WO2019103457A1 - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
WO2019103457A1
WO2019103457A1 PCT/KR2018/014366 KR2018014366W WO2019103457A1 WO 2019103457 A1 WO2019103457 A1 WO 2019103457A1 KR 2018014366 W KR2018014366 W KR 2018014366W WO 2019103457 A1 WO2019103457 A1 WO 2019103457A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
polymer
diene polymer
solvent
modified
Prior art date
Application number
PCT/KR2018/014366
Other languages
French (fr)
Korean (ko)
Inventor
강석연
유진숙
오경환
안정헌
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020505242A priority Critical patent/JP6955084B2/en
Priority to CN201880052388.6A priority patent/CN111051361B/en
Priority to EP18880827.3A priority patent/EP3715386A4/en
Priority to US16/637,925 priority patent/US11680153B2/en
Publication of WO2019103457A1 publication Critical patent/WO2019103457A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/20Incorporating sulfur atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition
  • a rubber composition comprising a conjugated diene polymer having excellent tensile properties and viscoelastic properties.
  • Natural rubbers, polyisoprene rubbers, polybutadiene rubbers, and the like are known as rubber materials having a small hysteresis loss, but these have a problem of low wet skid resistance.
  • a conjugated diene polymer such as styrene-butadiene rubber (hereinafter referred to as SBR) or butadiene rubber (hereinafter referred to as BR) is prepared by emulsion polymerization or solution polymerization and is used as a rubber for a tire.
  • the greatest advantage of solution polymerization over emulsion polymerization is that vinyl structure content and styrene content, which define rubber properties, can be arbitrarily controlled and molecular weight and physical properties, etc., can be controlled by coupling, It can be adjusted. Therefore, it is possible to easily change the structure of the finally prepared SBR or BR rubber, to reduce the movement of chain ends due to bonding or modification of chain ends, and to increase the bonding force with a filler such as silica or carbon black, Is widely used as a rubber material for a tire.
  • a filler such as silica or carbon black
  • the modified region greatly influences compounding processability and physical properties through interaction with an inorganic filler at the time of preparing a rubber composition, and this is because the modification ratio of the conjugated diene polymer, Is determined depending on how much the polymerization active site of the diene polymer is modified. Accordingly, the modification ratio is utilized as an important index in determining the physical properties of the rubber composition.
  • Japanese Patent Publication No. 5698560 discloses a relative measurement method using polystyrene gel using Gel Permeation Chromatography (GPC) as a method of measuring the above-described modification ratio. Specifically, a standard polystyrene which does not adsorb to a column is added to a sample by using a silica-based column capable of adsorbing denatured components and a polystyrenic column not adsorbing denatured components, respectively, to measure the refractive index (The hatched area in FIG. 1) of the refracting index (RI), the transformation rate is calculated according to the following equation (3).
  • GPC Gel Permeation Chromatography
  • Patent Document 1 JP5698560 B
  • A is a dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of a rubber composition containing an unmodified conjugated diene polymer and has a real value of 0.147 to 0.160,
  • Y is the dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of the rubber composition containing the modified conjugated diene polymer.
  • the rubber composition according to the present invention contains a modified conjugated diene polymer and can control the purity of a modifier satisfying the formula (1) to include a modified conjugated diene polymer having a high modifying ratio, thereby exhibiting excellent tensile properties and viscoelastic properties have.
  • FIG. 2 is a chromatogram showing the change in detection solution according to the second solvent injection in the metamorphic rate measuring method according to an embodiment of the present invention.
  • alkyl group used in the present invention may mean a monovalent aliphatic saturated hydrocarbon and includes linear alkyl groups such as methyl, ethyl, propyl and butyl, and isopropyl, sec-butyl, , Tert-butyl, and neo-pentyl.
  • alkyl &quot alkyl "
  • cycloalkyl group may mean a cyclic saturated hydrocarbon or a cyclic unsaturated hydrocarbon containing one or more unsaturated bonds.
  • aryl group used in the present invention means a cyclic aromatic hydrocarbon, and may be a monocyclic aromatic hydrocarbon having one ring formed therein or a polycyclic aromatic hydrocarbon having two or more rings bonded thereto polycyclic aromatic hydrocarbons.
  • the rubber composition according to one embodiment of the present invention is a modified conjugated diene polymer modified with a modifier having a purity of 92.0% or more; Filler; And a vulcanizing agent, and is characterized by satisfying the following formula (1).
  • A is the dynamic viscoelastic loss coefficient (tan delta) of the rubber composition containing the unmodified conjugated diene polymer at 60 DEG C
  • Y is the modulus of the modified conjugated diene polymer Is the dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of the rubber composition containing the diene polymer.
  • A may specifically have a value of 0.140 to 0.160
  • Y may specifically be 0.05 or more and 0.14 or less.
  • A is the dynamic viscoelastic loss coefficient of the unmodified conjugated diene polymer, which may have somewhat different values, depending on the polymer product marketed, and depending on the conditions of the measurement, and is generally between 0.140 and 0.160 Usually 0.147 to 0.160, and may have a value of 0.150 or more.
  • the rubber composition according to one embodiment of the present invention is characterized in that the modulus of the modified conjugated diene polymer and the dynamic viscoelastic loss coefficient at 60 ⁇ of the rubber composition containing the unmodified polymer are used to determine the dynamic And the viscoelastic loss coefficient of the modified conjugated diene polymer may be predicted through the formula 1 to select the modified conjugated diene polymer containing the modified conjugated diene polymer and having the modified ratio adjusted to the desired tensile and viscoelastic properties So that it is easy to have excellent tensile properties and viscoelastic properties.
  • the dynamic viscoelastic loss coefficient of the modified conjugated diene polymer can be predicted according to the degree of modification, It is possible to predict the compounding properties even if the polymer alone is not used.
  • the modified conjugated diene polymer is characterized in that the modifier has a purity of at least 90.0%.
  • the purity of the modifier is a factor affecting the modifying rate.
  • the modifying agent has a purity of 90.0% or more, an excellent modifying rate is achieved .
  • the above formula (1) can predict the correlation between the modification ratio of the modified conjugated diene polymer and the dynamic viscoelastic loss coefficient at 60 ⁇ of the rubber composition, and it is possible to predict the properties required in the production of the modified conjugated diene polymer It is possible to predict in advance whether the modifying rate of the polymer should be adjusted to a certain level and which can be predicted through the purity of the modifier. Therefore, in the production of the modified conjugated diene polymer, selection of the modifier, target modifying rate selection, It is possible to provide information that is effective for selection, and further, it is possible to provide a rubber composition having excellent viscoelastic properties with high reproducibility.
  • the Y value represents the range of the dynamic viscoelastic loss coefficient of the rubber composition at 60 DEG C as described above. When the above-mentioned range is satisfied, the Y value shows a balance in both tensile and viscoelastic properties can do.
  • the modified conjugated diene polymer includes a lanthanide-based rare earth element-containing catalyzed conjugated diene polymer having at least one terminal functional group, specifically, a functional group having at least one terminal and / Modified polymer comprising a modified polymer unit containing a functional group and an unmodified polymer unit containing no functional group. That is, in the present invention, the modified polymer unit and the unmodified polymer unit represent a constituent unit constituting one polymer, and the conjugated diene polymer may be composed of a denatured polymer unit and an unmodified polymer unit.
  • the functional group may be a functional group derived from a modifier such as a filler-affinity group.
  • the method for producing a modified conjugated diene-based polymer comprises polymerizing a conjugated diene-based monomer in the presence of a lanthanum-based rare earth element catalyst composition to prepare an active polymer containing an organic metal moiety A); And a denaturing reaction step of reacting the denaturant with the active polymer.
  • the conjugated diene-based polymer contains 80 to 100% by weight of repeating units derived from 1,3-butadiene monomer and 20% by weight or less of other conjugated diene monomer-derived repeating units copolymerizable with 1,3-butadiene And the 1,4-cis bond content in the polymer is not lowered within the above range.
  • 1,3-butadiene monomer examples include 1,3-butadiene, such as 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, And other conjugated diene monomers copolymerizable with 1,3-butadiene may include 2-methyl-1,3-pentadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene , 4-methyl-1,3-pentadiene, 1,3-hexadiene or 2,4-hexadiene, and any one or two or more of them may be used.
  • 1,3-butadiene such as 1,3-butadiene, 2,3-dimethyl-1,3-butadiene
  • conjugated diene monomers copolymerizable with 1,3-butadiene may include 2-methyl-1,3-pentadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene , 4-methyl-1,3-pentadiene, 1,3-he
  • the catalyst composition may contain a lanthanide-based rare earth element-containing compound, an alkylating agent, and a halogen compound.
  • the lanthanide-based rare-earth element-containing compound can be used without any particular limitation as long as it is ordinarily used in the production of the conjugated diene-based polymer.
  • the lanthanide-based rare earth element-containing compound may be an organometallic compound having an atomic number such as lanthanum, neodymium, cerium, gadolinium or praseodymium Any one or two or more of the rare earth metals of 57 to 71 may be a compound, and more specifically may be a compound containing any one or two or more selected from the group consisting of neodymium, lanthanum and gadolinium.
  • the lanthanide-based rare earth element-containing compound may be at least one selected from the group consisting of the rare earth metal-containing carboxylate (for example, neodymium acetate, neodymium acrylate, neodymium methacrylate, neodymium gluconate, neodymium citrate, neodymium fumarate, neodymium lactate, (For example, neodymium dibutyl phosphate, neodymium dipentyl phosphate, neodymium dihexyl phosphate, neodymium diheptyl phosphate, and the like) , Neodymium dioctylphosphate, neodymium dioctylphosphate, neodymium bis (1-methylheptyl) phosphate, neodymium bis (2-ethylhexyl) phosphate or neodymdidecy
  • the lanthanide rare earth element-containing compound is at least one compound selected from the group consisting of Nd (2,2-diethyldecanoate) 3 , Nd (2,2-dipropyldecanoate) 3 , Nd (2,2-dibutyldecanoate) 3, Nd (2,2- di-hexyl decanoate) 3, Nd (2,2- dioctyl decanoate) 3, Nd (2- ethyl-2-propyl decanoate) 3, Nd (2- ethyl 2-butyl decanoate) 3, Nd (2- ethyl-2-hexyl decanoate) 3, Nd (2- butyl-2-propyl decanoate) 3, Nd (2- propyl-2-hexyl de decanoate) 3, Nd (2- propyl-2-isopropyl decanoate) 3, Nd (2- butyl-2-hexyl decanoate) 3, Nd (2- cyclo
  • the alkylating agent may be an organic metal compound or a boron-containing compound which is soluble in a non-polar solvent, specifically, a non-polar hydrocarbon solvent, and contains a cationic metal such as a Group 1, Group 2 or Group 3 metal and a carbon. More specifically, the alkylating agent may be any one or a mixture of two or more selected from the group consisting of an organoaluminum compound, an organomagnesium compound, and an organolithium compound.
  • the organoaluminum compound may be selected from the group consisting of diethylaluminum hydride, di-n-propylaluminum hydride, diisopropylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride (DIBAH) N-propyl aluminum hydride, phenyl isopropyl aluminum hydride, phenyl isopropyl aluminum hydride, diphenyl aluminum hydride, di-p-tolyl aluminum hydride, dibenzyl aluminum hydride, phenylethyl aluminum hydride, n-butyl aluminum hydride, phenyl isobutyl aluminum hydride, phenyl-n-octyl aluminum hydride, p-tolylethyl aluminum hydride, p-tolyl-n-propyl aluminum hydride, , p-tolyl-n-butyl
  • the organomagnesium compound includes at least one magnesium-carbon bond, and is a non-polar solvent, specifically, a magnesium compound soluble in a non-polar hydrocarbon solvent.
  • the organomagnesium compound may be an alkylmagnesium compound such as diethylmagnesium, di-n-propylmagnesium, diisopropylmagnesium, dibutylmagnesium, dihexylmagnesium, diphenylmagnesium, or dibenzylmagnesium;
  • Hydrocarbyl magnesium hydrides such as methylmagnesium hydride, ethylmagnesium hydride, butylmagnesium hydride, hexylmagnesium hydride, phenylmagnesium hydride and benzylmagnesium hydride;
  • methylmagnesium chloride ethylmagnesium chloride, butylmagnesium chloride, hexylmagnesium chloride, phenylmagnesium chloride
  • alkyl lithium of R-Li (wherein R is an alkyl group having 1 to 20 carbon atoms, more specifically a linear alkyl group having 1 to 8 carbon atoms) may be used. More specifically, there may be mentioned methyllithium, ethyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, isobutyllithium, pentyllithium, isopentyllithium, Two or more mixtures may be used.
  • halogen compound examples include a halogen compound, an interhalogen compound, a hydrogen halide, an organic halide, a nonmetal halide, a metal halide or an organic metal halide, and any one or a mixture of two or more thereof Can be used.
  • a halogen compound an interhalogen compound, a hydrogen halide, an organic halide, a nonmetal halide, a metal halide or an organic metal halide, and any one or a mixture of two or more thereof Can be used.
  • one or a mixture of two or more selected from the group consisting of an organic halide, a metal halide, and an organometallic halide may be used as the halogen compound, considering that the catalytic activity is improved and the reactivity is improved.
  • examples of the halogen group include fluorine, chlorine, bromine, and iodine.
  • halogen compound examples include iodine monochloride, iodine monobromide, iodine trichloride, iodopentafluoride, iodine monofluoride and iodotrifluoride.
  • Examples of the hydrogen halide include hydrogen fluoride, hydrogen chloride, hydrogen bromide, and hydrogen iodide.
  • non-metal halides specifically include phosphorus trichloride, phosphorus tribromide, phosphorus pentachloride, phosphorus oxychloride, oxy-bromide, phosphorus, boron trifluoride, boron trichloride, boron tribromide, used silicon tetrafluoride, silicon tetrachloride (SiCl 4), four There may be mentioned silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, Selenium and the like.
  • the metal halide include tin tetrachloride, tin tetrabromide, aluminum trichloride, aluminum tribromide, antimony trichloride, antimony trichloride, antimony tribromide, aluminum trifluoride, gallium trichloride, gallium tribromide, A metal oxide such as indium, tin bromide, indium trifluoride, titanium tetrachloride, titanium tetrabromide, zinc dichloride, zinc bromide, zinc fluoride, aluminum triiodide, gallium triiodide, indium triiodide, titaniumiodide, zinc iodide, Germanium tetraiodide, tungsten iodide, antimony triiodide, or magnesium iodide.
  • the catalyst composition according to an embodiment of the present invention may further include a diene monomer in addition to the above components.
  • the diene-based monomer may be mixed with a polymerization catalyst to form a premixing catalyst, or may be prepared by polymerization with components in a polymerization catalyst, specifically an alkylating agent such as DIBAH, to form a preforming catalyst .
  • a polymerization catalyst specifically an alkylating agent such as DIBAH
  • the activity of the catalyst can be improved, and the conjugated diene-based polymer to be produced can be further stabilized.
  • the diene-based monomer can be used without particular limitation, as long as it is usually used in the production of a conjugated diene-based polymer.
  • the diene monomer may be at least one monomer selected from the group consisting of 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, Methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, and 2,4-hexadiene. Of these, One or a mixture of two or more may be used.
  • the catalyst composition according to an embodiment of the present invention may further include a hydrocarbon-based solvent in addition to the above-mentioned components.
  • the hydrocarbon-based solvent may specifically be a nonpolar solvent which is not reactive with the above-mentioned catalyst components.
  • Specific examples include n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, isopentane, isohexane, isopentane, isooctane, 2,2-dimethylbutane, cyclopentane, , Methylcyclopentane or methylcyclohexane, and the like; alicyclic hydrocarbons having 5 to 20 carbon atoms in a linear, branched, or cyclic form; A mixed solvent of aliphatic hydrocarbons having 5 to 20 carbon atoms such as petroleum ether or petroleum spirits, or kerosene; Or an aromatic hydrocarbon solvent such as benzene, toluene, ethylbenzene, xylene, etc., and any one
  • the modifier may be a compound represented by the following formula (1) or (2).
  • R 3 and R 6 are, independently of each other, a single bond or a divalent organic group; Each of which is a trivalent organic group connected to R 4 or R 5 and R 8 or R 9 to form a ring, R 4 and R 8 are each independently a monovalent organic group; Or a divalent organic group each of which is linked to R 3 or R 5 and R 6 or R 9 to form a ring, and R 5 is a monovalent organic group; Or R < 3 > or R < 4 > to form a ring.
  • the modification ratio is a value calculated according to the following formula (2) using a chromatogram obtained from a chromatographic measurement
  • the chromatography measurement includes a modified polymer unit and an unmodified polymer unit Preparing a first solution by dissolving the polymer in a first solvent; Injecting the first solution into a column filled with adsorbent; Adsorbing the modified polymer unit to the adsorbent, and eluting the first solution in which the unmodified polymer unit is dissolved; Transferring the eluted first solution to a detector; Introducing a second solvent into the column to elute the second solution in which the adsorbed modified polymer units are dissolved; And transferring the eluted second solution to the detector.
  • the peak area of the unmodified polymer unit is the peak area of the chromatogram for the first solution transferred to the detector and the peak area of the modified polymer unit is for the second solution transferred to the detector The peak area of the chromatogram.
  • the modifying ratio may mean, for example, a ratio of a modified polymer to an unmodified polymer when the polymer is modified with a modifier for a polymer having a polymerizable active site in the polymer, Can be expressed as percentage (%) with respect to the whole polymer and the unmodified polymer.
  • the column may be a column that can be used for chromatography, for example, a normal phase column in which the stationary phase is polar and the mobile phase is non-polar, or
  • the stationary phase may be a reverse phase column, which is nonpolar and the mobile phase is polar.
  • the adsorbent according to an embodiment of the present invention means a stationary phase of the column.
  • the adsorbent according to an embodiment of the present invention may be a filler to be packed in the column, and may be appropriately selected depending on the denaturation site modified by the denaturant.
  • the adsorbent may be one selected from the group consisting of a silica-based adsorbent, a polymer-based adsorbent, an alumina (Al 2 O 3 ) adsorbent, a graphitized carbon adsorbent and a zirconia adsorbent, Adsorption of various modified polymers can be facilitated.
  • the silica-based adsorbent may be, for example, a silica gel adsorbent derived from silica (SiO 2 ); And a silanol (Si-OH) group on the silica gel surface is selected from the group consisting of a chain, branched or cyclic alkylsilane having 1 to 30 carbon atoms, arylsilane having 5 to 30 carbon atoms, a chain, branched or cyclic alkylsilyl
  • adsorbents can be applied depending on the modified polymer, and specifically, the modified polymer according to one embodiment of the present invention has at least one terminal , And the adsorbent may be a silica-based adsorbent substituted with a functional group containing an amine group.
  • the first solvent and the second solvent may be independently polar solvent or nonpolar solvent, and more specifically, when the first solvent is polar solvent, the second solvent is non- And when the first solvent is nonpolar solvent, the second solvent can be polar solvent, and in this case, the effect of eluting the unmodified polymer from the first solution and the modified polymer from the second solution more efficiently, respectively have.
  • the first solvent and the second solvent may be each independently polarity dielectrics having different polarities, and specifically, when the first solvent is a polarity solvent having a high polarity, wherein the second solvent can be a polarity solvent having a high polarity, and the polarity is not an absolute value, and the first solvent can be a polar solvent having a low degree of polarity, May be a relative concept depending on the polarity of the polar solvent used for the solvent and the second solvent, respectively. In this case, there is an effect of eluting the unmodified polymer from the first solution and the modified polymer from the second solution more efficiently.
  • the nonpolar solvent may be used in chromatography and is not particularly limited as long as it is a polar solvent capable of dissolving the modified polymer and the unmodified polymer.
  • a polar solvent capable of dissolving the modified polymer and the unmodified polymer.
  • examples thereof include hexane, benzene, toluene, diethylether, chloroform, ethyl acetate, dichloromethane, It may be at least one selected from the group consisting of cyclohexane, tetrachloromethane, iso-octane, xylene, butyl ether, isopropyl ether and ethylene chloride.
  • the second solvent can be injected at a flow rate of 0.01 to 10.0 ml / min, or 0.5 to 2.0 ml / min, and the modified polymer adsorbed to the adsorbent more efficiently within this range There is an effect of eluting the dissolved second solution.
  • first solution and the second solution may be adjusted so as to facilitate elution of the unmodified polymer or the second solution within the above-described range depending on the column capacity (column length or diameter), respectively.
  • the second solvent may be injected after the entire amount of the unmodified polymer is eluted.
  • the time point at which the entire amount of the unmodified polymer is eluted may mean the point at which the signal of the unmodified polymer is no longer detected from the detector.
  • the second solvent may be injected into the column into which the first solution is injected after the completion of the injection of the first solution, and specifically, the first solvent may be injected into the first solution injected column by gradient elution, The solution can be continuously injected into the injected column. In this case, there is an effect that more accurate measurement can be performed without interruption of the signal at the time of detection.
  • the first solution and the second solution can be detected simultaneously in the detector from the injection point of the second solvent, and the detection amount of the first solution injected in accordance with the injection of the second solvent is 100 volume% to 0 volume%
  • the detection amount of the second solution increases from 0 vol% to 100 vol% as the detection amount of the first solution decreases, and only when the elution of the first solution is completed, only the second solution may be detected 2).
  • the conjugated diene-based polymer modification ratio is measured by using a chromatographic measuring instrument.
  • a liquid chromatographic measuring instrument can be used.
  • the moving-phase storage device may include two or more mobile phase storage devices.
  • a mobile phase storage device for storing the first solution and a mobile phase storage device for storing the second solvent may be separately provided.
  • the mobile phase reservoir may include a separate gradient elution device for application of gradient elution.
  • the pump generates a pressure of, for example, 0.1 to 10,000 psi or 100 to 5,000 psi, adjusts the flow rate of 0.01 to 20 ml or 0.1 to 10 ml, has no pulse during solution or solvent supply, The rate of change may be maintained at 1% or less, or 0.1 to 0.5%.
  • the pump may be a single-head pump or a dual-head pump, and may be a dual-head pump, in which case a gradient elution) can be easily applied.
  • the injector may be, for example, a Rheodyne injector or an automatic injector.
  • the detector may be, for example, selected from a UV / Vis detector, a fluorescence detector, a refractive index detector or an evaporative light scattering detector, in particular a vaporizing light scattering detector
  • the response factor is constant, accurate composition analysis is possible without preparing a calibration curve by the reference material, and detection according to the gradient elution is possible, thus providing excellent effect of resolution and separation sensitivity.
  • a sample prepared at 1.0 mg / mL was injected into a loop volume of 100 ⁇ l using a Waters Vaporization Light Scattering Detector (ELSD) as the detector, and the transformation rate was measured.
  • ELSD Waters Vaporization Light Scattering Detector
  • the Mooney viscosity (ML1 + 4, @ 100 ° C) (MU) was measured at 100 ° C under Rotor Speed 2 ⁇ 0.02 rpm using Monsanto MV2000E with a large rotor.
  • the sample used was allowed to stand at room temperature (23 ⁇ 3 ° C) for more than 30 minutes, and then 27 ⁇ 3 g was sampled and filled in the die cavity. Platen was operated to measure the Mooney viscosity by applying torque. Further, the Mooney viscosity was measured, and the change in Mooney viscosity as the torque was released was observed for 1 minute, and the -S / R value was determined from the slope value.
  • the polymer was dissolved in cyclohexane, stored in mobile phase reservoirs (each with 1.0 mg / ml) and tetrahydrofuran (THF) in another mobile phase.
  • the mobile phase reservoir was connected to a dual-head pump, respectively, and a solution of the polymer-dissolved mobile phase reservoir was first injected through a pump and an injector with a loop volume of 100 ⁇ l into a column filled with silica adsorbent. At this time, the pressure of the pump was 450 psi and the flow rate of the injection was 0.7 ml / min.
  • the dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C was predicted according to the following formula (1).
  • X is the modifying ratio of the modified conjugated diene polymer
  • A is the dynamic viscoelastic loss coefficient (tan delta) of the rubber composition containing the unmodified conjugated diene polymer at 60 DEG C, 0.152
  • Y is the dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of the rubber composition containing the modified conjugated diene polymer.
  • a rubber composition was prepared in the same manner as in Example 1, except that the unmodified butadiene polymer prepared in Comparative Preparation Example 2-4 was used in place of the modified butadiene polymer.
  • the modification ratio is determined by using Equation 1, and this modification ratio can be controlled through the purity of the modifier, As shown in Fig.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerization Catalysts (AREA)

Abstract

The present invention relates to a rubber composition comprising a conjugated diene polymer and having excellent tensile characteristics and viscoelastic characteristics. The rubber composition according to the present invention can selectively comprise a modified conjugated diene polymer suitable for desired tensile characteristics and viscoelastic characteristics, by in advance predicting the correlation between a modification rate of the modified conjugated diene polymer and a dynamic viscoelastic loss coefficient at 60°C of the rubber composition through mathematical expressions (1) and (2), and thus the rubber composition can exhibit excellent combination characteristics.

Description

고무 조성물Rubber composition
관련 출원과의 상호 인용Mutual citation with related application
본 출원은 2017년 11월 21일자 한국 특허 출원 10-2017-0155606호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0155606, filed on November 21, 2017, the entire contents of which are incorporated herein by reference.
기술분야Technical field
본 발명은 인장특성 및 점탄성 특성이 우수한, 공액디엔계 중합체를 포함하는 고무 조성물에 관한 것이다.The present invention relates to a rubber composition comprising a conjugated diene polymer having excellent tensile properties and viscoelastic properties.
최근 에너지 절약 및 환경 문제에 대한 관심이 높아짐에 따라 자동차의 저연비화가 요구되고 있다. 이를 실현하기 위한 방법 중의 하나로서, 타이어용 고무 재료로 구름 저항이 적고, 내마모성, 인장 특성이 우수하며, 웨트 스키드 저항으로 대표되는 조정 안정성을 겸비한 중합체가 요구되고 있다.Recently, interest in energy conservation and environmental issues has increased, and fuel economy of automobiles has been demanded. As one of the methods for achieving this, a polymer having a rolling resistance less than that of a rubber material for a tire, excellent in abrasion resistance and tensile properties, and having stability stability represented by wet skid resistance is required.
타이어의 구름 저항을 감소시키기 위해서는 가황 고무의 히스테리시스 손실을 작게 하는 방안이 있고, 이러한 가황 고무의 평가 지표로서는 50 내지 80℃의 반발탄성, tan δ 및 굿리치 발열 등이 이용되며, 상기 온도에서의 반발탄성이 크거나, tan δ 또는 굿리치 발열이 작은 고무 재료가 바람직하다.In order to reduce the rolling resistance of the tire, there is a method of reducing the hysteresis loss of the vulcanized rubber. As the evaluation index of such vulcanized rubber, rebound resilience of 50 to 80 캜, tan δ and Goodrich heating are used. A rubber material having a large rebound resilience or a small tan δ or good rich heat generation is preferable.
히스테리시스 손실이 작은 고무 재료로서는, 천연 고무, 폴리이소프렌 고무 또는 폴리부타디엔 고무 등이 알려져 있지만, 이들은 웨트 스키드 저항성이 작은 문제가 있다. 이에 최근에는 스티렌-부타디엔 고무(이하, SBR이라 함) 또는 부타디엔 고무(이하, BR이라 함)와 같은 공액디엔계 중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다. 이 중, 유화중합에 비해 용액중합이 갖는 최대의 장점은 고무 물성을 규정하는 비닐 구조 함량 및 스티렌 함량을 임의로 조절할 수 있고, 커플링(coupling)이나, 변성(modification) 등에 의해 분자량 및 물성 등을 조절할 수 있다는 점이다. 따라서, 최종 제조된 SBR 이나 BR 고무의 구조 변화가 용이하고, 사슬 말단의 결합이나 변성으로 사슬 말단의 움직임을 감소시키며 실리카 또는 카본블랙 등의 충진제와 결합력을 증가시킬 수 있어 용액중합에 의한 SBR 고무가 타이어용 고무 재료로 많이 사용되고 있다.Natural rubbers, polyisoprene rubbers, polybutadiene rubbers, and the like are known as rubber materials having a small hysteresis loss, but these have a problem of low wet skid resistance. Recently, a conjugated diene polymer such as styrene-butadiene rubber (hereinafter referred to as SBR) or butadiene rubber (hereinafter referred to as BR) is prepared by emulsion polymerization or solution polymerization and is used as a rubber for a tire. Of these, the greatest advantage of solution polymerization over emulsion polymerization is that vinyl structure content and styrene content, which define rubber properties, can be arbitrarily controlled and molecular weight and physical properties, etc., can be controlled by coupling, It can be adjusted. Therefore, it is possible to easily change the structure of the finally prepared SBR or BR rubber, to reduce the movement of chain ends due to bonding or modification of chain ends, and to increase the bonding force with a filler such as silica or carbon black, Is widely used as a rubber material for a tire.
한편, 상기 공액디엔계 중합체를 변성시키는 경우, 변성 부위는 고무 조성물 제조 시, 무기 충전제와 상호작용을 통해, 배합 가공성 및 물성 등에 지대한 영향을 미치며, 이는 상기 공액디엔계 중합체의 변성률, 즉 공액디엔계 중합체의 중합활성 부위가 얼만큼 변성되었는지에 따라 결정된다. 이에, 상기 변성률은 고무 조성물의 물성을 결정하는데 있어서 중요한 지표로 활용되고 있다.On the other hand, when the conjugated diene polymer is modified, the modified region greatly influences compounding processability and physical properties through interaction with an inorganic filler at the time of preparing a rubber composition, and this is because the modification ratio of the conjugated diene polymer, Is determined depending on how much the polymerization active site of the diene polymer is modified. Accordingly, the modification ratio is utilized as an important index in determining the physical properties of the rubber composition.
이와 관련하여, 일본 특허공보 제5698560호 등에서는 상기 변성률의 측정 방법으로, 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)를 이용한 폴리스티렌 겔과의 상대적 측정 방법을 개시하고 있다. 구체적으로 살펴보면, 변성 성분을 흡착할 수 있는 실리카계 컬럼과 변성 성분을 흡착하지 않는 폴리스티렌계 컬럼을 각각 이용하여, 컬럼에 흡착하지 않는 표준 폴리스티렌을 내표로서 시료에 첨가해 측정하고, 이를 통해 얻어진 굴절률(Refractive index, RI)의 차분(도 1의 빗금친 면적)으로부터 하기 수학식 3에 따라 변성률을 계산한다.In this regard, Japanese Patent Publication No. 5698560 discloses a relative measurement method using polystyrene gel using Gel Permeation Chromatography (GPC) as a method of measuring the above-described modification ratio. Specifically, a standard polystyrene which does not adsorb to a column is added to a sample by using a silica-based column capable of adsorbing denatured components and a polystyrenic column not adsorbing denatured components, respectively, to measure the refractive index (The hatched area in FIG. 1) of the refracting index (RI), the transformation rate is calculated according to the following equation (3).
[수학식 3]&Quot; (3) "
Figure PCTKR2018014366-appb-I000001
Figure PCTKR2018014366-appb-I000001
하지만, 겔 투과 크로마투그래피를 통한 변성률 측정은 폴리스티렌이라는 별도의 표준 물질이 필요하고, 변성률이 표준 물질과, 표준 물질 및 중합체의 혼합물에 대한 크로마토그램의 비교로부터 계산되기 때문에, 측정에 대한 정확도가 담보되지 않는 문제가 있다. However, since the metamorphic rate measurement by gel permeation chromatography requires a separate reference material called polystyrene and the conversion rate is calculated from the comparison of the chromatogram to the reference material and the mixture of the reference material and the polymer, There is a problem that accuracy is not guaranteed.
[선행기술문헌][Prior Art Literature]
[특허문헌] [Patent Literature]
(특허문헌 1) JP5698560 B(Patent Document 1) JP5698560 B
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 인장특성 및 점탄성 특성이 우수한, 공액디엔계 중합체를 포함하는 고무 조성물을 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art, and it is an object of the present invention to provide a rubber composition comprising a conjugated diene polymer having excellent tensile properties and viscoelastic properties.
상기의 과제를 해결하기 위한 본 발명의 일 실시예에 따르면, 본 발명은 변성 공액디엔계 중합체; 충진제; 및 가황제를 포함하고, 하기 수학식 1을 만족하는 것인 고무 조성물을 제공한다: According to one embodiment of the present invention for solving the above problems, the present invention provides a modified conjugated diene polymer; Filler; And a vulcanizing agent, and satisfies the following formula (1): < EMI ID = 1.0 >
[수학식 1][Equation 1]
Figure PCTKR2018014366-appb-I000002
Figure PCTKR2018014366-appb-I000002
상기 수학식 1에서, X는 변성 공액디엔계 중합체의 변성률이고, In the above formula (1), X is the modifying rate of the modified conjugated diene polymer,
A는 미변성 공액디엔계 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수(tan δ)로 0.147 내지 0.160의 실수 값을 가지며,A is a dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of a rubber composition containing an unmodified conjugated diene polymer and has a real value of 0.147 to 0.160,
Y는 변성 공액디엔계 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수(tan δ)이다.Y is the dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of the rubber composition containing the modified conjugated diene polymer.
본 발명에 따른 고무 조성물은 변성 공액디엔계 중합체를 포함하되, 수학식 1을 만족하는 변성제의 순도를 제어하여 높은 변성률을 갖는 변성 공액디엔계 중합체를 포함함으로써 인장특성 및 점탄성 특성이 우수할 수 있다. The rubber composition according to the present invention contains a modified conjugated diene polymer and can control the purity of a modifier satisfying the formula (1) to include a modified conjugated diene polymer having a high modifying ratio, thereby exhibiting excellent tensile properties and viscoelastic properties have.
또한, 본 발명의 고무 조성물은 변성 공액디엔계 중합체의 변성률과 고무 조성물의 60℃에서의 동적 점탄성 손실계수와의 상관관계를 수학식 1을 통해 미리 예측함으로써 목적하는 인장특성 및 점탄성 특성에 맞게 변성 공액디엔계 중합체를 선택하여 포함할 수 있으며, 변성제의 순도를 통해서 변성률을 제어하고, 제어된 변성률 하에서 우수한 점탄성 계수를 갖는 고무 조성물을 제공할 수 있으므로, 우수한 점탄성 특성을 갖는 고무 조성물을 제공하는 데에 있어서 높은 재현성을 가질 수 있다.Further, the rubber composition of the present invention can predict the correlation between the modifying ratio of the modified conjugated diene polymer and the dynamic viscoelastic loss coefficient of the rubber composition at 60 DEG C in advance in accordance with Equation (1) so as to satisfy the desired tensile and viscoelastic properties It is possible to selectively use a modified conjugated diene polymer. By controlling the modifying ratio through the purity of the modifying agent and providing a rubber composition having an excellent viscoelasticity coefficient under the controlled modifying rate, a rubber composition having excellent viscoelastic properties can be obtained It is possible to have a high reproducibility in providing.
도 1은 본 발명의 일 실시예에 따른 60℃에서의 동적 점탄성 손실계수와 변성 공액디엔계 중합체의 변성률 간의 상관관계를 나타낸 그래프이다. 1 is a graph showing a correlation between a dynamic viscoelastic loss coefficient at 60 ° C and a modifying ratio of a modified conjugated diene polymer according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 변성률 측정 방법에서 제2 용매 주입에 따른 검출 용액 변화를 나타낸 크로마토그램이다.FIG. 2 is a chromatogram showing the change in detection solution according to the second solvent injection in the metamorphic rate measuring method according to an embodiment of the present invention. FIG.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in detail in order to facilitate understanding of the present invention.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the description of the present invention and in the claims should not be construed to be limited to ordinary or dictionary terms and the inventor should appropriately interpret the concept of the term appropriately The present invention should be construed in accordance with the meaning and concept consistent with the technical idea of the present invention.
본 발명에서 사용하는 용어 "치환"은 작용기, 원자단 또는 화합물의 수소가 특정 치환기로 치환된 것을 의미할 수 있으며, 작용기, 원자단 또는 화합물의 수소가 특정 치환기로 치환되는 경우 작용기, 원자단 또는 화합물 내에 존재하는 수소의 개수에 따라 1개 또는 2개 이상의 복수의 치환기가 존재할 수 있다. 또한, 복수의 치환기가 존재하는 경우에는 각각의 치환기는 서로 동일하거나, 상이할 수 있다. As used herein, the term " substituted " means that the hydrogen of a functional group, an atomic group or a compound is substituted with a specific substituent, and when a hydrogen atom of a functional group, an atomic group or a compound is substituted with a specific substituent, One or more than two substituents may be present depending on the number of hydrogen atoms. When a plurality of substituents are present, the respective substituents may be the same as or different from each other.
본 발명에서 사용하는 용어 "알킬기(alkyl group)"는 1가의 지방족 포화 탄화수소를 의미할 수 있으며, 메틸, 에틸, 프로필 및 부틸 등의 선형 알킬기 및 이소프로필(isopropyl), 세크부틸(sec-butyl), 터셔리 부틸(tert-butyl) 및 네오펜틸(neo-pentyl) 등의 분지형 알킬기를 모두 포함할 수 있다. The term " alkyl group " used in the present invention may mean a monovalent aliphatic saturated hydrocarbon and includes linear alkyl groups such as methyl, ethyl, propyl and butyl, and isopropyl, sec-butyl, , Tert-butyl, and neo-pentyl. The term " alkyl "
본 발명에서 "시클로알킬기(cycloalkyl group)"는 환형의 포화 탄화수소, 또는 불포화 결합을 1개 또는 2개 이상 포함하는 환형의 불포화 탄화수소를 모두 포함하는 의미일 수 있다.In the present invention, the "cycloalkyl group" may mean a cyclic saturated hydrocarbon or a cyclic unsaturated hydrocarbon containing one or more unsaturated bonds.
본 발명에서 사용하는 용어 "아릴기(aryl group)"는 환형의 방향족 탄화수소를 의미할 수 있고, 또한 1개의 환이 형성된 단환 방향족 탄화수소(monocyclic aromatic hydrocarbon), 또는 2개 이상의 환이 결합된 다환 방향족 탄화수소(polycyclic aromatic hydrocarbon)을 모두 포함하는 의미일 수 있다.The term " aryl group " used in the present invention means a cyclic aromatic hydrocarbon, and may be a monocyclic aromatic hydrocarbon having one ring formed therein or a polycyclic aromatic hydrocarbon having two or more rings bonded thereto polycyclic aromatic hydrocarbons.
본 발명은 인장특성 및 점탄성 특성이 우수한, 공액디엔계 중합체를 포함하는 고무 조성물을 제공한다. The present invention provides a rubber composition comprising a conjugated diene polymer having excellent tensile properties and viscoelastic properties.
본 발명의 일 실시예에 따른 상기 고무 조성물은 순도가 92.0% 이상인 변성제로 변성된 변성 공액디엔계 중합체; 충진제; 및 가황제를 포함하고, 하기 수학식 1을 만족하는 것을 특징으로 한다. The rubber composition according to one embodiment of the present invention is a modified conjugated diene polymer modified with a modifier having a purity of 92.0% or more; Filler; And a vulcanizing agent, and is characterized by satisfying the following formula (1).
[수학식 1][Equation 1]
Figure PCTKR2018014366-appb-I000003
Figure PCTKR2018014366-appb-I000003
상기 수학식 1에서, X는 변성 공액디엔계 중합체의 변성률이고, A는 미변성 공액디엔계 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수(tan δ)이며, Y는 변성 공액디엔계 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수(tan δ)이다.Wherein A is the dynamic viscoelastic loss coefficient (tan delta) of the rubber composition containing the unmodified conjugated diene polymer at 60 DEG C, Y is the modulus of the modified conjugated diene polymer Is the dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of the rubber composition containing the diene polymer.
상기에서, A는 구체적으로 0.140 내지 0.160의 값을 가질 수 있고, Y는 구체적으로 0.05 이상, 0.14 이하일 수 있다. In the above, A may specifically have a value of 0.140 to 0.160, and Y may specifically be 0.05 or more and 0.14 or less.
상기 식에서 A 값은 미변성 공액디엔계 중합체의 동적 점탄성 손실계수이며, 이는 시판되는 중합체 제품에 따라, 그리고 측정 조건에 따라서, 다소 상이한 값을 가질 수 있으며, 0.140 내지 0.160 사이의 값을 갖는 것이 일반적일 수 있으며, 보통은 0.147 내지 0.160일 수 있고, 0.150 이상의 값을 가질 수 있다.Wherein A is the dynamic viscoelastic loss coefficient of the unmodified conjugated diene polymer, which may have somewhat different values, depending on the polymer product marketed, and depending on the conditions of the measurement, and is generally between 0.140 and 0.160 Usually 0.147 to 0.160, and may have a value of 0.150 or more.
본 발명의 일 실시예에 따른 고무 조성물은 변성 공액디엔계 중합체의 변성률과 변성되지 않은 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수를 이용하여, 고무 조성물의 60℃에서의 동적 점탄성 손실계수와의 상관관계를 수학식 1을 통해 미리 예측하여, 변성 공액디엔계 중합체를 포함하되 목적하는 인장특성 및 점탄성 특성에 맞게 변성률이 조절된 변성 공액디엔계 중합체를 선택하여 포함할 수 있으며, 이에 우수한 인장특성 및 점탄성 특성을 용이하게 가질 수 있다.The rubber composition according to one embodiment of the present invention is characterized in that the modulus of the modified conjugated diene polymer and the dynamic viscoelastic loss coefficient at 60 캜 of the rubber composition containing the unmodified polymer are used to determine the dynamic And the viscoelastic loss coefficient of the modified conjugated diene polymer may be predicted through the formula 1 to select the modified conjugated diene polymer containing the modified conjugated diene polymer and having the modified ratio adjusted to the desired tensile and viscoelastic properties So that it is easy to have excellent tensile properties and viscoelastic properties.
즉, 변성되지 않은 미변성 공액디엔계 중합체의 동적 점탄성 손실계수에 대한 정보만 있다면 변성률이 어느 정도인지에 따라 변성 공액디엔계 중합체의 동적 점탄성 손실계수를 예측할 수 있어, 배합을 통해서 실제로 측정해 보지 않더라도 중합체만으로도 배합 물성을 예측할 수 있다는 장점이 있다.That is, if only the information on the dynamic viscoelastic loss coefficient of the unmodified unmodified conjugated diene polymer is known, the dynamic viscoelastic loss coefficient of the modified conjugated diene polymer can be predicted according to the degree of modification, It is possible to predict the compounding properties even if the polymer alone is not used.
또한, 상기 변성 공액디엔계 중합체는 변성제의 순도가 90.0% 이상인 것을 사용하여 변성시킨 것을 특징으로 하는데, 변성제의 순도는 변성률에 영향을 주는 팩터로서, 90.0% 이상인 경우에는 우수한 변성률을 달성할 수 있다.The modified conjugated diene polymer is characterized in that the modifier has a purity of at least 90.0%. The purity of the modifier is a factor affecting the modifying rate. When the modifying agent has a purity of 90.0% or more, an excellent modifying rate is achieved .
기존에는 변성제의 순도에 대해서는 그 중요성이 인지되지 않았고, 높은 순도를 갖는 것을 활용하기 위하여 정제를 위한 비용이나 시간 등의 로스가 상당한 수준이었다. 그러나, 본 발명에서는 변성제의 순도를 변성률과 연관성 있는 팩터임을 발견하고, 이를 적정 수준에서 제어함으로써 우수한 변성률을 갖는 변성 공액디엔계 중합체를 제공하고자 하는 것이다.In the past, the importance of the purity of the denaturant has not been recognized, and the losses such as cost and time for purification have been considerable in order to utilize those having high purity. However, in the present invention, it is discovered that the purity of the modifier is a factor related to the modifier, and the modifier is controlled at an appropriate level to provide a modified conjugated diene polymer having an excellent modifier.
이와 같이 적절한 수준의 순도는 90.0% 이상일 필요가 있고, 바람직하게는 92.0%, 더 바람직하게는 93.0% 이상일 수 있다. 또한, 상기 변성제의 순도가 90% 미만인 경우에 비하여 90%를 넘게 되면, 변성률이 큰 폭으로 상승할 수 있으며, 93%를 넘게 되면 다시 한 번 큰 폭으로 상승할 수 있다.The appropriate level of purity should be at least 90.0%, preferably at least 92.0%, more preferably at least 93.0%. In addition, when the purity of the modifier is higher than 90%, the modifying rate may increase greatly, and when the purity of the modifying agent is higher than 93%, it may increase again.
또한, 상기 수학식 1을 통하여 변성 공액디엔계 중합체의 변성률과 고무 조성물의 60℃에서의 동적 점탄성 손실계수와의 상관관계를 미리 예측할 수 있어, 변성 공액디엔계 중합체의 제조시 요구되는 물성에 맞게 상기 중합체의 변성률 어느 정도 수준으로 맞추어야 하는지를 미리 파악할 수 있고, 이는 변성제의 순도를 통하여 일응 예측이 가능하므로, 변성 공액디엔계 중합체의 제조시 변성제의 선정과 목표 변성률 선정, 목표 점탄성 손실계수 선정 등에 유효한 정보를 제공할 수 있고, 나아가서는 우수한 점탄성 특성을 갖는 고무 조성물의 제조를 재현성이 높게 제공할 수 있다는 장점이 있다. Further, the above formula (1) can predict the correlation between the modification ratio of the modified conjugated diene polymer and the dynamic viscoelastic loss coefficient at 60 캜 of the rubber composition, and it is possible to predict the properties required in the production of the modified conjugated diene polymer It is possible to predict in advance whether the modifying rate of the polymer should be adjusted to a certain level and which can be predicted through the purity of the modifier. Therefore, in the production of the modified conjugated diene polymer, selection of the modifier, target modifying rate selection, It is possible to provide information that is effective for selection, and further, it is possible to provide a rubber composition having excellent viscoelastic properties with high reproducibility.
본 발명에서, 상기 수학식 1은 변성률이 상이한 11종의 변성 공액디엔계 중합체를 제조하고, 이를 각각 포함하는 고무 조성물을 이용하여 60℃에서의 동적 점탄성 손실계수를 측정하여 상기 변성 공액디엔계 중합체와 동적 점탄성 손실계수 값의 비교 그래프를 작성하고, 이로부터 도출한 회귀식이다(도 1 참고).In the present invention, 11 modified conjugated diene-based polymers having different modifying ratios are prepared, and the dynamic viscoelastic loss coefficient at 60 ° C is measured using the rubber composition containing the modified conjugated diene polymer, A graph of a comparison between the polymer and the dynamic viscoelastic loss coefficient is prepared, and the result is a regression equation (see FIG. 1).
또한, 본 발명에서 상기 Y 값은 전술한 바와 같이 고무 조성물의 60℃에서의 동적 점탄성 손실계수의 범위를 나타내는 것으로, 전술한 범위를 만족하는 경우 고무 조성물의 인장특성 및 점탄성 특성이 모두 균형있게 우수할 수 있다.In the present invention, the Y value represents the range of the dynamic viscoelastic loss coefficient of the rubber composition at 60 DEG C as described above. When the above-mentioned range is satisfied, the Y value shows a balance in both tensile and viscoelastic properties can do.
본 발명의 일 실시예에 있어서, 상기 변성 공액디엔계 중합체는 적어도 일 말단에 작용기를 포함하는 란탄 계열 희토류 원소 함유 촉매화 공액디엔계 중합체, 구체적으로는 적어도 일 말단 및/또는 중합체 주쇄에 작용기를 포함하는 변성된 중합체로, 작용기를 포함하는 변성 중합체 단위와 상기 작용기를 포함하지 않는 미변성 중합체 단위를 포함하는 것일 수 있다. 즉, 본 발명에서 변성 중합체 단위와 미변성 중합체 단위는 하나의 중합체를 구성하는 구성단위를 나타내는 것으로, 상기 공액디엔계 중합체는 변성 중합체 단위와 미변성 중합체 단위로 구성되어 있는 것일 수 있다. 여기에서, 상기 작용기는 변성제로부터 유래된, 충진제 친화성기와 같은 관능성기를 나타내는 것일 수 있다.In one embodiment of the present invention, the modified conjugated diene polymer includes a lanthanide-based rare earth element-containing catalyzed conjugated diene polymer having at least one terminal functional group, specifically, a functional group having at least one terminal and / Modified polymer comprising a modified polymer unit containing a functional group and an unmodified polymer unit containing no functional group. That is, in the present invention, the modified polymer unit and the unmodified polymer unit represent a constituent unit constituting one polymer, and the conjugated diene polymer may be composed of a denatured polymer unit and an unmodified polymer unit. Here, the functional group may be a functional group derived from a modifier such as a filler-affinity group.
본 발명의 일 실시예에 있어서, 상기 변성 공액디엔계 중합체의 제조방법은 란탄 계열 희토류 원소 촉매 조성물의 존재 하, 공액디엔계 단량체를 중합하여 유기 금속 부위를 포함하는 활성 중합체를 제조하는 단계(단계 A); 및 활성 중합체에 변성제를 반응시키는 변성반응 단계;를 포함할 수 있다.In one embodiment of the present invention, the method for producing a modified conjugated diene-based polymer comprises polymerizing a conjugated diene-based monomer in the presence of a lanthanum-based rare earth element catalyst composition to prepare an active polymer containing an organic metal moiety A); And a denaturing reaction step of reacting the denaturant with the active polymer.
여기에서, 상기 활성 중합체 제조 단계와 변성반응 단계는 일반적으로 당업계에서 적용되는 반응 조건이 적용될 수 있고, 예컨대, 용액 반응 또는 고상 반응에 의해 수행될 수 있고, 구체적인 예로 용액 반응에 의해 수행될 수 있다. 또 다른 예로, 상기 활성 중합체의 중합 반응과 변성 반응은 배치(batch)식 반응기를 이용하여 수행될 수도 있고, 다단 연속식 반응기나 인라인 믹서 등의 장치를 이용하여 연속식으로 수행될 수도 있다.Here, the active polymer preparation step and the denaturation step can be generally carried out in accordance with the reaction conditions applicable in the art, and can be carried out, for example, by solution reaction or solid phase reaction, have. As another example, the polymerization and the modification reaction of the active polymer may be carried out using a batch reactor, or may be carried out continuously using an apparatus such as a multi-stage continuous reactor or an inline mixer.
또 다른 예로, 상기 중합 반응과 변성 반응은 통상 유사한 온도 및 압력 조건에서 수행될 수 있고, 구체적인 예로 20 내지 100℃의 온도에서 수행될 수 있으며, 이 범위 내에서 중합체의 점도가 상승하지 않고, 중합체의 활성화된 말단이 실활되지 않는 효과가 있다.As another example, the polymerization reaction and the modification reaction can usually be carried out under similar temperature and pressure conditions, and can be carried out, for example, at a temperature of from 20 to 100 ° C, within which the viscosity of the polymer does not rise, The activated end of the membrane is not inactivated.
상기 란탄 계열 희토류 원소 촉매화 공액디엔계 중합체는 란탄 계열 희토류 원소 함유 화합물을 포함하는 촉매 조성물로부터 유래된, 즉 촉매로부터 유래된 활성화된 유기 금속 부위를 포함하는 공액디엔계 중합체를 나타내는 것일 수 있으며, 상기의 촉매 조성물 존재하에 공액디엔계 단량체를 중합하여 제조된 것일 수 있다. 여기에서, 상기 공액디엔계 중합체는 폴리부타디엔과 같은 부타디엔 단독 중합체이거나, 또는 부타디엔-이소프렌 공중합체와 같은 부타디엔 공중합체일 수 있다. The lanthanide-based rare earth element-catalyzed conjugated diene-based polymer may be a conjugated diene-based polymer derived from a catalyst composition comprising a lanthanide rare earth element-containing compound, that is, an activated organometallic site derived from a catalyst, And may be prepared by polymerizing the conjugated diene monomer in the presence of the catalyst composition. Here, the conjugated diene-based polymer may be a butadiene homopolymer such as polybutadiene, or a butadiene copolymer such as a butadiene-isoprene copolymer.
구체적인 예로, 상기 공액디엔계 중합체는 1,3-부타디엔 단량체 유래 반복단위 80 내지 100 중량%, 및 선택적으로 1,3-부타디엔과 공중합 가능한 그 외의 공액디엔계 단량체 유래 반복단위 20 중량% 이하를 포함할 수 있고, 상기 범위 내에서 중합체 내 1,4-시스 결합 함량이 저하되지 않는 효과가 있다. 이 때, 상기 1,3-부타디엔 단량체로는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 또는 2-에틸-1,3-부타디엔 등의 1,3-부타디엔 또는 그 유도체를 들 수 있고, 상기 1,3-부타디엔과 공중합 가능한 그 외의 공액디엔계 단량체로는 2-메틸-1,3-펜타디엔, 1,3-펜타디엔, 3-메틸-1,3-펜타디엔, 4-메틸-1,3-펜타디엔, 1,3-헥사디엔 또는 2,4-헥사디엔 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 사용될 수 있다.Specifically, the conjugated diene-based polymer contains 80 to 100% by weight of repeating units derived from 1,3-butadiene monomer and 20% by weight or less of other conjugated diene monomer-derived repeating units copolymerizable with 1,3-butadiene And the 1,4-cis bond content in the polymer is not lowered within the above range. Examples of the 1,3-butadiene monomer include 1,3-butadiene, such as 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, And other conjugated diene monomers copolymerizable with 1,3-butadiene may include 2-methyl-1,3-pentadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene , 4-methyl-1,3-pentadiene, 1,3-hexadiene or 2,4-hexadiene, and any one or two or more of them may be used.
본 발명의 일 실시예에 따르면, 상기 공액디엔계 중합체는 구체적으로 1,3-부타디엔 단량체 유래 반복단위를 포함하는 네오디뮴 촉매화 부타디엔계 중합체일 수 있다.According to an embodiment of the present invention, the conjugated diene-based polymer may be a neodymium-catalyzed butadiene-based polymer containing repeating units derived from 1,3-butadiene monomers.
본 발명에 있어서, 공액디엔계 중합체의 활성화된 유기 금속 부위란, 공액디엔계 중합체의 말단의 활성화된 유기 금속 부위(분자쇄 말단의 활성화된 유기 금속 부위), 주쇄 중의 활성화된 유기 금속 부위 또는 측쇄 중의 활성화된 유기 금속 부위일 수 있으며, 이 중에서도 음이온 중합 또는 배위 음이온 중합에 의해 공액디엔계 중합체의 활성화된 유기 금속 부위를 얻는 경우 상기 활성화된 유기 금속 부위는 말단의 활성화된 유기 금속 부위일 수 있다.In the present invention, the activated organometal moiety of the conjugated diene polymer means an activated organometal moiety at the terminal of the conjugated diene polymer (an activated organometal moiety at the molecular chain terminal), an activated organometallic moiety in the main chain or a side chain , And among these, when an activated organometallic moiety of the conjugated diene polymer is obtained by anionic polymerization or coordination anionic polymerization, the activated organometallic moiety may be a terminal activated organic metal moiety .
한편, 상기 촉매 조성물은 란탄 계열 희토류 원소 함유 화합물, 알킬화제 및 할로겐 화합물을 포함하는 것일 수 있다.On the other hand, the catalyst composition may contain a lanthanide-based rare earth element-containing compound, an alkylating agent, and a halogen compound.
상기 란탄 계열 희토류 원소 함유 화합물은, 통상 공액디엔계 중합체의 제조시 사용되는 것이라면 특별한 제한 없이 사용 가능하나, 예컨대 상기 란탄 계열 희토류 원소 함유 화합물은, 란탄, 네오디뮴, 세륨, 가돌리늄 또는 프라세오디뮴 등과 같은 원자번호 57 내지 71의 희토류 금속 중 어느 하나 또는 둘 이상을 화합물일 수 있으며, 보다 구체적으로는 네오디뮴, 란탄 및 가돌리윰을 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 화합물일 수 있다.The lanthanide-based rare-earth element-containing compound can be used without any particular limitation as long as it is ordinarily used in the production of the conjugated diene-based polymer. For example, the lanthanide-based rare earth element-containing compound may be an organometallic compound having an atomic number such as lanthanum, neodymium, cerium, gadolinium or praseodymium Any one or two or more of the rare earth metals of 57 to 71 may be a compound, and more specifically may be a compound containing any one or two or more selected from the group consisting of neodymium, lanthanum and gadolinium.
또한, 상기 란탄 계열 희토류 원소 함유 화합물은 상기한 희토류 금속 함유 카르복실산염(예를 들면, 네오디뮴 초산염, 네오디뮴 아크릴산염, 네오디뮴 메타크릴산염, 네오디뮴 글루콘산염, 네오디뮴 구연산염, 네오디뮴 푸마르산염, 네오디뮴 유산염, 네오디뮴 말레산염, 네오디뮴 옥살산염, 네오디뮴 2-에틸헥사노에이트, 네오디뮴 네오 데카노에이트 등), 유기인산염(예를 들면, 네오디뮴 디부틸 인산염, 네오디뮴 디펜틸 인산염, 네오디뮴 디헥실 인산염, 네오디뮴 디헵틸 인산염, 네오디뮴 디옥틸 인산염, 네오디뮴 비스(1-메틸 헵틸) 인산염, 네오디뮴 비스(2-에틸헥실) 인산염, 또는 네오디뮴 디데실 인산염 등), 유기 포스폰산염(예를 들면, 네오디뮴 부틸 포스폰산염, 네오디뮴 펜틸 포스폰산염, 네오디뮴 헥실 포스폰산염, 네오디뮴 헵틸 포스폰산염, 네오디뮴 옥틸 포스폰산염, 네오디뮴(1-메틸 헵틸) 포스폰산염, 네오디뮴(2-에틸헥실) 포스폰산염, 네오디뮴 디실 포스폰산염, 네오디뮴 도데실 포스폰산염 또는 네오디뮴 옥타데실 포스폰산염 등), 유기 포스핀산염(예를 들면, 네오디뮴 부틸포스핀산염, 네오디뮴 펜틸포스핀산염, 네오디뮴 헥실 포스핀산염, 네오디뮴 헵틸 포스핀산염, 네오디뮴 옥틸 포스핀산염, 네오디뮴(1-메틸 헵틸) 포스핀산염 또는 네오디뮴(2-에틸헥실) 포스핀산염 등), 카르밤산염(예를 들면, 네오디뮴 디메틸 카르밤산염, 네오디뮴 디에틸 카르밤산염, 네오디뮴 디이소프로필 카르밤산염, 네오디뮴 디부틸 카르밤산염 또는 네오디뮴 디벤질 카르밤산염 등), 디티오 카르밤산염(예를 들면, 네오디뮴 디메틸디티오카르바민산염, 네오디뮴 디에틸디티오카르바민산염, 네오디뮴 디이소프로필 디티오 카르밤산염 또는 네오디뮴 디부틸디티오카르바민산염 등), 크산토겐산염(예를 들면, 네오디뮴 메틸 크산토겐산염, 네오디뮴 에틸 크산토겐산염, 네오디뮴 이소프로필 크산토겐산염, 네오디뮴 부틸 크산토겐산염, 또는 네오디뮴 벤질 크산토겐산염 등), β-디케토네이트(예를 들면, 네오디뮴 아세틸아세토네이트, 네오디뮴 트리플루오로아세틸 아세토네이트, 네오디뮴 헥사플루오로아세틸 아세토네이트 또는 네오디뮴 벤조일 아세토네이트 등), 알콕시드 또는 알릴옥시드(예를 들면, 네오디뮴 메톡사이드, 네오디뮴 에톡시드, 네오디뮴 이소프로폭사이드, 네오디뮴 페녹사이드 또는 네오디뮴 노닐 페녹사이드 등), 할로겐화물 또는 의사 할로겐화물(네오디뮴 불화물, 네오디뮴 염화물, 네오디뮴 브롬화물, 네오디뮴 요오드화물, 네오디뮴 시안화물, 네오디뮴 시안산염, 네오디뮴 티오시안산염, 또는 네오디뮴 아지드 등), 옥시할라이드(예를 들면, 네오디뮴 옥시플루오라이드, 네오디뮴 옥시 클로라이드, 또는 네오디뮴 옥시 브로마이드 등), 또는 1 이상의 희토류 금속-탄소 결합을 포함하는 유기 란탄 계열 희토류 원소 함유 화합물(예를 들면, Cp3Ln, Cp2LnR, Cp2LnCl, CpLnCl2, CpLn(사이클로옥타테트라엔), (C5Me5)2LnR, LnR3, Ln(알릴)3, 또는 Ln(알릴)2Cl 등, 상기 식중 Ln은 희토류 금속 원소이고, R은 앞서 정의한 바와 같은 하이드로카르빌기이다) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 포함할 수 있다.The lanthanide-based rare earth element-containing compound may be at least one selected from the group consisting of the rare earth metal-containing carboxylate (for example, neodymium acetate, neodymium acrylate, neodymium methacrylate, neodymium gluconate, neodymium citrate, neodymium fumarate, neodymium lactate, (For example, neodymium dibutyl phosphate, neodymium dipentyl phosphate, neodymium dihexyl phosphate, neodymium diheptyl phosphate, and the like) , Neodymium dioctylphosphate, neodymium dioctylphosphate, neodymium bis (1-methylheptyl) phosphate, neodymium bis (2-ethylhexyl) phosphate or neodymdidecylphosphate), organic phosphonates Pentylphosphonate, neodymium hexylphosphonate, neodymium heptylphosphonate, Neodymium dodecylphosphonate, neodymium dodecylphosphonate or neodymium octadecylphosphonate, and the like), a metal salt such as neodymium octylphosphonate, neodymium (1-methylheptyl) phosphonate, neodymium (2-ethylhexyl) Organic phosphoric acid salts such as neodymium butylphosphinate, neodymium pentylphosphinate, neodymium hexylphosphinate, neodymium heptylphosphinate, neodymium octylphosphinate, neodymium (1-methylheptyl) phosphinate or Neodymium diethylcarbamate, neodymium diisopropylcarbamate, neodymium dibutylcarbamate, or neodymium (2-ethylhexyl) phosphite) Dibenzylcarbamate, and the like), dithiocarbamates (e.g., neodymium dimethyldithiocarbamate, neodymium diethyldithiocarbamate, neodymium di (For example, neodymium methyl xanthate, neodymium ethyl xanthate, neodymium isopropyl xanthenate, neodymium dibutyl dithiocarbamate, etc.), xanthate (For example, neodymium acetylacetonate, neodymium trifluoroacetylacetonate, neodymium hexafluoroacetylacetonate, neodymium benzoyl acetoacetate, or neodymium benzoyl acetoacetate) (Neodymium methoxide, neodymium ethoxide, neodymium isopropoxide, neodymium phenoxide or neodymium nonylphenoxide, etc.), halides or pseudohalides (neodymium fluoride, neodymium bromide, etc.), alkoxides or allyl oxides Neodymium chloride, neodymium bromide, neodymium iodide, neodymium (Such as neodymium oxyfluoride, neodymium oxychloride, or neodymium oxybromide), or at least one rare earth metal-carbon bond (such as cyanide, neodymium cyanate, neodymium thiocyanate, or neodymium azide) (E.g., Cp 3 Ln, Cp 2 LnR, Cp 2 LnCl, CpLnCl 2 , CpLn (cyclooctatetraene), (C 5 Me 5 ) 2 LnR, LnR 3 , Ln (allyl) 3, or Ln (allyl) 2 Cl, etc., wherein wherein Ln is a rare earth metal element, R is a hydrocarbyl group as defined above) and the like, any one or a mixture of two or more of these .
구체적으로 상기 란탄 계열 희토류 원소 함유 화합물은 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에티트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물일 수 있다. 또, 올리고머화에 대한 우려 없이 중합 용매에 대한 우수한 용해도, 촉매 활성종으로의 전환율 및 이에 따른 촉매 활성 개선 효과의 우수함을 고려할 때, 상기 네오디뮴 화합물은 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, 및 Nd(2,2-디옥틸 데카노에이트)3로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물일 수 있다.Specifically, the lanthanide rare earth element-containing compound is at least one compound selected from the group consisting of Nd (2,2-diethyldecanoate) 3 , Nd (2,2-dipropyldecanoate) 3 , Nd (2,2-dibutyldecanoate) 3, Nd (2,2- di-hexyl decanoate) 3, Nd (2,2- dioctyl decanoate) 3, Nd (2- ethyl-2-propyl decanoate) 3, Nd (2- ethyl 2-butyl decanoate) 3, Nd (2- ethyl-2-hexyl decanoate) 3, Nd (2- butyl-2-propyl decanoate) 3, Nd (2- propyl-2-hexyl de decanoate) 3, Nd (2- propyl-2-isopropyl decanoate) 3, Nd (2- butyl-2-hexyl decanoate) 3, Nd (2- cyclohexyl-2-octyl decanoate) 3 , Nd (2,2- diethyl octanoate) 3, Nd (2,2- dipropyl octanoate) 3, Nd (2,2- dibutyltin octanoate) 3, Nd (2,2- di hexyl octanoate) 3, Nd (2- ethyl-2-propyl-octanoate) 3, Nd (2- ethyl-hexyl-2-octanoate) 3, Nd (titeu to 2,2-diethyl-no nano) 3, Nd (2,2- dipropyl no nano this ) 3, Nd (2,2- dibutyl no nano-benzoate) 3, Nd (2,2- dihexyl no nano-benzoate) 3, Nd (2- Ethyl-2-propyl-no nano-benzoate) 3 and Nd (2- Ethyl-2-hexyl nonanoate) 3 , or a mixture of two or more thereof. Considering the excellent solubility in a polymerization solvent, the conversion to a catalytically active species, and the effect of improving catalytic activity thereby, without concern for oligomerization, the neodymium compound is preferably Nd (2,2-diethyl decanoate) 3, Nd (2,2- dipropyl decanoate) 3, Nd (2,2- di-butyl decanoate) 3, Nd (2,2- di-hexyl decanoate) 3, and Nd (2,2 -Dioctyl decanoate) 3 , or a mixture of two or more thereof.
상기 알킬화제는 비극성 용매, 구체적으로는 비극성 탄화수소계 용매에 가용성이며, 1족, 2족 또는 3족 금속 등의 양이온성 금속과 탄소와의 결합을 포함하는 유기 금속 화합물 또는 붕소 함유 화합물일 수 있다. 보다 구체적으로, 상기 알킬화제는 유기 알루미늄 화합물, 유기 마그네슘 화합물 및 유기 리튬 화합물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다.The alkylating agent may be an organic metal compound or a boron-containing compound which is soluble in a non-polar solvent, specifically, a non-polar hydrocarbon solvent, and contains a cationic metal such as a Group 1, Group 2 or Group 3 metal and a carbon. More specifically, the alkylating agent may be any one or a mixture of two or more selected from the group consisting of an organoaluminum compound, an organomagnesium compound, and an organolithium compound.
상기 유기 알루미늄 화합물은 디에틸알루미늄 하이드라이드, 디-n-프로필알루미늄 하이드라이드, 디이소프로필알루미늄 하이드라이드, 디-n-부틸알루미늄 하이드라이드, 디이소부틸알루미늄 하이드라이드(DIBAH), 디-n-옥틸알루미늄 하이드라이드, 디페닐알루미늄 하이드라이드, 디-p-톨릴알루미늄 하이드라이드, 디벤질알루미늄 하이드라이드, 페닐에틸알루미늄 하이드라이드, 페닐-n-프로필알루미늄 하이드라이드, 페닐이소프로필알루미늄 하이드라이드, 페닐-n-부틸알루미늄 하이드라이드, 페닐이소부틸알루미늄 하이드라이드, 페닐-n-옥틸알루미늄 하이드라이드, p-톨릴에틸알루미늄 하이드라이드, p-톨릴-n-프로필알루미늄 하이드라이드, p-톨릴이소프로필알루미늄 하이드라이드, p-톨릴-n-부틸알루미늄 하이드라이드, p-톨릴이소부틸알루미늄 하이드라이드, p-톨릴-n-옥틸알루미늄 하이드라이드, 벤질에틸알루미늄 하이드라이드, 벤질-n-프로필알루미늄 하이드라이드, 벤질이소프로필알루미늄 하이드라이드, 벤질-n-부틸알루미늄 하이드라이드, 벤질이소부틸알루미늄 하이드라이드 또는 벤질-n-옥틸알루미늄 하이드라이드 등의 디히드로카르빌알루미늄 하이드라이드; 에틸알루미늄 디하이드라이드, n-프로필알루미늄 디하이드라이드, 이소프로필알루미늄 디하이드라이드, n-부틸알루미늄 디하이드라이드, 이소부틸알루미늄 디하이드라이드, 또는 n-옥틸알루미늄 디하이드라이드 등과 같은 히드로카르빌알루미늄 디하이드라이드 등을 들 수 있다. 또한, 상기 유기 알루미늄 화합물은 알루미녹산일 수 있다. 상기 알루미녹산은 트리히드로카르빌 알루미늄계 화합물에 물을 반응시킴으로써 제조될 수 있다. 보다 구체적으로, 상기 알루미녹산은 메틸알루미녹산(MAO), 변성 메틸알루미녹산(MMAO), 에틸알루미녹산, n-프로필알루미녹산, 이소프로필알루미녹산, 부틸알루미녹산, 이소부틸알루미녹산, n-펜틸알루미녹산, 네오펜틸알루미녹산, n-헥실알루미녹산, n-옥틸알루미녹산, 2-에틸헥실알루미녹산, 사이클로헥실알루미녹산, 1-메틸사이클로펜틸알루미녹산, 페닐알루미녹산 또는 2,6-디메틸페닐 알루미녹산 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.The organoaluminum compound may be selected from the group consisting of diethylaluminum hydride, di-n-propylaluminum hydride, diisopropylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride (DIBAH) N-propyl aluminum hydride, phenyl isopropyl aluminum hydride, phenyl isopropyl aluminum hydride, diphenyl aluminum hydride, di-p-tolyl aluminum hydride, dibenzyl aluminum hydride, phenylethyl aluminum hydride, n-butyl aluminum hydride, phenyl isobutyl aluminum hydride, phenyl-n-octyl aluminum hydride, p-tolylethyl aluminum hydride, p-tolyl-n-propyl aluminum hydride, , p-tolyl-n-butyl aluminum hydride, p-tolyloisobutyl aluminum hydride N-propyl aluminum hydride, benzyl isopropyl aluminum hydride, benzyl-n-butyl aluminum hydride, benzyl isobutyl aluminum hydride, benzyl isobutyl aluminum hydride, Or dihydrocarbylaluminum hydride such as benzyl-n-octylaluminum hydride; Hydrocarbylaluminum such as ethylaluminum dihydride, n-propylaluminum dihydride, isopropylaluminum dihydride, n-butylaluminum dihydride, isobutylaluminum dihydride or n-octylaluminum dihydride, Dihydride and the like. In addition, the organoaluminum compound may be aluminoxane. The aluminoxane can be prepared by reacting a trihydrocarbyl aluminum compound with water. More specifically, the aluminoxane may be at least one selected from the group consisting of methyl aluminoxane (MAO), modified methyl aluminoxane (MMAO), ethyl aluminoxane, n-propyl aluminoxane, isopropyl aluminoxane, butyl aluminoxane, Aluminoxane, neopentylaluminoxane, n-hexylaluminoxane, n-octylaluminoxane, 2-ethylhexylaluminoxane, cyclohexylaluminoxane, 1-methylcyclopentylaluminoxane, phenylaluminoxane or 2,6-dimethylphenyl Aluminoxane, and the like, and any one or a mixture of two or more of them may be used.
상기 유기 마그네슘 화합물은 적어도 하나의 마그네슘-탄소 결합을 포함하며, 비극성 용매, 구체적으로 비극성 탄화수소계 용매에 용해가능한 마그네슘 화합물이다. 구체적으로 상기 유기 마그네슘 화합물은 디에틸마그네슘, 디-n-프로필마그네슘, 디이소프로필마그네슘, 디부틸마그네슘, 디헥실마그네슘, 디페닐마그네슘, 또는 디벤질마그네슘과 같은 알킬마그네슘 화합물; 메틸 마그네슘 수소화물, 에틸 마그네슘 수소화물, 부틸 마그네슘 수소화물, 헥실 마그네슘 수소화물, 페닐 마그네슘 수소화물, 벤질 마그네슘 수소화물 등의 하이드로카르빌 마그네슘 수소화물; 메틸 마그네슘염화물, 에틸 마그네슘염화물, 부틸 마그네슘염화물, 헥실 마그네슘염화물, 페닐 마그네슘염화물, 벤질 마그네슘염화물, 메틸 마그네슘 브롬화물, 에틸 마그네슘 브롬화물, 부틸 마그네슘 브롬화물, 헥실 마그네슘 브롬화물, 페닐 마그네슘 브롬화물, 벤질 마그네슘 브롬화물 등의 하이드로카르빌 마그네슘 할로겐화물; 메틸 마그네슘 헥사노에이트, 에틸 마그네슘 헥사노에이트, 부틸 마그네슘 헥사노에이트, 헥실 마그네슘 헥사노에이트, 페닐 마그네슘 헥사노에이트, 벤질 마그네슘 헥사노에이트 등의 하이드로카르빌 마그네슘 카르복실산염; 메틸 마그네슘 에톡시드, 에틸 마그네슘 에톡시드, 부틸 마그네슘 에톡시드, 헥실 마그네슘 에톡시드, 페닐 마그네슘 에톡시드, 벤질 마그네슘 에톡시드 등의 하이드로카르빌 마그네슘 알콕시드; 또는 메틸 마그네슘 페녹사이드, 에틸 마그네슘 페녹사이드, 부틸 마그네슘 페녹사이드, 헥실 마그네슘 페녹사이드, 페닐 마그네슘 페녹사이드, 벤질 마그네슘 페녹사이드 등의 하이드로카르빌 마그네슘 아릴옥시드 등일 수 있다.The organomagnesium compound includes at least one magnesium-carbon bond, and is a non-polar solvent, specifically, a magnesium compound soluble in a non-polar hydrocarbon solvent. Specifically, the organomagnesium compound may be an alkylmagnesium compound such as diethylmagnesium, di-n-propylmagnesium, diisopropylmagnesium, dibutylmagnesium, dihexylmagnesium, diphenylmagnesium, or dibenzylmagnesium; Hydrocarbyl magnesium hydrides such as methylmagnesium hydride, ethylmagnesium hydride, butylmagnesium hydride, hexylmagnesium hydride, phenylmagnesium hydride and benzylmagnesium hydride; There may be mentioned methylmagnesium chloride, ethylmagnesium chloride, butylmagnesium chloride, hexylmagnesium chloride, phenylmagnesium chloride, benzylmagnesium chloride, methylmagnesium bromide, ethylmagnesium bromide, butylmagnesium bromide, hexylmagnesium bromide, phenylmagnesium bromide, Hydrocarbyl magnesium halides such as magnesium bromide and the like; Hydrocarbyl magnesium carboxylates such as methyl magnesium hexanoate, ethyl magnesium hexanoate, butyl magnesium hexanoate, hexyl magnesium hexanoate, phenyl magnesium hexanoate and benzyl magnesium hexanoate; Hydrocarbyl magnesium alkoxides such as methyl magnesium ethoxide, ethyl magnesium ethoxide, butyl magnesium ethoxide, hexyl magnesium ethoxide, phenyl magnesium ethoxide and benzyl magnesium ethoxide; Or hydrocarbyl magnesium aryloxides such as methyl magnesium phenoxide, ethyl magnesium phenoxide, butyl magnesium phenoxide, hexyl magnesium phenoxide, phenyl magnesium phenoxide, benzyl magnesium phenoxide and the like.
또한, 상기 알킬화제로서 유기 리튬 화합물로는 R-Li의 알킬리튬(이때, R은 탄소수 1 내지 20의 알킬기이며, 보다 구체적으로는 탄소수 1 내지 8의 선형 알킬기이다)이 사용될 수 있다. 보다 구체적으로는 메틸리튬, 에틸리튬, 이소프로필리튬, n-부틸리튬, sec-부틸리튬, t-부틸리튬, 이소부틸리튬, 펜틸리튬, 이소펜틸리튬 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.As the organic lithium compound as the alkylating agent, alkyl lithium of R-Li (wherein R is an alkyl group having 1 to 20 carbon atoms, more specifically a linear alkyl group having 1 to 8 carbon atoms) may be used. More specifically, there may be mentioned methyllithium, ethyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, isobutyllithium, pentyllithium, isopentyllithium, Two or more mixtures may be used.
상기 할로겐 화합물로는 할로겐 단체(單體), 할로겐간 화합물(interhalogen compound), 할로겐화수소, 유기 할라이드, 비금속 할라이드, 금속 할라이드 또는 유기금속 할라이드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 촉매 활성 향상 및 이에 따른 반응성 개선 효과의 우수함을 고려할 때 상기 할로겐 화합물로는 유기 할라이드, 금속 할라이드 및 유기금속 할라이드로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.Examples of the halogen compound include a halogen compound, an interhalogen compound, a hydrogen halide, an organic halide, a nonmetal halide, a metal halide or an organic metal halide, and any one or a mixture of two or more thereof Can be used. Among them, one or a mixture of two or more selected from the group consisting of an organic halide, a metal halide, and an organometallic halide may be used as the halogen compound, considering that the catalytic activity is improved and the reactivity is improved.
구체적으로, 상기 할로겐 단체로는 불소, 염소, 브롬 또는 요오드를 들 수 있다. Specifically, examples of the halogen group include fluorine, chlorine, bromine, and iodine.
또, 상기 할로겐 화합물로는 구체적으로 요오드 모노클로라이드, 요오드 모노브로마이드, 요오드 트리클로라이드, 요오드 펜타플루오라이드, 요오드 모노플루오라이드 또는 요오드 트리플루오라이드 등을 들 수 있다. Specific examples of the halogen compound include iodine monochloride, iodine monobromide, iodine trichloride, iodopentafluoride, iodine monofluoride and iodotrifluoride.
또, 상기 할로겐화수소로는 구체적으로 불화수소, 염화수소, 브롬화수소 또는 요오드화수소를 들 수 있다.Examples of the hydrogen halide include hydrogen fluoride, hydrogen chloride, hydrogen bromide, and hydrogen iodide.
또, 상기 유기 할라이드로는 구체적으로 t-부틸 클로라이드(t-BuCl), t-부틸 브로마이드, 알릴 클로라이드, 알릴 브로마이드, 벤질 클로라이드, 벤질 브로마이드, 클로로-디-페닐메탄, 브로모-디-페닐메탄, 트리페닐메틸 클로라이드, 트리페닐메틸 브로마이드, 벤질리덴 클로라이드, 벤질리덴 브로마이드, 메틸트리클로로실란, 페닐트리클로로실란, 디메틸디클로로실란, 디페닐디클로로실란, 트리메틸클로로실란(TMSCl), 벤조일 클로라이드, 벤조일 브로마이드, 프로피오닐 클로라이드, 프로피오닐 브로마이드, 메틸 클로로포르메이트, 메틸 브로모포르메이트, 요오도메탄, 디요오도메탄, 트리요오도메탄 ('요오도포름'으로도 불리움), 테트라요오도메탄, 1-요오도프로판, 2-요오도프로판, 1,3-디요오도프로판, t-부틸 요오다이드, 2,2-디메틸-1-요오도프로판 ('네오펜틸 요오다이드'로도 불리움), 알릴 요오다이드, 요오도벤젠, 벤질 요오다이드, 디페닐메틸 요오다이드, 트리페닐메틸 요오다이드, 벤질리덴 요오다이드 ('벤잘 요오다이드'로도 불리움), 트리메틸실릴 요오다이드, 트리에틸실릴 요오다이드, 트리페닐실릴 요오다이드, 디메틸디요오도실란, 디에틸디요오도실란, 디페닐디요오도실란, 메틸트리요오도실란, 에틸트리요오도실란, 페닐트리요오도실란, 벤조일 요오다이드, 프로피오닐 요오다이드 또는 메틸 요오도포르메이트 등을 들 수 있다.Specific examples of the organic halide include t-butyl chloride (t-BuCl), t-butyl bromide, allyl chloride, allyl bromide, benzyl chloride, benzyl bromide, chlorodi-phenyl methane, bromo- , Triphenylmethyl chloride, triphenylmethyl bromide, benzylidene chloride, benzylidene bromide, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, trimethylchlorosilane (TMSCl), benzoyl chloride, benzoyl bromide , Propionyl chloride, propionyl bromide, methyl chloroformate, methyl bromoformate, iodomethane, diiodomethane, triiodomethane (also referred to as iodoform), tetraiodomethane, 1 - iodopropane, 2-iodopropane, 1,3-diiodopropane, t-butyliodide, 2,2-dimethyl-1-iodopropane (Also referred to as " pentyl iodide "), allyl iodide, iodobenzene, benzyl iodide, diphenylmethyl iodide, triphenylmethyl iodide, benzylidene iodide Triethylsilyl iodide, trimethylsilyl iodide, triphenylsilyl iodide, dimethyldiiodosilane, diethyldiiodosilane, diphenyldiiodosilane, methyltriiodosilane, ethyl Triiodosilane, phenyltriiodosilane, benzoyl iodide, propionyl iodide or methyl iodoformate, and the like.
또, 상기 비금속 할라이드로는 구체적으로 삼염화인, 삼브롬화인, 오염화인, 옥시염화인, 옥시브롬화인, 삼불화붕소, 삼염화붕소, 삼브롬화붕소, 사불화규소, 사염화규소(SiCl4), 사브롬화규소, 삼염화비소, 삼브롬화비소, 사염화셀레늄, 사브롬화셀레늄, 사염화텔루르, 사브롬화텔루르, 사요오드화규소, 삼요오드화비소, 사요오드화텔루르, 삼요오드화붕소, 삼요오드화인, 옥시요오드화인 또는 사요오드화셀레늄 등을 들 수 있다.Further, as the non-metal halides specifically include phosphorus trichloride, phosphorus tribromide, phosphorus pentachloride, phosphorus oxychloride, oxy-bromide, phosphorus, boron trifluoride, boron trichloride, boron tribromide, used silicon tetrafluoride, silicon tetrachloride (SiCl 4), four There may be mentioned silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, silicon carbide, Selenium and the like.
또, 상기 금속 할라이드로는 구체적으로 사염화주석, 사브롬화주석, 삼염화알루미늄, 삼브롬화알루미늄, 삼염화안티몬, 오염화안티몬, 삼브롬화안티몬, 삼불화알루미늄, 삼염화갈륨, 삼브롬화갈륨, 삼불화갈륨, 삼염화인듐, 삼브롬화인듐, 삼불화인듐, 사염화티타늄, 사브롬화티타늄, 이염화아연, 이브롬화아연, 이불화아연, 삼요오드화알루미늄, 삼요오드화갈륨, 삼요오드화인듐, 사요오드화티타늄, 이요오드화아연, 사요오드화게르마늄, 사요오드화주석, 이요오드화주석, 삼요오드화안티몬 또는 이요오드화마그네슘을 들 수 있다.Specific examples of the metal halide include tin tetrachloride, tin tetrabromide, aluminum trichloride, aluminum tribromide, antimony trichloride, antimony trichloride, antimony tribromide, aluminum trifluoride, gallium trichloride, gallium tribromide, A metal oxide such as indium, tin bromide, indium trifluoride, titanium tetrachloride, titanium tetrabromide, zinc dichloride, zinc bromide, zinc fluoride, aluminum triiodide, gallium triiodide, indium triiodide, titaniumiodide, zinc iodide, Germanium tetraiodide, tungsten iodide, antimony triiodide, or magnesium iodide.
또, 상기 유기금속 할라이드로는 구체적으로 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디메틸알루미늄 브로마이드, 디에틸알루미늄 브로마이드, 디메틸알루미늄 플루오라이드, 디에틸알루미늄 플루오라이드, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 메틸알루미늄 디브로마이드, 에틸알루미늄 디브로마이드, 메틸알루미늄 디플루오라이드, 에틸알루미늄 디플루오라이드, 메틸알루미늄 세스퀴클로라이드, 에틸알루미늄 세스퀴클로라이드(EASC), 이소부틸알루미늄 세스퀴클로라이드, 메틸마그네슘 클로라이드, 메틸마그네슘 브로마이드, 에틸마그네슘 클로라이드, 에틸마그네슘 브로마이드, n-부틸마그네슘 클로라이드, n-부틸마그네슘 브로마이드, 페닐마그네슘 클로라이드, 페닐마그네슘 브로마이드, 벤질마그네슘 클로라이드, 트리메틸주석 클로라이드, 트리메틸주석 브로마이드, 트리에틸주석 클로라이드, 트리에틸주석 브로마이드, 디-t-부틸주석 디클로라이드, 디-t-부틸주석 디브로마이드, 디-n-부틸주석 디클로라이드, 디-n-부틸주석 디브로마이드, 트리-n-부틸주석 클로라이드, 트리-n-부틸주석 브로마이드, 메틸마그네슘 요오다이드, 디메틸알루미늄 요오다이드, 디에틸알루미늄 요오다이드, 디-n-부틸알루미늄 요오다이드, 디이소부틸알루미늄 요오다이드, 디-n-옥틸알루미늄 요오다이드, 메틸알루미늄 디요오다이드, 에틸알루미늄 디요오다이드, n-부틸알루미늄 디요오다이드, 이소부틸알루미늄 디요오다이드, 메틸알루미늄 세스퀴요오다이드, 에틸알루미늄 세스퀴요오다이드, 이소부틸알루미늄 세스퀴요오다이드, 에틸마그네슘 요오다이드, n-부틸마그네슘 요오다이드, 이소부틸마그네슘 요오다이드, 페닐마그네슘 요오다이드, 벤질마그네슘 요오다이드, 트리메틸주석 요오다이드, 트리에틸주석 요오다이드, 트리-n-부틸주석 요오다이드, 디-n-부틸주석 디요오다이드 또는 디-t-부틸주석 디요오다이드 등을 들 수 있다.Specific examples of the organometallic halide include dimethylaluminum chloride, diethylaluminum chloride, dimethylaluminum bromide, diethylaluminum bromide, dimethylaluminum fluoride, diethylaluminum fluoride, methylaluminum dichloride, ethylaluminum dichloride, methyl (EASC), isobutylaluminum sesquichloride, methylmagnesium chloride, methylmagnesium bromide, ethylmagnesium bromide, ethylmagnesium bromide, ethylmagnesium bromide, ethylmagnesium bromide, , Ethylmagnesium chloride, ethylmagnesium bromide, n-butylmagnesium chloride, n-butylmagnesium bromide, phenylmagnesium chloride, phenylmagnesium bromide, benzylmagnesium Butyl tin dichloride, di-t-butyl tin dibromide, di-n-butyl tin dichloride, di-n-butyl tin dichloride, n-butyltin chloride, tri-n-butyltinbromide, methylmagnesium iodide, dimethyl aluminum iodide, diethyl aluminum iodide, di-n-butyl aluminum iodide Diisobutyl aluminum iodide, di-n-octyl aluminum iodide, methyl aluminum diiodide, ethyl aluminum diiodide, n-butyl aluminum diiodide, isobutyl aluminum diiodide, methyl aluminum sesiodide Quaternary ammonium salts such as quaternary ammonium salts, quaternary ammonium salts, quaternary ammonium salts, quaternary ammonium salts, quaternary ammonium salts, quaternary ammonium salts, quaternary ammonium salts, N-butyl iodide, tri-n-butyl tin iodide, di-n-butyl iodide, isobutylmagnesium iodide, phenylmagnesium iodide, benzylmagnesium iodide, trimethyltin iodide, Tin diiodide or di-t-butyltin diiodide, and the like.
본 발명의 일 실시예에 따른 상기 촉매 조성물은 상기한 성분들 외에, 디엔계 단량체를 더 포함할 수 있다. The catalyst composition according to an embodiment of the present invention may further include a diene monomer in addition to the above components.
상기 디엔계 단량체는 중합용 촉매와 혼합되어 예비 혼합(premixing)형 촉매를 형성할 수도 있고, 또는 중합용 촉매내 성분들, 구체적으로 DIBAH와 같은 알킬화제와의 중합으로 예비 중합(preforming)형 촉매를 형성할 수도 있다. 이와 같이 예비 중합을 할 경우 촉매 활성을 향상시킬 수 있을 뿐 더러 제조되는 공액디엔계 중합체를 보다 안정화시킬 수 있다. The diene-based monomer may be mixed with a polymerization catalyst to form a premixing catalyst, or may be prepared by polymerization with components in a polymerization catalyst, specifically an alkylating agent such as DIBAH, to form a preforming catalyst . When the prepolymerization is performed in this manner, the activity of the catalyst can be improved, and the conjugated diene-based polymer to be produced can be further stabilized.
구체적으로 상기 디엔계 단량체로는 통상 공액디엔계 중합체의 제조에 사용되는 것이라면 특별한 제한없이 사용가능하다. 구체적으로 상기 디엔계 단량체는 1,3-부타디엔, 이소프렌, 1,3-펜타디엔, 1,3-헥사디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 2-메틸-1,3-펜타디엔, 3-메틸-1,3-펜타디엔, 4-메틸-1,3-펜타디엔, 또는 2,4-헥사디엔 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.Specifically, the diene-based monomer can be used without particular limitation, as long as it is usually used in the production of a conjugated diene-based polymer. Specifically, the diene monomer may be at least one monomer selected from the group consisting of 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, Methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, and 2,4-hexadiene. Of these, One or a mixture of two or more may be used.
본 발명의 일 실시예에 따른 상기 촉매 조성물은 상기한 성분들 외에, 탄화수소계 용매를 더 포함할 수 있다.The catalyst composition according to an embodiment of the present invention may further include a hydrocarbon-based solvent in addition to the above-mentioned components.
상기 탄화수소계 용매는 구체적으로, 상기한 촉매 구성 성분들과 반응성이 없는 비극성 용매일 수 있다. 구체적으로는 n-펜탄, n-헥산, n-헵탄, n-옥탄, n-노난, n-데칸, 이소펜탄, 이소헥산, 이소펜탄, 이소옥탄, 2,2-디메틸부탄, 시클로펜탄, 시클로헥산, 메틸시클로펜탄 또는 메틸시클로헥산 등과 같은 선형, 분지형 또는 환형의 탄소수 5 내지 20의 지방족 탄화수소; 석유 에테르(petroleum ether) 또는 석유 주정제(petroleum spirits), 또는 케로센(kerosene) 등과 같은 탄소수 5 내지 20의 지방족 탄화수소의 혼합용매; 또는 벤젠, 톨루엔, 에틸벤젠, 크실렌 등과 같은 방향족 탄화수소계 용매 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로 상기 비극성 용매는 상기한 선형, 분지형 또는 환형의 탄소수 5 내지 20의 지방족 탄화수소 또는 지방족 탄화수소의 혼합용매일 수 있으며, 보다 더 구체적으로는 n-헥산, 시클로헥산, 또는 이들의 혼합물일 수 있다.The hydrocarbon-based solvent may specifically be a nonpolar solvent which is not reactive with the above-mentioned catalyst components. Specific examples include n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, isopentane, isohexane, isopentane, isooctane, 2,2-dimethylbutane, cyclopentane, , Methylcyclopentane or methylcyclohexane, and the like; alicyclic hydrocarbons having 5 to 20 carbon atoms in a linear, branched, or cyclic form; A mixed solvent of aliphatic hydrocarbons having 5 to 20 carbon atoms such as petroleum ether or petroleum spirits, or kerosene; Or an aromatic hydrocarbon solvent such as benzene, toluene, ethylbenzene, xylene, etc., and any one or a mixture of two or more of them may be used. More specifically, the non-polar solvent may be any of the above-described linear, branched or cyclic aliphatic hydrocarbons or aliphatic hydrocarbons of 5 to 20 carbon atoms, more specifically, n-hexane, cyclohexane, .
상기 변성제는 중합체 및 변성 목적에 따라 당업계에서 통상적으로 알려진 것에서 선택될 수 있으며, 예컨대 아자시클로프로판기, 케톤기, 카르복실기, 티오카르복실기, 탄산염, 카르복시산무수물, 카르복시산 금속염, 산할로겐화물, 우레아기, 티오우레아기, 아미드기, 티오아미드기, 이소시아네이트기, 티오이소시아네이트기, 할로겐화 이소시아노기, 에폭시기, 티오에폭시기, 이민기 및 M-Z 결합(단, 여기에서 M은 Sn, Si, Ge 및 P 중에서 선택되고, Z는 할로겐 원자이다) 중에서 선택된 1종 이상의 관능기를 포함하고, 활성 프로톤 및 오늄염을 포함하지 않는 화합물일 수 있다. 따라서 상기 작용기도 이에 따라 다양하게 선택될 수 있다. The modifier may be selected from those conventionally known in the art depending on the polymer and the purpose of modification, and examples thereof include azacyclo propane, ketone, carboxyl, thiocarboxyl, carbonate, carboxylic anhydride, (Wherein M is selected from Sn, Si, Ge and P, and is selected from the group consisting of a halogen atom, a cyano group, a thiourea group, an amide group, a thioamide group, an isocyanate group, a thioisocyanate group, a halogenated isocyano group, an epoxy group, a thioepoxy group, And Z is a halogen atom), and does not contain an active proton and an onium salt. Accordingly, the action path can be variously selected accordingly.
다른 예로, 상기 변성제는 하기 화학식 1 또는 화학식 2로 표시되는 화합물일 수 있다.As another example, the modifier may be a compound represented by the following formula (1) or (2).
[화학식 1][Chemical Formula 1]
Figure PCTKR2018014366-appb-I000004
Figure PCTKR2018014366-appb-I000004
[화학식 2](2)
Figure PCTKR2018014366-appb-I000005
Figure PCTKR2018014366-appb-I000005
상기 화학식 1 또는 화학식 2에서, In the above formula (1) or (2)
Z1 및 Z2는 서로 독립적으로 실란기, N,N-2 치환 아미노페닐기, 이민기 또는 고리형 아미노기이고, R1 및 R7은 서로 독립적으로 단일결합 또는 2가의 유기기이며, Z 1 and Z 2 are each independently a silane group, an N, N-2 substituted aminophenyl group, an imine group or a cyclic amino group, R 1 and R 7 are independently a single bond or a divalent organic group,
R3 및 R6는 서로 독립적으로 단일결합 또는 2가의 유기기이거나; 각각 R4 또는 R5 및 R8 또는 R9와 연결되어 고리를 형성하는 3가 유기기이고, R4 및 R8은 서로 독립적으로 1가의 유기기이거나; 또는 각각 R3 또는 R5 및 R6 또는 R9와 연결되어 고리를 형성하는 2가 유기기일 수 있고, R5는 1가의 유기기이거나; 또는 R3 또는 R4와 연결되어 고리를 형성하는 2가 유기기이다.R 3 and R 6 are, independently of each other, a single bond or a divalent organic group; Each of which is a trivalent organic group connected to R 4 or R 5 and R 8 or R 9 to form a ring, R 4 and R 8 are each independently a monovalent organic group; Or a divalent organic group each of which is linked to R 3 or R 5 and R 6 or R 9 to form a ring, and R 5 is a monovalent organic group; Or R < 3 > or R < 4 > to form a ring.
구체적으로, 상기 화학식 1 또는 화학식 2로 표시되는 변성제는 예컨대 N-(3-트리에톡시실릴프로필)-4,5-디히드로이미다졸, N-(1,3-디메틸부틸리덴)-3-트리에톡시실릴)-1-프로판 아민, 이들의 올리고머 또는 이들의 혼합물;디메틸아미노벤질리덴 에틸아민, 디에틸 아미노벤질리덴 부틸 아민디메틸아미노벤질리덴 아닐린, 디메틸아미노벤질리덴 n-부틸아닐린, 디메틸아미노벤질리덴 도데실 아닐린, 디메틸아미노벤질리덴 메톡시아닐린, 디메틸아미노벤질리덴 디메틸아미노아닐린, 비스(디메틸아미노페닐)메틸리덴 부틸 아민, 비스(디메틸아미노페닐)메틸리덴 n-옥틸 아민, 비스(디에틸 아미노페닐)메틸리덴부틸 아민, 비스(디에틸 아미노페닐) 메틸리덴 n-옥틸 아민, 벤질리덴 디메틸아미노아닐린, 메톡시벤질리덴 디메틸아미노아닐린, 1-메틸-4-펜텐-2-일-메틸리덴 디메틸아닐린, 1,3-디메틸부틸리덴 디메틸아닐린 또는 이들의 혼합물; 페닐렌비스(디메틸아미노벤질리덴 아민); 벤질리덴(1-헥사메틸렌이미노)아닐린, 벤질리덴(1-피롤리디노)아닐린, 디메틸아미노벤질리덴(1-헥사메틸렌이미노)아닐린, 디메틸아미노벤질리덴(1-피롤리디노)아닐린, (1-헥사메틸렌이미노)벤질리덴 아닐린, (1-피롤리디노)벤질리덴 아닐린, 벤질리덴((4-n-부틸-1-피페라지노)메틸)아닐린, 벤질리덴((3-(1-메틸) 피롤리디노)메틸)아닐린, ((4-n-부틸-1-피페라지노)메틸)벤질리덴아닐린, ((3-(1-메틸) 피롤리디노) 메틸) 벤질리덴 아닐린 또는 이들의 혼합물일 수 있다.Specifically, the modifier represented by Formula 1 or Formula 2 is, for example, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole, N- (1,3-dimethylbutylidene) -Triethoxysilyl) -1-propanamine, oligomers of these, or mixtures thereof; dimethylaminobenzylideneethylamine, diethylaminobenzylidenebutylamine dimethylaminobenzylidene aniline, dimethylaminobenzylidene n-butyl aniline, dimethyl (Dimethylaminophenyl) methylidenebutylamine, bis (dimethylaminophenyl) methylidene n-octylamine, bis (diethylaminobenzylidene) methoxyaniline, (Ethylaminophenyl) methylidenebutylamine, bis (diethylaminophenyl) methylidene n-octylamine, benzylidene dimethylaminoaniline, methoxybenzylidene dimethylaminoaniline, 1-methyl- Alkylidene-dimethylaniline, 1,3-dimethyl-butylidene-dimethylaniline, or mixtures thereof; Phenylenebis (dimethylaminobenzylideneamine); Aniline such as benzylidene (1-hexamethyleneimino) aniline, benzylidene (1-pyrrolidino) aniline, dimethylaminobenzylidene (1-hexamethyleneimino) aniline, dimethylaminobenzylidene (1-pyrrolidino) Benzylidene aniline, benzylidene aniline, benzylidene ((4-n-butyl-1-piperazino) methyl) aniline, benzylidene ((3- ( Methyl) pyrrolidino) methyl) aniline, ((4-n-butyl-1-piperazino) methyl) benzylidene aniline, Or a mixture thereof.
본 발명의 일 실시예에 있어서, 상기 변성률은 크로마토그래피 측정으로부터 얻어진 크로마토그램을 이용하여 하기 수학식 2에 따라 계산된 값이고, 상기 크로마토그래피 측정은, 변성 중합체 단위 및 미변성 중합체 단위를 포함하는 중합체를 제1 용매에 용해시켜 제1 용액을 준비하는 단계; 상기 제1 용액을, 흡착제가 충진된 컬럼(column)에 주입시키는 단계; 상기 변성 중합체 단위를 상기 흡착제에 흡착시키고, 상기 미변성 중합체 단위가 용해된 제1 용액을 용출시키는 단계; 상기 용출된 제1 용액을 검출기로 이송시키는 단계; 제2 용매를 상기 컬럼에 주입시켜 상기 흡착된 변성 중합체 단위가 용해된 제2 용액을 용출시키는 단계; 및 상기 용출된 제2 용액을 상기 검출기로 이송시키는 단계를 포함하는 것을 특징으로 한다.In one embodiment of the present invention, the modification ratio is a value calculated according to the following formula (2) using a chromatogram obtained from a chromatographic measurement, and the chromatography measurement includes a modified polymer unit and an unmodified polymer unit Preparing a first solution by dissolving the polymer in a first solvent; Injecting the first solution into a column filled with adsorbent; Adsorbing the modified polymer unit to the adsorbent, and eluting the first solution in which the unmodified polymer unit is dissolved; Transferring the eluted first solution to a detector; Introducing a second solvent into the column to elute the second solution in which the adsorbed modified polymer units are dissolved; And transferring the eluted second solution to the detector.
[수학식 2]&Quot; (2) "
Figure PCTKR2018014366-appb-I000006
Figure PCTKR2018014366-appb-I000006
상기 수학식 2에서, 상기 미변성 중합체 단위의 피크 면적은 상기 검출기로 이송된 제1 용액에 대한 크로마토그램의 피크 면적이고, 상기 변성 중합체 단위의 피크 면적은 상기 검출기로 이송된 제2 용액에 대한 크로마토그램의 피크 면적이다.Wherein the peak area of the unmodified polymer unit is the peak area of the chromatogram for the first solution transferred to the detector and the peak area of the modified polymer unit is for the second solution transferred to the detector The peak area of the chromatogram.
본 발명에서 상기 변성률은, 일례로 중합체 내에 중합활성 부위가 존재하는 중합체에 대해 변성제(modifier)로 변성시킨 경우, 미변성 중합체에 대한 변성 중합체의 비율(ratio)을 의미할 수 있고, 이는 변성 중합체 및 미변성 중합체 전체에 대한 백분율(percentage, %)로 표시될 수 있다.In the present invention, the modifying ratio may mean, for example, a ratio of a modified polymer to an unmodified polymer when the polymer is modified with a modifier for a polymer having a polymerizable active site in the polymer, Can be expressed as percentage (%) with respect to the whole polymer and the unmodified polymer.
본 발명에서 상기 컬럼(column)은 크로마토그래피(chromatography)에 사용될 수 있는 컬럼일 수 있고, 일례로 정지상(stationary phase)이 극성이고, 이동상(mobile phase)이 비극성인 순상 컬럼(normal phase column) 또는 정지상이 비극성이고, 이동상이 극성인 역상 컬럼(reverse phase column)일 수 있다.In the present invention, the column may be a column that can be used for chromatography, for example, a normal phase column in which the stationary phase is polar and the mobile phase is non-polar, or The stationary phase may be a reverse phase column, which is nonpolar and the mobile phase is polar.
본 발명의 일 실시예에 따른 흡착제는 상기 컬럼의 정지상을 의미하는 것으로, 상기 컬럼에 충진되는 충진제일 수 있고, 이는 상기 변성제에 의해 변성된 변성 부위에 따라 적절히 선택될 수 있다. 상기 흡착제는 일례로 실리카계 흡착제, 폴리머계 흡착제, 알루미나(Al2O3) 흡착제, 흑연화 탄소 흡착제 및 지르코니아 흡착제로 이루어진 군으로부터 선택된 1종일 수 있고, 구체적인 예로 실리카계 흡착제일 수 있으며, 이 경우 다양한 변성 중합체의 흡착이 용이한 효과가 있다.The adsorbent according to an embodiment of the present invention means a stationary phase of the column. The adsorbent according to an embodiment of the present invention may be a filler to be packed in the column, and may be appropriately selected depending on the denaturation site modified by the denaturant. The adsorbent may be one selected from the group consisting of a silica-based adsorbent, a polymer-based adsorbent, an alumina (Al 2 O 3 ) adsorbent, a graphitized carbon adsorbent and a zirconia adsorbent, Adsorption of various modified polymers can be facilitated.
상기 실리카계 흡착제는 일례로 실리카(SiO2)로부터 유래된 실리카겔 흡착제; 및 상기 실리카겔 표면의 실란올(Si-OH)기가 탄소수 1 내지 30의 사슬형, 분지형 또는 환형 알킬실란, 탄소수 5 내지 30의 아릴실란, 탄소수 1 내지 30의 사슬형, 분지형 또는 환형 알킬시아노실란 및 탄소수 1 내지 30의 사슬형, 분지형 또는 환형 아미노알킬실란으로 이루어진 군으로부터 선택된 1종 이상의 유래기로 치환되거나 또는 말단 캐핑(end-capping)된 흡착제;로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로, 실리카겔 흡착제; 및 트리메틸실란, 에틸(디메틸)실란, 프로필(디메틸)실란, 부틸(디메틸)실란, 옥틸(디메틸)실란, 데실(디메틸)실란, 옥타데실(디메틸)실란, 시아노프로필(디메틸)실란, 아미노프로필(디메틸)실란 및 4-페닐부틸(디메틸)실란으로 이루어진 군으로부터 선택된 1종 이상의 유래기로 말단 캐핑된 흡착제;로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The silica-based adsorbent may be, for example, a silica gel adsorbent derived from silica (SiO 2 ); And a silanol (Si-OH) group on the silica gel surface is selected from the group consisting of a chain, branched or cyclic alkylsilane having 1 to 30 carbon atoms, arylsilane having 5 to 30 carbon atoms, a chain, branched or cyclic alkylsilyl An adsorbent which is substituted or end-capped with at least one group selected from the group consisting of an anisilane and a chain, branched or cyclic aminoalkylsilane having 1 to 30 carbon atoms, and an adsorbent selected from the group consisting of Specific examples thereof include a silica gel adsorbent; (Dimethyl) silane, octadecyl (dimethyl) silane, cyanopropyl (dimethyl) silane, amino (ethyl) silane, ethyl (dimethyl) silane, propyl (dimethyl) silane, butyl Capped with an at least one derived group selected from the group consisting of propyl (dimethyl) silane and 4-phenylbutyl (dimethyl) silane.
상기 흡착제는 일례로 입자의 크기가 0.001 내지 100 ㎛, 1 내지 100 ㎛, 1 내지 50 ㎛, 혹은 3 내지 30 ㎛일 수 있고, 이 범위 내에서 변성 중합체의 흡착이 용이한 효과가 있다. 상기 입자의 크기는 일례로 흡착제의 형태에 따른 평균 입경을 의미할 수 있고, 구체적인 예로, 흡착제의 형태가 구형 또는 타원체형인 경우에는 지름 또는 장축에 대한 평균 입경을 의미할 수 있으며, 흡착제의 형태가 다면체인 경우에는 장축에 대한 평균 입경을 의미할 수 있다.The adsorbent may have a particle size of 0.001 to 100 mu m, 1 to 100 mu m, 1 to 50 mu m, or 3 to 30 mu m, for example. Within this range, adsorption of the modified polymer is easy. The size of the particles may mean an average particle diameter depending on the type of the adsorbent. For example, when the adsorbent is spherical or ellipsoidal, it may mean an average particle diameter or a long axis. In the case of a polyhedron, it may mean an average particle diameter with respect to a long axis.
한편, 본 발명의 일 실시예에 따른 상기 공액디엔계 중합체의 변성률 측정 방법은 변성 중합체에 따라 다른 흡착제를 적용할 수 있고, 구체적으로 본 발명의 일 실시예에 따른 상기 변성 중합체는 적어도 일 말단에 아민기를 포함하는 작용기를 포함하는 것일 수 있고, 이때 상기 흡착제는 아민기를 포함하는 작용기로 치환된 실리카계 흡착제인 것일 수 있다. Meanwhile, in the method for measuring the modifying rate of the conjugated diene polymer according to an embodiment of the present invention, different adsorbents can be applied depending on the modified polymer, and specifically, the modified polymer according to one embodiment of the present invention has at least one terminal , And the adsorbent may be a silica-based adsorbent substituted with a functional group containing an amine group.
본 발명의 일 실시예 따르면, 상기 제1 용매 및 제2 용매는 각각 독립적으로 극성 용매 또는 비극성 용매일 수 있고, 구체적으로는 상기 제1 용매가 극성 용매일 때, 상기 제2 용매는 비극성 용매일 수 있고, 상기 제1 용매가 비극성 용매일 때, 상기 제2 용매는 극성 용매일 수 있으며, 이 경우 제1 용액으로부터 미변성 중합체를, 제2 용액으로부터 변성 중합체를 보다 효율적으로 각각 용출시키는 효과가 있다.According to an embodiment of the present invention, the first solvent and the second solvent may be independently polar solvent or nonpolar solvent, and more specifically, when the first solvent is polar solvent, the second solvent is non- And when the first solvent is nonpolar solvent, the second solvent can be polar solvent, and in this case, the effect of eluting the unmodified polymer from the first solution and the modified polymer from the second solution more efficiently, respectively have.
또 다른 예로, 상기 제1 용매 및 제2 용매는 각각 독립적으로 극성도에 차이가 있는 극성 용매일 수 있고, 구체적으로는 상기 제1 용매가 극성도가 높은 극성 용매일 때, 상기 제2 용매는 극성도가 낮은 극성 용매일 수 있고, 상기 제1 용매가 극성도가 낮은 극성 용매일 때, 상기 제2 용매는 극성도가 높은 극성 용매일 수 있으며, 상기 극성도는 절대적인 수치가 아닌, 제1 용매 및 제2 용매에 각각 이용되는 극성 용매의 극성도에 따른 상대적인 개념일 수 있고, 이 경우 제1 용액으로부터 미변성 중합체를, 제2 용액으로부터 변성 중합체를 보다 효율적으로 각각 용출시키는 효과가 있다.As another example, the first solvent and the second solvent may be each independently polarity dielectrics having different polarities, and specifically, when the first solvent is a polarity solvent having a high polarity, Wherein the second solvent can be a polarity solvent having a high polarity, and the polarity is not an absolute value, and the first solvent can be a polar solvent having a low degree of polarity, May be a relative concept depending on the polarity of the polar solvent used for the solvent and the second solvent, respectively. In this case, there is an effect of eluting the unmodified polymer from the first solution and the modified polymer from the second solution more efficiently.
상기 극성 용매는 크로마토그래피에 사용될 수 있고, 변성 중합체 및 미변성 중합체를 용해시킬 수 있는 극성 용매라면 특별히 제한되지 않으나, 일례로 물, 메탄올, 에탄올, n-프로판올, n-부탄올, 이소프로판올, 포름산, 아세트산, 아세톤, 니트로메탄, 프로필렌 카보네이트, 1,2-디옥산, 1,3-디옥산, 1,4-디옥산, 테트라하이드로퓨란(THF), 아세토니트릴(MeCN), 디메틸포름아미드(DMF), 디메틸설폭시드(DMSO), 메틸 에틸 케톤, 벤조니트릴, 피리딘(pyridine), 니트로에탄(nitroethane), 벤질 알콜(benzyl alchol), 메톡시 에탄올(methoxy ethanol) 및 포름아미드로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The polar solvent may be used in chromatography and is not particularly limited as long as it is a polar solvent capable of dissolving the modified polymer and the unmodified polymer. Examples of the polar solvent include water, methanol, ethanol, n-propanol, n-butanol, isopropanol, (DMF) such as acetic acid, acetone, nitromethane, propylene carbonate, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, tetrahydrofuran (THF), acetonitrile (MeCN) , Dimethyl sulfoxide (DMSO), methyl ethyl ketone, benzonitrile, pyridine, nitroethane, benzyl alchol, methoxy ethanol, and formamide. Or more.
상기 비극성 용매는 크로마토그래피에 사용될 수 있고, 변성 중합체 및 미변성 중합체를 용해시킬 수 있는 극성 용매라면 특별히 제한되지 않으나, 일례로 헥산, 벤젠, 톨루엔, 디에틸 에터, 클로로포름, 에틸아세테이트, 디클로로메탄, 시클로헥산, 테트라클로로메탄, 이소-옥탄(iso-octane), 자일렌(xylene), 부틸 에터(butyl ether), 이소프로필 에터(isopropyl ether) 및 에틸렌 클로라이드로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The nonpolar solvent may be used in chromatography and is not particularly limited as long as it is a polar solvent capable of dissolving the modified polymer and the unmodified polymer. Examples thereof include hexane, benzene, toluene, diethylether, chloroform, ethyl acetate, dichloromethane, It may be at least one selected from the group consisting of cyclohexane, tetrachloromethane, iso-octane, xylene, butyl ether, isopropyl ether and ethylene chloride.
본 발명의 일 실시예에 따르면, 상기 제1 용매는 0.01 내지 10.0 ml/min, 혹은 0.5 내지 2.0 ml/min 의 유속으로 주입될 수 있고, 이 범위 내에서 보다 효율적으로 변성 중합체를 흡착제에 전량 흡착시키고, 미변성 중합체만을 제1 용액과 함께 용출시키는 효과가 있다.According to an embodiment of the present invention, the first solvent can be injected at a flow rate of 0.01 to 10.0 ml / min, or 0.5 to 2.0 ml / min, and more efficiently within this range adsorbs the modified polymer to the adsorbent And only the unmodified polymer is eluted together with the first solution.
본 발명의 일 실시예에 따르면, 상기 제2 용매는 0.01 내지 10.0 ml/min, 혹은 0.5 내지 2.0 ml/min의 유속으로 주입될 수 있고, 이 범위 내에서 보다 효율적으로 흡착제에 흡착된 변성 중합체가 용해된 제2 용액을 용출시키는 효과가 있다.According to one embodiment of the present invention, the second solvent can be injected at a flow rate of 0.01 to 10.0 ml / min, or 0.5 to 2.0 ml / min, and the modified polymer adsorbed to the adsorbent more efficiently within this range There is an effect of eluting the dissolved second solution.
또한, 상기 제1 용액 및 제2 용액은 각각 컬럼의 용량(컬럼의 길이나 직경)에 따라 상기의 범위 내에서 미변성 중합체 혹은 제2 용액을 용출시키는데 용이하도록 조절되는 것일 수 있다.In addition, the first solution and the second solution may be adjusted so as to facilitate elution of the unmodified polymer or the second solution within the above-described range depending on the column capacity (column length or diameter), respectively.
본 발명의 일 실시예에 따르면, 상기 제2 용매는 미변성 중합체 전량이 용출된 후 주입될 수 있다. 상기 미변성 중합체 전량이 용출된 시점은 검출기로부터 미변성 중합체의 시그널이 더 이상 검출되지 않는 시점을 의미할 수 있다. 또 다른 예로 상기 제2 용매는 제1 용액의 주입이 완료된 후 제1 용액이 주입된 컬럼에 주입될 수 있고, 구체적으로는 용매의 조성을 연속적으로 변화시키는 경사 용리법(gradient elution)에 따라 제1 용액이 주입된 컬럼에 연속적으로 주입될 수 있으며, 이 경우 검출 시 시그널의 끊김 없이, 보다 정확한 측정이 가능한 효과가 있다.According to one embodiment of the present invention, the second solvent may be injected after the entire amount of the unmodified polymer is eluted. The time point at which the entire amount of the unmodified polymer is eluted may mean the point at which the signal of the unmodified polymer is no longer detected from the detector. As another example, the second solvent may be injected into the column into which the first solution is injected after the completion of the injection of the first solution, and specifically, the first solvent may be injected into the first solution injected column by gradient elution, The solution can be continuously injected into the injected column. In this case, there is an effect that more accurate measurement can be performed without interruption of the signal at the time of detection.
본 발명의 일 실시예에 따르면, 제2 용매가 상기 경사 용리법에 따라 제1 용액이 주입된 컬럼에 연속적으로 주입되는 경우, 상기 제2 용매가 주입된 때로부터 제1 용액 및 제2 용액이 동시에 용출될 수 있고, 동시에 용출된 제1 용액 및 제2 용액은 동시에 검출기로 이송될 수 있다. 또한, 검출기로 이송된 제1 용액 및 제2 용액의 함량 100 부피%에 대하여, 상기 제2 용매의 주입 시점으로부터 제1 용액 및 제2 용액은 제2 용매의 주입 유속에 따라 각각 그 함량이 제1 용액은 100 부피%에서 0 부피%로, 제2 용액은 0 부피%에서 100 부피%로 점진적으로 증감될 수 있다. 구체적인 예로, 제2 용매의 주입 시점으로부터 검출기에서는 제1 용액 및 제2 용액이 동시에 검출될 수 있고, 제2 용매의 주입에 따라 기 주입된 제1 용액의 검출량은 100 부피%에서 0 부피%로 감소하고, 제1 용액의 검출량이 감소하는 만큼 제2 용액의 검출량은 0 부피%에서 100 부피%로 증가하며, 제1 용액의 용출이 모두 완료된 때에는, 제2 용액만이 검출될 수도 있다(도 2 참고).According to one embodiment of the present invention, when the second solvent is continuously injected into the column into which the first solution is injected according to the gradient elution method, the first solution and the second solution are injected from the time when the second solvent is injected The simultaneously eluted first and second solutions can be simultaneously delivered to the detector. In addition, the content of the first solution and the second solution from the injection time point of the second solvent is 100% by volume based on the content of the first solution and the second solution transferred to the detector, 1 solution may be gradually increased or decreased from 100% by volume to 0% by volume and the second solution may be gradually increased or decreased from 0% by volume to 100% by volume. As a specific example, the first solution and the second solution can be detected simultaneously in the detector from the injection point of the second solvent, and the detection amount of the first solution injected in accordance with the injection of the second solvent is 100 volume% to 0 volume% The detection amount of the second solution increases from 0 vol% to 100 vol% as the detection amount of the first solution decreases, and only when the elution of the first solution is completed, only the second solution may be detected 2).
본 발명의 일 실시예에 따르면, 상기 공액디엔계 중합체 변성률 측정 방법은 크로마토그래피 측정 기기를 사용하여 측정한 것으로, 일례로 액체 크로마토그래피 측정 기기를 사용할 수 있으며, 구체적인 예로 제1 용액 및 제2 용매를 저장하기 위한 이동상 저장기, 컬럼에 일정하고 재현성 있게 이동상을 공급하기 위한 펌프(pump), 컬럼에 주입되는 용액 또는 용매의 주입 부피를 조절하기 위한 시료주입기(injector), 변성 중합체 및 미변성 중합체를 분리시키기 위한 컬럼(column) 및 용출된 변성 중합체 또는 미변성 중합체를 감응하기 위한 검출기(detector)를 포함하는 크로마토그래피 측정 기기일 수 있다.According to one embodiment of the present invention, the conjugated diene-based polymer modification ratio is measured by using a chromatographic measuring instrument. For example, a liquid chromatographic measuring instrument can be used. As a specific example, A mobile phase reservoir for storing the solvent, a pump for supplying a constant and reproducible moving phase to the column, a sample injector for adjusting the injection volume of the solution or solvent injected into the column, a modified polymer and unmodified A column for separating the polymer and a chromatographic measuring instrument comprising an eluted denatured polymer or a detector for sensing the unmodified polymer.
상기 이동상 저장기는 일례로 2개 이상 구비될 수 있고, 구체적인 예로 제1 용액을 저장하기 위한 이동상 저장기와 제2 용매를 저장하기 위한 이동상 저장기가 각각 별도로 구비될 수 있다. 또한, 상기 이동상 저장기는 경사 용리법(gradient elution)의 적용을 위한 별도의 경사 용리 장치를 포함할 수 있다.The moving-phase storage device may include two or more mobile phase storage devices. For example, a mobile phase storage device for storing the first solution and a mobile phase storage device for storing the second solvent may be separately provided. In addition, the mobile phase reservoir may include a separate gradient elution device for application of gradient elution.
상기 펌프는 일례로 0.1 내지 10,000 psi 혹은 100 내지 5,000 psi의 압력을 발생시키고, 0.01 내지 20 ml 혹은 0.1 내지 10 ml의 흐름 속도를 조절하며, 용액 또는 용매 공급 시 펄스(pulse)가 없고, 유속의 속도 변화량을 1% 이하, 혹은 0.1 내지 0.5%로 유지하는 것일 수 있다. 또 다른 예로, 상기 펌프는 싱글-헤드 펌프(single-head pump) 또는 듀얼-헤드 펌프(dual-head pump)일 수 있고, 구체적으로는 듀얼-헤드 펌프일 수 있으며, 이 경우 경사 용리법(gradient elution)의 적용이 용이한 효과가 있다.The pump generates a pressure of, for example, 0.1 to 10,000 psi or 100 to 5,000 psi, adjusts the flow rate of 0.01 to 20 ml or 0.1 to 10 ml, has no pulse during solution or solvent supply, The rate of change may be maintained at 1% or less, or 0.1 to 0.5%. In another example, the pump may be a single-head pump or a dual-head pump, and may be a dual-head pump, in which case a gradient elution) can be easily applied.
상기 주입기는 일례로 레오다인 주입기(Rheodyne injector) 혹은 자동 주입기(automatic injector)일 수 있고, 상기 레오다인 주입기는 일례로 루프(loop)의 부피가 1 내지 500 ㎕, 5 내지 200 ㎕, 혹은 10 내지 100 ㎕일 수 있으며, 이 범위 내에서 주입 정밀도가 높은 효과가 있다.The injector may be, for example, a Rheodyne injector or an automatic injector. The injector may include, for example, a loop having a volume of 1 to 500 μl, 5 to 200 μl, 100 < / RTI > < RTI ID = 0.0 > pL. ≪ / RTI >
상기 검출기는 일례로 UV/Vis 검출기, 형광 검출기(fluorescence detector), 굴절률 검출기(refractive index detector) 또는 증기화광산란 검출기(evaporative light scattering detector) 중에서 선택된 것일 수 있고, 구체적으로는 증기화광산란 검출기일 수 있으며, 이 경우 응답 계수(response factor) 일정하고, 표준 물질에 의한 검량선 작성 없이도 정확한 조성 분석이 가능하며, 경사 용리에 따른 검출이 가능하여 분리능과 분리감도가 우수한 효과가 있다.The detector may be, for example, selected from a UV / Vis detector, a fluorescence detector, a refractive index detector or an evaporative light scattering detector, in particular a vaporizing light scattering detector In this case, the response factor is constant, accurate composition analysis is possible without preparing a calibration curve by the reference material, and detection according to the gradient elution is possible, thus providing excellent effect of resolution and separation sensitivity.
본 발명의 일 실시예에서는 상기 검출기로 Waters 社의 증기화광산란 검출기(ELSD)를 사용하여, 1.0 mg/mL로 제조된 시료를 루프 부피 100 ㎕로 주입하여 여 변성률을 측정하였다.In one embodiment of the present invention, a sample prepared at 1.0 mg / mL was injected into a loop volume of 100 μl using a Waters Vaporization Light Scattering Detector (ELSD) as the detector, and the transformation rate was measured.
본 발명의 다른 일 실시예에 따른 고무 조성물의 제조방법은, 탄화수소 용매 중에서 촉매 조성물의 존재 하에, 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계; 상기 활성 중합체의 일 말단을 순도가 92.0% 이상인 변성제로 변성시켜 변성 공액디엔계 중합체를 제조하는 단계; 및 상기 변성 공액디엔계 중합체; 충진제; 및 가황제를 배합하는 단계;를 포함하는 것을 특징으로 한다.A method for producing a rubber composition according to another embodiment of the present invention comprises polymerizing a conjugated diene monomer in the presence of a catalyst composition in a hydrocarbon solvent to prepare an active polymer; Modifying one end of the active polymer with a modifier having a purity of 92.0% or more to prepare a modified conjugated diene polymer; And the modified conjugated diene polymer; Filler; And a vulcanizing agent.
상기 고무 조성물의 특성, 변성률과 고무 조성물의 점탄성 손실계수와의 상관관계, 변성제의 순도에 관한 내용은 전술한 내용과 동일하므로 그 기재를 생략한다.The relationship between the properties of the rubber composition, the modification ratio and the viscoelastic loss coefficient of the rubber composition, and the purity of the modifier are the same as those described above, and thus the description thereof will be omitted.
또한, 본 발명의 일 실시예에 있어서, 상기 동적 점탄성 손실계수(tan δ)는 연비특성의 지표로 사용되는 것으로, 60℃에서의 동적 점탄성 손실계수 값이 낮을수록 히스테리시스 손실이 적고, 회전저항성 특성이 우수함을 나타내며, 따라서 연비성이 우수함을 나타내는 것이다. Also, in one embodiment of the present invention, the dynamic viscoelastic loss coefficient (tan delta) is used as an index of the fuel consumption characteristic, and the lower the dynamic viscoelastic loss coefficient value at 60 DEG C, the smaller the hysteresis loss, And thus shows excellent fuel economy.
본 발명에서 상기 동적 점탄성 손실계수는 고무 조성물을 150℃에서 90분 동안 가류하여 시편을 얻고, TA 사의 동적 기계 분석기를 이용하여, 비틀림 모드로 주파수 10Hz, 변형률 3%에서 60℃에서 측정하였다.In the present invention, the dynamic viscoelastic loss coefficient was measured at a frequency of 10 Hz and a strain of 3% at 60 ° C in a twist mode using a dynamic mechanical analyzer manufactured by TA, by vulcanizing the rubber composition at 150 ° C for 90 minutes.
또한, 본 발명의 일 실시예에 따른 상기 고무 조성물은 변성 공액디엔계 중합체를 0.1 중량% 이상 100 중량% 이하, 구체적으로는 10 중량% 내지 100 중량%, 더욱 구체적으로는 20 중량% 내지 90 중량%로 포함하는 것일 수 있다. 만약, 상기 변성 공액디엔계 중합체의 함량이 0.1 중량% 미만인 경우 결과적으로 상기 고무 조성물을 이용하여 제조된 성형품, 예컨대 타이어의 내마모성 및 내균열성 등의 개선효과가 미미할 수 있다.In addition, the rubber composition according to an embodiment of the present invention contains the modified conjugated diene polymer in an amount of 0.1 wt% to 100 wt%, specifically 10 wt% to 100 wt%, more specifically 20 wt% to 90 wt% %. ≪ / RTI > If the content of the modified conjugated diene polymer is less than 0.1% by weight, the effect of improving the abrasion resistance and crack resistance of a molded article produced using the rubber composition, such as a tire, may be insignificant.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있으며, 이때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적으로는 상기 변성 공액디엔계 중합체 100 중량부에 대하여 1 중량부 내지 900 중량부로 포함되는 것일 수 있다. In addition, the rubber composition may further include other rubber components, if necessary, in addition to the modified conjugated diene polymer, wherein the rubber component may be contained in an amount of 90 wt% or less based on the total weight of the rubber composition. Specifically, it may be contained in an amount of 1 part by weight to 900 parts by weight based on 100 parts by weight of the modified conjugated diene polymer.
상기 고무 성분은 천연고무 또는 합성고무일 수 있으며, 예컨대 상기 고무 성분은 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 부틸 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.The rubber component may be natural rubber or synthetic rubber, for example natural rubber (NR) comprising cis-1,4-polyisoprene; Modified natural rubbers such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), and hydrogenated natural rubber, which are modified or refined with the general natural rubber; Butadiene copolymers (SBR), polybutadiene (BR), polyisoprenes (IR), butyl rubbers (IIR), ethylene-propylene copolymers, polyisobutylene-co-isoprene, neoprene, poly Butadiene), poly (styrene-co-butadiene), poly (styrene-co-butadiene) Synthetic rubber such as polysulfide rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, butyl rubber, halogenated butyl rubber and the like may be used, and any one or a mixture of two or more thereof may be used have.
또한, 상기 고무 조성물은 변성 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 150 중량부의 충진제를 포함하는 것일 수 있으며, 상기 충진제는 실리카계, 카본블랙 또는 이들 조합인 것일 수 있다. 구체적으로는, 상기 충진제는 카본블랙인 것일 수 있다. In addition, the rubber composition may contain 0.1 to 150 parts by weight of a filler based on 100 parts by weight of the modified conjugated diene polymer, and the filler may be silica-based, carbon black or a combination thereof. Specifically, the filler may be carbon black.
상기 카본블랙계 충진제는 특별히 제한하는 것은 아니나, 예컨대 질소 흡착 비표면적(N2SA, JIS K 6217-2:2001에 준거해서 측정함)이 20 ㎡/g 내지 250 ㎡/g인 것일 수 있다. 또, 상기 카본블랙은 디부틸프탈레이트 흡유량(DBP)이 80 cc/100g 내지 200 cc/100g인 것일 수 있다. 상기 카본블랙의 질소흡착 비표면적이 250 m2/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 20 m2/g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다. 또한, 상기 카본블랙의 DBP 흡유량이 200 cc/100g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 80 cc/100g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다. The carbon black filler is not particularly limited, but may have a nitrogen adsorption specific surface area (measured according to N2SA, JIS K 6217-2: 2001) of 20 m 2 / g to 250 m 2 / g. The carbon black may have a dibutyl phthalate oil absorption (DBP) of 80 cc / 100 g to 200 cc / 100 g. If the nitrogen adsorption specific surface area of the carbon black exceeds 250 m 2 / g, the workability of the rubber composition may deteriorate. If it is less than 20 m 2 / g, the reinforcing performance by carbon black may be insufficient. If the DBP oil absorption of the carbon black exceeds 200 cc / 100 g, the workability of the rubber composition may decrease. If the DBP oil absorption is less than 80 cc / 100 g, the reinforcing performance by carbon black may be insufficient.
또한, 상기 실리카는 특별히 제한하는 것은 아니나, 예컨대 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있다. 구체적으로는, 상기 실리카는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 현저한 습식 실리카일 수 있다. 또한, 상기 실리카는 질소흡착 비표면적(nitrogen surface area per gram, N2SA)이 120 ㎡/g 내지 180 ㎡/g이고, CTAB(cetyl trimethyl ammonium bromide) 흡착 비표면적이 100 ㎡/g 내지 200 ㎡/g일 수 있다. 상기 실리카의 질소흡착 비표면적이 120 ㎡/g 미만이면 실리카에 의한 보강 성능이 저하될 우려가 있고, 180 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다. 또한, 상기 실리카의 CTAB 흡착 비표면적이 100 ㎡/g 미만이면 충진제인 실리카에 의한 보강 성능이 저하될 우려가 있고, 200 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다.The silica is not particularly limited, but may be, for example, wet silica (hydrated silicic acid), dry silica (silicic anhydride), calcium silicate, aluminum silicate or colloidal silica. Specifically, the silica may be a wet silica having the most remarkable effect of improving the breaking property and the wet grip. The silica has a nitrogen surface area per gram (N 2 SA) of 120 m 2 / g to 180 m 2 / g and a specific surface area of CTAB (cetyl trimethyl ammonium bromide) of 100 m 2 / g to 200 m 2 / g Lt; / RTI > If the nitrogen adsorption specific surface area of the silica is less than 120 m < 2 > / g, the reinforcing performance by silica may be lowered. If it exceeds 180 m < 2 > / g, If the CTAB adsorption specific surface area of the silica is less than 100 m < 2 > / g, the reinforcing performance by the silica as a filler may be deteriorated. If it exceeds 200 m < 2 > / g, the workability of the rubber composition may deteriorate.
한편, 상기 충진제로서 실리카가 사용될 경우 보강성 및 저발열성 개선을 위해 실란 커플링제가 함께 사용될 수 있다. On the other hand, when silica is used as the filler, a silane coupling agent may be used together to improve the reinforcing property and the low heat build-up.
상기 실란 커플링제로는 구체적으로 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로는 보강성 개선 효과를 고려할 때 상기 실란커플링제는 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.Specific examples of the silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane , 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide Triethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-trimethoxysilyl Propylbenzothiazolyltetrasulfide, 3-triethoxysilylpropylbenzyltetrasulfide, 3-triethoxysilylpropylmethacrylate Monosulfide, monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyldimethoxymethylsilane, dimethoxymethylsilylpropyl- N-dimethylthiocarbamoyltetrasulfide, or dimethoxymethylsilylpropylbenzothiazolyltetrasulfide. Any one or a mixture of two or more of them may be used. More specifically, in consideration of the reinforcing effect, the silane coupling agent may be bis (3-triethoxysilylpropyl) polysulfide or 3-trimethoxysilylpropyl benzothiazine tetrasulfide.
또한, 본 발명의 일 실시예에 따른 상기 고무 조성물은 가황제를 포함하여 황 가교성일 수 있고, 상기 가황제는 구체적으로 황분말일 수 있으며, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있다. 상기 함량범위로 포함될 때, 가황 고무 조성물의 필요한 탄성률 및 강도를 확보할 수 있으며, 동시에 저연비성을 얻을 수 있다.In addition, the rubber composition according to an embodiment of the present invention may be sulfur-crosslinkable including a vulcanizing agent, and the vulcanizing agent may be specifically sulfur powder, and may be used in an amount of 0.1 part by weight to 10 parts by weight ≪ / RTI > When contained in the above content range, the required elastic modulus and strength of the vulcanized rubber composition can be ensured, and at the same time, the low fuel consumption ratio can be obtained.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.In addition, the rubber composition according to one embodiment of the present invention may contain various additives commonly used in the rubber industry, such as a vulcanization accelerator, a process oil, a plasticizer, an antioxidant, a scorch inhibitor, zinc white ), Stearic acid, a thermosetting resin, or a thermoplastic resin.
상기 가황 촉진제는 특별히 한정되는 것은 아니며, 구체적으로는 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있다. 상기 가황촉진제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.The vulcanization accelerator is not particularly limited and specifically includes M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazyl sulfenamide) Based compound, or a guanidine-based compound such as DPG (diphenylguanidine) can be used. The vulcanization accelerator may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the rubber component.
또한, 상기 공정유는 고무 조성물내 연화제로서 작용하는 것으로, 구체적으로는 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있으며, 보다 구체적으로는 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있으며, 상기 함량으로 포함될 때, 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지할 수 있다.The process oil may be a paraffinic, naphthenic, or aromatic compound. More specifically, considering the tensile strength and abrasion resistance, the process oil may be an aromatic process oil, a hysteresis loss And naphthenic or paraffinic process oils may be used in view of the low temperature characteristics. The process oil may be contained in an amount of 100 parts by weight or less based on 100 parts by weight of the rubber component. When the content is included in the above amount, the tensile strength and low heat build-up (low fuel consumption) of the vulcanized rubber can be prevented from lowering.
또한, 상기 노화방지제로는 구체적으로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등을 들 수 있다. 상기 노화방지제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.Specific examples of the antioxidant include N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'- 2, 4-trimethyl-1,2-dihydroquinoline, or high-temperature condensates of diphenylamine and acetone. The antioxidant may be used in an amount of 0.1 part by weight to 6 parts by weight based on 100 parts by weight of the rubber component.
본 발명의 일 실시예에 따른 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있으며, 또 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.The rubber composition according to one embodiment of the present invention can be obtained by kneading by using a kneader such as Banbury mixer, roll, internal mixer or the like by the above compounding formula. Further, the rubber composition can be obtained by a vulcanization step after molding, This excellent rubber composition can be obtained.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.Accordingly, the rubber composition can be applied to various members such as tire tread, under-tread, sidewall, carcass coated rubber, belt coated rubber, bead filler, pancake fur, or bead coated rubber, vibration proof rubber, belt conveyor, Can be useful for the production of various industrial rubber products.
실시예Example
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are for illustrative purposes only and are not intended to limit the scope of the invention.
제조예 1-1: 촉매 조성물 1의 제조Production Example 1-1: Preparation of Catalyst Composition 1
질소 조건하에서 헥산 용매 중에, 네오디뮴 카르복실산 화합물을 첨가하고, 디이소부틸알루미늄 하이드라이드(DIBAG) 및 염화디에틸알루미늄(DEAC)을 네오디뮴 화합물:DIBAH:DEAC=1:9~10:2~3의 몰비가 되도록 순차 투입한 후, 혼합하여 촉매 조성물을 제조하였다. 제조된 촉매 조성물은 즉시 사용하거나 -30 내지 20℃의 질소조건 하에 보관 후 사용하였다. A neodymium carboxylic acid compound was added to a hexane solvent under a nitrogen condition and diisobutylaluminum hydride (DIBAG) and diethylaluminum chloride (DEAC) were added to a neodymium compound: DIBAH: DEAC = 1: 9 to 10: , And then mixed to prepare a catalyst composition. The prepared catalyst composition was used immediately or after being stored under a nitrogen atmosphere at -30 to 20 ° C.
제조예 1-2: 에틸 1-(트리메틸실릴)피페리딘-4-카르복실레이트의 제조Production Example 1-2: Preparation of ethyl 1- (trimethylsilyl) piperidine-4-carboxylate
디클로로메탄(CH2Cl2) 중 에틸 피페리딘-4-카르복실레이트(ethyl piperidine-3-carboxylate) 2 g이 용해된 용액에 0℃에서 트리에틸아민(Et3N) 1.77 ml 및 염화트리메틸실릴(TMSCl3) 1.62 ml를 첨가하고, 5시간 동안 교반하였다. 이어서, 생성된 용액 중 용매를 감압하에 증발시키고, 헥산에 재용해 시킨 후, 여과하여 에틸 1-(트리메틸실릴)페페리딘-4-카르복실레이트를 수득하고, 1H 핵자기 공명 분광학적 스펙트럼으로 확인하였다.To a solution of 2 g of ethyl piperidine-3-carboxylate in dichloromethane (CH 2 Cl 2 ) was added at 0 ° C 1.77 ml of triethylamine (Et 3 N) and trimethyl chloride adding a silyl (TMSCl 3) 1.62 ml was added and stirred for 5 hours. Subsequently, the solvent in the resulting solution was evaporated under reduced pressure, redissolved in hexane and then filtered to obtain ethyl 1- (trimethylsilyl) piperidine-4-carboxylate, and analyzed by 1 H nuclear magnetic resonance spectroscopy Respectively.
1H NMR (500 MHz, CDCl3) δ 4.11-4.08 (m, 2H), 3.13-3.11 (m, 2H), 2.61-2.54 (m, 2H), 2.34-2.32 (m, 1H), 1.74 (m, 2H), 1.42 (m, 2H), 1.23-1.22 (m, 3H), 0.05-0.00 (m, 9H). 1 H NMR (500 MHz, CDCl 3) δ 4.11-4.08 (m, 2H), 3.13-3.11 (m, 2H), 2.61-2.54 (m, 2H), 2.34-2.32 (m, 1H), 1.74 (m , 2H), 1.42 (m, 2H), 1.23-1.22 (m, 3H), 0.05-0.00 (m, 9H).
제조예 2-1Production Example 2-1
변성제, 촉매 조성물 및 반응조건을 조절하여 변성률이 상이한 말단이 변성된 부타디엔 중합체를 제조하였다. Modified butadiene polymer having different modified ratios was prepared by controlling the modifier, the catalyst composition and the reaction conditions.
완전히 건조시킨 반응기에 진공과 질소를 교대로 가한 뒤, 진공 상태의 반응기에 1,3-부탄디엔/헥산 혼합 용액을 4.7kg(1,3-부타디엔 함량=500g) 넣고, 상기 제조예 1-1 제조한 촉매 조성물을 첨가한 후, 60~90℃에서 15~60분간 중합반응을 실시하여 말단에 활성화된 알루미늄 부위를 포함하는 활성 부타디엔 중합체를 제조하였다. After vacuum and nitrogen were added alternately to the completely dried reactor, 4.7 kg (1,3-butadiene content = 500 g) of 1,3-butane diene / hexane mixed solution was put in a reactor in a vacuum state, After the prepared catalyst composition was added, polymerization reaction was carried out at 60 to 90 ° C for 15 to 60 minutes to prepare an active butadiene polymer containing an activated aluminum site at the terminal.
여기에, 변성제로 상기 제조예 1-2에서 제조된, 에틸 1-(트리메틸실릴)페페리딘-4-카르복실레이트를 투입하고 중합온도와 동일한 온도조건에서 30 내지 60분간 반응시켰다([변성제]:[Nd]=1~10: 1 당량). 이후, 중합 정지제가 포함된 헥산 용액과 산화방지제가 포함된 헥산 용액을 첨가하여 반응을 종료하였다.To this was added ethyl 1- (trimethylsilyl) piperidine-4-carboxylate prepared in Preparation Example 1-2 as a modifier and allowed to react for 30 to 60 minutes at the same temperature as the polymerization temperature ([denaturing agent] : [Nd] = 1 to 10: 1 equivalent). Thereafter, a hexane solution containing a polymerization terminator and a hexane solution containing an antioxidant were added to terminate the reaction.
수득한 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 말단이 변성된 부타디엔 중합체를 제조하였다.The obtained polymer was put into hot water heated with steam and stirred to remove the solvent, followed by drying by roll to remove residual solvent and water to prepare a modified butadiene polymer.
제조예 2-2 Production example 2-2
변성제로 하기 표 1에 기재된 순도를 갖고, 표 1에 기재된 투입량(단량체 100 중량부 대비 중량부)을 적용한 것을 제외하고는 상기 제조예 2-1과 동일한 방법으로 말단이 변성된 부타디엔 중합체를 제조하였다.Modified butadiene polymers were prepared in the same manner as in Preparation Example 2-1 except that the amounts shown in Table 1 were used as modifiers and the amounts shown in Table 1 (parts by weight relative to 100 parts by weight of the monomers) were used .
비교제조예 2-1 내지 2-3Comparative Production Examples 2-1 to 2-3
변성제로 하기 표 1에 기재된 순도를 갖고, 표 1에 기재된 투입량(단량체 100 중량부 대비 중량부)을 적용한 것을 제외하고는 상기 제조예 2-1과 동일한 방법으로 말단이 변성된 부타디엔 중합체를 제조하였다.Modified butadiene polymers were prepared in the same manner as in Preparation Example 2-1 except that the amounts shown in Table 1 were used as modifiers and the amounts shown in Table 1 (parts by weight relative to 100 parts by weight of the monomers) were used .
비교 제조예 2-4Comparative Production Example 2-4
완전히 건조시킨 반응기에 진공과 질소를 교대로 가한 뒤, 진공 상태의 반응기에 1,3-부탄디엔/헥산 혼합 용액을 4.7kg(1,3-부타디엔 함량=500g) 넣고, 상기 제조예 1의 촉매 조성물을 첨가한 후, 70℃에서 60분간 중합반응을 실시하였다. 이후, 중합 정지제가 포함된 헥산 용액과 산화방지제가 포함된 헥산 용액을 첨가하여 반응을 종료하였다.To the reactor which had been thoroughly dried, vacuum and nitrogen were alternately added. Then, 4.7 kg (1,3-butadiene content = 500 g) of 1,3-butane diene / hexane mixed solution was added to a reactor in a vacuum state, After the composition was added, the polymerization reaction was carried out at 70 DEG C for 60 minutes. Thereafter, a hexane solution containing a polymerization terminator and a hexane solution containing an antioxidant were added to terminate the reaction.
수득한 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 미변성된 부타디엔 중합체를 제조하였다.The obtained polymer was put into hot water heated with steam and stirred to remove the solvent, followed by drying by roll to remove the remaining solvent and water to prepare an unmodified butadiene polymer.
중합체의 물성 평가Evaluation of physical properties of polymer
상기 제조예 2-1 내지 2-5에서 제조된 변성 부타디엔 중합체의 특성을 하기 항목에 대하여 평가하였고 그 결과를 하기 표 1에 나타내었다.The properties of the modified butadiene polymers prepared in Production Examples 2-1 to 2-5 were evaluated according to the following items, and the results are shown in Table 1 below.
1) 무니점도(RP, Raw polymer) 및 -S/R 값1) Mooney viscosity (RP, raw polymer) and -S / R value
각 중합체에 대해 Monsanto사 MV2000E로 Large Rotor를 사용하여 100℃에서 Rotor Speed 2±0.02 rpm의 조건에서 무니점도(ML1+4, @100℃)(MU)를 측정하였다. 이때 사용된 시료는 실온(23±3℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(Platen)을 작동시켜 토크를 인가하면서 무니점도를 측정하였다. 또한, 무니점도 측정 후 토크가 풀어지면서 나타나는 무니점도의 변화를 1분간 관찰하고, 그 기울기값으로부터 -S/R값을 결정하였다.For each polymer, the Mooney viscosity (ML1 + 4, @ 100 ° C) (MU) was measured at 100 ° C under Rotor Speed 2 ± 0.02 rpm using Monsanto MV2000E with a large rotor. The sample used was allowed to stand at room temperature (23 ± 3 ° C) for more than 30 minutes, and then 27 ± 3 g was sampled and filled in the die cavity. Platen was operated to measure the Mooney viscosity by applying torque. Further, the Mooney viscosity was measured, and the change in Mooney viscosity as the torque was released was observed for 1 minute, and the -S / R value was determined from the slope value.
2) 시스 결합량 측정2) Measurement of sheath bond
Varian VNMRS 500 Mhz NMR을 이용하여 각 중합체 내 시스 결합량을 측정하였으며, 용매로는 1,1,2,2-테트라클로로에탄 D2(Cambridge Isotope 社)를 사용하였다. The amount of cis bonds in each polymer was measured using Varian VNMRS 500 Mhz NMR, and 1,1,2,2-tetrachloroethane D2 (Cambridge Isotope) was used as a solvent.
3) 분자량 분포(MWD)3) Molecular weight distribution (MWD)
각 중합체를 40℃ 조건 하에서 테트라히드로퓨란(THF)에 30분간 녹인 후 겔 투과 크로마토 그래피(GPC: gel permeation chromatography)에 적재하여 흘려주었다. 이때, 칼럼은 폴리머 라보레토리즈사(Polymer Laboratories)의 상품명 PLgel Olexis 칼럼 두 자루와 PLgel mixed-C 칼럼 한 자루를 조합 사용하였다. 또 새로 교체한 칼럼은 모두 혼합상(mixed bed) 타입의 칼럼을 사용하였으며, 겔 투과 크로마토그래피 표준 물질(GPC Standard material)로서 폴리스티렌(Polystyrene)을 사용하였다.Each of the polymers was dissolved in tetrahydrofuran (THF) for 30 minutes under the condition of 40 占 폚 and loaded on gel permeation chromatography (GPC). At this time, two columns of PLgel Olexis column and one column of PLgel mixed-C column of Polymer Laboratories were used in combination. In addition, a column of a mixed bed type was used as a new column, and polystyrene was used as a gel permeation chromatography (GPC) standard material.
4) 변성제의 순도 측정4) Purity measurement of denaturant
변성제 순도는 가스 크로마토그램(Gas Chromatograph)과 질량분석기(Mass Sepctroscopy)를 이용하여 검출된 물질들 중 타겟 물질의 피크 면적%를 통해 변성제의 순도를 측정하였다.The purity of the denaturant was measured by using a gas chromatograph and a mass spectrometer (Mass Seproscopy). The purity of the denaturant was measured through the% peak area of the target material.
5) 변성률 측정5) Measurement of metamorphic rate
중합체를 시클로헥산(cyclohexane)에 용해시켜 각 시료(각 1.0 mg/ml로 제조)이동상 저장기에 저장하였고, 다른 이동상 저장기에 테트라하이드로퓨란(THF)을 저장하였다. 상기 이동상 저장기를 듀얼-헤드 펌프에 각각 연결하고, 먼저 중합체가 용해된 이동상 저장기의 용액을 상기 펌프 및 루프 부피가 100 ㎕인 주입기를 통해 실리카 흡착제가 충진된 컬럼으로 주입하였다. 이때, 펌프의 압력은 450 psi 였고, 주입 유속은 0.7 ml/min 이였다. 이어서, 검출기(ELSD, Waters 社)로부터 중합체 내의 미변성 부타디엔 중합체 단위가 더 이상 검출되지 않는 것을 확인하고, 주입 시작 5분을 기준으로, 상기 테트라하이드로퓨란을 펌프를 통해 상기 컬럼으로 주입하였다. 이때, 펌프의 압력은 380 psi 였고, 주입 유속은 0.7 ml/min 이였다. 검출기로부터 테트라하이드로퓨란의 주입에 따라 중합체 내의 변성 부타디엔 중합체 단위가 더 이상 검출되지 않는 것을 확인하고, 제2 용매의 주입을 종료하였다. 이어서, 검출된 크로마토그램 결과로부터 하기 수학식 2에 따라 변성률(%)을 계산하였다.The polymer was dissolved in cyclohexane, stored in mobile phase reservoirs (each with 1.0 mg / ml) and tetrahydrofuran (THF) in another mobile phase. The mobile phase reservoir was connected to a dual-head pump, respectively, and a solution of the polymer-dissolved mobile phase reservoir was first injected through a pump and an injector with a loop volume of 100 μl into a column filled with silica adsorbent. At this time, the pressure of the pump was 450 psi and the flow rate of the injection was 0.7 ml / min. The tetrahydrofuran was then injected into the column via a pump, based on the 5 minutes from the start of the injection, confirming that the unmodified butadiene polymer units in the polymer were no longer detected from the detector (ELSD, Waters). At this time, the pressure of the pump was 380 psi and the flow rate of the injection was 0.7 ml / min. Upon injection of the tetrahydrofuran from the detector, it was confirmed that the denatured butadiene polymer units in the polymer were no longer detected and the injection of the second solvent was terminated. Subsequently, the percent modification (%) was calculated from the detected chromatogram results according to the following equation (2).
[수학식 2]&Quot; (2) "
Figure PCTKR2018014366-appb-I000007
Figure PCTKR2018014366-appb-I000007
구분division 제조예2-1Production Example 2-1 제조예2-2Production example 2-2 제조예2-3Production Example 2-3 비교제조예2-1Comparative Production Example 2-1 비교제조예2-2Comparative Production Example 2-2 비교제조예2-3Comparative Production Example 2-3 비교제조예2-4Comparative Production Example 2-4
변성제 투입량Denaturant input 0.230.23 0.230.23 0.230.23 0.250.25 0.240.24 0.230.23 --
변성제 순도Denaturant purity 93.493.4 92.292.2 90.590.5 89.089.0 89.089.0 89.089.0 --
계산 투입량*Calculated input * 0.2150.215 0.2120.212 0.2080.208 0.2250.225 0.2140.214 0.2050.205 --
변성률Metamorphic rate 4141 2929 2626 2222 2020 1818 00
무니점도Mooney viscosity 43.743.7 46.046.0 44.344.3 45.245.2 44.344.3 42.342.3 47.347.3
-S/R-S / R 0.6940.694 0.5820.582 0.6020.602 0.5930.593 0.5880.588 0.5070.507 0.6470.647
시스결합 함량(cis)Cis bond content (cis) 97.997.9 96.796.7 96.896.8 96.896.8 96.896.8 96.396.3 96.996.9
분자량분포(MWD)Molecular Weight Distribution (MWD) 2.692.69 2.602.60 2.612.61 2.642.64 2.642.64 2.642.64 2.532.53
*계산 투입량: 변성제 투입량에 순도를 계산한 값* Calculated input: Purity calculated on the input of the denaturant
상기 표 1을 참조하면, 변성제의 순도가 높을수록 변성률이 향상되고 그에 따라 선형성과 시스 결합 함량이 점차적으로 향상되고 있음을 확인할 수 있다. 또한, 미변성된 비교제조예에 비하여 베타 값이 크게 높음을 알 수 있고 이로 인하여 선형성이 우수한 중합체가 제조될 수 있음을 확인할 수 있다.Referring to Table 1, it can be seen that the higher the purity of the modifier, the higher the modifying rate and thus the linearity and the cis-bond content are gradually improved. In addition, it can be seen that the beta value is remarkably high as compared with the unmodified comparative production example, and as a result, a polymer having excellent linearity can be produced.
또한, 상기 제조예 2-1 및 2-2와 비교제조예 2-2 내지 2-4를 보면, 거의 동등한 함량이고, 변성제의 순도로 계산된 실제 변성제량이 더 많은 경우(비교예 1 및 2)라고 하더라도, 순도에 따라 변성률이 상이하게 나타났다는 점을 고려하면 변성제의 순도가 변성률에 영향을 준다는 점을 알 수 있고, 동일한 변성제량을 적용한 제조예 2-1 내지 2-3과 비교예 2-3을 비교하여 보면, 순도가 약 90%가 되면서 변성률이 크게 상승하였음을 확인할 수 있으며, 93%가 넘어가면서 다시 한 번 큰 폭으로 변성률이 상승함을 확인할 수 있다. 즉, 변성제의 순도가 90% 이상인 것을 적용한다면, 우수한 변성률을 얻을 수 있음을 확인할 수 있다.Further, in Production Examples 2-1 and 2-2 and Comparative Production Examples 2-2 to 2-4, when the amounts are substantially the same and the actual amounts of the modifier calculated by the purity of the modifier are larger (Comparative Examples 1 and 2) It can be seen that the purity of the denaturant affects the denaturation rate in consideration of the fact that the denaturation rate differs according to the purity. In addition, in Examples 2-1 to 2-3 and Comparative Example Comparing with 2-3, it can be confirmed that the purity is increased to about 90%, and the purity is greatly increased, and it can be confirmed that the purity is increased again by 93%. That is, when the purity of the modifier is 90% or more, it can be confirmed that an excellent modification ratio can be obtained.
실시예 1 내지 3, 비교예 1 내지 3Examples 1 to 3, Comparative Examples 1 to 3
상기 제조예 2-1 및 2-2와 비교제조예 2-1 내지 2-3에서 제조된 말단이 변성된 부타디엔 중합체 100 중량부에 카본블랙 70 중량부, 공정오일(process oil) 22.5 중량부, 노화방지제(TMDQ) 2 중량부, 산화아연(ZnO) 3 중량부 및 스테아린산(stearic acid) 2 중량부를 배합하여 1차 조성물을 제조하였다. 이후, 상기 각 1차 조성물에 황 2 중량부, 가류 촉진제(CZ) 2 중량부 및 가류 촉진제(DPG) 0.5 중량부를 첨가하고 50℃에서 1.5분 동안 50 rpm으로 약하게 혼합하여 제조하였다.70 parts by weight of carbon black, 22.5 parts by weight of a process oil, 10 parts by weight of a process oil, and 100 parts by weight of a modified butadiene polymer prepared in Preparation Examples 2-1 and 2-2 and Comparative Preparative Examples 2-1 to 2-3, 2 parts by weight of antioxidant (TMDQ), 3 parts by weight of zinc oxide (ZnO) and 2 parts by weight of stearic acid were mixed to prepare a first composition. Subsequently, 2 parts by weight of sulfur, 2 parts by weight of a vulcanization accelerator (CZ) and 0.5 parts by weight of a vulcanization accelerator (DPG) were added to each of the above primary compositions and mixed at 50 rpm for 1.5 minutes at 50 rpm.
또한, 변성률에 따른 연비 향상 지수, 즉 60℃에서의 동적 점탄성 손실계수(tan δ) 값을 하기 수학식 1에 따라 예측하였다.The dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C was predicted according to the following formula (1).
[수학식 1][Equation 1]
Figure PCTKR2018014366-appb-I000008
Figure PCTKR2018014366-appb-I000008
상기 수학식 1에서, X는 변성 공액디엔계 중합체의 변성률이고, A는 미변성 공액디엔계 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수(tan δ)로서, 본 실시예에서는 0.152 값을 갖는 미변성 중합체를 적용하였으며, Y는 변성 공액디엔계 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수(tan δ)이다.In the above formula (1), X is the modifying ratio of the modified conjugated diene polymer, and A is the dynamic viscoelastic loss coefficient (tan delta) of the rubber composition containing the unmodified conjugated diene polymer at 60 DEG C, 0.152, and Y is the dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of the rubber composition containing the modified conjugated diene polymer.
구분division 변성제의 순도Purity of the denaturant X(변성률)X (metamorphic rate) Y(점탄성 손실계수)Y (Viscoelastic loss coefficient) AA
실시예 1Example 1 93.493.4 4141 0.12450.1245 0.15200.1520
실시예 2Example 2 92.292.2 2929 0.13350.1335
실시예 3Example 3 90.590.5 2626 0.13590.1359
비교예 1Comparative Example 1 89.089.0 2222 0.13940.1394
비교예 2Comparative Example 2 89.089.0 2020 0.14110.1411
비교예 3Comparative Example 3 89.089.0 1818 0.14300.1430
비교예 4Comparative Example 4
상기 실시예 1에서, 변성된 부타디엔 중합체 대신 비교 제조예 2-4에서 제조된 미변성된 부타디엔 중합체를 사용한 것을 제외하고는 동일한 방법으로 고무 조성물을 제조하였다. A rubber composition was prepared in the same manner as in Example 1, except that the unmodified butadiene polymer prepared in Comparative Preparation Example 2-4 was used in place of the modified butadiene polymer.
실험예 Experimental Example
상기 각 실시예 및 비교예에서 제조된 고무 조성물을 이용하여 시편을 제조하고, 인장특성 및 점탄성 특성을 측정하여, 하기 표 3에 나타내었다.Specimens were prepared using the rubber compositions prepared in the above Examples and Comparative Examples, and tensile properties and viscoelastic characteristics were measured and are shown in Table 3 below.
각 시편은 각 고무 조성물을 160℃에서 25분 동안 가류하여 제조하였다.Each specimen was prepared by vulcanizing each rubber composition at 160 DEG C for 25 minutes.
1) 인장 특성 평가1) Evaluation of tensile properties
상기 제조된 시편의 인장 특성은 상기 시편을 150℃에서 t90분 가류하고, ASTM D412의 인장 시험법에 의거하여 시험편의 절단 시의 300% 신장 시의 인장응력(300% 모듈러스)을 측정하였다. 이때, 각 측정값은 비교예의 측정값을 100으로 두고 지수화하였다.The tensile properties of the prepared specimens were measured by measuring the tensile stress at 300% elongation (300% modulus) when the test specimen was cut at 150 DEG C for 90 minutes and according to the tensile test method of ASTM D412. At this time, each measured value was indexed by setting the measured value of the comparative example at 100.
2) 점탄성 특성 평가2) Evaluation of viscoelastic properties
상기 제조된 시편의 점탄성 특성을 TA 사의 동적 기계 분석기를 이용하여, 비틀림 모드로 주파수 10Hz, 변형율 3%로 60℃에서의 점탄성 계수(tan δ)를 측정하였다. 이때, Index는 미변성 중합체의 측정값을 100으로 두고 지수화하였다. 한편, 60 ℃에서의 tanδ 값은 연비성을 나타내는 것이다.The viscoelastic properties of the prepared specimens were measured using a dynamic mechanical analyzer from TA Corporation at a frequency of 10 Hz and a strain rate of 3% at 60 DEG C in a torsional mode. At this time, Index was indexed by setting the measured value of the unmodified polymer to 100. On the other hand, the tan? Value at 60 占 폚 shows the fuel efficiency.
구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4
300% 모듈러스(kgf/cm2)300% modulus (kgf / cm 2 ) 113113 109109 110110 107107 106106 110110 107107
Tanδat 60℃Tanδat 60 ℃ 0.1240.124 0.1310.131 0.1330.133 0.1390.139 0.1410.141 0.1450.145 0.1520.152
Tanδat 60℃(Index)Tin 60 ° C (Index) 122122 116116 114114 109109 108108 105105 100100
표 3에 나타난 바와 같이, 상기 실시예 1 내지 3의 각 고무 조성물의 60℃에서의 Tan δ은 상기 표 1에 기재한 각 Y 값과 거의 유사한 값을 나타내었으며, 0.14 이하의 수치를 가짐으로써 점탄성 특성이 우수하다는 점이 확인된다. As shown in Table 3, Tan δ at 60 ° C. of each of the rubber compositions of Examples 1 to 3 exhibited a value substantially similar to each Y value described in Table 1, and had a value of 0.14 or less, It is confirmed that the characteristics are excellent.
이는 본 발명에 따른 변성 공액디엔계 중합체의 변성률과 고무 조성물의 60℃에서의 동적 점탄성 손실계수의 상관관계를 나타내는 회귀식인 수학식 1의 정확도가 높은 것을 나타내는 것이며, 변성제의 순도 제어를 통하여 0.14 이하의 우수한 점탄성 계수를 가지는 고무 조성물을 측정해 보지 않더라도 제공할 수 있음을 확인할 수 있다.This indicates that the accuracy of the formula (1), which is a regression equation showing the correlation between the modifying ratio of the modified conjugated diene polymer according to the present invention and the dynamic viscoelastic loss coefficient at 60 캜 of the rubber composition, is high, It can be confirmed that the rubber composition having the following excellent viscoelastic coefficient can be provided even without measuring it.
상기의 결과를 통하여 우수한 점탄성 계수를 갖는 고무 조성물을 제조하기 위하여 수학식 1을 활용하여 변성률을 정하고, 이 변성률은 변성제의 순도를 통해서 제어가 가능한바, 변성제의 순도만으로도 점탄성 계수를 원하는 수치로 제어할 수 있다는 점을 확인할 수 있다.In order to produce a rubber composition having excellent viscoelastic properties through the above-mentioned results, the modification ratio is determined by using Equation 1, and this modification ratio can be controlled through the purity of the modifier, As shown in Fig.

Claims (13)

  1. 변성 공액디엔계 중합체; 충진제; 및 가황제를 포함하는 고무 조성물로,A modified conjugated diene polymer; Filler; And a vulcanizing agent,
    하기 수학식 1을 만족하는 것이며,Satisfies the following expression (1)
    상기 변성 공액디엔계 중합체는 순도가 90.0% 이상인 변성제로 변성된 것인 고무 조성물:Wherein the modified conjugated diene polymer is modified with a modifier having a purity of not less than 90.0%
    [수학식 1][Equation 1]
    Figure PCTKR2018014366-appb-I000009
    Figure PCTKR2018014366-appb-I000009
    상기 수학식 1에서, X는 변성 공액디엔계 중합체의 변성률이고, In the above formula (1), X is the modifying rate of the modified conjugated diene polymer,
    A는 미변성 공액디엔계 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수(tan δ)로 0.140 내지 0.160의 실수 값을 가지며,A is a dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of a rubber composition containing an unmodified conjugated diene polymer and has a real value of 0.140 to 0.160,
    Y는 변성 공액디엔계 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수(tan δ)이다.Y is the dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of the rubber composition containing the modified conjugated diene polymer.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 변성 공액디엔계 중합체는 적어도 일 말단에 작용기를 포함하는 란탄 계열 희토류 원소 함유 촉매화 공액디엔계 중합체인 것인 고무 조성물.Wherein the modified conjugated diene polymer is a lanthanide-based rare earth element-containing catalyzed conjugated diene polymer containing at least one functional group.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 변성제는 순도가 93.0% 이상인 것인 고무 조성물.Wherein the modifier has a purity of 93.0% or more.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 변성 공액디엔계 중합체는 적어도 일 말단에 작용기를 포함하는 란탄 계열 희토류 원소 함유 촉매화 공액디엔계 중합체인 것인 고무 조성물.Wherein the modified conjugated diene polymer is a lanthanide-based rare earth element-containing catalyzed conjugated diene polymer containing at least one functional group.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 고무 조성물은 변성 공액디엔계 중합체 100 중량부; 충진제 0.1 중량부 내지 150 중량부; 및 가황제 0.1 중량부 내지 10 중량부를 포함하는 것인 고무 조성물.The rubber composition comprises 100 parts by weight of a modified conjugated diene polymer; 0.1 to 150 parts by weight of a filler; And 0.1 to 10 parts by weight of a vulcanizing agent.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 변성률은 크로마토그래피 측정으로부터 얻어진 크로마토그램을 이용하여 하기 수학식 2에 따라 계산된 값이고, The modification ratio is a value calculated according to the following formula (2) using a chromatogram obtained from a chromatographic measurement,
    상기 크로마토그래피 측정은, The chromatographic measurement can be carried out,
    변성 중합체 단위 및 미변성 중합체 단위를 포함하는 중합체를 제1 용매에 용해시켜 제1 용액을 준비하는 단계;Preparing a first solution by dissolving a polymer comprising a modified polymer unit and an unmodified polymer unit in a first solvent;
    상기 제1 용액을, 흡착제가 충진된 컬럼(column)에 주입시키는 단계;Injecting the first solution into a column filled with adsorbent;
    상기 변성 중합체 단위를 상기 흡착제에 흡착시키고, 상기 미변성 중합체 단위가 용해된 제1 용액을 용출시키는 단계;Adsorbing the modified polymer unit to the adsorbent, and eluting the first solution in which the unmodified polymer unit is dissolved;
    상기 용출된 제1 용액을 검출기로 이송시키는 단계;Transferring the eluted first solution to a detector;
    제2 용매를 상기 컬럼에 주입시켜 상기 흡착된 변성 중합체 단위가 용해된 제2 용액을 용출시키는 단계; 및Introducing a second solvent into the column to elute the second solution in which the adsorbed modified polymer units are dissolved; And
    상기 용출된 제2 용액을 상기 검출기로 이송시키는 단계를 포함하는 방법으로 수행하는 것인 고무 조성물:And transferring the eluted second solution to the detector.
    [수학식 2]&Quot; (2) "
    Figure PCTKR2018014366-appb-I000010
    Figure PCTKR2018014366-appb-I000010
    상기 수학식 2에서, In Equation (2)
    상기 미변성 중합체의 피크 면적은 상기 검출기로 이송된 제1 용액에 대한 크로마토그램의 피크 면적이고, 상기 변성 중합체의 피크 면적은 상기 검출기로 이송된 제2 용액에 대한 크로마토그램의 피크 면적이다.The peak area of the unmodified polymer is the peak area of the chromatogram for the first solution transferred to the detector and the peak area of the modified polymer is the peak area of the chromatogram for the second solution transferred to the detector.
  7. 청구항 6에 있어서, The method of claim 6,
    상기 흡착제는 실리카계 흡착제인 것인 고무 조성물.Wherein the adsorbent is a silica-based adsorbent.
  8. 청구항 6에 있어서, The method of claim 6,
    상기 제1 용매 및 제2 용매는 각각 독립적으로 극성 용매 또는 비극성 용매이되, 제1 용매 및 제2 용매는 서로 반대되는 극성을 갖는 것인 고무 조성물.Wherein the first solvent and the second solvent are each independently a polar solvent or a non-polar solvent, and the first solvent and the second solvent have opposite polarities.
  9. 청구항 8에 있어서, The method of claim 8,
    상기 극성 용매는 물, 메탄올, 에탄올, n-프로판올, n-부탄올, 이소프로판올, 포름산, 아세트산, 아세톤, 니트로메탄, 프로필렌 카보네이트, 1,2-디옥산, 1,3-디옥산, 1,4-디옥산, 테트라하이드로퓨란(THF), 아세토니트릴(MeCN), 디메틸포름아미드(DMF), 디메틸설폭시드(DMSO), 메틸 에틸 케톤, 벤조니트릴, 피리딘(pyridine), 니트로에탄(nitroethane), 벤질 알콜(benzyl alchol), 메톡시 에탄올(methoxy ethanol) 및 포름아미드로 이루어진 군으로부터 선택된 1종 이상인 것인 고무 조성물.The polar solvent may be selected from the group consisting of water, methanol, ethanol, n-propanol, n-butanol, isopropanol, formic acid, acetic acid, acetone, nitromethane, propylene carbonate, The organic solvent is selected from the group consisting of dioxane, tetrahydrofuran (THF), acetonitrile (MeCN), dimethylformamide (DMF), dimethylsulfoxide (DMSO), methyl ethyl ketone, benzonitrile, pyridine, nitroethane, wherein the rubber composition is at least one selected from the group consisting of benzyl alchol, methoxy ethanol and formamide.
  10. 청구항 8에 있어서, The method of claim 8,
    상기 비극성 용매는 헥산, 벤젠, 톨루엔, 디에틸 에터, 클로로포름, 에틸아세테이트, 디클로로메탄, 시클로헥산, 테트라클로로메탄, 이소-옥탄(iso-octane), 자일렌(xylene), 부틸 에터(butyl ether), 이소프로필 에터(isopropyl ether) 및 에틸렌 클로라이드로 이루어진 군으로부터 선택된 1종 이상인 것인 고무 조성물.The nonpolar solvent is selected from the group consisting of hexane, benzene, toluene, diethyl ether, chloroform, ethyl acetate, dichloromethane, cyclohexane, tetrachloromethane, iso-octane, xylene, butyl ether, , Isopropyl ether, and ethylene chloride.
  11. 변성 공액디엔계 중합체; 충진제; 및 가황제를 포함하는 고무 조성물로,A modified conjugated diene polymer; Filler; And a vulcanizing agent,
    하기 수학식 1을 만족하는 것이며,Satisfies the following expression (1)
    상기 변성 공액디엔계 중합체는 순도가 90.0% 이상인 변성제로 변성된 것이고,The modified conjugated diene polymer is modified with a modifier having a purity of not less than 90.0%
    상기 변성제는 하기 화학식 1 또는 화학식 2로 표시되는 것인 고무 조성물:Wherein the modifier is represented by the following formula (1) or (2):
    [수학식 1][Equation 1]
    Figure PCTKR2018014366-appb-I000011
    Figure PCTKR2018014366-appb-I000011
    상기 수학식 1에서, X는 변성 공액디엔계 중합체의 변성률이고, In the above formula (1), X is the modifying rate of the modified conjugated diene polymer,
    A는 미변성 공액디엔계 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수(tan δ)로 0.140 내지 0.160의 실수 값을 가지며,A is a dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of a rubber composition containing an unmodified conjugated diene polymer and has a real value of 0.140 to 0.160,
    Y는 변성 공액디엔계 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수(tan δ)이고,Y is the dynamic viscoelastic loss coefficient (tan delta) of the rubber composition containing the modified conjugated diene polymer at 60 DEG C,
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2018014366-appb-I000012
    Figure PCTKR2018014366-appb-I000012
    [화학식 2](2)
    Figure PCTKR2018014366-appb-I000013
    Figure PCTKR2018014366-appb-I000013
    상기 화학식 1 또는 화학식 2에서, In the above formula (1) or (2)
    Z1 및 Z2는 서로 독립적으로 실란기, N,N-2 치환 아미노페닐기, 이민기 또는 고리형 아미노기이고,Z 1 and Z 2 are each independently a silane group, an N, N-2-substituted amino-phenyl group, an imine group or a cyclic amino group,
    R1 및 R7은 서로 독립적으로 단일결합 또는 2가의 유기기이며, R 1 and R 7 are, independently of each other, a single bond or a divalent organic group,
    R3 및 R6는 서로 독립적으로 단일결합 또는 2가의 유기기이거나; 각각 R4 또는 R5 및 R8 또는 R9와 연결되어 고리를 형성하는 3가 유기기이고, R 3 and R 6 are, independently of each other, a single bond or a divalent organic group; Are each a trivalent organic group connected to R 4 or R 5 and R 8 or R 9 to form a ring,
    R4 및 R8은 서로 독립적으로 1가의 유기기이거나; 또는 각각 R3 또는 R5 및 R6 또는 R9와 연결되어 고리를 형성하는 2가 유기기일 수 있고, R 4 and R 8 are each independently a monovalent organic group; Or a divalent organic group which is linked to R 3 or R 5 and R 6 or R 9 , respectively, to form a ring,
    R5는 1가의 유기기이거나; 또는 R3 또는 R4와 연결되어 고리를 형성하는 2가 유기기이다.R 5 is a monovalent organic group; Or R < 3 > or R < 4 > to form a ring.
  12. 탄화수소 용매 중에서 촉매 조성물의 존재 하에, 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계;Polymerizing a conjugated diene monomer in the presence of a catalyst composition in a hydrocarbon solvent to produce an active polymer;
    상기 활성 중합체의 일 말단을 순도가 90.0% 이상인 변성제로 변성시켜 변성 공액디엔계 중합체를 제조하는 단계; 및Modifying one end of the active polymer with a modifier having a purity of 90.0% or more to prepare a modified conjugated diene polymer; And
    상기 변성 공액디엔계 중합체; 충진제; 및 가황제를 배합하는 단계;를 포함하는 고무 조성물의 제조방법.The modified conjugated diene polymer; Filler; And a vulcanizing agent.
  13. 청구항 12에 있어서, The method of claim 12,
    상기 고무 조성물은 하기 수학식 1을 만족하는 것인 고무 조성물의 제조방법:Wherein the rubber composition satisfies the following formula (1): " (1) "
    [수학식 1][Equation 1]
    Figure PCTKR2018014366-appb-I000014
    Figure PCTKR2018014366-appb-I000014
    상기 수학식 1에서, X는 변성 공액디엔계 중합체의 변성률이고, In the above formula (1), X is the modifying rate of the modified conjugated diene polymer,
    A는 미변성 공액디엔계 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수(tan δ)로 0.147 내지 0.160의 실수 값을 가지며,A is a dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of a rubber composition containing an unmodified conjugated diene polymer and has a real value of 0.147 to 0.160,
    Y는 변성 공액디엔계 중합체가 포함된 고무 조성물의 60℃에서의 동적 점탄성 손실계수(tan δ)이다.Y is the dynamic viscoelastic loss coefficient (tan delta) at 60 DEG C of the rubber composition containing the modified conjugated diene polymer.
PCT/KR2018/014366 2017-11-21 2018-11-21 Rubber composition WO2019103457A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020505242A JP6955084B2 (en) 2017-11-21 2018-11-21 Rubber composition
CN201880052388.6A CN111051361B (en) 2017-11-21 2018-11-21 Rubber composition
EP18880827.3A EP3715386A4 (en) 2017-11-21 2018-11-21 Rubber composition
US16/637,925 US11680153B2 (en) 2017-11-21 2018-11-21 Rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170155606A KR102295642B1 (en) 2017-11-21 2017-11-21 Rubber composition
KR10-2017-0155606 2017-11-21

Publications (1)

Publication Number Publication Date
WO2019103457A1 true WO2019103457A1 (en) 2019-05-31

Family

ID=66631086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014366 WO2019103457A1 (en) 2017-11-21 2018-11-21 Rubber composition

Country Status (6)

Country Link
US (1) US11680153B2 (en)
EP (1) EP3715386A4 (en)
JP (1) JP6955084B2 (en)
KR (1) KR102295642B1 (en)
CN (1) CN111051361B (en)
WO (1) WO2019103457A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220066816A (en) * 2020-11-16 2022-05-24 주식회사 엘지화학 Modified conjugated diene-based polymer and rubber composition comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034659A1 (en) * 1999-11-12 2001-05-17 Bridgestone Corporation Modified polymers prepared with lanthanide-based catalysts
JP2005232351A (en) * 2004-02-20 2005-09-02 Bridgestone Corp Rubber composition and tire using it
JP2009287020A (en) * 2008-04-30 2009-12-10 Bridgestone Corp Rubber composition and tire using the same
JP2012172077A (en) * 2011-02-22 2012-09-10 Asahi Kasei Chemicals Corp Modified conjugated diene copolymer, method of producing the same, and modified conjugated diene copolymer composition
KR20160084287A (en) * 2015-01-05 2016-07-13 주식회사 엘지화학 Modified Conjugated Diene Polymer, Modified Rubber Composition And Method For Preparing the Modified Conjugated Diene Polymer

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977281B1 (en) 1999-11-12 2005-12-20 Bridgestone Corporation Modified polymers prepared with lanthanide-based catalysts
US20110112212A1 (en) * 2007-12-07 2011-05-12 Bridgestone Corporation Tire
EP2257591B1 (en) 2008-03-15 2014-12-17 Bridgestone Corporation Functionalized polymers and initiators for making same
JP5436051B2 (en) 2009-05-29 2014-03-05 株式会社ブリヂストン Rubber composition and tire using the same
JP5646947B2 (en) * 2010-10-19 2014-12-24 旭化成ケミカルズ株式会社 Method for producing branched modified conjugated diene polymer and branched modified conjugated diene polymer composition
WO2013031599A1 (en) 2011-08-26 2013-03-07 旭化成ケミカルズ株式会社 Method for producing denatured conjugated diene polymer, denatured conjugated diene polymer, denatured conjugated diene polymer composition, rubber composition, and tire
TWI432465B (en) * 2011-12-16 2014-04-01 Chi Mei Corp Modified high cis conjugated diene copolymer and manufacturing method of the same
KR101455508B1 (en) * 2012-02-06 2014-10-27 주식회사 엘지화학 Modified Conjugated Diene Polymer And Method For Preparing The Same
JP6204646B2 (en) 2012-09-19 2017-09-27 旭化成株式会社 Process for producing modified conjugated diene polymer, modified conjugated diene polymer, and modified conjugated diene polymer composition
KR101310868B1 (en) 2013-02-26 2013-10-14 금호석유화학 주식회사 End-modified diene polymer with alkoxysillane derivatives
KR20150131465A (en) 2014-05-14 2015-11-25 한화토탈 주식회사 Modified conjugated diene polymer and Composition comprising the same
JP2016014122A (en) * 2014-07-03 2016-01-28 旭化成ケミカルズ株式会社 Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, modified conjugated diene-based polymer composition, and tire
US9090730B1 (en) 2014-08-19 2015-07-28 The Goodyear Tire & Rubber Company Rubber composition and pneumatic tire
RU2671351C2 (en) * 2014-08-20 2018-10-30 Бриджстоун Корпорейшн Method for manufacturing conjugated diene polymer with modified end, conjugated diene polymer with modified end, rubber composition and tyre
JP2016060803A (en) * 2014-09-17 2016-04-25 東洋ゴム工業株式会社 Manufacturing method of modified diene rubber
KR101745763B1 (en) 2014-11-26 2017-06-12 주식회사 엘지화학 Modified Conjugated Diene Polymer comprising amine, Modified Rubber Composition And Method For Preparing the Modified Conjugated Diene Polymer
JP2017002189A (en) 2015-06-10 2017-01-05 旭化成株式会社 Modified diene polymer composition, rubber composition for side wall and tire
KR102010458B1 (en) 2015-12-28 2019-10-21 주식회사 엘지화학 Modifying agent, preparation method of modified conjugated diene polymer using the modifying agent and modified conjugated diene polymer
JP7014489B2 (en) * 2016-05-19 2022-02-01 株式会社ブリヂストン Process for producing functionalized polymers
WO2018008911A1 (en) * 2016-07-04 2018-01-11 주식회사 엘지화학 Modifier, modified conjugated diene polymer, and rubber composition comprising same
KR101997596B1 (en) * 2016-07-04 2019-07-08 주식회사 엘지화학 Modifing agent, modified conjugated diene polymer and rubber composition comprising the same
CN106167624B (en) * 2016-08-05 2018-11-27 浙江程路沥青技术有限公司 It is a kind of containing modified styrene-butadiene-styrene block copolymer road asphalt modifier and preparation method thereof
KR102122470B1 (en) 2016-12-08 2020-06-12 주식회사 엘지화학 Modified agent and modified conjugated diene polymer comprising functional group derived from the same
WO2018105920A1 (en) * 2016-12-08 2018-06-14 주식회사 엘지화학 Modifier and modified conjugated diene-based polymer containing functional group derived therefrom
EP3363804A1 (en) * 2017-02-20 2018-08-22 Trinseo Europe GmbH Metallated benzylsilanes and their use as polymerization initiators
KR20190038344A (en) 2017-09-29 2019-04-08 주식회사 엘지화학 Rubber composition
WO2019066396A2 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Rubber composition
KR102173756B1 (en) 2017-10-18 2020-11-04 주식회사 엘지화학 Method for preparing modified conjugated diene polymer
KR102132755B1 (en) 2017-10-25 2020-07-13 주식회사 엘지화학 Modified conjugated diene polymer and preparation method thereof
KR102193437B1 (en) 2017-10-30 2020-12-21 주식회사 엘지화학 Method of preparation for catalyst for the polymerization of conjugated diene, catalyst prerared by the same method and method of preparation for modified conjugated diene polymer using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034659A1 (en) * 1999-11-12 2001-05-17 Bridgestone Corporation Modified polymers prepared with lanthanide-based catalysts
JP2005232351A (en) * 2004-02-20 2005-09-02 Bridgestone Corp Rubber composition and tire using it
JP2009287020A (en) * 2008-04-30 2009-12-10 Bridgestone Corp Rubber composition and tire using the same
JP2012172077A (en) * 2011-02-22 2012-09-10 Asahi Kasei Chemicals Corp Modified conjugated diene copolymer, method of producing the same, and modified conjugated diene copolymer composition
JP5698560B2 (en) 2011-02-22 2015-04-08 旭化成ケミカルズ株式会社 Modified conjugated diene copolymer, process for producing the same, and modified conjugated diene copolymer composition
KR20160084287A (en) * 2015-01-05 2016-07-13 주식회사 엘지화학 Modified Conjugated Diene Polymer, Modified Rubber Composition And Method For Preparing the Modified Conjugated Diene Polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3715386A4

Also Published As

Publication number Publication date
EP3715386A4 (en) 2020-10-21
JP2020529496A (en) 2020-10-08
CN111051361A (en) 2020-04-21
JP6955084B2 (en) 2021-10-27
EP3715386A1 (en) 2020-09-30
KR102295642B1 (en) 2021-08-31
KR20190058021A (en) 2019-05-29
CN111051361B (en) 2023-06-20
US11680153B2 (en) 2023-06-20
US20200172698A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
WO2018128288A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2019078459A1 (en) Method for preparing modified conjugated diene-based polymer
WO2020013638A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2018128290A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2019216636A1 (en) Modified conjugated diene polymer and rubber composition comprising same
WO2017191921A1 (en) Modifying agent, and modified conjugated diene-based polymer produced using same
WO2019066396A2 (en) Rubber composition
WO2020130740A1 (en) Modified conjugated diene-based polymer and rubber composition comprising same
WO2019088634A1 (en) Method for preparing catalyst for polymerizing conjugated dienes, catalyst, and method for preparing conjugated diene-based polymer by using same
WO2018128291A1 (en) Modified conjugated diene polymer and rubber composition comprising same
WO2019103383A1 (en) Modified conjugated diene-based polymer and preparation method therefor
WO2019083092A1 (en) Method for preparing conjugated diene-based polymer by continuous polymerization
WO2017188641A2 (en) Modified conjugated diene-based polymer and method for preparing same
WO2019083173A1 (en) Modified conjugated diene-based polymer and preparation method therefor
WO2017061831A1 (en) Modified conjugated diene-based polymer, method for preparing same, and rubber composition containing same
WO2019103457A1 (en) Rubber composition
WO2018128330A1 (en) Amine compound, modified conjugated diene polymer comprising functional group derived from same, and method for producing modified conjugated diene polymer
WO2021107434A1 (en) Modifying agent, and modified conjugated diene polymer produced using same
WO2021086039A1 (en) Modifier, modified conjugated diene-based polymer, and preparation method therefor
WO2021010718A1 (en) Modified conjugated diene-based polymer, method for producing same, and rubber composition comprising same
WO2018008911A1 (en) Modifier, modified conjugated diene polymer, and rubber composition comprising same
KR20190038344A (en) Rubber composition
WO2018008912A1 (en) Denaturant, modified conjugated diene-based polymer, and rubber composition including same
WO2019093579A1 (en) Method for preparing conjugated diene-based polymer by continuous polymerization
WO2020130738A1 (en) Modified conjugated diene-based polymer and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505242

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018880827

Country of ref document: EP

Effective date: 20200622