WO2019103206A1 - Directional microphone - Google Patents

Directional microphone Download PDF

Info

Publication number
WO2019103206A1
WO2019103206A1 PCT/KR2017/013573 KR2017013573W WO2019103206A1 WO 2019103206 A1 WO2019103206 A1 WO 2019103206A1 KR 2017013573 W KR2017013573 W KR 2017013573W WO 2019103206 A1 WO2019103206 A1 WO 2019103206A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
substrate
acoustic
present
acoustic hole
Prior art date
Application number
PCT/KR2017/013573
Other languages
French (fr)
Korean (ko)
Inventor
박두영
Original Assignee
주식회사 파트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파트론 filed Critical 주식회사 파트론
Publication of WO2019103206A1 publication Critical patent/WO2019103206A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the present invention relates to a microphone, and more particularly, to a directional MEMS microphone including a MEMS transducer element and having a directional acoustic characteristic.
  • MEMS technology can be applied to micro-scale micro-sensors, actuators, or electromechanical structures using micro-machining techniques based on integrated circuit technology.
  • the MEMS microphone with such a MEMS technology not only can realize a very small device, but also can manufacture a large number of MEMS microphones on one wafer, thereby enabling mass production.
  • Korean Patent Laid-Open Publication No. 10-2007-0053763 (published May 25, 2007) entitled " Silicon condenser microphone and its manufacturing method "
  • Korean Patent Publication No. 10-2007-0078391 July 31, 2010 Korean Patent Publication No. 10-2007-0078391 July 31, 2010
  • a microphone of Korean Patent Laid-Open No. 10-0971293 (published on July 13, 2010).
  • a problem to be solved by the present invention is to provide a microphone having a directivity characteristic.
  • Another object to be solved by the present invention is to provide a directional microphone capable of easily adjusting the directivity characteristic of a microphone.
  • a directional microphone including a substrate, a first housing, a second housing, a MEMS transducer, and a signal processing element.
  • the substrate includes a first acoustic hole
  • the first housing includes a second acoustic hole
  • the second housing may include a third acoustic hole.
  • it may further comprise a delay unit.
  • the directional microphone according to an embodiment of the present invention has a directivity characteristic and has a merit that it can detect the sound more clearly.
  • the directional microphone according to an embodiment of the present invention has an advantage that directivity characteristics can be easily adjusted.
  • FIG. 1 is a perspective view of a directional microphone according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a directional microphone according to one embodiment of the present invention, as viewed from below.
  • FIG. 3 is a cross-sectional view taken along line A-A in Fig.
  • FIG. 4 is an exemplary cross-sectional view of the MEMS transducer shown in FIG.
  • 5 and 6 are use state diagrams of a directional microphone according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a directional microphone according to another embodiment of the present invention.
  • FIG 8 and 9 are sectional views of a directional microphone according to another embodiment of the present invention.
  • FIG. 1 is a perspective view of a directional microphone according to an embodiment of the present invention.
  • 2 is a perspective view of a directional microphone according to one embodiment of the present invention, as viewed from below.
  • 3 is a cross-sectional view taken along line A-A in Fig. 4 is an exemplary cross-sectional view of the MEMS transducer shown in FIG. 5 and 6 are use state diagrams of a directional microphone according to an embodiment of the present invention.
  • a directional microphone according to an embodiment of the present invention includes a substrate 100, a first housing 200, a second housing 300, a MEMS transducer 400, and a signal processing element (not shown) 500).
  • the substrate 100 is formed in the form of a plate, which is a lower part of the directional microphone of the present invention.
  • the substrate 100 may be formed of a printed circuit board (PCB).
  • the substrate 100 may be specifically formed of a rigid printed circuit board, a semiconductor substrate, a ceramic substrate, or the like.
  • the substrate 100 includes a first acoustic hole 110.
  • the first acoustic hole 110 is formed to penetrate through the lower portion from the upper portion of the substrate 100. Specifically, the first acoustic hole 110 may be formed to penetrate the substrate 100 in a direction perpendicular to the upper surface or the lower surface of the substrate 100. Although the first acoustic holes 110 are shown as being formed in a single hole shape in FIGS. 1 to 3, in some cases, the plurality of holes may be located closely.
  • a MEMS transducer 400 and a signal processing element 500 to be described later are mounted on the upper surface of the substrate 100.
  • the substrate 100 is coupled with a first housing 200 to be described later to form a first internal space S1.
  • the first housing 200 is formed to cover the substrate 100. Specifically, the first housing 200 is formed in a bottom open state, and the bottom is coupled to be covered by the substrate 100.
  • the first inner space S1 is formed by the combination of the substrate 100 and the first housing 200.
  • the first housing 200 includes an upper surface facing away from the substrate 100, and a side bent downwardly from a rim portion of the upper surface. The lower side of the side surface can be coupled with the substrate 100.
  • the first housing 200 may be connected to the substrate 100 through a solder 150 or the like. Although not shown in the drawing, a ground portion having a ground potential is formed on the substrate 100, and the first housing 200 may be electrically connected to the ground portion of the substrate 100 to be coupled.
  • the first housing 200 may be a can made of a metal material, for example.
  • the present invention is not limited thereto, and may be formed of the same material as the plastic injection molded article or the substrate 100, as the case may be.
  • the first housing 200 includes a second acoustic hole 210.
  • the second acoustic hole 210 is formed to penetrate the upper surface of the first housing 200.
  • the second acoustic holes 210 are shown as being formed in a single hole shape in FIGS. 1 to 3, in some cases, the plurality of holes may be located closely.
  • the second housing 300 is formed to cover the upper surface of the first housing 200. Specifically, the second housing 300 is formed with the lower surface opened, and the lower portion is coupled to cover the first housing 200. More specifically, the second housing 300 can be coupled such that the lower portion thereof is covered by the upper surface of the first housing 200.
  • the second inner space S2 is formed by the engagement of the first housing 200 and the second housing 300.
  • the second housing 300 includes an upper surface facing away from the upper surface of the first housing 200 and a lower surface extending downward from the upper surface of the upper surface. The lower end of the side surface of the second housing 300 can be engaged with the first housing 200.
  • the second housing 300 may be connected to the first housing 200 through a solder 250 or the like.
  • the first housing 200 can be electrically connected to the grounding portion of the substrate 100, and the second housing 300 can be electrically connected to the first housing 200 again.
  • both the first housing 200 and the second housing 300 can have a ground potential, which improves the electrical stability of the directional microphone of the present invention, and reduces the influence of EMI noise introduced from the outside Can be reduced.
  • the second housing 300 may be of a can type, for example, made of a metal material or the like.
  • the present invention is not limited thereto, and may be formed of the same material as the plastic injection molded article or the substrate 100, as the case may be.
  • the second housing 300 includes a third acoustic hole 310.
  • the third acoustic hole 310 is formed to penetrate through the second housing 300.
  • the third acoustic holes 310 are illustrated as being formed on the upper surface of the second housing 300 in FIGS. 1 to 3, the third acoustic holes 310 may be formed on the upper surface of the second microphone 300 to control the directivity characteristic of the directional microphone of the present invention. It can also be located on the side.
  • the third acoustic holes 310 are shown as being formed in a single hole shape in FIGS. 1 to 3, in some cases, the plurality of holes may be located closely.
  • the MEMS transducer 400 is an element that converts a sound signal into an electric signal.
  • the MEMS transducer 400 is mounted on the substrate 100 and accommodated in the first internal space S1 formed by the substrate 100 and the first housing 200.
  • the MEMS transducer 400 may be electrically connected to the substrate 100 or the signal processing device 500 through a wire 450 or the like.
  • the MEMS transducer (400) provides the converted electrical signal to the signal processing element (500).
  • the MEMS transducer 400 may include a body 149, a back plate 146, and a diaphragm 148.
  • the back plate 146 and the diaphragm 148 are spaced apart from each other (that is, a cavity is located between the back plate 146 and the diaphragm 148) and the diaphragm 148 is vibrated by the negative pressure, And the capacitance with the plate 146 is measured to sense the acoustic signal.
  • the back plate 146 is shown above the diaphragm 148 in the figure, it is not limited thereto. That is, the back plate 146 may be disposed below the diaphragm 148.
  • the signal processing element 500 amplifies the electric signal transmitted from the MEMS transducer 400.
  • the signal processing device 500 may be, for example, an application-specific integrated circuit (ASIC), but is not limited thereto.
  • ASIC application-specific integrated circuit
  • the signal processing device 500 may be fixed to the upper surface of the substrate 100 by die bonding or wire bonding.
  • the directional microphone forms a first acoustic path P1 and a second acoustic path P2.
  • the first acoustic path P1 is a path from the bottom of the substrate 100 to the MEMS transducer 400 through the first acoustic hole 110.
  • the second acoustic path P 2 is a path through the third acoustic hole 310 and the second acoustic hole 210 sequentially from the outside of the second housing 300 to the MEMS transducer 400.
  • the first acoustic path P1 follows the bottom of the MEMS transducer 400 and the second acoustic path P2 follows the top of the MEMS transducer 400.
  • the second acoustic path P2 may be changed depending on the positions of the second acoustic hole 210 and the third acoustic hole 310.
  • the second acoustic path P2 can be relatively shortened.
  • the second acoustic path P2 can be relatively extended.
  • the directional microphone according to an embodiment of the present invention corresponds to a rear type that receives sound from a lower portion of the substrate 100 to a microphone as a main reception sound. Therefore, the lower direction of the substrate 100 of the microphone is referred to as forward, and the opposite direction is referred to as a rearward direction.
  • the sound generated in the front corresponds to the main sound, and the MEMS transducer 400 smoothly receives the sound.
  • the sound generated from the backside corresponds to noise and should be removed from the MEMS transducer 400 so as not to affect the reception of the main sound generated in the front.
  • the directional microphone of the present invention may be a front type that receives sound from the upper portion of the substrate 100 to the microphone through a main receiving sound.
  • the noise generated from the rear can reach the MEMS transducer 400 through the first acoustic path P1 and reach the MEMS transducer 400 through the second acoustic path P2. can do.
  • the two times T2 may be equal to each other.
  • the first time T1 and the second time T2 are equal to each other, and the first time T1 and the second time T2 are completely equal to each other, and the error includes an error that can occur in a manufacturing process.
  • the noise sound reaches the MEMS transducer 400 through the first acoustic path P1 and the noise sound reaches the second acoustic path <
  • RTI ID P2 to the MEMS transducer 400 affects the diaphragm of the MEMS transducer 400 at the same time. Therefore, the two sounds propagated through different paths interfere with each other, and the MEMS transducer 400 is hardly affected by the noise signal S1. Therefore, the MEMS transducer 400 recognizes only the main acoustic signal generated in front, and does not recognize the noise signal. In this way, a unidirectional characteristic can be realized.
  • the extent to which the progress of the noise sound is delayed can be adjusted by adjusting the size and shape of the second housing 300, the position and size of the third acoustic hole 310, and the like. As a result, the degree of attenuation of noise or the direction of noise can be adjusted.
  • FIG. 7 is a cross-sectional view of a directional microphone according to another embodiment of the present invention.
  • the differences from those described in Figs. 1 to 6 will be mainly described.
  • the directional microphone of the present embodiment further includes a delay unit 600.
  • the delay unit 600 may be located inside the first housing 200 and / or the second housing 300. 7, the delay unit 600 is positioned so as to cover the inside of the second housing 300, particularly, the third acoustic hole 310, but the position of the delay unit 600 is not limited thereto.
  • the delay unit 600 serves to delay the acoustic signal coming through the second acoustic path P2.
  • the delay unit 600 may be a plate including micro-perforations.
  • the plate may be, for example, a metal or a semiconductor such as silicon.
  • the metal or silicon has a relatively high heat-resistant temperature, and can easily withstand the operating temperature of the MEMS microphone.
  • the plate may have one or more micropores.
  • the degree of delay of the delay unit 600 can be adjusted. That is, if the number of microperforations is large and the size is large, the degree of delay is small. Conversely, if the number of microperforations is small and the size is small, the degree of delay is large.
  • the acoustic signal arriving at the MEMS transducer 400 through the second acoustic path P2 is delayed while passing through the second inner space S2, and the degree of delay by the delay unit 600 is .
  • the delay unit 600 may be added to reduce the size of the second internal space S2, which may contribute to downsizing the overall size of the directional microphone of the present invention.
  • FIG. 8 a directional microphone according to another embodiment of the present invention will be described with reference to FIGS. 8 and 9.
  • FIG. 8 a directional microphone according to another embodiment of the present invention will be described with reference to FIGS. 8 and 9.
  • FIGS. 8 and 9 are sectional views of a directional microphone according to another embodiment of the present invention. For convenience of explanation, the differences from those described in Figs. 1 to 6 will be mainly described.
  • a third acoustic hole 310 may be formed on a side surface of the second housing 300.
  • a plurality of third acoustic holes 310 may be spaced apart from each other.
  • One of the plurality of third acoustic holes 310 spaced apart from each other may be formed on the upper surface of the second housing 300 and the other may be formed on the side surface.
  • the length of the second acoustic path P 2 can be adjusted by adjusting the position of the third acoustic hole 310. Therefore, the attenuation characteristics of the noise signal and the direction of the noise signal can be adjusted.
  • substrate 110 first acoustic hole
  • first housing 210 second acoustic hole

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

A directional microphone of the present invention comprises a substrate, a first housing, a second housing, a MEMS transducer, and a signal processing element. In an embodiment of the present invention, the substrate may include a first acoustic hole, the first housing may include a second acoustic hole, and the second housing may include a third acoustic hole.

Description

지향성 마이크로폰Directional microphone
본 발명은 마이크로폰에 관한 것으로, 보다 상세하게는 MEMS 트랜듀서 소자를 포함하고, 지향성 음향특성을 가지는 지향성 MEMS 마이크로폰에 관한 것이다.The present invention relates to a microphone, and more particularly, to a directional MEMS microphone including a MEMS transducer element and having a directional acoustic characteristic.
최근, 휴대폰, 스마트폰 등의 이동 통신용 단말기나, 태블릿PC, MP3 플레이어 등과 같은 전자 장치는 보다 소형화되고 있다. 이에 따라, 전자 장치의 부품 또한 더욱 소형화되고 있다. 따라서, 부품의 물리적 한계를 해결할 수 있는 멤스(Micro Electro Mechanical System: MEMS) 기술 개발이 진행되고 있다.2. Description of the Related Art In recent years, electronic devices such as mobile communication terminals such as mobile phones and smart phones, tablet PCs, and MP3 players have become smaller. As a result, parts of electronic devices are becoming smaller. Therefore, development of a MEMS (Micro Electro Mechanical System) technology capable of solving physical limitations of parts is underway.
멤스 기술은, 집적 회로 기술을 응용한 마이크로 머시닝(micro machining) 기술을 이용하여 마이크로 단위의 초소형 센서, 액츄에이터 또는 전기 기계적 구조체를 제작하는데 응용될 수 있다. 이와 같은 멤스 기술이 적용된 멤스 마이크로폰은 초소형의 소자를 구현할 수 있을 뿐만 아니라, 하나의 웨이퍼 상에 다수의 멤스 마이크로폰을 제조할 수 있어 대량 생산이 가능하다.MEMS technology can be applied to micro-scale micro-sensors, actuators, or electromechanical structures using micro-machining techniques based on integrated circuit technology. The MEMS microphone with such a MEMS technology not only can realize a very small device, but also can manufacture a large number of MEMS microphones on one wafer, thereby enabling mass production.
이러한 멤스 마이크로폰에 대한 기술은 다양하게 공지되어 있다. 예를 들어, 대한민국공개특허 제10-2007-0053763호(공개일 2007년 5월 25일)의 '실리콘 콘덴서 마이크로폰과 그 제작 방법', 대한민국공개특허 제10-2007-0078391호(공개일 2007년 7월 31일)의 '소형 마이크로폰용 탄성 중합체 실드', 대한민국공개특허 제10-0971293호(공고일 2010년 7월 13일)의 '마이크로폰' 등이 있다.A variety of techniques for such MEMS microphones are known. For example, Korean Patent Laid-Open Publication No. 10-2007-0053763 (published May 25, 2007) entitled " Silicon condenser microphone and its manufacturing method ", Korean Patent Publication No. 10-2007-0078391 July 31, 2010), and a microphone of Korean Patent Laid-Open No. 10-0971293 (published on July 13, 2010).
대한민국 공개특허 제10-2007-0053763호(공개일 2007년 5월 25일)Korean Patent Publication No. 10-2007-0053763 (published on May 25, 2007)
대한민국 공개특허 제10-2007-0078391호(공개일 2007년 7월 31일)Korean Patent Publication No. 10-2007-0078391 (Disclosure Date: July 31, 2007)
대한민국 공개특허 제10-0971293호(공고일 2010년 7월 13일)Korean Patent Publication No. 10-0971293 (Published on July 13, 2010)
본 발명이 해결하려는 과제는, 지향성 특성을 가지는 마이크로폰을 제공하는 것이다. A problem to be solved by the present invention is to provide a microphone having a directivity characteristic.
본 발명이 해결하려는 다른 과제는, 마이크로폰의 지향성 특성을 용이하게 조정할 수 있는 지향성 마이크로폰을 제공하는 것이다.Another object to be solved by the present invention is to provide a directional microphone capable of easily adjusting the directivity characteristic of a microphone.
상기 과제를 해결하기 위한 본 발명의 지향성 마이크로폰은, 기판, 제1 하우징, 제2 하우징, MEMS 트랜듀서 및 신호처리소자를 포함한다.According to an aspect of the present invention, there is provided a directional microphone including a substrate, a first housing, a second housing, a MEMS transducer, and a signal processing element.
본 발명의 일 실시예에 있어서, 기판은 제1 음향홀을 포함하고, 제1 하우징은 제2 음향홀을 포함하고, 제2 하우징은 제3 음향홀을 포함할 수 있다.In one embodiment of the present invention, the substrate includes a first acoustic hole, the first housing includes a second acoustic hole, and the second housing may include a third acoustic hole.
본 발명의 일 실시예에 있어서, 지연 유닛을 더 포함할 수 있다.In one embodiment of the invention, it may further comprise a delay unit.
본 발명의 일 실시예에 따른 지향성 마이크로폰은 지향성 특성을 가져 주 음향을 보다 선명하게 감지할 수 있다는 장점이 있다.The directional microphone according to an embodiment of the present invention has a directivity characteristic and has a merit that it can detect the sound more clearly.
또한, 본 발명의 일 실시예에 따른 지향성 마이크로폰은 지향성 특성을 용이하게 조정할 수 있다는 장점이 있다.Further, the directional microphone according to an embodiment of the present invention has an advantage that directivity characteristics can be easily adjusted.
도 1은 본 발명의 일 실시예에 따른 지향성 마이크로폰을 위에서 바라본 사시도이다.1 is a perspective view of a directional microphone according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 지향성 마이크로폰을 아래에서 바라본 사시도이다.2 is a perspective view of a directional microphone according to one embodiment of the present invention, as viewed from below.
도 3은 도 1의 A-A를 따라서 절단한 단면도이다.3 is a cross-sectional view taken along line A-A in Fig.
도 4는 도 3에 도시된 MEMS 트랜듀서의 예시적 단면도이다.4 is an exemplary cross-sectional view of the MEMS transducer shown in FIG.
도 5 및 도 6은 본 발명의 일 실시예에 따른 지향성 마이크로폰의 사용 상태도이다.5 and 6 are use state diagrams of a directional microphone according to an embodiment of the present invention.
도 7은 본 발명의 다른 일 실시예에 따른 지향성 마이크로폰의 단면도이다.7 is a cross-sectional view of a directional microphone according to another embodiment of the present invention.
도 8 및 도 9는 본 발명의 또 다른 일 실시예에 따른 지향성 마이크로폰의 단면도이다.8 and 9 are sectional views of a directional microphone according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명하는데 있어서, 해당 분야에 이미 공지된 기술 또는 구성에 대한 구체적인 설명을 부가하는 것이 본 발명의 요지를 불분명하게 할 수 있다고 판단되는 경우에는 상세한 설명에서 이를 일부 생략하도록 한다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 실시예들을 적절히 표현하기 위해 사용된 용어들로서, 이는 해당 분야의 관련된 사람 또는 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the present invention, if it is judged that it is possible to make the gist of the present invention obscure by adding a detailed description of a technique or configuration already known in the field, it is omitted from the detailed description. In addition, terms used in the present specification are terms used to appropriately express the embodiments of the present invention, which may vary depending on the person or custom in the relevant field. Therefore, the definitions of these terms should be based on the contents throughout this specification.
여기서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 '포함하는'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the invention. The singular forms as used herein include plural forms as long as the phrases do not expressly express the opposite meaning thereto. As used herein, the meaning of "comprising" embodies certain features, areas, integers, steps, operations, elements and / or components, And the like.
이하, 첨부된 도 1 내지 도 6을 참조하여 본 발명의 일 실시예에 따른 지향성 마이크로폰에 대해서 설명하도록 한다.Hereinafter, a directional microphone according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6 attached hereto.
도 1은 본 발명의 일 실시예에 따른 지향성 마이크로폰을 위에서 바라본 사시도이다. 도 2는 본 발명의 일 실시예에 따른 지향성 마이크로폰을 아래에서 바라본 사시도이다. 도 3은 도 1의 A-A를 따라서 절단한 단면도이다. 도 4는 도 3에 도시된 MEMS 트랜듀서의 예시적 단면도이다. 도 5 및 도 6은 본 발명의 일 실시예에 따른 지향성 마이크로폰의 사용 상태도이다.1 is a perspective view of a directional microphone according to an embodiment of the present invention. 2 is a perspective view of a directional microphone according to one embodiment of the present invention, as viewed from below. 3 is a cross-sectional view taken along line A-A in Fig. 4 is an exemplary cross-sectional view of the MEMS transducer shown in FIG. 5 and 6 are use state diagrams of a directional microphone according to an embodiment of the present invention.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 지향성 마이크로폰은 기판(100), 제1 하우징(200), 제2 하우징(300), MEMS 트랜듀서(400) 및 신호처리소자(500)를 포함한다.1 to 3, a directional microphone according to an embodiment of the present invention includes a substrate 100, a first housing 200, a second housing 300, a MEMS transducer 400, and a signal processing element (not shown) 500).
기판(100)은 본 발명의 지향성 마이크로폰의 하부를 이루는 구성으로, 판(plate) 형태로 형성된다. 기판(100)은 인쇄회로기판(PCB; Printed Circuit Board)로 형성될 수 있다. 기판(100)은 구체적으로, 경성의 인쇄회로기판, 반도체 기판, 세라믹 기판 등으로 형성될 수 있다.The substrate 100 is formed in the form of a plate, which is a lower part of the directional microphone of the present invention. The substrate 100 may be formed of a printed circuit board (PCB). The substrate 100 may be specifically formed of a rigid printed circuit board, a semiconductor substrate, a ceramic substrate, or the like.
기판(100)은 제1 음향홀(110)을 포함한다. 제1 음향홀(110)은 기판(100)의 상부에서 하부를 관통하는 형태로 형성된다. 구체적으로, 제1 음향홀(110)은 기판(100)을 기판(100)의 상면 또는 하면과 수직하는 방향으로 관통하도록 형성될 수 있다. 도 1 내지 도 3에서는 제1 음향홀(110)이 단일의 홀 형태로 형성된 것으로 도시되어 있지만, 경우에 따라서는 복수의 홀이 밀집하여 위치한 것일 수도 있다.The substrate 100 includes a first acoustic hole 110. The first acoustic hole 110 is formed to penetrate through the lower portion from the upper portion of the substrate 100. Specifically, the first acoustic hole 110 may be formed to penetrate the substrate 100 in a direction perpendicular to the upper surface or the lower surface of the substrate 100. Although the first acoustic holes 110 are shown as being formed in a single hole shape in FIGS. 1 to 3, in some cases, the plurality of holes may be located closely.
기판(100)의 상면에는 후술할 MEMS 트랜듀서(400) 및 신호처리소자(500) 등이 실장된다. 그리고 기판(100)은 후술할 제1 하우징(200)과 결합되어 제1 내부 공간(S1)을 형성한다.A MEMS transducer 400 and a signal processing element 500 to be described later are mounted on the upper surface of the substrate 100. The substrate 100 is coupled with a first housing 200 to be described later to form a first internal space S1.
제1 하우징(200)은 기판(100)을 커버하도록 형성된다. 구체적으로, 제1 하우징(200)은 하면이 개방된 형태로 형성되고, 하부가 기판(100)에 의해 덮이도록 결합된다. 기판(100)과 제1 하우징(200)의 결합에 의해, 제1 내부 공간(S1)이 형성되게 된다. 더욱 구체적으로, 제1 하우징(200)은 기판(100)과 이격되어 대향하는 상면과 상기 상면의 테두리 부분에서 하측으로 절곡되어 연장되는 측면을 포함한다. 측면의 하단은 기판(100)과 결합될 수 있다.The first housing 200 is formed to cover the substrate 100. Specifically, the first housing 200 is formed in a bottom open state, and the bottom is coupled to be covered by the substrate 100. The first inner space S1 is formed by the combination of the substrate 100 and the first housing 200. [ More specifically, the first housing 200 includes an upper surface facing away from the substrate 100, and a side bent downwardly from a rim portion of the upper surface. The lower side of the side surface can be coupled with the substrate 100.
제1 하우징(200)은 기판(100)과 솔더(150) 등을 통해서 연결될 수 있다. 도면에는 도시되지 않았지만, 기판(100)에는 접지 전위를 가지는 접지부가 형성되어 있고, 제1 하우징(200)은 기판(100)의 접지부와 전기적으로 연결되어 결합될 수 있다.The first housing 200 may be connected to the substrate 100 through a solder 150 or the like. Although not shown in the drawing, a ground portion having a ground potential is formed on the substrate 100, and the first housing 200 may be electrically connected to the ground portion of the substrate 100 to be coupled.
제1 하우징(200) 예를 들어, 금속 재질 등으로 형성된 캔(can) 타입일 수 있다. 그러나 이에 한정되는 것은 아니며, 경우에 따라 플라스틱 사출물 또는 기판(100)과 동일한 소재 등으로 형성될 수도 있다.The first housing 200 may be a can made of a metal material, for example. However, the present invention is not limited thereto, and may be formed of the same material as the plastic injection molded article or the substrate 100, as the case may be.
제1 하우징(200)은 제2 음향홀(210)을 포함한다. 제2 음향홀(210)은 제1 하우징(200)의 상면을 관통하는 형태로 형성된다. 도 1 내지 도 3에서는 제2 음향홀(210)이 단일의 홀 형태로 형성된 것으로 도시되어 있지만, 경우에 따라서는 복수의 홀이 밀집하여 위치한 것일 수도 있다.The first housing 200 includes a second acoustic hole 210. The second acoustic hole 210 is formed to penetrate the upper surface of the first housing 200. Although the second acoustic holes 210 are shown as being formed in a single hole shape in FIGS. 1 to 3, in some cases, the plurality of holes may be located closely.
제2 하우징(300)은 제1 하우징(200)의 상면을 커버하도록 형성된다. 구체적으로, 제2 하우징(300)은 하면이 개방된 형태로 형성되고, 하부가 제1 하우징(200) 의해 덮이도록 결합된다. 더욱 구체적으로, 제2 하우징(300)은 하부가 제1 하우징(200)의 상면에 의해 덮이도록 결합될 수 있다. 제1 하우징(200)과 제2 하우징(300)의 결합에 의해, 제2 내부 공간(S2)이 형성되게 된다.The second housing 300 is formed to cover the upper surface of the first housing 200. Specifically, the second housing 300 is formed with the lower surface opened, and the lower portion is coupled to cover the first housing 200. More specifically, the second housing 300 can be coupled such that the lower portion thereof is covered by the upper surface of the first housing 200. The second inner space S2 is formed by the engagement of the first housing 200 and the second housing 300. [
제2 하우징(300)은 제1 하우징(200)의 상면과 이격되어 대향하는 상면과 상기 상면의 테두리 부분에서 하측으로 절곡되어 연장되는 측면을 포함한다. 제2 하우징(300)의 측면의 하단은 제1 하우징(200)과 결합될 수 있다.The second housing 300 includes an upper surface facing away from the upper surface of the first housing 200 and a lower surface extending downward from the upper surface of the upper surface. The lower end of the side surface of the second housing 300 can be engaged with the first housing 200.
제2 하우징(300)은 제1 하우징(200)과 솔더(250) 등을 통해서 연결될 수 있다. 상술한 것과 같이, 제1 하우징(200)은 기판(100)의 접지부와 전기적으로 연결되어 결합될 수 있고, 제2 하우징(300)은 다시 제1 하우징(200)과 전기적으로 연결될 수 있다. 이에 따라 결과적으로, 제1 하우징(200) 및 제2 하우징(300)은 모두 접지 전위를 가질 수 있으며 이는 본 발명의 지향성 마이크로폰의 전기적 안정성을 향상시킬 수 있고, 외부로부터 유입되는 EMI 노이즈의 영향을 저감시킬 수 있다.The second housing 300 may be connected to the first housing 200 through a solder 250 or the like. As described above, the first housing 200 can be electrically connected to the grounding portion of the substrate 100, and the second housing 300 can be electrically connected to the first housing 200 again. As a result, both the first housing 200 and the second housing 300 can have a ground potential, which improves the electrical stability of the directional microphone of the present invention, and reduces the influence of EMI noise introduced from the outside Can be reduced.
제2 하우징(300) 예를 들어, 금속 재질 등으로 형성된 캔(can) 타입일 수 있다. 그러나 이에 한정되는 것은 아니며, 경우에 따라 플라스틱 사출물 또는 기판(100)과 동일한 소재 등으로 형성될 수도 있다.The second housing 300 may be of a can type, for example, made of a metal material or the like. However, the present invention is not limited thereto, and may be formed of the same material as the plastic injection molded article or the substrate 100, as the case may be.
제2 하우징(300)은 제3 음향홀(310)을 포함한다. 제3 음향홀(310)은 제2 하우징(300)을 관통하는 형태로 형성된다. 도 1 내지 도 3에서는 제3 음향홀(310)이 제2 하우징(300)의 상면에 형성된 것으로 도시되어 있지만, 제3 음향홀(310)은 본 발명의 지향성 마이크로폰의 지향성 특성을 조절하기 위하여 상면뿐만 아니라 측면에도 위치할 수 있다. 또한, 도 1 내지 도 3에서는 제3 음향홀(310)이 단일의 홀 형태로 형성된 것으로 도시되어 있지만, 경우에 따라서는 복수의 홀이 밀집하여 위치한 것일 수도 있다.The second housing 300 includes a third acoustic hole 310. The third acoustic hole 310 is formed to penetrate through the second housing 300. Although the third acoustic holes 310 are illustrated as being formed on the upper surface of the second housing 300 in FIGS. 1 to 3, the third acoustic holes 310 may be formed on the upper surface of the second microphone 300 to control the directivity characteristic of the directional microphone of the present invention. It can also be located on the side. Also, although the third acoustic holes 310 are shown as being formed in a single hole shape in FIGS. 1 to 3, in some cases, the plurality of holes may be located closely.
MEMS 트랜듀서(400)는 음향 신호를 전기 신호로 변환하는 소자이다. MEMS 트랜듀서(400)는 기판(100)에 실장되어, 기판(100)과 제1 하우징(200)이 형성하는 제1 내부 공간(S1)에 수용되게 된다. 또한, MEMS 트랜듀서(400)는 와이어(450) 등을 통해 기판(100) 또는 신호처리소자(500)와 전기적으로 연결될 수 있다. MEMS 트랜듀서(400)는 변환된 전기 신호를 신호처리소자(500)로 제공한다.The MEMS transducer 400 is an element that converts a sound signal into an electric signal. The MEMS transducer 400 is mounted on the substrate 100 and accommodated in the first internal space S1 formed by the substrate 100 and the first housing 200. [ In addition, the MEMS transducer 400 may be electrically connected to the substrate 100 or the signal processing device 500 through a wire 450 or the like. The MEMS transducer (400) provides the converted electrical signal to the signal processing element (500).
MEMS 트랜듀서(400)의 구성에 대해서는 도 4를 참조하여 상세하게 설명하도록 한다. 도 4를 참조하면, MEMS 트랜듀서(400)는 바디(149), 백플레이트(back plate)(146) 및 진동판(diaphragm)(148)을 포함할 수 있다. 백플레이트(146)와 진동판(148)은 서로 이격되어 있고(즉, 백플레이트(146)와 진동판(148) 사이에는 캐비티(cavity)가 위치), 진동판(148)이 음압에 의해 진동하면, 백플레이트(146)와의 커패시턴스를 측정하여 음향 신호를 센싱한다. 도면에서는, 백플레이트(146)가 진동판(148)의 위쪽에 배치된 것으로 도시하였으나, 이에 한정되지 않는다. 즉, 백플레이트(146)가 진동판(148)의 아래쪽에 배치되어도 무방하다.The configuration of the MEMS transducer 400 will be described in detail with reference to FIG. Referring to FIG. 4, the MEMS transducer 400 may include a body 149, a back plate 146, and a diaphragm 148. When the back plate 146 and the diaphragm 148 are spaced apart from each other (that is, a cavity is located between the back plate 146 and the diaphragm 148) and the diaphragm 148 is vibrated by the negative pressure, And the capacitance with the plate 146 is measured to sense the acoustic signal. Although the back plate 146 is shown above the diaphragm 148 in the figure, it is not limited thereto. That is, the back plate 146 may be disposed below the diaphragm 148.
신호처리소자(500)는 MEMS 트랜듀서(400)로부터 전달된 전기 신호를 증폭한다. 신호처리소자(500)는 예를 들어, 주문형 반도체 집적 회로(ASIC, Application-Specific Integrated Circuit)로 구성될 수 있으나, 이에 한정되지 않는다. 신호처리소자(500)는 기판(100)의 상면에 다이 본딩(die bonding) 또는 와이어 본딩(wire bonding) 등에 의해 고정될 수 있다.The signal processing element 500 amplifies the electric signal transmitted from the MEMS transducer 400. The signal processing device 500 may be, for example, an application-specific integrated circuit (ASIC), but is not limited thereto. The signal processing device 500 may be fixed to the upper surface of the substrate 100 by die bonding or wire bonding.
도 5 내지 도 6을 참조하여, 본 발명의 일 실시예에 따른 지향성 마이크로폰의 지향성 특성에 대해 설명하도록 한다.5 to 6, the directional characteristics of a directional microphone according to an embodiment of the present invention will be described.
도 5를 참조하면, 본 발명의 일 실시예에 따른 지향성 마이크로폰은 제1 음향 경로(P1)와 제2 음향 경로(P2)를 형성한다.Referring to FIG. 5, the directional microphone according to an embodiment of the present invention forms a first acoustic path P1 and a second acoustic path P2.
제1 음향 경로(P1)는 기판(100)의 하부로부터 제1 음향홀(110)을 통과하여 MEMS 트랜듀서(400)까지 진행하는 경로이다.The first acoustic path P1 is a path from the bottom of the substrate 100 to the MEMS transducer 400 through the first acoustic hole 110. [
제2 음향 경로(P2)는 제2 하우징(300)의 외부에서 제3 음향홀(310)과 제2 음향홀(210)을 순차적으로 통과하여 MEMS 트랜듀서(400)까지 진행하는 경로이다. 제1 음향 경로(P1)를 따르면 MEMS 트랜듀서(400)의 하부에 도달하게 되고, 제2 음향 경로(P2)를 따르면 MEMS 트랜듀서(400)의 상부에 도달하게 된다.The second acoustic path P 2 is a path through the third acoustic hole 310 and the second acoustic hole 210 sequentially from the outside of the second housing 300 to the MEMS transducer 400. The first acoustic path P1 follows the bottom of the MEMS transducer 400 and the second acoustic path P2 follows the top of the MEMS transducer 400. [
제2 음향홀(210)과 제3 음향홀(310)의 위치에 따라서 제2 음향 경로(P2)는 변경될 수 있다. 구체적으로 제2 음향홀(210)과 제3 음향홀(310)이 서로 수직 방향으로 오버랩되게 위치하는 경우, 제2 음향 경로(P2)가 상대적으로 단축될 수 있다. 그러나 도 5에 도시된 것과 같이, 제2 음향홀(210)과 제3 음향홀(310)이 서로 수직 방향으로 어긋나게 위치하는 경우, 제2 음향 경로(P2)가 상대적으로 연장될 수 있다.The second acoustic path P2 may be changed depending on the positions of the second acoustic hole 210 and the third acoustic hole 310. [ Specifically, when the second acoustic hole 210 and the third acoustic hole 310 overlap with each other in the vertical direction, the second acoustic path P2 can be relatively shortened. However, as shown in FIG. 5, when the second acoustic hole 210 and the third acoustic hole 310 are positioned to be offset from each other in the vertical direction, the second acoustic path P2 can be relatively extended.
본 발명의 일 실시예에 따른 지향성 마이크로폰은 기판(100)의 하부로부터 마이크로폰으로 진행하는 음향을 주된 수신 음향으로 수신하는 리어 타입(rear type)에 해당한다. 따라서 마이크로폰의 기판(100)의 하부 방향을 전방으로 지칭하고, 대략적인 그 반대 방향을 후방으로 지칭하도록 한다. 본 발명의 마이크로폰에 있어서, 전방에서 발생한 음향은 주 음향에 해당하는 것으로 MEMS 트랜듀서(400)가 원활하게 수신하게 된다. 그러나 후방에서 발생한 음향은 노이즈(noise)에 해당하는 것으로 MEMS 트랜듀서(400)에서 제거되어 전방에서 발생한 주 음향의 수신에 영향을 주지 않아야 한다.The directional microphone according to an embodiment of the present invention corresponds to a rear type that receives sound from a lower portion of the substrate 100 to a microphone as a main reception sound. Therefore, the lower direction of the substrate 100 of the microphone is referred to as forward, and the opposite direction is referred to as a rearward direction. In the microphone of the present invention, the sound generated in the front corresponds to the main sound, and the MEMS transducer 400 smoothly receives the sound. However, the sound generated from the backside corresponds to noise and should be removed from the MEMS transducer 400 so as not to affect the reception of the main sound generated in the front.
도면에 도시되지는 않았지만, 본 발명의 지향성 마이크로폰은 기판(100)의 상부로부터 마이크로폰으로 진행하는 음향을 주된 수신 음향으로 수신하는 프론트 타입(front type)인 것도 가능하다.Although not shown in the drawings, the directional microphone of the present invention may be a front type that receives sound from the upper portion of the substrate 100 to the microphone through a main receiving sound.
도 6을 참조하면, 후방에서 발생한 노이즈 음향은 제1 음향 경로(P1)를 통해 MEMS 트랜듀서(400)에 도달할 수 있고, 제2 음향 경로(P2)를 통해 MEMS 트랜듀서(400)에 도달할 수 있다. 이 때, 노이즈 음향이 제1 음향 경로(P1)를 통해 MEMS 트랜듀서(400)에 도달하는 제1 시간(T1)과 제2 음향 경로(P2)를 통해 MEMS 트랜듀서(400)에 도달하는 제2 시간(T2)는 서로 동일할 수 있다. 여기서 제1 시간(T1)과 제2 시간(T2)이 동일하다는 의미는 제1 시간(T1)과 제2 시간(T2)이 완전히 동일한 것과, 제조공정상 발생할 수 있는 오차를 포함하는 개념이다. 이는 노이즈 음향이 제2 음향 경로(P2)를 통해 진행할 때, 제2 내부 공간(S2)을 통과하면서 노이즈 음향의 진행이 지연되기 때문이다. 노이즈 음향이 제2 내부 공간(S2)을 통과하는 것은 미세천공 플레이트와 같은 재질로 형성된 지연 유닛을 통과하는 것과 유사한 효과를 발생시킨다.6, the noise generated from the rear can reach the MEMS transducer 400 through the first acoustic path P1 and reach the MEMS transducer 400 through the second acoustic path P2. can do. At this time, a first time T1 at which the noise sound reaches the MEMS transducer 400 through the first acoustic path P1 and a second time T2 at which the acoustic sound reaches the MEMS transducer 400 through the second acoustic path P2 The two times T2 may be equal to each other. Here, the first time T1 and the second time T2 are equal to each other, and the first time T1 and the second time T2 are completely equal to each other, and the error includes an error that can occur in a manufacturing process. This is because, when the noise sound travels through the second acoustic path P2, the progress of the noise sound is delayed while passing through the second inner space S2. The passage of the noise sound through the second internal space S2 produces an effect similar to that through a delay unit formed of the same material as the micro-perforated plate.
이와 같이, 제1 시간(T1)과 제2 시간(T2)이 동일하면, 노이즈 음향이 제1 음향 경로(P1)를 통해 MEMS 트랜듀서(400)에 도달한 것과 노이즈 음향이 제2 음향 경로(P2)를 통해 MEMS 트랜듀서(400)에 도달한 것이 MEMS 트랜듀서(400)의 진동판에 동시에 영향을 주게 된다. 따라서, 서로 다른 경로로 진행한 두 음향이 서로 간섭되어, MEMS 트랜듀서(400)는 노이즈 신호(S1)에 영향을 거의 받지 않는다. 따라서, MEMS 트랜듀서(400)는 전방에서 발생된 주 음향 신호만을 인식하고, 노이즈 신호는 인식하지 않게 된다. 이와 같은 방식으로, 단일지향성(unidirectional) 특성을 구현할 수 있다.As such, if the first time T1 and the second time T2 are the same, the noise sound reaches the MEMS transducer 400 through the first acoustic path P1 and the noise sound reaches the second acoustic path < RTI ID = P2 to the MEMS transducer 400 affects the diaphragm of the MEMS transducer 400 at the same time. Therefore, the two sounds propagated through different paths interfere with each other, and the MEMS transducer 400 is hardly affected by the noise signal S1. Therefore, the MEMS transducer 400 recognizes only the main acoustic signal generated in front, and does not recognize the noise signal. In this way, a unidirectional characteristic can be realized.
노이즈 음향의 진행이 지연되는 정도는 제2 하우징(300)의 크기 및 형태, 제3 음향홀(310)의 위치 및 크기 등을 변경하여 노이즈 음향의 진행이 지연되는 정도를 조정할 수 있다. 이를 통해, 노이즈의 감쇄 정도 또는 노이즈의 방향을 조정할 수 있다.The extent to which the progress of the noise sound is delayed can be adjusted by adjusting the size and shape of the second housing 300, the position and size of the third acoustic hole 310, and the like. As a result, the degree of attenuation of noise or the direction of noise can be adjusted.
이하, 도 7을 참조하여 본 발명의 다른 일 실시예에 따른 지향성 마이크로폰에 대해서 설명하도록 한다.Hereinafter, a directional microphone according to another embodiment of the present invention will be described with reference to FIG.
도 7은 본 발명의 다른 일 실시예에 따른 지향성 마이크로폰의 단면도이다. 설명의 편의상, 도 1 내지 도 6에서 설명한 것과 다른 점을 위주로 설명한다.7 is a cross-sectional view of a directional microphone according to another embodiment of the present invention. For convenience of explanation, the differences from those described in Figs. 1 to 6 will be mainly described.
도 7을 참조하면, 본 실시예의 지향성 마이크로폰은 지연 유닛(600)을 더 포함한다. 지연 유닛(600)은 제1 하우징(200) 및/또는 제2 하우징(300)의 내부에 위치할 수 있다. 도 7에서는 지연 유닛(600)이 제2 하우징(300)의 내측, 특히, 제3 음향홀(310)을 덮도록 위치하고 있지만, 지연 유닛(600)의 위치는 이에 한정되지 않는다.Referring to FIG. 7, the directional microphone of the present embodiment further includes a delay unit 600. The delay unit 600 may be located inside the first housing 200 and / or the second housing 300. 7, the delay unit 600 is positioned so as to cover the inside of the second housing 300, particularly, the third acoustic hole 310, but the position of the delay unit 600 is not limited thereto.
지연 유닛(600)은 제2 음향 경로(P2)를 통해서 들어오는 음향 신호를 지연시키는 역할을 한다. 지연 유닛(600)은 미세천공을 포함하는 플레이트(plate)일 수 있다. 플레이트는 예를 들어, 금속 또는, 실리콘과 같은 반도체일 수도 있다. 금속이나 실리콘은 내열 온도가 상대적으로 높아서, 멤스 마이크로폰의 동작 온도에서 용이하게 견딜 수 있다.The delay unit 600 serves to delay the acoustic signal coming through the second acoustic path P2. The delay unit 600 may be a plate including micro-perforations. The plate may be, for example, a metal or a semiconductor such as silicon. The metal or silicon has a relatively high heat-resistant temperature, and can easily withstand the operating temperature of the MEMS microphone.
또한, 플레이트에는 하나 이상의 미세 천공이 있을 수 있다. 미세 천공의 개수 또는 상기 미세 천공의 크기에 따라, 지연 유닛(600)의 지연 정도가 조절될 수 있다. 즉, 미세 천공의 개수가 많고 크기가 크면, 지연 정도가 적다. 반대로, 미세 천공의 개수가 적고 크기가 작으면, 지연 정도가 크다.Also, the plate may have one or more micropores. Depending on the number of micro-perforations or the size of the micro-perforations, the degree of delay of the delay unit 600 can be adjusted. That is, if the number of microperforations is large and the size is large, the degree of delay is small. Conversely, if the number of microperforations is small and the size is small, the degree of delay is large.
상술한 것과 같이, 제2 음향 경로(P2)를 통해서 MEMS 트랜듀서(400)에 도달하는 음향 신호는 제2 내부 공간(S2)을 통과하면서 지연되는데, 지연 유닛(600)에 의해 지연되는 정도를 증가시킬 수 있다. 경우에 따라서 지연 유닛(600)을 부가하여 제2 내부 공간(S2)의 크기를 감소시킬 수 있으며, 이는 본 발명의 지향성 마이크로폰의 전체적인 크기를 소형화하는데 기여할 수 있다.As described above, the acoustic signal arriving at the MEMS transducer 400 through the second acoustic path P2 is delayed while passing through the second inner space S2, and the degree of delay by the delay unit 600 is . Optionally, the delay unit 600 may be added to reduce the size of the second internal space S2, which may contribute to downsizing the overall size of the directional microphone of the present invention.
이하, 도 8 및 도 9를 참조하여 본 발명의 또 다른 일 실시예에 따른 지향성 마이크로폰에 대해서 설명하도록 한다.Hereinafter, a directional microphone according to another embodiment of the present invention will be described with reference to FIGS. 8 and 9. FIG.
도 8 및 도 9는 본 발명의 또 다른 일 실시예에 따른 지향성 마이크로폰의 단면도이다. 설명의 편의상, 도 1 내지 도 6에서 설명한 것과 다른 점을 위주로 설명한다.8 and 9 are sectional views of a directional microphone according to another embodiment of the present invention. For convenience of explanation, the differences from those described in Figs. 1 to 6 will be mainly described.
도 10을 참조하면, 제3 음향홀(310)은 제2 하우징(300)의 측면에 형성될 수 있다. 또한, 도 11을 참조하면 제3 음향홀(310)은 서로 이격된 복수 개가 형성될 수 있다. 서로 이격된 복수 개의 제3 음향홀(310) 중 하나는 제2 하우징(300)의 상면에 형성되고, 다른 하나는 측면에 형성되는 것도 가능하다.Referring to FIG. 10, a third acoustic hole 310 may be formed on a side surface of the second housing 300. Referring to FIG. 11, a plurality of third acoustic holes 310 may be spaced apart from each other. One of the plurality of third acoustic holes 310 spaced apart from each other may be formed on the upper surface of the second housing 300 and the other may be formed on the side surface.
이러한 제3 음향홀(310)의 위치를 조절하는 것에 의해 제2 음향 경로(P2)의 길이를 조절할 수 있다. 따라서 노이즈 신호의 감쇄 특성 및 노이즈 신호의 방향을 조절할 수 있다.The length of the second acoustic path P 2 can be adjusted by adjusting the position of the third acoustic hole 310. Therefore, the attenuation characteristics of the noise signal and the direction of the noise signal can be adjusted.
이상, 본 발명의 지향성 마이크로폰의 실시예들에 대해 설명하였다. 본 발명은 상술한 실시예 및 첨부한 도면에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자의 관점에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명의 범위는 본 명세서의 청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.The embodiments of the directional microphone of the present invention have been described above. The present invention is not limited to the above-described embodiments and the accompanying drawings, and various modifications and changes may be made by those skilled in the art to which the present invention pertains. Accordingly, the scope of the present invention should be determined not only by the claims of the present specification, but also by equivalents to the claims.
100: 기판 110: 제1 음향홀100: substrate 110: first acoustic hole
200: 제1 하우징 210: 제2 음향홀200: first housing 210: second acoustic hole
300: 제2 하우징 310: 제3 음향홀300: second housing 310: third acoustic hole
400: MEMS 트랜듀서 500: 신호처리소자400: MEMS transducer 500: signal processing element

Claims (4)

  1. 제1 음향홀이 형성된 기판;A substrate on which a first acoustic hole is formed;
    상기 기판과 결합하여 제1 내부 공간을 형성하고, 상기 기판과 대향하는 상면에 제2 음향홀이 형성된 제1 하우징;A first housing coupled to the substrate to form a first inner space and having a second acoustic hole formed on an upper surface thereof facing the substrate;
    상기 제2 하우징과 결합하여 제2 내부 공간을 형성하고, 제3 음향홀이 형성된 제2 하우징;A second housing coupled to the second housing to form a second inner space, and a third acoustic hole formed therein;
    상기 기판에 실장되고, 상기 제1 내부 공간에서 상기 제1 음향홀을 덮도록 위치하는 MEMS 트랜듀서; 및A MEMS transducer mounted on the substrate and positioned to cover the first acoustic hole in the first internal space; And
    상기 기판에 실장되고, 상기 제1 내부 공간에 위치하여 상기 MEMS 트랜듀서가 변환한 전기 신호를 처리하는 신호처리소자를 포함하는 지향성 마이크로폰.And a signal processing element mounted on the substrate and disposed in the first internal space to process electrical signals converted by the MEMS transducer.
  2. 제1 항에 있어서,The method according to claim 1,
    상기 제3 음향홀은 상기 제1 하우징의 상면과 대향하는 상기 제2 하우징의 상면에 형성되는 지향성 마이크로폰.And the third acoustic hole is formed on the upper surface of the second housing opposite to the upper surface of the first housing.
  3. 제1 항에 있어서,The method according to claim 1,
    상기 제1 내부 공간은 상기 제2 음향홀 이외의 다른 부분은 모두 밀폐되어 있는 지향성 마이크로폰.And the first internal space is sealed at portions other than the second acoustic hole.
  4. 제1 항에 있어서,The method according to claim 1,
    상기 제2 내부 공간은 상기 제2 음향홀 및 상기 제3 음향홀 이외의 다른 부분은 모두 밀폐되어 있는 지향성 마이크로폰.And the second internal space is sealed in portions other than the second acoustic hole and the third acoustic hole.
PCT/KR2017/013573 2017-11-24 2017-11-27 Directional microphone WO2019103206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0158059 2017-11-24
KR20170158059 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019103206A1 true WO2019103206A1 (en) 2019-05-31

Family

ID=66631641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013573 WO2019103206A1 (en) 2017-11-24 2017-11-27 Directional microphone

Country Status (1)

Country Link
WO (1) WO2019103206A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110038492A1 (en) * 2006-01-19 2011-02-17 Research Foundation Of State University Of New York Optical sensing in a directional mems microphone
US20120250897A1 (en) * 2011-04-02 2012-10-04 Mwm Acoustics, Llc Dual Cell MEMS Assembly
JP2013030822A (en) * 2011-06-24 2013-02-07 Funai Electric Co Ltd Microphone unit and sound input device including the same
KR101417018B1 (en) * 2007-11-01 2014-07-08 엘지전자 주식회사 Microphone and method for manufacturing the same
KR101610145B1 (en) * 2014-11-28 2016-04-08 현대자동차 주식회사 Microphone module and control method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110038492A1 (en) * 2006-01-19 2011-02-17 Research Foundation Of State University Of New York Optical sensing in a directional mems microphone
KR101417018B1 (en) * 2007-11-01 2014-07-08 엘지전자 주식회사 Microphone and method for manufacturing the same
US20120250897A1 (en) * 2011-04-02 2012-10-04 Mwm Acoustics, Llc Dual Cell MEMS Assembly
JP2013030822A (en) * 2011-06-24 2013-02-07 Funai Electric Co Ltd Microphone unit and sound input device including the same
KR101610145B1 (en) * 2014-11-28 2016-04-08 현대자동차 주식회사 Microphone module and control method therefor

Similar Documents

Publication Publication Date Title
US10257610B2 (en) Microphone module with sound pipe
US10597287B2 (en) Multi-chamber transducer module, apparatus including the multi-chamber transducer module and method of manufacturing the multi-chamber transducer module
KR20190060158A (en) Directional microphone
WO2012088688A1 (en) A mems microphone and method for packaging the same
US9738515B2 (en) Transducer with enlarged back volume
CN104185100B (en) The electronic installation of microphone array shell and application microarray microphone
KR20080023144A (en) Microphone module and mounting structure adapted to portable electronic device
CN101444111A (en) MEMS microphone of card type
US20130163790A1 (en) Microphone unit and electronic apparatus
US20150146888A1 (en) Mems microphone package and method of manufacturing the same
WO2013165052A1 (en) Sensor package and manufacturing method therefor
WO2011145790A1 (en) Microphone assembly
KR101931168B1 (en) Directional microphone
WO2022100551A1 (en) Mems piezoelectric microspeaker, microspeaker unit, and electronic device
KR101493335B1 (en) Unidirectional MEMS microphone and MEMS device
CN104507029A (en) Directional MEMS (Micro-electromechanical Systems) microphone
KR102117325B1 (en) Directional MEMS microphone and MEMS microphone module comprising it
KR101474776B1 (en) Unidirectional MEMS microphone
WO2019103206A1 (en) Directional microphone
CN110662148B (en) MEMS microphone
CN217693712U (en) Microphone and electronic equipment
WO2023160719A1 (en) Vibration sensor, electronic device, and vibration detection method
CN204291391U (en) A kind of directive property MEMS microphone
WO2011159003A1 (en) Microphone
CN204291393U (en) A kind of directive property MEMS microphone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933124

Country of ref document: EP

Kind code of ref document: A1