WO2019103189A1 - 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치 - Google Patents

건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치 Download PDF

Info

Publication number
WO2019103189A1
WO2019103189A1 PCT/KR2017/013457 KR2017013457W WO2019103189A1 WO 2019103189 A1 WO2019103189 A1 WO 2019103189A1 KR 2017013457 W KR2017013457 W KR 2017013457W WO 2019103189 A1 WO2019103189 A1 WO 2019103189A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
wireless communication
microcomputer
energy
power control
Prior art date
Application number
PCT/KR2017/013457
Other languages
English (en)
French (fr)
Inventor
서형우
강태영
Original Assignee
(주)비에이에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)비에이에너지 filed Critical (주)비에이에너지
Publication of WO2019103189A1 publication Critical patent/WO2019103189A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/10Power supply of remote control devices
    • G08C2201/11Energy harvesting
    • G08C2201/114Solar power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to an energy-independent wireless communication power control apparatus for building-built-in walls, and more particularly, And more particularly, to an energy-independent wireless communication power control device for building wall built-in which can be easily and widely applied to recent smart environments.
  • Solar cells using solar energy do not use fossil fuels such as coal or petroleum, and they are attracting attention as a new alternative energy source in the future because they use pollution-free and infinite energy source, sunlight. And is used to obtain generated power of automobiles and the like.
  • photovoltaic power generation is a technology that produces electricity directly using photovoltaic (PV).
  • a solar cell is a semiconductor device that converts light energy into electrical energy using a photoelectric effect and is composed of two semiconductor thin films each having a positive (+) and a negative (-) polarity, and a plurality of solar cells ) Are connected in series / parallel to generate a voltage and a current required by the user, and the user can use the power generated in such a solar cell.
  • photovoltaic power generation system has a simple system configuration, and recent efforts to apply it to the construction field have been actively attempted and it is called building integrated PV (BIPV).
  • BIPV building integrated PV
  • the most representative is to combine existing building materials with solar cells to simultaneously exhibit building materials and power generation functions.
  • Building integrated photovoltaic power generation ie, BIPV
  • BIPV Building integrated photovoltaic power generation
  • Such a building integration technology is a more active technology to utilize the existing building envelope from the viewpoint of the concept of protection of external stimuli and utilize it as a tool of generating energy, and it can take part in the supply and demand of the solar cell, It is expected to double the installation cost.
  • the present invention provides an energy-standing type wireless communication power control apparatus for building-wall built-in type having the following structure.
  • a microcomputer incorporated in an outer wall body forming a building wall, the microcomputer being powered by at least one solar panel coupled to the outer wall body;
  • a plurality of sensors for providing predetermined information to the microcomputer so that a ventilation system or a building energy management system (BEMS) applied to the building is controlled by the microcomputer;
  • a wireless communication module that is connected to the microcomputer and enables wireless communication with the wireless communication module.
  • predetermined information can be communicated to the monitoring application or the smart home service.
  • the plurality of sensors include:
  • a fine dust detecting sensor for detecting the amount of fine dust in the building.
  • the plurality of sensors include:
  • a carbon dioxide sensing sensor for sensing the amount of carbon dioxide in the building.
  • the plurality of sensors include:
  • a temperature sensing sensor for sensing a temperature inside the building.
  • the plurality of sensors include:
  • the present invention since it is embedded in a building wall, it is advantageously advantageous in construction. In addition, because it is energy-independent, there is no need for electricity, so it can be used semi-permanently. In addition, since wireless communication is possible, it is possible to easily and widely apply to a recent smart environment.
  • FIG. 1 is a schematic layout diagram of an energy-standing type wireless communication power control apparatus for building wall built-in according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram showing the use state of Fig. 1.
  • Fig. 2 is a schematic diagram showing the use state of Fig. 1.
  • FIG. 3 is a control block diagram of an energy-standing type wireless communication power control apparatus for building wall built-in according to an embodiment of the present invention.
  • FIG. 1 is a schematic arrangement structure of an energy-standing type wireless communication power control apparatus for building wall built-in according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the use state of FIG. 1
  • FIG. FIG. 2 is a control block diagram of an energy-independent wireless communication power control device for building wall built-in according to the present invention
  • the energy-standing type wireless communication power control device 160 for building wall built-in since the energy-standing type wireless communication power control device 160 for building wall built-in according to the present embodiment is built in the building wall 100, it is not only advantageous in construction but also energy- And may include a microcomputer 180, a plurality of sensors 191 to 194, and a wireless communication module 195.
  • the microcomputer 180 may be a wireless communication module.
  • the energy-standing wireless communication power control device 160 for building wall built-in according to the present embodiment may be incorporated in the building wall 100 as shown in FIG. That is, inside the outer wall body 110 constituting the building wall body 100. On the rear surface of the outer wall body 110, an insulator 150 providing a heat insulating function is provided.
  • the sensing function is deteriorated, so that a large number of sensors 191 to 194, 195 can be closed with the insulator 150 within an operable range.
  • the microcomputer 180 is a practical control module.
  • the solar panel 120 is provided on the front surface of the outer wall body 110 of the building wall 100, and the microcomputer 180 is driven using the power generated by the solar panel 120 . Therefore, a separate electric wire is not required.
  • the battery 185 is provided so that the power generated from the solar panel 120 is stored.
  • the battery 185 is a place where electric power generated from the solar panel 120 is stored, and also supplies low power to the microcomputer 180.
  • a converter for converting power may be provided between the battery 185 and the microcomputer 180.
  • the microcomputer 180 is connected to the plurality of sensors 191 to 194 and the wireless communication module 195.
  • the plurality of sensors 191 to 194 are controlled by the microcomputer 180 so that the ventilation system 173 or the building energy management system 174 applied to the building is controlled by the microcomputer 180, Lt; / RTI >
  • the information at this time may vary.
  • information on the amount of fine dust and carbon dioxide remaining in the building, and information on the temperature and humidity in the building are transmitted to the microcomputer 180.
  • additional information may be added.
  • a plurality of sensors 191 to 194 for sensing such information and transmitting the information to the microcomputer 180 include a fine dust detecting sensor 191 for detecting the amount of fine dust in the building, a carbon dioxide detecting sensor for detecting the amount of carbon dioxide in the building, A temperature sensing sensor 193 for sensing the temperature inside the building, and a humidity sensing sensor 194 for sensing the humidity in the building.
  • the wireless communication module 195 is connected to the microcomputer 180 and enables wireless communication. That is, the predetermined information is communicated to the monitoring application 171 or the smart home service 172 through the wireless communication module 195.
  • the microcomputer 180 receives information on the amount of fine dust and the amount of carbon dioxide remaining in the building from the sensors 191 to 194, and information on the temperature and humidity in the building, To control the ventilation system 173 or the building energy management system (BEMS) 174 to be operated.
  • BEMS building energy management system
  • the microcomputer 180 transmits predetermined information through the wireless communication module 195, that is, information from a plurality of sensors 191 to 194 or the degree of the managed state to the monitoring application 171 or To be communicated to the smart home service 172.
  • the microcomputer 180 performing such a role may include a central processing unit 181, a memory 182, a memory 182, and a support circuit 183 (SUPPORT CIRCUIT).
  • the central processing unit 181 receives information from the plurality of sensors 191 to 194 and controls the ventilation system 173 or the building energy management system 174 applied to the building to operate, May be one of a variety of computer processors that may be industrially applicable to control certain information to be communicated to the monitoring application 171 or the smart home service 172 via the network 195.
  • the memory 182 (MEMORY) is connected to the central processing unit 181.
  • the memory 182 may be a computer readable recording medium and may be located locally or remotely and may be any of various types of storage devices, including, for example, random access memory (RAM), ROM, floppy disk, hard disk, May be at least one or more memories.
  • the support circuit 183 (SUPPORT CIRCUIT) is coupled with the central processing unit 181 to support the typical operation of the processor.
  • the support circuit 183 may include a cache, a power supply, a clock circuit, an input / output circuit, a subsystem, and the like.
  • the microcomputer 180 receives information on the amount of fine dust and the amount of carbon dioxide remaining in the building from the plurality of sensors 191 to 194, and information on the temperature and humidity in the building, Controls the ventilation system 173 or the building energy management system 174 to be operated and controls the predetermined information to be communicated to the monitoring application 171 or the smart home service 172 via the wireless communication module 195.
  • a series of processes or the like for controlling the operation of the protection window sliding unit 140 such that the microcomputer 180 operates the protection window in stages based on the sensing signal of the sensing unit 170 can be stored in the memory 182 have.
  • a software routine may be stored in the memory 182.
  • the software routines may also be stored or executed by other central processing units (not shown).
  • processes according to the present invention are described as being performed by software routines, it is also possible that at least some of the processes of the present invention may be performed by hardware. As such, the processes of the present invention may be implemented in software executed on a computer system, or in hardware such as an integrated circuit, or in combination of software and hardware.
  • the present embodiment since it is built in the building wall 100, it is not only advantageous in construction but also energy-independent type so that no electricity is required. In particular, So that it can be easily and widely applied.
  • Synergy effect can be achieved by combining with a composite insulation material for zero energy building.
  • It can be used for construction of non-power system in road traffic facilities required for wireless charging and discharging system as well as building wall.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Building Environments (AREA)
  • Ventilation (AREA)
  • Selective Calling Equipment (AREA)

Abstract

건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치에 관한 발명이다. 본 발명의 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치는 건물벽체를 형성하는 외벽 몸체에 내장되되 상기 외벽 몸체에 결합되는 적어도 하나의 태양광 패널의 전력으로 구동되는 마이콤; 건물에 적용되는 환기 시스템 또는 건물 에너지 관리 시스템(BEMS, Building Energy Management System)이 상기 마이콤에 의해 컨트롤되도록 상기 마이콤으로 소정의 정보를 제공하는 다수의 센서; 및 상기 마이콤과 연결되되 무선 통신이 가능하도록 하는 무선 통신 모듈을 포함한다.

Description

건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치
본 발명은, 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치에 관한 것으로서, 보다 상세하게는, 건물벽체에 내장되기 때문에 시공에 상당히 유리할 뿐만 아니라 에너지 자립형이라서 별도의 전기가 필요치 않으며, 특히 무선 통신이 가능해서 최근의 스마트 환경에 용이하고 광범위하게 적용할 수 있는 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치에 관한 것이다.
최근 태양에너지를 이용하여 전력을 생산할 수 있는 태양광 발전설비의 사용이 점차 보편화되고 있다.
이러한 태양에너지를 이용하는 태양전지는 석탄이나 석유와 같은 화석연료를 사용하지 않고, 무공해이며 무한의 에너지원인 태양광을 이용하기 때문에 미래의 새로운 대체 에너지원으로서 각광을 받고 있으며, 태양광 발전소나 건축물, 자동차 등의 발전 전력을 얻는데 이용되고 있다.
참고로, 태양광 발전은 태양전지(PV : Photovoltaic)를 이용하여 직접 전기를 생산하는 기술이다.
태양전지는 광전효과를 이용하여 빛 에너지를 전기에너지로 변환시키는 반도체 소자로서, 각각이 플러스(+)와 마이너스(-) 극성을 띠는 2장의 반도체 박막으로 구성되며, 다수의 태양전지 셀(cell)들이 직/병렬로 연결되어 사용자가 필요로 하는 전압 및 전류를 발생시키게 되고, 사용자는 이러한 태양전지에서 발생된 전력을 사용할 수 있게 되는 것이다.
태양광 발전 시스템은 다른 대체에너지 활용 기술과 달리 시스템 구성이 간단하여 최근 건축분야에 응용하려는 노력이 활발히 시도되고 있으며, 이를 건물일체형 태양광 발전 시스템(BIPV; Building Integrated PV)이라 한다.
가장 대표적인 것이 기존의 건축자재와 태양전지를 결합시켜 건축재료와 발전 기능을 동시에 발휘하는 것이다.
건물일체형 태양광 발전 즉, BIPV는 PV 모듈을 건축자재화하여 건물 외피에 적용하고 있다.
이러한 건물 일체화 기술은 기존의 건축물 외피를 단순히 외적 자극의 보호의 개념의 관점에서 탈피하여 에너지 창출의 도구로 활용하기 위한 보다 적극적인 기술로서, 태양전지 수급의 일익을 담당할 수 있어 기존의 태양전지 시스템 설치에 소요되는 비용을 절감하는 이중효과를 기대할 수 있을 것으로 예상된다.
하지만, 아직까지는 이에 대한 기술이 실질적으로 구현되고 있지 않다는 점에서 기존에 알려지지 않은 신개념의 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치에 대한 기술개발이 필요한 실정이다.
참고로, 본 출원은 산업통상자원부의 재원으로 한국에너지기술평가원의 지원 하에 이루어진 것이다[과제번호 20172020109240]
본 발명의 목적은, 건물벽체에 내장되기 때문에 시공에 상당히 유리할 뿐만 아니라 에너지 자립형이라서 별도의 전기가 필요치 않으며, 특히 무선 통신이 가능해서 최근의 스마트 환경에 용이하고 광범위하게 적용할 수 있는 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치를 제공하는 것이다.
전술한 목적을 위해 본 발명에서는 아래와 같은 구성으로 이루어지는 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치를 제공한다.
건물벽체를 형성하는 외벽 몸체에 내장되되 상기 외벽 몸체에 결합되는 적어도 하나의 태양광 패널의 전력으로 구동되는 마이콤;
건물에 적용되는 환기 시스템 또는 건물 에너지 관리 시스템(BEMS, Building Energy Management System)이 상기 마이콤에 의해 컨트롤되도록 상기 마이콤으로 소정의 정보를 제공하는 다수의 센서; 및
상기 마이콤과 연결되되 무선 통신이 가능하도록 하는 무선 통신 모듈을 포함하는 것을 특징으로 하는 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치.
상기 무선 통신 모듈을 통해 소정의 정보가 모니터링 어플 또는 스마트 홈 서비스로 통신될 수 있다.
상기 태양광 패널에서 발생되는 전력이 저장되며, 상기 마이콤으로 저전력을 공급하는 배터리를 더 포함할 수 있다.
상기 다수의 센서는,
상기 건물 내의 미세먼지의 양을 감지하는 미세먼지 감지 센서를 포함할 수 있다.
상기 다수의 센서는,
상기 건물 내의 이산화탄소의 양을 감지하는 이산화탄소 감지 센서를 포함할 수 있다.
상기 다수의 센서는,
상기 건물 내의 온도를 감지하는 온도 감지 센서를 포함할 수 있다.
상기 다수의 센서는,
상기 건물 내의 습도를 감지하는 습도 감지 센서를 포함할 수 있다.
본 발명에 따르면, 건물벽체에 내장되기 때문에 시공에 상당히 유리한 효과가 있다. 뿐만 아니라 에너지 자립형이라서 별도의 전기가 필요치 않기 때문에 반영구적으로 사용할 수 있는 효과가 있다. 또한 무선 통신이 가능해서 최근의 스마트 환경에 용이하고 광범위하게 적용할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치의 개략적인 배치 구조도이다.
도 2는 도 1의 사용상태 모식도이다.
도 3은 본 발명의 일 실시예에 따른 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치의 제어블록도이다.
이하, 첨부도면을 참조하여 본 발명을 바람직한 실시예를 통해 구체적으로 설명한다.
도 1은 본 발명의 일 실시예에 따른 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치의 개략적인 배치 구조도, 도 2는 도 1의 사용상태 모식도, 그리고 도 3은 본 발명의 일 실시예에 따른 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치의 제어블록도이다.
이들 도면을 참조하면, 본 실시예에 따른 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치(160)는 건물벽체(100)에 내장되기 때문에 시공에 상당히 유리할 뿐만 아니라 에너지 자립형이라서 별도의 전기가 필요치 않으며, 특히 무선 통신이 가능해서 최근의 스마트 환경에 용이하고 광범위하게 적용할 수 있도록 한 것으로서, 마이콤(180), 다수의 센서(191~194), 그리고 무선 통신 모듈(195)을 포함할 수 있다.
본 실시예에 따른 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치(160)는 도 1처럼 건물벽체(100)에 내장될 수 있다. 즉 건물벽체(100)를 이루는 외벽 몸체(110)의 내부에 내장될 수 있다. 외벽 몸체(110)의 배면에는 단열기능을 제공하는 인슐레이터(150)가 마련된다.
이때, 인슐레이터(150)가 본 실시예에 따른 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치(160)를 완전히 차폐하면 센싱 기능이 떨어지기 때문에 다수의 센서(191~194), 그리고 무선 통신 모듈(195)이 동작 가능한 범위 내에서 인슐레이터(150)로 마감될 수 있다.
마이콤(180)은 실질적인 컨트롤 모듈이다. 본 실시예의 경우, 건물벽체(100)의 외벽 몸체(110)의 전면에 태양광 패널(120)이 마련되는데, 이러한 태양광 패널(120)에서 발생되는 전력을 이용해서 마이콤(180)이 구동될 수 있다. 따라서 별도의 전기선이 필요치 않는다.
이때, 태양광 패널(120)은 태양이 존재하는 낮에 구동되고 밤에는 구동되지 않기 때문에 태양광 패널(120)에서 발생되는 전력이 저장되기 위해 배터리(185)가 마련된다.
배터리(185)는 태양광 패널(120)에서 발생되는 전력이 저장되는 장소를 이루며, 또한 마이콤(180)으로 저전력을 공급하는 역할을 한다. 물론, 배터리(185)와 마이콤(180) 사이에는 전력을 변환하기 위한 컨버터가 갖춰질 수 있다.
마이콤(180)은 다수의 센서(191~194) 및 무선 통신 모듈(195)과 연결된다.
다수의 센서(191~194)는 건물에 적용되는 환기 시스템(173) 또는 건물 에너지 관리 시스템(BEMS, Building Energy Management System, 174)이 마이콤(180)에 의해 컨트롤되도록 마이콤(180)으로 소정의 정보를 제공한다.
이때의 정보는 다양할 수 있다. 본 실시예에서는 건물 내에 잔존 가능한 미세먼지의 양 및 이산화탄소의 양에 대한 정보, 그리고 건물 내의 온도 및 습도에 대한 정보를 마이콤(180)으로 전송하는 것으로 본다. 하지만, 이 이외의 정보가 더 추가될 수도 있다.
이러한 정보를 감지하여 마이콤(180)으로 전송하기 위해 다수의 센서(191~194)는 건물 내의 미세먼지의 양을 감지하는 미세먼지 감지 센서(191), 건물 내의 이산화탄소의 양을 감지하는 이산화탄소 감지 센서(192), 건물 내의 온도를 감지하는 온도 감지 센서(193), 그리고 건물 내의 습도를 감지하는 습도 감지 센서(194)를 포함할 수 있다.
무선 통신 모듈(195)은 마이콤(180)과 연결되되 무선 통신이 가능하도록 하는 역할을 한다. 즉 무선 통신 모듈(195)을 통해 소정의 정보가 모니터링 어플(171) 또는 스마트 홈 서비스(172)로 통신되게 한다.
한편, 본 실시예에서 마이콤(180)은 다수의 센서(191~194)로부터의 건물 내에 잔존 가능한 미세먼지의 양 및 이산화탄소의 양에 대한 정보, 그리고 건물 내의 온도 및 습도에 대한 정보를 받아 건물에 적용되는 환기 시스템(173) 또는 건물 에너지 관리 시스템(BEMS, Building Energy Management System, 174)이 동작되게 컨트롤한다.
뿐만 아니라 본 실시예에서 마이콤(180)은 무선 통신 모듈(195)을 통해서 소정의 정보, 즉 다수의 센서(191~194)로부터의 정보 혹은 관리되고 있는 상태의 정도 등이 모니터링 어플(171) 또는 스마트 홈 서비스(172)로 통신되게 한다.
이러한 역할을 수행하는 마이콤(180)은 중앙처리장치(181, CPU), 메모리(182, MEMORY), 그리고 서포트 회로(183, SUPPORT CIRCUIT)를 포함할 수 있다.
중앙처리장치(181)는 본 실시예에서 다수의 센서(191~194)로부터의 정보를 받아 건물에 적용되는 환기 시스템(173) 또는 건물 에너지 관리 시스템(174)이 동작되게 컨트롤하는 한편 무선 통신 모듈(195)을 통해서 소정의 정보가 모니터링 어플(171) 또는 스마트 홈 서비스(172)로 통신되게 컨트롤하기 위해서 산업적으로 적용될 수 있는 다양한 컴퓨터 프로세서들 중 하나일 수 있다.
메모리(182, MEMORY)는 중앙처리장치(181)와 연결된다. 메모리(182)는 컴퓨터로 읽을 수 있는 기록매체로서 로컬 또는 원격지에 설치될 수 있으며, 예를 들면 랜덤 액세스 메모리(RAM), ROM, 플로피 디스크, 하드 디스크 또는 임의의 디지털 저장 형태와 같이 쉽게 이용가능한 적어도 하나 이상의 메모리일 수 있다.
서포트 회로(183, SUPPORT CIRCUIT)는 중앙처리장치(181)와 결합되어 프로세서의 전형적인 동작을 지원한다. 이러한 서포트 회로(183)는 캐시, 파워 서플라이, 클록 회로, 입/출력 회로, 서브시스템 등을 포함할 수 있다.
본 실시예에서 마이콤(180)은 다수의 센서(191~194)로부터의 건물 내에 잔존 가능한 미세먼지의 양 및 이산화탄소의 양에 대한 정보, 그리고 건물 내의 온도 및 습도에 대한 정보를 받아 건물에 적용되는 환기 시스템(173) 또는 건물 에너지 관리 시스템(174)이 동작되게 컨트롤하는 한편 무선 통신 모듈(195)을 통해서 소정의 정보가 모니터링 어플(171) 또는 스마트 홈 서비스(172)로 통신되게 컨트롤한다.
이때, 마이콤(180)이 감지부(170)의 감지신호에 기초하여 보호 윈도우가 단계적으로 동작되도록 보호 윈도우 슬라이딩 유닛(140)의 동작을 컨트롤하는 일련의 프로세스 등은 메모리(182)에 저장될 수 있다. 전형적으로는 소프트웨어 루틴이 메모리(182)에 저장될 수 있다. 소프트웨어 루틴은 또한 다른 중앙처리장치(미도시)에 의해서 저장되거나 실행될 수 있다.
본 발명에 따른 프로세스는 소프트웨어 루틴에 의해 실행되는 것으로 설명하였지만, 본 발명의 프로세스들 중 적어도 일부는 하드웨어에 의해 수행되는 것도 가능하다. 이처럼, 본 발명의 프로세스들은 컴퓨터 시스템 상에서 수행되는 소프트웨어로 구현되거나 또는 집적 회로와 같은 하드웨어로 구현되거나 또는 소프트웨어와 하드웨어의 조합에 의해서 구현될 수 있다.
이상 설명한 바와 같은 구조와 작용을 갖는 본 실시예에 따르면, 건물벽체(100)에 내장되기 때문에 시공에 상당히 유리할 뿐만 아니라 에너지 자립형이라서 별도의 전기가 필요치 않으며, 특히 무선 통신이 가능해서 최근의 스마트 환경에 용이하고 광범위하게 적용할 수 있게 된다.
본 발명의 효과에 대해 좀 더 부연한다.
국내외 건축물 단열규정 강화로 인한 문제점인 실내 공기질 개선방안의 일환으로 접목되어 신규시장 진출을 개척할 수 있다.
제로에너지 빌딩을 위한 복합 단열 외장재와의 결합하여 시너지 효과를 구축할 수 있다.
건축용 벽체뿐만 아니라 무선 충방전 시스템이 필요로 하는 도로 교통시설물에 무전원 시스템 구축에 활용이 가능하다.
이와 같이 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정예 또는 변형예들은 본 발명의 청구범위에 속한다 하여야 할 것이다.

Claims (7)

  1. 건물벽체를 형성하는 외벽 몸체에 내장되되 상기 외벽 몸체에 결합되는 적어도 하나의 태양광 패널의 전력으로 구동되는 마이콤;
    건물에 적용되는 환기 시스템 또는 건물 에너지 관리 시스템(BEMS, Building Energy Management System)이 상기 마이콤에 의해 컨트롤되도록 상기 마이콤으로 소정의 정보를 제공하는 다수의 센서; 및
    상기 마이콤과 연결되되 무선 통신이 가능하도록 하는 무선 통신 모듈을 포함하는 것을 특징으로 하는 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치.
  2. 제1항에 있어서,
    상기 무선 통신 모듈을 통해 소정의 정보가 모니터링 어플 또는 스마트 홈 서비스로 통신되는 것을 특징으로 하는 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치.
  3. 제1항에 있어서,
    상기 태양광 패널에서 발생되는 전력이 저장되며, 상기 마이콤으로 저전력을 공급하는 배터리를 더 포함하는 것을 특징으로 하는 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치.
  4. 제1항에 있어서,
    상기 다수의 센서는,
    상기 건물 내의 미세먼지의 양을 감지하는 미세먼지 감지 센서를 포함하는 것을 특징으로 하는 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치.
  5. 제1항에 있어서,
    상기 다수의 센서는,
    상기 건물 내의 이산화탄소의 양을 감지하는 이산화탄소 감지 센서를 포함하는 것을 특징으로 하는 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치.
  6. 제1항에 있어서,
    상기 다수의 센서는,
    상기 건물 내의 온도를 감지하는 온도 감지 센서를 포함하는 것을 특징으로 하는 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치.
  7. 제1항에 있어서,
    상기 다수의 센서는,
    상기 건물 내의 습도를 감지하는 습도 감지 센서를 포함하는 것을 특징으로 하는 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치.
PCT/KR2017/013457 2017-11-23 2017-11-24 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치 WO2019103189A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170157736A KR20190059802A (ko) 2017-11-23 2017-11-23 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치
KR10-2017-0157736 2017-11-23

Publications (1)

Publication Number Publication Date
WO2019103189A1 true WO2019103189A1 (ko) 2019-05-31

Family

ID=66630657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013457 WO2019103189A1 (ko) 2017-11-23 2017-11-24 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치

Country Status (2)

Country Link
KR (1) KR20190059802A (ko)
WO (1) WO2019103189A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102129577B1 (ko) * 2019-12-31 2020-07-02 주식회사 다이어 내벽체 패널 용 배선 모듈 및 내벽체 패널

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141725A (ja) * 2007-12-07 2009-06-25 Daiwa House Industry Co Ltd 住宅機器遠隔監視サービス提供システム
KR20100013043U (ko) * 2009-06-24 2010-12-31 차봉상 태양전지를 이용한 배연창 무선제어시스템
KR101306299B1 (ko) * 2013-01-15 2013-09-09 (주)대연씨앤아이 Bipv 솔라 모듈을 이용한 지능형 빌딩 에너지 관리 시스템
KR20150080824A (ko) * 2014-01-02 2015-07-10 주식회사 안테크 태양광을 이용한 실내 환경 제어 시스템
KR101593962B1 (ko) * 2015-05-22 2016-02-15 (주)한신산업 건물일체형 태양광 발전시스템의 태양전지모듈 보호방법 및 그 보호장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0177792B1 (ko) 1996-08-27 1999-02-01 정지옹 합성수지재 슬라이드 파스너의 봉재부 절단팁 분리장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141725A (ja) * 2007-12-07 2009-06-25 Daiwa House Industry Co Ltd 住宅機器遠隔監視サービス提供システム
KR20100013043U (ko) * 2009-06-24 2010-12-31 차봉상 태양전지를 이용한 배연창 무선제어시스템
KR101306299B1 (ko) * 2013-01-15 2013-09-09 (주)대연씨앤아이 Bipv 솔라 모듈을 이용한 지능형 빌딩 에너지 관리 시스템
KR20150080824A (ko) * 2014-01-02 2015-07-10 주식회사 안테크 태양광을 이용한 실내 환경 제어 시스템
KR101593962B1 (ko) * 2015-05-22 2016-02-15 (주)한신산업 건물일체형 태양광 발전시스템의 태양전지모듈 보호방법 및 그 보호장치

Also Published As

Publication number Publication date
KR20190059802A (ko) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2017142218A1 (ko) 에너지 저장 시스템 및 시스템 운용 방법
WO2022145907A1 (ko) 스트링 단위로 균등 전압을 추종하는 스트링 옵티마, 및 이를 적용한 태양광 발전 시스템
CN102630360A (zh) 配电系统
WO2017098662A1 (ja) 建築物用の水素エネルギー供給システム、及び建築物用の水素エネルギー供給システムの制御方法
WO2013094838A1 (ko) 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템
WO2018052222A1 (ko) 플렉시블 솔라 패널{flexible solar panels}
WO2015030358A1 (ko) 독립형 태양광 발전시스템이 적용된 주거용 컨테이너 하우스
WO2012157964A1 (ko) 블라인드 형태의 태양광 발전 시스템 및 블라인드 형태의 태양광 발전 시스템을 이용한 비닐하우스의 발광 및 발열 장치
CN108418250A (zh) 分布式家庭储能系统
CN107065812A (zh) 一种基于光伏发电的家用综合管控系统
WO2019103189A1 (ko) 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치
WO2019093575A1 (ko) 빌딩의 폐열회수 난방 시스템
WO2017204588A2 (ko) 태양광 발전 장치 관리 시스템, 태양광 발전 장치 관리 방법 및 컴퓨터 판독 가능 저장 매체
CN210053046U (zh) 一种电力设备箱
WO2019027101A1 (ko) 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치
CN212563033U (zh) 遮阳装置及建筑物
KR20190015675A (ko) 건물벽체 내장용 에너지 자립형 무선 통신 파워 컨트롤 장치
KR101008814B1 (ko) 태양전지 발전시스템
WO2012165705A1 (ko) 건물장착형 태양전지창호의 지지프레임과 이를 이용한 건물장착형 태양전지창호
CN211017264U (zh) 一种集装箱式液流电池系统结构单元
CN107272511A (zh) 一种基于光伏发电的家用综合管控系统
CN110932332A (zh) 一种分布调控式太阳能发电系统
KR101841651B1 (ko) 낙뢰 피해 방지를 위한 에너지 저장 장치를 구비한 태양광 발전 시스템
WO2019103190A1 (ko) 태양광 패널 일체형 단열 외장재
CN111502523A (zh) 遮阳装置及建筑物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933006

Country of ref document: EP

Kind code of ref document: A1