 37: 557-565 DOI 10.1007 / s10529-014-1727-7 describes polymeric polycations being chitosan the most powerful vehicle for release of genes. Study the stability of the chitosan / DNA complex under storage. Polyelectrolyte complexes are synthesized at a loading ratio of 10 using 50 kDa of chitosan and plasmid (p) DNA encoding a reporter GFP.
Las preparaciones fueron estables hasta los 3 meses a 4SC y mostraron eficiencias de transfección reproducible in vitro en células HEK293. Además, se desarrolló una metodología que incrementó la eficiencia de la transfección in vitro de los complejos de quitosano/pDNA al 150%. Notablemente, la liberación pDNA ¡ntracelular y las células transfectadas alcanzaron máximos 5 días después de la transfixión de células activas mltótlcamente, mejorando así el potencial de la terapia génlca mediada por nanopartlculas pollmérlcas. The preparations were stable up to 3 months at 4 S C and showed reproducible transfection efficiencies in vitro in HEK293 cells. In addition, a methodology was developed that increased the efficiency of in vitro transfection of complexes of Chitosan / 150% pDNA. Notably, the intracellular pDNA release and the transfected cells reached maximum 5 days after the transfixion of active cells mltotically, thus improving the potential of gene therapy mediated by polymeric nanoparticles.
“Chltosan nanopartlcles as non-viral gene dellvery Systems: Determlnatlon of loadlng efflclency” Carolina Carrillo y cois disponible en SclenceDIrect www.sciencedirect.com Blomedlclne & Pharmacotherapy (2014) divulga que qultosano se usa en sistemas de liberación de partículas para propósitos terapéuticos, siendo una de sus aplicaciones más Importantes en vectores no virales para terapia génlca. Debido a su carga positiva, es capaz de formar complejos de ADN (pollplejos) que protegen los ácidos nucleicos. Se usan dos métodos para obtener las nanopartlculas de ácidos nuclelcos- qultosano: Complejlzaclón simple (de depollmerlzaclón de qultosano o de diferentes sales de qultosano con plásmldo) y gelaclón Iónica (por adsorción de plásmldo en las nanopartlculas o por encapsulaclón del plásmldo en las nanopartlculas). La determinación de la eficiencia de carga de nanopartlculas de qultosano con el plásmldo se condujo por movilidad electroforetlca de las muestras en gel de agarosa. Las nanopartlculas se caracterizaron de acuerdo a morfología, tamaño y carga superficial. Se encontró que los pollplejos eran esféricos y de tamaño manométrlco (entre 100-230 nm) con un potencial zeta entre 37 y 48 mV. Se obtuvieron resultados positivos en la electroforesls de gel de agarosa en todos los casos estudiados: una concentración entre 20 y 30 mg/mL de sales de qultosano se requirió mientras que para las muestras restantes de qultosano estudiadas, no ocurrió el 100% de eficiencia de carga hasta una concentración Igual a 100 mg/mL (Independientemente de la depollmerlzaclón previa y el método realizado). "Chltosan nanoparticles as non-viral gene dellvery Systems: Determlnatlon of loadlng efflclency" Carolina Carrillo and cois available at SclenceDIrect www.sciencedirect.com Blomedlclne & Pharmacotherapy (2014) discloses that qultosan is used in particle release systems for therapeutic purposes, being One of its most important applications in non-viral vectors for gene therapy. Due to its positive charge, it is capable of forming DNA complexes (polyplexes) that protect nucleic acids. Two methods are used to obtain the nanoparticles of nucleic acid-qultosan: Simple complexation (of depollution of qultosan or of different salts of qultosan with plasmid) and ionic gelaclon (by adsorption of plasmid in the nanoparticles or by encapsulation of the plasmid in the nanoparticles) . The determination of the loading efficiency of nanoparticles of qultosan with the plasmid was conducted by electrophoretic mobility of the samples in agarose gel. The nanoparticles were characterized according to morphology, size and surface charge. The polyplexes were found to be spherical and of manometric size (between 100-230 nm) with a zeta potential between 37 and 48 mV. Positive results were obtained in the agarose gel electrophoresis in all the studied cases: a concentration between 20 and 30 mg / mL of qultosan salts was required while for the remaining samples of qultosan studied, 100% efficiency did not occur. Load up to a concentration equal to 100 mg / mL (regardless of previous depollution and the method performed).
“Chltosan nanopartlcles as a potential nonvlral gene dellvery for HPV-16 E7 ¡nto mammallan cells”, Allreza Tahamtan y cois, Artificial Cells, Nanomedlclne, and Biotechnology, 2014; DOI: 10.3109/21691401.2014.893522, prepara nanopartículas de quitosano como vehículo para el gen E7 de paplllomavlrus humano tipo 16 (HPV-16) y su capacidad de transfecclon génlca fue evaluada in vitro. Se usó la expresión de la proteína fluorescente verde (pEGFP) como gen reportero. La electroforesls en gel demostró unión completa a las CS NPs con pDNA. La transfecclon de las CS-pEGFP NPs fue eficiente en células CHO y se observó la expresión de proteínas fluorescente verde. Se confirmó la expresión de las proteínas E7 bajo SDS-PAGE y análisis western blot. Como conclusión las CS NPs puede servir como un vehículo no viral efectivo para la liberación de células eucarlotas. "Chltosan nanoparticles as a potential nonvlral gene dellvery for HPV-16 E7 mammalian cells", Allreza Tahamtan et al, Artificial Cells, Nanomedlclne, and Biotechnology, 2014; DOI: 10.3109 / 21691401.2014.893522, prepares chitosan nanoparticles as a vehicle for the E7 gene of human papillomavirus type 16 (HPV-16) and its gene transfection capacity was evaluated in vitro. The expression of the green fluorescent protein (pEGFP) was used as the reporter gene. The gel electrophoresis showed complete binding to the CS NPs with pDNA. The transfection of the CS-pEGFP NPs was efficient in CHO cells and the expression of green fluorescent proteins was observed. The expression of the E7 proteins was confirmed under SDS-PAGE and western blot analysis. In conclusion, CS NPs can serve as an effective non-viral vehicle for the release of eukaryotic cells.
En resumen, el cáncer es una de las enfermedades con mayor Incidencia y tasas de mortalidad a nivel mundial. En el último tiempo ha surgido un tipo de terapia que aprovecha la actividad patogénica que tienen los virus en células eucarlontes, utilizando virus líticos y fusogénlcos, denominada vlroterapla. Los virus fusogénlcos, son capaces de llevar a cabo la fusión célula a célula mediante las gllcoproteínas fusogénlcas de membrana (FMGs), produciendo slnclclos altamente Inestables de células tumorales, lo que conlleva a la muerte celular de éstas. Esto sólo ocurre en células que expresan FMG y, por lo tanto, la Incorporación del gen ha sido utilizada como terapia antltumoral. Actualmente la transfecclon se realiza utilizando lípldos catlónlcos los que, si bien son eficientes, son altamente tóxicos, no siendo factible su uso in vivo. In summary, cancer is one of the diseases with the highest incidence and mortality rates worldwide. In recent times, a type of therapy has emerged that takes advantage of the pathogenic activity of viruses in eukaryotic cells, using lytic and fusogenic viruses, called vlroterapla. The fusogenic viruses are able to carry out cell-cell fusion by fused membrane glycoproteins (FMGs), producing highly unstable tumors of tumor cells, which leads to their cell death. This only occurs in cells that express FMG and, therefore, the incorporation of the gene has been used as anti-tumor therapy. Currently the transfection is carried out using catholic lines which, although efficient, are highly toxic, and their use in vivo is not feasible.
La presente Invención se relaciona con una composición farmacéutica para Inyección ¡ntratumoral que comprende nanopartículas de un polímero blocompatlble, blodegradable, no ¡nmunogénlco y no tóxico, de origen natural, que se puede usar como vectores para la encapsulaclón de genes cuyas proteínas son capaces de controlar el desarrollo tumoral, crear una respuesta Inmune contra el tumor o ambos, mediante Inyección directa en el tumor. En particular, la presente Invención se relaciona con una composición para inyección intratumoral que comprende nanopartículas para encapsular el gen (ADN, SEQ ID No.:1 ) de la proteína de fusión de Reovirus Aviar (REO, SEQ ID No.:2), insertado en un vector de expresión (plRES2), que permite la expresión del gen, en células de mamíferos. The present invention relates to a pharmaceutical composition for intratumoral injection comprising nanoparticles of a blocompatible, bloodegradable, non-immunogenic and non-toxic polymer, of natural origin, which can be used as vectors for the encapsulation of genes whose proteins are capable of control tumor development, create an immune response against the tumor or both, by direct injection into the tumor. In particular, the present invention is relates to an intratumoral injection composition comprising nanoparticles for encapsulating the gene (DNA, SEQ ID No.:1) of the Avian Reovirus fusion protein (REO, SEQ ID No.:2), inserted into an expression vector ( plRES2), which allows the expression of the gene, in mammalian cells.
El quitosano protege al ADN de la degradación y facilita la entrada de éste en las células tumorales, permitiendo de este modo que expresen la proteína de fusión, lo que produce la formación de células multlnucleadas de gran tamaño, por la fusión de las células tumorales entre sí. Estas células multlnucleadas son altamente Inestables, y poseen una corta vida (120 h), lo que las hace más sensibles a cualquier tratamiento. Chitosan protects DNA from degradation and facilitates the entry of this into tumor cells, thus allowing them to express the fusion protein, which produces the formation of large multinucleated cells, by the fusion of tumor cells between yes. These multinucleated cells are highly unstable, and have a short life (120 h), which makes them more sensitive to any treatment.
Breve Descripción del Invento Brief Description of the Invention
La presente Invención consiste en una composición farmacéutica para Inyección Intratumoral útil en el tratamiento del cáncer, la cual es de administración directa. En particular, la presente composición farmacéutica para Inyección Intratumoral permite el tratamiento de tumores detectados que se encuentran en las primeras etapas de desarrollo. La presente composición comprende nanopartículas de un polímero catlónlco seleccionado de quitosano, que es blocompatlble, blodegradable, no ¡nmunogénlco y no tóxico. Este polímero encapsula el gen (ADN) de proteínas que son capaces de controlar el desarrollo tumoral, crear una respuesta Inmune contra este o ambos, mediante la Inyección directa del tumor. En particular, este polímero encapsula el gen (SEQ ID No.:1 ) de la proteína de fusión de Reovirus Aviar (REO, SEQ ID No.:2), Insertado en un vector de expresión (plRES2), lo que permite la expresión del gen en células de mamíferos. El quitosano protege al ADN de la degradación y facilita la entrada del ADN, para que tras la Inyección Intratumoral, sea captado por las células tumorales, permitiendo de este modo que expresen la proteína de fusión mencionada, la que producirá la formación de células multinucleadas de gran tamaño, por la fusión de las células tumorales entre sí. Estas células multinucleadas son altamente Inestables, y poseen una corta vida (120 h), lo que produce dos efectos: 1 ) son más sensibles a cualquier tratamiento clásico que busque eliminar el tumor y 2) al ser altamente Inestables, son rápidamente eliminadas por vías asociadas a necrosis y autofagla. Esto produce una muerte ¡nmunogénica, generando señales de peligro y liberación de antígenos tumorales, lo que gatllla la activación del sistema inmune desencadenando una respuesta antltumoral específica para ese tumor. De este modo se potencia la respuesta inmune del propio organismo para que ataque al tumor de forma específica y rápida, al hacer “más visibles” para el organismo las células tumorales. Se realizaron ensayos pre clínicos en animales ¡nmunocompetentes, utilizando la cepa de ratones C57 a los cuales se les Indujo Melanoma Murino B16 y con animales de la cepa Balb/c a los cuales se les Indujo carcinoma de colón murino CT26. Una vez que el volumen tumoral alcanzó un volumen de 2 mm3 se trató al ratón con una composición de inyección de nanopartículas QuItosano/pDNA-REO, de forma ¡ntratumoral y se procedió al monitoreo diario de los animales, hasta que cumplieron 60 días libres de tumor o de lo contrario un volumen tumoral de 260 mm3. En donde se observó que el tratamiento con nanopartículas fue capaz de causar un retraso en el crecimiento tumoral y/o una regresión del tumor. The present invention consists of a pharmaceutical composition for Intratumoral Injection useful in the treatment of cancer, which is of direct administration. In particular, the present pharmaceutical composition for Intratumoral Injection allows the treatment of detected tumors that are in the early stages of development. The present composition comprises nanoparticles of a cathlonic polymer selected from chitosan, which is blocompatible, bloodegradable, non-immunogenic and non-toxic. This polymer encapsulates the gene (DNA) of proteins that are able to control tumor development, create an immune response against this or both, by direct injection of the tumor. In particular, this polymer encapsulates the gene (SEQ ID No.:1) of the Avian Reovirus fusion protein (REO, SEQ ID No.:2), inserted into an expression vector (plRES2), which allows expression of the gene in mammalian cells. Chitosan protects DNA from degradation and facilitates the entry of DNA, so that after Intratumoral Injection, it is captured by the cells tumors, thus allowing them to express the mentioned fusion protein, which will produce the formation of large multinucleated cells, by the fusion of the tumor cells with each other. These multinucleated cells are highly unstable, and have a short life (120 h), which produces two effects: 1) they are more sensitive to any classical treatment that seeks to eliminate the tumor and 2) being highly unstable, they are quickly eliminated by associated with necrosis and autophagy. This produces an immunogenic death, generating warning signals and the release of tumor antigens, which triggers the activation of the immune system, triggering a specific anti-tumor response for that tumor. In this way the immune response of the organism itself is strengthened so that it attacks the tumor in a specific and fast way, by making the tumor cells "more visible" for the organism. Pre-clinical trials were conducted in immunocompetent animals, using the strain of C57 mice to which Murine B16 Melanoma Indujo was induced, and with animals of the Balb / ca strain, which induced CT26 murine colon carcinoma. Once the tumor volume reached a volume of 2 mm 3 , the mouse was treated with an nanoparticle injection composition QuItosano / pDNA-REO, in an intratumoral manner and the animals were monitored daily, until they had completed 60 days off of tumor or otherwise a tumor volume of 260 mm 3 . Where it was observed that the treatment with nanoparticles was able to cause a delay in the tumor growth and / or a regression of the tumor.
Así, la presente invención propone una composición farmacéutica que comprende nanopartículas (NPs) de qultosano (CH) para la transfecclón in vivo, lográndose una alta eficiencia y baja toxicidad. La presente invención propone en particular, preparar NPs de CH-pDNA y una vez caracterizadas, posteriormente, generar NPs conteniendo por separado, el gen de las FMGs de dos virus distintos, REO e ISAV, los que fueron transfectados en el modelo tumoral de carcinoma de colón CT26. El efecto de la expresión de los genes de FMG en el desarrollo tumoral fue evaluado y se demuestra que las NPs CH-FMG permiten una eficiente Incorporación y expresión del pDNA por parte de células tumorales, tanto in vitro como in vivo, mostrando efectos parciales sobre el control del desarrollo tumoral, y por ello, una alternativa para el tratamiento o terapia contra el cáncer. Thus, the present invention proposes a pharmaceutical composition comprising nanoparticles (NPs) of qultosan (CH) for transfection in vivo, achieving high efficiency and low toxicity. The present invention proposes in particular, to prepare NPs of CH-pDNA and once characterized, subsequently, generate NPs containing separately, the gene of the FMGs of two different viruses, REO and ISAV, which were transfected in the CT26 colon carcinoma tumor model. The effect of the expression of FMG genes on tumor development was evaluated and it is demonstrated that CH-FMG NPs allow an efficient incorporation and expression of pDNA by tumor cells, both in vitro and in vivo, showing partial effects on the control of tumor development, and therefore, an alternative for treatment or therapy against cancer.
Breve Descripción de las Figuras Brief Description of the Figures
Figuras 1 A-1 C. Caracterización del complejo quitosano/pDNA. Figura 1A Eficiencia de carga de qultosano a diferentes relaciones N/P (promedio ± desviación estándar (S.D) n=3). Figuras 1 B y 1C Análisis de retardo de migración en gel de agarosa para las nanopartículas de quitosano/pDNA a relaciones N/P = 4; N/P = 20; N/P = 28; N/P = 40. El signo + significa que hay encapsulaclón de pDNA. Figuras 2A-2D. Distribución del potencial zeta. Nanopartículas de quitosano/pDNA preparadas a diferentes relaciones N/P. Figura 2A, relación N/P = 4. Figura 2B, relación N/P = 20. Figura 2C, relación N/P = 28 y Figura 2D, relación N/P = 40. Medidas con en el equipo Zetazalser Nano (Malvern Inst. Ltd. Malvern). Figuras 3A-3D. Tamaño. Nanopartículas formadas de quitosano/pDNA preparadas a diferentes relaciones N/P. Figura 3A, relación N/P = 4, Figura 3B, relación N/P = 20, Figura 3C, relación N/P = 28 y Figura 3D, relación N/P = 40. Expresadas en el porcentaje de número de nanopartículas. Las muestras fueron medidas con en el equipo Zetazalser Nano (Malvern Inst. Ltd. Malvern).  Figures 1 A-1 C. Characterization of the chitosan / pDNA complex. Figure 1A Load efficiency of qultosan at different N / P ratios (mean ± standard deviation (S.D) n = 3). Figures 1 B and 1C Analysis of migration delay in agarose gel for chitosan / pDNA nanoparticles at N / P = 4 ratios; N / P = 20; N / P = 28; N / P = 40. The + sign means that there is pDNA encapsulation. Figures 2A-2D. Distribution of the zeta potential. Chitosan / pDNA nanoparticles prepared at different N / P ratios. Figure 2A, ratio N / P = 4. Figure 2B, ratio N / P = 20. Figure 2C, ratio N / P = 28 and Figure 2D, ratio N / P = 40. Measurements with the Zetazalser Nano equipment (Malvern Inst Ltd. Malvern). Figures 3A-3D. Size. Nanoparticles formed of chitosan / pDNA prepared at different N / P ratios. Figure 3A, ratio N / P = 4, Figure 3B, ratio N / P = 20, Figure 3C, ratio N / P = 28 and Figure 3D, ratio N / P = 40. Expressed in the percentage of number of nanoparticles. The samples were measured with the Zetazalser Nano equipment (Malvern Inst. Ltd. Malvern).
Figuras 4A y 4B. Microscopía de Fuerza atómica. Complejo qultosano/pDNA-GFP a una relación N/P = 20, Figura 4A y N/P = 28, Figura 4B, utilizando 2,5 pg de pDNA, medido en el equipo Nanoscope Illa Atomlc Forcé Mlcroscope. Figuras 5A-5C. Eficiencia de transfección quitosano. Figura 5A Histogramas representativos de las células que expresan GFP, en negro se observa el control (células sin transfectar) y en rojo el tratamiento correspondiente. Figura 5B Porcentaje de células CT26 transfectadas con pcDNA-GFP utilizando quitosano con diferentes relaciones N/P. Se realizaron 3 repeticiones de cada condición, donde * indica las diferencias significativas (p<0,05) respecto al control. Figures 4A and 4B. Atomic force microscopy. Qultosan complex / pDNA-GFP at a ratio N / P = 20, Figure 4A and N / P = 28, Figure 4B, using 2.5 pg of pDNA, measured in the Nanoscope Illa Atomlc Forcé Mlcroscope. Figures 5A-5C. Chitosan transfection efficiency. Figure 5A Representative histograms of cells expressing GFP, in black the control is observed (cells without transfecting) and in red the corresponding treatment. Figure 5B Percentage of CT26 cells transfected with pcDNA-GFP using chitosan with different N / P ratios. Three repetitions of each condition were performed, where * indicates the significant differences (p <0.05) with respect to the control.
Figura 6. Análisis de retardo de migración en gel. NPs formadas por quitosano con los plásmldos pIRES que contienen los genes (SEQ ID No. :1 ) para las proteínas de fusión (SEQ ID No.:2) con una relación N/P = 28, utilizando como controles los plásmldos sin quitosano. El signo + significa que hay encapsulación de DNA. Figure 6. Analysis of gel migration delay. NPs formed by chitosan with the pIRES plasmids containing the genes (SEQ ID No.: 1) for the fusion proteins (SEQ ID No.:2) with an N / P ratio = 28, using as controls the plasmids without chitosan. The + sign means that there is DNA encapsulation.
Figuras 7A y 7B. Determinación de la expresión génica de proteínas de fusión virales en las células CT26. Determinación por medio de RT-PCR. Figura 7A REO ampllcón de 201 pb y Figura 7B ISAV ampllcón de 304 pb. En el primer carril se observa el estándar de peso molecular O'gene ruler 100pb, en el segundo el control de PCR sin cDNA, las demás condiciones corresponden a las células sin transfectar (control negativo de transfección), células transfectadas con llpofectamlna (control positivo de transfección) y las células transfectadas con quitosano. Figures 7A and 7B. Determination of gene expression of viral fusion proteins in CT26 cells. Determination by means of RT-PCR. Figure 7A REO amplex of 201 bp and Figure 7B ISAV amplex of 304 bp. In the first lane, the molecular weight standard O ' gene ruler 100pb is observed, in the second the control of PCR without cDNA, the other conditions correspond to the cells without transfecting (negative transfection control), cells transfected with llpofectamlna (positive control of transfection) and cells transfected with chitosan.
Figuras 8A y 8B. Viabilidad celular. Células CT26 transfectadas con nanopartículas de quitosano y genes codificantes para proteínas de fusión virales Figura 8A REO (SEQ ID No.2) y Figura 8B ISAV, a las 24, 48 y 72 horas post transfección Incubando con el reactivo MTT. La viabilidad de las células control (no tratadas) se determinó arbitrariamente como 100%. Figura 9. Aparición tumoral utilizando la línea tumoral CT26 en ratones Balb/c.Figures 8A and 8B. Cell viability CT26 cells transfected with chitosan nanoparticles and genes coding for viral fusion proteins Figure 8A REO (SEQ ID No.2) and Figure 8B ISAV, at 24, 48 and 72 hours post transfection Incubating with the MTT reagent. The viability of the control cells (untreated) was determined arbitrarily as 100%. Figure 9. Tumor appearance using the CT26 tumor line in Balb / c mice.
Los datos están representados en una gráfica de Kaplan Meier de supervivencia. Este gráfico muestra una curva para cada tipo de tratamiento y cada caída indica la aparición tumoral de un ratón para el tratamiento correspondiente. The data is represented in a Kaplan Meier survival graph. This graph shows a curve for each type of treatment and each drop indicates the tumor appearance of a mouse for the corresponding treatment.
Figuras 10A y 10B. Efecto de la transfección in vivo con nanopartículas en el crecimiento tumoral. Gráfico de crecimiento tumoral para ratones desafiados, no tratados y tratados con quitosano y nanopartículas de quitosano-Reo, Figura 10A, y quitosano-ISAV, Figura 10B. Figures 10A and 10B. Effect of in vivo transfection with nanoparticles on tumor growth. Tumor growth graph for challenged, untreated mice treated with chitosan and chitosan-Reo nanoparticles, Figure 10A, and chitosan-ISAV, Figure 10B.
Figura 11. Animales con necrosis. Gráfica de crecimiento tumoral de ratones que presentaron necrosis en el tumor post-tratamiento. Figure 11. Animals with necrosis. Graph of tumor growth of mice that presented necrosis in the post-treatment tumor.
Figuras 12A y 12B. Poblaciones linfocitarias CD4+ y CD8+ presentes en bazo. Figura 12A Histogramas representativos de cada marcación donde en negro corresponde a autofluorescencla de los esplenocltos y en rojo a la condición evaluada. Figuras 12B Variación de porcentaje de linfocitos CD8+ y CD4+ en bazo. Cada barra representa un tratamiento manteniendo la slmbología de figuras anteriores. Los datos son graflcados como promedio ± error estándar, * representa a p<0,05, comparados con el control. Figures 12A and 12B. CD4 + and CD8 + lymphocyte populations present in spleen. Figure 12A Representative histograms of each marking where in black corresponds to autofluorescence of the splenoclines and in red to the evaluated condition. Figures 12B Variation of percentage of CD8 + and CD4 + lymphocytes in spleen. Each bar represents a treatment maintaining the slmbology of previous figures. The data are plotted as mean ± standard error, * represents p <0.05, compared with the control.
Figuras 13A y 13B. Efecto del tratamiento con nanopartículas en linfocitos Th1 en bazo. Figura 13A Histogramas representativos de las poblaciones CD4+TBET+ para cada tratamiento marcación donde negro corresponde a autofluorescencla de esplenocltos y el rojo a la condición evaluada. Figura 13B Muestra el porcentaje de la sub-poblaclón de linfocitos Th1 presentes en bazo. Los datos son graflcados como promedio ± error estándar, * representa a p<0,05, comparados con el control. Figuras 14A y 14B. Efecto del tratamiento con nanopartículas en linfocitos Th17 en bazo. Figura 14A Histogramas representativos de las poblaciones CD4+RORY+ para cada tratamiento marcación donde negro corresponde a autofluorescencia de esplenocitos y el rojo a la condición evaluada. Figura 14B Muestra el porcentaje de la sub-población de linfocitos Th17 presentes en bazo. Los datos son graficados como promedio ± error estándar, * representa a p<0,05, comparados contra el control. Figures 13A and 13B. Effect of treatment with nanoparticles on Th1 lymphocytes in spleen. Figure 13A Representative histograms of the CD4 + TBET + populations for each labeling treatment where black corresponds to autofluorescence of splenoclines and red to the evaluated condition. Figure 13B shows the percentage of the sub-population of Th1 lymphocytes present in spleen. The data are plotted as mean ± standard error, * represents p <0.05, compared with the control. Figures 14A and 14B. Effect of nanoparticle treatment on Th17 lymphocytes in spleen. Figure 14A Representative histograms of CD4 + RORY + populations for each labeling treatment where black corresponds to autofluorescence of splenocytes and red to the evaluated condition. Figure 14B shows the percentage of the sub-population of Th17 lymphocytes present in spleen. The data are plotted as mean ± standard error, * represents p <0.05, compared against the control.
Figuras 15A y 15B. Efecto del tratamiento con nanopartículas en linfocitos Treg en bazo. Figura 15A Histogramas representativos de las poblaciones CD4+CD25+FOXP3. Figura 15B Muestra el porcentaje de la sub-población de linfocitos Treg presentes en bazo. Los datos son graficados como promedio ± error estándar, * representa a p<0,05, comparados con el control. Figures 15A and 15B. Effect of treatment with nanoparticles on Treg lymphocytes in spleen. Figure 15A Representative histograms of CD4 + CD25 + FOXP3 populations. Figure 15B shows the percentage of the sub population of Treg lymphocytes present in spleen. The data are plotted as mean ± standard error, * represents p <0.05, compared to the control.
Figuras 16A y 16B. Poblaciones linfocitarias CD4+ y CD8+ presentes en Tumor. Figura 16A Histogramas representativos de cada marcación donde el color negro corresponde a autofluorescencia y en rojo a la condición evaluada. Figura 16B Variación de porcentaje de linfocitos CD8+ y CD4+ en tumor, cada barra representa un tratamiento manteniendo la simbología de figuras anteriores. Los datos son graficados como promedio ± error estándar, * representa a p < 0,05, comparados con el control. Figures 16A and 16B. CD4 + and CD8 + lymphocyte populations present in Tumor. Figure 16A Representative histograms of each marking where the black color corresponds to autofluorescence and in red to the evaluated condition. Figure 16B Variation of percentage of CD8 + and CD4 + lymphocytes in tumor, each bar represents a treatment maintaining the symbology of previous figures. The data are plotted as mean ± standard error, * represents ap <0.05, compared with the control.
Descripción Detallada de la Invención Detailed description of the invention
La presente Invención se relaciona con una composición farmacéutica para Inyección intratumoral que comprende nanopartículas de un polímero biocompatible, biodegradable, no ¡nmunogénlco y no tóxico para encapsular el gen de proteínas que son capaces de controlar el desarrollo tumoral, crear respuesta Inmune contra este o ambos. En particular, la presente Invención se relaciona con una composición farmacéutica para Inyección Intratumoral que comprende nanopartículas de quitosano que encapsulan un gen (SEQ ID No.:1 ) de la proteína de fusión de Reovlrus Aviar (REO, SEQ ID No.:2), insertado en un vector de expresión (plRES2), que permite la expresión del gen, en células de mamíferos. The present invention relates to a pharmaceutical composition for intratumoral injection comprising nanoparticles of a biocompatible, biodegradable, non-immunogenic and non-toxic polymer to encapsulate the gene of proteins that are capable of controlling tumor development, create immune response against this or both . In particular, the present invention relates to a pharmaceutical composition for intratumoral injection comprising chitosan nanoparticles that encapsulate a gene (SEQ ID No.:1) of the fusion protein of Avian Reovlrus. (REO, SEQ ID No.:2), inserted into an expression vector (plRES2), which allows the expression of the gene, in mammalian cells.
El qultosano protege al ADN de la degradación y facilita la entrada de éste en las células tumorales, permitiendo de este modo que expresen la proteína de fusión, lo que produce la formación de células multlnucleadas de gran tamaño, por la fusión de las células tumorales entre sí. Estas células multlnucleadas son altamente Inestables, y poseen una corta vida (120 h), lo que las hace más sensibles a cualquier tratamiento. The qultosano protects the DNA of the degradation and facilitates the entrance of this one in the tumor cells, allowing in this way that they express the protein of fusion, which produces the formation of multnucleated cells of great size, by the fusion of the tumor cells between yes. These multinucleated cells are highly unstable, and have a short life (120 h), which makes them more sensitive to any treatment.
Así, la presente invención se relaciona con una composición farmacéutica para Inyección intratumoral que comprende proteínas de fusión viral expresadas en la superficie de células de mamíferos, las que son capaces de inducir fusión celular. Mediante el uso del modelo antlgénico OVA, la presente invención muestra que la proteína de fusión de hRSV en células Hek (ccHek-hRSV) aumenta la presentación cruzada de antígenos. Thus, the present invention relates to a pharmaceutical composition for intratumoral injection comprising viral fusion proteins expressed on the surface of mammalian cells, which are capable of inducing cell fusion. By using the OVA antigenic model, the present invention shows that the hRSV fusion protein in Hek cells (ccHek-hRSV) increases the cross-presentation of antigens.
La presente invención también se refiere a una composición farmacéutica para Inyección intratumoral que comprende nanopartículas - las cuales han surgido en los últimos años como un método de alta eficiencia y baja toxicidad, como tratamiento contra el cáncer (Peer, D. y cois. Nanocarriers as an emerging platform for cáncer therapy. Nature Nanotechnology. 2007, Vol. 2, 751 -760. DOI:The present invention also relates to a pharmaceutical composition for intratumoral injection comprising nanoparticles - which have emerged in recent years as a method of high efficiency and low toxicity, as a treatment against cancer (Peer, D. et al., Nanocarriers as An emerging platform for cancer therapy, Nature Nanotechnology, 2007, Vol.2, 751-760 DOI:
10.1038/nnano.2007.387). En particular, la presente invención se refiere una composición farmacéutica Intratumoral que comprende nanopartículas de qultosano (CH)/pDNA para la transfecclón de genes de las proteínas de fusión de Reo, la que fue ensayada in vitro en la línea celular tumoral CT26. La presente invención también se refiere a una composición farmacéutica de administración directa sobre la masa tumoral, que comprende nanopartículas compuestas por quitosano y el gen (SEQ ID No.: 1) de las proteínas de fusión viral (SEQ ID No. :2), y la respuesta antitumoral y de las poblaciones linfocitarias, la que fue ensayada en un modelo tumoral CT26. 10.1038 / nnano.2007.387). In particular, the present invention relates to an intratumoral pharmaceutical composition comprising nanoparticles of qultosan (CH) / pDNA for the transfection of genes from the fusion proteins of Reo, which was tested in vitro in the tumor cell line CT26. The present invention also relates to a pharmaceutical composition for direct administration on the tumor mass, comprising nanoparticles composed of chitosan and the gene (SEQ ID No .: 1) of the viral fusion proteins (SEQ ID No. 2), and the antitumor and lymphocyte population response, which was tested in a CT26 tumor model.
La presente Invención se refiere a una composición farmacéutica de Inyección intratumoral que permite la expresión de proteínas de fusión viral mediante la transfección con nanopartículas de quitosano y promueve una Inmunidad antitumoral, lo que se demostró en un modelo de cáncer de colon murlno CT26. The present invention relates to a pharmaceutical composition of intratumoral injection that allows the expression of viral fusion proteins by transfection with nanoparticles of chitosan and promotes an anti-tumor immunity, which was demonstrated in a murine colon cancer model CT26.
Para el desarrollo de la presente Invención se prepararon y caracterizaron NPs de quitosano, y se evaluó su eficiencia para la transfección, en la línea celular CT26. En particular, se evaluó el efecto de la expresión de las proteínas de fusión viral in vitro en la línea celular tumoral CT26 transfectadas con NPs quitosano. También, se evaluó el efecto de la expresión de las proteínas de fusión viral in vivo, sobre el desarrollo tumoral y la población linfocitaria, en el bazo y tumor de ratones. For the development of the present invention, chitosan NPs were prepared and characterized, and their efficiency for transfection was evaluated in the CT26 cell line. In particular, the effect of the expression of viral fusion proteins in vitro on the CT26 tumor cell line transfected with chitosan NPs was evaluated. Also, the effect of the expression of the viral fusion proteins in vivo, on the tumor development and the lymphocyte population, in the spleen and tumor of mice was evaluated.
1. Materiales v Métodos 1. Materials and Methods
1.1 DNA Plasmidial 1.1 Plasmidial DNA
Para la caracterización de las nanopartículas se utilizó el plásmido pCDNA3.1 -eGFP (Addgene) que contiene el gen que codifica para la proteína fluorescente verde, este fue amplificado en bacterias E. coli DH5-a y purificado utilizando el Favor Prep Plasmid DNA extractlon midl Kit, según recomendaciones del fabricante, recolectar bacterias y proceder al Usado de estas, para luego purificar el plásmido por medio de una columna de elución. El plásmido purificado fue disuelto en agua deslonizada grado molecular y su concentración fue determinada por espectroscopia, midiendo la absorbancla a 260 nm utilizando el equipo Tecan Infinite M200PRO. Para la transfección de las células CT26 se utilizó el plásmido pIRES (Clontech), con 2 insertos diferentes codificantes para la proteína de fusión viral REO y la proteína de fusión ISAV; los cuales fueron amplificados y purificados mediante la metodología antes mencionada. 1.2 Generación de nanopartículas For the characterization of the nanoparticles, plasmid pCDNA3.1 -eGFP (Addgene) containing the gene coding for the green fluorescent protein was used, this was amplified in E. coli DH5-a bacteria and purified using the Favor Prep Plasmid DNA extractlon midl Kit, according to the manufacturer's recommendations, collect bacteria and proceed to the used of these, to then purify the plasmid by means of an elution column. The purified plasmid was dissolved in molecular grade deionized water and its concentration was determined by spectroscopy, measuring the absorbance at 260 nm using the Tecan Infinite M200PRO equipment. For the transfection of the cells CT26 plasmid pIRES (Clontech) was used, with 2 different inserts coding for the viral fusion protein REO and the fusion protein ISAV; which were amplified and purified by the aforementioned methodology. 1.2 Generation of nanoparticles
Se utilizó quitosano (Sigma) de bajo peso molecular con un grado de deacetilación mayor al 75,0%. Este fue disuelto en ácido acético al 1% calentando levemente la solución y se ajustó el pH a 5,5 con hidróxido de sodio. Posteriormente, las soluciones de quitosano fueron filtradas de forma estéril con un filtro de jeringa de 0,2 um.  Low molecular weight chitosan (Sigma) with a degree of deacetylation greater than 75.0% was used. This was dissolved in 1% acetic acid by slightly heating the solution and adjusting the pH to 5.5 with sodium hydroxide. Subsequently, the chitosan solutions were filtered sterile with a syringe filter of 0.2 um.
A continuación, se diluyeron las soluciones de quitosano con agua desionlzada para alcanzar la relación deseada de amina de qu ¡tosan o/fosfato de DNA (relación“N/P”), luego se mezcló 100 mI_ de quitosano con 100 mI_ de pDNA. La concentración de pDNA se mantuvo constante 0,025 mg/mL. Las nanopartículas se prepararon por la técnica de coacervación (Turan Suna, Aral Cenk, Kabasakal Levent, Keyer-Uysal Meral y Akbuga Jülide. Co-encapsulat¡on of two plasmlds ¡n chltosan mlcropheres as a non-viral gene delivery vehlcle. J Pharm Pharmaceut Sc¡. 2003, Vol. 6, No. 1 , págs. 27-32, https://s¡tes.ualberta.ca/~csps/JPPS6(1 )/S.Turan/encapsulat¡on.htm). Brevemente, antes de realizar la mezcla las soluciones se calentaron por separado a 55^ por 5 minutos y una vez mezcladas se agitaron Inmediatamente a velocidad máxima durante 30 s. Esta solución de nanopartículas se utilizó 30 minutos después de su preparación para la transfección. Then, the chitosan solutions were diluted with deionized water to achieve the desired ratio of quatose amine to DNA / phosphate ("N / P" ratio), then 100 ml of chitosan was mixed with 100 ml of pDNA. The concentration of pDNA was kept constant 0.025 mg / mL. The nanoparticles were prepared by the coacervation technique (Turan Suna, Aral Cenk, Kabasakal Levent, Keyer-Uysal Meral and Akbuga Jülide) Co-encapsulation of two plasmlds n chltosan mlcropheres as a non-viral gene delivery vehicle J Pharm Pharmaceut Sci. 2003, Vol. 6, No. 1, pp. 27-32, https: //s¡tes.ualberta.ca/~csps/JPPS6 (1) /S.Turan/encapsulation.htm) . Briefly, before mixing the solutions were heated separately at 55 ° for 5 minutes and once mixed they were stirred immediately at maximum speed for 30 seconds. This nanoparticle solution was used 30 minutes after its preparation for transfection.
La formación Inicial de los complejos fue evaluada mediante la determinación del retardo en geles de agarosa. Para esto las muestras con las diferentes nanopartículas fueron cargadas en un gel de agarosa al 1 % con amortiguador TAE 1 X, se corrieron en el gel a 120 V por 30 minutos, el gel fue teñido con Gel Red (Blotium) y visualizado bajo luz UV. Luego de la formación, una muestra de la solución fue centrifugada a 13000g por 10 mln y el sobrenadante fue colectado para determinar la cantidad de pDNA no acomplejado utilizando un espectrofotómetro. La eficiencia de carga fue calculada según la siguiente ecuación (Sun, 2011 ; Turan Suna y cois. Co-encapsulatlon of two plasmlds ¡n chltosan mlcropheres as a non-viral gene dellvery vehlcle. J Pharm Pharmaceut Sel. 2003, Vol. 6, No. 1 , págs. 27-32. bttps://sites. ¡jaibería. ca/~csps/JPPS6;1 j/STuran/encapsulation.htm): The initial formation of the complexes was evaluated by determining the delay in agarose gels. For this, the samples with the different nanoparticles were loaded on a 1% agarose gel with TAE 1 X buffer, run on the gel at 120 V for 30 minutes, the gel was stained with Gel Red (Blotium) and visualized under light UV After the formation, a sample of the solution was centrifuged at 13000g per 10 mln and the supernatant was collected to determine the amount of non-complexed pDNA using a spectrophotometer. The loading efficiency was calculated according to the following equation (Sun, 2011, Turan Suna et al, Co-encapsulatlon of two plasmlds chltosan mlcropheres as a non-viral gene dellvery vehlcle, J Pharm Pharmaceut Sel. 2003, Vol. 6, .. No. 1, pp 27-32 bttps: // sites jaibería ca / ~ CSPs / JPPS6; 1 j / STuran / encapsulation.htm)..:
Eficiencia de carga (%)= [(cantidad total de pDNA) - (pDNA no atrapadoj/cantldad total pDNA] x 100.  Load efficiency (%) = [(total amount of pDNA) - (non-trapped pDNA / total quantity pDNA) x 100.
1.3 Potencial Zeta v tamaño  1.3 Zeta Potential v size
El potencial zeta es Indicativo de la carga superficial que poseen la nanopartículas, este fue determinado utilizando el equipo Zetazalser Nano (Malvern Inst. Ltd. Malvern, UK). Fueron sintetizadas nanopartículas de qultosano con diferentes relaciones N/P (4, 20, 28 y 40) y se realizó la medición del potencial zeta y del tamaño de las partículas obtenidas. Para una determinación más exacta del tamaño y morfología de las NPs, la muestra se sometió a microscopía de fuerza atómica. La medición se realizó en el equipo Nanoscope Illa Atomlc Forcé Mlcroscope. Para este experimento, se prepararon nanopartículas de qultosano a una relación N/P de 20 y 28 con 2,5 pg de pcDNA.3.1 EGFP  The zeta potential is indicative of the surface charge that the nanoparticles possess, this was determined using the Zetazalser Nano equipment (Malvern Inst. Ltd. Malvern, UK). Qultosan nanoparticles with different N / P ratios (4, 20, 28 and 40) were synthesized and the zeta potential and the size of the particles obtained were measured. For a more accurate determination of the size and morphology of the NPs, the sample underwent atomic force microscopy. The measurement was made in the Nanoscope Illa Atomlc Forcé Mlcroscope team. For this experiment, qultosan nanoparticles were prepared at an N / P ratio of 20 and 28 with 2.5 pg of pcDNA.3.1 EGFP
1.4 Transfección in vitro v determinación de la eficiencia de transfección 1.4 In vitro transfection and determination of transfection efficiency
Se realizaron cultivos de células de carcinoma de Colón (CT26) las cuales fueron cultivadas en medio RPMI (Glbco) estéril, suplementado con 10% de suero fetal bovino (SFB). Para la transfección se utilizaron placas de 24 pocilios (Falcon) en las cuales se sembraron 5 x 105 células/poclllo Incubadas a 3713 con 5% C02- Las células fueron transfectadas 24 horas después, a un 70% de confluencia. Antes de la transfección, las células fueron lavadas con PBS estéril (1X, pH 7,4). Se transfectaron como control células con llpofectamlna 2000 y pDNA desnudo. Cultures of Colon carcinoma cells (CT26) were cultured in sterile RPMI (Glbco) medium supplemented with 10% fetal bovine serum (FBS). For the transfection, 24-well plates (Falcon) were used in which 5 x 10 5 cells / pocillus were incubated at 3713 with 5% C0 2 - The cells were transfected 24 hours later, at 70% confluence. Before the transfection, the cells were washed with sterile PBS (1X, pH 7.4). Cells with llpofectamlna 2000 and naked pDNA were transfected as control.
La cuantlflcaclón de la eficiencia de transfección se realizó mediante la Identificación de células positivas para GFP por medio de cltometría de flujo utilizando el equipo BD AccurP (BD Blosclence, San José, California, USA). Para esto, se cosecharon las células de la placa de cultivo de 24 pocilios, se lavaron con PBS 1X estéril, se agregó tripsina 1X y se recolectó en tubos eppendorf. Luego, se agregó 500 pL de medio de cultivo y se centrifugó a 1200g por 10 mln. Posteriormente se retiró el sobrenadante, se agregó PBS y se centrifugó nuevamente a 1200g por 10 minutos, el pellet se resuspendió en PBS 1X estéril y se analizó por cltometría de flujo. The quantification of the transfection efficiency was performed by the identification of GFP-positive cells by means of flow cltometry using the BD AccurP equipment (BD Blosclence, San Jose, California, USA). For this, the cells of the 24-well culture plate were harvested, washed with sterile 1X PBS, added 1X trypsin and collected in eppendorf tubes. Then, 500 pL of culture medium was added and centrifuged at 1200g for 10 mln. Subsequently the supernatant was removed, PBS was added and centrifuged again at 1200g for 10 minutes, the pellet was resuspended in sterile 1X PBS and analyzed by flow cltometry.
1.5 Extracción de RNA y RT-PCR 1.5 RNA extraction and RT-PCR
Con el fin de determinar la expresión del mRNA de las proteínas de fusión en las células transfectadas con las nanopartículas de qultosano, se realizó un RT-PCR para las proteínas de fusión REO e ISAV. Para lo cual se extrajo el RNA total. Las células fueron homogenlzadas en 2 mL de Trlzol® Reagent (Glbco, Life Technologies, New York, USA), usando las recomendaciones del fabricante, llsls celular para posteriormente realizar una extracción fenol-cloroformo y precipitar el RNA con ¡sopropanol. El RNA total extraído fue resuspendldo en agua deslonlzada grado molecular. El RNA (1 pg) fue tratado con RNasa-out (Promega, Wlsconsln, USA) y se procedió a la síntesis de cDNA, que fue realizada usando transcrlptasa reversa M-MLV y OllgodT20 (ambos de Promega, Wlsconsln, USA). Ambos procedimientos fueron realizados según protocolo del proveedor, el cual se trató con RNasa 1 ug/1 ug de RNA para luego sintetizar el cDNA utilizando una temperatura de activación de la enzima a 60 por una hora y luego a 72 por 10 minutos. Se llevó a cabo un PCR a partir del cDNA obtenido, utilizando para ello partidores para los genes (SEQ ID No.: 1 ) que codifican para las proteínas de fusión REO (SEQ ID No.:2) e ISAV. Para REO-F se utilizaron los partidores forward 5'-CAG GGT CAT GTA ACG GAG CTA -3' (SEQ ID No.: 3) y reverse 5'-GCT GCG TCA GCC TTA ATT TTG - 3' (SEQ ID No.: 4) con una temperatura de anneallng de 570. Para ISAV-F se utilizó el partidor forward 5'-ATC AGC ATG GCT GGA GCA AGT A -3' ((SEQ ID No.: 5) y reverse 5'-TCT CCA ATC AGC CCG ATT TCC A -3' (SEQ ID No.: 6) con una temperatura de anneallng de 630. Posteriormente se realizó una electroforesls en gel de agarosa, donde se corrieron las muestras a 100 V por 30 minutos. Se utilizó estándar de peso molecular Gene Ruler 100bp #SM0241 (ThermoSclentlflc, Life Technologies, Massachusetts, USA), el gel fue teñido con Gel Red (Blotlum) y visualizado bajo luz UV. In order to determine the mRNA expression of the fusion proteins in the cells transfected with the qultosan nanoparticles, an RT-PCR was performed for the fusion proteins REO and ISAV. For which total RNA was extracted. The cells were homogenized in 2 mL of Trlzol® Reagent (Glbco, Life Technologies, New York, USA), using the manufacturer's recommendations, cell llsls to subsequently perform a phenol-chloroform extraction and precipitate the RNA with ¡-propanol. The total extracted RNA was resuspended in molecular grade deionized water. RNA (1 pg) was treated with RNase-out (Promega, Wlsconsln, USA) and cDNA synthesis was carried out, which was carried out using reverse transcrlptase M-MLV and OllgodT20 (both from Promega, Wlsconsln, USA). Both procedures were performed according to the supplier's protocol, which was treated with RNase 1 ug / 1 ug of RNA to then synthesize the cDNA using an activation temperature of the enzyme at 60 for one hour and then at 72 for 10 minutes. A PCR was carried out from the cDNA obtained, using gene splitters (SEQ ID No .: 1) coding for the REO fusion proteins (SEQ ID No.:2) and ISAV. For REO-F, the forward primers 5 ' -CAG GGT CAT GTA ACG GAG CTA -3 ' (SEQ ID No. 3) and reverse 5 'were used -GCT GCG TCA GCC TTA ATT TTG-3 ' (SEQ ID No. : 4) with an annealng temperature of 570. For ISAV-F, the 5 ' forward splitter was used -ATC AGC ATG GCT GGA GCA AGT A -3 ' ((SEQ ID No .: 5) and reverse 5 ' -TCT CCA ATC AGC CCG ATT TCC A -3 ' (SEQ ID No .: 6) with an annealng temperature of 630. Subsequently an agarose gel electrophoresis was performed, where the samples were run at 100 V for 30 minutes. of molecular weight Gene Ruler 100bp # SM0241 (ThermoSclentlflc, Life Technologies, Massachusetts, USA), the gel was stained with Gel Red (Blotlum) and visualized under UV light.
1.6 Estudios de viabilidad celular 1.6 Cell viability studies
La evaluación de la viabilidad celular fue llevada a cabo mediante ensayo MTT (Bromuro de 3-(4,5-dimetiltiazol-2-ilo)-2,5-difeniltetrazol). Las células CT26 fueron cultivadas en placas de 96 pocilios a una densidad de 5x103 células/poclllo en 100 pL de medio de cultivo RPMI suplementado con 10% de SFB, luego de 24 horas se procedió a la transfecclón de las células con NPs que poseían los genes para las proteínas de fusión ISAV y REO, según dichos genes se describen en las secciones anteriores. La viabilidad celular fue determinada mediante el ensayo MTT a las 24, 48 y 72 horas post transfecclón. Para esto se les retiró el medio de cultivo a las células y se les agregó 20 pL de MTT dejando Incubar por 3 horas a 370 a un 5% de C02. Posterior a esto se agregaron 100 pL de dlmetllsulfóxldo (DMSO) y se midió la absorbancla a 570 nm en el equipo TECAN Infinite 200PRO. La viabilidad celular de las células control (sin transfecclón) fue arbitrariamente determinada como 100%. 1.7 Animales The evaluation of cell viability was carried out by MTT assay (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazole bromide). CT26 cells were cultured in 96-well plates at a density of 5x10 3 cells / well in 100 pL of RPMI culture medium supplemented with 10% FBS, after 24 hours the cells were transfected with NPs that they possessed. the genes for the fusion proteins ISAV and REO, according to said genes are described in the previous sections. Cell viability was determined by the MTT assay at 24, 48 and 72 hours post transfection. To this they were withdrawn culture medium and the cells were added 20 pL of MTT leaving Incubate for 3 hours at 370 to 5% C0 2. After that, 100 pL of dlmethyl sulfoxyl (DMSO) was added and the absorbance was measured at 570 nm in the TECAN Infinite 200PRO equipment. The cell viability of the control cells (without transfection) was arbitrarily determined as 100%. 1.7 Animals
Ratones de la cepa C57 y Balb/c de 6 a 8 semanas fueron mantenidos con alimentación ad libitumn y bajo un ciclo de luz y oscuridad, y se les aplicó un tratamiento con la composición de la Invención que comprendía las nanopartículas y se determinaron los volúmenes de tamaño tumoral utilizados (2 mm3 para el momento del tratamiento y 260 mm3 para el sacrificio del animal), así como también se realizó el monltoreo mediante la medición del tamaño tumoral utilizando un pie de metro. Mice of strain C57 and Balb / c from 6 to 8 weeks were maintained with feeding ad libitum and under a cycle of light and dark, and a treatment was applied to them with the composition of the invention that comprised the nanoparticles and the volumes were determined of tumor size used (2 mm 3 for the time of treatment and 260 mm 3 for the sacrifice of the animal), as well as monotherapy was performed by measuring the tumor size using a foot meter.
1.8 Inducción de tumor y tratamiento antitumoral 1.8 Tumor induction and antitumor treatment
Para evaluar el crecimiento tumoral se resuspendieron 500 mil células CT26 vivas en PBS. Los ratones Balb/c fueron Inyectados con las células tumorales CT26 en la zona lumbar de forma subcutánea. Una vez Inyectados, se monltoreo el tiempo de aparición del tumor, el tamaño tumoral y las características del estado del ratón, Incluyendo apariencia, peso y comportamiento. Se determinó un parámetro de crecimiento máximo de 261 mm3, o un plazo máximo de 60 días sin tumor, como criterio de punto final del experimento. Al final de este proceso, los ratones fueron sacrificados por dislocación cervical. To evaluate the tumor growth 500 thousand live CT26 cells were resuspended in PBS. The Balb / c mice were injected with the CT26 tumor cells in the lumbar region subcutaneously. Once injected, the time of appearance of the tumor, the tumor size and the characteristics of the state of the mouse, including appearance, weight and behavior, are monitored. A maximum growth parameter of 261 mm 3 , or a maximum period of 60 days without tumor, was determined as the criterion of the end point of the experiment. At the end of this process, the mice were sacrificed by cervical dislocation.
Cuando el tumor alcanza un volumen tumoral de 2 mm3 se procede a administrar la composición de la Invención mediante Inyección ¡ntratumoral directa. La composición de la Invención comprendía en particular nanopartículas de qultosano en una relación N/P 28 que contiene 10 pg de pDNA con los genes (SEQ ID No.:1) para las proteínas de fusión virales y luego se procedió al monltoreo del animal hasta que alcanza un volumen tumoral de 261 mm3o 60 días libres de tumor. When the tumor reaches a tumor volume of 2 mm 3 , the composition of the invention is administered by direct intratumoral injection. The composition of the invention comprised in particular qultosan nanoparticles in an N / P 28 ratio containing 10 pg of pDNA with the genes (SEQ ID No.:1) for the viral fusion proteins and then the animal was monotreated until which reaches a tumor volume of 261 mm 3 or 60 days free of tumor.
1.9 Extracción de esplenocitos v linfocitos infiltrantes de tumores 1.9 Extraction of splenocytes and tumor infiltrating lymphocytes
Cuando el tumor alcanzó el volumen correspondiente al criterio máximo de punto final de 261 m3 o 60 días libres de tumor, se procedió a su sacrificio mediante dislocación cervical. Posteriormente se realizó la extracción del bazo y el tumor. Los bazos fueron disgregados en una rejilla metálica de 0,150 mm (100 mesh), luego los eritrocitos fueron eliminados por lisls diferencial utilizando amortiguador ACK (NH4CI 155mM, KHC03 10mM, Na2EDTA 1 mM, pH 7,3) durante 5 min en agitación suave. Por otro lado, los tumores fueron disgregados y luego Incubados en tripsina 1 x en agitación suave por 30 minutos, a 3713. Posteriormente, se to mó el sobrenadante, se centrifugó a 1200 x g por 10 min y se descartó el sobrenadante. When the tumor reached the volume corresponding to the maximum criterion of end point of 261 m 3 or 60 days free of tumor, it proceeded to sacrifice it by dislocation cervical. Subsequently, the spleen and tumor were extracted. The spleens were disintegrated on a 0.150 mm (100 mesh) metal grid, then the erythrocytes were removed by differential lysls using ACK buffer (155mM NH 4 CI, 10mM KHC0 3 , 1 mM Na 2 EDTA, pH 7.3) for 5 hours. min in gentle agitation. On the other hand, the tumors were disintegrated and then incubated in 1 x trypsin under gentle agitation for 30 minutes at 3713. Subsequently, the supernatant was removed, centrifuged at 1200 xg for 10 min and the supernatant was discarded.
Los esplenocltos y células extraídas del tumor fueron resuspendldas en amortiguador de bloqueo frío (IF; SFBal 2% en PBS) con una densidad de 1 x106 células/mL durante 30 min a 413. Luego, para determinar la población I infocitaria CD8+, se utilizó el anticuerpo Antl-CD8 Ly-2 PE (BDpharmingen, BD Biosclences, San José, California, USA); para poblaciones CD4+ se utilizó el anticuerpo Anti-mouse CD4 FITC (eBioscence); para las poblaciones CD4+CD25+Foxp3Ant¡-mouse CD25 PE(eBiosclence) y Antl-mouse Foxp3 PCP (eBiosclence), para CD4+RORY(t+) (anti- human/mouse RORY (t+) AFKJS-9 (eBioscence)) y para poblaciones CD4+T-betse utilizó antl-human/mouse T-bet (eBioscence). Todos los anticuerpos fueron utilizados en una dilución 1 :10. Finalmente las células marcadas se resuspendieron en la solución Cell Staining Buffer (eBiosclence, San Diego, California, USA) y se analizaron por cltometría de Flujo en el equipo Accuri C6 (BD, California, USA). The splenoclines and cells extracted from the tumor were resuspended in cold blocking buffer (IF; SFBal 2% in PBS) with a density of 1 x 10 6 cells / mL for 30 min at 413. Then, to determine the CD8 + population I infocitaria, used the Antl-CD8 Ly-2 PE antibody (BDpharmingen, BD Biosclences, San Jose, California, USA); for CD4 + populations the FITC Anti-mouse CD4 antibody (eBioscence) was used; for the populations CD4 + CD25 + Foxp3Ant¡-mouse CD25 PE (eBiosclence) and Antl-mouse Foxp3 PCP (eBiosclence), for CD4 + RORY (t + ) (anti- human / mouse RORY (t + ) AFKJS-9 (eBioscence )) and for CD4 + populations T-betse used antl-human / mouse T-bet (eBioscence). All antibodies were used in a 1: 10 dilution. Finally, the labeled cells were resuspended in the Cell Staining Buffer solution (eBiosclence, San Diego, California, USA) and analyzed by Flow cltometry in the Accuri C6 equipment (BD, California, USA).
1.10 Análisis estadístico 1.10 Statistical analysis
Se aplicó el test Mann Whitney para comparar los distintos tratamientos y todos los datos se presentan con error estándar. Para el análisis de los ensayos de viabilidad celular se realizó un análisis anova de dos vías. Los análisis se realizaron utilizando el software GraphPad Prism 5.01 (GraphPad Software, Inc., San Diego, California, USA). Para todos los análisis se consideró un 95% de confianza en los datos, para evaluar si el efecto correspondía a un efecto estadísticamente significativo, es decir un valor de p<0,05. The Mann Whitney test was applied to compare the different treatments and all data are presented with standard error. For the analysis of cell viability assays, an anova two-way analysis was performed. The analyzes were performed using the GraphPad Prism 5.01 software (GraphPad Software, Inc., San Diego, California, USA). For all the analyzes a 95% confidence in the data was considered, to evaluate if the effect corresponded to a statistically significant effect, that is, a value of p <0.05.
2. Resultados 2. Results
2.1 Caracterización de las nanopartículas  2.1 Characterization of nanoparticles
Para determinar la capacidad de encapsulación de pDNA por las nanopartículas bajo las diferentes condiciones evaluadas (ver sección 1.2 anterior), la mezcla generada con qultosano/pDNA se centrifugó y se midió la cantidad de pDNA libre en el sobrenadante. Se determinó que la eficiencia de carga de las nanopartículas qultosano/pDNA incrementa con la relación N/P (grupos amina de qultosano/fosfatos de DNA). Como se observa en la figura 1A, todas las relaciones N/P de qultosano/pDNA utilizadas presentan eficiencias de carga mayores al 60%, siendo en las relaciones N/P 28 y 40, mayores al 80% (Tabla 1 ). Tabla 1 : Tamaño y potencial zeta de las nanopartículas de diferentes relaciones N/P  To determine the encapsulation capacity of pDNA by the nanoparticles under the different conditions evaluated (see section 1.2 above), the mixture generated with qultosan / pDNA was centrifuged and the amount of free pDNA in the supernatant was measured. It was determined that the charging efficiency of the nanoparticles qultosan / pDNA increases with the ratio N / P (amine groups of qultosan / DNA phosphates). As seen in Figure 1A, all the ratios N / P of qultosan / pDNA used have load efficiencies greater than 60%, being in the N / P ratios 28 and 40, greater than 80% (Table 1). Table 1: Size and zeta potential of nanoparticles of different N / P ratios
Figure imgf000031_0001
Figure imgf000031_0001
Con el fin de caracterizar que los protocolos usados a partir de los cuales se generaron las nanopartículas y además garantizar que estas se encontraban unidas de forma no lábil al pDNA, las nanopartículas generadas fueron analizadas por electroforesls en gel de agarosa. En el complejo qultosano/pDNA, el pDNA encapsulado no mostró migración en el gel para todas las relaciones N/P, como se puede observar en las Figuras 1 B y 1 C, contrario a lo observado en la migración del plásmldo soluble. Lo anterior se explica por una encapsulaclón completa, representada como una retención en el pocilio debido a que el pDNA se encuentra formando un complejo con qultosano y ésta no es capaz de migrar por el gel. In order to characterize the protocols used from which the nanoparticles were generated and also to guarantee that these were bound non-labile to the pDNA, the generated nanoparticles were analyzed by agarose gel electrophoresis. In the qultosan / pDNA complex, the encapsulated pDNA showed no migration in the gel for all N / P ratios, as can observe in Figures 1 B and 1 C, contrary to what was observed in the migration of the soluble plasmid. The above is explained by a complete encapsulation, represented as a retention in the well because the pDNA is forming a complex with qultosan and this is not able to migrate through the gel.
Una vez caracterizada la eficiencia de encapsulaclón de las nanopartículas generadas, se realizó la medición del potencial Z. Para esto, se evaluaron las nanopartículas qultosano/pDNA a diferentes relaciones N/P, como se muestra en la Figura 2. Los hlstogramas con respecto al potencial, Indican que todas las nanopartículas evaluadas presentaron un potencial Z positivo (rango entre +10 y +58mV), sin relación directa entre la relación N/P de las nanopartículas con qultosano y el potencial zeta (Flg. 2). El análisis de tamaño de las NPs de qultosano/pDNA, mostró que además poseen un rango de tamaño entre los 25-56 nm de radio (Flg. 3), compatible con una nanopartícula. Los complejos formados con una relación N/P = 4 tienen un tamaño de alrededor de los 25 nm de radio, se observa en la Figura 3a que las nanopartículas generadas con una relación N/P de 4 no son homogéneas. Los complejos con una relación N/P = 20 tienen un tamaño de 39 nm de radio, los complejos con una relación N/P = 28 tienen un tamaño de 45 nm de radio y los complejos con una relación N/P = 40 un tamaño de 40 nm de radio (tabla 2). Con el fin de confirmar el tamaño y determinar la morfología de las nanopartículas se realizó un análisis por AFM (Flg. 4), del cual se obtuvo una Imagen del complejo formado por qu¡tosano/pDNA-GFP para las relaciones N/P = 20 y N/P = 28, utilizando 2,5 pg de pDNA. Donde se obtuvo que los diámetros de estos complejos son de 70-88 nm aproximadamente. En la Figura 4B, las nanopartículas con una relación N/P = 28 se observa la presencia de qultosano de forma lineal, el cual no fue capaz de encapsular el pDNA, esto probablemente por exceso de qultosano. Tabla 2: Eficiencias de carga de DNA de las NPs Once the encapsulation efficiency of the generated nanoparticles was characterized, the Z-potential measurement was performed. For this, the nanoparticles qultosan / pDNA were evaluated at different N / P ratios, as shown in Figure 2. The hlstograms with respect to the potential, indicate that all the nanoparticles evaluated had a positive Z potential (range between +10 and + 58mV), without a direct relationship between the N / P ratio of the nanoparticles with qultosan and the zeta potential (Flg. 2). The size analysis of the qultosan NPs / pDNA, showed that they also have a size range between 25-56 nm radius (Flg. 3), compatible with a nanoparticle. The complexes formed with an N / P ratio = 4 have a size of around 25 nm in radius, it is observed in Figure 3a that the nanoparticles generated with an N / P ratio of 4 are not homogeneous. The complexes with a ratio N / P = 20 have a size of 39 nm radius, the complexes with a ratio N / P = 28 have a size of 45 nm radius and the complexes with a ratio N / P = 40 a size of 40 nm radius (table 2). In order to confirm the size and determine the morphology of the nanoparticles, an analysis was performed by AFM (Flg. 4), from which an image of the complex formed by quitosan / pDNA-GFP was obtained for the N / P = 20 and N / P = 28, using 2.5 pg of pDNA. Where it was obtained that the diameters of these complexes are approximately 70-88 nm. In Figure 4B, the nanoparticles with an N / P = 28 ratio show the presence of qultosan in a linear manner, which was not able to encapsulate the pDNA, probably due to excess qultosan. Table 2: DNA loading efficiencies of NPs
Figure imgf000033_0001
Figure imgf000033_0001
2.2 Determinación de la eficiencia de transfección de las NPs 2.2 Determination of transfection efficiency of NPs
Para evaluar si las nanopartículas son capaces de permitir la transfección del DNA, se evaluó utilizando el cDNA codificante para GFP clonado en el plásmido pcDNA, como se describió en la sección 1 .4 anterior. La eficiencia de la transfección del gen de GFP mediante las nanopartículas de quitosano fue evaluada en la línea celular de carcinoma de colón CT26. Luego de 48 horas post-transfecclón se evaluó la expresión de GFP mediante cltometría de flujo, en todos los casos se expresó como el porcentaje de células transfectadas de las células totales. Se utilizaron como controles las células sin transfectar, un agente de transfección comercial Llpofectamlna 2000 y con el plásmido desnudo. Para qultosano/pDNA se evaluaron diferentes relaciones N/P (4, 20, 28 y 40), donde se obtuvo que todas las relaciones N/P de qultosano/pDNA son capaces de transfectar, siendo la relación N/P = 28 la que posee una mayor eficiencia de transfección (9%) que llpofectamlna (3%) (Figura 5).  To evaluate whether the nanoparticles are capable of allowing DNA transfection, it was evaluated using the cDNA coding for GFP cloned in the pcDNA plasmid, as described in section 1 .4 above. The efficiency of transfection of the GFP gene by chitosan nanoparticles was evaluated in the CT26 colon carcinoma cell line. After 48 hours post-transfection, the expression of GFP was evaluated by flow cltometry, in all cases it was expressed as the percentage of transfected cells of the total cells. Untransfected cells, a commercial transfection agent Llpofectamlna 2000 and the naked plasmid were used as controls. For qultosano / pDNA different N / P ratios were evaluated (4, 20, 28 and 40), where it was obtained that all the ratios N / P of qultosano / pDNA are capable of transfecting, being the ratio N / P = 28 the one that it has a higher efficiency of transfection (9%) than llpofectamlna (3%) (Figure 5).
2.3 Ensayo de migración electroforética de complejos o NPs quitosano-qen de Proteínas de fusión. 2.3 Electrophoretic migration assay of chitosan-qen complexes or NPs from fusion proteins.
Una vez que se determinó que la relación N/P que es capaz de transfectar eficientemente la línea celular CT26 es N/P = 28, se procedió a evaluar la capacidad de encapsular el pDNA (pIRES) que contiene los genes (SEQ ID No.:1 ) de las proteínas de fusión virales REO e ISAV. Tal como se describió en la sección 1.4 anterior, la encapsulaclón completa se observaría como retención en el pocilio. Se observó que los complejos formados por qultosano con los plásmldos que contienen los genes (SEQ ID No.:1 ) para las proteínas de fusión son capaces de encapsular el pDNA, ya que no se observa migración en el gel de agarosa (Flg. 6). 2.4 Caracterización de la expresión de las proteínas virales en CT26 Once it was determined that the N / P ratio that is capable of efficiently transfecting the CT26 cell line is N / P = 28, we proceeded to evaluate the ability to encapsulate the pDNA (pIRES) containing the genes (SEQ ID No. : 1) of the viral fusion proteins REO and ISAV. As described in section 1.4 above, the complete encapsulation would be observed as retention in the well. He observed that the complexes formed by qultosan with the plasmids containing the genes (SEQ ID No.:1) for the fusion proteins are able to encapsulate the pDNA, since no migration is observed in the agarose gel (Flg. 6) . 2.4 Characterization of the expression of viral proteins in CT26
Con el fin de evaluar si las células transfectadas con las NPs están expresando los genes (SEQ ID No.:1) para las proteínas de fusión virales utilizadas, se realizó un RT- PCR para cada cDNA, esto debido a la ausencia de los anticuerpos para poder medir la expresión directa de la proteína. Se utilizó como control negativo de transfecclón las células CT26 sin transfectar y como control positivo las células transfectadas con llpofectamlna (reactivo comercial) y además el control de PCR el cual no contiene el material genético. En la Figura 7A se observa el PCR realizado para el cDNA de la proteína REO, donde existe una banda alrededor de los 202 pb la cual corresponde al tamaño del ampllcón esperado para la reglón codificante para esta proteína. En la Figura 7B se encuentra el PCR realizado para el cDNA codificante para la proteína ISAV donde se observa un ampllcón de 304 pb tanto en el control positivo (LF) como en el cDNA proveniente de células transfectadas con qultosano (CH-ISAV).  In order to evaluate if the cells transfected with the NPs are expressing the genes (SEQ ID No.:1) for the viral fusion proteins used, an RT-PCR was performed for each cDNA, this due to the absence of the antibodies to be able to measure the direct expression of the protein. The transfected CT26 cells were used as negative transfection control and, as a positive control, the cells transfected with llpofectamna (commercial reagent) and also the PCR control which does not contain the genetic material. Figure 7A shows the PCR performed for the cDNA of the REO protein, where there is a band around 202 bp which corresponds to the size of the expected amplicon for the codon coding for this protein. Figure 7B shows the PCR performed for the cDNA coding for the ISAV protein where a 304 bp amplicon is observed both in the positive control (LF) and in the cDNA coming from cells transfected with qultosan (CH-ISAV).
2.5 Determinación del efecto sobre la viabilidad celular tras la transfección con NPs de quitosano v genes de las proteínas virales 2.5 Determination of the effect on cell viability after transfection with NPs of chitosan v genes of viral proteins
Se estudió la viabilidad celular mediante determinación del porcentaje de células viables utilizando un ensayo de reducción de MTT. En este experimento, el valor de viabilidad de las células no tratadas se consideró como 100% de viabilidad. Las NPs se prepararon con una relación N/P = 28 formando el complejo qu¡tosano/DNA con los genes (SEQ ID No.:1 ) para las proteínas de fusión ISAV y REO. Como se muestra en la Figura 8, se observa una disminución significativa solo a las 72 horas en células transfectadas con quItosano/pDNA proteína de fusión REO (Flg. 8A). En las demás condiciones no se observaron cambios significativos para ninguno de los tiempos medidos. Para los controles se utilizó el plásmldo desnudo y el control positivo de transfección, llpofectamlna. Para el plásmldo desnudo no se observaron cambios significativos a ninguno de los tiempos medidos, pero sí se observó una disminución significativa utilizando lipofectamlna con el plásmldo que contiene el gen de las proteínas de fusión a 24, 48 y 72 horas post transfección, confirmando la alta toxicidad de este reactivo en las transfecciones. Cell viability was studied by determining the percentage of viable cells using an MTT reduction assay. In this experiment, the viability value of the untreated cells was considered as 100% viability. The NPs were prepared with an N / P = 28 ratio forming the chitosan / DNA complex with the genes (SEQ ID No.:1) for the ISAV and REO fusion proteins. As shown in Figure 8, a significant decrease is observed only at 72 hours in cells transfected with quitosan / pDNA REO fusion protein (Flg. 8A). Under the other conditions, no significant changes were observed for any of the times measured. For the controls, the naked plasmid and the positive transfection control, llpofectamlna, were used. For the naked plasmid no significant changes were observed at any of the times measured, but a significant decrease was observed using lipofectamna with the plasmid containing the gene of the fusion proteins at 24, 48 and 72 hours post transfection, confirming the high toxicity of this reagent in transfections.
2.6 Caracterización del potencial para el uso de NPS virales en el modelo CT26. 2.6 Characterization of the potential for the use of viral NPS in the CT26 model.
Animales son desafiados con células tumorales vivas como se describe la sección 1.8 anterior y posterior a esto cuando se detecta un tamaño tumoral de 2 mm3, se comienza con el tratamiento con la composición de la Invención que comprende las NPs antes descritas. En todos los grupos analizados el tiempo de aparición tumoral fue similar, entre los días 7-10 (Fig. 9). Luego de la aparición tumoral, se esperó a que el tumor alcanzará un volumen de 200 mm3 y se procedió al tratamiento del animal inyectando 100 pL de nanopartículas de quitosano con los genes para las diferentes proteínas de fusión (CH-REO (SEQ ID No.:1 ) y CH-ISAV) con una relación N/P = 28 utilizando 10 pg de pDNA para la generación de las nanopartículas. En la Figura 10 se muestra una gráfica de volumen tumoral frente a los días post aparición, y se comparan las diferentes condiciones experimentales. Cuando se compara el efecto del tratamiento con quitosano solo, no se observan diferencias en el crecimiento tumoral comparado al control, asimismo el tratamiento con CH-ISAV no presenta grandes diferencias frente al control. Cuando se realiza el análisis del crecimiento tumoral en los animales tratados con CH-REO se puede observar que existe un retraso con respecto al control de quitosano y los animales sin tratar, esto es respaldado por los análisis de Intersección con el eje x (tabla 3). Por otra parte se observa mediante el análisis de pendientes que una vez que el crecimiento alcanza una fase exponencial aumenta la velocidad de crecimiento tumoral en los ratones tratados con CH-REO (tabla 4). Además de esto, algunos de los animales tratados con las 2 condiciones de trabajo presentaron necrosis en la zona del tumor, lo que conllevo a la disminución del volumen tumoral (Figura 11 ). Tabla 3. Análisis de intersecciones con el eje x. Se muestran los valores de las Intersecciones con el eje x de las curvas de crecimiento tumoral (Flg.10) para cada ratón analizado, valores obtenidos mediante una regresión lineal de las curvas. Animals are challenged with live tumor cells as described in section 1.8 above and after this when a tumor size of 2 mm 3 is detected, treatment with the composition of the invention comprising the NPs described above is started. In all the groups analyzed, the time of tumor onset was similar, between days 7-10 (Fig. 9). After the tumor appearance, the tumor was expected to reach a volume of 200 mm 3 and the animal was treated by injecting 100 pL of chitosan nanoparticles with the genes for the different fusion proteins (CH-REO (SEQ ID No .: 1) and CH-ISAV) with an N / P ratio = 28 using 10 pg of pDNA for the generation of the nanoparticles. Figure 10 shows a graph of tumor volume versus post-emergence days, and compares the different experimental conditions. When the effect of the treatment with chitosan alone is compared, no differences are observed in the tumor growth compared to the control, also the treatment with CH-ISAV does not present great differences compared to the control. When the analysis of the tumor growth is performed in the animals treated with CH-REO, it can be observed that there is a delay with respect to the control of chitosan and the untreated animals, this is supported by the analysis of Intersection with the x-axis (Table 3 ). On the other hand it is observed through the analysis of slopes that once the growth reaches an exponential phase the growth speed increases tumor in mice treated with CH-REO (Table 4). In addition to this, some of the animals treated with the 2 working conditions presented necrosis in the area of the tumor, which led to the decrease in tumor volume (Figure 11). Table 3. Analysis of intersections with the x axis. The values of the Intersections with the x-axis of the tumor growth curves (Flg.10) for each analyzed mouse are shown, values obtained by means of a linear regression of the curves.
Figure imgf000036_0001
Tabla 4. Análisis de pendientes. Se muestran los valores de las pendientes de las curvas de crecimiento tumoral (Flg.10) para cada ratón analizado, valores obtenidos mediante una regresión lineal de las curvas.
Figure imgf000036_0001
Table 4. Analysis of slopes. The values of the slopes of the tumor growth curves (Flg.10) for each mouse analyzed are shown, values obtained by means of a linear regression of the curves.
Figure imgf000036_0002
Tabla 5. Análisis de sobrevida de los animales. Comparación de los días de sobrevida del animal, entre el control de vehículo quitosano y los tratamientos realizados. Se tomó el punto de corte a partir de las gráficas de crecimiento tumoral incluyendo los animales con necrosis. Se realizó un Test de Flsher para el análisis estadístico.
Figure imgf000036_0002
Table 5. Analysis of survival of the animals. Comparison of the days of survival of the animal between the chitosan vehicle control and the treatments performed. The cut-off point was taken from the graphs of tumor growth including animals with necrosis. A Flsher Test was performed for the statistical analysis.
Figure imgf000037_0001
Figure imgf000037_0001
Posterior al sacrificio de los animales y con el fin de evaluar si existían cambios en las poblaciones linfocitarias a nivel sistémlco, asociadas al tratamiento que pudieran dar cuenta de los cambios en el crecimiento tumoral, se cuantificaron tanto las poblaciones linfocitarias CD4+, CD8+, Th17, Th1 y Treg en bazo. En la Figura 12B se aprecia el porcentaje de las poblaciones de linfocitos CD8 y CD4 presentes en el bazo. Se observa una disminución significativa de la población CD4+ en los tratamientos con CH-REO en relación a lo obtenido en ratones sin tratamiento. Para la población CD8+ se observó una disminución significativa con respecto al control en el tratamiento CH- ISAV. Además de cuantificar las poblaciones linfocitarias CD8 y CD4, también se analizó por citometría de flujo las sub-población CD4+ presentes en el bazo, implicadas en la respuesta antitumoral, las cuales corresponden a Th1 , Th17 y Treg (tabla 6). Tabla 6: Porcentaje de Poblaciones linfocitarias en bazo de animales tratados After the animals were sacrificed and in order to evaluate if there were changes in the lymphocyte populations at a systemic level, associated with the treatment that could account for the changes in the tumor growth, the lymphocyte populations CD4 +, CD8 +, Th17, were quantified. Th1 and Treg in spleen. Figure 12B shows the percentage of CD8 and CD4 lymphocyte populations present in the spleen. A significant decrease of the CD4 + population is observed in the treatments with CH-REO in relation to that obtained in mice without treatment. For the CD8 + population, a significant decrease was observed with respect to the control in the CH-ISAV treatment. In addition to quantifying the CD8 and CD4 lymphocyte populations, the CD4 + subpopulation present in the spleen, implicated in the antitumor response, was also analyzed by flow cytometry, which correspond to Th1, Th17 and Treg (Table 6). Table 6: Percentage of lymphocyte populations in spleen of treated animals
Figure imgf000038_0001
Figure imgf000038_0001
La Figura 13, muestra un análisis de la sub-poblaclón Th1 presente en el bazo, en la Figura 13A se observan los hlstogramas representativos para cada uno de los tratamientos donde se analizó la población CD4+TBET+. No se observaron cambios significativos para ninguno de los tratamientos utilizados (p= 0,0754 - 0,3452), pero si se puede observar una tendencia al aumento en los tratamientos con las nanopartículas con los genes de las proteínas de fusión. Figure 13 shows an analysis of the Th1 sub-population present in the spleen, in Figure 13A the representative hlstograms are observed for each of the treatments where the CD4 + TBET + population was analyzed. No significant changes were observed for any of the treatments used (p = 0.0754 - 0.34452), but a tendency to increase in the treatments with the nanoparticles could be observed with the genes of the fusion proteins.
En paralelo se realizó la medición de la sub-poblaclón Th17 presente en bazo (Flg. 14), donde se analizó la población CD4+RORY+. Se observa un aumento significativo con respecto al control de la población Th17 para todos los tratamientos realizados (CH-REO p= 0,0336; CH-ISAV p= 0,0240; CH P= 0,0125).  In parallel, the Th17 sub-population present in spleen was measured (Flg. 14), where the CD4 + RORY + population was analyzed. A significant increase was observed with respect to the control of the Th17 population for all treatments performed (CH-REO p = 0.0336, CH-ISAV p = 0.0240, CH P = 0.0125).
Para la sub-poblaclón Treg presente en bazo se analizó la población CD4+CD25+FOXP3+ (flg. 15), en donde no se observan cambios significativos para ninguno de los tratamientos utilizados (CH-REO p= 0,1718; CH-ISAV p= 0,1414). For the Treg sub-population present in the spleen, the CD4 + CD25 + FOXP3 + population (Fig. 15) was analyzed, where no significant changes were observed for any of the treatments used (CH-REO p = 0.1718; CH-ISAV p = 0.1414).
Adlclonalmente, post sacrificio se midieron los niveles de linfocitos CD4+ y CD8+ ¡nflltrantes en tumor (Figura 16) donde se aprecia una disminución significativa de la población CD4+ para los tratamientos con qultosano (p=0,0022) y CH-REO (p= 0,0265). En la población CD8+ en tumor no se observaron cambios significativos con respecto al control. (CH-REO p= 0,0935; CH-ISAV p= 0,1234). (Tabla 7) Tabla 7: Porcentaje de Poblaciones Infiltrantes de tumor. Adclclonally, after sacrifice, the levels of CD4 + and CD8 + lymphocytes were measured in tumors (Figure 16) where a significant decrease in the CD4 + population was observed for the treatments with qultosan (p = 0.0022) and CH-REO (p = 0.0265). In the tumor CD8 + population, no significant changes were observed with respect to the control. (CH-REO p = 0.0935; CH-ISAV p = 0.1234). (Table 7) Table 7: Percentage of tumor-infiltrating populations.
Figure imgf000039_0001
Figure imgf000039_0001
De esta forma, se generaron y caracterizaron nanopartículas con el fin de ser utilizadas como mecanismos de transfecclón in vivo para su uso terapéutico en tumores, expresando genes deletéreos en estos. Se caracterizó el uso de nanopartículas de qultosano como vector para la liberación de genes, mediante la técnica de coacervación compleja. Este proceso se presenta como una alternativa concreta a los Intentos realizados en los últimos años que han propuesto variados sistemas de liberación de genes para terapia génlca como alternativas a los vectores virales comúnmente utilizados. In this way, nanoparticles were generated and characterized in order to be used as in vivo transfection mechanisms for their therapeutic use in tumors, expressing deleterious genes in these. The use of nanoparticles of qultosan as a vector for the release of genes was characterized by the complex coacervation technique. This process is presented as a concrete alternative to the attempts made in recent years that have proposed various gene delivery systems for gene therapy as alternatives to the viral vectors commonly used.
El qultosano ha sido utilizado como vehículo para la trasferencla de genes en las células debido a sus características Intrínsecas. Esta molécula es capaz de condensar y encapsular el DNA para formar complejos que son captados en la superficie celular, endocltados y transportados, siendo capaces de migrar al núcleo por vías que, hasta la fecha aún no se encuentran dilucidadas (Robert S Coffln. From vlrotherapy to oncolytlc ¡mmunotherapy: where are we now? Current Opinión ¡n Vlrology. 2015, Vol.13, págs. 93-100. DOI: 10.1016/j.covlro.2015.06.005). Se han determinado tres factores que son necesarios para el Ingreso de las nanopartículas de qultosano/DNA a la célula, dentro de las cuales se encuentran: la relación de grupos amina del qultosano frente a los fosfatos del DNA (relación N/P), el potencial zeta y el tamaño (Sun Y., Zhang S, Peng X, Gong Z, L¡ X, Yuan Z, L¡ Y, Zhang D, Peng Y. Prepararon, characterization and transfection efficacy of chitosan nanoparticles containing the intestinal trefoil factor gene. Molecular Blology Report. 2012, Vol. 39, No. 2, pp. 945- 52. DOI: 10.1007/s11033-011 -0820-4). Es por esto que se procedió a la caracterización de las nanopartículas generadas con quitosano y pDNA-GFP. Para esto, se realizó la medición de la eficiencia de carga, en la cual se observaron niveles mayores al 60% de encapsulación de DNA en todas las relaciones N/P utilizadas, lo que indica que el pDNA utilizado es encapsulado eficientemente por el quitosano. Estas altas eficiencias de carga por parte del quitosano se explicarían por la presencia de altas cargas positivas otorgadas por los grupos aminos de su superficie, esta carga atrae fuertemente la carga negativa del pDNA promoviendo su encapsulación (Bateman Andrew R., Harrlngton Kevln J., Kottke Tim, Ahmed Atique, Melcher Alan A., Gough Mlchael J., Llnardakls Emmanouela, Riddle David, Dletz Alian, Lohse Chrlstine M., Strome Scott, Peterson Tim, Simarl Robert y Vile Richard G. Viral fusogenlc membrane glycoproteins klll solid tumor cells by nonapoptotic mechanlsms that promote cross presentation of tumor antigens by dendritic cells. Cáncer Research. 2002, Vol. 62, No. 22, págs. 6566-78. http://cancerres.aacriQurnals.org/coriient/62/22/6566.lQng). Las partículas de menor tamaño tienen la ventaja de entrar a las células a través de endocitosis y/o pinocitosis, lo que aumenta la tasa de transfección. The qultosano has been used as a vehicle for the transference of genes in cells due to its intrinsic characteristics. This molecule is able to condense and encapsulate DNA to form complexes that are captured on the cell surface, endocycled and transported, being able to migrate to the nucleus through pathways that, to date have not yet been elucidated (Robert S Cofflin. to oncolytlc mmunotherapy: where are we now? Current Opinion in Vlrology 2015, Vol.13, pp. 93-100, DOI: 10.1016 / j.covlro.2015.06.005). Three factors have been determined that are necessary for the entry of the nanoparticles of qultosan / DNA into the cell, among which are: the ratio of amine groups of qultosan against DNA phosphates (ratio N / P), the zeta potential and size (Sun Y., Zhang S, Peng X, Gong Z, L¡X, Yuan Z, L¡Y, Zhang D, Peng Y. They prepared, characterization and transfection efficacy of chitosan nanoparticles containing the intestinal trefoil factor gene. Molecular Blology Report. 2012, Vol. 39, No. 2, pp. 945-52. DOI: 10.1007 / s11033-011 -0820-4). This is why we proceeded to the characterization of the nanoparticles generated with chitosan and pDNA-GFP. For this, the load efficiency was measured, in which levels greater than 60% of DNA encapsulation were observed in all the N / P ratios used, which indicates that the pDNA used is efficiently encapsulated by chitosan. These high load efficiencies on the part of chitosan would be explained by the presence of high positive charges given by the amino groups of its surface, this charge strongly attracts the negative charge of the pDNA promoting its encapsulation (Bateman Andrew R., Harrlngton Kevln J., Kottke Tim, Ahmed Atique, Melcher Alan A., Gough Mlchael J., Llnardakls Emmanouela, Riddle David, Dletz Alian, Lohse Chrlstine M., Strome Scott, Peterson Tim, Simarl Robert and Vile Richard G. Viral fusogenlc membrane glycoproteins klll solid tumor cells by nonapoptotic mechanics that promote cross presentation of tumor antigens by dendritic cells, Cancer Research, 2002, Vol. 62, No. 22, pp. 6566-78, http://cancerres.aacriQurnals.org/coriient/62/22/ 6566.lQng). The smaller particles have the advantage of entering the cells through endocytosis and / or pinocytosis, which increases the rate of transfection.
Para estudiar la capacidad de encapsular el pDNA de quitosano se evaluó la migración de las NPs por electroforesis en gel de agarosa. Para el quitosano se observó que la capacidad de encapsular DNA es dependiente de la relación N/P, a mayores relaciones N/P mayor estabilidad de la nanopartícula quitosano/pDNA lo que es atrlbuible a que a mayores cantidades de quitosano, habrá una mayor Interacción electrostática con el pDNA. Además se realizó la evaluación de la eficiencia de transfección de las nanopartículas generadas en la línea celular CT26 correspondiente a carcinoma de colón, donde se observó que las NPs fueron capaces de transfectar las células CT26 con todas las relaciones N/P utilizadas, lo que demuestra que las NPs son capaces de ¡nteracclonar con la membrana plasmática e Ingresar a la célula. To study the ability to encapsulate the chitosan pDNA, the migration of NPs was evaluated by agarose gel electrophoresis. For chitosan it was observed that the ability to encapsulate DNA is dependent on the N / P ratio, at higher N / P ratios, greater stability of the nanoparticle chitosan / pDNA, which is attributable to higher amounts of chitosan, greater interaction. electrostatic with the pDNA. In addition, the evaluation of the transfection efficiency of the nanoparticles generated in the CT26 cell line corresponding to colon carcinoma was carried out, where it was observed that the NPs were able to transfect CT26 cells with all the N / P ratios used, demonstrating that NPs are capable of interacting with the plasma membrane and entering the cell.
Se pudo así determinar que las nanopartículas de quItosano/pDNA podrían ser utilizadas para el tratamiento génlco contra el cáncer, debido a su capacidad de transfectar la línea tumoral CT26 eficientemente. Por lo que se procedió a evaluar el uso de una composición que comprende nanopartículas de qultosano utilizando vectores que contienen el gen de proteínas fusogénlcas virales para transfectar la línea tumoral CT26. It was thus possible to determine that quitosa nanoparticles / pDNA could be used for the gene treatment against cancer, due to its ability to efficiently transfect the CT26 tumor line. Therefore, we proceeded to evaluate the use of a composition comprising nanoparticles of qultosan using vectors containing the viral fusogenic protein gene to transfect the CT26 tumor line.
El uso de proteínas de fusión viral solas resulta una alternativa diferente en el tratamiento antltumoral y en la vlroterapla. En las últimas décadas se han utilizado virus para el tratamiento del cáncer, gracias a las características de las células cancerígenas, las cuales las hacen particularmente sensibles a la Infección y repllcaclón viral. Una ventaja clave de la utilización de virus como un agente anti cancerígeno, es que para utilizar el tratamiento no es necesario conocer las alteraciones genéticas particulares de cada tipo de cáncer, ya que esta estrategia se basa en el hecho de que las células tumorales son mayormente susceptibles a la muerte por Infección viral selectiva basado en mutaciones subyacentes en el tumor, que puede ser considerablemente diferente en diversas células tumorales (Robert S Coffln. From vlrotherapy to oncolytlc ¡mmunotherapy: where are we now? Current Opinión ¡n Vlrology. 2015, Vol.13, págs. 93-100. DOI: 10.1016/j.covlro.2015.06.005). The use of viral fusion proteins alone is a different alternative in the anti-tumor treatment and in the vlroterapla. In recent decades, viruses have been used to treat cancer, thanks to the characteristics of cancer cells, which make them particularly sensitive to viral infection and replication. A key advantage of the use of viruses as an anti-cancer agent is that to use the treatment it is not necessary to know the particular genetic alterations of each type of cancer, since this strategy is based on the fact that the tumor cells are mostly susceptible to death by selective viral infection based on underlying mutations in the tumor, which can be considerably different in different tumor cells (Robert S Coffln, From vlrotherapy to oncolytlc mmunotherapy: where are we now? Current Opinion in Vlrology 2015, Vol.13, pp. 93-100, DOI: 10.1016 / j.covlro.2015.06.005).
La desventaja de utilizar virus activos es que pueden propagarse en el paciente tratado y mutar recuperando su potencial patógeno; las células malignas pueden volverse resistentes a la vlroterapla producto de su Inestabilidad genómlca; además de ocurrir difusión heterogénea y relativamente Incompleta de virus en lesiones neopláslcas (Pol Jonathan, Buqué Aitziber, Aranda Fernando, Bloy Norma, Cremer Isabelle, Eggermont Alexande, Erbs Phlllppe, Fuclkova Jltka, Galón Jéróme, Llmacher Jean-Marc, Prevllle Xavier, Sautés-Frldman Catherlne, Splsek Radek, Zltvogel Laurence, Kroemer Guido y Galluzzl, Lorenzo. Trlal Watch-Oncolytlc vlruses and cáncer therapy, Oncolmmunology, 2016, Vol. 5, No. 2. DOI: 10.1080/2162402X.2015.1 1 17740). The disadvantage of using active viruses is that they can spread in the treated patient and mutate, recovering their pathogenic potential; the malignant cells can become resistant to the vlroterapla product of its genomic instability; in addition to heterogeneous and relatively Incomplete diffusion of virus in neoplastic lesions (Pol Jonathan, Buqué Aitziber, Aranda Fernando, Bloy Norma, Cremer Isabelle, Eggermont Alexande, Erbs Phlllppe, Fuclkova Jltka, Galón Jéróme, Llmacher Jean-Marc, Prevllle Xavier, Sautés-Frldman Catherlne, Splicek Radek, Zltvogel Laurence, Kroemer Guido and Galluzzl, Lorenzo. Trlal Watch-Oncolytlc vlruses and cancer therapy, Oncolmmunology, 2016, Vol. 5, No. 2. DOI: 10.1080 / 2162402X.2015.1 1 17740).
Una alternativa para evitar utilizar virus activos es el uso de las proteínas que llevan a cabo el efecto tóxico sobre la célula, es por esto que la presente Invención utiliza 2 tipos de proteínas virales fusogénlcas (FMG). Estas proteínas son capaces de generar el proceso de fusión célula-célula, lo que lleva a la formación de aglomerados celulares que biológica, estructural y bioquímicamente son altamente Inestables, conocidos como slnclclos. Esta formación de slnclclos se realiza en 3 principales etapas: 1 ) contacto célula-célula, 2) hemlfuslón, Intermediarlo formado por la fusión de las dos monocapas más cercanas sin la fusión de la monocapas dlstales y 3) abertura del poro y expansión (Stephen C. Harrlson. Viral membrane fusión. Vlrology. 2015, Vol.479-480, págs. 498-507. DOI: 10.1016/j.vlrol.2015.03.043). An alternative to avoid using active viruses is the use of the proteins that carry out the toxic effect on the cell, which is why the present invention uses 2 types of fierogenic viral proteins (FMG). These proteins are capable of generating the process of cell-cell fusion, which leads to the formation of cellular agglomerates that are biologically, structurally and biochemically highly unstable, known as slnclclos. This formation of slides is carried out in 3 main stages: 1) cell-cell contact, 2) hemlfuslón, intermediate formed by the fusion of the two closest monolayers without fusion of the dlasta monolayers and 3) opening of the pore and expansion (Stephen C. Harrlson, Viral membrane fusion, Vlrology, 2015, Vol.479-480, pp. 498-507, DOI: 10.1016 / j.vlrol.2015.03.043).
La cltotoxlcldad producida por las FMGs es observada tempranamente a las 24 horas post-transfecclon de sus genes, debido a que a este tiempo se comienzan a formar los slnclclos produciendo muerte celular, la cual, aumenta gradualmente con el tiempo (Bateman Andrew R., Harrlngton Kevln J., Kottke Tlm, Ahmed Atlque, Melcher Alan A., Gough Mlchael J., Llnardakls Emmanouela, Riddle David, Dletz Alian, Lohse Chrlstlne M., Strome Scott, Peterson Tlm, Slmarl Robert y Vile Richard G. Viral fusogenlc membrane glycoprotelns klll solid tumor cells by nonapoptotlc mechanlsms that promote cross presentaron of tumor antlgens by dendritic cells. Cáncer Research. 2002, Vol. 62, No. 22, págs. 6566-78.
Figure imgf000042_0001
adherirse a ninguna teoría pareciera que esta muerte provocada por la formación de slnclclos es por vías no apoptóticas. La necrosis pareciera tener un papel importante, ya que se han observado signos de insuficiencia mitocondrial, déficit de ATP y generación de autofagia en células transfectadas con el gen de la proteína de fusión GALV (Bateman Andrew R., Harrington Kevin J., Kottke Tim, Ahmed Atlque, Melcher Alan A., Gough Michael J., Linardakis Emmanouela, Riddle David, Dietz Alian, Lohse Christlne M., Strome Scott, Peterson Tim, Slmari Robert y Vile Richard G. Viral fusogenic membrane glycoprotelns kill solid tumor cells by nonapoptotlc mechanisms that promote cross presentaron of tumor antlgens by dendritic cells. Cáncer Research. 2002, Vol. 62, No. 22, págs. 6566-78. http://cancerres.aacriournals.or¾/content/62/22/6566.1onq)· Se ha observado que durante el proceso de muerte del sincicio, este libera vesículas de exosomas llamados sincitiosomas. Estas son vesículas que pueden estar cargadas con antígenos asociados a tumores, pudiendo ser reconocidos por las células dendríticas, mediando la comunicación con células T. Además se ha visto que sincicios moribundos podrían liberar factores tóxicos en su entorno para mediar la muerte de células no fusionadas (E-H Un. Fusogenic membrane glycoproteins induce syncytia formation and death ¡n vitro and in vivo: a potential therapy agent for lung cáncer. Cáncer Gene Therapy. 2009, Vol. 17, págs. 256-265. DOI: 10.1038/cgt.2009.74). Una vez que se transfectaron las células CT26 por medio de las NPs de quitosano con los genes codificantes para las proteínas de fusión viral de REO e ISAV, se evaluó su efecto en la viabilidad celular donde la formación de sincicios debería llevar a una muerte celular. Para las células transfectadas con CH-REO se observa una disminución significativa de la viabilidad celular a las 72 horas que podría ser atrlbuible a la formación de sincicios. En los ensayos de viabilidad utilizando CH-ISAV no se observaron cambios significativos en ninguno de los tiempos evaluados en las células transfectadas con quitosano, pero sí, en las células transfectadas con llpofectamlna. La disminución de la viabilidad celular al utilizar llpofectamlna puede ser atribuida directamente al efecto tóxico de este compuesto y no por la expresión de las proteínas a las 72 horas (Zhong Y Q y cois. Toxicity of cationlc liposome Upofectamlne 2000 in human pancreatic cáncer Capan-2 cells. Journal of Central South Unlversity of Technology. 2008, Vol. 28, No. 11 , págs. 1981 -1984. DOI: 1673-4254(2008)11 -1981- 04). Por otra parte, el que no se observen cambios significativos en la viabilidad celular en las células transfectadas con CH-ISAV puede ser atrlbuible a que ISAV-F se evaluó en células de mamíferos que no constituye a la especie en la cual naturalmente puede detectarse, puesto que ISAV es un patógeno de peces (Cook, D. y cois, Electrostatic Archltecture of the Infectious Salmón Anemia Virus (ISAV) Core Fusión Protein lllustrates a CarboxyhCarboxylate pH Sensor. Journal of Blological Chemlstry. 2015, Vol. 290, No. 30, pp. 18495-18504. DOI: 10.1074/jbc.M1 15.644781). Otro punto a considerar es que los ensayos fueron realizados en condiciones fisiológicas a pH neutro y 370, condiciones que no son las óptimas p ara que ISAV-F lleve a cabo su acción, puesto que la fusión de membranas mediada por ISAV-F es gatillada como respuesta a una disminución de pH a temperaturas entre los 10 a 160 (Cook, D. y cois, Electrostatic Archltecture of the Infectious Salmón Anemia Virus (ISAV) Core Fusión Protein lllustrates a CarboxyhCarboxylate pH Sensor. Journal of Blological Chemlstry. 2015, Vol. 290, No. 30, págs. 18495-18504. DOI: 10.1074/jbc.M115.644781 ).
The clitoxicity produced by the FMGs is observed early 24 hours post-transfection of their genes, because at this time they begin to form slnclclos producing cell death, which increases gradually with time (Bateman Andrew R., Harrlngton Kevln J., Kottke Tlm, Ahmed Atlque, Melcher Alan A., Gough Mlchael J., Llnardakls Emmanouela, Riddle David, Dletz Alian, Lohse Chrlstlne M., Strome Scott, Peterson Tlm, Robert Slmarl and Vile Richard G. Viral fusogenlc membrane glycoprotelns klll solid tumor cells by nonapoptotlc mechanlsms that promote cross presented of tumor antigens by dendritic cells, Cancer Research, 2002, Vol. 62, No. 22, pp. 6566-78.
Figure imgf000042_0001
adhere to no theory it would seem that this death caused by the formation of problems is by not apoptotic. Necrosis seems to play an important role, since signs of mitochondrial insufficiency, ATP deficiency and generation of autophagy have been observed in cells transfected with the GALV fusion protein gene (Bateman Andrew R., Harrington Kevin J., Kottke Tim , Ahmed Atlque, Melcher Alan A., Gough Michael J., Linardakis Emmanouela, Riddle David, Dietz Alian, Lohse Christlne M., Strome Scott, Peterson Tim, Slmari Robert and Vile Richard G. Viral fusogenic membrane glycoprotelns kill solid tumor cells by That Promote cross nonapoptotlc Mechanisms of tumor antlgens presented by dendritic cells Cancer Research 2002, Vol 62, No. 22, pp 6566-78 http:..... //cancerres.aacriournals.or¾/content / 62/22 / 6566.1onq ) · It has been observed that during the process of syncytium death, it releases vesicles of exosomes called syncytomasomes. These are vesicles that can be loaded with tumor-associated antigens, which can be recognized by dendritic cells, mediating communication with T cells. Furthermore, it has been seen that moribund syncytia could release toxic factors in their environment to mediate the death of unfused cells. (EH Un. Fusogenic membrane glycoproteins induces syncytia formation and death in vitro and in vivo: a potential therapy agent for lung cancer, Cancer Gene Therapy, 2009, Vol. 17, pp. 256-265 DOI: 10.1038 / cgt.2009.74 ). Once the CT26 cells were transfected by means of the chitosan NPs with the genes coding for the viral fusion proteins of REO and ISAV, their effect on cell viability was evaluated where the formation of syncytia should lead to cell death. For the cells transfected with CH-REO, a significant decrease in cell viability was observed at 72 hours, which could be attributable to the formation of syncytia. In the viability assays using CH-ISAV, no significant changes were observed at any of the times evaluated in the cells transfected with chitosan, but in the cells transfected with llpofectamna. The decrease in cell viability when using llpofectamlna can be attributed directly to the toxic effect of this compound and not by the expression of the proteins at 72 hours (Zhong YQ et al., Toxicity of cationlc liposome Upofectamlne 2000 in human pancreatic cancer Capan-2 cells, Journal of Central South Unversity of Technology. Vol. 28, No. 11, pp. 1981 -1984, DOI: 1673-4254 (2008) 11 -1981- 04). On the other hand, the fact that no significant changes in cell viability are observed in the cells transfected with CH-ISAV can be attributable to the fact that ISAV-F was evaluated in mammalian cells that does not constitute the species in which it can naturally be detected, since ISAV is a fish pathogen (Cook, D. and cois, Electrostatic Archltecture of the Infectious Salmon Anemia Virus (ISAV) Core Fusion Protein lllustrates to Carboxyh Carboxylate pH Sensor, Journal of Blological Chemlstry, 2015, Vol. 290, No. 30 , pp. 18495-18504, DOI: 10.1074 / jbc.M1 15.644781). Another point to consider is that the tests were performed under physiological conditions at neutral pH and 370, conditions that are not optimal for ISAV-F to carry out its action, since the fusion of membranes mediated by ISAV-F is triggered in response to a pH decrease at temperatures between 10 to 160 (Cook, D. and cois, Electrostatic Archltecture of the Infectious Salmon Anemia Virus (ISAV) Core Fusion Protein lllustrates to CarboxyhCarboxylate pH Sensor, Journal of Blological Chemlstry. 2015, Vol 290, No. 30, pp. 18495-18504, DOI: 10.1074 / jbc.M115.644781).
La cinética de formación de sincicios por acción de estas proteínas de fusión también tiene relevancia, ya que esta puede ser mayor a las de otras proteínas fusogénlcas descritas en literatura como las proteínas F del virus GALV (6, Dunn, Gavln y cois, Cáncer ¡mmunoediting: from ¡mmuno-surveillance to tumor scape. Nature ¡mmunology. 2002, Vol. 3, No. 11. Págs.: 991 -998. DOI: 10.1038/ni1102-991 ) en donde se muestra que la formación del sincicios ocurre entre las 24 y 72 horas post transfección y la desintegración del sincicio ocurre dentro de las 120 horas post transfección. Por lo que sin adherirse a ninguna teoría pareciera que, para las proteínas de fusión utilizadas se debe evaluar a mayores tiempos post transfecclón para observar cambios en la viabilidad celular. The kinetics of formation of syncytia by action of these fusion proteins is also relevant, since this may be greater than those of other fusogenic proteins described in literature such as the F proteins of the GALV virus (6, Dunn, Gavln et al. mmunoediting: from mmuno-surveillance to tumor scape, Nature mmunology, 2002, Vol. 3, No. 11. Pgs .: 991 -998, DOI: 10.1038 / ni1102-991) where it is shown that the formation of syncytia occurs between 24 and 72 hours post transfection and the disintegration of the syncytium occurs within 120 hours post transfection. So without adhering to any theory it would seem that, for the fusion proteins used, it must evaluate longer post-transfection times to observe changes in cell viability.
Luego de los estudios in vitro se procedió a realizar los estudios in vivo, donde se trataron ratones Balb/c con las nanopartículas para las diferentes proteínas de fusión virales. Se realizó un monltoreo del crecimiento tumoral post desafío, el cual evidenció un retraso en el crecimiento tumoral en los ratones tratados con CH-REO. En las curvas de crecimiento tumoral se observa una clara dispersión en el crecimiento de los ratones sometidos a un mismo tratamiento, esto se puede deber al método de preparación de la vacuna y las características químicas del qultosano. El qultosano es muy poco soluble en agua, por lo que se le debe agregar acido para aumentar su solubilidad debido a la protonaclón de los grupos aminas, esta solubilidad también es dependiente de los aniones que se encuentren en solución. Las NPs se resuspendieron en PBS, se sabe por literatura que los grupos fosfatos y sulfatos disminuyen la solubilidad de qultosano (Berthold A y cois, Prepararon and characterlzatlon of chltosan mlcrospheres as drug carrler for prednlsolone sodlum phosphate as model for antünflammatory drugs. Journal of Controlled Release. 1996, Vol. 39, No.1 , págs. 17-25. bttp://vwAv.sclencedlrect.com/science/artlcle/pii/0168365995001298), lo que favorecería su precipitación y con esto disminuirá su capacidad de difundir por el mlcroamblente tumoral, por lo que se debió encontrar la solución más óptima para resuspender las nanopartículas. Otro punto a considerar es que la eficiencia de encapsulaclón de pDNA por parte de qultosano no es del 100%, por lo que la cantidad de plásmldo que se une a qultosano puede variar y con esto afectar la transfecclón de las células tumorales. After the in vitro studies, the in vivo studies were carried out, where Balb / c mice were treated with the nanoparticles for the different viral fusion proteins. A post-challenge tumor growth monotherapy was performed, which showed a delay in tumor growth in the mice treated with CH-REO. In the tumoral growth curves a clear dispersion in the growth of the mice subjected to the same treatment is observed, this may be due to the method of preparation of the vaccine and the chemical characteristics of the qultosan. The qultosano is very little soluble in water, reason why acid must be added to him to increase its solubility due to the protonaclón of the amines groups, this solubility also is dependent of the anions that are in solution. The NPs were resuspended in PBS, it is known from literature that the phosphate and sulfate groups decrease the solubility of qultosan (Berthold A et al., Prepared and characterized by chltosan as drug carriers for prednisolone sodium phosphate as model for antiflammatory drugs. Release 1996, Vol. 39, No.1, pp. 17-25.bttp: //vwAv.sclencedlrect.com/science/artlcle/pii/0168365995001298), which would favor its precipitation and with this will diminish its ability to spread for the micro tumor, so the most optimal solution for resuspending the nanoparticles should have been found. Another point to consider is that the efficiency of encapsulation of pDNA by qultosan is not 100%, so that the amount of plasmid that binds to qultosan can vary and thereby affect the transfection of the tumor cells.
Se observó un grupo de animales que presentaron necrosis en el tumor post tratamiento, lo cual Implica una disminución del tamaño tumoral. Considerando el bajo número de animales estudiados, sería aventurado proponer conclusiones, sin embargo, sin adherirse a ninguna teoría pareciera que en estos animales la formación de sincicios estaría llevando a la muerte celular tumoral por medio de un proceso denominado necroptosls (Loves-Aaes, Tania y cois. Vacclnatlon with Necroptotlc Cáncer Cells Induces Efficlent Antl-tumor Immunity. Cell Reports. 2016, Vol. 15, No. 2, págs. 274-287. DOI: 10.1016/j.celrep.2016.03.037). El descubrimiento de necroptosls mostró que las células pueden ejecutar necrosis de una manera programada y que la apoptosls no es siempre preferible a la muerte celular necrótlca. Además, la naturaleza ¡nmunogénica de la necroptosls favorece su uso en ciertas circunstancias, tales como ayudar a la orientación de los patógenos por el sistema inmunológlco. Trabajos realizados por Loves y col. en 2016, han demostrado que células CT26 necroptótlcas pueden ser inmunogénicas in vitro e in vivo, generando una respuesta inmune por medio de linfocitos CD8+ citotóxicos, promoviendo la presentación cruzada; y por medio de la producción de interferón y en respuesta a los antígenos tumorales de las células necrótlcas (Loves-Aaes, Tania y cois. Vacclnatlon with Necroptotlc Cáncer Cells Induces Efficlent Antl-tumor Immunity. Cell Reports. 2016, Vol. 15, No. 2, págs. 274-287. DOI: 10.1016/j .celrep.2016.03.037). We observed a group of animals that had necrosis in the tumor after treatment, which implies a decrease in tumor size. Considering the low number of animals studied, it would be risky to propose conclusions, however, without adhering to any theory it would seem that in these animals the formation of syncytia would lead to tumor cell death through a process called necroptosls (Loves-Aaes, Tania and cois. Vaccination with Necroptotlc Cancer Cells Induces Efficlent Anti- tumor Immunity, Cell Reports, 2016, Vol.15, No. 2, pp. 274-287, DOI: 10.1016 / j.celrep.2016.03.037). The discovery of necroptosls showed that cells can execute necrosis in a programmed manner and that apoptosis is not always preferable to necrotic cell death. In addition, the immunogenic nature of the necroptosls favors its use in certain circumstances, such as helping the orientation of pathogens by the immunological system. Works by Loves et al. in 2016, they demonstrated that necroptotic CT26 cells can be immunogenic in vitro and in vivo, generating an immune response through cytotoxic CD8 + lymphocytes, promoting cross-presentation; and by means of the production of interferon and in response to tumor antigens of necrotic cells (Loves-Aaes, Tania et al., Vaccination with Necroptotlc Cancer Cells Induces Efficiency Anti- tumor Immunity, Cell Reports, 2016, Vol. 15, No 2, pp. 274-287, DOI: 10.1016 / j .celrep.2016.03.037).
SI bien se obtuvo al menos para el caso de REO-F un efecto en el crecimiento tumoral, los mecanismos responsables de este efecto aun no son claros ni tampoco si tienen un componente inmune Importante. Sin embargo, este efecto puede deberse a la rápida formación de sincicios por parte de la proteína REO. La proteína de fusión REO corresponde a una proteína pequeña de membrana asociada a fusión, la cual conserva dentro de su estructura todo lo que requiere para el proceso de fusión. Esta proteína no necesita de otras para mediar la fusión celular, ya que la Interacción de su endodominio con las cadherinas media la unión inicial a la membrana y el ectodominio ¡nteracclona con la membrana diana, siendo capaz de mantener la formación del poro. Además sus endodominios ¡nteracclonan con factores que actúan en el remodelamiento de actina, promoviendo la expansión del poro y la slncltlogenesls (Boutilier J. y cois. The Reovirus Fuslon-Assoclated Small Transmembrane (FAST) Protelns: Virus-Encoded Cellular Fusogens. Current Toplcs ¡n Membranes. 2011 , Vol. 68, págs. 107-140. DOI: 10.1016/B978-0-12-385891 -7.00005-2). Esta capacidad de REO de ser autosuflclente para la formación de slnclclos podría ser la clave de su rápida actividad y la responsable del control del crecimiento tumoral. Although an effect on tumor growth was obtained at least for the case of REO-F, the mechanisms responsible for this effect are not yet clear and neither do they have an important immune component. However, this effect may be due to the rapid formation of syncytia by the REO protein. The REO fusion protein corresponds to a small fusion-associated membrane protein, which retains within its structure all that it requires for the fusion process. This protein does not need others to mediate cell fusion, since the interaction of its endodomain with the cadherins mediates the initial binding to the membrane and the ectodomain with the target membrane, being able to maintain the formation of the pore. In addition, their endodominies interact with factors that act in the actin remodeling, promoting pore expansion and slncltlogeness (Boutilier J. et al., The Reovirus Fuslon-Assoclated Small Transmembrane (FAST) Protelns: Virus-Encoded Cellular Fusogens, Current Toplcs, Membranes, 2011, Vol. 68, p. 107-140 DOI: 10.1016 / B978-0-12-385891 -7.00005-2). This capacity of REO to be self-sufficient for the formation of tumors could be the key to its rapid activity and responsible for the control of tumor growth.
La composición que comprende NPs con los genes que codifican para la proteína de fusión ISAV, no mostró efectos significativos en el crecimiento tumoral, sin adherirse a ninguna teoría, esto podría deberse a la necesidad de modificaciones post- traducclonales para que la proteína sea activa, requerimientos de pH específicos para su acción, ya que ISAV que actúa óptimamente a bajo pH (Cook D. Jonathan, Soto- Montoya Hazel, Korpela Markus, Lee E. Jeffrey. Electrostatlc Architecture of the Infectlous Salmón Anemia Virus (ISAV) Core Fusión Proteln lllustrates a CarboxyhCarboxylate pH Sensor. Journal of Biologlcal Chemistry. 2015, Vol. 290, No. 30, págs. 18495-18504. DOI: 10.1074/jbc.M115.644781 ), o también podría ser, a la necesidad de proteínas accesorias para llevar a cabo su acción. The composition comprising NPs with the genes coding for the fusion protein ISAV, showed no significant effects on tumor growth, without adhering to any theory, this could be due to the need for post-translational modifications for the protein to be active, specific pH requirements for its action, since ISAV that acts optimally at low pH (Cook D. Jonathan, Soto- Montoya Hazel, Korpela Markus, Lee E. Jeffrey, Electrostatlc Architecture of the Infectlous Salmon Anemia Virus (ISAV) Core Fusion Proteln lllustrates a CarboxyhCarboxylate pH Sensor, Journal of Biologcal Chemistry, 2015, Vol. 290, No. 30, pp. 18495-18504, DOI: 10.1074 / jbc.M115.644781), or it could also be, the need for accessory proteins for carry out your action.
Al evaluar el efecto de los tratamientos sobre las poblaciones linfocitarias en bazo, se observó una disminución de linfocitos CD4+, sin cambios en la población T CD8+. Diversos estudios han demostrado la Importancia de las subpoblaclones linfocitarias CD4+ en la respuesta antltumoral, es por esto que se procedió al análisis de éstas. Los linfocitos Treg son células CD4+CD25 OXP3+ y entre sus principales características radica su capacidad de inhibir activamente linfocitos CD8+, células dendrítlcas, células Natural Killer (NK) y células B, promoviendo el crecimiento tumoral (Sundstróm, Patrik y cois, Regulatory T cells from colon cáncer patlents inhibit effector T cell migratlon through an adenoslne-dependent mechanism. Cáncer Immunology Research. 2016, Vol.4, No. 3, págs.183-93. DOI: 10.1158/2326-6066.CIR-15-0050). Además las células T reguladoras han demostrado que promueven el crecimiento del cáncer de colon humano (CC). Este tipo de cáncer se caracteriza por tener una respuesta Inflamatoria la que sería modulada por Treg como actores Importantes en la Inhibición de las células T que activarían la Inmunidad antltumoral, presentando altos niveles de linfocitos Treg en tumor (Sundstróm, Patrik y cois, Regulatory T cells from colon cáncer patlents inhibit effector T cell mlgratlon through an adenoslne-dependent mechanlsm. Cáncer Immunology Research. 2016, Vol.4, No. 3, págs.183-93. DOI: 10.1158/2326-6066. CIR-15-0050). A pesar de estos antecedentes, los resultados obtenidos no evidencian cambios significativos para las poblaciones Treg en ninguno de los tratamientos utilizados. When evaluating the effect of the treatments on the lymphocyte populations in spleen, a decrease of CD4 + lymphocytes was observed, without changes in the CD8 + T population. Several studies have shown the importance of CD4 + lymphocyte subpopulations in the antitumour response, which is why they were analyzed. Treg lymphocytes are CD4 + CD25 OXP3 + cells and their main characteristics are their ability to actively inhibit CD8 + lymphocytes, dendritic cells, Natural Killer (NK) cells and B cells, promoting tumor growth (Sundstrom, Patrik and cois, Regulatory T cells from colon cancer patiens inhibit effector T cell migratlon through an adenosine-dependent mechanism, Cancer Immunology Research, 2016, Vol.4, No. 3, pp.183-93, DOI: 10.1158 / 2326-6066.CIR-15-0050) . In addition, regulatory T cells have been shown to promote the growth of human colon cancer (CC). This type of cancer is characterized by having an Inflammatory response that would be modulated by Treg as important actors in the inhibition of T cells that would activate antitumour immunity, presenting high levels of Treg lymphocytes in tumor (Sundstrom, Patrik and cois, Regulatory T cells from colon cancer patiens inhibit effector T cell mlgratlon through an adenosine-dependent mechanicsm Cancer Immunology Research 2016, Vol.4, No. 3, pp.183-93 DOI: 10.1158 / 2326-6066 CIR-15-0050 ). Despite this background, the results obtained do not show significant changes for the Treg populations in any of the treatments used.
Por otra parte, la población Th1 se ha asociado a una respuesta antltumoral potente en diversos tipos de cáncer. Cuando se analizó esta población en el bazo, si bien no se obtuvo una diferencia significativa entre los ratones tratados y no tratados, se observa una tendencia al aumento de esta población en los ratones tratados. On the other hand, the Th1 population has been associated with a potent anti-tumor response in various types of cancer. When this population was analyzed in the spleen, although no significant difference was obtained between the treated and untreated mice, a tendency to increase this population was observed in the treated mice.
Los linfocitos Th17 desempeñan un papel complejo y controvertido en la Inmunidad tumoral, ya que pueden actuar favoreciendo el desarrollo tumoral o una respuesta antltumoral en función de la malignidad y la temporalidad del crecimiento tumoral (Bailey, Stefanle y cois. Th17 cells ¡n cáncer: the ultímate ¡dentlty crisis. Frontlers ¡n Immunology. 2014, Vol. 5, Artlcle 276. DOI: 10.3389/flmmu.2014.00276). En la evaluación de esta subpoblación en bazo, se obtuvo un aumento significativo de Th17 en todos los tratamientos utilizados. En la literatura se ha evidenciado que las células Th17 se correlacionan negativamente con la presencia de células Treg y positivamente con células efectoras Inmunes, Incluyendo Th1 , estas observaciones son apoyadas por datos de estudios en modelo humano y ratón. Considerando la acción de Th1 y Th17, su aumento en los ratones tratados podría explicarlo obtenido en las curvas de crecimiento tumoral, debido a que estas dos subpoblaclones promueven una respuesta antitumoral por parte del sistema Inmune (Balley, Stefanle y cois. Th17 cells ¡n cáncer: the ultímate ¡dentlty crisis. Frontlers ¡n Immunology. 2014, Vol. 5, Artlcle 276. DOI : 10.3389/flmmu.2014.00276). Es posible que sea un aporte adicional el determinar con exactitud qué pasa con la disminución de la población de linfocitos CD4+ tanto en bazo como en tumor ya que se desconoce qué sub-poblaclón linfocitaria CD4+ es la que está disminuyendo. Sin embargo, para ello sería necesario realizar el análisis de un mayor número de sub- poblaclones CD4+ para relacionarlas con el efecto de los tratamientos probados. Th17 lymphocytes play a complex and controversial role in tumor immunity, since they can act by favoring tumor development or an anti-tumor response depending on the malignancy and temporality of tumor growth (Bailey, Stefanle et al., Th17 cells n cancer: the ultímate dentlty crisis Frontlers n Immunology 2014, Vol 5, Artlcle 276. DOI 10.3389 / flmmu.2014.00276). In the evaluation of this subpopulation in spleen, a significant increase of Th17 was obtained in all the treatments used. In the literature it has been shown that Th17 cells are negatively correlated with the presence of Treg cells and positively with Immune effector cells, including Th1, these observations are supported by data from studies in human and mouse model. Considering the action of Th1 and Th17, its increase in the treated mice could explain it obtained in the tumoral growth curves, because these two subpopulations promote a antitumor response from the Immune system (Balley, Stefanle et al., Th17 cells cancer: the last crisis, Frontlers Immunology, 2014, Vol. 5, Artcle 276. DOI: 10.3389 / flmmu.2014.00276). It may be an additional contribution to determine exactly what happens with the decrease in the population of CD4 + lymphocytes in both spleen and tumor since it is unknown which CD4 + lymphocyte sub-population is the one that is decreasing. However, for this it would be necessary to carry out the analysis of a greater number of CD4 + sub-populations to relate them to the effect of the treatments tested.
Pero los resultados expuestos en la presente solicitud muestran que la composición de la Invención que comprende nanopartículas de origen natural pueden ser usados como vectores para la encapsulaclón de genes cuyas proteínas son capaces de controlar el desarrollo tumoral, crear una respuesta Inmune contra este o ambos, mediante el tratamiento directo del tumor. La expresión de la proteína REO en el tumor causó un retraso en el crecimiento tumoral, el cual estaría asociado a la muerte del tumor por la generación de sincicios, más que a la Inducción de una respuesta Inmune por parte de los linfocitos T evaluados. La presente composición también comprende nanopartículas que pueden encapsular opclonalmente genes cuyas proteínas son capaces de controlar el desarrollo tumoral y crear una respuesta Inmune contra este, mediante el tratamiento directo del tumor, donde el gen tiene una secuencia que comprende una Identidad de al menos 50%, preferentemente al menos 60%, y más preferentemente al menos 70%, aún más preferentemente al menos 80%, y más preferentemente al menos 90% de los nucleótldos (es decir, muestra Identidad de secuencia) mostrados en SEQ ID NO: 1 ; o donde la proteína tiene una secuencia que comprende una Identidad de al menos 50%, preferentemente al menos 60%, y más preferentemente al menos 70%, aún más preferentemente al menos 80%, y más preferentemente al menos 90% de los amlno ácidos (es decir, muestra Identidad de secuencia) mostrados en SEQ ID NO: 2. But the results set forth in the present application show that the composition of the invention comprising nanoparticles of natural origin can be used as vectors for the encapsulation of genes whose proteins are capable of controlling tumor development, creating an immune response against this or both, by direct treatment of the tumor. The expression of the REO protein in the tumor caused a delay in tumor growth, which would be associated with the death of the tumor by the generation of syncytia, rather than the induction of an immune response by the T lymphocytes evaluated. The present composition also comprises nanoparticles that can optionally encapsulate genes whose proteins are able to control tumor development and create an immune response against it, by direct treatment of the tumor, where the gene has a sequence comprising an identity of at least 50% , preferably at least 60%, and more preferably at least 70%, still more preferably at least 80%, and more preferably at least 90% of the nucleotides (ie, sample sequence identity) shown in SEQ ID NO: 1; or wherein the protein has a sequence comprising an identity of at least 50%, preferably at least 60%, and more preferably at least 70%, even more preferably at least 80%, and more preferably at least 90% of the amino acids (ie, sequence identity sample) shown in SEQ ID NO: 2.
La presente Invención también comprende fragmentos y derivados de las secuencias de nucleotldos mostradas en SEQ ID No.: 1 o de las secuencias de amlno ácidos mostradas en SEQ ID No: 2. También, la presente Invención comprende equivalentes funcionales de las secuencias anteriores.  The present invention also comprises fragments and derivatives of the nucleotide sequences shown in SEQ ID No .: 1 or of the amino acid sequences shown in SEQ ID No: 2. Also, the present invention comprises functional equivalents of the above sequences.
Para los propósitos de la presente Invención, un“fragmento” de una secuencia de nucleotldos se define como una secuencia contigua de aproximadamente al menos 6, preferentemente al menos 8, más preferentemente al menos 10 nucleotldos, y aún más preferentemente al menos 15 nucleotldos que corresponden a una reglón de la secuencia nucleotlda especifica.  For the purposes of the present invention, a "fragment" of a nucleotide sequence is defined as a contiguous sequence of about at least 6, preferably at least 8, more preferably at least 10 nucleotides, and even more preferably at least 15 nucleotides that correspond to a region of the specific nucleotide sequence.

Claims

REIVINDICACIONES
1. Composición farmacéutica para inyección intratumoral caracterizada porque comprende nanopartículas de quitosano que encapsula ADN de una proteína capaz de controlar el desarrollo tumoral, crear respuesta inmune contra el tumor o ambos; un fragmento o derivado de dicho ADN, con igual función. A pharmaceutical composition for intratumoral injection characterized in that it comprises chitosan nanoparticles that encapsulate DNA from a protein capable of controlling tumor development, creating an immune response against the tumor or both; a fragment or derivative of said DNA, with the same function.
2. La composición farmacéutica de la reivindicación 1 caracterizada porque dicha proteína es una proteína fusogenlca viral. 2. The pharmaceutical composition of claim 1 characterized in that said protein is a viral fusogenlca protein.
3. La composición farmacéutica de la reivindicación 2 caracterizada porque dicha proteína fusogenlca viral es una glicoproteína fusogénlca de membrana. 3. The pharmaceutical composition of claim 2 characterized in that said viral fusogenlca protein is a fusogenic membrane glycoprotein.
4. La composición farmacéutica de la reivindicación 3 caracterizada porque dicha glicoproteína fusogenlca de membrana es la proteína de fusión de Reovlrus Aviar (REO) secuencia SEQ ID No.2 o una proteína con una secuencia que comprende una identidad de al menos 50%, preferentemente al menos 60%, y más preferentemente al menos 70%, aún más preferentemente al menos 80%, y más preferentemente al menos 90% de identidad con la secuencia de la proteína de fusión de Reovlrus Aviar. 4. The pharmaceutical composition of claim 3 characterized in that said membrane fusogenlca glycoprotein is the fusion protein of Reovlrus Aviar (REO) sequence SEQ ID No.2 or a protein with a sequence comprising at least 50% identity, preferably at least 60%, and more preferably at least 70%, still more preferably at least 80%, and more preferably at least 90% identity with the sequence of the fusion protein of Avian Reovlrus.
5. La composición farmacéutica de la reivindicación 4 caracterizada porque dicha glicoproteína fusogenlca de membrana es la proteína de fusión de Reovlrus Aviar (REO) de secuencia SEQ ID No.:2. 5. The pharmaceutical composition of claim 4 characterized in that said membrane fusogenlca glycoprotein is the Reovlrus Aviar (REO) fusion protein of sequence SEQ ID No.:2.
6. La composición farmacéutica de la reivindicación 1 caracterizada porque dicho6. The pharmaceutical composition of claim 1 characterized in that said
ADN tiene secuencia SEQ ID No.:1 o una secuencia que comprende una Identidad de al menos 50%, preferentemente al menos 60%, y más preferentemente al menos 70%, aún más preferentemente al menos 80%, y más preferentemente al menos 90% de identidad con dicha secuencia SEQ ID NO: 1. DNA has sequence SEQ ID No.:1 or a sequence comprising an identity of at least 50%, preferably at least 60%, and more preferably at least 70%, still more preferably at least 80%, and more preferably at least 90 % identity with said sequence SEQ ID NO: 1.
7. La composición farmacéutica de la reivindicación 6 caracterizada porque dicho ADN tiene secuencia SEQ ID No.:1. 7. The pharmaceutical composition of claim 6 characterized in that said DNA has sequence SEQ ID No.:1.
8. La composición farmacéutica de la reivindicación 1 caracterizada porque dicho ADN de la proteína de fusión de Reovirus Aviar (REO) está insertado en un vector de expresión. The pharmaceutical composition of claim 1 characterized in that said DNA of the Avian Reovirus fusion protein (REO) is inserted into an expression vector.
9. La composición farmacéutica de la reivindicación 8 caracterizada porque dicho vector se selecciona del vector de expresión plRES2. 9. The pharmaceutical composition of claim 8 characterized in that said vector is selected from the expression vector plRES2.
10. La composición farmacéutica de la reivindicación 1 caracterizada porque dichas nanoparticulas tienen un radio de tamaño promedio entre 25-56 nm. 10. The pharmaceutical composition of claim 1 characterized in that said nanoparticles have a radius of average size between 25-56 nm.
11. La composición farmacéutica de la reivindicación 1 caracterizada porque dicho11. The pharmaceutical composition of claim 1 characterized in that said
ADN tienen una relación de grupo amina de quitosando (N) a fosfato de DNA (P), razón N/P igual a 28. DNA has a ratio of amine group of chitosando (N) to phosphate of DNA (P), ratio N / P equal to 28.
12. Uso de la composición farmacéutica de cualquiera de las reivindicaciones 1 a 11 , caracterizado porque sirve para preparar una medicamento útil en el tratamiento del cáncer y tumores. 12. Use of the pharmaceutical composition of any of claims 1 to 11, characterized in that it serves to prepare a medicament useful in the treatment of cancer and tumors.
13. El uso según la reivindicación 12 caracterizado porque dichos tumores se seleccionan de tumores que se encuentran en las primeras etapas de desarrollo. 13. The use according to claim 12 characterized in that said tumors are selected from tumors that are in the early stages of development.
14. El uso según la reivindicación 13 caracterizado porque dicho tumor se selecciona de melanoma. 14. The use according to claim 13, characterized in that said tumor is selected from melanoma.
15. El uso según la reivindicación 12 caracterizado porque dicho cáncer se selecciona de carcinoma. 15. The use according to claim 12, characterized in that said cancer is selected from carcinoma.
16. El uso según la reivindicación 15 caracterizado porque dicho carcinoma se selecciona de carcinoma de colon. 16. The use according to claim 15, characterized in that said carcinoma is selected from colon carcinoma.
17. Método de tratamiento de cáncer o tumores caracterizado porque comprende administrar intratumoralmemte una composición farmacéutica que comprende nanopartículas de quitosano que encapsula el ADN de la proteína de fusión de Reovlrus Aviar (REO), y con ello, causar muerte celular y estimular el sistema Inmune. 17. Treatment method for cancer or tumors characterized in that it comprises intratumorally administering a pharmaceutical composition comprising chitosan nanoparticles that encapsulates the DNA of the Reovlrus Avian fusion protein (REO), and thereby, cause cell death and stimulate the immune system .
18. El método de la reivindicación 17 caracterizado porque comprende administrar dicha composición farmacéutica en estadios tempranos del desarrollo tumoral. 18. The method of claim 17, characterized in that it comprises administering said pharmaceutical composition in early stages of tumor development.
19. El método de la reivindicación 17 caracterizado porque comprende administrar dicha composición farmacéutica en la zona del tumor. 19. The method of claim 17, characterized in that it comprises administering said pharmaceutical composition in the tumor zone.
PCT/CL2018/050115 2017-11-28 2018-11-27 Composition for intratumoral injection comprising a dna vector encapsulated in chitosan nanoparticles and use thereof in cancer treatment WO2019104449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL3017-2017 2017-11-28
CL2017003017A CL2017003017A1 (en) 2017-11-28 2017-11-28 Pharmaceutical composition for intratumoral injection comprising chitosan nanoparticles that encapsulates DNA of a protein capable of controlling tumor development, creating immune response or both, and its use in the treatment of cancer

Publications (1)

Publication Number Publication Date
WO2019104449A1 true WO2019104449A1 (en) 2019-06-06

Family

ID=63046540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/050115 WO2019104449A1 (en) 2017-11-28 2018-11-27 Composition for intratumoral injection comprising a dna vector encapsulated in chitosan nanoparticles and use thereof in cancer treatment

Country Status (2)

Country Link
CL (1) CL2017003017A1 (en)
WO (1) WO2019104449A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780927C1 (en) * 2021-11-25 2022-10-04 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина" Министерства здравоохранения Российской Федерации "ФГБУ "НМИЦ онкологии им. Н.Н. Блохина" Минздрава России) Biodegradable metal implant for local immunotherapy of patients with solid tumors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080983A1 (en) * 2001-04-05 2002-10-17 The Uab Research Foundation Enhanced dispersion of adenoviral vectors by fusogenic membrane glycoproteins
WO2013142380A9 (en) * 2012-03-22 2013-10-31 The Regents Of The University Of California Oncovector nucleic acid molecules and methods of use
WO2014089029A1 (en) * 2012-12-03 2014-06-12 Ohio State Innovation Foundation Activation of innate immunity by mirna for cancer and infection treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080983A1 (en) * 2001-04-05 2002-10-17 The Uab Research Foundation Enhanced dispersion of adenoviral vectors by fusogenic membrane glycoproteins
WO2013142380A9 (en) * 2012-03-22 2013-10-31 The Regents Of The University Of California Oncovector nucleic acid molecules and methods of use
WO2014089029A1 (en) * 2012-12-03 2014-06-12 Ohio State Innovation Foundation Activation of innate immunity by mirna for cancer and infection treatment

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CIFANI, N. ET AL.: "Improved stability and efficacy of chitosan/pDNA complexes for gene delivery", BIOTECHNOL LETT, vol. 37, 2015, pages 557 - 565, XP035458070 *
MANSOURI, S. ET AL.: "Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy", EUR J PHARM BIOPHARM., vol. 57, no. 1, January 2004 (2004-01-01), pages 1 - 8, XP004518747 *
SOOFIYANI, S. R. ET AL.: "Gene therapy based on interleukin-12 loaded chitosan nanoparticles in a mouse model of fibrosarcoma", IRAN J BASIC MED SCI, vol. 19, 2016, pages 1238 - 1244, XP055616753 *
SUN, Y. ET AL.: "Preparation, characterization and transfection efficacy of chitosan nanoparticles containing the intestinal trefoil factor gene", MOLECULAR BIOLOGY REPORT, vol. 39, no. 2, 2012, pages 945 - 952, XP019992162 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780927C1 (en) * 2021-11-25 2022-10-04 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина" Министерства здравоохранения Российской Федерации "ФГБУ "НМИЦ онкологии им. Н.Н. Блохина" Минздрава России) Biodegradable metal implant for local immunotherapy of patients with solid tumors
RU2780932C1 (en) * 2021-11-25 2022-10-04 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ онкологии им. Н.Н. Блохина" Минздрава России) Biodegradable implant for local immunotherapy of cancer patients

Also Published As

Publication number Publication date
CL2017003017A1 (en) 2018-05-04

Similar Documents

Publication Publication Date Title
Ma et al. Bioengineered nanogels for cancer immunotherapy
Gao et al. Engineering nanoparticles for targeted remodeling of the tumor microenvironment to improve cancer immunotherapy
Liu et al. Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses
Yang et al. Advanced biomaterials for cancer immunotherapy
ES2905591T3 (en) Core/Shell Structure Platform for Immunotherapy
Gorbet et al. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy
Li et al. Rational design of polymeric hybrid micelles to overcome lymphatic and intracellular delivery barriers in cancer immunotherapy
Gupta et al. Nanoparticle mediated cancer immunotherapy
Han et al. Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy
Chen et al. STING activator c-di-GMP-loaded mesoporous silica nanoparticles enhance immunotherapy against breast cancer
Wang et al. Targeted delivery of a STING agonist to brain tumors using bioengineered protein nanoparticles for enhanced immunotherapy
Liu et al. Recent advances in nanosized drug delivery systems for overcoming the barriers to anti-PD immunotherapy of cancer
Hao et al. Organic/inorganic nanocomposites for cancer immunotherapy
Xie et al. Immunoengineering with biomaterials for enhanced cancer immunotherapy
Zhou et al. Nano drug delivery system for tumor immunotherapy: next-generation therapeutics
Du et al. Eliciting an immune hot tumor niche with biomimetic drug-based multi-functional nanohybrids augments immune checkpoint blockade-based breast cancer therapy
Xue et al. Recent advances in biomaterial-boosted adoptive cell therapy
Zhu et al. A Three‐In‐One assembled nanoparticle containing Peptide–Radio‐Sensitizer conjugate and TLR7/8 agonist can initiate the Cancer‐Immunity cycle to trigger antitumor immune response
CN113368053B (en) Oncolytic peptide-loaded polymer vesicle and combined drug of polymer vesicle and vesicle immunoadjuvant and PD-1 monoclonal antibody
Yang et al. Magainin II modified polydiacetylene micelles for cancer therapy
Zhang et al. Materials engineering strategies for cancer vaccine adjuvant development
Wang et al. Supramolecular filament hydrogel as a universal immunomodulator carrier for immunotherapy combinations
Qin et al. A carrier-free photodynamic nanodrug to enable regulation of dendritic cells for boosting cancer immunotherapy
Cheng et al. Genetically Engineered‐Cell‐Membrane Nanovesicles for Cancer Immunotherapy
Krishnan et al. Genetically engineered cellular nanoparticles for biomedical applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883883

Country of ref document: EP

Kind code of ref document: A1