WO2019103459A2 - Method for manufacturing positive electrode additive for lithium secondary battery - Google Patents

Method for manufacturing positive electrode additive for lithium secondary battery Download PDF

Info

Publication number
WO2019103459A2
WO2019103459A2 PCT/KR2018/014368 KR2018014368W WO2019103459A2 WO 2019103459 A2 WO2019103459 A2 WO 2019103459A2 KR 2018014368 W KR2018014368 W KR 2018014368W WO 2019103459 A2 WO2019103459 A2 WO 2019103459A2
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
heat treatment
raw material
secondary battery
electrode additive
Prior art date
Application number
PCT/KR2018/014368
Other languages
French (fr)
Korean (ko)
Other versions
WO2019103459A3 (en
Inventor
노은솔
전혜림
이동훈
이상욱
정왕모
강민석
백소라
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180143870A external-priority patent/KR102646712B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019559758A priority Critical patent/JP7045557B2/en
Priority to US16/615,519 priority patent/US11398623B2/en
Priority to EP18881260.6A priority patent/EP3608293A4/en
Priority to CN201880028288.XA priority patent/CN110573459B/en
Publication of WO2019103459A2 publication Critical patent/WO2019103459A2/en
Publication of WO2019103459A3 publication Critical patent/WO2019103459A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode additive for a lithium secondary battery, which can reduce byproducts and unreacted materials generated during the production process, thereby significantly reducing the amount of gas generated during operation of the electrode .
  • lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commercially available and widely used.
  • a method of overcoming the irreversible capacity loss of the cathode using a material which can provide a lyrium ion source or a storage material to the cathode material and which exhibits electrochemical activity after the first cycle so as not to deteriorate the performance of the entire battery is studied , Respectively.
  • a lithium nickel calcined product containing an excessive amount of lithium, such as Ni 2 O 2 as a sacrificial anode material or an irreversible additive (or an overdischarge preventing agent) for the anode.
  • the lithium-nickel-based oxide is mainly produced by reacting nickel oxide, nickel carbonate and the like with an excess amount of lithium oxide, 2019/103459 1 »(: 1 ⁇ ⁇ 2018/014368
  • the present invention solves the above problems and provides a method for producing a positive electrode additive for a lithium secondary battery capable of reducing a content of a by-product and an unreacted lithium oxide generated during a manufacturing process, The purpose.
  • the present invention also relates to a positive electrode additive for a lithium secondary battery, which is produced according to the above-described production method and has a greatly reduced content of Ni byproducts and unreacted materials causing gas generation, and an anode for a lithium secondary battery exhibiting excellent electrochemical characteristics And lyrium provide a secondary battery.
  • a process for producing a lyrium nickel oxide represented by the following Chemical Formula 1 by mixing a raw material of lyrium, a raw material of a nickel raw material and an element, followed by heat treatment in an inert gas atmosphere,
  • the heat treatment comprises a first heat treatment at 300 to 500 x; And 550 to 800 after the primary heat treatment
  • the first heat treatment is performed for 30 to 50% of the total heat treatment time, wherein the first heat treatment is performed for 30 to 50% of the total heat treatment time :
  • M is selected from the group consisting of a transition metal, an amphoteric element, P, F, and B,
  • a lithium nickel oxide according to the above-described process, which comprises the lithium nickel oxide of Formula 1 and further contains less than 11 wt% of NiO and less than 1 wt% of Li 2 O Wherein the total amount of NiO and Li 20 is 11% by weight or less.
  • a positive electrode and a lyrium negative electrode for a lithium secondary battery comprising the positive electrode additive.
  • the method for producing a positive electrode additive for a lithium secondary battery according to the present invention can reduce byproducts and unreacted materials generated during the production process, thereby significantly reducing the amount of gas generated during operation of the electrode. Accordingly, the positive electrode and the lithium positive electrode prepared using the positive electrode additive can exhibit better electrochemical characteristics and lifetime characteristics.
  • FIG. 1 is a graph showing the results of thermal analysis for a mixture for preparing a positive electrode additive in Test Example 1.
  • XRD 2 is a graph showing X-ray diffraction spectroscopy (XRD) results of the positive electrode additives according to Examples 1 to 3 and Comparative Examples 1 to 5.
  • FIG. 3 is a graph showing the amount of gas generated during operation of the positive electrode additive-containing battery according to Examples 1 to 3 and Comparative Examples 1 to 3.
  • the method for preparing a positive electrode additive for a lithium secondary battery comprises mixing a raw material of a lariium raw material, a nickel raw material and an element, and then heat-treating the mixture in an inert gas atmosphere to prepare a lyrium nickel oxide represented by the following formula ≪ / RTI >
  • the heat treatment may include a first heat treatment at 300 to 500 x: And a second heat treatment at 550 to 800 X: after the first heat treatment,
  • the primary heat treatment is performed for 30 to 50% of the entire heat treatment time.
  • the production method according to one embodiment of the present invention is characterized in that, in the production of the positive electrode additive containing lyrium nickel oxide represented by Formula 1 using the nickel raw material, the raw material of the element, and the lyrium raw material, And mixtures thereof to induce sufficient reaction of the raw materials of lyrium through a multistage heat treatment at a temperature at which the reaction occurs, and thereby, unreacted tritium oxide and byproducts Can be significantly reduced.
  • the heat treatment process may be performed by performing a primary heat treatment at 300 to 500 in an inert gas atmosphere to form a mixture of lithium source material, nickel source material, and lithium source
  • the raw material and the raw material of the element are reacted to form a lithium-element Preparing an inclusion compound;
  • the primary heat treatment step is specifically performed at a temperature of 300 to 500 X :.
  • the first heat treatment is performed within the above temperature range, the reaction between the lithium source material and the raw material of the element is sufficiently performed, and lithium and element-containing compounds can be produced with a high yield.
  • the temperature is lower than 300 ° C during the first heat treatment, the reaction between the lithium raw material and the raw material of the element 3 ⁇ 4 does not occur sufficiently, resulting in a large amount of unreacted raw material, May be generated.
  • it is more than 500 (:) it is not easy to control the reaction rate of the lithium raw material and the raw material of the element, and as a result, there is a fear of formation of an inferred reactant.
  • the first heat treatment can be performed at a temperature of 330 to 450 ° C., and more specifically, at a temperature of 400 ° C. to 350 ° C.
  • the primary heat treatment may be performed for 30 to 50% of the entire heat treatment time.
  • the reaction of the raw material of lyrium and the raw material of the element can sufficiently occur.
  • the time for the first heat treatment is less than 30% of the total heat treatment time, the reaction between the larium raw material and the raw material of the element does not sufficiently take place, resulting in a large amount of unreacted raw material, There is a fear that a side reaction product is produced.
  • the first heat treatment time exceeds 50% of the total heat treatment time, the second heat treatment time is relatively reduced.
  • the reaction time between the unreacted lithium raw material and the nickel raw material during the second heat treatment step is not neglected, The amount of unreacted lyrium oxide may increase.
  • the first heat treatment is performed at 35 to 45% of the total heat treatment time, more specifically, Is performed for 40 to 45% 2019/103459 1 »(: 1 ⁇ ⁇ 2018/014368
  • the primary heat treatment may also include a heating step of heating the mixture of reactants to the heat treatment temperature and a maintenance step of maintaining the reaction at a heated temperature for a certain period of time.
  • Temperature rising stage at the primary heat treatment is specifically 300 to 500 ° (: up to 2-7 / 111, and more specifically, may be performed by heating at a rate of 2 to 5 ⁇ / 111. When the temperature is raised at the controlled heating rate, the reaction efficiency can be further increased.
  • the holding step may be performed for 40 to 80% of the total time of the first heat treatment step.
  • the holding step is performed for the above-mentioned time, the diffusion reaction between the particles can be sufficiently performed, so that the completion of the reaction between the element-containing raw material and the lithium raw material can be enhanced.
  • the holding step may be performed for 40 to 70% of the total time of the first heat treatment step.
  • the first heat treatment including the first heat treatment may be performed in an inert gas atmosphere such as nitrogen, helium, or argon to suppress side reaction formation.
  • an inert gas atmosphere such as nitrogen, helium, or argon to suppress side reaction formation.
  • the reaction can be carried out under a nitrogen gas atmosphere in consideration of an increase in the reaction efficiency and an excellent effect of suppressing side reaction formation.
  • the Lyrium raw materials may have to be used Lyrium-containing oxide, sulfate, nitrate, acetate, carbonate, oxalate, citrate, halide, hydroxide or oxy-hydroxide or the like, specifically, you 2 03 ⁇ 4 , needle 03, 11 ⁇ 2, you 0 ⁇ Needle ( ⁇ - 3 ⁇ 40, you ⁇ you kneader, needle, needle 1, 0 ⁇ 3 ⁇ 01 [, needle 20, needle ⁇ 0 4, ⁇ 3 ⁇ 0 Needle, or Needle 3 (: 6 3 ⁇ 40 can be 7 and so on. Any one or a mixture of two or more of them may be used. Considering the reaction efficiency and the effect of reducing byproduct formation during the reaction with the nickel-containing precursor material, the lithium source material may be 20 days.
  • the nickel raw material may be a nickel-containing oxide or hydroxide such as nickel oxide (0) or nickel hydroxide ((0) 2 ).
  • Oxyhydroxides, phosphates, and the like can be used, and phosphates can be used.
  • silver may be selected from the group consisting of silver, cadmium, tin, and tin. More specifically, it may be selected from the group consisting of cadmium, tin, It is possible to form a stable compound, at the time, or 8 days, and in particular, it can be either Si or I 3 .
  • the lithium source material, the nickel source material and the raw material materials of the above-described lithium source material and the element may be used in an amount such that the composition ratio of the lithium source element and the nickel source element in the lithium nickel oxide represented by the formula 1 is satisfied.
  • the content of the reagent raw material may be such that the molar ratio of lium: (nickel + element 3 ⁇ 4) is 2: 1. If the molar ratio of nickel + element 3 ⁇ 40 does not satisfy 2: 1, the composition of formula (1) is not satisfied, and as a result, it can not sufficiently function as a sacrificial anode material or irreversible additive.
  • a sintering agent may be optionally added.
  • Compounds containing ammonium ions such as (i) filtration; 3 ⁇ 40 3 or 2 non-metal oxide, such as 03; Or a metal halide such as (1 2) or the like, and any one or a mixture of two or more thereof may be used.
  • the sintering may be used in an amount of 0.01 to 0.2 mol based on 1 mol of the nickel-containing raw material. It is possible to improve the performance of the anode additive and to prevent the initial capacity reduction of the battery from progressing during charging and discharging.
  • a moisture removing agent may be optionally added.
  • the moisture removing agent include citric acid, tartaric acid, glycolic acid, and maleic acid, and any one or a mixture of two or more thereof may be used.
  • the moisture removing agent may be used in an amount of from 0.20 mol to 0.2 mol based on 1 mol of the nickel raw material. 2019/103459 1 »(: 1 ⁇ ⁇ 2018/014368
  • a lyrium-element containing compound is produced by the reaction of the raw material of the element with the lyrium raw material in the mixture containing the lyrium raw material, the nickel raw material and the raw material of the element.
  • the lyrium-element containing compound may be a compound having a ni-4-l-0 phase such as ni 0 4, ni 5 0 4, or ni 2, etc. (as described above).
  • an unreacted lithium raw material such as Ni 20 and a nickel raw material together with the lyrium-element 1 containing compound exist in the reaction product.
  • the second heat treatment is performed at a temperature of 550 to 8001 :.
  • the secondary heat treatment is performed within the above-mentioned temperature range, a decrease in the discharge capacity per unit weight due to the residual of unreacted raw material, occurrence of side reaction or decomposition reaction of the reactant, It is possible to produce lithium-nickel-containing oxides of the formula (1) at an excellent efficiency without worrying, and at the same time, the content of unreacted lithium oxide can be reduced through reaction of the unreacted lyrium oxide and the nickel raw material. More specifically, considering that the effect of heating temperature control is excellent, the secondary heat treatment can be performed at a temperature of 600 to 800 ° C, more specifically, 6001: to 7001 ° C.
  • the secondary heat treatment step may be performed for a time of 50 to 70% of the total heat treatment time.
  • the duration of the second heat treatment step is less than 50% of the total heat treatment time, a sufficient reaction between the unreacted lyrium oxide and the nickel raw material is difficult to occur due to the short reaction time, and the lithium- The effect of reducing by-products may be minimal.
  • the execution time of the second heat treatment step is more than 70%, there is a risk of occurrence of excessive reaction, and the heat treatment time may become excessively long, which may be ineffective in the process.
  • the secondary heat treatment step may be performed for a time of 50 to 65%, more specifically 50 to 60% of the total heat treatment time.
  • the second heat treatment step may include a heating step of heating the mixture of the lyrium-element-1 containing compound, the nickel raw material and the unreacted lithium raw material prepared in the step 1, and a sufficient temperature And a maintenance step for allowing the user to perform the maintenance.
  • the temperature elevation step in the second heat treatment is specifically from 550 to 800 2019/103459 1 »(: 1 ⁇ ⁇ 2018/014368
  • it can be carried out by heating at a temperature of from 600 to 800 (), more particularly from 600 to 7001, at a rate of from 2 to 7 7 111111, more specifically from 2 to 5 () / 11 .
  • the temperature is raised at the controlled heating rate, the reaction efficiency can be further increased.
  • the holding step may be performed for 60 to 90% of the total time of the second heat treatment step.
  • the holding step is performed for the above-mentioned time, the diffusion reaction between the particles can be sufficiently performed, so that the completion of the reaction between the element-containing raw material and the lithium raw material can be enhanced.
  • the holding step may be performed for 60 to 80% of the total time of the second heat treatment step.
  • Second heat treatment including the second heat treatment may also be performed in an inert gas atmosphere such as nitrogen, helium, or argon to suppress side reaction formation.
  • an inert gas atmosphere such as nitrogen, helium, or argon
  • the reaction can be carried out under a nitrogen gas atmosphere in consideration of an increase in the reaction efficiency and an excellent effect of suppressing side reaction formation.
  • a cooling step may be optionally performed.
  • the cooling step may be performed according to a conventional method, and specifically, it may be carried out by natural cooling in a air atmosphere, hot air cooling, or the like.
  • a secondary heat treatment step as described above, the primary heat treatment results included in the reaction to give you a -3 ⁇ 41-0 phase and unreacted residual Needle 20 and 0 Lyrium nickel oxide to the payload response is doped formula
  • a positive electrode additive is prepared comprising:
  • 3 ⁇ 4! Is selected from the group consisting of transition metals, amphoteric elements, and 6, but not only nickel,
  • the element is 0 0,
  • And < RTI ID 0.0 > 2019/103459 1 »(: 1 ⁇ ⁇ 2018/014368
  • And may be selected from the group consisting of silver, nine, cis, and three, more specifically, may be selected from the group consisting of a poem having a good reactivity with luteum, have.
  • the above elements may be included in place of the amount corresponding to the table. ( ⁇ 0.1, more specifically, 0.01 ⁇ ) ⁇ ⁇ 0.06 days, in consideration of the remarkable improvement effect due to the control of the substitution amount contained in the lyrium nickel oxide, have.
  • the unreacted residue 11, 20 and, as 0, the reaction, produced positive electrode additive significantly decreases the prior art compared to the unreacted residual first amount of [20 and 0, lithium-based by-products in particular, including the knee 20 during the secondary heat treatment Is significantly reduced.
  • the positive electrode additive manufactured in the manufacturing method further comprises: the knee 20 below includes ritum nickel oxide of the formula (I), and 11 wt% 0 and 1% by weight of less than about the positive electrode additive total weight
  • the total amount of 0 wane 20 may be up to 11 wt%.
  • the anode additive may comprise up to 0.5 wt.% Ni 20 , and more specifically no Ni 20 wt.
  • the amount of such unreacted materials and lithium byproducts can greatly reduce the amount of gas generated during battery operation.
  • the X-ray diffraction analysis of the positive electrode additive can be performed according to a conventional XI analysis method using an X-ray diffraction analyzer, and in the present invention, 04 - using Table 11 (16 is 1'1 ⁇ 2 (81 1 stop;
  • the positive electrode additive prepared according to the above-mentioned production method is a lythum-
  • the Needle and needle 2 (3 ⁇ 4 rules include lithium-based by-products than the total of the positive electrode additive more than 0.5 to 3.5% by weight based on the weight, specifically, that may contain 0.5 to 3.1% by weight. Due to the significantly reduced nie, there is no fear of gelation during the mixing process for producing the anode. Accordingly, the positive electrode additive can exhibit a superior effect when used as a sacrificial anode material or irreversible additive for a lithium-transition metal oxide capable of absorbing and desorbing lithium ions.
  • Ni 2 O 3 is located on the surface of the anode additive, which can suppress the heat generation of the anode when a short circuit occurs, and can suppress moisture adsorption in the atmosphere.
  • the positive electrode additive for a lithium secondary battery produced according to the above-described production method can reduce the byproducts and unreacted matters necessarily generated in the manufacturing process, thereby significantly reducing the gas generation amount when the battery is driven. Accordingly, the positive electrode and the lithium secondary battery manufactured using the positive electrode additive can exhibit better electrochemical characteristics and life characteristics.
  • the positive electrode additive may be used as a sacrificial anode material or an irreversible additive (or an overdischarge inhibitor) that can compensate for irreversible capacity loss of the negative electrode due to the presence of excess lithium.
  • a positive electrode and a lithium secondary battery for a lithium secondary battery comprising the positive electrode additive produced by the above-described production method.
  • the positive electrode includes a positive electrode collector, and a positive electrode active material layer formed on the positive electrode collector and including the positive electrode additive.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • carbon, nickel, titanium, , Silver or the like may be used.
  • silver or the like
  • the adhesion of the positive electrode active material in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • a conductive material and a binder A conductive material and a binder.
  • the conductive material is used for imparting conductivity to the electrode.
  • the conductive material can be used without particular limitation as long as it has electron conductivity without causing chemical change.
  • Specific examples include carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Graphite such as natural graphite or artificial graphite; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
  • the conductive material may be included in an amount of 1% by weight to 30% by weight based on the total weight of the cathode active material layer.
  • the binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector.
  • Specific examples include polyvinylidene fluoride (1 ⁇ ), vinylidene fluoride-hexafluoropropylene copolymer (Acrylonitrile-butadiene copolymer).
  • polyvinyl alcohol polyacrylo Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylenetriene-diene polymer inhibitor, sulphonation-sand, styrene butadiene rubber ratio Fluorine rubber, or various copolymers thereof, and one kind or a mixture of two or more kinds of them may be used.
  • the binder may be included in an amount of 1% by weight to 30% by weight based on the total weight of the cathode active material layer.
  • the positive electrode active material layer may include a lithium transition metal oxide capable of absorbing and desorbing lyrium ion as a positive electrode active material.
  • Ni (: 0 0 2, Ni 0 2, 1 112 0 2 ( 3 ⁇ 3 ⁇ 4 5 1 11 ( ; ) 0 2 (0 ⁇ size ⁇ 1, 0 ⁇ 1) ⁇ 1, 0 ⁇ 1 + 8 bar. 1), needle 1 0 (1, 0 2, needle) 1-line 13 ⁇ 43 ⁇ 40 2, needle 1 - (1 1 ⁇ 113 ⁇ 40 2 ( 0 £ 1 [ ⁇ 1), knee (on ⁇ (0 ⁇ equal ⁇ 2, 0 ⁇ 3 ⁇ 4 ⁇ 2 , 0 ⁇ (: ⁇ 2,
  • the lyotropic transition metal compound may be LiCoO 2 or LiNi 3 ⁇ 4, in consideration of the remarkable improvement effect when the combination with the lithium-based compound of the formula (1) is used.
  • the cathode additive may be included in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the cathode active material.
  • the positive electrode may be produced by a conventional positive electrode manufacturing method, except that the positive electrode additive is used.
  • the positive electrode active material layer composition comprising the positive electrode additive and optionally the binder, conductive material, and positive electrode active material may be coated on the positive electrode collector, followed by drying and rolling. At this time, the types and contents of the cathode active material, the binder, and the conductive material are as described above.
  • the solvent examples include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone ) Or water, and one of them or a mixture of two or more of them may be used.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone a mixture of two or more of them may be used.
  • the amount of the solvent to be used is sufficient to dissolve or disperse the cathode active material, the conductive material and the binder in consideration of the coating thickness of the slurry and the yield of the slurry, and then to have a viscosity capable of exhibiting excellent thickness uniformity Do.
  • the positive electrode may be produced by casting the composition for forming the positive electrode active material layer on a separate support, then peeling the support from the support, and laminating the resulting film on the positive electrode collector.
  • an electrochemical device including the anode.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, it may be a lithium secondary battery.
  • the lithium secondary battery includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, as described above.
  • the lyrium secondary battery may further include a positive electrode, a negative electrode, a battery container for storing the electrode assembly of the separator, and a sealing member for sealing the battery unit. 2019/103459 1 »(: 1 ⁇ ⁇ 2018/014368
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
  • the negative electrode collector may have a thickness of Sm to 500 .mu.m, and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to strengthen the bonding force of the negative electrode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • the negative electrode active material layer may be formed by applying and drying a composition for forming a negative electrode including a negative electrode active material on the negative electrode collector and, optionally, a binder and a conductive material, or by casting the composition for forming a negative electrode on a separate support , Or by laminating a film obtained by peeling from the support onto an anode current collector.
  • the negative electrode active material a compound capable of reversible intercalation and deintercalation of lithium can be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon; , Poetry, 3 ⁇ 4,?
  • B, ⁇ 11 is, 111, Greater, 01, ⁇ alloy, alloy or 1 3 ⁇ 4 match gold or the like is alloyed with lithium can be metal compounds;
  • Or as complexes or 3 ⁇ 4 bokhapchegwa 1 may be made of composites such as containing a metallic compound and a carbonaceous material, there is any one or a mixture of two or more of them may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • the carbon material may be both low-crystalline carbon and high-crystallinity carbon.
  • Examples of the low-crystalline carbon include softened carbon ( 031 1x11 ) and cured carbon of 0 to 031 width ( 011) .
  • Examples of the highly crystalline carbon include amorphous, flaky, scaly, Or fibrous natural graphite or artificial graphite, Ki sh graphite, pyrolytic carbon, mesophase-based carbon fiber, meso-carbon microbeads, ), Liquid crystal pitch
  • high-temperature sintered carbon such as petroleum and coal tar coke.
  • binder and the conductive material may be the same as those described above for the anode.
  • the separator separates the negative electrode and the positive electrode and provides a moving path of lithium ions.
  • the separator can be used without any particular limitation as long as it is used as a separator in a lithium secondary battery. Particularly, It is preferable to have a low resistance and an excellent ability to impregnate the electrolyte.
  • porous polymer films such as porous polymer films made of dolly olefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / heptene copolymers and ethylene / methacrylate copolymers, May be used.
  • a nonwoven fabric made of a conventional porous nonwoven fabric for example, high-melting-point eutectic fibers, polyethylene terephthalate fibers or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used for securing heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • Examples of the electrolyte used in the present invention include an organic-based liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte which can be used in the production of a lithium secondary battery. It is not.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can act as a medium through which ions involved in an electrochemical reaction of a battery can move.
  • the organic solvent is methyl acetate (methyl acetate), ethyl acetate (ethyl acetate), _ y butyrolactone (Y -butyrolactone), £ - caprolactone (e -caprolactone) ester-based solvents, and the like; Dibutyl ether ethers such as ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; (DMC), diethylcarbonate (DEC), methylethyl carbonate (MEC), ethylmethyl carbonate (EMC), ethylene carbonate (ET) hy 1 ene carbonate (EC), propylene carbonate
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate, etc.) is preferred.
  • a cyclic carbonate for example, ethylene carbonate or propylene carbonate
  • ethylene carbonate or propylene carbonate for example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate, etc.
  • mixing the cyclic carbonate and the chain carbonate in a volume ratio of about 1: 1 to about 1: 9 may provide excellent performance of the electrolytic solution.
  • the lithium salt can be used without any particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt LiPF 6, LiC10 4, LiAsF 6, LiBF 4 LiSbF 6 LiA10 4, LiAlCl 4, LiCF 3 S0 3 LiC 4 F 9 S0 3, LiN (C 2 F 5 S0 3) 2, LiN ( C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2 .
  • LiCl, Li 1, or LiB (C 2 C> 4) 2 may be used.
  • the concentration of the above-mentioned RICOM salt is preferably within the range of 0.1M to 2.0M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lite ion can be effectively transferred.
  • the electrolyte may contain, for example, A halogenoalkylene carbonate compound such as diethyl carbonate, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, and diethylene glycol;
  • a halogenoalkylene carbonate compound such as diethyl carbonate, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, and diethylene glycol
  • One or more additives such as an imine dye, an N-substituted oxazolidinone, an N, N-substituted imidazolidine, an ethylene glycol dialkyl ether, an ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included.
  • the additive may be included in an amount of 0.1 wt% to 5 wt% based
  • the lithium secondary battery including the positive electrode additive according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles Hybrid Electric Vehicle (HEV).
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles Hybrid Electric Vehicle (HEV).
  • HEV Hybrid Electric Vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the battery module.
  • the battery module or the battery pack may be an electric vehicle including a power tool, an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV) ; Or a power storage system.
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • a power storage system a power storage system.
  • Example 3 As Lyrium raw material 1 ⁇ 2 0 26.7 ⁇ , as the nickel raw material 0 66.5 ⁇ , and then mixed with an aluminum phosphate 6.8 ⁇ as a raw material of the element, in an atmosphere of nitrogen, 21: 400 ° at a heating rate of / 111 (: , The temperature was raised for about 3 hours, and the temperature was maintained at the same temperature for 4 hours to perform the first heat treatment. The temperature was raised to 700 ° (:) at a rate of 2 / 1 ⁇ 2 in a nitrogen atmosphere for about 2 hours and 30 minutes, Second heat treatment. The resultant reactants were cooled to obtain positive electrode additive particles.
  • Example 3 Example 3
  • the resultant reactants were cooled to obtain positive electrode additive particles. Comparative Example 3
  • the cathode additive according to the present invention is not synthesized, and a lithium composite oxide layered on a layer, which is usually used as a cathode active material, is formed. Comparative Example 5
  • thermogravimetric analyzer TGA
  • a Li 20 single substance and a mixture of the Li 20 and the M raw material were also subjected to thermal analysis, and the results are shown in FIG.
  • the positive electrode was prepared using the positive electrode additive or the positive electrode active material particles prepared in Examples 1 to 3 and Comparative Examples 1 to 5, and the positive electrode was filled at 3.8 V, and the positive electrode was subjected to X-ray diffraction analysis (XRD).
  • XRD X-ray diffraction analysis
  • the positive electrode additive, the carbon black conductive material and the PVdF binder prepared in Examples 1 to 3 or Comparative Examples 1 to 3 were mixed in a N-methylpyrrolidone solvent in a weight ratio of 85: 10: 5
  • a composition for forming an anode (viscosity: 5000 mPa.s) was prepared, applied to an aluminum current collector, and then dried and rolled to prepare a positive electrode.
  • a battery in the form of a pouch was produced using an electrolytic solution. 2019/103459 1 »(: 1 ⁇ ⁇ 2018/014368
  • the results are shown in Fig.
  • Comparative Examples 1 to 3 Ne In addition to the peak of 3 ⁇ 4 11 2 0 peak was observed with Comparative Example 4
  • the unreacted Ni 2 O can be reduced by the multi-step heat treatment process under controlled conditions in the production of the positive electrode additive as in the embodiments.
  • Each of the positive electrode additives prepared in Examples 1 to 3 or Comparative Examples 1 to 3 was used to prepare a positive electrode according to the following method, and the generation of gas was evaluated during charging and discharging of the battery.
  • a battery of pouch type was prepared by using an electrolyte containing 1.15M of LiPF 6 in a solvent of 3/4/3.
  • the prepared cell was charged at 25 ° C to 4.25 V at 0.1 C, and the gas contained in the pouch was analyzed by GC-TCD (gas chromatography-thermal conductiv- ity detector). The same experiment was repeated twice. The results are shown in FIG. 3 and Table 2. For reference, in Comparative Examples 4 and 5, the gas experiment was not performed because the desired anode additive was not formed.

Abstract

Provided is a method for manufacturing a positive electrode additive for a lithium secondary battery, the method being capable of greatly reducing the amount of gas generated during electrode operation by decreasing the contents of Li-based byproducts generated in a manufacturing process and unreacted lithium oxides.

Description

2019/103459 1»(:1^1{2018/014368  2019/103459 1 »(: 1 ^ {2018/014368
【발명의 명칭】 Title of the Invention
리륨이차전지용양극첨가제의 제조방법  Method for preparing positive electrode additive for lithium secondary battery
【기술분야】  TECHNICAL FIELD
관련출원(들)과의상호인용  Cross-reference with related application (s)
본 출원은 2017년 11월 22일자 한국 특허 출원 제 10-2017-0156744호 및 2018년 11월 20일자 한국 특허 출원 제 10-2018-0143870호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은본명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0156744 dated November 22, 2017, and Korean Patent Application No. 10-2018-0143870 dated November 20, 2018, The entire contents of which are incorporated herein by reference.
본발명은제조과정에서 발생되는부산물및 미반응물을감소시켜 전극 작동시 가스 발생량을 현저히 저감시킬 수 있는 리튬 이차전지용 양극 첨가제의 제조방법에 관한것이다. The present invention relates to a method for producing a positive electrode additive for a lithium secondary battery, which can reduce byproducts and unreacted materials generated during the production process, thereby significantly reducing the amount of gas generated during operation of the electrode .
【배경기술】  BACKGROUND ART [0002]
모바일 기기에 대한기술개발과수요가증가함에 따라에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가상용화되어 널리사용되고있다.  As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing. Among such secondary batteries, lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commercially available and widely used.
리튬 이차전지의 음극 재료로서는 흑연이 주로 이용되고 있지만, 흑연은 단위질량당의 용량이 372
Figure imgf000003_0001
작기 때문에, 리툼 이차전지의 고용량화가 어렵다. 이에 따라흑연보다도 고용량을 나타내는 비탄소계 음극 재료로서, 실리콘, 주석 및 이들의 산화물 등의 리툼과 금속간 화합물을 형성하는재료가개발, 사용되고 있으나, 이들음극재료는초기 효율이 낮아 초기 충방전동안의 비가역 용량손실이 크다는문제가있다.
Although graphite is mainly used as a negative electrode material of a lithium secondary battery, the capacity per unit mass of graphite is 372
Figure imgf000003_0001
It is difficult to increase the capacity of the lithium secondary battery. As a result, a material for forming a lithium-metal intercalation compound such as silicon, tin and oxides thereof has been developed and used as a non-carbon anode material exhibiting a higher capacity than graphite, but these cathode materials have low initial efficiency, There is a problem that the irreversible capacity loss is large.
이에 대해 양극 재료에 리륨 이온 공급원 또는 저장소를 제공할 수 있으며, 전지 전체의 성능을 저하시키지 않도록 최초 사이클 후에 전기화학적으로활성을나타내는재료를사용하여, 음극의 비가역 용량손실을 극복하고자 하는 방법이 연구, 제안되었다. 구체적으로 희생 양극재 또는 비가역 첨가제(또는 과방전 방지제)로서 니2 02와 같이 과량의 리륨을 포함하는리튬니켈계산화물을양극에사용하는방법이 있다. On the other hand, a method of overcoming the irreversible capacity loss of the cathode using a material which can provide a lyrium ion source or a storage material to the cathode material and which exhibits electrochemical activity after the first cycle so as not to deteriorate the performance of the entire battery is studied , Respectively. Specifically, there is a method of using a lithium nickel calcined product containing an excessive amount of lithium, such as Ni 2 O 2 , as a sacrificial anode material or an irreversible additive (or an overdischarge preventing agent) for the anode.
그러나상기 리튬 니켈계 산화물은주로 니켈산화물이나니켈 탄산염 등을, 과량의 리튬산화물과반응시켜 제조되는데, 이때 반응에 참여하지 않은 2019/103459 1»(:1^1{2018/014368 However, the lithium-nickel-based oxide is mainly produced by reacting nickel oxide, nickel carbonate and the like with an excess amount of lithium oxide, 2019/103459 1 »(: 1 ^ {2018/014368
미반응리튬산화물 (니2⑴, 또는니(¾,니2¥3과같은부산물이 최종제조되는 리륨 니켈계 산화물에 잔류하게 된다 . 리튬 니켈계 산화물에 잔류하는 리튬 산화물 및 부산물들은 초기 전지 사이클시 분해되어 02 , 002 등의 과량의 가스를발생시킨다. 또니예와같은부산물의 경우, 전극제조를위한조성물 제조시 바인더 성분과 반응하여 조성물의 점도 상승 또는 겔화를 초래하고, 이로인해활물질층형성을위한전극조성물의 도포시 균일한도포가어렵고, 그 결과로서 전지의 특성이 저하되는 문제가 있다. 또 유리 니抑 및/또는 니에에서 유래하는유리니는양극의사이클효율을저하시키는문제가있다.Unreacted lithium oxide (Nishi 2 ⑴, or you (¾, you are by-products such as 2 ¥ 3 is left in the Lyrium nickel-containing oxide to be finally manufactured. Lithium oxide, and by-products remaining in the lithium nickel-based oxide are the initial cell cycle And decomposes to generate an excessive amount of gas such as 0 2, 00 2, etc. In the case of a by-product such as a ternary system, the viscosity of the composition is increased or gelated by reacting with the binder component in preparing a composition for electrode production, It is difficult to uniformly apply the electrode composition for the formation of the positive electrode active material, and as a result, there is a problem that the characteristics of the battery are deteriorated. .
【발명의 상세한설명】 DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
본 발명은 상기한 문제를 해결하여, 제조과정에서 발생되는 계 부산물및미반응리튬산화물의 함량을감소시켜, 전극작동시 가스발생량을 현저히 저감시킬수있는리튬이차전지용양극첨가제의 제조방법을제공하는 것을목적으로한다.  The present invention solves the above problems and provides a method for producing a positive electrode additive for a lithium secondary battery capable of reducing a content of a by-product and an unreacted lithium oxide generated during a manufacturing process, The purpose.
본발명은또한상기한제조방법에 따라제조되어, 가스발생의 원인이 되는니계 부산물 및 미반응물의 함량이 크게 감소된 리튬 이차전지용 양극 첨가제, 그리고 이를 포함하여 우수한 전기화학적 특성을 나타내는 리륨 이차전지용양극및 리륨이차전지를제공하는것을목적으로한다.  The present invention also relates to a positive electrode additive for a lithium secondary battery, which is produced according to the above-described production method and has a greatly reduced content of Ni byproducts and unreacted materials causing gas generation, and an anode for a lithium secondary battery exhibiting excellent electrochemical characteristics And lyrium provide a secondary battery.
【기술적 해결방법】  [Technical Solution]
상기 과제를 해결하기 위하여, 본 발명의 일 구현예에 따르면, 리륨 원료물질, 니켈 원료물질 및 원소 의 원료물질을 혼합한 후 불활성 기체 분위기 하에서 열처리하여 하기 화학식 1의 리륨 니켈 산화물을 제조하는 단계를포함하며, 상기 열처리는 300내지 500 X:에서의 1차열처리 ; 및 상기 1차열처리 후 550내지 800
Figure imgf000004_0001
에서의 2차열처리 단계를포함하고, 상기 1차 열처리는 전체 열처리 시간 중 30 내지 50 %의 시간 동안 수행되는, 상기 화학식 1의 리튬 니켈 산화물을 포함하는 리튬 이차전지용 양극 첨가제의 제조방법을제공한다:
According to an embodiment of the present invention, there is provided a process for producing a lyrium nickel oxide represented by the following Chemical Formula 1 by mixing a raw material of lyrium, a raw material of a nickel raw material and an element, followed by heat treatment in an inert gas atmosphere, Wherein the heat treatment comprises a first heat treatment at 300 to 500 x; And 550 to 800 after the primary heat treatment
Figure imgf000004_0001
Wherein the first heat treatment is performed for 30 to 50% of the total heat treatment time, wherein the first heat treatment is performed for 30 to 50% of the total heat treatment time :
[화학식 1]  [Chemical Formula 1]
2 ]계()2 2 ] Total () 2
상기 화학식 1에서, M은 전이금속, 양쪽성 원소, P, F, 및 B로 이루어진 군에서 선택되는 것이되, 단 이 니켈은아니며, In Formula 1, M is selected from the group consisting of a transition metal, an amphoteric element, P, F, and B,
0<x<l이다.  0 < x < l.
또, 본 발명의 다른 일 구현예에 따르면, 상기한 제조방법에 의해 제조되어, 상기 화학식 1의 리튬니켈산화물을포함하며, 11중량%미만의 NiO 및 1중량% 이하의 Li20를 더 포함하되 , 상기 NiO와 Li20의 총 양이 11중량% 이하인, 리튬이차전지용양극첨가제를제공한다. According to another embodiment of the present invention, there is provided a lithium nickel oxide according to the above-described process, which comprises the lithium nickel oxide of Formula 1 and further contains less than 11 wt% of NiO and less than 1 wt% of Li 2 O Wherein the total amount of NiO and Li 20 is 11% by weight or less.
본 발명의 또 다른 일 실시예에 따르면, 상기한 양극 첨가제를 포함하는리륨이차전지용양극및 리륨이차전지를제공한다.  According to another embodiment of the present invention, there is provided a positive electrode and a lyrium negative electrode for a lithium secondary battery comprising the positive electrode additive.
【발명의 효과】  【Effects of the Invention】
본 발명에 따른 리튬 이차전지용 양극 첨가제의 제조방법은, 제조과정에서 발생되는 부산물 및 미반응물을 감소시켜 전극 작동시 가스 발생량을현저히 저감시킬수있다. 이에 따라상기한양극첨가제를이용하여 제조된양극및 리륨이차전지는보다우수한전기화학적 특성 및수명 특성을 나타낼수있다.  The method for producing a positive electrode additive for a lithium secondary battery according to the present invention can reduce byproducts and unreacted materials generated during the production process, thereby significantly reducing the amount of gas generated during operation of the electrode. Accordingly, the positive electrode and the lithium positive electrode prepared using the positive electrode additive can exhibit better electrochemical characteristics and lifetime characteristics.
【도면의 간단한설명】  BRIEF DESCRIPTION OF THE DRAWINGS
도 1은 시험예 1에서의 양극 첨가제 제조용 혼합물에 대한 열분석 결과를나타낸그래프이다.  1 is a graph showing the results of thermal analysis for a mixture for preparing a positive electrode additive in Test Example 1. Fig.
도 2는 실시예 1 내지 3 및 비교예 1 내지 5에 따른 양극 첨가제에 대한 X선 회절 분석 (X-ray Di f fract ion Spectroscopy; XRD) 결과를 나타낸 그래프이다.  2 is a graph showing X-ray diffraction spectroscopy (XRD) results of the positive electrode additives according to Examples 1 to 3 and Comparative Examples 1 to 5.
도 3은실시예 1내지 3및 비교예 1내지 3에 따른양극 첨가제 포함 전지의 구동시 가스발생량을관찰한그래프이다.  FIG. 3 is a graph showing the amount of gas generated during operation of the positive electrode additive-containing battery according to Examples 1 to 3 and Comparative Examples 1 to 3.
【발명의 실시를위한최선의 형태】  BEST MODE FOR CARRYING OUT THE INVENTION
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.  Hereinafter, the present invention will be described in detail in order to facilitate understanding of the present invention.
본명세서 및 청구범위에 사용된용어나단어는통상적이거나사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 2019/103459 1»(:1^1{2018/014368 The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may appropriately define the concept of the term in order to best describe its invention Based on the principle that the present invention is based on the technical concept of the present invention, 2019/103459 1 »(: 1 ^ {2018/014368
해석되어야만한다. It must be interpreted.
이하 본 발명의 일 구현예에 따른 리튬 이차전지용 양극 첨가제의 제조방법, 이에 따라제조된 양극첨가제, 그리고이를포함하는양극및 리륨 이차전지에 대해설명한다.  Hereinafter, a method for preparing a positive electrode additive for a lithium secondary battery according to an embodiment of the present invention, a positive electrode additive manufactured thereby, and a positive electrode and a lithium secondary battery including the same will be described.
본 발명의 일 구현예에 따른 리튬 이차전지용 양극 첨가제의 제조방법은, 리륨원료물질, 니켈원료물질및 원소 의 원료물질을혼합한후 불활성 기체 분위기 하에서 열처리하여 하기 화학식 1의 리륨 니켈 산화물을 제조하는단계를포함하며,  The method for preparing a positive electrode additive for a lithium secondary battery according to an embodiment of the present invention comprises mixing a raw material of a lariium raw material, a nickel raw material and an element, and then heat-treating the mixture in an inert gas atmosphere to prepare a lyrium nickel oxide represented by the following formula &Lt; / RTI &gt;
상기 열처리는 300내지 500 X:에서의 1차열처리; 및 상기 1차열처리 후 550내지 800 X: 에서 2차열처리하는단계를포함하고,  The heat treatment may include a first heat treatment at 300 to 500 x: And a second heat treatment at 550 to 800 X: after the first heat treatment,
상기 1차 열처리는 전체 열처리 시간 중 30 내지 50 %의 시간 동안 수행된다.  The primary heat treatment is performed for 30 to 50% of the entire heat treatment time.
[화학식 1]  [Chemical Formula 1]
니出 美여  Nishi Mika
상기 화학식 1에서,  In Formula 1,
은 전이금속, 양쪽성 원소, 및 묘로 이루어진 군에서 선택되는 것이되, 단 이 니켈은아니며,  Is selected from the group consisting of transition metals, amphoteric elements, and grafts, with the proviso that it is not nickel,
( X < 1이다.  (X <
이와 같이 상기 발명의 일 구현예에 따른제조방법은, 니켈 원료물질, 원소 의 원료물질, 및 리륨 원료물질을 이용한 상기 화학식 1로 표시되는 리륨니켈산화물포함양극첨가제의 제조시, 사용되는원료물질들및 이들의 혼합물에 대한 열분석을 통해 반응이 일어나는 온도에서의 다단계 열처리를 통해 리륨원료물질들의 반응이 충분히 일어날수있도록유도함으로써, 전지 구동시 가스발생의 원인이 되는 미반응 리툼 산화물 및 부반응물을 현저히 저감시킬수있다.  As described above, the production method according to one embodiment of the present invention is characterized in that, in the production of the positive electrode additive containing lyrium nickel oxide represented by Formula 1 using the nickel raw material, the raw material of the element, and the lyrium raw material, And mixtures thereof to induce sufficient reaction of the raw materials of lyrium through a multistage heat treatment at a temperature at which the reaction occurs, and thereby, unreacted tritium oxide and byproducts Can be significantly reduced.
구체적으로, 상기 일 구현예에 따른 제조방법에 있어서, 상기 열처리 공정은불활성 기체 분위기 하에서 300내지 500 에서의 1차열처리를통해 리튬 원료물질, 니켈 원료물질 및 원소 의 원료물질을 포함하는 혼합물 중 리튬 원료물질과 원소 의 원료물질을 반응시켜 리튬-원소
Figure imgf000006_0001
포함화합물을 제조하는 단계; 및 불활성 기체 분위기 하에서 550 내지 800 X:에서의 2차 2019/103459 1»(:1^1{2018/014368
Specifically, in the manufacturing method according to one embodiment, the heat treatment process may be performed by performing a primary heat treatment at 300 to 500 in an inert gas atmosphere to form a mixture of lithium source material, nickel source material, and lithium source The raw material and the raw material of the element are reacted to form a lithium-element
Figure imgf000006_0001
Preparing an inclusion compound; And a second order at 550 to 800 X: under an inert gas atmosphere 2019/103459 1 »(: 1 ^ {2018/014368
열처리를 통해 상기 화학식 1의 리툼 니켈 산화물을 제조하는 동시에 단계 1에서 반응하지 않고 남은 리륨 원료물질과 니켈 원료물질을 반응시키는 단계를포함한다. And a step of reacting the remaining lyrium raw material and the nickel raw material without reacting in the step 1 while preparing the rehomium oxide of the formula 1 through a heat treatment.
상기 1차열처리 단계는구체적으로 300내지 500 X:의 온도조건에서 수행된다. 상기한 온도 범위 내에서 1차 열처리가 수행되는 경우, 리튬 원료물질과 원소 의 원료물질과의 반응이 충분히 일어나, 높은 수율로 리튬 및 원소 포함화합물을 제조할수 있다. 그러나만약 1차열처리시 온도가 300 미만일 경우 리튬 원료물질과 원소 ¾!의 원료물질과의 반응이 충분히 일어나지 않고, 그 결과로서 미반응 원료물질이 다량으로 발생하여 후속의 제 2열처리 단계에서 부반응물을 생성할 우려가 있다. 500 (:를 초과할 경우 리튬 원료물질과 원소 의 원료물질의 반응 속도 제어가 용이하지 않고, 그 결과부반응물 생성 등의 우려가 있다. 또 500
Figure imgf000007_0001
초과의 온도에서는니20와 出0그리고
Figure imgf000007_0002
원료물질이 동시에 반응하기 때문에 미반응니20를 1차 열처리 단계에서 먼저 제어하는 효과가 미미해진다. 1차 열처리 단계에서의 온도 제어에 따른 미반응물 및 부반응물 생성 제어, 그리고 리륨 및
Figure imgf000007_0003
The primary heat treatment step is specifically performed at a temperature of 300 to 500 X :. When the first heat treatment is performed within the above temperature range, the reaction between the lithium source material and the raw material of the element is sufficiently performed, and lithium and element-containing compounds can be produced with a high yield. However, if the temperature is lower than 300 ° C during the first heat treatment, the reaction between the lithium raw material and the raw material of the element ¾ does not occur sufficiently, resulting in a large amount of unreacted raw material, May be generated. If it is more than 500 (:), it is not easy to control the reaction rate of the lithium raw material and the raw material of the element, and as a result, there is a fear of formation of an inferred reactant. Another 500
Figure imgf000007_0001
In temperatures above 20 and you and出0
Figure imgf000007_0002
Since the raw material reacts at the same time, the effect of controlling the unreacted Ni 20 in the first heat treatment step becomes insignificant. Control of the formation of unreacted and non-reacted products by temperature control in the first heat treatment step,
Figure imgf000007_0003
화합물생성 효과의 우수함을고려할때, 상기 1차열처리는 330내지 450ᄃ, 보다구체적으로는 350내자 400 (:에서 수행될수있다. Considering that the compound generating effect is excellent, the first heat treatment can be performed at a temperature of 330 to 450 ° C., and more specifically, at a temperature of 400 ° C. to 350 ° C.
또, 상기 1차열처리는전체 열처리 시간중 30내지 50 %의 시간동안 수행될 수 있다. 1차 열처리가 상기한 시간 범위내에서 수행될 때 리륨 원료물질과 원소 의 원료물질과의 반응이 충분히 일어날 수 있다. 그러나 만약 1차 열처리시 시간이 전체 열처리 시간의 30 % 미만일 경우, 리륨 원료물질과원소 의 원료물질과의 반응이 충분히 일어나지 않고, 그결과로서 미반응 원료물질이 다량으로 발생하여 후속의 제 2열처리 단계에서 부반응물을 생성할 우려가 있다. 또 1차 열처리 시간이 전체 열처리 시간 중 50 %를 초과할 경우 2차 열처리 시간이 상대적으로 줄어들게 괌으로써 2차 열처리 단계동안의 미반응리튬원료물질과니켈원료물질과의 반응시간이 중분하지 않아, 미반응 리륨 산화물의 양이 증가할 수 있다. 1차 열처리 단계에서의 열처리 시간 제어에 따른 미반응물 및 부반응물 생성 제어, 그리고 리튬 및 원소 포함화합물생성 효과의 우수함을고려할때, 상기 1차열처리는전체 열처리 시간중 35내지 45 %, 보다구체적으로는 40내지 45 %동안수행될 2019/103459 1»(:1^1{2018/014368 In addition, the primary heat treatment may be performed for 30 to 50% of the entire heat treatment time. When the primary heat treatment is performed within the time range described above, the reaction of the raw material of lyrium and the raw material of the element can sufficiently occur. However, if the time for the first heat treatment is less than 30% of the total heat treatment time, the reaction between the larium raw material and the raw material of the element does not sufficiently take place, resulting in a large amount of unreacted raw material, There is a fear that a side reaction product is produced. Also, when the first heat treatment time exceeds 50% of the total heat treatment time, the second heat treatment time is relatively reduced. As Guam, the reaction time between the unreacted lithium raw material and the nickel raw material during the second heat treatment step is not neglected, The amount of unreacted lyrium oxide may increase. Considering that the control of generation of unreacted materials and byproducts by controlling the heat treatment time in the first heat treatment step and the effect of producing lithium and element containing compounds are excellent, the first heat treatment is performed at 35 to 45% of the total heat treatment time, more specifically, Is performed for 40 to 45% 2019/103459 1 »(: 1 ^ {2018/014368
수있다. .
상기 1차 열처리는 또한 상기한 열처리 온도까지 반응물질들의 혼합물을가열하는승온단계와, 가열된 온도에서 일정 시간유지하여 반응이 중분히 이루어지도록하는유지 단계로이루어질수있다.  The primary heat treatment may also include a heating step of heating the mixture of reactants to the heat treatment temperature and a maintenance step of maintaining the reaction at a heated temperature for a certain period of time.
상기 1차 열처리에서의 승온 단계는구체적으로 300내지 500°(:까지 2 내지 7 /1 11, 보다 구체적으로는 2 내지 5公/1 11의 속도로 가열함으로써 수행될 수 있다. 이와 같이 제어된 가열 속도로 승온이 이루어질 때, 반응 효율을보다증가시킬수있다. Temperature rising stage at the primary heat treatment is specifically 300 to 500 ° (: up to 2-7 / 111, and more specifically, may be performed by heating at a rate of 2 to 5公/ 111. When the temperature is raised at the controlled heating rate, the reaction efficiency can be further increased.
또, 상기 유지 단계는 1차 열처리 단계 총 시간 중 40 내지 80 %의 시간 동안 수행될 수 있다. 상기한 시간 동안에 유지 단계가 수행될 경우 입자간의 확산반응이 충분히 이루어 질수있어 원소 함유원료물질과리튬 원료물질의 반응완성도를높일 수 있다. 상기 유지 시간의 제어에 따른개선 효과의 우수함을고려할때, 상기 유지 단계는 1차열처리 단계총시간중 40 내지 70 %의 시간동안수행될수있다.  Also, the holding step may be performed for 40 to 80% of the total time of the first heat treatment step. When the holding step is performed for the above-mentioned time, the diffusion reaction between the particles can be sufficiently performed, so that the completion of the reaction between the element-containing raw material and the lithium raw material can be enhanced. Considering that the improvement effect according to the control of the holding time is excellent, the holding step may be performed for 40 to 70% of the total time of the first heat treatment step.
상기 1차 열처리, 구체적으로 승온과 유지 단계를 포함하는 1차 열처리는부반응생성 억제를위해 질소, 헬륨, 또는아르곤등과같은불활성 기체 분위기 하에서 수행될 수 있다. 이중에서도 반응 효율 증가 및 부반응 생성 억제 효과의 우수함을고려할때 질소기체분위기하에서 수행될수있다. 한편, 상기 1차 열처리에 있어서, 상기 리륨 원료물질은 리륨 함유 산화물, 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드, 수산화물 또는 옥시수산화물 등이 사용될 수 있으며, 구체적으로 니20¾, 니 03 , 11^2 , 니0比 니(犯 - ¾0, 니比 니 니이, 니 , 니1, 0{3¥01[ , 니20, 니^04 , 抑 3¥0니, 또는니3(:6¾07등을들 수 있다. 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 상기한 니켈 포함 전구체 물질과의 반응시 반응 효율 및 부반응물 생성 감소효과를 고려할 때, 상기 리튬원료물질은니20일수있다. The first heat treatment including the first heat treatment, specifically the temperature increase and the maintenance step, may be performed in an inert gas atmosphere such as nitrogen, helium, or argon to suppress side reaction formation. Of these, the reaction can be carried out under a nitrogen gas atmosphere in consideration of an increase in the reaction efficiency and an excellent effect of suppressing side reaction formation. On the other hand, in the primary heat treatment, the Lyrium raw materials may have to be used Lyrium-containing oxide, sulfate, nitrate, acetate, carbonate, oxalate, citrate, halide, hydroxide or oxy-hydroxide or the like, specifically, you 2 0¾ , needle 03, 11 ^ 2, you 0比Needle (犯- ¾0, you比you kneader, needle, needle 1, 0 {3 ¥ 01 [, needle 20, needle ^ 0 4,3 ¥ 0 Needle, or Needle 3 (: 6 ¾0 can be 7 and so on. Any one or a mixture of two or more of them may be used. Considering the reaction efficiency and the effect of reducing byproduct formation during the reaction with the nickel-containing precursor material, the lithium source material may be 20 days.
또, 상기 니켈 원료물질은 산화니켈( 0) 또는 수산화니켈( (0幻2)과 같이 니켈포함산화물또는수산화물일수있다. The nickel raw material may be a nickel-containing oxide or hydroxide such as nickel oxide (0) or nickel hydroxide ((0) 2 ).
또, 상기 원소 의 원료물질은
Figure imgf000008_0001
산화물, 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드, 수산화물 또는 2019/103459 1»(:1^1{2018/014368
Further, the raw material of the above element
Figure imgf000008_0001
Oxides, sulfates, nitrates, acetates, carbonates, oxalates, citrates, halides, hydroxides or 2019/103459 1 »(: 1 ^ {2018/014368
옥시수산화물, 인산염 등이사용될수있으며, 이중에서도인산염이사용될수 있다. 이때상기 ¾!은최종제조되는리륨니켈포함산화물에서 니켈의 일부를 치환하여 포함됨으로써 열 안정성 및 구조 안정성을 향상시키는 역할을 하는 것으로, 구체적으로는 00 , !&, 병, 1 , , (:11 , 또는如과같은 2가, 3가 또는 5가산화수를갖는 전이금속원소; 시과같은 3과산화수를갖는양쪽성 원소; 그리고 및 8로 이루어진 군에서 선택되는 것일 수 있으며, 이중에서도상기 은 , , 시, , ?, 및 8로 이루어진군에서 선택되는 것일 수 있으며, 보다더 구체적으로는리륨과와반응성이 우수하고, 또보다 안정한화합물형성이 가능한 ,시, 또는 8일수있으며, 이중에서도특히 ,시또는 I3일수있다. Oxyhydroxides, phosphates, and the like can be used, and phosphates can be used. At this time, the ¾ the final included by substituting part of nickel contained Lyrium nickel oxide produced thereby that serve to improve the thermal stability and structural stability, specifically, 0 0, and, bottles, 1, (!!: 11, or a transition metal element having a divalent, trivalent or pentasaccharide number as shown below; An amphoteric element having three peroxyacids such as citrate; And 8, and among these, silver may be selected from the group consisting of silver, cadmium, tin, and tin. More specifically, it may be selected from the group consisting of cadmium, tin, It is possible to form a stable compound, at the time, or 8 days, and in particular, it can be either Si or I 3 .
상기와 같은 리튬 원료물질, 니켈 원료물질 및 원소 의 원료물질은 최종 제조되는 화학식 1로 표시되는 리튬 니켈 산화물에서의 리튬과 니켈을 비롯한금속원소의 조성비를충족하도록하는함량으로각각사용될 수 있다. 구체적으로는 상기 리툼 원료 물질이 리륨:(니켈 +원소 ¾!)의 몰비가 2: 1이 되도록 하는 함량으로 사용될 수 있다. 리툼:(니켈 +원소 ¾0의 몰비가 2: 1을 충족하지 않을 경우 화학식 1의 조성을충족하지 않고, 그 결과희생 양극재 또는비가역 첨가제로서의 역할을충분히 수행할수없다.  The lithium source material, the nickel source material and the raw material materials of the above-described lithium source material and the element may be used in an amount such that the composition ratio of the lithium source element and the nickel source element in the lithium nickel oxide represented by the formula 1 is satisfied. Specifically, the content of the reagent raw material may be such that the molar ratio of lium: (nickel + element ¾) is 2: 1. If the molar ratio of nickel + element ¾0 does not satisfy 2: 1, the composition of formula (1) is not satisfied, and as a result, it can not sufficiently function as a sacrificial anode material or irreversible additive.
또, 상기한 원료물질들의 혼합시 소결제가 선택적으로 더 첨가될 수 있다. 상기 소결제는 구체적으로■ ,
Figure imgf000009_0001
또는 (■^여과 같은 암모늄 이온을 함유한 화합물; ¾03 또는미203과 같은 금속산화물; 또는 (:12 또는 같은 금속 할로겐화물 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 소결제는 니켈 포함 원료물질 1몰에 대하여 0.01몰내지 0.2몰의 함량으로사용될수있다. 상기한함량범위 내로 사용시 소결특성 향상효과가우수하여, 양극 첨가제의 성능개선 및 충방전 진행시 전지의 초기 용량저하를방지할수있다.
In the mixing of the above raw materials, a sintering agent may be optionally added. Specifically,
Figure imgf000009_0001
Compounds containing ammonium ions such as (i) filtration; ¾0 3 or 2 non-metal oxide, such as 03; Or a metal halide such as (1 2) or the like, and any one or a mixture of two or more thereof may be used. The sintering may be used in an amount of 0.01 to 0.2 mol based on 1 mol of the nickel-containing raw material. It is possible to improve the performance of the anode additive and to prevent the initial capacity reduction of the battery from progressing during charging and discharging.
또, 상기한원료물질들의 혼합시, 수분제거제가선택적으로 더 첨가될 수도 있다. 구체적으로 상기 수분제거제로는 구연산, 주석산, 글리콜산또는 말레인산 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될수 있다. 상기 수분제거제는니켈원료물질 1몰에 대하여 0.이몰내지 0.2몰의 함량으로사용될수있다. 2019/103459 1»(:1^1{2018/014368 In mixing the raw materials, a moisture removing agent may be optionally added. Specific examples of the moisture removing agent include citric acid, tartaric acid, glycolic acid, and maleic acid, and any one or a mixture of two or more thereof may be used. The moisture removing agent may be used in an amount of from 0.20 mol to 0.2 mol based on 1 mol of the nickel raw material. 2019/103459 1 »(: 1 ^ {2018/014368
상기와같은 1차열처리의 결과로서, 리륨원료물질, 니켈원료물질 및 원소 의 원료물질을 포함하는 혼합물 중 리륨 원료물질과 원소 의 원료물질의 반응에 의한 리륨-원소 포함 화합물이 생성되게 된다. 구체적으로상기 리륨-원소 포함화합물은니少04 ,5시04, 또는니孤2등과 같은 니-¾1-0 상을 갖는 화합물일 수 있다(이때 상기 은 앞서 설명한 바와 같다). 이때, 상기 리륨-원소 1포함화합물과함께,니20와같은미반응리튬 원료물질, 니켈원료물질이 반응생성물중에 포함되어 존재한다. As a result of the above-described first heat treatment, a lyrium-element containing compound is produced by the reaction of the raw material of the element with the lyrium raw material in the mixture containing the lyrium raw material, the nickel raw material and the raw material of the element. Specifically, the lyrium-element containing compound may be a compound having a ni-4-l-0 phase such as ni 0 4, ni 5 0 4, or ni 2, etc. (as described above). At this time, an unreacted lithium raw material such as Ni 20 and a nickel raw material together with the lyrium-element 1 containing compound exist in the reaction product.
다음으로, 상기 2차 열처리는 구체적으로 550 내지 8001:의 온도 조건에서 수행된다. 상기한 온도 범위 내에서 2차 열처리가 수행되는 경우, 미반응 원료물질의 잔류, 부반응 발생 또는 반응물질의 분해반응 등에 의한 단위무게당 방전 용량의 저하, 사이클 특성의 저하 및 작동 전압의 저하에 대한우려 없이 우수한효율로화학식 1의 리튬니켈함유산화물의 제조할수 있으며, 동시에 미반응 리륨 산화물과 니켈 원료물질의 반응을 통해 미반응 리튬산화물의 함량을감소시킬수있다. 보다구체적으로는가열온도제어에 따른효과의 우수함을고려할때, 상기 2차열처리는 600내지 800 °0 , 보다더 구체적으로는 6001: 내지 7001:의 온도조건에서 수행될수있다.  Next, the second heat treatment is performed at a temperature of 550 to 8001 :. In the case where the secondary heat treatment is performed within the above-mentioned temperature range, a decrease in the discharge capacity per unit weight due to the residual of unreacted raw material, occurrence of side reaction or decomposition reaction of the reactant, It is possible to produce lithium-nickel-containing oxides of the formula (1) at an excellent efficiency without worrying, and at the same time, the content of unreacted lithium oxide can be reduced through reaction of the unreacted lyrium oxide and the nickel raw material. More specifically, considering that the effect of heating temperature control is excellent, the secondary heat treatment can be performed at a temperature of 600 to 800 ° C, more specifically, 6001: to 7001 ° C.
또 상기 2차 열처리 단계는 전체 열처리 시간중 50내지 70%의 시간 동안 수행될 수 있다. 2차 열처리 단계의 수행시간이 전체 열처리 시간 중 50 % 미만인 경우, 짧은 반응시간으로 인해 미반응 리륨 산화물과 니켈 원료물질과의 충분한 반응이 일어나기 어렵고, 또 반응 효율이 저하로 인해 양극 첨가제 내 리튬계 부산물 감소 효과가 미미할 수 있다. 또 2차 열처리 단계의 수행 시간이 70%를 초과할 경우, 과반응 발생의 우려가 있고, 또 열처리 시간이 지나치게 길어지는 등 공정상 비효율적일 수 있다. 보다 구체적으로는 상기 2차 열처리 단계는 전체 열처리 시간 중 50 내지 65 % , 보다구체적으로는 50내지 60 %의 시간동안수행될수있다.  The secondary heat treatment step may be performed for a time of 50 to 70% of the total heat treatment time. When the duration of the second heat treatment step is less than 50% of the total heat treatment time, a sufficient reaction between the unreacted lyrium oxide and the nickel raw material is difficult to occur due to the short reaction time, and the lithium- The effect of reducing by-products may be minimal. If the execution time of the second heat treatment step is more than 70%, there is a risk of occurrence of excessive reaction, and the heat treatment time may become excessively long, which may be ineffective in the process. More specifically, the secondary heat treatment step may be performed for a time of 50 to 65%, more specifically 50 to 60% of the total heat treatment time.
또, 상기 2차 열처리 단계는 단계 1에서 제조한 리륨-원소 1 포함 화합물과 니켈 원료물질, 미반응 리튬 원료물질의 혼합물을 가열하는 승온 단계와, 가열된 온도에서 일정 시간 유지하여 반응이 충분히 이루어지도록 하는유지 단계로이루어질수있다.  The second heat treatment step may include a heating step of heating the mixture of the lyrium-element-1 containing compound, the nickel raw material and the unreacted lithium raw material prepared in the step 1, and a sufficient temperature And a maintenance step for allowing the user to perform the maintenance.
상기 2차열처리에서의 승온단계는구체적으로 550내지 800 보다 2019/103459 1»(:1^1{2018/014368 The temperature elevation step in the second heat treatment is specifically from 550 to 800 2019/103459 1 »(: 1 ^ {2018/014368
구체적으로는 600 내지 800 °(〕, 보다 더 구체적으로는 600方 내지 7001:의 온도까지 2 내지 7 7111111 , 보다 구체적으로는 2 내지 5°(〕/1 11의 속도로 가열함으로써 수행될수있다. 이와같이 제어된가열속도로승온이 이루어질 때, 반응효율을보다증가시킬수있다. Specifically , it can be carried out by heating at a temperature of from 600 to 800 (), more particularly from 600 to 7001, at a rate of from 2 to 7 7 111111, more specifically from 2 to 5 () / 11 . When the temperature is raised at the controlled heating rate, the reaction efficiency can be further increased.
또, 상기 유지 단계는 2차 열처리 단계 총 시간 중 60 내지 90 %의 시간 동안 수행될 수 있다. 상기한 시간 동안에 유지 단계가 수행될 경우 입자간의 확산반응이 충분히 이루어 질수있어 원소 함유원료물질과리튬 원료물질의 반응완성도를높일 수 있다. 상기 유지 시간의 제어에 따른개선 효과의 우수함을고려할때, 상기 유지 단계는 2차열처리 단계총시간중 60 내지 80 %의 시간동안수행될수있다.  Also, the holding step may be performed for 60 to 90% of the total time of the second heat treatment step. When the holding step is performed for the above-mentioned time, the diffusion reaction between the particles can be sufficiently performed, so that the completion of the reaction between the element-containing raw material and the lithium raw material can be enhanced. Considering that the improvement effect according to the control of the holding time is excellent, the holding step may be performed for 60 to 80% of the total time of the second heat treatment step.
상기 2차열처리, 구체적으로승온과유지 단계를포함하는 2차열처리 역시 부반응 생성 억제를 위해 질소, 헬륨, 또는 아르곤 등과 같은 불활성 기체 분위기하에서 수행될 수 있다. 이중에서도 반응 효율 증가 및 부반응 생성 억제 효과의 우수함을고려할때 질소기체분위기하에서 수행될수있다. 상기 2차 열처리 공정 후에는 선택적으로 냉각 공정이 더 수행될 수 있다.  Second heat treatment including the second heat treatment, specifically the temperature increase and the maintenance step, may also be performed in an inert gas atmosphere such as nitrogen, helium, or argon to suppress side reaction formation. Of these, the reaction can be carried out under a nitrogen gas atmosphere in consideration of an increase in the reaction efficiency and an excellent effect of suppressing side reaction formation. After the second heat treatment step, a cooling step may be optionally performed.
상기 냉각공정은통상의 방법에 따라수행될수 있으며, 구체적으로는 대기 분위기 하에 자연냉각, 열풍냉각등의 방법에 의해수행될수있다. 상기와같은 2차열처리 공정에 의해, 상기 1차 열처리 결과로수득된 반응물내 포함된니-¾1-0상과미반응잔류니20및 0가반응하여 이 도핑된 하기 화학식 1의 리륨니켈산화물을포함하는양극첨가제가제조된다: The cooling step may be performed according to a conventional method, and specifically, it may be carried out by natural cooling in a air atmosphere, hot air cooling, or the like. By a secondary heat treatment step as described above, the primary heat treatment results included in the reaction to give you a -¾1-0 phase and unreacted residual Needle 20 and 0 Lyrium nickel oxide to the payload response is doped formula A positive electrode additive is prepared comprising:
[화학식 1]  [Chemical Formula 1]
此 -美02 此 - 美 0 2
상기 화학식 1에서,  In Formula 1,
¾!은 전이금속, 양쪽성 원소, 및 6로 이루어진 군에서 선택되는 것이되, 단 ¾!이 니켈은아니며,  ¾! Is selected from the group consisting of transition metals, amphoteric elements, and 6, but not only nickel,
0<5(<1이다.  0 < 5 (< 1.
상기 원소 은 앞서 구체적으로는 00 ,
Figure imgf000011_0001
, Mg 1 , 0!, 또는 과 같은 2가, 3가또는 5가산화수를 갖는 전이금속 원소; 시과 같은 3과 산화수를 갖는 양쪽성 원소; 그리고 및 8로 이루어진 군에서 선택되는 2019/103459 1»(:1^1{2018/014368
Specifically, the element is 0 0,
Figure imgf000011_0001
A transition metal element having a divalent, trivalent or pentasaccharide such as Mg1, O1, or O; An amphoteric element having an oxidation number of 3 and the like; And &lt; RTI ID = 0.0 &gt; 2019/103459 1 »(: 1 ^ {2018/014368
것일 수 있으며, 이중에서도상기 은 , , 九, 시, 및 3로이루어진 군에서 선택되는 것일 수 있으며, 보다 더 구체적으로는 리툼과의 반응성이 우수하고, 또보다안정한화합물형성이 가능한 시또는 3일수있다. And may be selected from the group consisting of silver, nine, cis, and three, more specifically, may be selected from the group consisting of a poem having a good reactivity with luteum, have.
또, 상기 원소 은표에 해당하는양으로 을치환하여 포함될수 있다. 그 치환 양은 구체적으로 0£ <0.5일 수 있으며, 리륨 니켈 산화물 내 포함되는 의 치환량 제어에 따른 개선 효과의 현저함을 고려할 때 0.01<)(<0.1, 보다구체적으로는 0.01<)^<0.06일수있다.  In addition, the above elements may be included in place of the amount corresponding to the table. (<0.1, more specifically, 0.01 <) ^ <0.06 days, in consideration of the remarkable improvement effect due to the control of the substitution amount contained in the lyrium nickel oxide, have.
또, 상기 2차열처리 동안에 미반응잔류 1120및 0가반응함에 따라, 제조되는 양극 첨가제는 종래 대비 미반응 잔류 1[20 및 0의 함량이 크게 감소되며, 특히니20를비롯한리튬계부산물의 함량이 현저히 감소된다. In addition, the unreacted residue 11, 20 and, as 0, the reaction, produced positive electrode additive significantly decreases the prior art compared to the unreacted residual first amount of [20 and 0, lithium-based by-products in particular, including the knee 20 during the secondary heat treatment Is significantly reduced.
구체적으로, 상기한 제조방법에 따라 제조된 양극 첨가제는 상기 화학식 1의 리툼 니켈산화물을포함하고, 또 양극 첨가제 총중량에 대하여 11중량% 미만의 0 및 1중량% 이하의 니20를 더 포함하되 0와니20의 총 양이 11중량%이하일수있다. More specifically, but the positive electrode additive manufactured in the manufacturing method further comprises: the knee 20 below includes ritum nickel oxide of the formula (I), and 11 wt% 0 and 1% by weight of less than about the positive electrode additive total weight The total amount of 0 wane 20 may be up to 11 wt%.
보다구체적으로상기 양극 첨가제는 0.5중량% 이하의 니20를포함할 수 있으며, 보다 더 구체적으로는니20를 0중량%, 즉 포함하지 않는다. 이와 같이 감소된 미반응물 및 리튬 부산물의 함량으로 인해 전지 구동시 가스 발생량을크게 감소시킬수있다. More specifically, the anode additive may comprise up to 0.5 wt.% Ni 20 , and more specifically no Ni 20 wt. The amount of such unreacted materials and lithium byproducts can greatly reduce the amount of gas generated during battery operation.
또한, 상기 양극첨가제는 25°(:에서 3. 까지 0.1(:로충전후 X선회절 분석시, 20 = 30내지 35° 에서 나타나는 1[20피크의 강도를(11, 20 = 15 내지 20° 에서 나타나는니 02의 피크의 강도를(12라고할때, (11八 12=0일수 있다. Further, the above-mentioned positive electrode additive has a strength of 1 [ 20 peaks (11, 20 = 15 to 20 [deg.]) Appearing at 20 [deg.] To 30 [ the intensity of the peak appearing in the Needle 02 (referred to 12, (11八12 = 0 is the number of days.
한편, 본 발명에 있어서 양극 첨가제에 대한 X선 회절 분석은 X 선 회절 분석기를 이용한 통상의 XI® 분석 방법에 따라 수행될 수 있으며, 본 발명에서는 구체적으로
Figure imgf000012_0001
대 크 011을 이용하는 04 -표11(16 이1'½(81 1止;
Meanwhile, in the present invention, the X-ray diffraction analysis of the positive electrode additive can be performed according to a conventional XI analysis method using an X-ray diffraction analyzer, and in the present invention,
Figure imgf000012_0001
04 - using Table 11 (16 is 1'½ (81 1 stop;
(¾加 사제) XI社)를 사용하여 XI犯 분석을 수행하였다(2 0 = 15-35° , 주사속도 =4° / ]!), (2 0 = 15-35 ° , scanning speed = 4 ° /) using XI (manufactured by XI) . ),
또, 상기한제조방법에 따라제조된 양극첨가제는리툼계 부산물로서, The positive electrode additive prepared according to the above-mentioned production method is a lythum-
5중량% 이하, 보다 구체적으로는 4.5중량% 이하, 보다 더 구체적으로는 4.2중량% 이하의 니0 및 0.5 내지 1중량%의 니2¥3를 더 포함할 수 있다. 2019/103459 1»(:1^1{2018/014368 To 5% by weight or less than, particularly by more than 4.5% by weight or less, particularly may further comprise a you of you 0 2 ¥ 3 and 0.5 to 1% by weight of less than 4.2% by weight. 2019/103459 1 »(: 1 ^ {2018/014368
또한, 상기 니에 및 니2(¾룰 포함하는 리튬계 부산물을 양극 첨가제 총 중량에 대하여 0.5 내지 3.5 중량% 이하, 보다 구체적으로는 0.5 내지 3.1중량%로 포함할 수 있다. 이와 같이 현저히 감소된 니에로 인해 양극 제조를위한믹싱 공정시 겔화의 우려가없다. 이에 따라상기 양극 첨가제는 통상의 리튬 이온을 흡장 및 방출할 수 있는 리튬 전이금속 산화물에 대한 희생 양극재 또는 비가역 첨가제로서 사용시 보다 우수한 효과를 나타낼 수 있다. 또, 니2(:03은 양극 첨가제 표면에 위치하여, 단락 등의 발생시 양극의 발열을억제할수있고, 대기중의 수분흡착을억제할수있다. Further, in the Needle and needle 2 (¾ rules include lithium-based by-products than the total of the positive electrode additive more than 0.5 to 3.5% by weight based on the weight, specifically, that may contain 0.5 to 3.1% by weight. Due to the significantly reduced nie, there is no fear of gelation during the mixing process for producing the anode. Accordingly, the positive electrode additive can exhibit a superior effect when used as a sacrificial anode material or irreversible additive for a lithium-transition metal oxide capable of absorbing and desorbing lithium ions. In addition, Ni 2 O 3 is located on the surface of the anode additive, which can suppress the heat generation of the anode when a short circuit occurs, and can suppress moisture adsorption in the atmosphere.
상기한 제조방법에 따라 제조된 리튬 이차전지용 양극 첨가제는 제조과정에서 필연적으로 발생되는 부산물 및 미반응물이 감소됨으로써 전지 구동시 가스 발생량을 현저히 저감시킬 수 있다. 이에 따라 상기한 양극 첨가제를 이용하여 제조된 양극 및 리륨 이차전지는보다우수한 전기화학적 특성 및수명 특성을나타낼수있다.  The positive electrode additive for a lithium secondary battery produced according to the above-described production method can reduce the byproducts and unreacted matters necessarily generated in the manufacturing process, thereby significantly reducing the gas generation amount when the battery is driven. Accordingly, the positive electrode and the lithium secondary battery manufactured using the positive electrode additive can exhibit better electrochemical characteristics and life characteristics.
또, 상기 양극 첨가제는 과량의 리튬을 포함함에 따라 음극의 비가역 용량 손실을 보완할 수 있는 희생양극재 또는 비가역 첨가제(또는 과방전 방지제)로서사용될수도있다.  In addition, the positive electrode additive may be used as a sacrificial anode material or an irreversible additive (or an overdischarge inhibitor) that can compensate for irreversible capacity loss of the negative electrode due to the presence of excess lithium.
본 발명의 또 다른 일 구현예에 따르면, 상기한 제조방법에 의해 제조된 양극 첨가제를 포함하는 리륨 이차전지용 양극 및 리륨 이차전지가 제공된다.  According to another embodiment of the present invention, there is provided a positive electrode and a lithium secondary battery for a lithium secondary battery comprising the positive electrode additive produced by the above-described production method.
구체적으로 상기 양극은 양극집전체, 및 상기 양극집전체 위에 형성되며, 상기한양극첨가제를포함하는양극활물질층을포함한다.  Specifically, the positive electrode includes a positive electrode collector, and a positive electrode active material layer formed on the positive electrode collector and including the positive electrode additive.
상기 양극집전체는전지에 화학적 변화를유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소또는알루미늄이나스테인레스스틸 표면에 탄소, 니켈, 티탄, 은등으로표면 처리한것 등이 사용될수 있다. 또, 상기
Figure imgf000013_0001
The positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, carbon, nickel, titanium, , Silver or the like may be used. In addition,
Figure imgf000013_0001
상에 미세한요철을 형성하여 양극활물질의 접착력을높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등다양한형태로 사용될수있다. It is possible to increase the adhesion of the positive electrode active material. For example, in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
또, 상기 양극활물질층은앞서 설명한양극첨가제와함께, 양극활물질, 2019/103459 1»(:1^1{2018/014368 In addition, the positive electrode active material layer, together with the above-described positive electrode additive, 2019/103459 1 »(: 1 ^ {2018/014368
도전재 및바인더를포함할수있다. A conductive material and a binder.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유등의 탄소계 물질; 천연흑연이나인조흑연등의 흑연; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키 ; 산화티탄등의 도전성 금속산화물 ; 또는폴리페닐렌유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극활물질층 총 중량에 대하여 1중량%내지 30중량%로포함될수있다.  At this time, the conductive material is used for imparting conductivity to the electrode. The conductive material can be used without particular limitation as long as it has electron conductivity without causing chemical change. Specific examples include carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Graphite such as natural graphite or artificial graphite; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more. The conductive material may be included in an amount of 1% by weight to 30% by weight based on the total weight of the cathode active material layer.
또, 상기 바인더는 양극활물질 입자들 간의 부착 및 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(1 볘), 비닐리덴플루오라이드-핵사플루오로프로필렌 코폴리머( 산 -아广冊!5), 폴리비닐알코올, 폴리아크릴로
Figure imgf000014_0001
전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈 , 테트라플루오로에틸렌 , 폴리에틸렌 , 폴리프로필렌 , 에틸렌-프로필텐-디엔 폴리머犯抑則 , 술폰화-砂 , 스티렌 부타디엔 고무比요幻, 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극활물질층 총 중량에 대하여 1중량%내지 30중량%로포함될수있다.
In addition, the binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector. Specific examples include polyvinylidene fluoride (1 볘), vinylidene fluoride-hexafluoropropylene copolymer (Acrylonitrile-butadiene copolymer). 5 ), polyvinyl alcohol, polyacrylo
Figure imgf000014_0001
Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylenetriene-diene polymer inhibitor, sulphonation-sand, styrene butadiene rubber ratio Fluorine rubber, or various copolymers thereof, and one kind or a mixture of two or more kinds of them may be used. The binder may be included in an amount of 1% by weight to 30% by weight based on the total weight of the cathode active material layer.
또, 상기한 양극 첨가제가 희생 양극재 또는 비가역 첨가제로서 활물질층내 포함되는경우, 상기 양극활물질층은리륨 이온을흡장및 방출할 수있는리튬전이금속산화물을양극활물질로서 포함할수있다.  When the positive electrode additive is included in the active material layer as a sacrificial positive electrode material or an irreversible additive, the positive electrode active material layer may include a lithium transition metal oxide capable of absorbing and desorbing lyrium ion as a positive electrode active material.
구체적으로 상기 리툼 전이금속 화합물로는 니(:002 , 니 02 ,
Figure imgf000014_0002
도 111202, 니( 3{¾5111;)02(0<크<1, 0<1)<1, 0<。<1, 8바+。=1) , 니 1- 0102 , 니 )1- 선 1¾¾02 , 니 1-11\11¾02(0£〔1< 1) , 니( 에 穴 (0<크<2, 0<¾<2, 0<(:<2 ,
Specifically, as the above-mentioned transition metal compounds, Ni (: 0 0 2, Ni 0 2,
Figure imgf000014_0002
1 112 0 2 ( 3 { ¾ 5 1 11 ( ; ) 0 2 (0 <size <1, 0 <1) <1, 0 <<1 + 8 bar. = 1), needle 1 0 (1, 0 2, needle) 1-line 1¾¾0 2, needle 1 - (1 1 \ 11¾0 2 ( 0 £ 1 [<1), knee (on穴(0 <equal <2, 0 <¾ <2 , 0 <(: <2,
3사七+。=2), 111^12^1604 , 니1¾12- 0604 (0¾<2) , 니 止 , 또는느 여등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도상기 화학식 1의 리툼니켈계 화합물과의 조합사용시 개선효과의 현저함을 고려할 때, 상기 리륨 전이금속 화합물은 LiCo02 또는 LiNi¾일 수 있다. 3 four七+. = 2), 1 1 1 ^ 12 ^ 16 0 4, you 1¾ 12- 06 0 4 (0¾ < 2), you止, or can include a slow yeodeung, over either or both of these Mixtures may be used. Of these, the lyotropic transition metal compound may be LiCoO 2 or LiNi ¾, in consideration of the remarkable improvement effect when the combination with the lithium-based compound of the formula (1) is used.
상기 양극활물질층이 양극활물질을 포함하는 경우, 양극활물질 100중량부에 대하여 상기 양극첨가제는 0.1내지 10중량부로포함될수있다. 상기 양극은 상기한 양극 첨가제를 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 첨가제 및 선택적으로, 바인더, 도전재 및 양극활물질을 포함하는 양극활물질층 형성용 조성물을양극집전체 상에 도포한후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.  When the cathode active material layer includes a cathode active material, the cathode additive may be included in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the cathode active material. The positive electrode may be produced by a conventional positive electrode manufacturing method, except that the positive electrode additive is used. Specifically, the positive electrode active material layer composition comprising the positive electrode additive and optionally the binder, conductive material, and positive electrode active material may be coated on the positive electrode collector, followed by drying and rolling. At this time, the types and contents of the cathode active material, the binder, and the conductive material are as described above.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며 , 디메틸설폭사이드 (dimethyl sul foxide, DMS0) , 이소프로필 알코올 ( i sopropyl alcohol ) , N-메틸피롤리돈 (NMP) , 아세톤 (acetone) 또는 물 등을들 수 있으며 , 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용 ¾수 있다. 상기 용매의 사용량은슬러리의 도포두께, 제조수율을고려하여 상기 양극활물질, 도전재 및 바인더를용해또는분산시키고, 이후양극제조를위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.  Examples of the solvent include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone ) Or water, and one of them or a mixture of two or more of them may be used. The amount of the solvent to be used is sufficient to dissolve or disperse the cathode active material, the conductive material and the binder in consideration of the coating thickness of the slurry and the yield of the slurry, and then to have a viscosity capable of exhibiting excellent thickness uniformity Do.
또, 다른 방법으로, 상기 양극은 상기 양극활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극집전체상에 라미네이션함으로써 제조될수도있다 .  Alternatively, the positive electrode may be produced by casting the composition for forming the positive electrode active material layer on a separate support, then peeling the support from the support, and laminating the resulting film on the positive electrode collector.
본 발명의 또 다른 일 실시예에 따르면 , 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일수있으며 , 보다구체적으로는리륨이차전지일수있다.  According to another embodiment of the present invention, there is provided an electrochemical device including the anode. The electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, it may be a lithium secondary battery.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리륨 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를밀봉하는밀봉부재를선택적으로더 포함할수있다. 2019/103459 1»(:1^1{2018/014368 Specifically, the lithium secondary battery includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, as described above. The lyrium secondary battery may further include a positive electrode, a negative electrode, a battery container for storing the electrode assembly of the separator, and a sealing member for sealing the battery unit. 2019/103459 1 »(: 1 ^ {2018/014368
한편, 발명의 일 구현예에 따른 상기 리튬 이차전지에 있어서, 상기 음극은 음극집전체 및 상기 음극집전체 상에 위치하는 음극활물질층을 포함한다. Meanwhile, in the lithium secondary battery according to an embodiment of the present invention, the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
상기 음극집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은등으로표면처리한것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 Sm 내지 500;에!의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로사용될수있다.  The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. For example, the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used. In addition, the negative electrode collector may have a thickness of Sm to 500 .mu.m, and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to strengthen the bonding force of the negative electrode active material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 음극활물질층은 음극활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극활물질층은 일례로서 음극집전체 상에 음극활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극집전체상에 라미네이션함으로써 제조될수도있다 .  The anode active material layer optionally includes a binder and a conductive material together with the anode active material. The negative electrode active material layer may be formed by applying and drying a composition for forming a negative electrode including a negative electrode active material on the negative electrode collector and, optionally, a binder and a conductive material, or by casting the composition for forming a negative electrode on a separate support , Or by laminating a film obtained by peeling from the support onto an anode current collector.
상기 음극활물질로는 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한화합물이 사용될수있다. 구체적인 예로는인조흑연 , 천연흑연, 흑연화탄소섬유, 비정질탄소등의 탄소질 재료; , 시, ¾, ?b, å11 , 이, 111 ,
Figure imgf000016_0001
크, 01, ^합금, ¾1합금 또는 시합금 등 리튬과 합금화가 가능한금속질 화합물; 510x(0 < X < 2), ¾02 , 바나듐산화물, 리튬 바나듐 산화물과 같이 리륨을 도프 및 탈도프할 수 있는 금속산화물; 또는 복합체 또는 ¾1 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 ( 0311x 11) 및 경화탄소 0 대 031011)가대표적이며, 고결정성 탄소로는무정형, 판상, 인편상, 구형 또는섬유형의 천연 흑연 또는인조흑연, 키시흑연 (Ki sh graphi te) , 열분해 탄소 (pyrolyt i c carbon) , 액정피치계 탄소섬유 (mesophase pi tch based carbon f iber ) , 탄소 미소구체 (meso-carbon microbeads) , 액정피치
As the negative electrode active material, a compound capable of reversible intercalation and deintercalation of lithium can be used. Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon; , Poetry, ¾,? B, å 11 , is, 111,
Figure imgf000016_0001
Greater, 01, ^ alloy, alloy or 1 ¾ match gold or the like is alloyed with lithium can be metal compounds; A metal oxide capable of doping and dedoping lyrium, such as 510x (0 < X < 2), 2O 2, vanadium oxide, lithium vanadium oxide; Or as complexes or ¾ bokhapchegwa 1 may be made of composites such as containing a metallic compound and a carbonaceous material, there is any one or a mixture of two or more of them may be used. Also, a metal lithium thin film may be used as the negative electrode active material. The carbon material may be both low-crystalline carbon and high-crystallinity carbon. Examples of the low-crystalline carbon include softened carbon ( 031 1x11 ) and cured carbon of 0 to 031 width ( 011) . Examples of the highly crystalline carbon include amorphous, flaky, scaly, Or fibrous natural graphite or artificial graphite, Ki sh graphite, pyrolytic carbon, mesophase-based carbon fiber, meso-carbon microbeads, ), Liquid crystal pitch
(Mesophase pi tches) 및 석유와석탄계 코크스 (petroleum or coal tar pi tch der ived cokes)등의 고온소성탄소가대표적이다. And high-temperature sintered carbon such as petroleum and coal tar coke.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한바와동일한 것일 수있다.  In addition, the binder and the conductive material may be the same as those described above for the anode.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동통로를제공하는 것으로, 통상리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습능력이 우수한 것이 바람직하다. 구체적으로는다공성 고분자필름, 예를들어 에틸렌단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/핵센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 돌리올레핀계 고분자로 제조한 다공성 고분자필름또는 이들의 2층 이상의 적층구조체가사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유라 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는기계적 강도확보를위해세라믹 성분또는고분자물질이 포함된 코팅된 세퍼레이터가사용될 수도 있으며, 선택적으로단층또는다층구조로 사용될수있다.  Meanwhile, in the lithium secondary battery, the separator separates the negative electrode and the positive electrode and provides a moving path of lithium ions. The separator can be used without any particular limitation as long as it is used as a separator in a lithium secondary battery. Particularly, It is preferable to have a low resistance and an excellent ability to impregnate the electrolyte. Specifically, porous polymer films such as porous polymer films made of dolly olefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / heptene copolymers and ethylene / methacrylate copolymers, May be used. Further, a nonwoven fabric made of a conventional porous nonwoven fabric, for example, high-melting-point eutectic fibers, polyethylene terephthalate fibers or the like may be used. Further, a coated separator containing a ceramic component or a polymer material may be used for securing heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
또, 본 발명에서 사용되는 전해질로는 리륨 이차전지 제조시 사용 가능한유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로한정되는것은아니다.  Examples of the electrolyte used in the present invention include an organic-based liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte which can be used in the production of a lithium secondary battery. It is not.
구체적으로, 상기 전해질은유기 용매 및 리륨염을포함할수있다. 상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할수 있는매질 역할을할수 있는것이라면특별한제한없이 사용될수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트 (methyl acetate) , 에틸 아세테이트 (ethyl acetate) , y _부티로락톤 ( Y -butyrolactone) , £ - 카프로락톤 ( e -caprolactone) 등의 에스테르계 용매 ; 디부틸 에테르 (dibutyl ether) 또는 테트라히드로퓨란 (tetrahydrofuran) 등의 에테르계 용매; 시클로핵사논 (cyclohexanone) 등의 케톤계 용매; 벤젠 (benzene) , 플루오로벤젠 (f luorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트 (dimethyl carbonate, DMC) , 디에틸카보네이트 (diethylcarbonate, DEC) , 메틸에틸카보네이트 (methylethyl carbonate, MEC) , 에틸메틸카보네이트 ( e t hy 1 me t hy 1 car bonat e , EMC ) , 에틸렌카보네이트 ( et hy 1 ene carbonate, EC) , 프로필렌카보네이트 (propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R- CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1, 3 -디옥솔란 등의 디옥솔란류; 또는 설포란 (sul folane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트 (예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물 (예를 들면, 에틸메틸카보네이트, 디메틸카보네이트또는디에틸카보네이트등)의 혼합물이 耳다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1: 1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날수있다. Specifically, the electrolyte may include an organic solvent and a lithium salt. The organic solvent may be used without particular limitation as long as it can act as a medium through which ions involved in an electrochemical reaction of a battery can move. Specifically, the organic solvent is methyl acetate (methyl acetate), ethyl acetate (ethyl acetate), _ y butyrolactone (Y -butyrolactone), £ - caprolactone (e -caprolactone) ester-based solvents, and the like; Dibutyl ether ethers such as ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; (DMC), diethylcarbonate (DEC), methylethyl carbonate (MEC), ethylmethyl carbonate (EMC), ethylene carbonate (ET) hy 1 ene carbonate (EC), propylene carbonate (PC), etc .; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a straight, branched or cyclic hydrocarbon group of C2 to C20, which may contain a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sul folanes may be used. Among these, a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate, etc.) is preferred. In this case, mixing the cyclic carbonate and the chain carbonate in a volume ratio of about 1: 1 to about 1: 9 may provide excellent performance of the electrolytic solution.
상기 리튬염은 리륨 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6 , LiC104, LiAsF6 , LiBF4 LiSbF6 LiA104, LiAlCl4 , LiCF3S03 LiC4F9S03 , LiN(C2F5S03)2 , LiN(C2F5S02)2 , LiN(CF3S02)2. LiCl , Li l , 또는 LiB(C2C>4)2등이 사용될 수 있다. 상기 리콤염의 농도는 0.1M내지 2.0M범위 내에서 사용하는것이 좋다. 리튬염의 농도가상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리툼이온이 효과적으로이동할수있다. The lithium salt can be used without any particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salt, LiPF 6, LiC10 4, LiAsF 6, LiBF 4 LiSbF 6 LiA10 4, LiAlCl 4, LiCF 3 S0 3 LiC 4 F 9 S0 3, LiN (C 2 F 5 S0 3) 2, LiN ( C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2 . LiCl, Li 1, or LiB (C 2 C> 4) 2 may be used. The concentration of the above-mentioned RICOM salt is preferably within the range of 0.1M to 2.0M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lite ion can be effectively transferred.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량감소억제, 전지의 방전용량향상등을목적으로예를들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임 (glyme), 핵사인산트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2 -메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1중량%내지 5중량%로포함될수있다. In addition to the above-described electrolyte components, the electrolyte may contain, for example, A halogenoalkylene carbonate compound such as diethyl carbonate, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, and diethylene glycol; One or more additives such as an imine dye, an N-substituted oxazolidinone, an N, N-substituted imidazolidine, an ethylene glycol dialkyl ether, an ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. The additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the electrolyte.
상기와같이 본발명에 따른 양극 첨가제를포함하는 리튬 이차전지는 우수한방전용량, 출력 특성 및 용량유지율을안정적으로나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차 (hybr id electr i c vehi cle, HEV) 등의 전기 자동차 분야 등에 유용하다 .  As described above, since the lithium secondary battery including the positive electrode additive according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles Hybrid Electric Vehicle (HEV).
이에 따라, 본발명의 다른일 구현예에 따르면, 상기 리튬이차전지를 단위 셀로포함하는전지 모듈및 이를포함하는전지팩이 제공된다.  According to another embodiment of the present invention, there is provided a battery module including the lithium secondary battery as a unit cell and a battery pack including the battery module.
상기 전지모듈 또는 전지팩은 파워 툴 (Power Tool); 전기자동차 (Electr ic Vehi cle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차 (Plug-in Hybr id Electr ic Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로이용될수있다. 이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는실시예에 한정되지 않는다.  The battery module or the battery pack may be an electric vehicle including a power tool, an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV) ; Or a power storage system. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
실시예 1  Example 1
리튬 원료물질로서 Li20 26.7g, 니켈 원료물질로서 NiO 66.5g, 그리고 원소 M의 원료물질로서 암모늄포스페이트 (Ammonium phosphate) 6.8g과혼합한 후, 질소 분위기하에 2°C /min의 승온 속도로 400°C까지 약 3시간 동안 승온하고, 승은한 온도에서 4시간 동안 유지하여 1차 열처리하고, 질소 분위기하에 2°C/min의 속도로 700°C까지 약 2시간 30분동안승은한후, 6시간 2019/103459 1»(:1^1{2018/014368 26.7 g of Li 20 as a raw material of lithium, 66.5 g of NiO as a raw material of nickel and 6.8 g of ammonium phosphate as a raw material of the element M were mixed and heated under a nitrogen atmosphere at a heating rate of 400 The temperature was raised to about 700 ° C for about 3 hours and the temperature was raised to 700 ° C for about 2 hours and 30 minutes at a rate of 2 ° C / min under a nitrogen atmosphere. time 2019/103459 1 »(: 1 ^ {2018/014368
동안유지하여 2차열처리 하였다. 결과의 반응물을냉각하여 니2 0.9.602의 양극첨가제 입자를수득하였다. 실시예 2 And then subjected to a second heat treatment. Needle 2 0.9. Cool the reaction to the result. 6 0 2 a positive electrode of the additive particles was obtained. Example 2
리륨 원료물질로서 1{20 26.7§ , 니켈 원료물질로서 0 66.5§ , 그리고 원소 의 원료물질로서 알루미늄 포스페이트 6.8§과 혼합한 후, 질소 분위기하에 21:/1 11의 승온속도로 400°(:까지 약 3시간동안승온하고, 승은한 온도에서 4시간동안유지하여 1차 열처리하고, 질소 분위기하에 2 /½ 의 속도로 700°(:까지 약 2시간 30분 동안 승은한 후 7시간 동안 유지하여 2차 열처리 하였다. 결과의 반응물을냉각하여 양극첨가제 입자를수득하였다. 실시예 3 As Lyrium raw material 1 {2 0 26.7 §, as the nickel raw material 0 66.5 §, and then mixed with an aluminum phosphate 6.8 § as a raw material of the element, in an atmosphere of nitrogen, 21: 400 ° at a heating rate of / 111 (: , The temperature was raised for about 3 hours, and the temperature was maintained at the same temperature for 4 hours to perform the first heat treatment. The temperature was raised to 700 ° (:) at a rate of 2 / ½ in a nitrogen atmosphere for about 2 hours and 30 minutes, Second heat treatment. The resultant reactants were cooled to obtain positive electrode additive particles. Example 3
리륨 원료물질로서 1120 26.7g, 니켈 원료물질로서 0 66.5§) 그리고 원소 의 원료물질로서 03 12.4§과 혼합한 후, 질소 분위기하에 2 / 11의 승온속도로 400°(:까지 약 3시간동안승온하고, 승은한온도에서 4시간동안 유지하여 1차 열처리하고, 질소 분위기하에 21:/1 11의 속도로 700 까지 약 2시간 30분동안승은한후, 6시간동안유지하여 2차열처리 하였다. 결과의 반응물을냉각하여니2 。.94¥ᄋ.。 602의 양극첨가제 입자를수득하였다. 비교예 1 As a starting material Lyrium 11 2 0 26.7g, as a nickel raw material 0 § 66.5) and as a raw material of the elements 03 1 and mixed with § 2.4, 400 ° (in a nitrogen atmosphere at a heating rate of 2/11: to about for 3 hours, temperature was raised and maintained at a w a temperature for 4 hours by heating the first, and in an atmosphere of nitrogen, 21: after w for about 2 hours and 30 minutes to a rate of / 111 700, and maintained for 6 hours second Heat treated. Cool the reaction to the results you 2. 94 .. ¥ ᄋ to give a positive electrode additive particles of 60 2. Comparative Example 1
리튬 원료물질로서 니20 26.7g, 니켈 원료물질로서 0 66.5§ , 그리고 원소 의 원료물질로서 알루미늄 포스페이트 6.8§과 혼합한 후, 질소 분위기하에 2 細比의 승온속도로 700 I:까지 약 5시간 30분동안승온하고, 6시간 동안 유지하였다. 결과의 반응물을 냉각하여 양극 첨가제 입자를 수득하였다. 비교예 2 26.7 g of Ni 2 O as a raw material of lithium, 0.66.5 로서 as a nickel raw material , and 6.8 § of aluminum phosphate as a raw material of an element were mixed and heated at 700 ° C for about 5 hours The temperature was raised for 30 minutes and maintained for 6 hours. The resultant reactants were cooled to obtain positive electrode additive particles. Comparative Example 2
리튬 원료물질로서 니20 26.7§, 니켈 원료물질로서 0 66.5§, 그리고 원소 의 원료물질로서 암모늄포스페이트 6.8용과혼합한후, 질소분위기하에 5°(:/1 11의 승온 속도로 400 까지 약 1시간동안승온하고, 승은한온도에서 2시간 동안 유지하여 1차 열처리하고, 질소 분위기하에 2°(:/1 11의 속도로 70010까지 약 2시간 30분 동안 승은한 후 6시간 동안 유지하여 2차 열처리 하였다. 결과의 반응물을냉각하여 양극첨가제 입자를수득하였다. 비교예 3 A lithium source material you 2 0 26.7 §, as the nickel raw material 0 66.5 §, and then a solution of ammonium phosphate, 6.8 and one for a raw material of the element, 5 ° under a nitrogen atmosphere (: / a heating rate of 111 to 400 about 1 The temperature was raised for a period of time, Treated for 2 hours and then heated for 2 hours and 30 minutes to 70010 at a rate of 2 ° (: / 11) in a nitrogen atmosphere, and then maintained for 6 hours for secondary heat treatment. The resultant reactants were cooled to obtain positive electrode additive particles. Comparative Example 3
리륨 원료물질로서 나20 26.7§ , 니켈 원료물질로서 0 66.5융, 그리고 원소 의 원료물질로서 암모늄포스페이트 6.8용과혼합한후, 질소분위기하에 11:/1 11의 승온 속도로 4001:까지 약 6시간동안승온하고, 승은한온도에서 6시간 동안 유지하여 1차 열처리하고, 질소 분위기하에 2°(〕/1 11의 속도로 700 I:까지 약 2시간 30분 동안 승은한후 6시간동안 유지하여 2차 열처리 하였다. 결과의 반응물을냉각하여 양극첨가제 입자를수득하였다. 비교예 4 As Lyrium raw materials or 2 0 26.7 §, as the nickel raw material 0 66.5 raised, and then a solution of ammonium phosphate, 6.8 and one for a raw material of the element, in an atmosphere of nitrogen, 11: 6 hours: 4001 at a heating rate of / 111 And then heated for 6 hours at a temperature of 1 ° C. for 2 hours and 30 minutes at a rate of 2 ° C./1 11 under a nitrogen atmosphere. Heat treatment. The resultant reactants were cooled to obtain positive electrode additive particles. Comparative Example 4
리륨 원료물질로서 Li20 26.7g, 니켈 원료물질로서 NiO 66.5g, 그리고 원소 M의 원료물질로서 알루미늄 포스페이트 6.8g과 혼합한 후, 산소 분위기하에 2°C/min의 승온속도로 400°C까지 약 3시간동안승온하고, 승은한 온도에서 4시간 동안 유지하여 1차 열처리하고, 질소 분위기하에 2°C/min의 속도로 700°C까지 약 2시간 30분 동안 승은한후, 6시간 동안 유지하여 2차 열처리 하였다. 26.7 g of Li 2 O as a raw material of Li, 66.5 g of NiO as a raw material of nickel, and 6.8 g of aluminum phosphate as a raw material of element M were mixed and heated to 400 ° C at a heating rate of 2 ° C / min in an oxygen atmosphere The temperature was raised for about 3 hours, and the temperature was maintained at a constant temperature for 4 hours to perform a first heat treatment. The temperature was raised to 700 ° C at a rate of 2 ° C / min under a nitrogen atmosphere for about 2 hours and 30 minutes, And then subjected to a second heat treatment.
그러나, 1차 열처리가산소분위기에서 수행됨에 따라본 발명에 따른 양극 첨가제는 합성 되지 않고, 통상 양극활물질로서 사용되는 layered상의 리튬복합산화물이 형성되었다. 비교예 5  However, as the first heat treatment is performed in an oxygen atmosphere, the cathode additive according to the present invention is not synthesized, and a lithium composite oxide layered on a layer, which is usually used as a cathode active material, is formed. Comparative Example 5
리튬 원료물질로서 1[20 26.7g, 니켈 원료물질로서 0 66.5용, 그리고 원소 의 원료물질로서 알루미늄 포스페이트 6.8용과 혼합한 후, 질소 분위기하에 2 /1 11의 승온 속도로 2001:까지 약 1시간반 동안 승온하고, 승온한 온도에서 4시간 동안 유지하여 1차 열처리하고, 질소 분위기하에 2 / 의 속도로 4001:까지 약 1시간 30분 동안 승은한 후, 6시간 동안 유지하여 2차열처리 하였다. 그러나, 1차 열처리시의 낮은 온도로 인해 결정 구조가 생성되지 않음으로써 양극 첨가제는합성되지 않았으며, 미반응 Li20만남아있음을 X선 회절분석 결과로부터 확인하였다 (시험예 2참조) . 시험예 1: 반응온도분석 1 [2 0 26.7g, then a solution of aluminum phosphate of 6.8 and one for a raw material for the 0 and 66.5, and the element as a nickel raw material, at a heating rate of 2/1 11 2001, under a nitrogen atmosphere as a lithium source material: about 1 up to time elevated temperature for half and held in a raised temperature for 4 hours to speed 4001 of the 2/1 «under the primary heat treatment, and a nitrogen atmosphere: after w for about an hour and 30 minutes, kept for 6 hours, the second heat treatment Respectively. However, since the crystal structure was not formed due to the low temperature during the first heat treatment, the positive electrode additive was not synthesized, and the unreacted Li 20 was found to be from the X-ray diffraction analysis results (see Test Example 2). Test Example 1: Reaction temperature analysis
상기 실시예 1에 따른 양극 첨가제의 제조시 사용되는 u20 NiO및 M 원료물질 (M source)로서 암모늄 포스페이트의 혼합물에 대해 열중량 분석기 (Thermogravimetr i c Analysi s; TGA)를이용하여 혼합물내 반응물질들의 반응온도를 분석하였다. 비교를 위해, Li20 단독 물질, 및 Li20와 상기 M 원료물질의 혼합물질에 대해서도 열분석을 수행하고, 그 결과를 도 1에 나타내었다. The mixture of u 2 0 NiO and ammonium phosphate as the M source used in the preparation of the positive electrode additive according to Example 1 was measured using a thermogravimetric analyzer (TGA) Were analyzed. For comparison, a Li 20 single substance and a mixture of the Li 20 and the M raw material were also subjected to thermal analysis, and the results are shown in FIG.
도 1에 나타난 바와 같이, TGA 분석을 통해 M 원료물질인 암모늄 포스페이트와 Li20가 약 400 °C 부근에서 먼저 반응하여 Li-M-0상으로서 Li3P04을 형성하고, 700 °C 부근에서 상기 Li-M-0상과 남은 Li20와 NiO가 반응하여 P가 도핑된 Li2Ni02상이 형성됨을 확인하였다. 이로부터, 반응이 일어나는 온도에서 다단계 열처리를 통해 미반응 Li20의 함량을 감소시킬 수 있음을확인하였다. 시험예 2: 양극첨가제분석 As shown in Fig. 1, via the TGA M source material is ammonium phosphate and Li 20 is to first react at about 400 ° C to form Li 3 P0 4 as Li-M-0-phase, at about 700 ° C It was confirmed that the Li-M-0 phase and the remaining Li 20 and NiO reacted to form a P-doped Li 2 NiO 2 phase. From this, it was confirmed that the content of unreacted Li 20 can be reduced through the multistage heat treatment at the temperature at which the reaction occurs. Test Example 2: Analysis of anode additives
상기 실시예 1 내지 3, 및 비교예 1 내지 5에서 제조한 양극 첨가제 또는 양극활물질 입자를 이용하여 양극을 제조하고, 3.8V로 충전 후 양극을 X선회절분석 (XRD)하였다.  The positive electrode was prepared using the positive electrode additive or the positive electrode active material particles prepared in Examples 1 to 3 and Comparative Examples 1 to 5, and the positive electrode was filled at 3.8 V, and the positive electrode was subjected to X-ray diffraction analysis (XRD).
상세하게는, 상기 실시예 1 내지 3또는 비교예 1 내지 3에서 제조한 양극 첨가제, 카본블랙 도전재 및 PVdF바인더를 N-메틸피롤리돈용매 중에서 중량비로 85: 10: 5의 비율로혼합하여 양극형성용조성물 (점도: 5000mPa · s)을 제조하고, 이를 알루미늄 집전체에 도포한 후, 건조 압연하여 양극을 제조하였다. 또, 음극으로는 Li-metal을 사용하였으며, 에틸렌카보네이트 (EC)/디메틸카보네이트 (DMC)/에틸메틸카보네이트 (EMC)의 혼합 부피비 =3/4/3인 용매에 1.15M의 LiPF6가 포함된 전해액을 사용하여 파우치 형태의 전지를제조하였다. 2019/103459 1»(:1^1{2018/014368 Specifically, the positive electrode additive, the carbon black conductive material and the PVdF binder prepared in Examples 1 to 3 or Comparative Examples 1 to 3 were mixed in a N-methylpyrrolidone solvent in a weight ratio of 85: 10: 5 A composition for forming an anode (viscosity: 5000 mPa.s) was prepared, applied to an aluminum current collector, and then dried and rolled to prepare a positive electrode. Li-metal was used as the negative electrode, and a mixed solvent of ethylene carbonate (EC) / dimethyl carbonate (DMC) / ethyl methyl carbonate (EMC) = 3/4/3 was added to the solution containing 1.15 M of LiPF 6 A battery in the form of a pouch was produced using an electrolytic solution. 2019/103459 1 »(: 1 ^ {2018/014368
제조한전지를 251:에서 3. 까지 0.1(:로충전한후, 양극을분리하고, 01-1(:(1
Figure imgf000023_0001
이용하는 04-£11(161¾1(81'1止아 I삯 (¾1태 사제)를 사용하여 ¾犯 분석을 수행하였다(20 = 15-35° , 주사속도 =4° /min) . 그 결과를도 2에 나타냈다.
The manufactured battery 251: 0.1 (in up to 3: one filled with a later, separate the cathode, and 0 1- 1 (1 :(
Figure imgf000023_0001
Was performed using a ¾犯analyzed using 04- £ 11 (1 6 O 1¾1 (8 1'1止Oh I reward (1 ¾ status Co.) (20 = 15-35 °, scanning speed = 4 ° / min) . The results are shown in Fig.
분석 결과, 충전 동안에 니2 02는니 02로 변환됨에 따라, 실시예 1 내지 3의 양극 첨가제 포함 전극에서는니 02의 피크만이 관찰되었다. 이에 따라 20 = 30° 내지 35° 에서 나타나는 피크의 강도를 , 29 = 15 내지 20° 에서 나타나는피크의 강도를(12라고할때, (11/(12=0이었다. The results, did during filling neunni 2 0 2 as converted into 02, in the embodiment including Examples 1 to 3, the anode electrode of the additive, only the Needle 02 peaks were observed. Accordingly, the intensity of the peak appearing at 20 = 30 ° to 35 ° is calculated as (12 / (12 = 0), where the intensity of the peak at 29 = 15 to 20 ° is 12.
그러나, 비교예 1내지 3의 경우니 ¾의 피크외에 1120피크가함께 관찰되었고, 비교예 4의 경우 1차열처리가산소분위기 하에서 수행됨에 따라 통상양극활물질로서 사용되는 136(1상의 리륨복합산화물이 형성되었다. 또, 비교예 5의 경우 1차 열처리시의 낮은 온도로 인해 양극 첨가제가 합성되지 않았으며, 미반응니20만이 확인되었다. However, in the case of Comparative Examples 1 to 3 Ne. In addition to the peak of ¾ 11 2 0 peak was observed with Comparative Example 4 The primary heat treatment is one that is used as a conventional positive electrode active material according to the performed under an oxygen atmosphere, 3 la 6 For (1 Lt; RTI ID = 0.0 &gt; of Li &lt; / RTI &gt; Further, Comparative Example 5 was due to the low temperature during the primary heat treatment has not been a positive electrode additive for the synthesis, unreacted you only 20 were confirmed.
이 같은 결과로 실시예들에서와 같이 양극 첨가제의 제조시 제어된 조건에서의 다단계 열처리 공정을 통해 미반응 니20를 감소시킬 수 있음을 확인할수있다. As a result, it can be confirmed that the unreacted Ni 2 O can be reduced by the multi-step heat treatment process under controlled conditions in the production of the positive electrode additive as in the embodiments.
또, 상기 ¾犯결과로부터 양극첨가제 내 미반응 1120, 부산물,니2 02
Figure imgf000023_0002
리튬 산화물의 함량을 정량 분석하였다. 그 결과를 하기 표 1에 나타내었다.
In addition, the ¾犯Further unreacted 11 20, by-products from the positive electrode additives, needle 20 and 2
Figure imgf000023_0002
The content of lithium oxide was quantitatively analyzed. The results are shown in Table 1 below.
【표 1】  [Table 1]
Figure imgf000023_0003
Figure imgf000024_0001
Figure imgf000023_0003
Figure imgf000024_0001
상기 표 1에서 "- "는측정하지 않음을의미한다. 표 1에 나타난 바와같이, 본 발명에 따라 제조된 실시예 1 내지 3의 양극 첨가제는 비교예 1 내지 3에 비해 현저히 감소된 NiO 및 Li20 함량을 나타내었다. 시험예 3: 양극첨가제평가 In Table 1, " - " means not measured. As shown in Table 1, the positive electrode additives of Examples 1 to 3 prepared according to the present invention exhibited significantly reduced NiO and Li 20 contents as compared with Comparative Examples 1 to 3. Test Example 3: Evaluation of anode additives
상기 실시예 1 내지 3, 또는 비교예 1 내지 3에서 제조한 양극 첨가제를 각각 이용하여 하기와 같은 방법으로 양극을 제조한 후, 전지 충방전시 가스발생을평가하였다.  Each of the positive electrode additives prepared in Examples 1 to 3 or Comparative Examples 1 to 3 was used to prepare a positive electrode according to the following method, and the generation of gas was evaluated during charging and discharging of the battery.
상세하게는, 상기 실시예 1내지 3, 또는비교예 1내지 3에서 제조한 양극 첨가제 , 카본블랙 도전재 및 PVdF바인더를 N-메틸피롤리돈용매 중에서 중량비로 85 : 10 : 5의 비율로혼합하여 양극형성용조성물 (점도: 5000mPa - 을 제조하고, 이를 알루미늄 집전체에 도포한 후, 건조 압연하여 양극을 제조하였다. 음극으로는 Li-metal을 사용하였으며, EC/DMC/EMC의 혼합 부피비 =3/4/3인 용매에 1. 15M의 LiPF6가 포함된 전해액을 사용하여 파우치 형태의 전지를제조하였다. Specifically, the positive electrode additive, the carbon black conductive material and the PVdF binder prepared in Examples 1 to 3 or Comparative Examples 1 to 3 were mixed in a N-methylpyrrolidone solvent at a weight ratio of 85: 10: 5 DMC / EMC mixture ratio (mixing ratio by volume: EC / DMC / EMC = 5,000 mPa) was applied to the aluminum current collector and then dried and rolled to prepare a positive electrode. A battery of pouch type was prepared by using an electrolyte containing 1.15M of LiPF 6 in a solvent of 3/4/3.
제조한전지를 25°C에서 4.25V까지 0. 1C로충전하고, 파우치 내포집된 가스를 GC-TCD(gas chromatography-thermal conduct ivity detector )을 이용하여 분석하였다. 동일실험을 2회 반복실시하였다. 그결과를하기 도 3 및 표 2에 나타내었다. 참고로, 비교예 4 및 5의 경우 원하는 양극첨가제가 형성되지 않았기에 가스실험을수행하지 않았다. The prepared cell was charged at 25 ° C to 4.25 V at 0.1 C, and the gas contained in the pouch was analyzed by GC-TCD (gas chromatography-thermal conductiv- ity detector). The same experiment was repeated twice. The results are shown in FIG. 3 and Table 2. For reference, in Comparative Examples 4 and 5, the gas experiment was not performed because the desired anode additive was not formed.
【표 2]
Figure imgf000024_0002
2019/103459 1»(:1^1{2018/014368
[Table 2]
Figure imgf000024_0002
2019/103459 1 »(: 1 ^ {2018/014368
Figure imgf000025_0001
Figure imgf000025_0001
실험결과로부터 본 발명에 따른 제조방법에 따라 제조된 실시예 1 내지 3의 양극 첨가제를 포함하는 경우, 양극 첨가제내 포함된 부산물 및 미반응물의 감소로 인해, 양극 첨가제의 제조시 열처리를 1단계로 수행한 비교예 1, 열처리를 2단계로 수행하였으나 1차 열처리 시간이 지나치게 짧은 비교예 2, 그리고 1차 열처리 시간이 지나치게 긴 비교예 3에 비해 가스발생량이 크게 감소하였으며, 특히 비교예 1에 비해서는 가스발생량이 50% 이상감소되었다. Experimental results show that when the positive electrode additives of Examples 1 to 3 prepared according to the production method of the present invention are contained, by-products and unreacted materials contained in the positive electrode additive are reduced, Comparative Example 1, Comparative Example 2, and Comparative Example 3, in which the first heat treatment time was too short, and Comparative Example 3 in which the first heat treatment time was too long, were significantly reduced, The gas generation amount was reduced by 50% or more.

Claims

2019/103459 1»(:1^1{2018/014368 【청구의 범위】 【청구항 1】 리륨 원료물질, 니켈 원료물질 및 원소 의 원료물질을 혼합한 후 불활성 기체 분위기 하에서 열처리하여 하기 화학식 1의 리륨 니켈 산화물을 제조하는단계를포함하며 , 상기 열처리는 300내지 500 I:에서의 1차열처리; 및 상기 1차열처리 후 550내지 800 V 에서의 2차열처리 단계를포함하고, 상기 1차 열처리는 전체 열처리 시간 중 30 내지 50 %의 시간 동안 수행되는, 상기 화학식 1의 리륨 니켈 산화물을 포함하는 리륨 이차전지용 양극 첨가제의 제조방법 : Claims: What is claimed is: 1. A process for producing a luminescent material, comprising mixing a raw material of larium, a raw material of a nickel material and an element and then heat- Nickel oxide, said heat treatment comprising: a first heat treatment at 300-500 I; And a second heat treatment step at 550 to 800 V after the first heat treatment, wherein the first heat treatment is performed for 30 to 50% of the whole heat treatment time, and the lyrium containing the lyrium nickel oxide of the formula (1) Method for preparing positive electrode additive for secondary battery:
[화학식 1]  [Chemical Formula 1]
1ᅬ니02 1 minute 0 2
상기 화학식 1에서,  In Formula 1,
은 전이금속, 양쪽성 원소, ?, 및 8로 이루어진 군에서 선택되는 것이되, 단 이 니켈은아니며,  Is selected from the group consisting of a transition metal, an amphoteric element,?, And 8, provided that the terminal is not nickel,
0<於1이다.  0 &lt;
【청구항 2] [Claim 2]
제 1항에 있어서,  The method according to claim 1,
상기 1차 열처리는 330내지 450 에서 전체 열처리 시간중 35내지 The primary heat treatment is performed at a temperature of from 330 to 450,
45 %동안수행되는, 리륨이차전지용양극첨가제의 제조방법. Lt; RTI ID = 0.0 &gt; 45%. &Lt; / RTI &gt;
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method according to claim 1,
상기 1차 열처리는 300 내지 5001:까지 2 내지 71: /1^의 속도로 가열하는승온단계, 및 가열된온도에서 상기 1차열처리 단계 총시간중 40 내지 80 %의 시간동안유지하는유지 단계를포함하는, 리륨이차전지용양극 첨가제의 제조방법. Wherein the primary heat treatment is a heating step of heating at a rate of from 2 to 71: 1/1 up to 300 to 500: 1 , and a holding step of maintaining at a heated temperature for 40 to 80% of the total time of the primary heat treatment step &Lt; / RTI &gt; by weight of the total weight of the lithium secondary battery.
【청구항 4] 2019/103459 1»(:1^1{2018/014368 [4] 2019/103459 1 »(: 1 ^ {2018/014368
제 1항에 있어서, The method according to claim 1,
상기 2차 열처리는 600 내지 800°(:에서 수행되는, 리륨 이차전지용 양극 첨가제의 제조방법. Wherein the secondary heat treatment is carried out at a temperature of 600 to 800 占 (a process for producing a positive electrode additive for a lithium secondary battery .
【청구항 5] [Claim 5]
제 1항에 있어서,  The method according to claim 1,
상기 2차 열처리는 550 내지 800 I:까지 2 내지 7ᄃ/[11比 속도로 가열하는승온단계, 및 가열된온도에서 2차열처리 단계 총시간중 60내지 90 %의 시간 동안 유지하는 유지 단계를 포함하는, 리륨 이차전지용 양극 첨가제의 제조방법. The second heat treatment is a heating step of heating at a specific speed of 2 to 7 ᄃ / [ 11] up to 550 to 800 I: and a maintaining step of maintaining 60 to 90% of the total time of the second heat treatment step at the heated temperature &Lt; / RTI &gt; by weight of the total weight of the lithium secondary battery.
【청구항 6】 [Claim 6]
제 1항에 있어서,  The method according to claim 1,
상기 리륨 원료물질, 니켈 원료물질 및 원소 의 원료물질의 혼합 시, 상기 리튬 원료 물질이 리륨:(니켈 +원소 의 몰비가 2: 1이 되도록 하는 함량으로사용되는, 리륨이차전지용양극 첨가제의 제조방법.  A method for producing a positive electrode additive for a lithium secondary battery, wherein the lithium source material is used in such an amount that the molar ratio of Li +: Ni + element becomes 2: 1 when the Li source raw material, the nickel raw material and the raw material of the element are mixed .
【청구항 7】 7.
제 1항에 있어서,  The method according to claim 1,
상기 리툼 원료물질은 리륨 포함 산화물, 수산화물, 옥시수산화물, 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드 및 이들의 수화물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을포함하는, 리륨이차전지용양극첨가제의 제조방법.  Wherein the raw material for the ruthenium source comprises any one or a mixture of two or more selected from the group consisting of lyrium containing oxides, hydroxides, oxyhydroxides, sulfates, nitrates, acetates, carbonates, oxalates, citrates, halides, A method for manufacturing a positive electrode additive for a lithium secondary battery.
【청구항 8] [8]
제 1항에 있어서,  The method according to claim 1,
상기 원소
Figure imgf000027_0001
포함 원료물질은 원소 포함 산화물, 수산화물, 옥시수산화물, 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드 , 인산염 및 이들의 수화물로 이루어진 군에서 선택되는 어느 하나 또는둘이상의 혼합물을포함하는, 리륨이차전지용양극첨가제의 제조방법. 2019/103459 1»(:1^1{2018/014368
The element
Figure imgf000027_0001
The containing raw material comprises any one or a mixture of two or more selected from the group consisting of elemental oxides, hydroxides, oxyhydroxides, sulfates, nitrates, acetates, carbonates, oxalates, citrates, halides, phosphates and hydrates thereof , A method for producing a positive electrode additive for a lithium secondary battery. 2019/103459 1 »(: 1 ^ {2018/014368
【청구항 9] 9]
제 1항에 있어서,  The method according to claim 1,
상기 니켈 원료물질은 0를 포함하는, 리륨 이차전지용 양극 첨가제의 제조방법.  Wherein said nickel raw material contains 0. 3. A method for producing a positive electrode additive for a lithium secondary battery,
【청구항 10】 Claim 10
제 1항에 있어서,  The method according to claim 1,
상기 원소 은 I , 九,시, 및 8로이루어진 군에서 선택되는, 리툼이차전지용양극첨가제의 제조방법 .  Wherein the element is selected from the group consisting of I, 9, 8, and 8. 9. The method of claim 1,
【청구항 11】 Claim 11
제 1항에 있어서,  The method according to claim 1,
상기 양극 첨가제는양극 첨가제 총중량에 대하여 11중량%미만의 0 및 1중량% 이하의 니20를 더 포함하되, 상기 0와 니20의 총 양이 11중량% 이하인, 리륨이차전지용양극첨가제의 제조방법. Wherein the positive electrode additive further comprises 0 and less than 1 wt% Ni 2 O in an amount less than 11 wt% based on the total weight of the positive electrode additive, wherein the total amount of 0 and Ni 2 O is 11 wt% Gt;
【청구항 12】 Claim 12
하기 화학식 1의 리륨니켈산화물을포함하며,  A lithium nickel oxide according to claim 1,
양극 첨가제 총 중량에 대하여 11중량% 미만의 0 및 1중량% 이하의 니20를 더 포함하되, 상기 0와 니20의 총 양이 11중량% 이하인, 리륨 이차전지용양극첨가제: Cathode additive, but the total weight on the knee 20 further comprising less than or equal to 0 and 1% by weight of less than 11% by weight relative to the total amount of less than or equal to 0 and you 2 0 11% by weight, Lyrium secondary battery positive electrode additive:
[화학식 1] [Chemical Formula 1]
Figure imgf000028_0001
Figure imgf000028_0001
상기 화학식 1에서,  In Formula 1,
은 전이금속, 양쪽성 원소, 및 8로 이루어진 군에서 선택되는 것이되, 단 이 니켈은아니며,  Is selected from the group consisting of a transition metal, an amphoteric element, and 8, provided that the group is not nickel,
0<:< < 1이다. 0 &lt;:< 1 .
【청구항 13】 2019/103459 1»(:1^1{2018/014368 Claim 13 2019/103459 1 »(: 1 ^ {2018/014368
제 12항에 있어서, 13. The method of claim 12,
상기 양극 첨가제는 25°(:에서 3. 까지 0.1(:로 충전 후 X선 회절 분석시, 26 = 30내지 35° 에서 나타나는피크의 강도를 (11, 29 = 15내지 20° 에서 나타나는피크의 강도를 (12라고할때, (11/(12=0인, 양극첨가제.  The positive electrode additive has an intensity of a peak appearing at 30 ° to 35 ° (11, 29 = 15 to 20 ° in the X-ray diffraction analysis after filling with 0.1: (12 / (12 = 0, positive electrode additive.
【청구항 14】 14.
제 12항에 따른양극첨가제를포함하는리륨이차전지용양극.  A positive electrode for a lithium secondary battery comprising the positive electrode additive according to claim 12.
【청구항 15】 15.
제 12항에 따른 양극 첨가제를 포함하는 양극; 전해질; 및 음극을 포함하는리튬이차전지.  A positive electrode comprising the positive electrode additive according to claim 12; Electrolyte; And a negative electrode.
PCT/KR2018/014368 2017-11-22 2018-11-21 Method for manufacturing positive electrode additive for lithium secondary battery WO2019103459A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019559758A JP7045557B2 (en) 2017-11-22 2018-11-21 Manufacturing method of positive electrode additive for lithium secondary battery
US16/615,519 US11398623B2 (en) 2017-11-22 2018-11-21 Method for preparing positive electrode additives of lithium secondary battery
EP18881260.6A EP3608293A4 (en) 2017-11-22 2018-11-21 Method for manufacturing positive electrode additive for lithium secondary battery
CN201880028288.XA CN110573459B (en) 2017-11-22 2018-11-21 Method for preparing positive electrode additive for lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170156744 2017-11-22
KR10-2017-0156744 2017-11-22
KR1020180143870A KR102646712B1 (en) 2017-11-22 2018-11-20 Method for preparing positive electrode additives of lithium secondary battery
KR10-2018-0143870 2018-11-20

Publications (2)

Publication Number Publication Date
WO2019103459A2 true WO2019103459A2 (en) 2019-05-31
WO2019103459A3 WO2019103459A3 (en) 2019-07-18

Family

ID=66630771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014368 WO2019103459A2 (en) 2017-11-22 2018-11-21 Method for manufacturing positive electrode additive for lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2019103459A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0156744B1 (en) 1990-08-24 1998-12-01 게리 리 그리스울드 Doping of b-via semiconductors during molecular beam epitaxy electromagnetic radiation transducer having p-type iib-via

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100595362B1 (en) * 2004-07-21 2006-06-30 제일모직주식회사 Lithium-Nickel complex oxide for Cathode Material of Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Same and Cathode Material containing the Same
KR100709833B1 (en) * 2005-09-22 2007-04-23 삼성에스디아이 주식회사 Lithium rechargeable battery free from gushing out of copper
KR100826074B1 (en) * 2005-11-17 2008-04-29 주식회사 엘지화학 Electrode additives for enhancement of overdischarge performance and method for preparing the same
KR101900823B1 (en) * 2015-12-04 2018-09-20 재단법인 포항산업과학연구원 Thin film type all-solid-state battery, and manufacturing method thereof
KR101809720B1 (en) * 2016-02-17 2017-12-15 한국과학기술연구원 Surface coated cathode material, method of preparing the same and lithium secondary battery using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0156744B1 (en) 1990-08-24 1998-12-01 게리 리 그리스울드 Doping of b-via semiconductors during molecular beam epitaxy electromagnetic radiation transducer having p-type iib-via

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608293A4

Also Published As

Publication number Publication date
WO2019103459A3 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
CN110573459B (en) Method for preparing positive electrode additive for lithium secondary battery
JP6869425B2 (en) Positive electrode active material for lithium secondary battery, this manufacturing method, positive electrode for lithium secondary battery including this, and lithium secondary battery
CN112004780B (en) Method of washing positive electrode active material, method of preparing positive electrode active material comprising the same, and positive electrode active material prepared thereby
JP2020537298A (en) Positive electrode active material for secondary batteries, its manufacturing method and lithium secondary batteries containing it
CN110431109B (en) Method for preparing irreversible additive, positive electrode material comprising irreversible additive, and lithium secondary battery
JP7009016B2 (en) Positive electrode active material for lithium secondary battery, this manufacturing method, positive electrode for lithium secondary battery including this, and lithium secondary battery
JP7009015B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it, and lithium secondary battery
WO2016185663A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries
KR20190078991A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
CN112218829B (en) Method for preparing positive electrode additive for lithium secondary battery and positive electrode additive for lithium secondary battery prepared thereby
JP7005097B2 (en) Manufacturing method of positive electrode active material for secondary batteries
JP2021527937A (en) Negative electrode for lithium secondary battery, lithium secondary battery containing it and its manufacturing method
JP2023542856A (en) Method for producing positive electrode active material for lithium secondary battery
KR102395236B1 (en) Method for preparing positive electrode active material of lithium secondary battery
WO2019103459A2 (en) Method for manufacturing positive electrode additive for lithium secondary battery
JP2020525991A (en) Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery
EP3939939B1 (en) Positive electrode active material for secondary battery, method for preparing same, and lithium secondary battery comprising same
CN115119528A (en) Lithium transition metal oxide, positive electrode additive for lithium secondary battery, and lithium secondary battery comprising same
JP2024505867A (en) Negative electrode active material, negative electrode containing the same, secondary battery containing the same, and method for producing negative electrode active material
JP2024505837A (en) lithium secondary battery
KR20190110345A (en) Anode, Preparation Method Thereof and Lithium Secandary Battery Comprising Same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019559758

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018881260

Country of ref document: EP

Effective date: 20191106

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881260

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE