WO2019103134A1 - Impedance matching circuit - Google Patents

Impedance matching circuit Download PDF

Info

Publication number
WO2019103134A1
WO2019103134A1 PCT/JP2018/043337 JP2018043337W WO2019103134A1 WO 2019103134 A1 WO2019103134 A1 WO 2019103134A1 JP 2018043337 W JP2018043337 W JP 2018043337W WO 2019103134 A1 WO2019103134 A1 WO 2019103134A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
frequency
matching circuit
power source
impedance matching
Prior art date
Application number
PCT/JP2018/043337
Other languages
French (fr)
Japanese (ja)
Inventor
麻子 鈴木
徹 谷
仲 成幸
大平 孝
基照 宮崎
悟司 塚本
尚貴 坂井
Original Assignee
アダマンド並木精密宝石株式会社
国立大学法人滋賀医科大学
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アダマンド並木精密宝石株式会社, 国立大学法人滋賀医科大学, 国立大学法人豊橋技術科学大学 filed Critical アダマンド並木精密宝石株式会社
Priority to JP2019555389A priority Critical patent/JPWO2019103134A1/en
Publication of WO2019103134A1 publication Critical patent/WO2019103134A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance

Definitions

  • the present invention relates to an impedance matching circuit.
  • GaN HEMT High Electron Mobility Transistor
  • AC power source microwave power generator
  • microwave power generators include microwave surgical equipment. In surgery with a microwave surgical device, the affected area is heated by microwaves. However, as the operation progresses, the condition of the affected area changes, and the impedance as a load on the affected area seen from the microwave generator changes. In addition, organs and blood vessels that are affected areas have different impedances depending on the site.
  • a device that matches the impedance on the microwave generator side immediately during surgery to prevent power reflection and efficiently transmit power to the load when the impedance changes depending on the progress of the operation and the site. And circuits are required.
  • impedance matching devices examples include a slug tuner and a stub tuner (for example, see Patent Document 1 as an example of a stub tuner). Further, an impedance matching circuit using a varactor diode or an FET switch has also been proposed (for example, see Patent Document 2 as an example of an impedance matching circuit configured by a varactor diode).
  • the slug tuner, the stub tuner, etc. perform mechanical alignment, it takes about 100 milliseconds for alignment.
  • the time required for matching is relatively short.
  • the power resistance of the circuit element is as low as 1.0 W or less, it can not be used for high power applications of several tens W or more such as microwave surgical equipment.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an impedance matching circuit that can be used for high power applications of several tens of W or more and that can perform higher-speed impedance matching.
  • the impedance matching circuit includes a variable frequency AC power source and is connected to a desired target load, changes the frequency of the variable frequency AC power source, and displays the locus of output impedance spirally on a Smith chart. And an impedance that is a complex conjugate of the impedance of the target load, and the output impedance is made to match or fall within a desired numerical range.
  • the output impedance can be matched against the impedance indicated by the desired target load at a high speed such as 1.0 millisecond or less immediately. It is possible to
  • the impedance matching circuit can be configured without using a variable reactance element such as a varactor diode. That is, the impedance matching circuit can be configured only with a circuit element having high resistance to high power. Thus, it can be used for high power applications of several tens of watts or more.
  • FIG. 5 is a circuit diagram of a system comprising a fixed frequency AC power source V and a desired target load exhibiting an impedance ZL.
  • FIG. 5 is a circuit diagram in which an impedance matching circuit having a fixed impedance circuit is connected between a fixed frequency AC power source V and a load. It is the circuit diagram which connected the impedance matching circuit provided with the variable element between fixed frequency alternating current power source V and load. It is a circuit diagram showing typically the principle and the embodiment of the impedance matching circuit concerning the present invention. It is a circuit diagram showing Example 1 of the impedance matching circuit concerning the present invention. In Example 1, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi.
  • Example 1 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii.
  • FIG. 6 is a Smith chart in which the impedance of 10 random loads is plotted as an example of the impedance indicated by the load when FIG. 5 is broken by a broken line (3) and the load side (right side in FIG. 5) is seen .
  • FIG. 7 is a Smith chart in which the 10 complex conjugate points of FIG. 8 are superimposed and plotted.
  • FIG. 5 is a graph of a reflection coefficient ⁇ iii and a desired frequency band when the load side (right side in FIG. 5) is seen by cutting FIG. 5 with a broken line (3).
  • Example 2 It is a circuit diagram showing Example 2 of the impedance matching circuit concerning the present invention.
  • Example 2 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi.
  • Example 2 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii.
  • FIG. 11 is a graph of a reflection coefficient ⁇ iii and a desired frequency band when the load side (right side in FIG. 11) is seen by cutting FIG. 11 with a broken line (3).
  • Example 3 It is a circuit diagram showing Example 3 of an impedance matching circuit concerning the present invention.
  • Example 3 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi.
  • Example 3 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii.
  • FIG. 15 is a graph of a reflection coefficient ⁇ iii and a desired frequency band when the load side (right side in FIG. 15) is seen by cutting FIG. 15 with a broken line (3).
  • It is a circuit diagram showing Example 4 of the impedance matching circuit concerning the present invention.
  • Example 4 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi.
  • Example 4 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii.
  • FIG. 19 is a graph of a reflection coefficient ⁇ iii and a desired frequency band when the load side (right side in FIG. 19) is seen by cutting FIG. 19 with a broken line (3).
  • It is a circuit diagram showing Example 5 of the impedance matching circuit concerning the present invention.
  • Example 5 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi.
  • Example 5 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii.
  • FIG. 19 is a graph of a reflection coefficient ⁇ iii and a desired frequency band when the load side (right side in FIG. 19) is seen by cutting FIG. 19 with a broken line (3).
  • It is a circuit diagram showing Example 5 of the impedance matching circuit concerning the present invention
  • Example 18 is a graph of a reflection coefficient ⁇ iii and a desired frequency band when the load side (right side in FIG. 18) is seen by cutting FIG. 18 with a broken line (3). It is a circuit diagram showing Example 6 of the impedance matching circuit concerning the present invention. It is a circuit diagram showing Example 7 of an impedance matching circuit concerning the present invention. It is a circuit diagram showing Example 8 of the impedance matching circuit concerning the present invention. In Example 6, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi. In Example 6, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii.
  • FIG. 27 is a graph of a reflection coefficient ⁇ iii and a desired frequency band when the load side (right side in FIG. 27) is seen by cutting FIG. 27 by a broken line (3).
  • Example 7 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi.
  • Example 7 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii.
  • FIG. 28 is a graph of a reflection coefficient ⁇ iii and a desired frequency band when the load side (right side in FIG. 28) is seen by cutting FIG. 28 by a broken line (3).
  • Example 8 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi.
  • Example 8 it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii.
  • 29 is a graph of a reflection coefficient ⁇ iii and a desired frequency band when the load side (right side in FIG. 29) is seen by cutting FIG. 29 by a broken line (3).
  • the first feature of the present embodiment includes a variable frequency AC power source and is connected to a desired target load, changes the frequency of the variable frequency AC power source, and spirals the locus of the output impedance on the Smith chart. And an impedance matching circuit that matches the output impedance with the impedance that is the complex conjugate of the impedance of the target load or that falls within a desired numerical range.
  • the impedance matching circuit can be configured only with a circuit element having high resistance to high power, and can be used for high power applications of several tens of W or more.
  • matching refers to matching the output impedance to a value that is a complex conjugate of the impedance of the target load or within a desired numerical range.
  • variable frequency alternating current power source is an alternating current power source whose frequency can be changed.
  • the second feature is that the impedance matching circuit has a plurality of frequency ranges in which the output impedance matches or falls within a desired numerical range with respect to the impedance that is the complex conjugate of the impedance of the target load.
  • the third feature is that the impedance matching circuit is configured such that an impedance that is a complex conjugate of the impedance of the target load is plotted at a predetermined location on the entire range on the Smith chart.
  • impedance that is complex conjugate is plotted according to the impedance of the target load over the entire range on the Smith chart. Therefore, by expressing the locus of the spiral output impedance on the Smith chart, it is possible to match the output impedance to the complex conjugate impedance or to fall within the desired numerical range over the entire range on the Smith chart. It becomes.
  • a fourth feature is that the frequency range for changing the frequency of the variable frequency alternating current power source is an impedance matching circuit that is a desired frequency range.
  • output impedance matching can be performed in a frequency range corresponding to the application of the impedance matching circuit.
  • a fifth feature is that the impedance matching circuit includes at least one transmission line.
  • the transfer efficiency of power from the variable frequency AC power source can be improved, and the internal heat generation loss of the matching circuit can be reduced.
  • the frequency range for changing the frequency of the variable frequency AC power source can be set to a high frequency range, and design and trial manufacture of the impedance matching circuit in the high frequency range can be facilitated.
  • a sixth feature is that the impedance matching circuit includes at least one coupled line.
  • the impedance matching circuit can be miniaturized.
  • a seventh feature is that the impedance matching circuit includes at least one lumped constant element.
  • the impedance matching circuit can be miniaturized, and the design of the impedance matching circuit is facilitated.
  • FIG. 1 shows a circuit diagram of a system of fixed frequency AC power source V with an impedance of 50 ohms and a desired target showing an impedance ZL. There is a need to efficiently transfer power from the fixed frequency AC power source V to the desired object without reflection.
  • the reflection coefficient ⁇ is (ZL ⁇ 50) / (ZL + 50) when looking from the broken line (1) in FIG. 1 to the left in the drawing.
  • the impedance ZL of the load is 50 ⁇ , which is the same as the impedance of the fixed frequency AC power source V
  • the power from the fixed frequency AC power source V is transmitted to the load without reflection.
  • the reflection coefficient ⁇ becomes less than 1 and the power is reflected, and only the remaining non-reflected power is transmitted to the load.
  • an impedance matching circuit 1 having a fixed impedance circuit is inserted between the fixed frequency AC power source V and the load. In this way, it is possible to prevent the reflection and transfer the power to the desired object.
  • the impedance ZL of the load changes, and the matching state also deviates as the impedance of the load changes.
  • the impedance matching circuit 2 provided with a variable element is connected between the fixed frequency AC power source V and the load, and the output impedance of the impedance matching circuit 2 is adjusted.
  • variable elements include a slug tuner, a stub tuner, and a varactor diode.
  • the slag tuner, the stub tuner, etc. there is a problem that it takes about 100 milliseconds for alignment because of mechanical alignment.
  • variable frequency AC power source Vs is used in place of the fixed frequency AC power source V, and the frequency of the variable frequency AC power source Vs is changed to Align.
  • the impedance of the variable frequency AC power source Vs is, for example, 50 ⁇ .
  • the impedance matching circuit 3 includes a variable frequency AC power source Vs and is connected to a desired target load. Furthermore, while connected to a desired target load, the frequency of the variable frequency AC power source Vs is changed to make the locus of the output impedance appear spirally on the Smith chart, resulting in a complex conjugate of the impedance ZL of the target load With respect to the impedance, the output impedance matches or falls within a desired numerical range.
  • variable frequency AC power source Vs is an AC power source capable of changing the frequency.
  • the output impedance matches or has a desired numerical range with respect to the impedance that is the complex conjugate of the impedance ZL of the target load at all points within the unit circle, with the origin of the unit circle of the Smith chart as the starting point.
  • the impedance matching circuit that draws a trajectory that fits inside. Therefore, even if the impedance ZL indicated by the load changes, it is possible to reduce the reflection at a frequency corresponding to a point coincident with or close to the spiral locus by giving a frequency that is complex conjugate matched each time.
  • the input side reflection coefficient (b1 / a1) which is the ratio of the incident wave a1 to the reflected wave b1 to the impedance matching circuit 1 is a desired dB (decibel) value It shall match to the following (as an example, -10 dB or less). Conversion to dB value is ⁇ 20 ⁇ log (reflection coefficient).
  • the input-side reflection coefficient (b1 / a1) is denoted as (b1 / a1) as necessary.
  • the incident wave a1 is the power incident on the output impedance.
  • the reflected wave b1 is the power reflected from the output impedance.
  • the "input side" of (b1 / a1) refers to the input side in the output impedance.
  • matching means that the output impedance matches the impedance which is the complex conjugate of the impedance ZL of the target load or falls within a desired numerical range.
  • the impedance matching circuit 3 by changing the frequency of the variable frequency AC power source Vs, an output can be made to the impedance ZL indicated by the desired target load at a high speed of 1.0 millisecond or less immediately. It is possible to match the impedance.
  • the impedance matching circuit 3 can be configured without using a variable reactance element such as a varactor diode. That is, the impedance matching circuit 3 can be configured only with a circuit element having high resistance to high power. Thus, it can be used for high power applications of several tens of watts or more.
  • an impedance which is a complex conjugate of the impedance ZL of the target load is plotted at a predetermined position on the entire surface of the Smith chart.
  • an impedance which is complex conjugate in accordance with the impedance ZL of the target load is plotted over the entire range on the Smith chart. Therefore, by expressing the locus of the spiral output impedance on the Smith chart, it is possible to match the output impedance to the complex conjugate impedance or to fall within the desired numerical range over the entire range on the Smith chart. It becomes.
  • the frequency range for changing the frequency of the variable frequency AC power source Vs is a desired frequency range. According to such an impedance matching circuit, in addition to the above effects, it is possible to match the output impedance in the frequency range according to the application of the impedance matching circuit.
  • the (b1 / a1) of -10 dB means that the reflected wave is 1/10 of the incident wave. Therefore, (b1 / a1) is also 1/10.
  • Example 1 A circuit diagram showing the impedance matching circuit of the first embodiment is shown in FIG.
  • FIG. 5 shows a circuit diagram using two different transmission lines a and b as the output impedance shown by the impedance matching circuit including the variable frequency AC power source Vs.
  • the transmission lines a and b are electrically connected in series.
  • the impedance and physical length of the two transmission lines a and b are Zc a ( ⁇ ) and La (mm), and Zc b ( ⁇ ) and Lb (mm), respectively.
  • the impedance of the variable frequency AC power source Vs is 50 ⁇ . According to the frequency of such a variable frequency AC power source Vs, the output impedance consisting of the two transmission lines a and b appears a spiral trajectory on the Smith chart.
  • At least one of the two transmission lines a and b, which are output impedances, is a transmission line with a physical length of 4000 mm having an impedance of 50 ⁇ and is electrically connected in series to a desired object.
  • the transmission line b is a transmission line of physical length Lb 4000 mm having an impedance Zc b of 50 ⁇ .
  • the impedance Zi and the reflection coefficient ⁇ i as viewed from the variable frequency AC power source Vs side (left side in FIG. 5) by cutting FIG. 5 with a broken line (2) are as follows: It becomes.
  • ⁇ a La ⁇ 2 / ⁇ , where ⁇ is the wavelength (mm) on the transmission line a.
  • Zc a and La are determined such that the imaginary part of Zi becomes 0 ⁇ at the lower limit of the desired frequency band, and ⁇ i becomes the target maximum reflection coefficient at the upper limit of the same frequency band.
  • IMS Industry Science Medical
  • the lower limit frequency is 2.4 GHz
  • the upper limit frequency is 2.5 GHz
  • the target maximum reflection coefficient is 0.8
  • Zc a It will be 15 ⁇ , La 285 mm.
  • Equation 5 the frequency of the variable frequency AC power source Vs is changed within a desired frequency band, and Zii is plotted on a Smith chart as shown in FIG.
  • a spiral trajectory is obtained as shown in FIG.
  • the complex conjugate of the impedance Zii and the impedance ZL of the load is It is perfectly aligned if it If it deviates from the equation 8, reflection occurs at the broken line (1).
  • the reflection coefficient ⁇ ii is It is.
  • the reflection coefficient is ⁇ iii when reflection occurs in the broken line (3) in FIG. 5, and the reflection coefficient when the load side (right side in FIG. 5) is seen in the broken line (3). That is, the reflection coefficient ⁇ iii is the input-side reflection coefficient (b1 / a1) which is the ratio of the incident wave a1 to the impedance matching circuit and the reflected wave b1.
  • FIG. 9 A Smith chart in which 10 complex conjugate points (Z * L01 to Z * L10 ) in FIG. 8 are plotted is shown in FIG. 9 (the 10 points in FIG. 8 are vertically inverted). Furthermore, the spiral trajectory shown in FIG. 7 is superimposed on FIG. The reflection is minimized at the frequency corresponding to the point closest to the spiral trajectory from each plot point in FIG. What made the situation graph on a frequency axis is shown in FIG. Each curve of the graph of FIG. 10 is the reflection coefficient ⁇ iii for each plot point of FIG.
  • the frequency of the variable frequency AC power source Vs is changed to make the locus of the output impedance appear spirally on the Smith chart, and the output impedance matches the impedance that is the complex conjugate of the impedance ZL of the target load. Or within the desired numerical range.
  • each curve in FIG. 10 is indicated by a black dot. This is the optimum frequency (the frequency at which the reflection coefficient ⁇ iii is minimum) for each load (the impedance Z L01 to Z L10 of the 10 points) given at random.
  • the desired frequency band for changing the frequency of the variable frequency AC power source Vs is the IMS band
  • the reflection coefficient ⁇ iii becomes -10 dB or less at all loads (randomly given 10 points of impedance Z L01 to Z L10 ) It can be seen that there is more than one frequency. That is, it can be understood that a plurality of frequency ranges in which (b1 / a1) becomes ⁇ 10 dB or less exist in a desired frequency band (2.4 GHz or more and 2.5 GHz or less). Therefore, in the impedance matching circuit of the present embodiment, a plurality of frequency ranges in which the output impedance matches or falls within a desired numerical range for the impedance which is the complex conjugate of the impedance ZL of the target load are present. According to the above, it is possible to perform high-speed and immediate output impedance matching more reliably.
  • the output impedance is not the impedance that is the complex conjugate of the impedance ZL of the target load. Matched and matched.
  • the first embodiment it can be seen from FIG. 9 that although there is no coincidence at all ten points, there is a frequency which is within the desired numerical range and is ⁇ 10 dB or less.
  • the output impedance is in multiple frequency ranges with respect to the impedance that becomes the complex conjugate of the impedance ZL of the target load. There is also a possibility of a match.
  • the impedance matching circuit in addition to the effects of the embodiment shown in FIG. 4, by providing at least one transmission line b, the power from the variable frequency AC power source Vs can be The transfer efficiency is improved, and the internal heat generation loss of the impedance matching circuit can be reduced. Furthermore, the frequency range for changing the frequency of the variable frequency AC power source Vs can be set to a high frequency range (for example, several GHz band or more), and design and trial manufacture of the impedance matching circuit in the high frequency range becomes easy.
  • a high frequency range for example, several GHz band or more
  • Example 2 Next, the impedance matching circuit according to the second embodiment will be described with reference to FIGS.
  • the same reference numerals as in FIG. 4 and the first embodiment denote the same parts, and a redundant description will be omitted or simplified.
  • the first embodiment comprises a transmission line a having an impedance Zc a of 15 ⁇ and a transmission line b having an impedance Zc b of 50 ⁇ .
  • Coaxial cables having an impedance of 50 ⁇ are commercially available.
  • the transmission line of Zc a 15 ⁇ and La 285 mm is assumed to be difficult to obtain.
  • an example in which a coaxial cable with an impedance of 15 ⁇ is not used will be described in a second embodiment.
  • the impedance matching circuit of the second embodiment is shown in FIG.
  • the impedance of the variable frequency AC power source Vs is 50 ⁇ as in the first embodiment.
  • the reflection coefficient ⁇ i is the same as the equation (4).
  • the inductor L and the capacitor C are determined such that the imaginary part of Zi becomes 0 ⁇ at the lower limit of the desired frequency band, and ⁇ i becomes the target maximum reflection coefficient at the upper limit of the same frequency band.
  • the IMS band as the desired frequency band as in the first embodiment
  • the lower limit frequency is 2.4 GHz
  • the upper limit frequency is 2.5 GHz
  • the target maximum reflection coefficient is 0.8
  • L 101 nH and C 0.04 pF are obtained.
  • Equation 5 The frequency of the variable frequency AC power source Vs is changed within a desired frequency band, and Zii is plotted on a Smith chart as shown in FIG. When plotted on a Smith chart, a spiral trajectory is obtained as shown in FIG.
  • the impedance matching can be achieved by providing at least one lumped constant element (L or C).
  • the circuit can be miniaturized and the design of the impedance matching circuit is facilitated.
  • Example 3 Next, the impedance matching circuit according to the third embodiment will be described with reference to FIGS.
  • the same reference numerals as in FIG. 4 and the first embodiment or the second embodiment denote the same parts or parts, and a redundant description will be omitted or simplified.
  • an impedance matching circuit provided with a variable frequency AC power source Vs, two different transmission lines b and c and the same electrostatics on the left end side of each of the transmission lines b and c It comprises two capacitors C1 and C1 having a capacitance.
  • a capacitor on the variable frequency AC power source Vs side is C1
  • a capacitor on the desired target side, which is a load, is C2.
  • the impedance Zi is derived by cutting along the broken line (2) in FIG. 15 and looking at the variable frequency AC power source Vs side (left side in FIG. 15).
  • the impedance Z 1 of the variable frequency AC power source Vs and C1 is It becomes.
  • impedance Z 2 with transmission line c added to the right is It becomes.
  • Z 11 is the impedance Zc c Omega transmission line c, a coefficient obtained by dividing by (jtan ⁇ c).
  • ⁇ c is the physical length L c (mm) ⁇ 2 / ⁇ of the transmission line c ( ⁇ is the wavelength (mm) on the transmission line c).
  • Z 12 and Z 21 together with Zc c Omega a coefficient obtained by dividing by (jsin ⁇ c).
  • the imaginary part of Zi becomes 0 ⁇ at the lower limit of the desired frequency band, and ⁇ i becomes the target maximum reflection coefficient at the upper limit of the same frequency band.
  • the target maximum reflection coefficient is 0.8
  • Zc c 15 ⁇ Lc 173 It becomes deg (2.45 GHz).
  • the impedance matching circuit shown in FIG. 15 is lossless, several 10 can be obtained (see also several 9). Similar to the first embodiment and FIG. 8, the impedance of 10 points is randomly given sparsely within the Smith chart circle, and the reflection coefficient ⁇ iii when the reflection occurs at the broken line (3) of FIG. 15 is shown in FIG. It can be seen from FIG. 18 that at all loads, there are one or more frequencies at which the reflection coefficient ⁇ iii is ⁇ 10 dB or less.
  • the substrate fits within about 25 mm in width and about 40 mm in depth using a substrate with a relative dielectric constant of about 3 and a thickness of 1 mm or less. .
  • the impedance matching circuit according to the third embodiment in addition to the effects of the embodiment shown in FIG. 4 and the first embodiment, the impedance can be improved by providing at least one lumped constant element (C1 or C2).
  • the matching circuit can be miniaturized, and the design of the impedance matching circuit is facilitated.
  • Example 4 Example 5
  • FIG. 19 to 22 Example 4
  • FIG. 23 to 26 An impedance matching circuit according to a fifth embodiment of the present invention will be described with reference to FIGS. 23 to 26.
  • the same reference numerals as in FIG. 4 and the above-described embodiments denote the same parts, and a redundant description will be omitted or simplified.
  • an impedance matching circuit including a capacitor C 3, transmission lines b and d, and a coupling line CL is taken as Example 4 as an impedance matching circuit including a variable frequency alternating current power source Vs.
  • an impedance matching circuit constituted only by a transmission line b and two coupled lines CL1 and CL2 is taken as Example 5.
  • Zi was determined by circuit simulation so that the imaginary part of Zi becomes 0 ⁇ at the upper limit of the desired frequency band and ⁇ i becomes the target maximum reflection coefficient at the lower limit of the same frequency band. .
  • Example 4 and Example 5 the upper limit frequency is 2.4 GHz and the lower limit frequency is 2.5 GHz.
  • the target maximum reflection coefficient is 0.7.
  • the C3 is 3.8 pF
  • the impedance Zc d of the transmission line d is 41Omu
  • Ld is 157deg (2.45GHz)
  • the coupling line CL is even mode impedance Zeven 87Omu
  • odd mode impedance Zodd 44 ⁇ L 119deg (2.45GHz) .
  • Zi has a locus going outward from the origin on the Smith chart. However, the origin is the upper limit frequency, and the lower limit frequency is on the unit circle side of the Smith chart.
  • the target maximum reflection coefficient is 0.9.
  • the coupling line CL1 on the variable frequency AC power source Vs side of the impedance matching circuit shown in FIG. 23 is 57.65 ⁇ for Zeven1, 40.4 ⁇ for Zodd1, and L 96 deg (2.45 GHz), and the coupling line CL2 for the load side is 57.65 for Zeven2.
  • Zodd2 becomes 40.4 ⁇ , L 80.5 deg (2.45 GHz).
  • At least one coupled line (CL, CL1, CL2) is provided.
  • the impedance matching circuit can be miniaturized.
  • the impedance matching circuit in addition to the effects of the embodiment shown in FIG. 4 and the first embodiment, can be provided by including at least one lumped constant element (C3). Can be miniaturized and the design of the impedance matching circuit is facilitated.
  • C3 lumped constant element
  • Example 6 Example 7, Example 8
  • the impedance matching circuits of the sixth to eighth embodiments will now be described with reference to FIGS.
  • the same reference numerals as in FIG. 4 and the above-described embodiments denote the same parts, and a redundant description will be omitted or simplified.
  • the IMS frequency band is considered as the desired frequency band.
  • the output impedance that draws an arc from the origin to the outside, and the impedance Zc b Exemplifies a circuit diagram in which a transmission line b having 50 ⁇ is connected.
  • a spiral trajectory of frequency can be realized.
  • the output impedance that arcs outward from this origin is also using the steepness of the passband and the cutoff band of the filter.
  • An impedance matching circuit using a Chebyshev filter consisting of L and C is illustrated in FIGS. 27 to 29 as an impedance matching circuit provided with a variable frequency AC power source Vs.
  • FIG. 27 relates to the sixth embodiment and is a circuit diagram of an impedance matching circuit using an LPF as an output impedance.
  • FIG. 28 relates to the seventh embodiment and is a circuit diagram of an impedance matching circuit using an HPF as an output impedance.
  • FIG. 29 relates to the eighth embodiment and is a circuit diagram of an impedance matching circuit using a BPF as an output impedance.
  • Zi in the impedance matching circuit of FIG. 27 is impedance which saw FIG. 27 with the broken line (2) and looked at the variable frequency alternating current power source Vs side (left side in FIG. 27).
  • each is counted as one stage, but in this case, two circuit elements of L and C are one set.
  • the number of stages is odd.
  • the impedance Z N of the final stage N is It becomes.
  • the value of the circuit element is determined.
  • the values of L and C are determined on the basis of the ripple of the Chebyshev filter, the number of filter stages, and the procedure in which the imaginary part of Zi becomes 0 ⁇ at the lower limit of the desired frequency band.
  • the target maximum reflection coefficient is determined by the ripple and the number of filter stages. An example of 9 stages is shown in FIGS. 30 to 32 for the LPF (ripple 0.5).
  • the target maximum reflection coefficient is 0.8.
  • Zi has a locus going outward from the origin on the Smith chart (see FIG. 30).
  • the impedance of 10 points is randomly given sparsely in the Smith chart circle, and the reflection coefficient ⁇ iii when reflection occurs at the broken line (3) in FIG. 27 is shown in FIG. It can be seen from FIG. 32 that at all loads, there are one or more frequencies at which the reflection coefficient ⁇ iii is ⁇ 10 dB or less.
  • the HPF it is symmetrical at the center frequency with the LPF.
  • the lower limit frequency is used as a reference, but in the HPF, the upper limit frequency is a reference. Therefore, the values of L and C are determined based on the ripple of the Chebyshev filter, the number of filter stages, and the procedure in which the imaginary part of Zi becomes 0 ⁇ at the upper limit of the desired frequency band.
  • the target maximum reflection coefficient is determined by the ripple and the number of filter stages.
  • the target maximum reflection coefficient is 0.8.
  • Zi has a locus going outward from the origin on the Smith chart (see FIG. 33). However, the origin is the upper limit frequency, and the unit circle direction side of the Smith chart is the lower limit frequency.
  • the impedance of 10 points is randomly given sparsely within the Smith chart circle, and the reflection coefficient ⁇ iii when reflection occurs at the broken line (3) of FIG. 28 is shown in FIG. It can be seen from FIG. 35 that at all the loads, there are one or more frequencies at which the reflection coefficient ⁇ iii is ⁇ 10 dB or less.
  • BPF can be considered as a filter that has both LPF and HPF. Even with the same ripple and the number of filter stages, either the procedure in which the imaginary part of Zi becomes 0 ⁇ at the lower limit of the desired frequency band or the procedure in which the imaginary part of Zi at the upper limit of the desired frequency band becomes 0 ⁇ can be taken.
  • the eighth embodiment shows a procedure in which the imaginary part of Zi becomes 0 ⁇ at the lower limit of the desired frequency band.
  • FIG. 36 shows Zi when the ripple is 0.1 and the number of filter stages is three.
  • the target maximum reflection coefficient is 0.9.
  • Zi is a trajectory going outward from the origin on the Smith chart.
  • the spiral trajectory becomes larger as the number of stages is larger. Further, in the case of the same number of filter stages, the larger the ripple value, the larger the size of the spiral trajectory, and the range of complex conjugate matching is broadened.
  • the impedance matching circuit of any of the sixth to eighth embodiments in addition to the effects of the embodiment shown in FIG. 4 and the first embodiment, at least one lumped constant element (L or C) is provided.
  • L or C lumped constant element

Landscapes

  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

[Problem] To provide an impedance matching circuit capable of being used for a high-power application of several tens of watts or more, and capable of higher-speed impedance matching. [Solution] An impedance matching circuit provided with a variable frequency alternating-current power source is connected to a desired object load, the frequency of the variable frequency alternating-current power source is changed, the trajectory of an output impedance is represented in a spiral form on a Smith chart, and the output impedance is either matched to an impedance being the complex conjugate of the impedance of the object load, or is brought into a desired numerical range. Furthermore, a plurality of frequency ranges in which the output impedance is either matched to the impedance being the complex conjugate of the impedance of the object load, or is brought into the desired numerical range are caused to exist. It is preferable that the impedance being the complex conjugate of the impedance of the object load be plotted in a predetermined place within the whole range on the Smith chart, and that the frequency range in which the frequency of the variable frequency alternating-current power source is changed be a desired frequency range.

Description

インピーダンス整合回路Impedance matching circuit
 本発明は、インピーダンス整合回路に関する。 The present invention relates to an impedance matching circuit.
 近年、GaNを用いたGaN HEMT(High Electron Mobility Transistor:高電子移動度トランジスタ)等の半導体技術が発達し、これら半導体を利用してマイクロ波電力ジェネレータ(交流電力源)が開発されている。 In recent years, semiconductor technology such as GaN HEMT (High Electron Mobility Transistor) using GaN has been developed, and a microwave power generator (AC power source) has been developed using these semiconductors.
 この様なマイクロ波電力ジェネレータの用途として、マイクロ波手術機器が挙げられる。マイクロ波手術機器による手術では、マイクロ波により患部を加熱して行く。しかし手術が進むにつれて患部の状態は変わり、マイクロ波ジェネレータから見た患部に於ける負荷としてのインピーダンスが変化してしまう。加えて、患部である臓器や血管等は、部位によってインピーダンスが異なる。 Applications of such microwave power generators include microwave surgical equipment. In surgery with a microwave surgical device, the affected area is heated by microwaves. However, as the operation progresses, the condition of the affected area changes, and the impedance as a load on the affected area seen from the microwave generator changes. In addition, organs and blood vessels that are affected areas have different impedances depending on the site.
 このような手術の進行状況や部位によってインピーダンスが変化する負荷に対し、電力の反射を防いで負荷に効率良く電力を伝える為には、手術中に即時にマイクロ波ジェネレータ側のインピーダンスを整合する装置や回路が必要となる。 A device that matches the impedance on the microwave generator side immediately during surgery to prevent power reflection and efficiently transmit power to the load when the impedance changes depending on the progress of the operation and the site. And circuits are required.
 インピーダンスの整合装置としては、スラグチューナやスタブチューナ等が挙げられる(例えば、スタブチューナの一例として特許文献1参照)。また、バラクタダイオードやFETスイッチを使用したインピーダンス整合回路も提案されている(例えば、バラクタダイオードにより構成されたインピーダンス整合回路の一例として、特許文献2参照)。 Examples of impedance matching devices include a slug tuner and a stub tuner (for example, see Patent Document 1 as an example of a stub tuner). Further, an impedance matching circuit using a varactor diode or an FET switch has also been proposed (for example, see Patent Document 2 as an example of an impedance matching circuit configured by a varactor diode).
特開平10-150306号公報Japanese Patent Application Laid-Open No. 10-150306 特開2011-237335号公報JP 2011-237335 A
 しかし、スラグチューナやスタブチューナ等は機械的に整合を行う為、整合に100ミリ秒程の時間が掛かってしまう。 However, since the slug tuner, the stub tuner, etc. perform mechanical alignment, it takes about 100 milliseconds for alignment.
 一方、バラクタダイオード等を用いた回路では、整合に要する時間は比較的短い。しかし回路素子の耐電力性が1.0W以下と低い為、マイクロ波手術機器のような数十W以上の大電力用途への使用が不可能であった。 On the other hand, in a circuit using a varactor diode or the like, the time required for matching is relatively short. However, since the power resistance of the circuit element is as low as 1.0 W or less, it can not be used for high power applications of several tens W or more such as microwave surgical equipment.
 本発明は、上記課題に鑑みてなされたものであり、数十W以上の大電力用途に使用可能で、より高速なインピーダンス整合が可能なインピーダンス整合回路の提供を目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an impedance matching circuit that can be used for high power applications of several tens of W or more and that can perform higher-speed impedance matching.
 前記課題は、以下の本発明により解決される。即ち本発明のインピーダンス整合回路は、可変周波数交流電力源を備えると共に所望の対象負荷に接続され、可変周波数交流電力源の周波数を変更して、スミスチャート上で渦巻き状に出力インピーダンスの軌跡を現し、対象負荷のインピーダンスの複素共役となるインピーダンスに対して、出力インピーダンスを一致又は所望の数値範囲内に収める事を特徴とする。 The problems are solved by the present invention described below. That is, the impedance matching circuit according to the present invention includes a variable frequency AC power source and is connected to a desired target load, changes the frequency of the variable frequency AC power source, and displays the locus of output impedance spirally on a Smith chart. And an impedance that is a complex conjugate of the impedance of the target load, and the output impedance is made to match or fall within a desired numerical range.
 本発明に係るインピーダンス整合回路に依れば、可変周波数交流電力源の周波数を変更する事で、1.0ミリ秒以下と云う高速で即時に、所望の対象負荷が示すインピーダンスに対して出力インピーダンスを整合する事が可能となる。 According to the impedance matching circuit according to the present invention, by changing the frequency of the variable frequency AC power source, the output impedance can be matched against the impedance indicated by the desired target load at a high speed such as 1.0 millisecond or less immediately. It is possible to
 更に、バラクタダイオード等の可変リアクタンス素子を用いずに、インピーダンス整合回路を構成する事が可能となる。即ち、大電力に対する耐性の高い回路素子のみでインピーダンス整合回路を構成する事が出来る。よって、数十W以上の大電力用途に使用可能となる。 Furthermore, the impedance matching circuit can be configured without using a variable reactance element such as a varactor diode. That is, the impedance matching circuit can be configured only with a circuit element having high resistance to high power. Thus, it can be used for high power applications of several tens of watts or more.
固定周波数交流電力源Vと、インピーダンスZLを示す所望の対象負荷からなるシステムの回路図である。FIG. 5 is a circuit diagram of a system comprising a fixed frequency AC power source V and a desired target load exhibiting an impedance ZL. 固定インピーダンス回路を有するインピーダンス整合回路を、固定周波数交流電力源Vと負荷の間に接続した回路図である。FIG. 5 is a circuit diagram in which an impedance matching circuit having a fixed impedance circuit is connected between a fixed frequency AC power source V and a load. 可変素子を備えたインピーダンス整合回路を、固定周波数交流電力源Vと負荷の間に接続した回路図である。It is the circuit diagram which connected the impedance matching circuit provided with the variable element between fixed frequency alternating current power source V and load. 本発明に係るインピーダンス整合回路の原理及び実施の形態を模式的に示す回路図である。It is a circuit diagram showing typically the principle and the embodiment of the impedance matching circuit concerning the present invention. 本発明に係るインピーダンス整合回路の実施例1を示す回路図である。It is a circuit diagram showing Example 1 of the impedance matching circuit concerning the present invention. 実施例1に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziをプロットしたスミスチャートである。In Example 1, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi. 実施例1に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziiをプロットしたスミスチャートである。In Example 1, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii. 図5を破線(3)で切断して、負荷側(図5中の右側)を見た時の、負荷が示すインピーダンスの例として、ランダムな10点の負荷のインピーダンスをプロットしたスミスチャートである。FIG. 6 is a Smith chart in which the impedance of 10 random loads is plotted as an example of the impedance indicated by the load when FIG. 5 is broken by a broken line (3) and the load side (right side in FIG. 5) is seen . 図7に、図8の10点の複素共役点を重ねてプロットしたスミスチャートである。FIG. 7 is a Smith chart in which the 10 complex conjugate points of FIG. 8 are superimposed and plotted. 図5を破線(3)で切断して、負荷側(図5中の右側)を見た時の反射係数γiiiと、所望の周波数帯域のグラフである。FIG. 5 is a graph of a reflection coefficient γ iii and a desired frequency band when the load side (right side in FIG. 5) is seen by cutting FIG. 5 with a broken line (3). 本発明に係るインピーダンス整合回路の実施例2を示す回路図である。It is a circuit diagram showing Example 2 of the impedance matching circuit concerning the present invention. 実施例2に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziをプロットしたスミスチャートである。In Example 2, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi. 実施例2に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziiをプロットしたスミスチャートである。In Example 2, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii. 図11を破線(3)で切断して、負荷側(図11中の右側)を見た時の反射係数γiiiと、所望の周波数帯域のグラフである。FIG. 11 is a graph of a reflection coefficient γiii and a desired frequency band when the load side (right side in FIG. 11) is seen by cutting FIG. 11 with a broken line (3). 本発明に係るインピーダンス整合回路の実施例3を示す回路図である。It is a circuit diagram showing Example 3 of an impedance matching circuit concerning the present invention. 実施例3に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziをプロットしたスミスチャートである。In Example 3, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi. 実施例3に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziiをプロットしたスミスチャートである。In Example 3, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii. 図15を破線(3)で切断して、負荷側(図15中の右側)を見た時の反射係数γiiiと、所望の周波数帯域のグラフである。FIG. 15 is a graph of a reflection coefficient γ iii and a desired frequency band when the load side (right side in FIG. 15) is seen by cutting FIG. 15 with a broken line (3). 本発明に係るインピーダンス整合回路の実施例4を示す回路図である。It is a circuit diagram showing Example 4 of the impedance matching circuit concerning the present invention. 実施例4に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziをプロットしたスミスチャートである。In Example 4, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi. 実施例4に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziiをプロットしたスミスチャートである。In Example 4, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii. 図19を破線(3)で切断して、負荷側(図19中の右側)を見た時の反射係数γiiiと、所望の周波数帯域のグラフである。FIG. 19 is a graph of a reflection coefficient γiii and a desired frequency band when the load side (right side in FIG. 19) is seen by cutting FIG. 19 with a broken line (3). 本発明に係るインピーダンス整合回路の実施例5を示す回路図である。It is a circuit diagram showing Example 5 of the impedance matching circuit concerning the present invention. 実施例5に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziをプロットしたスミスチャートである。In Example 5, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi. 実施例5に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziiをプロットしたスミスチャートである。In Example 5, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii. 図18を破線(3)で切断して、負荷側(図18中の右側)を見た時の反射係数γiiiと、所望の周波数帯域のグラフである。FIG. 18 is a graph of a reflection coefficient γ iii and a desired frequency band when the load side (right side in FIG. 18) is seen by cutting FIG. 18 with a broken line (3). 本発明に係るインピーダンス整合回路の実施例6を示す回路図である。It is a circuit diagram showing Example 6 of the impedance matching circuit concerning the present invention. 本発明に係るインピーダンス整合回路の実施例7を示す回路図である。It is a circuit diagram showing Example 7 of an impedance matching circuit concerning the present invention. 本発明に係るインピーダンス整合回路の実施例8を示す回路図である。It is a circuit diagram showing Example 8 of the impedance matching circuit concerning the present invention. 実施例6に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziをプロットしたスミスチャートである。In Example 6, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi. 実施例6に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziiをプロットしたスミスチャートである。In Example 6, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii. 図27を破線(3)で切断して、負荷側(図27中の右側)を見た時の反射係数γiiiと、所望の周波数帯域のグラフである。27 is a graph of a reflection coefficient γiii and a desired frequency band when the load side (right side in FIG. 27) is seen by cutting FIG. 27 by a broken line (3). 実施例7に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziをプロットしたスミスチャートである。In Example 7, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi. 実施例7に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziiをプロットしたスミスチャートである。In Example 7, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii. 図28を破線(3)で切断して、負荷側(図28中の右側)を見た時の反射係数γiiiと、所望の周波数帯域のグラフである。FIG. 28 is a graph of a reflection coefficient γiii and a desired frequency band when the load side (right side in FIG. 28) is seen by cutting FIG. 28 by a broken line (3). 実施例8に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziをプロットしたスミスチャートである。In Example 8, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within the desired frequency band, and plotted Zi. 実施例8に於いて、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziiをプロットしたスミスチャートである。In Example 8, it is a Smith chart which changed the frequency of variable frequency alternating current power source Vs within a desired frequency band, and plotted Zii. 図29を破線(3)で切断して、負荷側(図29中の右側)を見た時の反射係数γiiiと、所望の周波数帯域のグラフである。29 is a graph of a reflection coefficient γiii and a desired frequency band when the load side (right side in FIG. 29) is seen by cutting FIG. 29 by a broken line (3).
 本実施の形態の第一の特徴は、可変周波数交流電力源を備えると共に所望の対象負荷に接続され、可変周波数交流電力源の周波数を変更して、スミスチャート上で渦巻き状に出力インピーダンスの軌跡を現し、対象負荷のインピーダンスの複素共役となるインピーダンスに対して、出力インピーダンスを一致又は所望の数値範囲内に収めるインピーダンス整合回路とした事である。 The first feature of the present embodiment includes a variable frequency AC power source and is connected to a desired target load, changes the frequency of the variable frequency AC power source, and spirals the locus of the output impedance on the Smith chart. And an impedance matching circuit that matches the output impedance with the impedance that is the complex conjugate of the impedance of the target load or that falls within a desired numerical range.
 この構成に依れば、可変周波数交流電力源の周波数を変更する事で、1.0ミリ秒以下と云う高速で即時に、所望の対象負荷が示すインピーダンスに対して出力インピーダンスを整合する事が可能となる。更に、大電力に対する耐性の高い回路素子のみでインピーダンス整合回路が構成可能となり、数十W以上の大電力用途に使用する事が出来る。 According to this configuration, by changing the frequency of the variable frequency AC power source, it is possible to match the output impedance to the impedance indicated by the desired target load at a high speed and immediately below 1.0 millisecond. Become. Furthermore, the impedance matching circuit can be configured only with a circuit element having high resistance to high power, and can be used for high power applications of several tens of W or more.
 なお本発明に於いて整合とは、対象負荷のインピーダンスの複素共役となるインピーダンスに対して、出力インピーダンスを一致又は所望の数値範囲内に収める事を指す。 In the present invention, matching refers to matching the output impedance to a value that is a complex conjugate of the impedance of the target load or within a desired numerical range.
 また本発明に於いて可変周波数交流電力源とは、周波数を変更する事が可能な交流の電力源である。 Further, in the present invention, the variable frequency alternating current power source is an alternating current power source whose frequency can be changed.
 第二の特徴は、対象負荷のインピーダンスの複素共役となるインピーダンスに対して、出力インピーダンスを一致又は所望の数値範囲内に収める周波数範囲が、複数存在するインピーダンス整合回路とした事である。 The second feature is that the impedance matching circuit has a plurality of frequency ranges in which the output impedance matches or falls within a desired numerical range with respect to the impedance that is the complex conjugate of the impedance of the target load.
 この構成に依れば上記効果に加えて、高速で即時な出力インピーダンスの整合を、より確実に行う事が可能となる。 According to this configuration, in addition to the above-mentioned effects, it is possible to more reliably perform high-speed and immediate output impedance matching.
 第三の特徴は、スミスチャート上の全範囲に亘る所定の箇所に、対象負荷のインピーダンスの複素共役となるインピーダンスがプロットされるインピーダンス整合回路とした事である。 The third feature is that the impedance matching circuit is configured such that an impedance that is a complex conjugate of the impedance of the target load is plotted at a predetermined location on the entire range on the Smith chart.
 この構成に依れば上記効果に加え、スミスチャート上の全範囲に亘って、対象負荷のインピーダンスに応じて複素共役となるインピーダンスがプロットされる。従って、スミスチャート上に渦巻き状の出力インピーダンスの軌跡を現す事で、スミスチャート上の全範囲に亘って、複素共役となるインピーダンスに対し出力インピーダンスを一致又は所望の数値範囲内に収める事が可能となる。 According to this configuration, in addition to the above-described effects, impedance that is complex conjugate is plotted according to the impedance of the target load over the entire range on the Smith chart. Therefore, by expressing the locus of the spiral output impedance on the Smith chart, it is possible to match the output impedance to the complex conjugate impedance or to fall within the desired numerical range over the entire range on the Smith chart. It becomes.
 第四の特徴は、可変周波数交流電力源の周波数を変更する周波数範囲が、所望の周波数範囲であるインピーダンス整合回路とした事である。 A fourth feature is that the frequency range for changing the frequency of the variable frequency alternating current power source is an impedance matching circuit that is a desired frequency range.
 この構成に依れば上記効果に加え、インピーダンス整合回路の使用用途に応じた周波数範囲で、出力インピーダンスの整合が可能となる。 According to this configuration, in addition to the above effects, output impedance matching can be performed in a frequency range corresponding to the application of the impedance matching circuit.
 第五の特徴は、少なくとも1つの伝送線路を備えるインピーダンス整合回路とした事である。 A fifth feature is that the impedance matching circuit includes at least one transmission line.
 この構成に依れば上記効果に加え、伝送線路を備える事で可変周波数交流電力源からの電力の伝達効率が改善し、整合回路の内部発熱損失を低減可能となる。更に、可変周波数交流電力源の周波数を変更する周波数範囲を、高い周波数範囲に設定可能となり、高い周波数範囲でのインピーダンス整合回路の設計試作が容易となる。 According to this configuration, in addition to the above effects, by providing the transmission line, the transfer efficiency of power from the variable frequency AC power source can be improved, and the internal heat generation loss of the matching circuit can be reduced. Furthermore, the frequency range for changing the frequency of the variable frequency AC power source can be set to a high frequency range, and design and trial manufacture of the impedance matching circuit in the high frequency range can be facilitated.
 第六の特徴は、少なくとも1つの結合線路を備えるインピーダンス整合回路とした事である。 A sixth feature is that the impedance matching circuit includes at least one coupled line.
 この構成に依れば上記効果に加え、インピーダンス整合回路を小型化する事が可能となる。 According to this configuration, in addition to the above effects, the impedance matching circuit can be miniaturized.
 第七の特徴は、少なくとも1つの集中定数素子を備えるインピーダンス整合回路とした事である。 A seventh feature is that the impedance matching circuit includes at least one lumped constant element.
 この構成に依れば上記効果に加え、インピーダンス整合回路を小型化する事が可能となると共に、インピーダンス整合回路の設計が容易となる。 According to this configuration, in addition to the above effects, the impedance matching circuit can be miniaturized, and the design of the impedance matching circuit is facilitated.
 以下、本発明に係るインピーダンス整合回路の原理及び実施の形態について、図1~図4を参照して説明する。図1に、インピーダンスが50Ωである固定周波数交流電力源Vと、インピーダンスZLを示す所望の対象からなるシステムの回路図を示す。固定周波数交流電力源Vから電力を、所望の対象へ反射を防いで効率良く伝える必要がある。 Hereinafter, the principle and the embodiment of the impedance matching circuit according to the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 shows a circuit diagram of a system of fixed frequency AC power source V with an impedance of 50 ohms and a desired target showing an impedance ZL. There is a need to efficiently transfer power from the fixed frequency AC power source V to the desired object without reflection.
 図1に於ける破線(1)から図中左側を見た反射係数γは(ZL-50)/(ZL+50)である。図1では、負荷のインピーダンスZLが、固定周波数交流電力源Vのインピーダンスと同じ50Ωの場合、固定周波数交流電力源Vからの電力が反射する事無く負荷に伝わる。負荷のインピーダンスZLが変わると、反射係数γは1未満となって電力が反射し、反射しなかった残りの電力だけが負荷へ伝わる。 The reflection coefficient γ is (ZL−50) / (ZL + 50) when looking from the broken line (1) in FIG. 1 to the left in the drawing. In FIG. 1, when the impedance ZL of the load is 50Ω, which is the same as the impedance of the fixed frequency AC power source V, the power from the fixed frequency AC power source V is transmitted to the load without reflection. When the load impedance ZL changes, the reflection coefficient γ becomes less than 1 and the power is reflected, and only the remaining non-reflected power is transmitted to the load.
 しかし、負荷が一定で且つ固定周波数交流電力源Vと負荷のインピーダンスが異なる場合、図2に示す様に固定インピーダンス回路を有するインピーダンス整合回路1を固定周波数交流電力源Vと負荷の間に挿入する事で、反射を防いで電力を所望の対象に伝える事が出来る。しかし実際の用途では負荷のインピーダンスZLが変化する事態が想定され、負荷のインピーダンス変化に伴い整合状態もずれてしまう。 However, when the load is constant and the impedance of the fixed frequency AC power source V and the load is different, as shown in FIG. 2, an impedance matching circuit 1 having a fixed impedance circuit is inserted between the fixed frequency AC power source V and the load. In this way, it is possible to prevent the reflection and transfer the power to the desired object. However, in an actual application, it is assumed that the impedance ZL of the load changes, and the matching state also deviates as the impedance of the load changes.
 そこで対応手段として、図3のように可変素子を備えたインピーダンス整合回路2を、固定周波数交流電力源Vと負荷の間に接続し、インピーダンス整合回路2の出力インピーダンスを調整し、負荷のインピーダンスZLとの整合を取るという手段がある。可変素子の具体例として、スラグチューナやスタブチューナ、バラクタダイオード等がある。しかしスラグチューナやスタブチューナ等の場合機械的に整合する為、整合に100ミリ秒程の時間が係ってしまうと云う課題がある。 Therefore, as a countermeasure, as shown in FIG. 3, the impedance matching circuit 2 provided with a variable element is connected between the fixed frequency AC power source V and the load, and the output impedance of the impedance matching circuit 2 is adjusted. There is a means to get in line with the Examples of variable elements include a slug tuner, a stub tuner, and a varactor diode. However, in the case of the slag tuner, the stub tuner, etc., there is a problem that it takes about 100 milliseconds for alignment because of mechanical alignment.
 一方、バラクタダイオードを用いた整合回路では整合可変速度は速いが、素子の耐電力性が1.0W以下であるミリWクラスの為、大電力(数十Wクラス)の大電力用途への使用が不可能であった。 On the other hand, in matching circuits using varactor diodes, although the matching variable speed is fast, the milliwatt class whose power resistance of the element is 1.0 W or less makes it possible to use for high power (several tens of W class) high power applications. It was impossible.
 そこで本発明では図4に示す様に、固定周波数交流電力源Vに換えて可変周波数交流電力源Vsを用いると共に、可変周波数交流電力源Vsの周波数を変化させて、負荷が示すインピーダンスZLとの整合を図る。可変周波数交流電力源Vsのインピーダンスは、一例として50Ωとする。 Therefore, in the present invention, as shown in FIG. 4, the variable frequency AC power source Vs is used in place of the fixed frequency AC power source V, and the frequency of the variable frequency AC power source Vs is changed to Align. The impedance of the variable frequency AC power source Vs is, for example, 50Ω.
 詳述すると図4に示す様に、インピーダンス整合回路3は可変周波数交流電力源Vsを備えると共に、所望の対象負荷に接続される。更に、所望の対象負荷に接続された状態で、可変周波数交流電力源Vsの周波数を変更して、スミスチャート上で渦巻き状に出力インピーダンスの軌跡を現し、対象負荷のインピーダンスZLの複素共役となるインピーダンスに対して、出力インピーダンスを一致又は所望の数値範囲内に収めるものである。 More specifically, as shown in FIG. 4, the impedance matching circuit 3 includes a variable frequency AC power source Vs and is connected to a desired target load. Furthermore, while connected to a desired target load, the frequency of the variable frequency AC power source Vs is changed to make the locus of the output impedance appear spirally on the Smith chart, resulting in a complex conjugate of the impedance ZL of the target load With respect to the impedance, the output impedance matches or falls within a desired numerical range.
 なお可変周波数交流電力源Vsとは、周波数を変更する事が可能な交流の電力源である。 The variable frequency AC power source Vs is an AC power source capable of changing the frequency.
 負荷のインピーダンスZLが変化する時は、スミスチャート上では軌跡として現れる。図4では可変周波数交流電力源Vsのインピーダンスが50Ωなので、50Ωで正規化して1とし、原点(中心)が1となるようにプロットする。 When the load impedance ZL changes, it appears as a trace on the Smith chart. In FIG. 4, since the impedance of the variable frequency AC power source Vs is 50Ω, it is normalized to 50Ω to be 1 and plotted so that the origin (center) is 1.
 あらゆる用途を想定した場合、破線(1)から図4内の左を見たインピーダンスの周波数軌跡が、スミスチャート上単位円内を隙間無く網羅する事が理想的である。 If all applications are assumed, it is ideal that the frequency locus of the impedance seen from the broken line (1) to the left in FIG. 4 covers the inside of the unit circle on the Smith chart without any gap.
 しかしながら、単位円内を隙間無く周波数軌跡を完全に網羅する事は現実には不可能である。そこで本発明では、スミスチャートの単位円の原点を始点とし、単位円内全ての点に於いて、対象負荷のインピーダンスZLの複素共役となるインピーダンスに対して、出力インピーダンスが一致又は所望の数値範囲内に収まるような軌跡を描くインピーダンス整合回路を考える。従って、負荷が示すインピーダンスZLが変化しても、その都度複素共役整合する周波数を与えて、渦巻き状の軌跡に一致又は近い点に相当する周波数に於いて反射を低減する事が出来る。 However, it is impossible in practice to completely cover the frequency locus without gaps in the unit circle. Therefore, in the present invention, the output impedance matches or has a desired numerical range with respect to the impedance that is the complex conjugate of the impedance ZL of the target load at all points within the unit circle, with the origin of the unit circle of the Smith chart as the starting point. Consider an impedance matching circuit that draws a trajectory that fits inside. Therefore, even if the impedance ZL indicated by the load changes, it is possible to reduce the reflection at a frequency corresponding to a point coincident with or close to the spiral locus by giving a frequency that is complex conjugate matched each time.
 なお本発明に於ける前記の所望の数値範囲内とは、インピーダンス整合回路1に対する入射波a1と反射波b1の比である入力側反射係数(b1/a1)を、所望のdB(デシベル)値以下(一例として、-10dB以下)に整合する事とする。dB値への変換は、-20×log(反射係数)とする。以下必要に応じて、入力側反射係数(b1/a1)を、(b1/a1)と表記する。なお入射波a1とは、出力インピーダンスに入射する電力である。また反射波b1とは、出力インピーダンスから反射される電力である。更に、前記(b1/a1)の「入力側」とは、出力インピーダンスに於ける入力側を指す。 In the above-mentioned desired numerical range in the present invention, the input side reflection coefficient (b1 / a1) which is the ratio of the incident wave a1 to the reflected wave b1 to the impedance matching circuit 1 is a desired dB (decibel) value It shall match to the following (as an example, -10 dB or less). Conversion to dB value is −20 × log (reflection coefficient). Hereinafter, the input-side reflection coefficient (b1 / a1) is denoted as (b1 / a1) as necessary. The incident wave a1 is the power incident on the output impedance. The reflected wave b1 is the power reflected from the output impedance. Furthermore, the "input side" of (b1 / a1) refers to the input side in the output impedance.
 また本発明に於いて整合とは、対象負荷のインピーダンスZLの複素共役となるインピーダンスに対して、出力インピーダンスを一致又は所望の数値範囲内に収める事を指す。 Further, in the present invention, matching means that the output impedance matches the impedance which is the complex conjugate of the impedance ZL of the target load or falls within a desired numerical range.
 本発明に係るインピーダンス整合回路3に依れば、可変周波数交流電力源Vsの周波数を変更する事で、1.0ミリ秒以下と云う高速で即時に、所望の対象負荷が示すインピーダンスZLに対して出力インピーダンスを整合する事が可能となる。 According to the impedance matching circuit 3 according to the present invention, by changing the frequency of the variable frequency AC power source Vs, an output can be made to the impedance ZL indicated by the desired target load at a high speed of 1.0 millisecond or less immediately. It is possible to match the impedance.
 更に、バラクタダイオード等の可変リアクタンス素子を用いずに、インピーダンス整合回路3を構成する事が可能となる。即ち、大電力に対する耐性の高い回路素子のみでインピーダンス整合回路3を構成する事が出来る。よって、数十W以上の大電力用途に使用可能となる。 Furthermore, the impedance matching circuit 3 can be configured without using a variable reactance element such as a varactor diode. That is, the impedance matching circuit 3 can be configured only with a circuit element having high resistance to high power. Thus, it can be used for high power applications of several tens of watts or more.
 より好ましくは、対象負荷のインピーダンスZLの複素共役となるインピーダンスに対して、出力インピーダンスを一致又は所望の数値範囲内に収める周波数範囲が、複数存在する事である。このようなインピーダンス整合回路に依れば、上記効果に加え、高速で即時な出力インピーダンスの整合を、より確実に行う事が可能となる。 More preferably, there are a plurality of frequency ranges in which the output impedance matches or falls within a desired numerical range with respect to the impedance that is the complex conjugate of the impedance ZL of the target load. According to such an impedance matching circuit, in addition to the above effects, it is possible to more reliably perform high-speed and immediate output impedance matching.
 更に好ましくは、スミスチャート上の全範囲に亘る所定の箇所に、対象負荷のインピーダンスZLの複素共役となるインピーダンスがプロットされる事である。このようなインピーダンス整合回路に依れば、上記効果に加え、スミスチャート上の全範囲に亘って、対象負荷のインピーダンスZLに応じて複素共役となるインピーダンスがプロットされる。従って、スミスチャート上に渦巻き状の出力インピーダンスの軌跡を現す事で、スミスチャート上の全範囲に亘って、複素共役となるインピーダンスに対し出力インピーダンスを一致又は所望の数値範囲内に収める事が可能となる。 More preferably, an impedance which is a complex conjugate of the impedance ZL of the target load is plotted at a predetermined position on the entire surface of the Smith chart. According to such an impedance matching circuit, in addition to the above effects, an impedance which is complex conjugate in accordance with the impedance ZL of the target load is plotted over the entire range on the Smith chart. Therefore, by expressing the locus of the spiral output impedance on the Smith chart, it is possible to match the output impedance to the complex conjugate impedance or to fall within the desired numerical range over the entire range on the Smith chart. It becomes.
 更に好ましくは、可変周波数交流電力源Vsの周波数を変更する周波数範囲が、所望の周波数範囲である事である。このようなインピーダンス整合回路に依れば、上記効果に加え、インピーダンス整合回路の使用用途に応じた周波数範囲で、出力インピーダンスの整合が可能となる。 More preferably, the frequency range for changing the frequency of the variable frequency AC power source Vs is a desired frequency range. According to such an impedance matching circuit, in addition to the above effects, it is possible to match the output impedance in the frequency range according to the application of the impedance matching circuit.
 前記(b1/a1)が-10dBとは、反射波が入射波の1/10の状態である。従って(b1/a1)も1/10となる。 The (b1 / a1) of -10 dB means that the reflected wave is 1/10 of the incident wave. Therefore, (b1 / a1) is also 1/10.
 以下に本発明の実施形態に係る各実施例を説明するが、本発明は以下の実施例にのみ限定されるものではない。なお図4と同一箇所には、同一の番号又は符号を付し、重複する説明は省略、又は簡略化して記述する。 Although each Example concerning the embodiment of the present invention is explained below, the present invention is not limited only to the following examples. The same reference numerals as in FIG. 4 denote the same parts as in FIG. 4, and redundant descriptions will be omitted or simplified.
(実施例1)
 実施例1のインピーダンス整合回路を示す回路図を、図5に示す。図5では、可変周波数交流電力源Vsを備えるインピーダンス整合回路が示す出力インピーダンスとして、2本の異なる伝送線路a、bを用いた回路図を示す。その伝送線路a及びbが電気的に直列接続されている。
Example 1
A circuit diagram showing the impedance matching circuit of the first embodiment is shown in FIG. FIG. 5 shows a circuit diagram using two different transmission lines a and b as the output impedance shown by the impedance matching circuit including the variable frequency AC power source Vs. The transmission lines a and b are electrically connected in series.
 例えば、二本の伝送線路a、bのインピーダンスと物理長をそれぞれZca(Ω)とLa(mm)、及びZcb (Ω)、Lb(mm)とする。可変周波数交流電力源Vsのインピーダンスは50Ωとする。このような可変周波数交流電力源Vsの周波数に応じて、二本の伝送線路a、bから成る出力インピーダンスがスミスチャート上で渦巻き状に軌跡を現す。 For example, the impedance and physical length of the two transmission lines a and b are Zc a (Ω) and La (mm), and Zc b (Ω) and Lb (mm), respectively. The impedance of the variable frequency AC power source Vs is 50Ω. According to the frequency of such a variable frequency AC power source Vs, the output impedance consisting of the two transmission lines a and b appears a spiral trajectory on the Smith chart.
 出力インピーダンスである二本の伝送線路a、bの少なくとも1つが、50Ωのインピーダンスを有する物理長4000mmの伝送線路であり、所望の対象に対して電気的に直列接続される。図5の実施例では伝送線路bを、50ΩのインピーダンスZcbを有する物理長Lb 4000mmの伝送線路とする。 At least one of the two transmission lines a and b, which are output impedances, is a transmission line with a physical length of 4000 mm having an impedance of 50 Ω and is electrically connected in series to a desired object. In the embodiment of FIG. 5, the transmission line b is a transmission line of physical length Lb 4000 mm having an impedance Zc b of 50 Ω.
 図5を破線(2)で切断して、可変周波数交流電力源Vs側(図5中の左側)を見たインピーダンスZiと反射係数γiは、
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000004
 
となる。但し、φa=La×2/λ、λは伝送線路a上の波長(mm)である。
The impedance Zi and the reflection coefficient γi as viewed from the variable frequency AC power source Vs side (left side in FIG. 5) by cutting FIG. 5 with a broken line (2) are as follows:
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004

It becomes. Here, φa = La × 2 / λ, where λ is the wavelength (mm) on the transmission line a.
 Zca とLa は、所望の周波帯帯域の下限でZiの虚部が0Ωとなり、同周波帯帯域の上限でγiが目標最大反射係数となるように定める。例えば可変周波数交流電力源Vsの周波数を変更する所望の周波数帯域として、IMS(Industry Science Medical)バンドを考え、下限周波数2.4GHz 、上限周波数を2.5GHz、目標最大反射係数を0.8とすると、Zca 15Ω、La 285mmとなる。これらの値を数1に代入し、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更してスミスチャート上にプロットしたものを図6に示す。図6に示すように原点から外に向かう周波数軌跡となる。 Zc a and La are determined such that the imaginary part of Zi becomes 0Ω at the lower limit of the desired frequency band, and γi becomes the target maximum reflection coefficient at the upper limit of the same frequency band. For example, assuming an IMS (Industry Science Medical) band as a desired frequency band for changing the frequency of the variable frequency AC power source Vs, assuming that the lower limit frequency is 2.4 GHz, the upper limit frequency is 2.5 GHz, and the target maximum reflection coefficient is 0.8, Zc a It will be 15 Ω, La 285 mm. These values are substituted into Equation 1, and the frequency of the variable frequency AC power source Vs is changed within a desired frequency band and plotted on a Smith chart, which is shown in FIG. As shown in FIG. 6, it becomes a frequency locus going outward from the origin.
 次に、図5を破線(1)で切断して、可変周波数交流電力源Vs側(図5中の左側)を見たインピーダンスZii(出力インピーダンス)は、
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000007
 
となる。但し、φb=Lb×2/λ、Lbが4000mm、Zcbが50Ω、λは伝送線路b上の波長(mm)であるである。
Next, the impedance Zii (output impedance) as viewed from the variable frequency AC power source Vs side (left side in FIG. 5) by cutting FIG.
Figure JPOXMLDOC01-appb-M000005

Figure JPOXMLDOC01-appb-M000006

Figure JPOXMLDOC01-appb-M000007

It becomes. However, it is φb = Lb × 2 / λ, Lb is 4000 mm, Zc b is 50 [Omega, lambda is the wavelength on the transmission line b (mm).
 これらの値を数5に代入し、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziiをスミスチャート上にプロットしたものを図7に示す。スミスチャート上にプロットすると図7に示すように渦巻き状の軌跡が得られる。ここで、インピーダンスZiiと負荷のインピーダンスZLの複素共役が、
Figure JPOXMLDOC01-appb-M000008
 
の関係となれば、完全に整合される。数8からずれている場合、破線(1)で反射が生じる。その反射係数γiiは、
Figure JPOXMLDOC01-appb-M000009
 
である。
These values are substituted into Equation 5, and the frequency of the variable frequency AC power source Vs is changed within a desired frequency band, and Zii is plotted on a Smith chart as shown in FIG. When plotted on a Smith chart, a spiral trajectory is obtained as shown in FIG. Here, the complex conjugate of the impedance Zii and the impedance ZL of the load is
Figure JPOXMLDOC01-appb-M000008

It is perfectly aligned if it If it deviates from the equation 8, reflection occurs at the broken line (1). The reflection coefficient γii is
Figure JPOXMLDOC01-appb-M000009

It is.
 また、2本の伝送線路a、bを無損失とすると、
Figure JPOXMLDOC01-appb-M000010
 
となる。図5中の破線(3)で反射が生じた時の反射係数がγiiiであり、破線(3)に於いて負荷側(図5中の右側)を見た時の反射係数である。即ち反射係数γiiiとは、インピーダンス整合回路に対する入射波a1と反射波b1の比である入力側反射係数(b1/a1)である。
Also, assuming that the two transmission lines a and b are lossless,
Figure JPOXMLDOC01-appb-M000010

It becomes. The reflection coefficient is γiii when reflection occurs in the broken line (3) in FIG. 5, and the reflection coefficient when the load side (right side in FIG. 5) is seen in the broken line (3). That is, the reflection coefficient γ iii is the input-side reflection coefficient (b1 / a1) which is the ratio of the incident wave a1 to the impedance matching circuit and the reflected wave b1.
 一方、図5を破線(3)で切断して、負荷側(図5中の右側)を見た時の、負荷が示すインピーダンスZLの例として、図8のスミスチャート上に示すランダムな10点(ZL01~ZL10)のインピーダンスを考える。10点のインピーダンスは、スミスチャート円内で疎らに散らばるように対象負荷の任意のインピーダンスをランダムに与えている。この10点は、スミスチャート上の全範囲に亘るそれぞれ所定の箇所に、対象負荷のインピーダンスZLの複素共役となるインピーダンスをプロットしたものである。 On the other hand, random 10 points shown on the Smith chart of FIG. 8 as an example of the impedance ZL which a load shows when FIG. 5 is cut off with a broken line (3) and the load side (right side in FIG. 5) is seen. Consider the impedance of (Z L01 to Z L10 ). The ten points of impedance randomly give an arbitrary impedance of the target load so as to be scattered sparsely within the Smith chart circle. These ten points are obtained by plotting the impedance that is the complex conjugate of the impedance ZL of the target load at each predetermined position over the entire range on the Smith chart.
 図8の10点の複素共役点(Z L01~Z L10)をプロットしたスミスチャートを、図9に示す(図8の10点を上下反転した)。更に、図9に図7の渦巻き状の軌跡を重ね描きした。図9の各プロット点から渦巻き状の軌跡に最も近い点に相当する周波数に於いて、反射が最小となる。その様子を周波数軸上にグラフ化したものを図10に示す。図10のグラフの各曲線が、図9の各プロット点に対する反射係数γiiiである。 A Smith chart in which 10 complex conjugate points (Z * L01 to Z * L10 ) in FIG. 8 are plotted is shown in FIG. 9 (the 10 points in FIG. 8 are vertically inverted). Furthermore, the spiral trajectory shown in FIG. 7 is superimposed on FIG. The reflection is minimized at the frequency corresponding to the point closest to the spiral trajectory from each plot point in FIG. What made the situation graph on a frequency axis is shown in FIG. Each curve of the graph of FIG. 10 is the reflection coefficient γ iii for each plot point of FIG.
 このように、可変周波数交流電力源Vsの周波数を変更して、スミスチャート上で渦巻き状に出力インピーダンスの軌跡を現し、対象負荷のインピーダンスZLの複素共役となるインピーダンスに対して、出力インピーダンスを一致又は所望の数値範囲内に収める。 In this way, the frequency of the variable frequency AC power source Vs is changed to make the locus of the output impedance appear spirally on the Smith chart, and the output impedance matches the impedance that is the complex conjugate of the impedance ZL of the target load. Or within the desired numerical range.
 図7及び図9に示す様に、スミスチャート上に渦巻き状の出力インピーダンスの軌跡を現す事で、スミスチャート上の全範囲に亘って、複素共役となるインピーダンス(Z L01~Z L10)に対し出力インピーダンスを一致又は所望の数値範囲内に収める事が可能となる。 As shown in FIG. 7 and FIG. 9, by expressing the locus of the spiral output impedance on the Smith chart, impedance (Z * L01 to Z * L10 ) which becomes complex conjugate over the entire range on the Smith chart. Whereas the output impedance can be matched or within the desired numerical range.
 図10の各曲線の最小値を黒丸点で示す。これがランダムに与えた各負荷(前記10点のインピーダンスZL01~ZL10)に対する最適周波数(反射係数γiiiが最小となる周波数)である。本発明に於いては、可変周波数交流電力源Vsの周波数を変更する所望の周波数帯域がIMSバンドの場合、対象負荷のインピーダンスZLの複素共役となるインピーダンスに対し出力インピーダンスを-10dB以下と云う所望の数値範囲内に収める事とした。所望の数値範囲内を-10dB以下と設定する事により、図10の場合は全ての負荷(ランダムに与えた10点のインピーダンスZL01~ZL10)に於いて反射係数γiiiが-10dB以下となる周波数が1点以上存在する事が分かる。即ち、所望の周波数帯域内(2.4GHz以上2.5GHz以下)で、前記(b1/a1)が-10dB以下となる周波数範囲が複数存在する事が分かる。よって、本実施例のインピーダンス整合回路は、対象負荷のインピーダンスZLの複素共役となるインピーダンスに対して、出力インピーダンスを一致又は所望の数値範囲内に収める周波数範囲が、複数存在する事となる。以上により、高速で即時な出力インピーダンスの整合を、より確実に行う事が可能となる。 The minimum value of each curve in FIG. 10 is indicated by a black dot. This is the optimum frequency (the frequency at which the reflection coefficient γiii is minimum) for each load (the impedance Z L01 to Z L10 of the 10 points) given at random. In the present invention, when the desired frequency band for changing the frequency of the variable frequency AC power source Vs is the IMS band, it is desirable to set the output impedance to -10 dB or less with respect to the impedance that is the complex conjugate of the impedance ZL of the target load. To be within the numerical range of By setting the desired numerical range to -10 dB or less, in the case of FIG. 10, the reflection coefficient γiii becomes -10 dB or less at all loads (randomly given 10 points of impedance Z L01 to Z L10 ) It can be seen that there is more than one frequency. That is, it can be understood that a plurality of frequency ranges in which (b1 / a1) becomes −10 dB or less exist in a desired frequency band (2.4 GHz or more and 2.5 GHz or less). Therefore, in the impedance matching circuit of the present embodiment, a plurality of frequency ranges in which the output impedance matches or falls within a desired numerical range for the impedance which is the complex conjugate of the impedance ZL of the target load are present. According to the above, it is possible to perform high-speed and immediate output impedance matching more reliably.
 図9に於ける10点のインピーダンス(Z L01~Z L10)が、渦巻き状の軌跡の上にプロットされた場合、対象負荷のインピーダンスZLの複素共役となるインピーダンスに対して、出力インピーダンスが一致されて整合される。実施例1では、図9より10点全てで一致はしていないものの、所望の数値範囲内である-10dB以下となる周波数が存在する事が分かる。無論、10点のインピーダンス(Z L01~Z L10)の設定によっては、一致するインピーダンスが複数存在し、対象負荷のインピーダンスZLの複素共役となるインピーダンスに対して、出力インピーダンスが複数の周波数範囲で一致する状態も考えられる。 When the impedances (Z * L01 to Z * L10 ) at 10 points in FIG. 9 are plotted on a spiral trajectory, the output impedance is not the impedance that is the complex conjugate of the impedance ZL of the target load. Matched and matched. In the first embodiment, it can be seen from FIG. 9 that although there is no coincidence at all ten points, there is a frequency which is within the desired numerical range and is −10 dB or less. Of course, depending on the settings of the 10 points of impedance (Z * L01 to Z * L10 ), there are multiple matching impedances, and the output impedance is in multiple frequency ranges with respect to the impedance that becomes the complex conjugate of the impedance ZL of the target load. There is also a possibility of a match.
 更に実施例1に係るインピーダンス整合回路に依れば、前記図4で示した実施形態が有する効果に加えて、少なくとも1つの伝送線路bを備える事により、可変周波数交流電力源Vsからの電力の伝達効率が改善し、インピーダンス整合回路の内部発熱損失を低減可能となる。更に、可変周波数交流電力源Vsの周波数を変更する周波数範囲を、高い周波数範囲(例えば、数GHz帯以上)に設定可能となり、その高い周波数範囲でのインピーダンス整合回路の設計試作が容易となる。 Furthermore, according to the impedance matching circuit according to the first embodiment, in addition to the effects of the embodiment shown in FIG. 4, by providing at least one transmission line b, the power from the variable frequency AC power source Vs can be The transfer efficiency is improved, and the internal heat generation loss of the impedance matching circuit can be reduced. Furthermore, the frequency range for changing the frequency of the variable frequency AC power source Vs can be set to a high frequency range (for example, several GHz band or more), and design and trial manufacture of the impedance matching circuit in the high frequency range becomes easy.
(実施例2)
 次に図11~図14を用いて、実施例2のインピーダンス整合回路に関して説明する。なお、図4及び実施例1と同一箇所には同一番号又は符号を付し、重複する説明は省略、又は簡略化して記述する。
(Example 2)
Next, the impedance matching circuit according to the second embodiment will be described with reference to FIGS. The same reference numerals as in FIG. 4 and the first embodiment denote the same parts, and a redundant description will be omitted or simplified.
 前記実施例1は、15ΩのインピーダンスZcaを有する伝送線路aと、50ΩのインピーダンスZcbを有する伝送線路bから成る。インピーダンスが50Ωである同軸ケーブルは市販されており、入手可能である。一方Zca 15Ω、La 285mmの伝送線路は、入手が困難な場合も想定される。そこで、インピーダンス15Ωの同軸ケーブルを使用しない例を実施例2で説明する。 The first embodiment comprises a transmission line a having an impedance Zc a of 15 Ω and a transmission line b having an impedance Zc b of 50 Ω. Coaxial cables having an impedance of 50Ω are commercially available. On the other hand, the transmission line of Zc a 15 Ω and La 285 mm is assumed to be difficult to obtain. Thus, an example in which a coaxial cable with an impedance of 15 Ω is not used will be described in a second embodiment.
 実施例2のインピーダンス整合回路を図11に示す。可変周波数交流電力源Vsのインピーダンスは実施例1と同じく50Ωとする。図11を破線(2)で切断して、可変周波数交流電力源Vs側(図11中の左側)を見たインピーダンスZiは、
Figure JPOXMLDOC01-appb-M000011
 
となる。反射係数γiは数4と同一である。
The impedance matching circuit of the second embodiment is shown in FIG. The impedance of the variable frequency AC power source Vs is 50 Ω as in the first embodiment. The impedance Zi seen from the side of the variable frequency AC power source Vs (left side in FIG. 11) by cutting FIG.
Figure JPOXMLDOC01-appb-M000011

It becomes. The reflection coefficient γi is the same as the equation (4).
 インダクタLとキャパシタCは、所望の周波帯帯域の下限でZiの虚部が0Ωとなり、同周波帯帯域の上限でγiが目標最大反射係数となるように定める。例えば所望の周波数帯域として実施例1と同じくIMSバンドを考え、下限周波数2.4GHz 、上限周波数を2.5GHz、目標最大反射係数を0.8とすると、L 101nH、C 0.04pFとなる。これらの値を数11に代入し、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更してスミスチャート上にプロットしたものを図12に示す。図12に示すように原点から外に向かう周波数軌跡となる。 The inductor L and the capacitor C are determined such that the imaginary part of Zi becomes 0Ω at the lower limit of the desired frequency band, and γi becomes the target maximum reflection coefficient at the upper limit of the same frequency band. For example, assuming the IMS band as the desired frequency band as in the first embodiment, assuming that the lower limit frequency is 2.4 GHz, the upper limit frequency is 2.5 GHz, and the target maximum reflection coefficient is 0.8, L 101 nH and C 0.04 pF are obtained. These values are substituted into Equation 11, and the frequency of the variable frequency alternating current power source Vs is changed within a desired frequency band and plotted on a Smith chart as shown in FIG. As shown in FIG. 12, it becomes a frequency locus going outward from the origin.
 次に、図11を破線(1)で切断して、可変周波数交流電力源Vs側(図11中の左側)を見たインピーダンスZii(出力インピーダンス)は、数5~数7となる。 Next, the impedance Zii (output impedance) as viewed from the variable frequency AC power source Vs side (left side in FIG. 11) by cutting FIG. 11 along the broken line (1) is expressed by Equations 5 to 7.
 これらの値を数5に代入し、可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、Ziiをスミスチャート上にプロットしたものを図13に示す。スミスチャート上にプロットすると図13に示すように渦巻き状の軌跡が得られる。 These values are substituted into Equation 5, and the frequency of the variable frequency AC power source Vs is changed within a desired frequency band, and Zii is plotted on a Smith chart as shown in FIG. When plotted on a Smith chart, a spiral trajectory is obtained as shown in FIG.
 図11に示すインピーダンス整合回路が無損失とすると、数10が得られる(併せて数9も参照)。実施例1及び前記図8と同様、ランダムに10点のインピーダンスをスミスチャート円内で疎らに与え、図11の破線(3)で反射が生じた時の反射係数γiiiを図14に示す。図14より全ての負荷に於いて、反射係数γiiiが-10dB以下となる周波数が1点以上存在する事が分かる。 Assuming that the impedance matching circuit shown in FIG. 11 is lossless, several 10 is obtained (see also several 9). Similar to Embodiment 1 and FIG. 8, the impedance of 10 points is randomly given sparsely within the Smith chart circle, and the reflection coefficient γiii when reflection occurs at the broken line (3) of FIG. 11 is shown in FIG. It can be seen from FIG. 14 that at all loads, there are one or more frequencies at which the reflection coefficient γiii is −10 dB or less.
 実施例2に係るインピーダンス整合回路に依れば、前記図4で示した実施形態と実施例1が有する効果に加えて、少なくとも1つの集中定数素子(L又はC)を備える事により、インピーダンス整合回路を小型化する事が可能となると共に、インピーダンス整合回路の設計が容易となる。 According to the impedance matching circuit of the second embodiment, in addition to the effects of the embodiment shown in FIG. 4 and the first embodiment, the impedance matching can be achieved by providing at least one lumped constant element (L or C). The circuit can be miniaturized and the design of the impedance matching circuit is facilitated.
(実施例3)
 次に図15~図18を用いて、実施例3のインピーダンス整合回路に関して説明する。なお、図4及び前記実施例1又は2と同一箇所には同一番号又は符号を付し、重複する説明は省略、又は簡略化して記述する。
(Example 3)
Next, the impedance matching circuit according to the third embodiment will be described with reference to FIGS. The same reference numerals as in FIG. 4 and the first embodiment or the second embodiment denote the same parts or parts, and a redundant description will be omitted or simplified.
 図15に示す実施例3では、可変周波数交流電力源Vsを備えるインピーダンス整合回路として、2本の異なる伝送線路b及びcと、その伝送線路b及びcのそれぞれの左端側に、同一の静電容量を有する2つのキャパシタC1、C1を備える。可変周波数交流電力源Vs側のキャパシタをC1、負荷である所望の対象側のキャパシタをC2とする。 In the third embodiment shown in FIG. 15, as an impedance matching circuit provided with a variable frequency AC power source Vs, two different transmission lines b and c and the same electrostatics on the left end side of each of the transmission lines b and c It comprises two capacitors C1 and C1 having a capacitance. A capacitor on the variable frequency AC power source Vs side is C1, and a capacitor on the desired target side, which is a load, is C2.
 図15中の破線(2)で切断し、可変周波数交流電力源Vs側(図15中の左側)を見たインピーダンスZiを導出する。まず、可変周波数交流電力源VsとC1のインピーダンスZ1
Figure JPOXMLDOC01-appb-M000012
 
となる。更に右側に伝送線路cを加えたインピーダンスZ2
Figure JPOXMLDOC01-appb-M000013
 
となる。Z11は、伝送線路cのインピーダンスZcc Ωを、(jtanΦc)で除した係数である。Φcとは、伝送線路cの物理長Lc(mm)×2/λである(λは伝送線路c上の波長(mm)である)。Z12とZ21は共に、Zcc Ωを、(jsinΦc)で除した係数である。
The impedance Zi is derived by cutting along the broken line (2) in FIG. 15 and looking at the variable frequency AC power source Vs side (left side in FIG. 15). First, the impedance Z 1 of the variable frequency AC power source Vs and C1 is
Figure JPOXMLDOC01-appb-M000012

It becomes. Furthermore, impedance Z 2 with transmission line c added to the right is
Figure JPOXMLDOC01-appb-M000013

It becomes. Z 11 is the impedance Zc c Omega transmission line c, a coefficient obtained by dividing by (jtanΦc). Φ c is the physical length L c (mm) × 2 / λ of the transmission line c (λ is the wavelength (mm) on the transmission line c). Z 12 and Z 21 together with Zc c Omega, a coefficient obtained by dividing by (jsinΦc).
 従って、
Figure JPOXMLDOC01-appb-M000014
 
となる。γiは数4と同じである。
Therefore,
Figure JPOXMLDOC01-appb-M000014

It becomes. γ i is the same as in Eq.
 実施例1と同様、伝送線路b、cと2つのC1、C2は、所望の周波帯帯域の下限でZiの虚部が0Ωとなり、同周波帯帯域の上限でγiが目標最大反射係数となるように定める。実施例1と同様に所望の周波数帯域として、IMSバンドを考え、下限周波数2.4GHz 、上限周波数を2.5GHz、目標最大反射係数を0.8とすると、C1=C2=0.5pF、Zcc 15Ω、Lc 173 deg(2.45GHz)となる。 As in the first embodiment, in the transmission lines b and c and the two C1 and C2, the imaginary part of Zi becomes 0 Ω at the lower limit of the desired frequency band, and γi becomes the target maximum reflection coefficient at the upper limit of the same frequency band. As determined. Assuming an IMS band as a desired frequency band as in Example 1, assuming that the lower limit frequency is 2.4 GHz, the upper limit frequency is 2.5 GHz, and the target maximum reflection coefficient is 0.8, C1 = C2 = 0.5 pF, Zc c 15 Ω, Lc 173 It becomes deg (2.45 GHz).
 数14のZiをスミスチャート上にプロットすると、図16に示すように原点から外に向かう周波数軌跡となる。 When Zi in equation 14 is plotted on a Smith chart, it becomes a frequency locus going outward from the origin as shown in FIG.
 次に、図15中の破線(1)で切断して、可変周波数交流電力源Vs側(図15中の左側)を見たインピーダンスZii(出力インピーダンス)を導出すると、数5~数7となる。可変周波数交流電力源Vsの周波数を所望の周波数帯域内で変更して、数5のZiiをスミスチャート上にプロットすると、図17に示すように渦巻き状の軌跡となる。 Next, when the impedance Zii (output impedance) is obtained by cutting the broken line (1) in FIG. 15 and looking at the variable frequency AC power source Vs side (left side in FIG. 15), several 5 to several 7 are obtained. . When the frequency of the variable frequency AC power source Vs is changed within a desired frequency band and Zii of the equation 5 is plotted on a Smith chart, a spiral trajectory is obtained as shown in FIG.
 図15に示すインピーダンス整合回路が無損失とすると、数10が得られる(併せて数9も参照)。実施例1及び前記図8と同様、ランダムに10点のインピーダンスをスミスチャート円内で疎らに与え、図15の破線(3)で反射が生じた時の反射係数γiiiを図18に示す。図18より全ての負荷に於いて、反射係数γiiiが-10dB以下となる周波数が1点以上存在する事が分かる。 Assuming that the impedance matching circuit shown in FIG. 15 is lossless, several 10 can be obtained (see also several 9). Similar to the first embodiment and FIG. 8, the impedance of 10 points is randomly given sparsely within the Smith chart circle, and the reflection coefficient γ iii when the reflection occurs at the broken line (3) of FIG. 15 is shown in FIG. It can be seen from FIG. 18 that at all loads, there are one or more frequencies at which the reflection coefficient γiii is −10 dB or less.
 更に、本出願人が図15のインピーダンス整合回路を試作して検証した結果、比誘電率3程度、厚み1mm以下の基板を用いて、幅約25mm、奥行き40mm程度のサイズに収まる事を確認した。 Furthermore, as a result of trial manufacture of the impedance matching circuit of FIG. 15 by the applicant and verification, it was confirmed that the substrate fits within about 25 mm in width and about 40 mm in depth using a substrate with a relative dielectric constant of about 3 and a thickness of 1 mm or less. .
 更に実施例3に係るインピーダンス整合回路に依れば、前記図4で示した実施形態と実施例1が有する効果に加えて、少なくとも1つの集中定数素子(C1又はC2)を備える事により、インピーダンス整合回路を小型化する事が可能となると共に、インピーダンス整合回路の設計が容易となる。 Furthermore, according to the impedance matching circuit according to the third embodiment, in addition to the effects of the embodiment shown in FIG. 4 and the first embodiment, the impedance can be improved by providing at least one lumped constant element (C1 or C2). The matching circuit can be miniaturized, and the design of the impedance matching circuit is facilitated.
(実施例4、実施例5)
 次に図19~図22を用いて、実施例4のインピーダンス整合回路に関して説明する。また図23~図26を用いて、本発明に係る実施例5のインピーダンス整合回路に関して説明する。なお、図4及び前記各実施例と同一箇所には同一番号又は符号を付し、重複する説明は省略、又は簡略化して記述する。
(Example 4, Example 5)
Next, the impedance matching circuit of the fourth embodiment will be described with reference to FIGS. 19 to 22. FIG. An impedance matching circuit according to a fifth embodiment of the present invention will be described with reference to FIGS. 23 to 26. The same reference numerals as in FIG. 4 and the above-described embodiments denote the same parts, and a redundant description will be omitted or simplified.
 図19より、可変周波数交流電力源Vsを備えるインピーダンス整合回路として、キャパシタC3、伝送線路bとd、及び結合線路CLからなるインピーダンス整合回路を実施例4とする。一方図23より、可変周波数交流電力源Vsを備えるインピーダンス整合回路として、伝送線路bと、2つの結合線路CL1とCL2のみから構成されるインピーダンス整合回路を実施例5とする。実施例4及び実施例5では、Ziを回路シミュレーションによって、所望の周波帯帯域の上限でZiの虚部が0Ωとなり、同周波帯帯域の下限でγiが目標最大反射係数となるように求めた。即ち、所望の周波数帯域の上限と下限の関係が、前記実施例1と実施例3までとは反転している。実施例4及び実施例5でも、所望の周波数帯域としてIMSバンドを考える。よって、実施例4及び実施例5では共に上限周波数を2.4GHz、下限周波数を2.5GHzとした。 From FIG. 19, an impedance matching circuit including a capacitor C 3, transmission lines b and d, and a coupling line CL is taken as Example 4 as an impedance matching circuit including a variable frequency alternating current power source Vs. On the other hand, referring to FIG. 23, as an impedance matching circuit provided with a variable frequency alternating current power source Vs, an impedance matching circuit constituted only by a transmission line b and two coupled lines CL1 and CL2 is taken as Example 5. In Example 4 and Example 5, Zi was determined by circuit simulation so that the imaginary part of Zi becomes 0 Ω at the upper limit of the desired frequency band and γi becomes the target maximum reflection coefficient at the lower limit of the same frequency band. . That is, the relationship between the upper limit and the lower limit of the desired frequency band is reversed between the first embodiment and the third embodiment. Also in the fourth and fifth embodiments, an IMS band is considered as a desired frequency band. Therefore, in Example 4 and Example 5, the upper limit frequency is 2.4 GHz and the lower limit frequency is 2.5 GHz.
 更に実施例4では目標最大反射係数を0.7とした。この場合、C3が3.8 pF、伝送線路dのインピーダンスZcdが41Ω、Ldが157deg(2.45GHz)、結合線路CLは偶モードインピーダンスZeven 87Ω、奇モードインピーダンスZodd 44Ω、L 119deg(2.45GHz)となる。図20に示すようにZiはスミスチャート上の原点から外に向かう軌跡となる。但し、原点が上限周波数となり、下限周波数がスミスチャートの単位円周側にある。 Further, in the fourth embodiment, the target maximum reflection coefficient is 0.7. In this case, the C3 is 3.8 pF, the impedance Zc d of the transmission line d is 41Omu, Ld is 157deg (2.45GHz), the coupling line CL is even mode impedance Zeven 87Omu, odd mode impedance Zodd 44Ω, L 119deg (2.45GHz) . As shown in FIG. 20, Zi has a locus going outward from the origin on the Smith chart. However, the origin is the upper limit frequency, and the lower limit frequency is on the unit circle side of the Smith chart.
 次に、図19中の破線(1)で切断して、可変周波数交流電力源Vs側(図19中の左側)を見たインピーダンスZii(出力インピーダンス)をスミスチャート上にプロットすると、図21に示すように渦巻き状の軌跡となる。 Next, when the impedance Zii (output impedance) as viewed from the side of the variable frequency AC power source Vs (left side in FIG. 19) cut along the broken line (1) in FIG. 19 is plotted on the Smith chart, FIG. As shown, it has a spiral trajectory.
 実施例1及び前記図8と同様、ランダムに10点のインピーダンスをスミスチャート円内で疎らに与え、図19の破線(3)で反射が生じた時の反射係数γiiiを図22に示す。図22より全ての負荷に於いて、反射係数γiiiが-10dB以下となる周波数が1点以上存在する事が分かる。 Similar to Embodiment 1 and FIG. 8, impedances of 10 points are randomly given sparsely within the Smith chart circle, and a reflection coefficient γiii when reflection occurs at the broken line (3) of FIG. 19 is shown in FIG. It can be seen from FIG. 22 that at all the loads, there are one or more frequencies at which the reflection coefficient γiii is −10 dB or less.
 一方、実施例5では目標最大反射係数を0.9とした。この場合、図23に示すインピーダンス整合回路の可変周波数交流電力源Vs側の結合線路CL1はZeven1が57.65Ω、Zodd1が40.4Ω、L 96deg(2.45GHz)、負荷側の結合線路CL2はZeven2が57.65Ω、Zodd2が40.4Ω、L 80.5deg(2.45GHz)となる。 On the other hand, in the fifth embodiment, the target maximum reflection coefficient is 0.9. In this case, the coupling line CL1 on the variable frequency AC power source Vs side of the impedance matching circuit shown in FIG. 23 is 57.65 Ω for Zeven1, 40.4 Ω for Zodd1, and L 96 deg (2.45 GHz), and the coupling line CL2 for the load side is 57.65 for Zeven2. Ω, Zodd2 becomes 40.4 Ω, L 80.5 deg (2.45 GHz).
 図23中の破線(2)で切断して、可変周波数交流電力源Vs側(図23中の左側)を見たインピーダンスZiをスミスチャートにプロットすると、図24に示すように原点から外に向かう軌跡となる。但し実施例4と同様、原点が上限周波数となり、下限周波数がスミスチャートの単位円周側にある。 When impedance Zi cut on broken line (2) in FIG. 23 and looking at variable frequency AC power source Vs side (left side in FIG. 23) is plotted on a Smith chart, as shown in FIG. It becomes a locus. However, as in the fourth embodiment, the origin is the upper limit frequency, and the lower limit frequency is on the unit circle side of the Smith chart.
 次に、図23中の破線(1)で切断して、可変周波数交流電力源Vs側(図23中の左側)を見たインピーダンスZii(出力インピーダンス)をスミスチャート上にプロットすると、図25に示すように渦巻き状の軌跡となる。 Next, when the impedance Zii (output impedance) as cut at the broken line (1) in FIG. 23 and looking at the variable frequency AC power source Vs side (left side in FIG. 23) is plotted on a Smith chart, FIG. As shown, it has a spiral trajectory.
 実施例1及び前記図8と同様、ランダムに10点のインピーダンスをスミスチャート円内で疎らに与え、図23の破線(3)で反射が生じた時の反射係数γiiiを図26に示す。図26より全ての負荷に於いて、反射係数γiiiが-10dB以下となる周波数が1点以上存在する事が分かる。 Similar to Embodiment 1 and FIG. 8, impedances of 10 points are randomly given sparsely within the Smith chart circle, and a reflection coefficient γiii when reflection occurs at the broken line (3) of FIG. 23 is shown in FIG. It can be seen from FIG. 26 that at all loads, there are one or more frequencies at which the reflection coefficient γiii is −10 dB or less.
 実施例4及び5に係るインピーダンス整合回路に依れば、前記図4で示した実施形態と実施例1が有する効果に加えて、少なくとも1つの結合線路(CL、CL1、CL2)を備える事で、インピーダンス整合回路を小型化する事が可能となる。 According to the impedance matching circuits according to the fourth and fifth embodiments, in addition to the effects of the embodiment shown in FIG. 4 and the first embodiment, at least one coupled line (CL, CL1, CL2) is provided. The impedance matching circuit can be miniaturized.
 また実施例4に係るインピーダンス整合回路に依れば、前記図4で示した実施形態と実施例1が有する効果に加えて、少なくとも1つの集中定数素子(C3)を備える事により、インピーダンス整合回路を小型化する事が可能となると共に、インピーダンス整合回路の設計が容易となる。 Further, according to the impedance matching circuit according to the fourth embodiment, in addition to the effects of the embodiment shown in FIG. 4 and the first embodiment, the impedance matching circuit can be provided by including at least one lumped constant element (C3). Can be miniaturized and the design of the impedance matching circuit is facilitated.
(実施例6、実施例7、実施例8)
 次に図27~図38を用いて、実施例6~8のインピーダンス整合回路に関して説明する。なお、図4及び前記各実施例と同一箇所には同一番号又は符号を付し、重複する説明は省略、又は簡略化して記述する。実施例6~8でも、所望の周波数帯域としてIMSバンドを考える。
(Example 6, Example 7, Example 8)
The impedance matching circuits of the sixth to eighth embodiments will now be described with reference to FIGS. The same reference numerals as in FIG. 4 and the above-described embodiments denote the same parts, and a redundant description will be omitted or simplified. Also in the sixth to eighth embodiments, the IMS frequency band is considered as the desired frequency band.
 実施例1~5で説明した通り、各実施例の回路図(図5、図11、図15、図19、図23)として、原点から外に向かって弧を描く出力インピーダンスと、インピーダンスZcbが50Ωである伝送線路bが接続されている回路図を例示した。各実施例のスミスチャートでは、周波数の渦巻き状の軌跡を実現する事が出来る。この原点から外に向かって弧を描く出力インピーダンスは、フィルタの通過域と遮断域の急峻性を利用している事でもある。そこで可変周波数交流電力源Vsを備えるインピーダンス整合回路として、LとCから成るチェビシェフフィルタを用いたインピーダンス整合回路を、図27~図29にそれぞれ図示した。 As described in the first to fifth embodiments, as the circuit diagrams (FIGS. 5, 11, 15, 19, and 23) of each embodiment, the output impedance that draws an arc from the origin to the outside, and the impedance Zc b Exemplifies a circuit diagram in which a transmission line b having 50 Ω is connected. In the Smith chart of each embodiment, a spiral trajectory of frequency can be realized. The output impedance that arcs outward from this origin is also using the steepness of the passband and the cutoff band of the filter. An impedance matching circuit using a Chebyshev filter consisting of L and C is illustrated in FIGS. 27 to 29 as an impedance matching circuit provided with a variable frequency AC power source Vs.
 図27は実施例6に係り、LPFを出力インピーダンスに用いたインピーダンス整合回路の回路図である。図28は実施例7に係り、HPFを出力インピーダンスに用いたインピーダンス整合回路の回路図である。図29は実施例8に係り、BPFを出力インピーダンスに用いたインピーダンス整合回路の回路図である。 FIG. 27 relates to the sixth embodiment and is a circuit diagram of an impedance matching circuit using an LPF as an output impedance. FIG. 28 relates to the seventh embodiment and is a circuit diagram of an impedance matching circuit using an HPF as an output impedance. FIG. 29 relates to the eighth embodiment and is a circuit diagram of an impedance matching circuit using a BPF as an output impedance.
 図27のインピーダンス整合回路に於けるZiは、図27を破線(2)で切断して、可変周波数交流電力源Vs側(図27中の左側)を見たインピーダンスである。まず図27中の破線(K+1)で切断して、可変周波数交流電力源Vs側(図27中の左側)を見た時のインピーダンスZK+1は、
Figure JPOXMLDOC01-appb-M000015
 
となる。但し、K+1<最終段Nである。
Zi in the impedance matching circuit of FIG. 27 is impedance which saw FIG. 27 with the broken line (2) and looked at the variable frequency alternating current power source Vs side (left side in FIG. 27). First, the impedance Z K + 1 when the variable frequency AC power source Vs side (left side in FIG. 27) is cut by broken line (K + 1) in FIG.
Figure JPOXMLDOC01-appb-M000015

It becomes. However, K + 1 <final stage N.
 通常のフィルタでは各々を1つの段として数えるが、今回LとCの2つの回路素子を一つの組とした。入出力の各々のインピーダンスを50Ωにする為、段数を奇数とした。最終段NのインピーダンスZNは、
Figure JPOXMLDOC01-appb-M000016
 
となる。
In an ordinary filter, each is counted as one stage, but in this case, two circuit elements of L and C are one set. In order to set the impedance of each of the input and output to 50 Ω, the number of stages is odd. The impedance Z N of the final stage N is
Figure JPOXMLDOC01-appb-M000016

It becomes.
 同様に図28のインピーダンス整合回路に於けるZiを示す。図28中の破線(K+1)で切断して、可変周波数交流電力源Vs側(図28中の左側)を見た時のインピーダンスZK+1は、
Figure JPOXMLDOC01-appb-M000017
 
となる。但し、K+1<最終段Nである。図28でも、LとCの2つの回路素子を一つの組とした。入出力の各々のインピーダンスを50Ωにする為、段数を奇数とした。最終段NのインピーダンスZN(=Zi)は、
Figure JPOXMLDOC01-appb-M000018
 
となる。
Similarly, Zi in the impedance matching circuit of FIG. 28 is shown. The impedance Z K + 1 when the variable frequency AC power source Vs side (left side in FIG. 28) is cut by broken line (K + 1) in FIG.
Figure JPOXMLDOC01-appb-M000017

It becomes. However, K + 1 <final stage N. Also in FIG. 28, two circuit elements of L and C are one set. In order to set the impedance of each of the input and output to 50 Ω, the number of stages is odd. The impedance Z N (= Zi) of the final stage N is
Figure JPOXMLDOC01-appb-M000018

It becomes.
 同様に図29のインピーダンス整合回路に於けるZiを示す。図29中の破線(K+1)で切断して、可変周波数交流電力源Vs側(図29中の左側)を見た時のインピーダンスZK+1は、
Figure JPOXMLDOC01-appb-M000019
 
となる。BPFではN-1がフィルタ段数を示し、NはCの数を示す。出力のインピーダンスZN(=Zi)は、
Figure JPOXMLDOC01-appb-M000020
 
となる。
Similarly, Zi in the impedance matching circuit of FIG. 29 is shown. The impedance Z K + 1 when the variable frequency AC power source Vs side (left side in FIG. 29) is cut by broken line (K + 1) in FIG.
Figure JPOXMLDOC01-appb-M000019

It becomes. In BPF, N-1 indicates the number of filter stages, and N indicates the number of C. The impedance Z N (= Zi) of the output is
Figure JPOXMLDOC01-appb-M000020

It becomes.
 次に、回路素子の値を求める。LPFでは、LとCの値は、チェビシェフフィルタのリップルとフィルタ段数と、所望の周波帯帯域の下限でZiの虚部が0Ωとなる手順を基に決まる。目標最大反射係数はリップルとフィルタの段数で定まる。LPF(リップル0.5)で、9段の例を図30~図32に示す。 Next, the value of the circuit element is determined. In the LPF, the values of L and C are determined on the basis of the ripple of the Chebyshev filter, the number of filter stages, and the procedure in which the imaginary part of Zi becomes 0Ω at the lower limit of the desired frequency band. The target maximum reflection coefficient is determined by the ripple and the number of filter stages. An example of 9 stages is shown in FIGS. 30 to 32 for the LPF (ripple 0.5).
 チェビシェフLPFでは、リップルが0.5で9段の場合、目標最大反射係数は0.8になる。これまでと同様に、Ziはスミスチャート上の原点から外に向かう軌跡となる(図30参照)。 In the Chebyshev LPF, when the ripple is 0.5 and nine stages, the target maximum reflection coefficient is 0.8. As before, Zi has a locus going outward from the origin on the Smith chart (see FIG. 30).
 次に、図27中の破線(1)で切断して、可変周波数交流電力源Vs側(図27中の左側)を見た時の、インピーダンスZii(出力インピーダンス)をスミスチャート上にプロットすると、図31に示すように渦巻き状の軌跡となる。 Next, when the impedance Zii (output impedance) is cut on the Smith chart when cut along the broken line (1) in FIG. 27 and looking at the variable frequency AC power source Vs side (left side in FIG. 27), As shown in FIG. 31, it has a spiral trajectory.
 実施例1及び前記図8と同様、ランダムに10点のインピーダンスをスミスチャート円内で疎らに与え、図27の破線(3)で反射が生じた時の反射係数γiiiを図32に示す。図32より全ての負荷に於いて、反射係数γiiiが-10dB以下となる周波数が1点以上存在する事が分かる。 Similar to the first embodiment and FIG. 8, the impedance of 10 points is randomly given sparsely in the Smith chart circle, and the reflection coefficient γiii when reflection occurs at the broken line (3) in FIG. 27 is shown in FIG. It can be seen from FIG. 32 that at all loads, there are one or more frequencies at which the reflection coefficient γiii is −10 dB or less.
 HPFの場合は、LPFと中心周波数で対称となる。LPFでは下限周波数を基準としたが、HPFの場合は上限周波数が基準となる。従って、LとCの値は、チェビシェフフィルタのリップルとフィルタ段数と、所望の周波帯帯域の上限でZiの虚部が0Ωとなる手順を基に決まる。LPFの場合と同様に、目標最大反射係数はリップルとフィルタの段数で定まる。 In the case of the HPF, it is symmetrical at the center frequency with the LPF. In the LPF, the lower limit frequency is used as a reference, but in the HPF, the upper limit frequency is a reference. Therefore, the values of L and C are determined based on the ripple of the Chebyshev filter, the number of filter stages, and the procedure in which the imaginary part of Zi becomes 0 Ω at the upper limit of the desired frequency band. As in the case of the LPF, the target maximum reflection coefficient is determined by the ripple and the number of filter stages.
 チェビシェフHPFでは、リップルが0.5で9段の場合、目標最大反射係数は0.8になる。これまでと同様に、Ziはスミスチャート上の原点から外に向かう軌跡となる(図33参照)。但し、原点が上限周波数であり、スミスチャートの単位円方向側が下限周波数となる。 For Chebyshev HPF, for a ripple of 0.5 and 9 stages, the target maximum reflection coefficient is 0.8. As before, Zi has a locus going outward from the origin on the Smith chart (see FIG. 33). However, the origin is the upper limit frequency, and the unit circle direction side of the Smith chart is the lower limit frequency.
 次に、図28中の破線(1)で切断して、可変周波数交流電力源Vs側(図28中の左側)を見た時の、インピーダンスZiiをスミスチャート上にプロットすると、図34に示すように渦巻き状の軌跡となる。 Next, when impedance Zii is plotted on a Smith chart when cut along the broken line (1) in FIG. 28 and looking at the variable frequency AC power source Vs side (left side in FIG. 28), it is shown in FIG. It becomes a spiral trajectory.
 実施例1及び前記図8と同様、ランダムに10点のインピーダンスをスミスチャート円内で疎らに与え、図28の破線(3)で反射が生じた時の反射係数γiiiを図35に示す。図35より全ての負荷に於いて、反射係数γiiiが-10dB以下となる周波数が1点以上存在する事が分かる。 Similar to Embodiment 1 and FIG. 8, the impedance of 10 points is randomly given sparsely within the Smith chart circle, and the reflection coefficient γiii when reflection occurs at the broken line (3) of FIG. 28 is shown in FIG. It can be seen from FIG. 35 that at all the loads, there are one or more frequencies at which the reflection coefficient γiii is −10 dB or less.
 BPFは、LPFとHPFの両方を併せ持つフィルタと考える事が出来る。同じリップル、フィルタ段数でも、所望の周波帯帯域の下限でZiの虚部が0Ωとなる手順又は所望の周波帯帯域の上限でZiの虚部が0Ωとなる手順のどちらでも取る事が出来る。実施例8では所望の周波帯帯域の下限でZiの虚部が0Ωとなる手順の場合を示す。 BPF can be considered as a filter that has both LPF and HPF. Even with the same ripple and the number of filter stages, either the procedure in which the imaginary part of Zi becomes 0Ω at the lower limit of the desired frequency band or the procedure in which the imaginary part of Zi at the upper limit of the desired frequency band becomes 0Ω can be taken. The eighth embodiment shows a procedure in which the imaginary part of Zi becomes 0 Ω at the lower limit of the desired frequency band.
 リップルを0.1、フィルタの段数を3段とした場合のZiを、図36に示す。目標最大反射係数は0.9になる。これまでと同様に、Ziはスミスチャート上の原点から外に向かう軌跡となる。 FIG. 36 shows Zi when the ripple is 0.1 and the number of filter stages is three. The target maximum reflection coefficient is 0.9. As before, Zi is a trajectory going outward from the origin on the Smith chart.
 次に、図29中の破線(1)で切断して、可変周波数交流電力源Vs側(図29中の左側)を見た時の、インピーダンスZiiをスミスチャート上にプロットすると、図37に示すように渦巻き状の軌跡となる。 Next, when impedance Zii is plotted on a Smith chart when cut along the broken line (1) in FIG. 29 and looking at the variable frequency AC power source Vs side (left side in FIG. 29), it is shown in FIG. It becomes a spiral trajectory.
 実施例1及び前記図8と同様、ランダムに10点のインピーダンスをスミスチャート円内で疎らに与え、図29の破線(3)で反射が生じた時の反射係数γiiiを図38に示す。図38より全ての負荷に於いて、反射係数γiiiが-10dB以下となる周波数が1点以上存在する事が分かる。 Similar to Embodiment 1 and FIG. 8, impedances of 10 points are randomly given sparsely within the Smith chart circle, and a reflection coefficient γiii when reflection occurs at the broken line (3) of FIG. 29 is shown in FIG. It can be seen from FIG. 38 that at all the loads, there are one or more frequencies at which the reflection coefficient γiii is −10 dB or less.
 チェビシェフフィルタでは同じリップル値の場合、段数が大きいほど渦巻き状の軌跡は大きくなる。また、同じフィルタ段数の場合、リップル値が大きいほど渦巻き状の軌跡の大きさは大きくなり、複素共役整合の範囲が広がる。 In the case of the same ripple value in the Chebyshev filter, the spiral trajectory becomes larger as the number of stages is larger. Further, in the case of the same number of filter stages, the larger the ripple value, the larger the size of the spiral trajectory, and the range of complex conjugate matching is broadened.
 実施例6~8の何れかに係るインピーダンス整合回路に依れば、前記図4で示した実施形態と実施例1が有する効果に加えて、少なくとも1つの集中定数素子(L又はC)を備える事により、インピーダンス整合回路を小型化する事が可能となると共に、インピーダンス整合回路の設計が容易となる。 According to the impedance matching circuit of any of the sixth to eighth embodiments, in addition to the effects of the embodiment shown in FIG. 4 and the first embodiment, at least one lumped constant element (L or C) is provided. As a result, the impedance matching circuit can be miniaturized, and the design of the impedance matching circuit is facilitated.
   1、2、3     インピーダンス整合回路
   a、b、c、d   伝送線路
   C、C1、C2、C3    キャパシタ
   CL、CL1、CL2    結合線路
   L          インダクタ
   V         固定周波数交流電力源
   Vs         可変周波数交流電力源
   ZL         所望の対象負荷が示すインピーダンス
1, 2, 3 Impedance matching circuit a, b, c, d Transmission line C, C1, C2, C3 Capacitor CL, CL1, CL2 Coupled line L Inductor V Fixed frequency AC power source Vs Variable frequency AC power source ZL Desired target Load indicated by impedance

Claims (7)

  1.  可変周波数交流電力源を備えると共に所望の対象負荷に接続され、
     可変周波数交流電力源の周波数を変更して、スミスチャート上で渦巻き状に出力インピーダンスの軌跡を現し、対象負荷のインピーダンスの複素共役となるインピーダンスに対して、出力インピーダンスを一致又は所望の数値範囲内に収めるインピーダンス整合回路。
    A variable frequency AC power source is provided and connected to a desired target load,
    The frequency of the variable frequency AC power source is changed, and the locus of the output impedance is spirally displayed on the Smith chart, and the output impedance is matched or within a desired numerical range with respect to the impedance which becomes the complex conjugate of the impedance of the target load. Impedance matching circuit to fit into.
  2.  前記対象負荷のインピーダンスの複素共役となるインピーダンスに対して、前記出力インピーダンスを一致又は所望の数値範囲内に収める周波数範囲が、複数存在する請求項1に記載のインピーダンス整合回路。 The impedance matching circuit according to claim 1, wherein there are a plurality of frequency ranges in which the output impedance matches or falls within a desired numerical range with respect to an impedance that is a complex conjugate of the impedance of the target load.
  3.  前記スミスチャート上の全範囲に亘る所定の箇所に、前記対象負荷のインピーダンスの複素共役となるインピーダンスがプロットされる請求項1又は2に記載のインピーダンス整合回路。 The impedance matching circuit according to claim 1 or 2, wherein an impedance that is a complex conjugate of the impedance of the target load is plotted at a predetermined position on the entire surface of the Smith chart.
  4.  前記可変周波数交流電力源の周波数を変更する周波数範囲が、所望の周波数範囲である
    請求項1~3に記載のインピーダンス整合回路。
    The impedance matching circuit according to any one of claims 1 to 3, wherein a frequency range in which the frequency of the variable frequency alternating current power source is changed is a desired frequency range.
  5.  少なくとも1つの伝送線路を備える請求項1~4の何れかに記載のインピーダンス整合回路。 The impedance matching circuit according to any one of claims 1 to 4, comprising at least one transmission line.
  6.  少なくとも1つの結合線路を備える請求項1~5の何れかに記載のインピーダンス整合回路。 The impedance matching circuit according to any one of claims 1 to 5, comprising at least one coupled line.
  7.  少なくとも1つの集中定数素子を備える請求項1~6の何れかに記載のインピーダンス整合回路。 The impedance matching circuit according to any one of claims 1 to 6, comprising at least one lumped constant element.
PCT/JP2018/043337 2017-11-27 2018-11-26 Impedance matching circuit WO2019103134A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019555389A JPWO2019103134A1 (en) 2017-11-27 2018-11-26 Impedance matching circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017226454 2017-11-27
JP2017-226454 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019103134A1 true WO2019103134A1 (en) 2019-05-31

Family

ID=66631492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043337 WO2019103134A1 (en) 2017-11-27 2018-11-26 Impedance matching circuit

Country Status (2)

Country Link
JP (1) JPWO2019103134A1 (en)
WO (1) WO2019103134A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021093562A (en) * 2019-12-06 2021-06-17 学校法人 龍谷大学 Impedance matching circuit, and microwave amplifier circuit and microwave heating device using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310245A (en) * 2005-02-25 2006-11-09 Daihen Corp High-frequency power device and method for controlling high-frequency power
JP2014072806A (en) * 2012-09-28 2014-04-21 Daihen Corp Impedance adjustment device
JP6157036B1 (en) * 2016-07-08 2017-07-05 株式会社京三製作所 High frequency power supply device and control method of high frequency power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310245A (en) * 2005-02-25 2006-11-09 Daihen Corp High-frequency power device and method for controlling high-frequency power
JP2014072806A (en) * 2012-09-28 2014-04-21 Daihen Corp Impedance adjustment device
JP6157036B1 (en) * 2016-07-08 2017-07-05 株式会社京三製作所 High frequency power supply device and control method of high frequency power supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021093562A (en) * 2019-12-06 2021-06-17 学校法人 龍谷大学 Impedance matching circuit, and microwave amplifier circuit and microwave heating device using the same
JP7485329B2 (en) 2019-12-06 2024-05-16 学校法人 龍谷大学 Circuit having microwave amplifier circuit and impedance matching circuit, and microwave heating device using the same

Also Published As

Publication number Publication date
JPWO2019103134A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
Matthaei et al. Theory and design of diplexers and multiplexers
US11251792B2 (en) Single-pole double-throw switch
JP6052616B2 (en) Rectenna device and power receiving rectification method
Tyurnev Coupling coefficients of resonators in microwave filter theory
EP2453524A1 (en) Antenna
US20170196639A1 (en) Dual band power amplifier circuit for microwave ablation
WO2019103134A1 (en) Impedance matching circuit
RU2559711C2 (en) Power divider
RU2601533C1 (en) Power divider
JPH0436482A (en) Plasma treating device
US9973166B2 (en) Phase shift circuit
JPS63206001A (en) Low-pass filter waveguide type diode limiter
Shaman et al. Compact ultra-wideband (UWB) bandpass filter with wideband harmonic suppression
Wang et al. Synthesis and design of direct-coupled rectangular waveguide filters with arbitrary inverter sequence
CN105742774A (en) X-waveband narrow-band band-pass filter
CN100359753C (en) Coplanar waveguide resonator
Yamasaki et al. Design of broadband semi-lumped and lumped element quadrature hybrids
Kittiwittayapong et al. Design of miniaturized impedance transformers using quarter-wave-like transformers implemented by asymmetric compact microstrip resonant cells
Ayad et al. Design of dual-mode SIR bandpass filter based on shorting pin for wireless communication applications
RU2805010C1 (en) High-frequency signals divider
JPH10190301A (en) Frequency characteristic correction circuit
RU2638974C1 (en) Power divider
US20050057322A1 (en) Apparatus and method for combining electrical signals
Khalid et al. Design of highly selective ultra-wideband bandpass filter using multiple resonance resonator
JP7485329B2 (en) Circuit having microwave amplifier circuit and impedance matching circuit, and microwave heating device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019555389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880537

Country of ref document: EP

Kind code of ref document: A1