WO2019103251A1 - System and method for automatically detecting ultrasonic waves from power distribution facility - Google Patents

System and method for automatically detecting ultrasonic waves from power distribution facility Download PDF

Info

Publication number
WO2019103251A1
WO2019103251A1 PCT/KR2018/004425 KR2018004425W WO2019103251A1 WO 2019103251 A1 WO2019103251 A1 WO 2019103251A1 KR 2018004425 W KR2018004425 W KR 2018004425W WO 2019103251 A1 WO2019103251 A1 WO 2019103251A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
pulse
data
time difference
diagnosis
Prior art date
Application number
PCT/KR2018/004425
Other languages
French (fr)
Korean (ko)
Inventor
박철호
김정채
남우성
박상서
오상배
황용주
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2019103251A1 publication Critical patent/WO2019103251A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1209Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using acoustic measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits

Definitions

  • the present invention relates to a system and method for detecting ultrasound waves in a power distribution system, and more particularly, to a method and apparatus for detecting ultrasound waves in a power plant by ultrasonically diagnosing power equipment, And more particularly, to a system and method for automatic detection of ultrasound waves.
  • the ultrasonic diagnostic apparatus shown in FIG. 1 is an apparatus for detecting an abnormality of the electric power facility by detecting the ultrasonic wave generated by the discharge, and in particular, to diagnose the fault phenomenon such as the bushing, It is an effective scientific diagnosis equipment.
  • the diagnosis method is a method of continuously listening to the voice output of the diagnostic equipment and judging whether or not it is defective, both at home and abroad.
  • the diagnosis reliability is lowered due to the occurrence of a case, and the progress of the related technology is limited due to the occurrence of a tinnitus phenomenon and the avoidance of diagnosis due to the continuous listening of white noise for a long time.
  • the present invention has been conceived to solve the problems as described above, and it is an object of the present invention to provide an ultrasonic diagnostic apparatus and a method of controlling the same,
  • the present invention provides a system and method for automatic detection of a distribution facility ultrasonic wave, which determines whether or not there is a fault in a power facility, and automatically stores GPS location information and ultrasonic waveform data of defective locations.
  • an ultrasonic diagnostic apparatus comprising: an ultrasonic detector for detecting an ultrasonic wave to generate a sound output; An automatic analysis algorithm module is installed in order to analyze the sound waveform made up of WAV file by receiving the audio output as an AUX terminal input, and automatically detects the presence or absence of ultrasonic discharge caused by defective equipment during diagnosis and displays an alarm to the diagnosis person A communication terminal; And a DB for automatically storing the location information and the failure judgment ultrasonic extraction sound data received from the connected GPS module when the fault is determined as the alarm, the communication terminal loads the WAV file, extracts the predetermined period data, In the De-noised data, the time difference? T of the partial discharge ultrasound pulse is extracted and the?
  • T cumulative histogram is analyzed by the wavelet waveform transformation.
  • the time difference? T of the analyzed pulse is plotted on the ordinate axis and the pulse interval is plotted on the abscissa axis. It is judged whether or not the electric power facilities are bad by cumulatively representing the graph and accumulating and analyzing the frequency of occurrence intervals.
  • the present invention includes a first step of analyzing only a pulse corresponding to a partial discharge high frequency sound; A second step of extracting a waveform having a predetermined time interval for analyzing the waveform of the pulse and displaying the waveform with a data time graph; A third step of removing an existing background white noise by applying a wavelet de-noising technique to the extracted two-period data; A fourth step of extracting a time difference?
  • the ⁇ t accumulated histogram analysis in the above step 5 is based on a predetermined time and performs a bad alarm process when the sum of the number of pulses having a certain pulse time difference exceeds 60% based on the sum of the counts of the analyzed pulses.
  • the final failure judgment is treated as a final alarm when more than 60% of bad alarms occur more than 5 times in a row.
  • the continuous alarm criterion can be adjusted by the user.
  • a wide - range diagnosis stage that performs automatic ultrasound diagnosis for the processing and distribution facilities while driving at a speed of less than a constant speed to the vehicle and displays the pole where the fault location is located through normal / abnormal judgment; And a precise diagnosis step of analyzing the generated signal when the 360-degree diagnosis is performed on the electric pole after getting off the vehicle, and displaying on the screen what kind of equipment is defective.
  • the present invention as described above can greatly improve the diagnostic reliability and efficiency by blocking the human error due to manual diagnosis and empirical judgment in the conventional ultrasonic diagnosis of electric power facilities and enabling systematic diagnosis using the detection algorithm .
  • the reliability of electric power supply can be improved by prevention of power outage due to facility failure by making it possible to clearly and efficiently identify and check whether or not the electric power facility operating in a high voltage environment is bad.
  • the present invention can solve the inconvenience of continuous audible output signal, which is indispensable in the ultrasound diagnosis, and dramatically improve the diagnostic environment through the visual alarm expression function in the case of abnormality in the power equipment, thereby contributing to the development of the related field technology.
  • the present invention can realize a diagnostic environment that can be used universally without expert knowledge by a simple operation through the present invention, in which a power equipment ultrasound diagnostic environment dependent on the experience and know-how of the existing diagnoser is implemented.
  • the present invention can be easily connected to an ultrasonic diagnostic apparatus that is currently in use in the field through an AUX terminal without purchasing expensive equipment, so that an automatic detection algorithm function, an abnormal signal automatic storage function, It is possible to drastically reduce the cost of purchasing diagnostic equipment.
  • FIG. 1 is a configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an anomaly due to deterioration of a power facility according to an embodiment of the present invention.
  • FIGS. 3 and 4 illustrate conventional ultrasound diagnosis of domestic and overseas power facilities.
  • Figure 5 compares the conventional method with the improved method.
  • FIG. 6 is a block diagram of a power distribution system ultrasound automatic detection system according to an embodiment of the present invention.
  • FIG. 7 is a diagram of an automatic detection algorithm of an ultrasonic wave according to an embodiment of the present invention.
  • FIG. 8 is a main function diagram of the automatic ultrasonic detection algorithm according to an embodiment of the present invention.
  • Figure 9 is a wide-area and fine diagnostic procedure in accordance with an embodiment of the present invention.
  • a power distribution system ultrasonic wave automatic detection system 500 includes an AUX (auxiliary) terminal of a communication terminal 520 equipped with an automatic detection algorithm for sound output of a conventional ultrasonic diagnostic apparatus 130, ) Input, the diagnosis algorithm module 540 of the communication terminal 520, not the method of directly hearing and judging the failure of the electric power facility by the processing distribution line such as the agitator, the apparatus, the connection point of the electric power facility, (Global Positioning System) position information and ultrasonic waveform (Wav) data in the DB 550 automatically.
  • the communication terminal 520 may be a personal computer (PC) such as a tablet or a notebook computer.
  • the conventional ultrasonic detector is configured to analyze the sound waveform by receiving the ultrasonic detector sound output from the AUX terminal of the communication terminal 2, and the automatic analysis algorithm module 540 is installed in the communication terminal to detect ultrasonic waves Automatically judges the occurrence or abnormality and displays an alarm to the diagnosis person.
  • the position information received from the connected GPS module 530 and the failure determination ultrasonic extraction sound data are automatically stored in the DB of the communication terminal 520 when the failure is determined.
  • the high frequency sound (or ultrasonic sound) of the faulty power facility to be analyzed in the present invention generates a pulse at a predetermined time interval different from a general environment noise high frequency sound.
  • an ultrasonic pulse analysis signal analysis algorithm is implemented.
  • module means a unit for processing at least one function or operation, and may be implemented by hardware, software, or a combination of hardware and software.
  • DSP digital signal processor
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor a controller
  • microprocessor and the like, which are designed to perform the above- , Other electronic units, or a combination thereof.
  • software implementation it may be implemented as a module that performs the above-described functions.
  • the software may be stored in a memory unit and executed by a processor.
  • the memory unit or processor may employ various means well known to those skilled in the art.
  • the analysis algorithm is implemented through a total of five steps.
  • step S710 the WAV file 810 is loaded in step S710.
  • Step S720 In order to analyze the pulse time difference, it is necessary to analyze only the pulse corresponding to the partial discharge high frequency sound.
  • the output of the ultrasonic diagnostic equipment is received through the AUX terminal, and the ultrasonic original waveform is displayed as Load and Original Data Time Graph (Step S720).
  • the 2-period data 820 is extracted in step S711.
  • a waveform having a time interval of 2 cycles for waveform analysis is extracted and prepared for use as a two-period data time graph display and wavelet de-noising data (step S711-1).
  • wavelet de-noising is performed in the next step S713.
  • the wavelet de-noising technique is applied to the extracted 2-period pulse data to remove the background noise. (Denoising) Data Time Graph (step S713-1).
  • step S713 it is confirmed whether the extracted two-period data is the last data (step S715). If it is not the last data in step S715, steps S711 to S715 are performed, and if it is the last data, the two-period data extraction ends (step S717).
  • step S730 data analysis is performed after De-noising. That is, the time difference? T of the partial discharge ultrasound pulse is extracted from the data subjected to the wavelet de-noising and the extracted pulse data Graph (840) is displayed.
  • step S740 the time difference? T of the partial discharge ultrasonic pulses is accumulated, and? T cumulative histogram analysis is performed (step S740).
  • the time difference ⁇ t of the pulse analyzed above is cumulatively expressed in the graph 850 indicating the number of occurrences of the vertical axis and the pulse interval of the horizontal axis and an algorithm for analyzing the cumulative frequency of occurrence intervals is used to determine whether or not the power equipment is defective Steps S750, S760).
  • the basic raw data is analyzed based on the real-time ultrasonic signal for 2 seconds, and based on the total number of pulses analyzed, the number of pulses in which the pulse time difference of 6 to 10 ms, 15 to 19 ms, 21 to 25 ms, If the sum exceeds 60%, a defective alarm process is performed (step S770).
  • the final failure judgment is treated as a final alarm when more than 60% of bad alarms occur more than 5 times in a row.
  • the continuous alarm criterion can be adjusted by the user.
  • the above time difference is derived from a lot of field data and field verification.
  • the wide-area diagnosis is a diagnostic method for performing automatic ultrasound diagnosis on a processing / distribution facility while moving at a speed of less than 30 km to a vehicle, and displaying a pole where a faulty location is located through normal / abnormal judgment (steps S910, S920, S930, S940) .
  • the detailed diagnosis refers to a method of displaying a display on a screen of which equipment is defective by analyzing an occurrence signal when a 360-degree diagnosis is performed on the corresponding poles after getting off the vehicle (steps S950, S960, S970, and S980).
  • the present invention distinguishes from various kinds of noise by an automatic detection algorithm when diagnosing a vehicle (wide-area diagnosis) through two-step automatic detection, and systematically displays an alarm to a diagnostic
  • an automatic detection algorithm when diagnosing a vehicle (wide-area diagnosis) through two-step automatic detection, and systematically displays an alarm to a diagnostic
  • the proposed invention has a better effect than the previous workforce hit ratio, as a result of comparing the human hit ratio with the hit ratio of the present invention.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied in the form of a program form which may be performed via a variety of computing means, and recorded in a computer-readable medium.
  • the computer-readable medium may include a program (command) code, a data file, a data structure, and the like, alone or in combination.
  • the program (command) codes recorded on the medium may be those specially designed and constructed for the present invention or may be those known to those skilled in the art of computer software.
  • Examples of computer-readable media include magnetic media such as hard disks, floppy disks and magnetic tape, optical media such as CD-ROMs, DVDs, Blu-ray and the like, and ROMs, RAM), flash memory, and the like, which are specifically configured to store and execute program (instruction) codes.
  • examples of program (command) codes include machine language codes such as those produced by a compiler, as well as high-level language codes that can be executed by a computer using an interpreter or the like.
  • the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.

Abstract

Provided are a system and method for automatically detecting ultrasonic waves from a power distribution facility. The system for automatically detecting ultrasonic waves from a power distribution facility comprises: an ultrasonic wave detector which detects ultrasonic waves and generates a voice output; a communication terminal which determines whether an ultrasonic discharge due to faulty equipment has occurred and determines whether an abnormality is present; and a DB which, when a fault is determined, automatically stores location information received from a connected GPS module, and ultrasonic extraction sound data for the fault determination.

Description

배전설비 초음파 자동검출 시스템 및 방법Ultrasonic automatic detection system and method for distribution equipment
본 발명은 배전설비 초음파 자동검출 시스템 및 방법에 관한 것으로서, 보다 상세하게는 전력설비 초음파 진단을 함에 있어, 기존 인력에 의해 경험적으로 검출여부를 판단하는 방법을 개선하여 자동 판단 알고리즘을 시스템에 내장하여 초음파를 자동 검출하는 배전설비 초음파 자동검출 시스템 및 방법에 관한 것이다.More particularly, the present invention relates to a system and method for detecting ultrasound waves in a power distribution system, and more particularly, to a method and apparatus for detecting ultrasound waves in a power plant by ultrasonically diagnosing power equipment, And more particularly, to a system and method for automatic detection of ultrasound waves.
일반적으로 전력설비는 고전압 환경에서 사용되어 여러 가지 열화현상(환경적, 기계적, 열적, 전기적 열화 등)이 전기적 이상으로 나타난다. 금구의 균열이나 부식 등 일부를 제외하고 설비에 열화가 진행되면 방전이나 누설전류등, 도 2와 같은 형태로 여러 가지 징후가 나타나게 된다.Generally, electric power facilities are used in high voltage environment and various deterioration phenomena (environmental, mechanical, thermal, electrical deterioration, etc.) appear as electrical anomalies. Except for some cracks or corrosion of the metal, deterioration of the equipment leads to various indications such as discharge and leakage current, as shown in Fig.
이 중 도 1과 같은 초음파 진단장비는 방전에 의해 발생되는 초음파를 검출하여 전력설비의 이상을 사전에 검출하는 장비이며, 특히 애자류, 기기류의 부싱, 접속개소, 외물접촉 등의 불량현상 진단에 효과적인 과학화 진단장비이다.Among these, the ultrasonic diagnostic apparatus shown in FIG. 1 is an apparatus for detecting an abnormality of the electric power facility by detecting the ultrasonic wave generated by the discharge, and in particular, to diagnose the fault phenomenon such as the bushing, It is an effective scientific diagnosis equipment.
현재 국내를 비롯한 해외 유수 전력사들은 이 같은 초음파 진단장비를 활용하여 전력설비 열화를 사전색출 및 조치하여 설비고장을 예방함으로써 안정적인 전력공급을 구현하고 있다.Currently, domestic and other overseas power companies utilize such ultrasonic diagnostic equipment to pre-detect and measure the deterioration of electric power facilities to prevent equipment failure, thus realizing stable electric power supply.
하지만, 국내외를 막론하고 그 진단방법은 도 3 및 도 4와 같이 진단장비의 음성출력을 진단자가 지속적으로 청취하고 불량 여부를 판정하는 방법으로 이루어지고 있어 인력진단에 따른 수준차 발생, 오/부적출 사례 발생 등으로 진단신뢰도가 저하되고, 또한, 장시간 White Noise 지속청취에 따른 이명 현상 발생 및 진단기피 등으로 관련기술의 진보가 제약받는 상황에 있는 실정이다.3 and 4, the diagnosis method is a method of continuously listening to the voice output of the diagnostic equipment and judging whether or not it is defective, both at home and abroad. The diagnosis reliability is lowered due to the occurrence of a case, and the progress of the related technology is limited due to the occurrence of a tinnitus phenomenon and the avoidance of diagnosis due to the continuous listening of white noise for a long time.
특히 전력설비 고장예방을 위해 표 1과 같이 매년 많은 인력과 예산을 투입하여 수백만 개의 특고압 전주를 차량으로 초음파 진단을 수행함에도 기자재 열화에 의한 고장발생 및 점유율은 유사한 상황이어서 기존 초음파 진단시의 수동 진단에 따른 불편함과 저 신뢰도는 많은 개선이 필요한 시점이다.In order to prevent power unit malfunctions, as shown in Table 1, even though a lot of manpower and budget are invested every year to perform ultrasonic diagnosis of millions of extra-high voltage electric poles by vehicles, the malfunction due to the deterioration of equipment and the occupancy rate are similar, The inconvenience and low reliability associated with diagnosis is a time when many improvements are needed.
구분division 전체고장(건수)Total failure (number) 기자재고장(건수)Equipment failure (number of cases) 진단비용(억원)Diagnostic Cost (KRW in billions)
일시Pause 순간Moment system 일시Pause 순간Moment system 직영Direct management 용역service system
2014년year 2014 606606 3,5583,558 4,1644,164 198198 410410 606606 4444 1717 6161
2015년2015 544544 3,3473,347 3,8913,891 189189 345345 544544 2626 4141 6767
2016년2016 520520 3,5183,518 4,0384,038 173173 367367 520520 2020 3939 5959
평균Average 557557 3,4743,474 4,0314,031 187187 374374 557557 3030 3232 6262
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 기존 초음파 진단장비의 소리 출력을 자동 검출 알고리즘이 탑재된 태블릿 PC AUX를 통해 입력하여 전력설비의 애자류, 기기류, 접속개소 등과 같은 가공 배전선로 전력설비의 불량 유무를 판단하고 불량개소 GPS위치 정보 및 초음파 파형 데이터를 자동으로 저장해주는 배전설비 초음파 자동검출 시스템 및 방법을 제공하는 데 목적이 있다.SUMMARY OF THE INVENTION The present invention has been conceived to solve the problems as described above, and it is an object of the present invention to provide an ultrasonic diagnostic apparatus and a method of controlling the same, The present invention provides a system and method for automatic detection of a distribution facility ultrasonic wave, which determines whether or not there is a fault in a power facility, and automatically stores GPS location information and ultrasonic waveform data of defective locations.
상기 과제를 해결하기 위하여 본 발명은 초음파를 검출하여 음성 출력을 생성하는 초음파 검출기; 상기 음성 출력을 AUX 단자 입력으로 받아 WAV파일로 이루어진 소리 파형을 분석하기 위해 자동 분석 알고리즘 모듈을 탑재하여 진단 중 불량 기자재에 의한 초음파 방전 발생 유무 및 이상을 자동으로 판단하여 진단자에게 알람을 표시해 주는 통신 단말기; 상기 알람으로 불량 판단시 연결된 GPS 모듈에서 받은 위치정보와 불량 판단 초음파 적출음 Data를 자동으로 저장하는 DB;로 구성되되, 상기 통신 단말기는 상기 WAV파일을 Load하여, 일정 주기 데이터를 추출하고, 연속 웨이블렛 파형 변환을 통해, De-noising 된 Data에서 부분방전 초음파 펄스의 시간차 Δt를 추출하고 상기 Δt 누적 Histogram을 분석하는 데, 앞서 분석한 펄스의 시간차 Δt를 세로축은 발생횟수, 가로축은 펄스 간격을 나타내는 그래프에 누적 표현하고 발생 간격의 빈도수를 누적하여 분석하는 알고리즘을 적용하여 전력설비의 불량여부를 판단한다.According to an aspect of the present invention, there is provided an ultrasonic diagnostic apparatus comprising: an ultrasonic detector for detecting an ultrasonic wave to generate a sound output; An automatic analysis algorithm module is installed in order to analyze the sound waveform made up of WAV file by receiving the audio output as an AUX terminal input, and automatically detects the presence or absence of ultrasonic discharge caused by defective equipment during diagnosis and displays an alarm to the diagnosis person A communication terminal; And a DB for automatically storing the location information and the failure judgment ultrasonic extraction sound data received from the connected GPS module when the fault is determined as the alarm, the communication terminal loads the WAV file, extracts the predetermined period data, In the De-noised data, the time difference? T of the partial discharge ultrasound pulse is extracted and the? T cumulative histogram is analyzed by the wavelet waveform transformation. The time difference? T of the analyzed pulse is plotted on the ordinate axis and the pulse interval is plotted on the abscissa axis. It is judged whether or not the electric power facilities are bad by cumulatively representing the graph and accumulating and analyzing the frequency of occurrence intervals.
본 발명은 WAV파일을 Load하여 펄스 시간차를 분석하기 위해서 부분 방전 고주파음에 해당하는 펄스만을 가지고 분석하는 1단계; 상기 펄스의 파형 분석을 위한 일정 간격의 시간을 가지는 파형을 추출한 후 Data Time Graph로 표시하는 2단계; 상기 추출한 2주기 데이터에서 Wavelet De-noising 기법을 적용하여 기존 백그라운드 White Noise를 제거하는 3 단계; 상기 Wavelet De-noising을 거친 Data에서 부분방전 초음파 펄스의 시간차 Δt를 추출하는 4 단계; 상기 펄스의 시간차 Δt를 세로축은 발생횟수, 가로축은 펄스 간격을 나타내는 그래프에 누적 표현하고 발생 간격의 빈도수를 누적하여 분석하는 알고리즘을 적용하여 전력설비의 불량여부 판단을 시행하는 5 단계;를 포함한다.In order to analyze a pulse time difference by loading a WAV file, the present invention includes a first step of analyzing only a pulse corresponding to a partial discharge high frequency sound; A second step of extracting a waveform having a predetermined time interval for analyzing the waveform of the pulse and displaying the waveform with a data time graph; A third step of removing an existing background white noise by applying a wavelet de-noising technique to the extracted two-period data; A fourth step of extracting a time difference? T of the partial discharge ultrasonic pulse from the data through the wavelet de-noising; And a fifth step of cumulatively representing the time difference DELTA t of the pulse on the graph indicating the number of occurrences and the abscissa indicating the pulse interval on the vertical axis and executing an algorithm for accumulating and analyzing the frequency of occurrence intervals to determine whether the power facility is defective .
상기 5 단계의 Δt 누적된 Histogram 분석은, 일정 시간을 기반으로 분석하고 분석된 각각의 펄스의 횟수 총합을 기준으로 일정 펄스 시간차가 발생한 펄스 횟수 합이 60%를 넘을 경우 불량 알람 처리한다. 최종 불량 판정은 60%이상 넘는 불량 알람이 연속으로 5회 이상 발생시 최종 알람으로 처리한다. 연속 알람 기준은 사용자가 조정이 가능하다.The Δt accumulated histogram analysis in the above step 5 is based on a predetermined time and performs a bad alarm process when the sum of the number of pulses having a certain pulse time difference exceeds 60% based on the sum of the counts of the analyzed pulses. The final failure judgment is treated as a final alarm when more than 60% of bad alarms occur more than 5 times in a row. The continuous alarm criterion can be adjusted by the user.
차량으로 일정 속도 이하 속도로 주행하면서 가공 배전설비를 대상으로 자동 초음파 진단을 시행하고 정상/이상 판단을 통해 불량 개소가 위치한 전주를 표시해 주는 광역 진단 단계; 상기 차량 하차 후 상기 전주를 대상으로 360도 진단을 수행 시에 발생신호를 분석하여 어떤 기자재가 불량 인지를 화면에 표시해 주는 정밀 진단 단계;를 포함한다.A wide - range diagnosis stage that performs automatic ultrasound diagnosis for the processing and distribution facilities while driving at a speed of less than a constant speed to the vehicle and displays the pole where the fault location is located through normal / abnormal judgment; And a precise diagnosis step of analyzing the generated signal when the 360-degree diagnosis is performed on the electric pole after getting off the vehicle, and displaying on the screen what kind of equipment is defective.
상기와 같이 이루어지는 본 발명은 기존의 전력설비 초음파 진단시 수동진단 및 경험적 판단에 따른 인적오류를 차단하고 검출 알고리즘을 활용하여 시스템적으로 진단을 가능하게 함으로써 진단 신뢰도와 효율을 획기적으로 향상시킬 수 있다.The present invention as described above can greatly improve the diagnostic reliability and efficiency by blocking the human error due to manual diagnosis and empirical judgment in the conventional ultrasonic diagnosis of electric power facilities and enabling systematic diagnosis using the detection algorithm .
또한, 본 발명은 고전압 환경에서 운영되는 전력설비의 불량 여부를 보다 명확하고 효율적으로 사전색출 및 확인 가능하게 함으로써 설비불량에 의한 정전예방을 통한 전력공급 신뢰도 향상이 기대된다.Further, it is expected that the reliability of electric power supply can be improved by prevention of power outage due to facility failure by making it possible to clearly and efficiently identify and check whether or not the electric power facility operating in a high voltage environment is bad.
또한, 본 발명은 초음파 진단시 필수적인 현행 음성출력 신호 지속청취의 불편함을 해소하고 전력설비 이상 검출시 시각적 알람표현 기능을 통해 진단환경을 획기적으로 개선하여 관련분야 기술 발전에 기여할 수 있다. In addition, the present invention can solve the inconvenience of continuous audible output signal, which is indispensable in the ultrasound diagnosis, and dramatically improve the diagnostic environment through the visual alarm expression function in the case of abnormality in the power equipment, thereby contributing to the development of the related field technology.
또한, 본 발명은 기존 진단자의 경험과 노하우의 의존한 전력설비 초음파 진단환경을 본 발명을 통해 간단한 조작으로 전문지식이 없이도 범용으로 사용 가능한 진단환경 구현이 가능하다.In addition, the present invention can realize a diagnostic environment that can be used universally without expert knowledge by a simple operation through the present invention, in which a power equipment ultrasound diagnostic environment dependent on the experience and know-how of the existing diagnoser is implemented.
또한, 본 발명은 현재 현장에서 기 활용중인 초음파 진단장비에 고가의 별도 장비구매 없이 AUX단자를 통해 손쉽게 연결되어 자동검출 알고리즘 기능, 이상신호 자동저장 기능, 예상 불량기자재 표현 기능 등의 활용이 가능하여 진단장비 구매비용의 획기적인 절감이 가능하다.In addition, the present invention can be easily connected to an ultrasonic diagnostic apparatus that is currently in use in the field through an AUX terminal without purchasing expensive equipment, so that an automatic detection algorithm function, an abnormal signal automatic storage function, It is possible to drastically reduce the cost of purchasing diagnostic equipment.
도 1은 종래 발명의 일실시예에 따라 초음파 진단장비 구성이다.1 is a configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
도 2는 종래 발명의 일실시예에 따라 전력설비 열화에 따른 이상현상을 보여주는 도면이다.2 is a diagram showing an anomaly due to deterioration of a power facility according to an embodiment of the present invention.
도 3 및 도 4는 종래의 국내외 전력설비 초음파 진단관련 그림이다.FIGS. 3 and 4 illustrate conventional ultrasound diagnosis of domestic and overseas power facilities.
도 5는 종래 방법과 개선 방법을 비교한 그림이다.Figure 5 compares the conventional method with the improved method.
도 6은 본 발명의 일실시예에 따라 배전설비 초음파 자동검출 시스템의 구성도이다.6 is a block diagram of a power distribution system ultrasound automatic detection system according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따라 초음파 자동검출 알고리즘 다이어그램이다.7 is a diagram of an automatic detection algorithm of an ultrasonic wave according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따라 초음파 자동검출 알고리즘 단계별 주요 기능도이다.FIG. 8 is a main function diagram of the automatic ultrasonic detection algorithm according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 따라 광역 및 정밀진단 절차이다.Figure 9 is a wide-area and fine diagnostic procedure in accordance with an embodiment of the present invention.
본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.For a better understanding of the present invention, a preferred embodiment of the present invention will be described with reference to the accompanying drawings. The embodiments of the present invention may be modified into various forms, and the scope of the present invention should not be construed as being limited to the embodiments described in detail below. The present embodiments are provided to enable those skilled in the art to more fully understand the present invention. Therefore, the shapes and the like of the elements in the drawings can be exaggeratedly expressed to emphasize a clearer description. It should be noted that in the drawings, the same members are denoted by the same reference numerals. Further, detailed descriptions of well-known functions and configurations that may be unnecessarily obscured by the gist of the present invention are omitted.
도 5와 도 6에 도시된 바와 같이 본 발명에 따른 배전설비 초음파 자동검출 시스템(500)은 기존 초음파 진단장비(130)의 소리 출력을 자동 검출 알고리즘이 탑재된 통신 단말기(520)의 AUX(auxiliary) 입력을 활용하여 전력설비의 애자류, 기기류, 접속개소 등과 같은 가공 배전선로 전력설비의 불량을 진단자가 직접 듣고 판단하는 방법이 아닌 통신 단말기(520)의 분석 알고리즘 모듈(540)을 통해 불량유무를 판단하고 불량개소 GPS(Global Positioning System) 위치 정보 및 초음파 파형(Wav) 데이터를 DB(550)에 자동으로 저장해주는 방법이다. 통신 단말기(520)는 태블릿, 노트북 등 PC(Personal Computer)를 들 수 있다.5 and 6, a power distribution system ultrasonic wave automatic detection system 500 according to the present invention includes an AUX (auxiliary) terminal of a communication terminal 520 equipped with an automatic detection algorithm for sound output of a conventional ultrasonic diagnostic apparatus 130, ) Input, the diagnosis algorithm module 540 of the communication terminal 520, not the method of directly hearing and judging the failure of the electric power facility by the processing distribution line such as the agitator, the apparatus, the connection point of the electric power facility, (Global Positioning System) position information and ultrasonic waveform (Wav) data in the DB 550 automatically. The communication terminal 520 may be a personal computer (PC) such as a tablet or a notebook computer.
구체적으로 살펴보면, 기존 초음파 검출기 음성 출력을 통신 단말기(2)의 AUX 단자 입력을 받아 소리 파형을 분석하는 구성으로 통신 단말기 내부에 자동 분석 알고리즘 모듈(540)을 탑재하여 진단중 불량 기자재에 의한 초음파 방전 발생 유무 및 이상을 자동으로 판단하여 진단자에게 알람을 표시해 준다.Specifically, the conventional ultrasonic detector is configured to analyze the sound waveform by receiving the ultrasonic detector sound output from the AUX terminal of the communication terminal 2, and the automatic analysis algorithm module 540 is installed in the communication terminal to detect ultrasonic waves Automatically judges the occurrence or abnormality and displays an alarm to the diagnosis person.
또한, 불량 판단시 연결된 GPS 모듈(530)에서 받은 위치정보와 불량 판단 초음파 적출음 Data를 자동으로 통신 단말기(520)의 DB에 저장한다. The position information received from the connected GPS module 530 and the failure determination ultrasonic extraction sound data are automatically stored in the DB of the communication terminal 520 when the failure is determined.
본 발명에서 분석하고자 하는 전력설비 불량개소의 고주파음(또는 초음파음)은 일반적인 환경 Noise 고주파음과는 다르게 일정한 시간 간격을 가지고 펄스가 발생하게 된다. 이러한 일정한 시간 간격을 가지고 펄스가 발생하는 특징을 분석하여 본 발명에 따른 초음파 방전신호 분석 알고리즘을 구현하였다. The high frequency sound (or ultrasonic sound) of the faulty power facility to be analyzed in the present invention generates a pulse at a predetermined time interval different from a general environment noise high frequency sound. By analyzing the characteristics of generating pulses with such a constant time interval, an ultrasonic pulse analysis signal analysis algorithm according to the present invention is implemented.
여기서, 도시된 "~모듈" 의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 하드웨어 구현에 있어, 상술한 기능을 수행하기 위해 디자인된 ASIC(application specific integrated circuit), DSP(digital signal processing), PLD(programmable logic device), FPGA(field programmable gate array), 프로세서, 제어기, 마이크로프로세서, 다른 전자 유닛 또는 이들의 조합으로 구현될 수 있다. 소프트웨어 구현에 있어, 상술한 기능을 수행하는 모듈로 구현될 수 있다. 소프트웨어는 메모리 유닛에 저장될 수 있고, 프로세서에 의해 실행된다. 메모리 유닛이나 프로세서는 당업자에게 잘 알려진 다양한 수단을 채용할 수 있다.Here, the term " module " shown means a unit for processing at least one function or operation, and may be implemented by hardware, software, or a combination of hardware and software. (DSP), a programmable logic device (PLD), a field programmable gate array (FPGA), a processor, a controller, a microprocessor, and the like, which are designed to perform the above- , Other electronic units, or a combination thereof. In software implementation, it may be implemented as a module that performs the above-described functions. The software may be stored in a memory unit and executed by a processor. The memory unit or processor may employ various means well known to those skilled in the art.
이하 도 7과 도 8과 같이 총 5단계에 거쳐 분석 알고리즘을 구현하였다.As shown in FIGS. 7 and 8, the analysis algorithm is implemented through a total of five steps.
먼저 단계 S710로 WAV파일(810)을 Load한다.First, the WAV file 810 is loaded in step S710.
우선 펄스 시간차를 분석하기 위해서는 부분 방전 고주파음에 해당하는 펄스만을 가지고 분석을 해야 한다. 초음파 진단장비 출력을 AUX단자를 통해 받아 초음파 원본 파형을 Load 및 Original Data Time Graph로 표시한다(단계 S720).First, in order to analyze the pulse time difference, it is necessary to analyze only the pulse corresponding to the partial discharge high frequency sound. The output of the ultrasonic diagnostic equipment is received through the AUX terminal, and the ultrasonic original waveform is displayed as Load and Original Data Time Graph (Step S720).
단계 S711로 2주기 데이터(820)를 추출한다.The 2-period data 820 is extracted in step S711.
즉 파형 분석을 위한 일정 간격(2Cycle)의 시간을 가지는 파형을 추출한 후 2주기 Data Time Graph 표시 및 Wavelet De-noising Data로 활용하기 위해 준비한다(단계 S711-1). 여기에서, 2 Cycle = 1/60[s] * 2 ≒ 33.2[ms]이다.That is, a waveform having a time interval of 2 cycles for waveform analysis is extracted and prepared for use as a two-period data time graph display and wavelet de-noising data (step S711-1). Here, 2 Cycle = 1/60 [s] * 2 = 33.2 [ms].
다음 단계 S713으로 Wavelet De-noising을 시행한다. 앞서 추출한 2주기 펄스 데이터에서 Wavelet De-noising 기법을 적용하여 기존 백그라운드 White Noise를 제거한다. 2주기 data(denoising) Data Time Graph로 표시한다(단계 S713-1).And then wavelet de-noising is performed in the next step S713. The wavelet de-noising technique is applied to the extracted 2-period pulse data to remove the background noise. (Denoising) Data Time Graph (step S713-1).
단계 S713이후, 추출한 2주기 데이터가 마지막 데이터인지를 확인한다(단계 S715). 단계 S715에서 마지막 데이터가 아니면 단계 S711 내지 S715가 수행되며, 마지막 데이터이면 2주기 데이터 추출이 종료된다(단계 S717).After step S713, it is confirmed whether the extracted two-period data is the last data (step S715). If it is not the last data in step S715, steps S711 to S715 are performed, and if it is the last data, the two-period data extraction ends (step S717).
그리고 단계 S730으로 De-noising 후 Data 분석을 한다. 즉 Wavelet De-noising을 거친 Data에서 부분방전 초음파 펄스의 시간차 Δt를 추출하고 추출된 펄스 데이터 Graph(840)를 표시한다.Then, in step S730, data analysis is performed after De-noising. That is, the time difference? T of the partial discharge ultrasound pulse is extracted from the data subjected to the wavelet de-noising and the extracted pulse data Graph (840) is displayed.
계속하여 부분방전 초음파 펄스의 시간차 Δt를 누적하고, Δt 누적 Histogram 분석을 한다(단계 S740). Subsequently, the time difference? T of the partial discharge ultrasonic pulses is accumulated, and? T cumulative histogram analysis is performed (step S740).
앞서 분석한 펄스의 시간차 Δt를 세로축은 발생횟수, 가로축은 펄스 간격을 나타내는 그래프(850)에 누적 표현하고 발생 간격의 빈도수를 누적하여 분석하는 알고리즘을 적용하여 전력설비의 불량여부 판단을 시행한다(단계 S750,S760). The time difference Δt of the pulse analyzed above is cumulatively expressed in the graph 850 indicating the number of occurrences of the vertical axis and the pulse interval of the horizontal axis and an algorithm for analyzing the cumulative frequency of occurrence intervals is used to determine whether or not the power equipment is defective Steps S750, S760).
기본 Raw-Data는 총 2초간의 실시간 초음파 신호를 기반으로 분석하고 분석된 각각의 펄스의 횟수 총합을 기준으로 6~10ms, 15~19ms, 21~25ms, 27~31ms의 펄스 시간차가 발생한 펄스 횟수 합이 60%를 넘을 경우 불량 알람 처리를 한다(단계 S770). The basic raw data is analyzed based on the real-time ultrasonic signal for 2 seconds, and based on the total number of pulses analyzed, the number of pulses in which the pulse time difference of 6 to 10 ms, 15 to 19 ms, 21 to 25 ms, If the sum exceeds 60%, a defective alarm process is performed (step S770).
최종 불량 판정은 60%이상 넘는 불량 알람이 연속으로 5회 이상 발생시 최종 알람으로 처리한다. 연속 알람 기준은 사용자가 조정이 가능하다. 앞서 정한 시간차는 많은 현장 누적 데이터 및 현장 검증을 통하여 도출하였다. The final failure judgment is treated as a final alarm when more than 60% of bad alarms occur more than 5 times in a row. The continuous alarm criterion can be adjusted by the user. The above time difference is derived from a lot of field data and field verification.
도 9와 표 2를 참고하여 다시 설명하면, 본 발명에 따른 자동검출 알고리즘 기능 구현 및 절차는 크게 광역 진단과 정밀 진단으로 나뉜다. Referring again to FIG. 9 and Table 2, the implementation and procedure of the automatic detection algorithm function according to the present invention are roughly divided into wide-area diagnosis and fine diagnosis.
광역 진단은 차량으로 30km이하 속도로 이동하면서 가공 배전설비를 대상으로 자동 초음파 진단을 시행하고 정상/이상 판단을 통해 불량 개소가 위치한 전주를 표시해 주는 진단 방법이다(단계 S910,S920,S930,S940).The wide-area diagnosis is a diagnostic method for performing automatic ultrasound diagnosis on a processing / distribution facility while moving at a speed of less than 30 km to a vehicle, and displaying a pole where a faulty location is located through normal / abnormal judgment (steps S910, S920, S930, S940) .
정밀 진단은 차량 하차후 해당 전주를 대상으로 360도 진단을 수행시에 발생신호를 분석하여 어떤 기자재가 불량인지를 화면에 표시해 주는 방법을 말한다(단계 S950,S960,S970,S980).The detailed diagnosis refers to a method of displaying a display on a screen of which equipment is defective by analyzing an occurrence signal when a 360-degree diagnosis is performed on the corresponding poles after getting off the vehicle (steps S950, S960, S970, and S980).
구 분division 광역진단 자동검출Wide-area diagnostics automatic detection 정밀진단 자동검출Precision diagnosis auto detection
측정 거리Measuring distance 약 20~30m (차량 이동시)About 20 ~ 30m (when moving the vehicle) 10m 이내 (도보 접근시)Within 10m (when walking)
검출 시간Detection time 2 ~ 3 초 이내Within 2 ~ 3 seconds 10 초 이상10 seconds or more
분석 항목Analysis item 정상/이상 신호 발생 표시Normal / abnormal signal generation indication 정상/이상 신호 발생 표시예상 불량개소 표시Normal / abnormal signal occurrence indication Indication of expected bad position
도 9 및 표 2와 같이 본 발명은 2단계 자동검출을 통해 차량으로 진단시(광역 진단) 자동검출 알고리즘에 의해 주변 각종 노이즈와 구별하여 전력설비에서 이상신호 발생시 시스템적으로 진단자에게 알람을 표시해 주며, 이후 차량하차 후 정밀 진단시에는 기존 진단자의 경험과 소리 크기에 의존한 불량설비 색출과 달리 자동검출 알고리즘에 기반한 예상 불량설비를 화면에 표현해 줌으로써 진단자가 전주에 설치된 많은 설비들 중에서 불량 설비를 정확하게 색출 가능하다.As shown in FIG. 9 and Table 2, the present invention distinguishes from various kinds of noise by an automatic detection algorithm when diagnosing a vehicle (wide-area diagnosis) through two-step automatic detection, and systematically displays an alarm to a diagnostic In case of precise diagnosis after getting off the vehicle, unlike the faulty facility detection that depends on the experience of the existing diagnoser and the sound size, by displaying the expected failure facility based on the automatic detection algorithm on the screen, It is precisely detectable.
인력 적중률과 본 제안발명의 적중률을 비교한 결과가 표 3에서 보듯이, 본 제안발명이 종전 인력 적중률에 비해 더 나은 효과를 가짐을 알 수 있다.As shown in Table 3, the proposed invention has a better effect than the previous workforce hit ratio, as a result of comparing the human hit ratio with the hit ratio of the present invention.
구 분division 영등포(4/7)Yeongdeungpo (4/7) 안산 1차(6/16)Ansan 1st (6/16) 안산 2차(7/20)Ansan second round (7/20)
인력 검출(건) [A]Human force detection (gun) [A] 1313 1414 1616
본 제안발명 검출(건) [B]Detection of the proposed invention (case) [B] 55 55 22
불량 확인(건) [C]Bad check (thing) [C] 88 55 22
인력 적중률(%) [C/A]Manpower Hits (%) [C / A] 61.561.5 35.735.7 12.512.5
본 제안발명 적중률(%) [C/B]The proposed invention hit ratio (%) [C / B] 62.5%62.5% 100%100% 100%100%
또한, 여기에 개시된 실시형태들과 관련하여 설명된 방법 또는 알고리즘의 단계들은, 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 (명령) 코드, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. Furthermore, the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied in the form of a program form which may be performed via a variety of computing means, and recorded in a computer-readable medium. The computer-readable medium may include a program (command) code, a data file, a data structure, and the like, alone or in combination.
상기 매체에 기록되는 프로그램 (명령) 코드는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프 등과 같은 자기 매체(magnetic media), CD-ROM, DVD, 블루레이 등과 같은 광기록 매체(optical media) 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 (명령) 코드를 저장하고 수행하도록 특별히 구성된 반도체 기억 소자가 포함될 수 있다. The program (command) codes recorded on the medium may be those specially designed and constructed for the present invention or may be those known to those skilled in the art of computer software. Examples of computer-readable media include magnetic media such as hard disks, floppy disks and magnetic tape, optical media such as CD-ROMs, DVDs, Blu-ray and the like, and ROMs, RAM), flash memory, and the like, which are specifically configured to store and execute program (instruction) codes.
여기서, 프로그램 (명령) 코드의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.Here, examples of program (command) codes include machine language codes such as those produced by a compiler, as well as high-level language codes that can be executed by a computer using an interpreter or the like. The hardware devices described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.

Claims (7)

  1. 초음파를 검출하여 음성 출력을 생성하는 초음파 검출기;An ultrasonic detector for detecting an ultrasonic wave to generate a sound output;
    불량 기자재에 의한 초음파 방전 발생 유무 및 이상을 판단하는 통신 단말기; 및A communication terminal for judging the presence or absence of an ultrasonic wave generated by a defective material and an abnormality; And
    불량 판단 시, 연결된 GPS(Global Positioning System) 모듈에서 받은 위치정보와 불량 판단 초음파 적출음 Data를 자동으로 저장하는 DB(Database)로 이루어진 배전설비 초음파 자동검출 시스템.And a database (DB) for automatically storing the position information received from the connected GPS (Global Positioning System) module and the faulty determination ultrasound echo sound data at the time of failure determination.
  2. 제1항에 있어서,The method according to claim 1,
    상기 통신 단말기는 상기 음성 출력을 AUX(auxiliary) 단자 입력으로 받아 WAV파일로 이루어진 소리 파형을 분석하기 위해 자동 분석 알고리즘 모듈을 탑재하는 것을 특징으로 하는 배전설비 초음파 자동검출 시스템.Wherein the communication terminal includes an automatic analysis algorithm module for analyzing a sound waveform formed of a WAV file by receiving the audio output as an auxiliary terminal input.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 통신 단말기는 펄스의 시간차 Δt를 세로축은 발생횟수, 가로축은 펄스 간격을 나타내는 그래프에 누적 표현하고 발생 간격의 빈도수를 누적하여 전력설비의 불량여부를 판단하는 것을 특징으로 하는 배전설비 초음파 자동검출 시스템.Wherein the communication terminal accumulates the time difference DELTA t of pulses in a graph indicating the number of occurrences of the vertical axis and the pulse interval of the horizontal axis and accumulates the frequency of occurrence intervals to determine whether or not the power equipment is defective. .
  4. 제3항에 있어서,The method of claim 3,
    상기 통신 단말기는 상기 WAV파일을 Load하여, 일정 주기 데이터를 추출하고, 연속 웨이블렛 파형 변환을 하고, De-noising된 Data에서 부분방전 초음파 펄스의 시간차 Δt를 추출하고 상기 Δt 누적 Histogram을 분석하는 것을 특징으로 하는 배전설비 초음파 자동검출 시스템. The communication terminal loads the WAV file, extracts periodic data, performs continuous wavelet waveform transformation, extracts a time difference? T of partial discharge ultrasonic pulses from the de-noised data, and analyzes the? T accumulated histogram Ultrasonic automatic detection system for power distribution equipment.
  5. WAV파일을 Load하여 펄스 시간차를 분석하기 위해서는 부분 방전 고주파음에 해당하는 펄스만을 가지고 분석 단계;In order to analyze the pulse time difference by loading the WAV file, only the pulse corresponding to the partial discharge high frequency sound is analyzed;
    상기 펄스의 파형 분석을 위한 일정 간격의 시간을 가지는 연속 파형을 추출한 후 2주기 Data Time Graph 표시 및 Wavelet De-noising Data로 활용하기 위한 준비 단계;A preparation step of extracting a continuous waveform having a predetermined time interval for analyzing the waveform of the pulse and using the waveform as a two-period data time graph display and wavelet de-noising data;
    상기 추출한 2주기 데이터에서 Wavelet De-noising 분석을 적용하여 기존 백그라운드 White Noise를 제거한 후 부분방전 초음파 펄스의 시간차 Δt를 추출하기 위한 분석 데이터로 활용 단계;Applying the wavelet de-noising analysis to the extracted two-period data to extract the time difference? T of the partial discharge ultrasound pulse after removing the background noise;
    상기 Wavelet De-noising을 거친 Data에서 부분방전 초음파 펄스의 시간차 Δt를 추출하는 단계; 및Extracting a time difference? T of the partial discharge ultrasonic pulse from the data through the wavelet de-noising; And
    분석한 펄스의 시간차 Δt를 세로축은 발생횟수, 가로축은 펄스 간격을 나타내는 그래프에 누적 표현하고 발생 간격의 빈도수를 누적하여 분석하는 알고리즘을 적용하여 전력설비의 불량여부 판단을 시행하는 Δt 누적 표현된 Histogram 분석단계;를 포함하는 배전설비 초음파 자동검출 방법.The cumulative expressions of cumulative expressed Htograms are obtained by cumulatively representing the time difference .DELTA.t of the analyzed pulses on the graph indicating the number of occurrences of the vertical axis and the pulse interval of the horizontal axis and accumulating and analyzing the frequency of occurrence intervals. And an analysis step.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 Δt 누적 표현된 Histogram 분석은,The histogram analysis represented by?
    기본 Raw-Data는 일정 시간을 기반으로 분석하고 분석된 각각의 펄스의 횟수 총합을 기준으로 일정 펄스 시간차가 발생한 펄스 횟수 합이 60%를 넘을 경우 불량 알람 처리하는 것을 특징으로 하는 배전설비 초음파 자동검출 방법.The basic raw data is analyzed based on a predetermined time, and when the sum of the number of pulses having a certain pulse time difference exceeds 60% based on the sum of the number of pulses analyzed, a bad alarm process is performed. Way.
  7. 제6항에 있어서,The method according to claim 6,
    차량으로 일정 속도 이하 속도로 이동하면서 가공 배전설비를 대상으로 자동 초음파 진단을 시행하고 정상/이상 판단을 통해 불량 개소가 위치한 전주를 표시해 주는 광역 진단 단계; 및A wide-area diagnostic step that performs automatic ultrasonic diagnosis on the processing and distribution facilities while moving at a speed less than a constant speed to the vehicle and displays a pole where the defective part is located through normal / abnormal judgment; And
    상기 차량 하차 후 상기 전주를 대상으로 360도 진단을 수행시에 발생신호를 분석하여 어떤 기자재가 불량 인지를 화면에 표시해 주는 정밀 진단 단계;를 추가해서 포함하는 배전설비 초음파 자동검출 방법.And a precise diagnosis step of analyzing an occurrence signal when the 360-degree diagnosis is performed on the electric pole after getting off the vehicle and displaying a display on the screen of which equipment is defective.
PCT/KR2018/004425 2017-11-22 2018-04-17 System and method for automatically detecting ultrasonic waves from power distribution facility WO2019103251A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170156203A KR101975443B1 (en) 2017-11-22 2017-11-22 Automatic detecting system and method of ultrasonic waves for degraded components in distribution power facility
KR10-2017-0156203 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019103251A1 true WO2019103251A1 (en) 2019-05-31

Family

ID=66630724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004425 WO2019103251A1 (en) 2017-11-22 2018-04-17 System and method for automatically detecting ultrasonic waves from power distribution facility

Country Status (2)

Country Link
KR (1) KR101975443B1 (en)
WO (1) WO2019103251A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160634A (en) * 2019-06-06 2019-08-23 内蒙古电力(集团)有限责任公司内蒙古超高压供电局 Reactor abnormal sound measuring device and its method
CN110531234A (en) * 2019-09-26 2019-12-03 武汉三相电力科技有限公司 A kind of identification extracting method of transmission line of electricity discharge pulse
CN114965694A (en) * 2022-05-25 2022-08-30 国家电网有限公司 Porcelain insulator defect detection method based on ultrasonic signal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113951B (en) * 2021-12-16 2023-09-05 国网山东省电力公司烟台供电公司 Ultrasonic stress detection system and method for insulation defect of high-voltage switch cabinet
CN114280435B (en) * 2021-12-24 2023-05-05 重庆科技学院 Partial discharge management system of power system switch cabinet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235777B1 (en) * 2011-09-26 2013-02-21 유성훈 Artificial intelligent utilization on judgement diagnostic system for electrical power ficilities using comples diagnosis eqipment
KR20140015165A (en) * 2010-04-16 2014-02-06 주식회사 유.이 시스템즈 On-board ultrasonic frequency spectrum and image generation
KR101538999B1 (en) * 2014-06-26 2015-07-24 (주)에스에이치아이앤씨 Partial discharge diagnosis apparatus and method
JP2016061733A (en) * 2014-09-19 2016-04-25 日新電機株式会社 Partial discharge diagnostic device
KR101647424B1 (en) * 2015-12-30 2016-08-16 주식회사 알씨엔파워 Apparatus for diagnosing electric power equipments automatically

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ260599A0 (en) * 1999-09-02 1999-09-23 Transgrid Partial discharge monitoring system for transformers
KR101144213B1 (en) 2009-11-19 2012-05-11 (주)인디스디앤아이 Receiving apparatus of ultrasonic waves for detecting degraded components in an overhead distribution line
KR101573739B1 (en) 2015-07-31 2015-12-02 김기동 Breakdown of the distribution lines point detection system
KR101601898B1 (en) 2015-12-22 2016-03-09 (주)대광기술 Breakdown of the distribution lines point detection system
KR101731552B1 (en) 2016-12-20 2017-05-11 (주)성전엔지니어링 Breakdown of the Transmission lines point detection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140015165A (en) * 2010-04-16 2014-02-06 주식회사 유.이 시스템즈 On-board ultrasonic frequency spectrum and image generation
KR101235777B1 (en) * 2011-09-26 2013-02-21 유성훈 Artificial intelligent utilization on judgement diagnostic system for electrical power ficilities using comples diagnosis eqipment
KR101538999B1 (en) * 2014-06-26 2015-07-24 (주)에스에이치아이앤씨 Partial discharge diagnosis apparatus and method
JP2016061733A (en) * 2014-09-19 2016-04-25 日新電機株式会社 Partial discharge diagnostic device
KR101647424B1 (en) * 2015-12-30 2016-08-16 주식회사 알씨엔파워 Apparatus for diagnosing electric power equipments automatically

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160634A (en) * 2019-06-06 2019-08-23 内蒙古电力(集团)有限责任公司内蒙古超高压供电局 Reactor abnormal sound measuring device and its method
CN110531234A (en) * 2019-09-26 2019-12-03 武汉三相电力科技有限公司 A kind of identification extracting method of transmission line of electricity discharge pulse
CN114965694A (en) * 2022-05-25 2022-08-30 国家电网有限公司 Porcelain insulator defect detection method based on ultrasonic signal

Also Published As

Publication number Publication date
KR101975443B1 (en) 2019-09-10

Similar Documents

Publication Publication Date Title
WO2019103251A1 (en) System and method for automatically detecting ultrasonic waves from power distribution facility
US9092026B2 (en) Remote monitoring apparatus
CN111204363B (en) Fault diagnosis early warning and state evaluation method, device and system for traction system
CN105283400A (en) Elevator noise monitoring
JP6633006B2 (en) Partial discharge monitoring device and partial discharge monitoring method
CN113670434B (en) Method and device for identifying sound abnormality of substation equipment and computer equipment
CN107677899A (en) Computer room electromagnetic interference monitoring system based on Internet of Things
JP2012166935A (en) Abnormal sound detection device for elevator
CN101876935B (en) Debugging program monitoring method and device
US20120257052A1 (en) Electronic device and method for detecting abnormities of image capturing device
CN103744004A (en) Transformer/reactor partial discharge online monitoring method and monitoring system
CN114742992A (en) Video abnormity detection method and device and electronic equipment
JP2012181859A (en) Remote monitoring apparatus
JP5078276B2 (en) Diagnostic signal processor
CN115973715A (en) Training method and device for roller fault detection model of belt conveyor
US20130234699A1 (en) Power supply monitoring system and method thereof
JP3345793B2 (en) Uninterruptible power supply abnormality detection device
US11199523B2 (en) System and method for pantograph fault monitoring
CN210514465U (en) Intelligent abnormal monitoring device for relay protection secondary circuit
CN113156272A (en) Fault arc cause judgment auxiliary method and device based on current fingerprint technology and storage medium
CN108120861B (en) Intelligent ammeter electricity stealing data collector
CN102419887A (en) Multiple comprehensive inferred electric fire monitor system
CN106154122A (en) A kind of retrospective power cable detecting and controlling system
JP2011247770A (en) Liquid metal leakage detection apparatus and fault diagnosis method for the same
CN107479462A (en) Computer room electromagnetic interference monitoring method, device and storage medium based on Internet of Things

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881231

Country of ref document: EP

Kind code of ref document: A1