WO2019102745A1 - Actuator operation switching device - Google Patents
Actuator operation switching device Download PDFInfo
- Publication number
- WO2019102745A1 WO2019102745A1 PCT/JP2018/038331 JP2018038331W WO2019102745A1 WO 2019102745 A1 WO2019102745 A1 WO 2019102745A1 JP 2018038331 W JP2018038331 W JP 2018038331W WO 2019102745 A1 WO2019102745 A1 WO 2019102745A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- actuator
- control unit
- unit
- force
- external force
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
Definitions
- the present invention relates to an actuator operation switching device that switches the operation of an actuator based on an external force applied to a movable portion of the actuator.
- robots industrial robots
- an end effector such as a hand is attached to the tip of an arm, and works by holding an object (part or work).
- the motion of the robot is generally controlled by position control. Therefore, when the pre-programmed target position and the actual position differ due to dimensional error or gripping position error of the object, a large external force is generated when the object contacts another object, and the object is scratched or damaged. May occur.
- a jig for absorbing a force generated due to a position error of an object may be separately installed.
- this buffer has different characteristics depending on the shape of the object and the material, it is necessary to prepare a buffer different by the number of types of the object, and it is designed each time. Therefore, there is a problem that the cost is increased and the size of the apparatus is increased.
- the robot when there is an error in the position where an object contacts another object, it detects that an excessive external force is generated at the time of contact and issues a stop command, but the robot having a large and heavy movable part and a speed reduction mechanism Can not stop.
- the external force generated at the time of contact is the sum of an impact force due to inertia and a force generated by the robot at the time of contact.
- the impact force due to inertia is proportional to the product of the mass of the object and the robot movable portion and the moving speed.
- the robot since the robot has a large and heavy mechanism, in order to reduce the impact force due to inertia, it is necessary to slow the moving speed just before contact.
- the robot does not stop suddenly even if it detects that an excessive external force has been generated and issues a stop command, so even if it decelerates rapidly from the time the stop command is issued, it stops at a position deviated from the contact position. , Crush the object. Then, the amount of positional excess is proportional to the moving speed, so the speed at which an object approaches another object must be reduced.
- the moving speed of the robot needs to be sufficiently reduced.
- the speed at which the object is transported needs to be increased. As a result, the speed drops rapidly near the contact area.
- the end effector is attached to the end of the force sensor. Therefore, when the robot decelerates rapidly, a force proportional to the negative acceleration is generated in the force sensor due to the mass of the end effector. However, it is difficult to distinguish between the force proportional to the acceleration and the external force generated by the contact of the object, and in order to distinguish, it is necessary to make the deceleration time of the robot significantly longer.
- the posture that the robot can take when performing work such as assembly, pressing or polishing is not always constant, and often changes according to the state of the work. For example, in an operation of polishing while tracing a curved surface, it is necessary to continuously change the posture.
- the force sensor since the end effector is attached to the end of the force sensor, if the robot attitude is not horizontal, the force sensor exerts a force according to the robot attitude and the mass of the end effector under the influence of gravity acceleration. Occurs.
- Patent Document 1 As a gravity compensation means for compensating for the influence of gravitational acceleration, for example, the method disclosed in Patent Document 1 may be mentioned.
- the force generated in the force sensor is learned in advance by the influence of gravity according to the posture off-line.
- work power is calculated by deducting the learned power from the power generated at the time of actual work.
- it is necessary to perform learning each time an object changes.
- learning must be performed before contact with an object, and gravity compensation can not be performed when the robot continuously changes its posture.
- the external force applied to the movable portion is a force generated when an object comes in contact with another object.
- the present invention is not limited to this, and the force generated when an end effector contacts an object is also described. It is similar.
- An object of the present invention is to provide an actuator operation switching device capable of switching the operation of an actuator based on the above.
- An actuator operation switching device comprises: an actuator having a fixed portion and a movable portion displaceable with respect to the fixed portion; a position detection unit detecting a position of the movable portion relative to the fixed portion; The gain is adjusted to the difference between the position detected by the position detection unit and the acceleration detection unit to be detected, and the actuator is adjusted based on the current command value as the adjustment result and the acceleration detected by the acceleration detection unit.
- Movable based on an actuator control unit that outputs a drive current for the motor, a current command value obtained by the actuator control unit, or an acceleration detected by the acceleration detection unit and a current value of the drive current output by the actuator control unit
- Control unit for controlling the actuator control unit in the instructed operation mode and an external force detection unit that detects an external force applied to the control unit
- the external force applied to the movable portion can be correctly detected even when the movable portion is rapidly accelerated or decelerated or the posture is changed, and the operation of the actuator based on the external force Can be switched.
- FIG. 8A to 8E are diagrams showing an example of the assembly operation of the connector by the actuator operation switching device according to the first embodiment of the present invention.
- FIG. 9 is a view showing an external force detected by an external force detection control unit in the assembly operation of the connector by the actuator operation switching device shown in FIG. 8;
- FIG. 1 is a diagram showing an example of the configuration of an actuator operation switching device according to a first embodiment of the present invention.
- the actuator operation switching device is a device that switches the operation of the actuator 1 based on an external force (reaction force) F applied to the movable portion 12 of the actuator 1.
- the actuator operation switching device includes an actuator 1, an end effector 2, a moving unit 3, a position detection unit 4, an acceleration detection unit 5, an external force detection control unit 6, and a work control unit 7.
- the external force detection control unit 6 includes an actuator control unit 61 and an external force detection unit 62.
- the work control unit 7 includes a mode switching unit 71 and a mode control unit 72.
- the actuator 1 has a fixed portion 11 and a movable portion 12 displaceable with respect to the fixed portion 11, and a current is supplied to a coil placed in a magnetic field, whereby the movable portion 12 is fixed to the fixed portion 11. It can be displaced in the linear movement direction or the rotational direction.
- the actuator 1 is attached to the moving unit 3 so that the whole is transported and its posture is changed.
- the moving portion 3 may be omitted. In the following, the case of using the moving unit 3 will be described.
- the end effector 2 is attached to the movable portion 12 and has a function of directly acting on the object 50.
- a gripper capable of gripping an object 50 is used as the end effector 2.
- a suction tool capable of suctioning the object 50 may be used as the end effector 2.
- the moving unit 3 moves (transfers and changes in attitude) the actuator 1.
- FIG. 1 as the moving unit 3, a robot in which the actuator 1 (fixed unit 11) is attached to the tip and which can move the actuator 1 is illustrated.
- the position detection unit 4 is provided in the actuator 1 and detects the position (relative position) of the movable unit 12 with respect to the fixed unit 11. A signal (position signal) indicating the position detected by the position detection unit 4 is output to the actuator control unit 61.
- the acceleration detection unit 5 is provided on the fixed unit 11 and detects the acceleration of the fixed unit 11. At this time, the acceleration detection unit 5 detects an acceleration ( ⁇ g + ⁇ 1) in which one or both of the gravity acceleration ⁇ g and the movement acceleration ⁇ 1 of the fixed unit 11 are added.
- FIG. 2 shows the case where the acceleration detection unit 5 detects the acceleration ( ⁇ g + ⁇ 1).
- a signal (acceleration signal) indicating the acceleration detected by the acceleration detection unit 5 is output to the actuator control unit 61.
- the actuator control unit 61 adjusts the gain (loop gain) with respect to the difference between the position detected by the position detection unit 4 and the reference position Pr, and is detected by the current command value Irp as the adjustment result and the acceleration detection unit 5
- the drive current Ia for the actuator 1 is output based on the determined acceleration.
- the external force detection unit 62 is movable based on the current command value Irp obtained by the actuator control unit 61 or the acceleration detected by the acceleration detection unit 5 and the current value of the drive current Ia output by the actuator control unit 61.
- the external force F applied to the portion 12 is detected. Configuration examples of the actuator control unit 61 and the external force detection unit 62 will be described later.
- the operation control unit 7 realizes an operation using the actuator 1 by the actuator operation switching device.
- the operation control unit 7 is a dedicated controller for realizing an operation using the actuator 1 by the actuator operation switching device.
- Mode switching unit 71 is a signal (mode switching instruction signal) instructing mode control unit 72 to switch the operation mode (control unit to be operated and control content thereof) based on external force F detected by external force detection unit 62 Output).
- the mode switching unit 71 instructs the external force F to switch the operation mode based on comparison with a preset threshold value or time-series pattern, a moving average, or the like.
- the mode switcher 71 manages the position detected by the position detector 4, the acceleration detected by the acceleration detector 5, and the mode switcher 71. The switching of the operation mode may be instructed in consideration of the operating time and the like.
- the mode control unit 72 switches the operation mode based on the mode switching instruction signal output by the mode switching unit 71 and controls the actuator control unit 61 and the moving unit 3.
- the mode control unit 72 controls the actuator control unit 61 by changing the reference position Pr or the gain (loop gain).
- the mode control unit 72 shown in FIG. 1 also has a function of controlling the end effector 2. A configuration example of the mode control unit 72 will be described later.
- FIG. 2 shows a state in which the end effector 2 holds the object 50.
- the external force detection control unit 6 includes a position / speed conversion unit 63, a subtractor 64, a gain adjustment unit 65, a mass estimation unit 66, an acceleration compensation unit 67, an adder / subtractor 68, a constant current control unit 69, and An external force detector 62 is provided.
- the position / velocity conversion unit 63 differentiates the position detected by the position detection unit 4 and converts it into a velocity. This velocity indicates the velocity (relative velocity) of the movable portion 12 with respect to the fixed portion 11.
- a signal (velocity signal) indicating the velocity converted by the position / velocity converter 63 is output to the adder / subtractor 68.
- the subtractor 64 subtracts the position detected by the position detection unit 4 from the reference position Pr. A signal indicating the subtraction result by the subtractor 64 is output to the gain adjustment unit 65.
- the gain adjustment unit 65 adjusts the gain with respect to the subtraction result (positional deviation) by the subtractor 64, and outputs a current command value Irp.
- the gain is a value of compliance at the actuator 1, and the compliance is an inverse number of a spring constant, and is an index indicating hardness and hardness. Further, in the gain adjustment unit 65, the function indicating the relationship between the position deviation and the current command value Irp may be linear or non-linear. As shown in FIGS. 2 and 3, the gain adjustment unit 65 includes a loop gain measurement unit 651, a gain intersection control unit 652, and a variable gain adjustment unit 653.
- the loop gain measurement unit 651 measures the gain of the signal output from the subtractor 64. At this time, as shown in FIG. 3, the loop gain measuring unit 651 sets the signal output from the subtractor 64 to a reference frequency at which the gain should be 1 ⁇ (0 dB) by the oscillator 654, ie, a gain intersection point. The sine waves of the reference frequency to be added are added via the adder 655. Signals before and after addition of sine waves by the loop gain measurement unit 651 are output to the gain intersection point control unit 652.
- the gain intersection point control unit 652 causes the comparator 656 to compare the amplitude ratio of the signals before and after the addition of the sine wave by the loop gain measurement unit 651.
- a signal indicating the comparison result by the gain intersection point control unit 652 is output to the variable gain adjustment unit 653.
- the variable gain adjustment unit 653 sets the inverse of the magnification ratio to the adjustment value so that the magnification ratio of the amplitude ratio compared by the gain intersection control unit 652 is 1, and the gain of the signal output from the subtractor 64 is adjust. That is, the variable gain adjustment unit 653 is configured such that the amplitude level Eb of the signal after addition of the sine wave is higher than the amplitude level Ea of the signal before addition of the sine wave by the loop gain measurement unit 651 (Ea ⁇ Eb). Increases the adjustment value, and decreases the adjustment value when the amplitude level Eb of the signal after addition of the sine wave is lower than the amplitude level Ea of the signal before addition of the sine wave (Ea> Eb) And adjust so that the gain is 1 ⁇ .
- the signal whose gain is adjusted by the variable gain adjustment unit 653 is output to the adder / subtractor 68 as the current command value Irp. Further, a signal indicating the adjustment value of the gain by the variable gain adjustment unit 653 is output to the mass estimation unit 66.
- the subtractor 64 and the gain adjustment unit 65 constitute position control means (phase control loop) for outputting a current command value Irp based on the difference between the position detected by the position detection unit 4 and the reference position Pr.
- the mass estimation unit 66 estimates the mass on the movable unit 12 side from the adjustment value of the gain by the variable gain adjustment unit 653. That is, the mass estimation unit 66 utilizes the principle that the change in gain adjustment value is proportional to the change in mass.
- the mass on the movable portion 12 side is a mass (M1 + M2) in which the mass M1 of the movable portion 12 and the mass M2 of the end effector 2 are added when the end effector 2 does not hold the object 50.
- M1 of the movable portion 12 the mass M2 of the end effector 2 and the mass M3 of the object 50 are added (M1 + M2 + M3). Note that FIG.
- the mass estimation unit 66 estimates a mass (M1 + M2 + M3) in which the mass M1 of the movable portion 12, the mass M2 of the end effector 2, and the mass M3 of the object 50 are added.
- the variable gain adjustment unit 653 adjusts the gain with an adjustment value of 2 times. Then, from the adjustment value of the variable gain adjustment unit 653, the mass estimation unit 66 can estimate that the mass on the movable unit 12 side has changed to twice the specified value.
- the signal indicating the mass estimated by the mass estimation unit 66 is output to the acceleration compensation unit 67.
- the acceleration compensation unit 67 outputs an acceleration compensation value Irc for correcting the disturbance torque.
- the acceleration compensation unit 67 includes a multiplier 671 and a coefficient multiplication unit 672.
- the multiplier 671 multiplies the acceleration detected by the acceleration detection unit 5 by the mass estimated by the mass estimation unit 66.
- a signal indicating the multiplication result by the multiplier 671 is output to the coefficient multiplication unit 672 and the external force detection unit 62.
- the coefficient multiplication unit 672 multiplies the multiplication result of the multiplier 671 by a coefficient (1 / Kt).
- Kt is a torque constant that represents the ratio between the thrust generated by the actuator 1 and the drive current Ia.
- a signal indicating the multiplication result by the coefficient multiplication unit 672 is output to the adder / subtractor 68 as an acceleration compensation value Irc.
- the adder-subtractor 68 adds the acceleration compensation value Irc output from the acceleration compensation unit 67 to the current command value Irp output from the gain adjustment unit 65, and subtracts the velocity signal output from the position / speed conversion unit 63. .
- a signal indicating the addition / subtraction result of the adder / subtractor 68 is output to the constant current control unit 69 as a current command value Ir.
- the constant current control unit 69 controls the drive current Ia for driving the actuator 1 to match the current command value Ir.
- the constant current control unit 69 includes a subtractor 691, a drive driver 692, and a current detection unit 693.
- the subtractor 691 subtracts the current value of the drive current Ia detected by the current detection unit 693 from the current command value Ir output from the adder / subtractor 68. A signal indicating the subtraction result by the subtractor 691 is output to the drive driver 692.
- the drive driver 692 generates a drive current Ia according to the subtraction result of the subtractor 691.
- the drive current Ia generated by the drive driver 692 is output to the actuator 1 via the current detection unit 693.
- the current detection unit 693 detects the current value of the drive current Ia generated by the drive driver 692. A signal indicating the current value detected by the current detection unit 693 is output to the subtractor 691.
- the external force detection unit 62 is movable based on the current command value Irp obtained by the actuator control unit 61 or the acceleration detected by the acceleration detection unit 5 and the current value of the drive current Ia output by the actuator control unit 61.
- the external force F applied to the portion 12 is detected.
- external force detection unit 62 detects external force F applied to movable portion 12 based on the result of subtracting acceleration compensation value Irc from current command value Irp or the current value of drive current Ia.
- the external force F applied to the movable portion 12 is a force generated when the end effector 2 contacts the object 50, and a force generated when the object 50 held by the end effector 2 contacts another object. Can be mentioned. Further, in FIG.
- the external force detection unit 62 detects the external force F applied to the movable unit 12 based on the acceleration detected by the acceleration detection unit 5 and the current value of the drive current Ia output by the actuator control unit 61. It shows.
- the external force detection unit 62 illustrated in FIG. 2 includes a coefficient multiplication unit 621, a subtractor 622, and a coefficient multiplication unit 623.
- the coefficient multiplication unit 621 multiplies the multiplication result by the multiplier 671 of the acceleration compensation unit 67 by a coefficient (1 / Kt). A signal indicating the multiplication result by the coefficient multiplication unit 621 is output to the subtractor 622.
- the subtractor 622 subtracts the multiplication result by the coefficient multiplication unit 621 from the current value of the drive current Ia generated by the constant current control unit 69. A signal indicating the subtraction result by the subtractor 622 is output to the coefficient multiplication unit 623.
- the coefficient multiplication unit 623 obtains the external force F by multiplying the subtraction result of the subtractor 622 by the coefficient (Kt).
- the signal indicating the external force F obtained by the coefficient multiplication unit 623 is output to the work control unit 7.
- external force detection unit 62 detects external force F applied to movable unit 12 based on current command value Irp obtained by actuator control unit 61, it has a coefficient multiplication unit.
- the coefficient multiplying unit obtains the external force F by multiplying the current command value Irp output from the gain adjusting unit 65 by the coefficient (Kt). Then, a signal indicating the external force F obtained by the coefficient multiplication unit is output to the work control unit 7.
- the mode control unit 72 includes an initialize unit 721, an origin return unit 722, a drive off unit 723, a position / speed control unit 724, a position control unit 725, a push / pull control unit 726, a force control unit 727, A force reset unit (force change control unit) 728 and an offset cancel unit 729 are included.
- FIG. 5 is a diagram showing an example of mode transition in the mode control unit 72. As shown in FIG. In FIG. 5, the functional parts shown by thick circles are functional parts that are particularly characteristic to the conventional configuration.
- the initialization unit 721 drives the actuator 1 to perform initialization.
- the initialization unit 721 moves the actuator 1 to the physical origin and resets the position detected by the position detection unit 4 and then resets the actuator 1 to a preset home position (for example, 3 mm from the physical origin). Move to the position).
- the initialization unit 721 performs the above operation at least once after the power of the actuator operation switching device is turned on (after the main power is turned on).
- the initialization unit 721 also performs the above operation when the actuator operation switching device is operated again after the drive-off unit 723 cuts off the drive of the actuator 1.
- the origin return unit 722 forcibly moves the actuator 1 to the home position.
- the drive off unit 723 cuts off the drive of the actuator 1. At this time, the drive-off unit 723 determines the posture of the actuator 1 based on the acceleration detected by the acceleration detection unit 5 and moves the actuator 1 to a position at which no shock occurs due to the drive disconnection of the actuator 1. The drive of the actuator 1 is cut off.
- the position and speed control unit 724 moves the actuator 1 to the designated position while controlling the speed so as not to generate a rapid acceleration.
- the position control unit 725 does not change the position of the movable unit 12 with respect to the fixed unit 11 as in the case of the force sensor. Further, similarly to the position and speed control unit 724, the position control unit 725 can also move the actuator 1 to the designated position while controlling the speed so as not to generate a rapid acceleration.
- the push-pull control unit 726 causes the actuator 1 to generate positive or negative thrust in a state where the position of the actuator 1 is fixed (push-pull mode).
- the actuator 1 generates thrust in the positive direction to realize the pressing operation of the movable portion 12, and the actuator 1 generates thrust in the negative direction to realize the pulling-out operation of the movable portion 12. it can.
- the push-pull control unit 726 generates a thrust at a preset change rate from the operation start position. Further, the push-pull control unit 726 maintains the thrust when the thrust generated by the actuator 1 exceeds a preset threshold or when the position of the movable portion 12 exceeds a preset position. Operate in (force constant mode).
- the force control unit 727 changes the position of the movable portion 12 with respect to the fixed portion 11 in accordance with the external force F applied to the movable portion 12 (spring mode). In addition, the force control unit 727 maintains the thrust when the thrust generated by the actuator 1 exceeds a preset threshold or when the position of the movable portion 12 exceeds a preset position. Operate (force constant mode). As described above, in the force control unit 727, since the movable unit 12 is in a soft state, even if the end effector 2 collides with the object 50, the object 50 can be prevented from being crushed if it is within the effective stroke range.
- mechanical characteristics (gain) in the spring mode of the force control unit 727 can be set arbitrarily.
- a fixed value may be set in advance for the value of the mechanical property, or the state of the actuator 1 (the external force F detected by the external force detection unit 62, the position detected by the position detection unit 4, or the acceleration detection unit 5) The change may be made based on the detected acceleration or the like.
- a pressure sensor may be attached to a portion where the end effector 2 contacts, and the value of the mechanical characteristic may be changed based on the pressure detected by the pressure sensor.
- the force reset unit 728 resets the thrust generated by the actuator 1 to near zero. As a result, in a state where the end effector 2 is in contact with the object 50, almost no thrust can be generated.
- the operation by the force reset unit 728 is effective, for example, when the force control unit 727 continuously controls the force.
- mode control unit 72 causes the thrust force generated by actuator 1 to exceed a preset threshold or the position of movable unit 12 exceeds a preset position. In this case, instead of the force control unit 727, the force reset unit 728 may be automatically switched to operate.
- the force change control unit may be a control unit that changes the thrust generated by the actuator 1 to an arbitrary value.
- the offset cancellation unit 729 cancels the offset included in the external force F detected by the external force detection control unit 6.
- the external force F to be detected may be offset depending on the installation environment (temperature and the like) of the actuator operation switching device. Therefore, the offset can be canceled by operating the offset cancellation unit 729.
- the actuator 1 a direct drive linear actuator in which the generated thrust is directly transmitted to the end effector 2 is used, and the movable portion 12 is linearly moved with respect to the fixed portion 11.
- the actuator 1 is driven by the drive current Ia generated by the constant current control unit 69 according to the current command value Ir.
- the position detection unit 4 detects the position of the movable unit 12 in the linear movement direction with respect to the fixed unit 11. Further, the position / speed conversion unit 63 differentiates the position detected by the position detection unit 4 and converts it into a velocity. This velocity indicates the velocity of the movable part 12 with respect to the fixed part 11.
- the acceleration detection unit 5 detects an acceleration in the linear movement direction of the fixed unit 11.
- the acceleration detection unit 5 detects an acceleration ( ⁇ 1 + ⁇ g) in which the movement acceleration ⁇ 1 in the linear movement direction component of the fixed unit 11 and the gravitational acceleration ⁇ g in the linear movement direction component of the fixed unit 11 are added. .
- the position detected by the position detection unit 4 is compared with the reference position Pr by the subtractor 64, and the difference thereof is a current command value which is one of the elements constituting the current command value Ir via the gain adjustment unit 65. It is given to the adder / subtractor 68 as Irp.
- the current command value Ir is composed of an acceleration compensation value Irc for correcting the disturbance torque in addition to the current command value Irp, and is expressed by the following equation (1).
- Ir Irp + Irc (1)
- the value of the compliance in the actuator 1 can be changed by changing the gain of the position control loop.
- the current value becomes zero when there is no disturbance torque, but the current value also changes in proportion to that when there is a disturbance torque.
- the reaction force F received from the end effector 2 at the time of work the force generated by the gravitational acceleration ⁇ g and the movement acceleration ⁇ 1, the loss torque of the reduction gear, and the like can be considered.
- the actuator 1 is a direct drive linear actuator, there is no decelerator, and it is not necessary to consider the loss torque. Therefore, the drive current Ia has a value proportional to the force generated by the reaction force F, the gravitational acceleration ⁇ g and the movement acceleration ⁇ 1 received from the end effector 2 at the time of operation. In the following, it is assumed that the reaction force F is a force generated when the object 50 contacts another object.
- reaction force F received from the end effector 2 at the time of work is zero, that is, when the object 50 is not in contact with another object, the current command value Irp based on the difference between the reference position Pr and the actual position is also zero, ie, the position Means not to be displaced.
- the reaction force F generated when the object 50 contacts another object can be known by monitoring the current command value Irp.
- the reaction force F generated when the object 50 sharply collides with another object can be known by monitoring the current command value Irp. Further, since an induced current is generated in the actuator 1 so as to antagonize the reaction force F, the reaction force F can also be detected from the drive current Ia. However, in the position control loop, the response of the current command value Irp to the reaction force F is generally not fast. On the other hand, the response of the drive current Ia to the reaction force F is relatively fast because it is due to the induced current generated by the movement of the movable portion 12. Therefore, instead of directly monitoring the current command value Irp, the reaction force F is detected by monitoring the drive current Ia.
- the drive current Ia can be expressed by the following equation (5).
- the reaction force F can be determined by subtracting the acceleration compensation value ( ⁇ 1 + ⁇ g) ⁇ (M1 + M2 + M3) / Kt from the drive current Ia and multiplying by the torque constant Kt.
- the motion of the robot is generally controlled by position control. Therefore, when the pre-programmed target position and the actual position differ due to dimensional error or gripping position error of the object 50, a large external force F is generated when the object 50 contacts another object, and the object 50 or the other Objects may be damaged or damaged.
- a force sensor is installed between the robot and the end effector 2.
- the detection result of the force sensor is fed back to the robot. It is conceivable to prevent the generation of the external force F.
- the robot does not stop suddenly even if it detects that an excessive external force F has been generated and issues a stop command, so even if it decelerates rapidly from the time the stop command is issued, it stops at a position deviated from the contact position. And crush the object 50 or another object. Then, the amount of positional excess is proportional to the moving speed, so the speed at which the object 50 approaches other objects has to be reduced.
- the actuator 1 is attached to the tip of the robot (moving unit 3), and the external force detection control unit 6 causes the movement acceleration ⁇ 1 to occur when the actuator 1 is rapidly moved or stopped.
- the posture of the actuator 1 is changed to change the gravitational acceleration ⁇ g
- the reaction force F applied to the movable portion 12 can be correctly detected, and the compliance value can be arbitrarily changed. Therefore, although the point that the robot can not stop suddenly is the same, the overshoot of the position does not crush the object 50 or another object. Therefore, it is not necessary to extremely slow the speed at which the object 50 approaches other objects, and it is possible to work safely.
- the external force detection control unit 6 can correctly detect the external force F even when the actuator 1 is rapidly accelerated or decelerated, and the external force F is detected only at the time of contact.
- the external force detection control unit 6 even when the posture of the actuator 1 is changed and the gravitational acceleration ⁇ g is changed, the external force F can be detected correctly, so that the influence of gravity can be compensated in real time.
- the connector 51 has a claw 511
- the connector 52 has an insertion hole 521 into which the connector 51 is inserted and an engagement hole 522 into which the claw 511 is engaged when the connector 51 is inserted. have.
- the connector 51 is held by the end effector 2 and the connector 52 is fixed to a work table or the like.
- the work control unit 7 realizes the assembly work by the actuator operation switching device by controlling the actuator control unit 61, the end effector 2 and the moving unit 3 based on the external force F or the like detected by the external force detection unit 62. Do.
- the work control unit 7 controls the actuator control unit 61 by changing the reference position Pr or the gain.
- the gain adjustment unit 65 outputs the current command value Irp based on the position deviation
- the change of the gain means a change of a function indicating the relationship between the position deviation and the current command value Irp. ing.
- the change of the function includes the change of the slope of the function.
- the work control unit 7 is a dedicated controller for realizing work using the actuator 1 by the actuator operation switching device, and based on the external force F or the like, within a high speed control cycle of 1 kHz or more (1 ms or less). The operation of the actuator 1 can be switched.
- the horizontal axis indicates time [s]
- the vertical axis indicates the external force F (force signal [mV]) detected by the external force detection control unit 6.
- reference symbols a to e in FIG. 9 indicate the states in FIG. 8A to FIG. 8E, respectively.
- the mode switching unit 71 switches the operation mode of the mode control unit 72 to the position speed control unit 724, and the position speed control unit 724
- the connector 51 is brought close to the connector 52 while controlling the speed so as not to generate a rapid acceleration (step ST1).
- the mode switching unit 71 switches the operation mode of the mode control unit 72 to the force control unit 727, and the moving unit 3 continues until the connector 51 contacts the connector 52 with the force F1.
- the end effector 2 is moved in the direction of the connector 52 (step ST2).
- the force F1 is a force capable of recognizing that the connector 51 abuts on the connector 52, and is sufficiently weak not to damage the connector 51, the connector 52 and peripheral devices.
- the movable portion 12 operates as a spring whose thrust changes linearly with respect to displacement (spring mode).
- the connector 51 contacts the connector 52
- the external force F applied to the movable portion 12 changes, and the information is transmitted from the external force detection unit 62 to the mode switching unit 71.
- the mode switching unit 71 instructs the mode control unit 72 to be in the force constant mode.
- the connectors 51 and 52 can be brought into contact without exerting an excessive force.
- step ST2 the mode switching unit 71 switches the operation mode of the mode control unit 72 to the push-pull control unit 726, and the push-pull control unit 726 causes the connector 51 to contact the connector 52 with a force F1.
- the end effector 2 may be pressed in the direction of the connector 52.
- the mode switching unit 71 switches the operation mode of the mode control unit 72 to the force reset unit 728, and the force reset unit 728 sets the thrust generated by the actuator 1 to near zero. It may be reset to As a result, in a state in which the connectors 51 and 52 are in contact with each other, almost no thrust can be generated.
- the process in step ST2 is finished, if the stroke of the movable portion 12 has a margin and the thrust generated by the actuator 1 is low, the process by the force reset unit 728 is unnecessary. In FIG. 9, the case where the process by the force reset part 728 is not performed is shown.
- the moving unit 3 moves the end effector 2 in the direction in which the connector 51 and the connector 52 are fitted while maintaining the contact of the connector 51 with the connector 52 (Step ST3).
- the moving unit 3 moves the end effector 2 in the direction in which the connector 51 and the connector 52 are fitted while maintaining the contact of the connector 51 with the connector 52 (Step ST3).
- FIG. 8B shows the case where the connector 51 is shifted in the height direction with respect to the connector 52 in FIG. 8A, and the connector 51 is moved downward.
- the mode switching unit 71 determines that the connector 51 is opposed to the insertion hole 521 of the connector 52 when the force F1 is lost. Alternatively, the mode switching unit 71 determines, from the position of the connector 51, whether the connector 51 is opposed to the insertion hole 521 of the connector 52. When the mode switching unit 71 determines that the connector 51 is opposed to the insertion hole 521 of the connector 52, the mode switching unit 71 instructs the mode control unit 72 to stop the movement of the end effector 2.
- the work control unit 7 may update the reference position Pr in the external force detection control unit 6 when the process in step ST3 is completed. At this time, the work control unit 7 sets the position of the insertion destination of the connector 51 as the reference position Pr. Thereby, compliance control can be performed also in the fitting process of the connector 51.
- the mode switching unit 71 switches the operation mode of the mode control unit 72 to the push-pull control unit 726, and the push-pull control unit 726 causes the external force F to be the force F2.
- the end effector 2 is pressed in the fitting direction so that the connector 51 is inserted into the insertion hole 521 of the connector 52 (step ST4).
- the connector 51 can be inserted into the connector 52 with an appropriate force.
- the claw 511 of the connector 51 is engaged with the engagement hole 522 of the connector 52, and the connector 51 is engaged with the connector 52.
- the push-pull control unit 726 moves the end effector 2 in the direction opposite to the fitting direction so that the connector 51 is pulled out of the connector 52, and the mode switching unit 71 It is determined whether the external force F reaches the force Fref (step ST5). As shown in FIG. 9, the force Fref is a force that can confirm that the connector 51 is properly fitted to the connector 52.
- FIGS. 8E and 9 show a case where the connector 51 is detached from the connector 52 by a force F3 which is weaker than the force Fref.
- the external force F reaches the force Fref, it can be determined that the assembly of the connectors 51 and 52 is successful. Thereafter, the end effector 2 releases the holding of the connector 51, and ends the assembly operation of the connectors 51 and 52.
- the push-pull control unit 726 gradually changes the thrust generated by the actuator 1 to a predetermined thrust (push-pull mode). Then, the external force F applied to the movable portion 12 changes in the meantime, and the information is transmitted from the external force detection unit 62 to the mode switching unit 71. Then, when the external force F (thrust generated by the actuator 1) exceeds the threshold value, the mode switching unit 71 stops the change in thrust and instructs the mode control unit 72 to be in the force constant mode.
- step ST4 the mode switching unit 71 switches the operation mode of the mode control unit 72 to the force control unit 727, and the moving unit 3 performs the connector 51 as the connector 52 until the external force F becomes the force F2.
- the end effector 2 may be moved in the fitting direction so as to be inserted into the insertion hole 521 of
- step ST5 the mode switching unit 71 switches the operation mode of the mode control unit 72 to the force control unit 727, and the moving unit 3 detaches the connector 51 from the connector 52. May be moved in the direction opposite to the fitting direction.
- the assembly work for the connectors 51 and 52 can be performed without breaking the connectors 51 and 52 or the actuator 1 and reducing the working speed.
- the present invention is not limited to this, and it is also possible to use the actuator 1 capable of displacing the movable portion 12 in the rotational direction as long as the acceleration detection unit 5 can detect angular acceleration.
- the movement part 3 was a robot was shown above. However, not limited to this, a linear motion mechanism or a rotation mechanism may be used as the moving unit 3.
- the actuator 1 having the fixed portion 11 and the movable portion 12, the position detection portion 4 for detecting the position of the movable portion 12 with respect to the fixed portion 11, and the acceleration of the fixed portion 11
- the gain is adjusted with respect to the difference between the position detected by the position detection unit 4 and the acceleration detection unit 5 that detects the current position, and the reference position Pr.
- the actuator control unit 61 outputs the drive current Ia to the actuator 1 based on the acceleration and the current command value Irp obtained by the actuator control unit 61 or the acceleration detected by the acceleration detection unit 5 and the actuator control unit 61
- the actuator operation switching device can correctly detect the external force applied to the movable portion even when the movable portion is rapidly accelerated or decelerated or the posture is changed, and may switch the operation of the actuator based on the external force. As it can, it is suitable for use in an actuator operation switching device that switches the operation of the actuator based on the external force applied to the movable portion of the actuator.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Human Computer Interaction (AREA)
- Evolutionary Computation (AREA)
- Robotics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
- Feedback Control In General (AREA)
Abstract
The present invention is provided with: an actuator (1) provided with a fixed part (11) and a movable part (12); a position detection unit (4) for detecting the position of the movable part (12) relative to the fixed part (11); an acceleration detection unit (5) for detecting the acceleration of the fixed part (11); an actuator control unit (61) which adjusts the gain for the difference between the detected position and a reference position Pr, and outputs a drive current Ia for the actuator (1) on the basis of a current command value Irp, i.e. the adjustment result, and the detected acceleration; an external force detection unit (62) which detects an external force F exerted on the movable part (12) on the basis of the current command value Irp, or the detected acceleration and the current value of the outputted drive current Ia; a mode control unit (72) for controlling the actuator control unit (61) in an instructed operation mode; and a mode switching unit (71) for switching the operation mode of the mode control unit (72) on the basis of the detected external force F.
Description
この発明は、アクチュエータの可動部に加わる外力に基づいて、アクチュエータの動作を切替えるアクチュエータ動作切替え装置に関する。
The present invention relates to an actuator operation switching device that switches the operation of an actuator based on an external force applied to a movable portion of the actuator.
従来から、組立て、押付け又は研磨等の作業を行う作業装置では、産業用ロボット(以下、ロボットと称す)等が多く用いられている。このロボットには、アームの先端にハンド等のエンドエフェクタが取付けられており、物体(部品又はワーク)を把持することで作業を行う。
BACKGROUND ART Conventionally, industrial robots (hereinafter, referred to as robots) and the like are often used in working devices that perform operations such as assembly, pressing, and polishing. In this robot, an end effector such as a hand is attached to the tip of an arm, and works by holding an object (part or work).
一方、ロボットの動作は、一般的に、位置制御によりコントロールされる。そのため、物体の寸法誤差又は把持位置誤差等により、予めプログラムされた目標位置と実際の位置とが異なる場合、物体が他の物体と接触した際に大きな外力が発生し、物体に傷又は破損が発生する恐れがある。
On the other hand, the motion of the robot is generally controlled by position control. Therefore, when the pre-programmed target position and the actual position differ due to dimensional error or gripping position error of the object, a large external force is generated when the object contacts another object, and the object is scratched or damaged. May occur.
その対策として、物体の位置誤差により発生する力を吸収する冶具(いわゆる「バッファ」)を別途設置する場合がある。しかしながら、このバッファは、物体の形状及び材料毎に要求される特性が異なるため、物体の種類の数だけ異なるバッファを用意する必要があり、都度設計となる。そのため、コストが増大し、且つ装置が大型化するという課題がある。
As a countermeasure, a jig (so-called "buffer") for absorbing a force generated due to a position error of an object may be separately installed. However, since this buffer has different characteristics depending on the shape of the object and the material, it is necessary to prepare a buffer different by the number of types of the object, and it is designed each time. Therefore, there is a problem that the cost is increased and the size of the apparatus is increased.
それに対し、ロボットとエンドエフェクタとの間に力センサを設置し、物体の接触時に過大な外力が発生しそうになると力センサの検出結果をロボットにフィードバックし、過大な外力が発生しないようにする方法もある。この場合には、バッファが不要となる。しかしながら、力センサは高価である。
On the other hand, a method of installing a force sensor between the robot and the end effector and feeding back the detection result of the force sensor to the robot when an excessive external force is likely to occur when an object comes in contact, so that the excessive external force is not generated There is also. In this case, no buffer is required. However, force sensors are expensive.
また、力センサを用いた場合には、以下に述べる理由により、作業時間の短縮が難しいという課題がある。
Moreover, when a force sensor is used, there is a problem that it is difficult to shorten the working time because of the reason described below.
すなわち、物体が他の物体と接触する位置に誤差がある場合、接触時に過大な外力が発生したことを検出して停止指令を出すが、可動部が大きくて重く且つ減速機構を有するロボットは急には止まれない。
また、接触時に発生する外力は、慣性による衝撃力と接触時にロボットが発生している力との和となる。ここで、慣性による衝撃力は、物体及びロボット可動部の質量と移動速度との積に比例する。しかしながら、ロボットは大きくて重い機構を有しているため、慣性による衝撃力を小さくするためには、接触直前の移動速度を遅くする必要がある。 That is, when there is an error in the position where an object contacts another object, it detects that an excessive external force is generated at the time of contact and issues a stop command, but the robot having a large and heavy movable part and a speed reduction mechanism Can not stop.
Further, the external force generated at the time of contact is the sum of an impact force due to inertia and a force generated by the robot at the time of contact. Here, the impact force due to inertia is proportional to the product of the mass of the object and the robot movable portion and the moving speed. However, since the robot has a large and heavy mechanism, in order to reduce the impact force due to inertia, it is necessary to slow the moving speed just before contact.
また、接触時に発生する外力は、慣性による衝撃力と接触時にロボットが発生している力との和となる。ここで、慣性による衝撃力は、物体及びロボット可動部の質量と移動速度との積に比例する。しかしながら、ロボットは大きくて重い機構を有しているため、慣性による衝撃力を小さくするためには、接触直前の移動速度を遅くする必要がある。 That is, when there is an error in the position where an object contacts another object, it detects that an excessive external force is generated at the time of contact and issues a stop command, but the robot having a large and heavy movable part and a speed reduction mechanism Can not stop.
Further, the external force generated at the time of contact is the sum of an impact force due to inertia and a force generated by the robot at the time of contact. Here, the impact force due to inertia is proportional to the product of the mass of the object and the robot movable portion and the moving speed. However, since the robot has a large and heavy mechanism, in order to reduce the impact force due to inertia, it is necessary to slow the moving speed just before contact.
また、過大な外力が発生したことを検出して停止指令を出してもロボットは急には止まれないため、停止指令が出た時点から急激に減速しても接触位置からずれた位置で停止し、物体を押し潰してしまう。そして、位置の行き過ぎ量は移動速度に比例するため、物体を他の物体に近づける速度を遅くせざるを得ない。
In addition, the robot does not stop suddenly even if it detects that an excessive external force has been generated and issues a stop command, so even if it decelerates rapidly from the time the stop command is issued, it stops at a position deviated from the contact position. , Crush the object. Then, the amount of positional excess is proportional to the moving speed, so the speed at which an object approaches another object must be reduced.
上記の理由により、物体が他の物体と接触する可能性のある領域では、ロボットの移動速度を十分落とす必要がある。しかしながら、サイクルタイムを短くするため、物体を移送する速度は速くする必要がある。その結果、接触領域の近傍で速度を急激に落とすことになる。
For the above reasons, in an area where an object may come in contact with another object, the moving speed of the robot needs to be sufficiently reduced. However, in order to shorten the cycle time, the speed at which the object is transported needs to be increased. As a result, the speed drops rapidly near the contact area.
しかしながら、エンドエフェクタは力センサの先に取付けられている。そのため、ロボットが急激に減速した場合には、エンドエフェクタの質量による影響で、力センサには負方向の加速度に比例した力が発生する。
ところが、上記加速度に比例した力と物体の接触により発生する外力とを区別することは難しく、区別するためにはロボットの減速時間を大幅に長くせざるを得ない。 However, the end effector is attached to the end of the force sensor. Therefore, when the robot decelerates rapidly, a force proportional to the negative acceleration is generated in the force sensor due to the mass of the end effector.
However, it is difficult to distinguish between the force proportional to the acceleration and the external force generated by the contact of the object, and in order to distinguish, it is necessary to make the deceleration time of the robot significantly longer.
ところが、上記加速度に比例した力と物体の接触により発生する外力とを区別することは難しく、区別するためにはロボットの減速時間を大幅に長くせざるを得ない。 However, the end effector is attached to the end of the force sensor. Therefore, when the robot decelerates rapidly, a force proportional to the negative acceleration is generated in the force sensor due to the mass of the end effector.
However, it is difficult to distinguish between the force proportional to the acceleration and the external force generated by the contact of the object, and in order to distinguish, it is necessary to make the deceleration time of the robot significantly longer.
また、力センサを用いた場合には、以下に述べる理由により、重力による影響をリアルタイムに補償し難いという課題がある。
When a force sensor is used, there is a problem that it is difficult to compensate the influence of gravity in real time, for the reason described below.
すなわち、組立て、押付け又は研磨等の作業を行う場合にロボットが取りうる姿勢は常に一定ではなく、作業の状態に応じて変化させる場合が多い。例えば、曲面をトレースしながら研磨を行う作業では、姿勢を連続して変化させる必要がある。
しかしながら、上記の通り、エンドエフェクタは力センサの先に取付けられているため、ロボットの姿勢が水平ではない場合、力センサには重力加速度による影響でロボットの姿勢とエンドエフェクタの質量に応じた力が発生する。 That is, the posture that the robot can take when performing work such as assembly, pressing or polishing is not always constant, and often changes according to the state of the work. For example, in an operation of polishing while tracing a curved surface, it is necessary to continuously change the posture.
However, as described above, since the end effector is attached to the end of the force sensor, if the robot attitude is not horizontal, the force sensor exerts a force according to the robot attitude and the mass of the end effector under the influence of gravity acceleration. Occurs.
しかしながら、上記の通り、エンドエフェクタは力センサの先に取付けられているため、ロボットの姿勢が水平ではない場合、力センサには重力加速度による影響でロボットの姿勢とエンドエフェクタの質量に応じた力が発生する。 That is, the posture that the robot can take when performing work such as assembly, pressing or polishing is not always constant, and often changes according to the state of the work. For example, in an operation of polishing while tracing a curved surface, it is necessary to continuously change the posture.
However, as described above, since the end effector is attached to the end of the force sensor, if the robot attitude is not horizontal, the force sensor exerts a force according to the robot attitude and the mass of the end effector under the influence of gravity acceleration. Occurs.
一方、重力加速度の影響を補償する重力補償手段として、例えば特許文献1に開示された方法が挙げられる。この特許文献1では、予めオフラインで姿勢に応じた重力の影響により力覚センサに発生する力を学習しておく。そして、実際の作業時に発生する力から学習した力を差し引くことで、作業力を算出している。しかしながら、この方法では、物体が変わる度に学習を行う必要がある。また、学習は物体との接触前に行う必要があり、ロボットが連続して姿勢を変えるような場合には重力補償はできない。
On the other hand, as a gravity compensation means for compensating for the influence of gravitational acceleration, for example, the method disclosed in Patent Document 1 may be mentioned. In this patent document 1, the force generated in the force sensor is learned in advance by the influence of gravity according to the posture off-line. And work power is calculated by deducting the learned power from the power generated at the time of actual work. However, in this method, it is necessary to perform learning each time an object changes. In addition, learning must be performed before contact with an object, and gravity compensation can not be performed when the robot continuously changes its posture.
なお上記では、可動部に加わる外力として、物体と他の物体とが接触した際に発生する力を示したが、これに限らず、エンドエフェクタと物体とが接触した際に発生する力についても同様である。
In the above description, the external force applied to the movable portion is a force generated when an object comes in contact with another object. However, the present invention is not limited to this, and the force generated when an end effector contacts an object is also described. It is similar.
上記の通り、ロボットと力センサを用いて組立て等の作業を行う場合、作業時間が長くなる。一方、作業時間を短くしようとすると物体を傷付け、押し潰し、接触を正しく検出できなくなる。また、重力補償をリアルタイムで行うことも難しい。このように、力センサを用いた場合には、ロボットが急激に加減速した場合又は姿勢が変更した場合に、外力を正しく検出できないという課題がある。この課題は、アクチュエータの可動部に加わる外力に基づいてアクチュエータの動作を切替えるアクチュエータ動作切替え装置においても同様であり、改善が求められている。
As described above, when performing work such as assembly using a robot and a force sensor, the working time becomes longer. On the other hand, when trying to shorten the working time, the object is scratched, crushed, and the contact can not be detected correctly. It is also difficult to perform gravity compensation in real time. As described above, when a force sensor is used, there is a problem that the external force can not be detected correctly when the robot accelerates or decelerates rapidly or when the posture changes. This problem is the same as in the actuator operation switching device that switches the operation of the actuator based on the external force applied to the movable portion of the actuator, and an improvement is required.
この発明は、上記のような課題を解決するためになされたもので、可動部が急激に加減速された場合又は姿勢が変更された場合でも可動部に加わる外力を正しく検出でき、当該外力に基づいてアクチュエータの動作を切替えることができるアクチュエータ動作切替え装置を提供することを目的としている。
The present invention has been made to solve the above-described problems, and even when the movable part is rapidly accelerated or decelerated or when the posture is changed, the external force applied to the movable part can be correctly detected. An object of the present invention is to provide an actuator operation switching device capable of switching the operation of an actuator based on the above.
この発明に係るアクチュエータ動作切替え装置は、固定部、及び当該固定部に対して変位可能な可動部を有するアクチュエータと、固定部に対する可動部の位置を検出する位置検出部と、固定部の加速度を検出する加速度検出部と、位置検出部により検出された位置と基準位置との差分に対してゲインを調整し、当該調整結果である電流指令値及び加速度検出部により検出された加速度に基づいてアクチュエータに対する駆動電流を出力するアクチュエータ制御部と、アクチュエータ制御部において得られた電流指令値、又は、加速度検出部により検出された加速度及びアクチュエータ制御部により出力された駆動電流の電流値に基づいて、可動部に加わる外力を検出する外力検出部と、指示された動作モードでアクチュエータ制御部を制御するモード制御部と、外力検出部により検出された外力に基づいてモード制御部の動作モードを切替えるモード切替え部とを備えたことを特徴とする。
An actuator operation switching device according to the present invention comprises: an actuator having a fixed portion and a movable portion displaceable with respect to the fixed portion; a position detection unit detecting a position of the movable portion relative to the fixed portion; The gain is adjusted to the difference between the position detected by the position detection unit and the acceleration detection unit to be detected, and the actuator is adjusted based on the current command value as the adjustment result and the acceleration detected by the acceleration detection unit. Movable based on an actuator control unit that outputs a drive current for the motor, a current command value obtained by the actuator control unit, or an acceleration detected by the acceleration detection unit and a current value of the drive current output by the actuator control unit Control unit for controlling the actuator control unit in the instructed operation mode and an external force detection unit that detects an external force applied to the control unit A mode control unit for, characterized by comprising a mode switching unit for switching the operation mode of the mode control unit based on the detected external force by the external force detecting unit.
この発明によれば、上記のように構成したので、可動部が急激に加減速された場合又は姿勢が変更された場合でも可動部に加わる外力を正しく検出でき、当該外力に基づいてアクチュエータの動作を切替えることができる。
According to the present invention, as configured as described above, the external force applied to the movable portion can be correctly detected even when the movable portion is rapidly accelerated or decelerated or the posture is changed, and the operation of the actuator based on the external force Can be switched.
以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
図1はこの発明の実施の形態1に係るアクチュエータ動作切替え装置の構成例を示す図である。
アクチュエータ動作切替え装置は、アクチュエータ1の可動部12に加わる外力(反力)Fに基づいて、アクチュエータ1の動作を切替える装置である。このアクチュエータ動作切替え装置は、図1に示すように、アクチュエータ1、エンドエフェクタ2、移動部3、位置検出部4、加速度検出部5、外力検出制御部6及び作業制御部7を備えている。また、外力検出制御部6は、アクチュエータ制御部61及び外力検出部62から構成される。また、作業制御部7は、モード切替え部71及びモード制御部72から構成される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1
FIG. 1 is a diagram showing an example of the configuration of an actuator operation switching device according to a first embodiment of the present invention.
The actuator operation switching device is a device that switches the operation of theactuator 1 based on an external force (reaction force) F applied to the movable portion 12 of the actuator 1. As shown in FIG. 1, the actuator operation switching device includes an actuator 1, an end effector 2, a moving unit 3, a position detection unit 4, an acceleration detection unit 5, an external force detection control unit 6, and a work control unit 7. Further, the external force detection control unit 6 includes an actuator control unit 61 and an external force detection unit 62. Further, the work control unit 7 includes a mode switching unit 71 and a mode control unit 72.
実施の形態1.
図1はこの発明の実施の形態1に係るアクチュエータ動作切替え装置の構成例を示す図である。
アクチュエータ動作切替え装置は、アクチュエータ1の可動部12に加わる外力(反力)Fに基づいて、アクチュエータ1の動作を切替える装置である。このアクチュエータ動作切替え装置は、図1に示すように、アクチュエータ1、エンドエフェクタ2、移動部3、位置検出部4、加速度検出部5、外力検出制御部6及び作業制御部7を備えている。また、外力検出制御部6は、アクチュエータ制御部61及び外力検出部62から構成される。また、作業制御部7は、モード切替え部71及びモード制御部72から構成される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an example of the configuration of an actuator operation switching device according to a first embodiment of the present invention.
The actuator operation switching device is a device that switches the operation of the
アクチュエータ1は、固定部11、及び当該固定部11に対して変位可能な可動部12を有し、磁界に置かれたコイルに電流が供給されることで固定部11に対して可動部12を直動方向又は回転方向に変位可能とする。このアクチュエータ1は、移動部3に取付けられており、全体が移送され、また、姿勢が変更される。なお、可動部12又はエンドエフェクタ2が複数方向の自由度を持ち、アクチュエータ1全体の移送及び姿勢の変更が不要である場合、移動部3はなくてもよい。以下では、移動部3を使用する場合を記述する。
The actuator 1 has a fixed portion 11 and a movable portion 12 displaceable with respect to the fixed portion 11, and a current is supplied to a coil placed in a magnetic field, whereby the movable portion 12 is fixed to the fixed portion 11. It can be displaced in the linear movement direction or the rotational direction. The actuator 1 is attached to the moving unit 3 so that the whole is transported and its posture is changed. In addition, when the movable portion 12 or the end effector 2 has degrees of freedom in a plurality of directions and it is not necessary to move the entire actuator 1 and change the posture, the moving portion 3 may be omitted. In the following, the case of using the moving unit 3 will be described.
エンドエフェクタ2は、可動部12に取付けられ、物体50に対して直接働きかけをする機能を持つものである。図1では、エンドエフェクタ2として、物体50を把持可能なグリッパ(ハンド)が用いられている。なお、エンドエフェクタ2としては、グリッパ以外にも、例えば、物体50を吸着可能な吸着具を用いてもよい。
The end effector 2 is attached to the movable portion 12 and has a function of directly acting on the object 50. In FIG. 1, a gripper (hand) capable of gripping an object 50 is used as the end effector 2. In addition to the gripper, for example, a suction tool capable of suctioning the object 50 may be used as the end effector 2.
移動部3は、アクチュエータ1を移動(移送及び姿勢変更)する。図1では、移動部3として、先端にアクチュエータ1(固定部11)が取付けられ、アクチュエータ1を移動可能なロボットを示している。
The moving unit 3 moves (transfers and changes in attitude) the actuator 1. In FIG. 1, as the moving unit 3, a robot in which the actuator 1 (fixed unit 11) is attached to the tip and which can move the actuator 1 is illustrated.
位置検出部4は、アクチュエータ1に設けられ、固定部11に対する可動部12の位置(相対位置)を検出する。この位置検出部4により検出された位置を示す信号(位置信号)は、アクチュエータ制御部61に出力される。
The position detection unit 4 is provided in the actuator 1 and detects the position (relative position) of the movable unit 12 with respect to the fixed unit 11. A signal (position signal) indicating the position detected by the position detection unit 4 is output to the actuator control unit 61.
加速度検出部5は、固定部11に設けられ、固定部11の加速度を検出する。この際、加速度検出部5は、固定部11の重力加速度αg及び移動加速度α1のうちの一方、又は両方が加算された加速度(αg+α1)を検出する。図2では、加速度検出部5が加速度(αg+α1)を検出する場合を示している。この加速度検出部5により検出された加速度を示す信号(加速度信号)は、アクチュエータ制御部61に出力される。
The acceleration detection unit 5 is provided on the fixed unit 11 and detects the acceleration of the fixed unit 11. At this time, the acceleration detection unit 5 detects an acceleration (αg + α1) in which one or both of the gravity acceleration αg and the movement acceleration α1 of the fixed unit 11 are added. FIG. 2 shows the case where the acceleration detection unit 5 detects the acceleration (αg + α1). A signal (acceleration signal) indicating the acceleration detected by the acceleration detection unit 5 is output to the actuator control unit 61.
アクチュエータ制御部61は、位置検出部4により検出された位置と基準位置Prとの差分に対してゲイン(ループゲイン)を調整し、当該調整結果である電流指令値Irp及び加速度検出部5により検出された加速度に基づいてアクチュエータ1に対する駆動電流Iaを出力する。
The actuator control unit 61 adjusts the gain (loop gain) with respect to the difference between the position detected by the position detection unit 4 and the reference position Pr, and is detected by the current command value Irp as the adjustment result and the acceleration detection unit 5 The drive current Ia for the actuator 1 is output based on the determined acceleration.
外力検出部62は、アクチュエータ制御部61において得られた電流指令値Irp、又は、加速度検出部5により検出された加速度及びアクチュエータ制御部61により出力された駆動電流Iaの電流値に基づいて、可動部12に加わる外力Fを検出する。
アクチュエータ制御部61及び外力検出部62の構成例については後述する。 The externalforce detection unit 62 is movable based on the current command value Irp obtained by the actuator control unit 61 or the acceleration detected by the acceleration detection unit 5 and the current value of the drive current Ia output by the actuator control unit 61. The external force F applied to the portion 12 is detected.
Configuration examples of theactuator control unit 61 and the external force detection unit 62 will be described later.
アクチュエータ制御部61及び外力検出部62の構成例については後述する。 The external
Configuration examples of the
作業制御部7は、アクチュエータ動作切替え装置によるアクチュエータ1を用いた作業を実現する。なお、作業制御部7は、アクチュエータ動作切替え装置によるアクチュエータ1を用いた作業を実現するための専用のコントローラである。
The operation control unit 7 realizes an operation using the actuator 1 by the actuator operation switching device. The operation control unit 7 is a dedicated controller for realizing an operation using the actuator 1 by the actuator operation switching device.
モード切替え部71は、外力検出部62により検出された外力Fに基づいて、モード制御部72に対して動作モード(動作させる制御部及びその制御内容)の切替えを指示する信号(モード切替え指示信号)を出力する。なお、モード切替え部71は、外力Fに対し、予め設定された閾値又は時系列パターンとの比較、又は移動平均等に基づいて、上記動作モードの切替えを指示する。また、モード切替え部71は、外力検出部62により検出された外力Fに加え、位置検出部4により検出された位置、加速度検出部5により検出された加速度、及びモード切替え部71で管理している時間等も考慮して、上記動作モードの切替えを指示してもよい。
Mode switching unit 71 is a signal (mode switching instruction signal) instructing mode control unit 72 to switch the operation mode (control unit to be operated and control content thereof) based on external force F detected by external force detection unit 62 Output). The mode switching unit 71 instructs the external force F to switch the operation mode based on comparison with a preset threshold value or time-series pattern, a moving average, or the like. In addition to the external force F detected by the external force detector 62, the mode switcher 71 manages the position detected by the position detector 4, the acceleration detected by the acceleration detector 5, and the mode switcher 71. The switching of the operation mode may be instructed in consideration of the operating time and the like.
モード制御部72は、モード切替え部71により出力されたモード切替え指示信号に基づいて、動作モードを切替えてアクチュエータ制御部61及び移動部3を制御する。なお、モード制御部72は、基準位置Prの又はゲイン(ループゲイン)の変更を行うことでアクチュエータ制御部61を制御する。また図1に示すモード制御部72では、エンドエフェクタ2を制御する機能も有している。このモード制御部72の構成例については後述する。
The mode control unit 72 switches the operation mode based on the mode switching instruction signal output by the mode switching unit 71 and controls the actuator control unit 61 and the moving unit 3. The mode control unit 72 controls the actuator control unit 61 by changing the reference position Pr or the gain (loop gain). The mode control unit 72 shown in FIG. 1 also has a function of controlling the end effector 2. A configuration example of the mode control unit 72 will be described later.
次に、外力検出制御部6の構成例について、図2を参照しながら説明する。なお図2では、アクチュエータ1、エンドエフェクタ2、位置検出部4及び加速度検出部5も図示している。また図2では、エンドエフェクタ2が物体50を保持している状態を示している。
外力検出制御部6は、図2に示すように、位置速度変換部63、減算器64、ゲイン調整部65、質量推定部66、加速度補償部67、加減算器68、定電流制御部69、及び外力検出部62を有している。なお図2に示す外力検出制御部6において、外力検出部62を除く機能部(位置速度変換部63、減算器64、ゲイン調整部65、質量推定部66、加速度補償部67、加減算器68及び定電流制御部69)は、アクチュエータ制御部61を構成する。 Next, a configuration example of the external force detection control unit 6 will be described with reference to FIG. In FIG. 2, theactuator 1, the end effector 2, the position detection unit 4, and the acceleration detection unit 5 are also illustrated. Further, FIG. 2 shows a state in which the end effector 2 holds the object 50.
As shown in FIG. 2, the external force detection control unit 6 includes a position /speed conversion unit 63, a subtractor 64, a gain adjustment unit 65, a mass estimation unit 66, an acceleration compensation unit 67, an adder / subtractor 68, a constant current control unit 69, and An external force detector 62 is provided. In external force detection control unit 6 shown in FIG. 2, functional units (position / speed conversion unit 63, subtractor 64, gain adjustment unit 65, mass estimation unit 66, acceleration compensation unit 67, adder / subtractor 68, and the like) The constant current control unit 69) constitutes an actuator control unit 61.
外力検出制御部6は、図2に示すように、位置速度変換部63、減算器64、ゲイン調整部65、質量推定部66、加速度補償部67、加減算器68、定電流制御部69、及び外力検出部62を有している。なお図2に示す外力検出制御部6において、外力検出部62を除く機能部(位置速度変換部63、減算器64、ゲイン調整部65、質量推定部66、加速度補償部67、加減算器68及び定電流制御部69)は、アクチュエータ制御部61を構成する。 Next, a configuration example of the external force detection control unit 6 will be described with reference to FIG. In FIG. 2, the
As shown in FIG. 2, the external force detection control unit 6 includes a position /
位置速度変換部63は、位置検出部4により検出された位置を微分して速度に変換する。この速度は、固定部11に対する可動部12の速度(相対速度)を示す。この位置速度変換部63により変換された速度を示す信号(速度信号)は、加減算器68に出力される。
The position / velocity conversion unit 63 differentiates the position detected by the position detection unit 4 and converts it into a velocity. This velocity indicates the velocity (relative velocity) of the movable portion 12 with respect to the fixed portion 11. A signal (velocity signal) indicating the velocity converted by the position / velocity converter 63 is output to the adder / subtractor 68.
減算器64は、基準位置Prから位置検出部4により検出された位置を減算する。この減算器64による減算結果を示す信号は、ゲイン調整部65に出力される。
The subtractor 64 subtracts the position detected by the position detection unit 4 from the reference position Pr. A signal indicating the subtraction result by the subtractor 64 is output to the gain adjustment unit 65.
ゲイン調整部65は、減算器64による減算結果(位置偏差)に対してゲインを調整し、電流指令値Irpを出力する。ゲインは、アクチュエータ1におけるコンプライアンスの値であり、コンプライアンスは、バネ定数の逆数であり、固さ柔らかさを示す指標である。また、ゲイン調整部65において、上記位置偏差と電流指令値Irpとの関係を示す関数は線形でもよいし非線形でもよい。このゲイン調整部65は、図2,3に示すように、ループゲイン測定部651、ゲイン交点制御部652及び可変ゲイン調整部653を有している。
The gain adjustment unit 65 adjusts the gain with respect to the subtraction result (positional deviation) by the subtractor 64, and outputs a current command value Irp. The gain is a value of compliance at the actuator 1, and the compliance is an inverse number of a spring constant, and is an index indicating hardness and hardness. Further, in the gain adjustment unit 65, the function indicating the relationship between the position deviation and the current command value Irp may be linear or non-linear. As shown in FIGS. 2 and 3, the gain adjustment unit 65 includes a loop gain measurement unit 651, a gain intersection control unit 652, and a variable gain adjustment unit 653.
ループゲイン測定部651は、減算器64から出力された信号のゲインを測定する。この際、ループゲイン測定部651は、図3に示すように、減算器64から出力された信号に、発振器654によりゲインが1倍(0dB)となるべき基準となる周波数、すなわちゲイン交点に設定された基準となる周波数の正弦波を、加算器655を介して加算する。このループゲイン測定部651による正弦波の加算前後の信号は、ゲイン交点制御部652に出力される。
The loop gain measurement unit 651 measures the gain of the signal output from the subtractor 64. At this time, as shown in FIG. 3, the loop gain measuring unit 651 sets the signal output from the subtractor 64 to a reference frequency at which the gain should be 1 × (0 dB) by the oscillator 654, ie, a gain intersection point. The sine waves of the reference frequency to be added are added via the adder 655. Signals before and after addition of sine waves by the loop gain measurement unit 651 are output to the gain intersection point control unit 652.
ゲイン交点制御部652は、図3に示すように、比較器656によりループゲイン測定部651による正弦波の加算前後の信号での振幅比を比較する。このゲイン交点制御部652による比較結果を示す信号は、可変ゲイン調整部653に出力される。
As shown in FIG. 3, the gain intersection point control unit 652 causes the comparator 656 to compare the amplitude ratio of the signals before and after the addition of the sine wave by the loop gain measurement unit 651. A signal indicating the comparison result by the gain intersection point control unit 652 is output to the variable gain adjustment unit 653.
可変ゲイン調整部653は、ゲイン交点制御部652により比較された振幅比の倍率が1となるように、当該振幅比の倍率の逆数を調整値とし、減算器64から出力された信号のゲインを調整する。すなわち、可変ゲイン調整部653は、ループゲイン測定部651による正弦波の加算前の信号の振幅レベルEaに対して当該正弦波の加算後の信号の振幅レベルEbが高い場合(Ea<Eb)には調整値を大きくし、当該正弦波の加算前の信号の振幅レベルEaに対して当該正弦波の加算後の信号の振幅レベルEbが低い場合(Ea>Eb)には調整値を小さくすることで、ゲインが1倍となるように調整する。この可変ゲイン調整部653によりゲインが調整された信号は、加減算器68に電流指令値Irpとして出力される。また、可変ゲイン調整部653によるゲインの調整値を示す信号は、質量推定部66に出力される。
The variable gain adjustment unit 653 sets the inverse of the magnification ratio to the adjustment value so that the magnification ratio of the amplitude ratio compared by the gain intersection control unit 652 is 1, and the gain of the signal output from the subtractor 64 is adjust. That is, the variable gain adjustment unit 653 is configured such that the amplitude level Eb of the signal after addition of the sine wave is higher than the amplitude level Ea of the signal before addition of the sine wave by the loop gain measurement unit 651 (Ea <Eb). Increases the adjustment value, and decreases the adjustment value when the amplitude level Eb of the signal after addition of the sine wave is lower than the amplitude level Ea of the signal before addition of the sine wave (Ea> Eb) And adjust so that the gain is 1 ×. The signal whose gain is adjusted by the variable gain adjustment unit 653 is output to the adder / subtractor 68 as the current command value Irp. Further, a signal indicating the adjustment value of the gain by the variable gain adjustment unit 653 is output to the mass estimation unit 66.
なお、発振器654でゲインが1倍となるべき基準となる周波数の正弦波を加算するのは、ゲインが1倍となる周波数においてEa/Eb=1となるため、Ea/Eb=1となるようにゲインを調整することで、ゲイン交点を常に1に維持できるためである。
It should be noted that adding a sine wave of a reference frequency at which the gain should be 1 in the oscillator 654 is Ea / Eb = 1 at a frequency at which the gain is 1 and therefore Ea / Eb = 1 The gain cross point can be always maintained at 1 by adjusting the gain to.
また、減算器64及びゲイン調整部65は、位置検出部4により検出された位置と基準位置Prとの差分に基づく電流指令値Irpを出力する位置制御手段(位相制御ループ)を構成する。
Further, the subtractor 64 and the gain adjustment unit 65 constitute position control means (phase control loop) for outputting a current command value Irp based on the difference between the position detected by the position detection unit 4 and the reference position Pr.
質量推定部66は、可変ゲイン調整部653によるゲインの調整値から、可動部12側の質量を推定する。すなわち、質量推定部66は、ゲインの調整値の変化と質量の変化とが比例する原理を利用する。ここで、可動部12側の質量とは、エンドエフェクタ2が物体50を保持していない場合には、可動部12の質量M1とエンドエフェクタ2の質量M2とが加算された質量(M1+M2)であり、エンドエフェクタ2が物体50を保持している場合には、可動部12の質量M1とエンドエフェクタ2の質量M2と物体50の質量M3とが加算された質量(M1+M2+M3)である。なお図2では、質量推定部66が、可動部12の質量M1とエンドエフェクタ2の質量M2と物体50の質量M3とが加算された質量(M1+M2+M3)を推定する場合を示している。
例えば、可動部12側の質量が規定値の2倍になったとすると、ゲインはその逆数倍の1/2となっており、Ea/Eb=1/2となる。これに対して、ゲインを1倍とするため、可変ゲイン調整部653は2倍の調整値でゲインを調整する。そして、質量推定部66は、この可変ゲイン調整部653の調整値から、可動部12側の質量が規定値の2倍に変化したと推定できる。
この質量推定部66により推定された質量を示す信号は、加速度補償部67に出力される。 Themass estimation unit 66 estimates the mass on the movable unit 12 side from the adjustment value of the gain by the variable gain adjustment unit 653. That is, the mass estimation unit 66 utilizes the principle that the change in gain adjustment value is proportional to the change in mass. Here, the mass on the movable portion 12 side is a mass (M1 + M2) in which the mass M1 of the movable portion 12 and the mass M2 of the end effector 2 are added when the end effector 2 does not hold the object 50. When the end effector 2 holds the object 50, the mass M1 of the movable portion 12, the mass M2 of the end effector 2 and the mass M3 of the object 50 are added (M1 + M2 + M3). Note that FIG. 2 shows a case where the mass estimation unit 66 estimates a mass (M1 + M2 + M3) in which the mass M1 of the movable portion 12, the mass M2 of the end effector 2, and the mass M3 of the object 50 are added.
For example, assuming that the mass on themovable portion 12 side is twice the specified value, the gain is 1⁄2 of the reciprocal thereof, and Ea / Eb = 1⁄2. On the other hand, in order to make the gain 1 time, the variable gain adjustment unit 653 adjusts the gain with an adjustment value of 2 times. Then, from the adjustment value of the variable gain adjustment unit 653, the mass estimation unit 66 can estimate that the mass on the movable unit 12 side has changed to twice the specified value.
The signal indicating the mass estimated by themass estimation unit 66 is output to the acceleration compensation unit 67.
例えば、可動部12側の質量が規定値の2倍になったとすると、ゲインはその逆数倍の1/2となっており、Ea/Eb=1/2となる。これに対して、ゲインを1倍とするため、可変ゲイン調整部653は2倍の調整値でゲインを調整する。そして、質量推定部66は、この可変ゲイン調整部653の調整値から、可動部12側の質量が規定値の2倍に変化したと推定できる。
この質量推定部66により推定された質量を示す信号は、加速度補償部67に出力される。 The
For example, assuming that the mass on the
The signal indicating the mass estimated by the
なお上記では、質量推定部66により可動部12側の質量を推定する場合を示したが、これに限らず、他の方法を用いて可動部12側の質量を取得してもよい。
In addition, although the case where the mass by the side of the movable part 12 was estimated by the mass estimation part 66 was shown above, you may acquire the mass by the side of the movable part 12 using not only this but another method.
加速度補償部67は、外乱トルクを補正するための加速度補償値Ircを出力する。この加速度補償部67は、乗算器671及び係数乗算部672を有している。
The acceleration compensation unit 67 outputs an acceleration compensation value Irc for correcting the disturbance torque. The acceleration compensation unit 67 includes a multiplier 671 and a coefficient multiplication unit 672.
乗算器671は、加速度検出部5により検出された加速度と、質量推定部66により推定された質量とを乗算する。この乗算器671による乗算結果を示す信号は、係数乗算部672及び外力検出部62に出力される。
The multiplier 671 multiplies the acceleration detected by the acceleration detection unit 5 by the mass estimated by the mass estimation unit 66. A signal indicating the multiplication result by the multiplier 671 is output to the coefficient multiplication unit 672 and the external force detection unit 62.
係数乗算部672は、乗算器671による乗算結果に係数(1/Kt)を乗算する。なお、Ktは、アクチュエータ1が発生する推力と駆動電流Iaとの比を表したトルク定数である。この係数乗算部672による乗算結果を示す信号は、加減算器68に加速度補償値Ircとして出力される。
The coefficient multiplication unit 672 multiplies the multiplication result of the multiplier 671 by a coefficient (1 / Kt). Kt is a torque constant that represents the ratio between the thrust generated by the actuator 1 and the drive current Ia. A signal indicating the multiplication result by the coefficient multiplication unit 672 is output to the adder / subtractor 68 as an acceleration compensation value Irc.
加減算器68は、ゲイン調整部65から出力された電流指令値Irpに対し、加速度補償部67から出力された加速度補償値Ircを加算し、位置速度変換部63から出力された速度信号を減算する。この加減算器68による加減算結果を示す信号は、定電流制御部69に電流指令値Irとして出力される。
The adder-subtractor 68 adds the acceleration compensation value Irc output from the acceleration compensation unit 67 to the current command value Irp output from the gain adjustment unit 65, and subtracts the velocity signal output from the position / speed conversion unit 63. . A signal indicating the addition / subtraction result of the adder / subtractor 68 is output to the constant current control unit 69 as a current command value Ir.
定電流制御部69は、アクチュエータ1を駆動する駆動電流Iaを電流指令値Irに一致させるように制御する。この定電流制御部69は、減算器691、駆動ドライバ692及び電流検出部693を有している。
The constant current control unit 69 controls the drive current Ia for driving the actuator 1 to match the current command value Ir. The constant current control unit 69 includes a subtractor 691, a drive driver 692, and a current detection unit 693.
減算器691は、加減算器68から出力された電流指令値Irから、電流検出部693により検出された駆動電流Iaの電流値を減算する。この減算器691による減算結果を示す信号は、駆動ドライバ692に出力される。
The subtractor 691 subtracts the current value of the drive current Ia detected by the current detection unit 693 from the current command value Ir output from the adder / subtractor 68. A signal indicating the subtraction result by the subtractor 691 is output to the drive driver 692.
駆動ドライバ692は、減算器691による減算結果に応じた駆動電流Iaを発生する。この駆動ドライバ692により発生された駆動電流Iaは、電流検出部693を介してアクチュエータ1に出力される。
The drive driver 692 generates a drive current Ia according to the subtraction result of the subtractor 691. The drive current Ia generated by the drive driver 692 is output to the actuator 1 via the current detection unit 693.
電流検出部693は、駆動ドライバ692により発生された駆動電流Iaの電流値を検出する。この電流検出部693により検出された電流値を示す信号は、減算器691に出力される。
The current detection unit 693 detects the current value of the drive current Ia generated by the drive driver 692. A signal indicating the current value detected by the current detection unit 693 is output to the subtractor 691.
外力検出部62は、アクチュエータ制御部61において得られた電流指令値Irp、又は、加速度検出部5により検出された加速度及びアクチュエータ制御部61により出力された駆動電流Iaの電流値に基づいて、可動部12に加わる外力Fを検出する。具体的には、外力検出部62は、電流指令値Irp、又は、駆動電流Iaの電流値から加速度補償値Ircを減算した結果に基づいて、可動部12に加わる外力Fを検出する。なお、可動部12に加わる外力Fとしては、エンドエフェクタ2が物体50と接触した際に発生する力、及び、エンドエフェクタ2により保持された物体50が他の物体と接触した際に発生する力が挙げられる。また図2では、外力検出部62が、加速度検出部5により検出された加速度及びアクチュエータ制御部61により出力された駆動電流Iaの電流値に基づいて可動部12に加わる外力Fを検出する場合を示している。図2に示す外力検出部62は、係数乗算部621、減算器622及び係数乗算部623を有している。
The external force detection unit 62 is movable based on the current command value Irp obtained by the actuator control unit 61 or the acceleration detected by the acceleration detection unit 5 and the current value of the drive current Ia output by the actuator control unit 61. The external force F applied to the portion 12 is detected. Specifically, external force detection unit 62 detects external force F applied to movable portion 12 based on the result of subtracting acceleration compensation value Irc from current command value Irp or the current value of drive current Ia. The external force F applied to the movable portion 12 is a force generated when the end effector 2 contacts the object 50, and a force generated when the object 50 held by the end effector 2 contacts another object. Can be mentioned. Further, in FIG. 2, the external force detection unit 62 detects the external force F applied to the movable unit 12 based on the acceleration detected by the acceleration detection unit 5 and the current value of the drive current Ia output by the actuator control unit 61. It shows. The external force detection unit 62 illustrated in FIG. 2 includes a coefficient multiplication unit 621, a subtractor 622, and a coefficient multiplication unit 623.
係数乗算部621は、加速度補償部67の乗算器671による乗算結果に係数(1/Kt)を乗算する。この係数乗算部621による乗算結果を示す信号は、減算器622に出力される。
The coefficient multiplication unit 621 multiplies the multiplication result by the multiplier 671 of the acceleration compensation unit 67 by a coefficient (1 / Kt). A signal indicating the multiplication result by the coefficient multiplication unit 621 is output to the subtractor 622.
減算器622は、定電流制御部69により発生された駆動電流Iaの電流値から、係数乗算部621による乗算結果を減算する。この減算器622による減算結果を示す信号は、係数乗算部623に出力される。
The subtractor 622 subtracts the multiplication result by the coefficient multiplication unit 621 from the current value of the drive current Ia generated by the constant current control unit 69. A signal indicating the subtraction result by the subtractor 622 is output to the coefficient multiplication unit 623.
係数乗算部623は、減算器622による減算結果に係数(Kt)を乗算することで、外力Fを得る。この係数乗算部623により得られた外力Fを示す信号は、作業制御部7に出力される。
The coefficient multiplication unit 623 obtains the external force F by multiplying the subtraction result of the subtractor 622 by the coefficient (Kt). The signal indicating the external force F obtained by the coefficient multiplication unit 623 is output to the work control unit 7.
なお、外力検出部62が、アクチュエータ制御部61において得られた電流指令値Irpに基づいて可動部12に加わる外力Fを検出する場合には、係数乗算部を有する。この係数乗算部は、ゲイン調整部65から出力された電流指令値Irpに係数(Kt)を乗算することで、外力Fを得る。そして、この係数乗算部により得られた外力Fを示す信号は、作業制御部7に出力される。
When external force detection unit 62 detects external force F applied to movable unit 12 based on current command value Irp obtained by actuator control unit 61, it has a coefficient multiplication unit. The coefficient multiplying unit obtains the external force F by multiplying the current command value Irp output from the gain adjusting unit 65 by the coefficient (Kt). Then, a signal indicating the external force F obtained by the coefficient multiplication unit is output to the work control unit 7.
次に、モード制御部72の構成例について、図4を参照しながら説明する。
モード制御部72は、例えば図4に示すように、イニシャライズ部721、原点復帰部722、ドライブオフ部723、位置速度制御部724、位置制御部725、押引き制御部726、力制御部727、力リセット部(力変化制御部)728、及びオフセットキャンセル部729を有している。また図5は、モード制御部72におけるモード遷移例を示す図である。図5において、太丸で示される機能部が従来構成に対して特に特徴的な機能部である。 Next, a configuration example of themode control unit 72 will be described with reference to FIG.
For example, as shown in FIG. 4, themode control unit 72 includes an initialize unit 721, an origin return unit 722, a drive off unit 723, a position / speed control unit 724, a position control unit 725, a push / pull control unit 726, a force control unit 727, A force reset unit (force change control unit) 728 and an offset cancel unit 729 are included. FIG. 5 is a diagram showing an example of mode transition in the mode control unit 72. As shown in FIG. In FIG. 5, the functional parts shown by thick circles are functional parts that are particularly characteristic to the conventional configuration.
モード制御部72は、例えば図4に示すように、イニシャライズ部721、原点復帰部722、ドライブオフ部723、位置速度制御部724、位置制御部725、押引き制御部726、力制御部727、力リセット部(力変化制御部)728、及びオフセットキャンセル部729を有している。また図5は、モード制御部72におけるモード遷移例を示す図である。図5において、太丸で示される機能部が従来構成に対して特に特徴的な機能部である。 Next, a configuration example of the
For example, as shown in FIG. 4, the
イニシャライズ部721は、アクチュエータ1を駆動し、初期化を行う。イニシャライズ部721は、初期化では、アクチュエータ1を物理的原点まで移動させて位置検出部4により検出される位置をリセットした後、アクチュエータ1を予め設定されたホームポジション(例えば物理的原点から3mmの位置)に移動させる。なお、イニシャライズ部721は、アクチュエータ動作切替え装置の電源が投入された後(主電源がオンされた後)、上記動作を最低1回は実施する。また、イニシャライズ部721は、ドライブオフ部723によりアクチュエータ1の駆動が切断された後、再びアクチュエータ動作切替え装置を動作させる場合にも、上記動作を実施する。
The initialization unit 721 drives the actuator 1 to perform initialization. In initialization, the initialization unit 721 moves the actuator 1 to the physical origin and resets the position detected by the position detection unit 4 and then resets the actuator 1 to a preset home position (for example, 3 mm from the physical origin). Move to the position). The initialization unit 721 performs the above operation at least once after the power of the actuator operation switching device is turned on (after the main power is turned on). The initialization unit 721 also performs the above operation when the actuator operation switching device is operated again after the drive-off unit 723 cuts off the drive of the actuator 1.
原点復帰部722は、アクチュエータ1を強制的にホームポジションに移動させる。
The origin return unit 722 forcibly moves the actuator 1 to the home position.
ドライブオフ部723は、アクチュエータ1の駆動を切断する。この際、ドライブオフ部723は、加速度検出部5により検出された加速度に基づいてアクチュエータ1の姿勢を判断し、アクチュエータ1の駆動切断によりショックが発生しない位置までアクチュエータ1を移動させた上で、アクチュエータ1の駆動を切断する。
The drive off unit 723 cuts off the drive of the actuator 1. At this time, the drive-off unit 723 determines the posture of the actuator 1 based on the acceleration detected by the acceleration detection unit 5 and moves the actuator 1 to a position at which no shock occurs due to the drive disconnection of the actuator 1. The drive of the actuator 1 is cut off.
位置速度制御部724は、急激な加速度が発生しないように速度を制御しながらアクチュエータ1を指定位置に移動させる。
The position and speed control unit 724 moves the actuator 1 to the designated position while controlling the speed so as not to generate a rapid acceleration.
位置制御部725は、力センサと同様に、固定部11に対する可動部12の位置を変化させない状態とする。また、位置制御部725は、位置速度制御部724と同様に、急激な加速度が発生しないように速度を制御しながらアクチュエータ1を指定位置に移動させることも可能である。
The position control unit 725 does not change the position of the movable unit 12 with respect to the fixed unit 11 as in the case of the force sensor. Further, similarly to the position and speed control unit 724, the position control unit 725 can also move the actuator 1 to the designated position while controlling the speed so as not to generate a rapid acceleration.
押引き制御部726は、アクチュエータ1の位置を固定させた状態で、アクチュエータ1に正方向又は負方向の推力を発生させる(押引きモード)。この押引き制御部726では、アクチュエータ1が正方向の推力を発生させることで可動部12の押付け動作を実現でき、アクチュエータ1が負方向の推力を発生させることで可動部12の引抜き動作を実現できる。また、押引き制御部726は、動作開始位置から予め設定された変化率で推力を発生させる。また、押引き制御部726は、アクチュエータ1が発生する推力が予め設定された閾値を超えた場合又は可動部12の位置が予め設定された位置を超えた場合には、当該推力を維持させるように動作する(力一定モード)。
The push-pull control unit 726 causes the actuator 1 to generate positive or negative thrust in a state where the position of the actuator 1 is fixed (push-pull mode). In the push-pull control unit 726, the actuator 1 generates thrust in the positive direction to realize the pressing operation of the movable portion 12, and the actuator 1 generates thrust in the negative direction to realize the pulling-out operation of the movable portion 12. it can. In addition, the push-pull control unit 726 generates a thrust at a preset change rate from the operation start position. Further, the push-pull control unit 726 maintains the thrust when the thrust generated by the actuator 1 exceeds a preset threshold or when the position of the movable portion 12 exceeds a preset position. Operate in (force constant mode).
力制御部727は、可動部12に加わる外力Fに応じ、固定部11に対する可動部12の位置を変化可能とした状態とする(ばねモード)。また、力制御部727は、アクチュエータ1が発生する推力が予め設定された閾値を超えた場合又は可動部12の位置が予め設定された位置を超えた場合には、当該推力を維持させるように動作する(力一定モード)。
このように、力制御部727では、可動部12を柔らかい状態とするため、エンドエフェクタ2が物体50に衝突しても有効ストローク範囲内であれば物体50を押し潰すことを防止できる。 Theforce control unit 727 changes the position of the movable portion 12 with respect to the fixed portion 11 in accordance with the external force F applied to the movable portion 12 (spring mode). In addition, the force control unit 727 maintains the thrust when the thrust generated by the actuator 1 exceeds a preset threshold or when the position of the movable portion 12 exceeds a preset position. Operate (force constant mode).
As described above, in theforce control unit 727, since the movable unit 12 is in a soft state, even if the end effector 2 collides with the object 50, the object 50 can be prevented from being crushed if it is within the effective stroke range.
このように、力制御部727では、可動部12を柔らかい状態とするため、エンドエフェクタ2が物体50に衝突しても有効ストローク範囲内であれば物体50を押し潰すことを防止できる。 The
As described above, in the
また、力制御部727のばねモードにおける機械特性(ゲイン)は任意に設定可能である。この機械特性の値は、事前に固定値が設定されてもよいし、アクチュエータ1の状態(外力検出部62により検出された外力F、位置検出部4により検出された位置又は加速度検出部5により検出された加速度等)等に基づいて変えてもよい。また、例えば、エンドエフェクタ2が接触する部分に圧力センサを取付け、その圧力センサにより検出された圧力に基づいて、上記機械特性の値を変えてもよい。
In addition, mechanical characteristics (gain) in the spring mode of the force control unit 727 can be set arbitrarily. A fixed value may be set in advance for the value of the mechanical property, or the state of the actuator 1 (the external force F detected by the external force detection unit 62, the position detected by the position detection unit 4, or the acceleration detection unit 5) The change may be made based on the detected acceleration or the like. Alternatively, for example, a pressure sensor may be attached to a portion where the end effector 2 contacts, and the value of the mechanical characteristic may be changed based on the pressure detected by the pressure sensor.
力リセット部728は、アクチュエータ1が発生している推力を零近くにリセットする。これにより、エンドエフェクタ2が物体50と接触している状態においてほとんど推力が発生しない状態とすることができる。また、力リセット部728による動作は、力制御部727において連続して力の制御を繰り返す場合等に有効である。
なお、モード制御部72は、力制御部727が動作している状態において、アクチュエータ1が発生する推力が予め設定された閾値を超えた場合又は可動部12の位置が予め設定された位置を超えた場合に、力制御部727に代えて力リセット部728を動作させるよう自動で切替えてもよい。 The force resetunit 728 resets the thrust generated by the actuator 1 to near zero. As a result, in a state where the end effector 2 is in contact with the object 50, almost no thrust can be generated. The operation by the force reset unit 728 is effective, for example, when the force control unit 727 continuously controls the force.
In the state whereforce control unit 727 is in operation, mode control unit 72 causes the thrust force generated by actuator 1 to exceed a preset threshold or the position of movable unit 12 exceeds a preset position. In this case, instead of the force control unit 727, the force reset unit 728 may be automatically switched to operate.
なお、モード制御部72は、力制御部727が動作している状態において、アクチュエータ1が発生する推力が予め設定された閾値を超えた場合又は可動部12の位置が予め設定された位置を超えた場合に、力制御部727に代えて力リセット部728を動作させるよう自動で切替えてもよい。 The force reset
In the state where
なお上記では、力変化制御部として、アクチュエータ1が発生している推力を零近くにリセットする力リセット部728を用いた場合を示した。しかしながら、これに限らず、力変化制御部は、アクチュエータ1が発生している推力を任意の値に変更する制御部であればよい。
In addition, in the above, the case where the force reset part 728 which resets the thrust which the actuator 1 is generate | occur | produced to near zero was shown as a force change control part. However, not limited to this, the force change control unit may be a control unit that changes the thrust generated by the actuator 1 to an arbitrary value.
オフセットキャンセル部729は、外力検出制御部6により検出された外力Fに含まれるオフセットをキャンセルする。外力検出制御部6では、アクチュエータ動作切替え装置の設置環境(温度等)により、検出される外力Fがオフセットされる場合がある。そこで、このオフセットキャンセル部729を動作させることで、上記オフセットをキャンセルすることができる。
The offset cancellation unit 729 cancels the offset included in the external force F detected by the external force detection control unit 6. In the external force detection control unit 6, the external force F to be detected may be offset depending on the installation environment (temperature and the like) of the actuator operation switching device. Therefore, the offset can be canceled by operating the offset cancellation unit 729.
次に、外力検出制御部6の動作原理について説明する。なお以下では、アクチュエータ1として、発生した推力がエンドエフェクタ2に直接伝わるダイレクトドライブ形式のリニアアクチュエータを用い、固定部11に対して可動部12を直動させるものとする。このアクチュエータ1は、定電流制御部69が電流指令値Irに応じて発生した駆動電流Iaにより駆動する。
Next, the operation principle of the external force detection control unit 6 will be described. In the following, as the actuator 1, a direct drive linear actuator in which the generated thrust is directly transmitted to the end effector 2 is used, and the movable portion 12 is linearly moved with respect to the fixed portion 11. The actuator 1 is driven by the drive current Ia generated by the constant current control unit 69 according to the current command value Ir.
一方、位置検出部4は、固定部11に対する可動部12の直動方向における位置を検出する。
また、位置速度変換部63は、位置検出部4により検出された位置を微分して速度に変換する。この速度は、固定部11に対する可動部12の速度を示す。 On the other hand, theposition detection unit 4 detects the position of the movable unit 12 in the linear movement direction with respect to the fixed unit 11.
Further, the position /speed conversion unit 63 differentiates the position detected by the position detection unit 4 and converts it into a velocity. This velocity indicates the velocity of the movable part 12 with respect to the fixed part 11.
また、位置速度変換部63は、位置検出部4により検出された位置を微分して速度に変換する。この速度は、固定部11に対する可動部12の速度を示す。 On the other hand, the
Further, the position /
また、加速度検出部5は、固定部11の直動方向における加速度を検出する。以下では、加速度検出部5は、固定部11の直動方向成分における移動加速度α1と、固定部11の直動方向成分における重力加速度αgとが加算された加速度(α1+αg)を検出するものとする。
Further, the acceleration detection unit 5 detects an acceleration in the linear movement direction of the fixed unit 11. In the following, the acceleration detection unit 5 detects an acceleration (α1 + αg) in which the movement acceleration α1 in the linear movement direction component of the fixed unit 11 and the gravitational acceleration αg in the linear movement direction component of the fixed unit 11 are added. .
また、位置検出部4により検出された位置は、減算器64で基準位置Prと比較され、その差分がゲイン調整部65を介して電流指令値Irを構成する要素の一つである電流指令値Irpとして加減算器68に与えられる。
Further, the position detected by the position detection unit 4 is compared with the reference position Pr by the subtractor 64, and the difference thereof is a current command value which is one of the elements constituting the current command value Ir via the gain adjustment unit 65. It is given to the adder / subtractor 68 as Irp.
電流指令値Irは、電流指令値Irpの他、外乱トルクを補正するための加速度補償値Ircで構成され、次式(1)で表される。
Ir=Irp+Irc (1) The current command value Ir is composed of an acceleration compensation value Irc for correcting the disturbance torque in addition to the current command value Irp, and is expressed by the following equation (1).
Ir = Irp + Irc (1)
Ir=Irp+Irc (1) The current command value Ir is composed of an acceleration compensation value Irc for correcting the disturbance torque in addition to the current command value Irp, and is expressed by the following equation (1).
Ir = Irp + Irc (1)
なお、位置を単純にフィードバックすると制御系が不安定となる。そのため、実際には、位置速度変換部63からの速度信号をマイナーループとして加減算器68のマイナス出力に加えて安定化を行っているが、以下では省略する。
If the position is simply fed back, the control system becomes unstable. Therefore, the speed signal from the position / speed converter 63 is actually added as a minor loop to the minus output of the adder / subtractor 68 to perform stabilization, but this is omitted below.
また、ゲイン調整部65では、位置制御ループのゲインを変えることで、アクチュエータ1におけるコンプライアンスの値を変化させることができる。
Further, in the gain adjustment unit 65, the value of the compliance in the actuator 1 can be changed by changing the gain of the position control loop.
ここで、駆動電流Iaに着目すると、外乱トルクがない場合には電流値は零になるが、外乱トルクがある場合にはそれに比例して電流値も変化する。
一般的な外乱トルクとしては、作業時にエンドエフェクタ2から受ける反力F、重力加速度αg及び移動加速度α1により発生する力、減速器のロストルク等が考えられる。ここで、アクチュエータ1はダイレクトドライブ形式のリニアアクチュエータであるため、減速器は持たず、ロストルクは考慮する必要は少ない。したがって、駆動電流Iaは、作業時にエンドエフェクタ2から受ける反力F、重力加速度αg及び移動加速度α1により発生する力に比例した値となる。なお以下では、反力Fは、物体50が他の物体に接触した際に発生する力であるとする。 Here, focusing on the drive current Ia, the current value becomes zero when there is no disturbance torque, but the current value also changes in proportion to that when there is a disturbance torque.
As a general disturbance torque, the reaction force F received from theend effector 2 at the time of work, the force generated by the gravitational acceleration αg and the movement acceleration α1, the loss torque of the reduction gear, and the like can be considered. Here, since the actuator 1 is a direct drive linear actuator, there is no decelerator, and it is not necessary to consider the loss torque. Therefore, the drive current Ia has a value proportional to the force generated by the reaction force F, the gravitational acceleration αg and the movement acceleration α1 received from the end effector 2 at the time of operation. In the following, it is assumed that the reaction force F is a force generated when the object 50 contacts another object.
一般的な外乱トルクとしては、作業時にエンドエフェクタ2から受ける反力F、重力加速度αg及び移動加速度α1により発生する力、減速器のロストルク等が考えられる。ここで、アクチュエータ1はダイレクトドライブ形式のリニアアクチュエータであるため、減速器は持たず、ロストルクは考慮する必要は少ない。したがって、駆動電流Iaは、作業時にエンドエフェクタ2から受ける反力F、重力加速度αg及び移動加速度α1により発生する力に比例した値となる。なお以下では、反力Fは、物体50が他の物体に接触した際に発生する力であるとする。 Here, focusing on the drive current Ia, the current value becomes zero when there is no disturbance torque, but the current value also changes in proportion to that when there is a disturbance torque.
As a general disturbance torque, the reaction force F received from the
ここで、アクチュエータ1の駆動電流Ia、作業時にエンドエフェクタ2から受ける反力F、固定部11の直動方向成分における移動加速度α1、固定部11の直動方向成分における重力加速度αg、可動部12の質量M1、エンドエフェクタ2の質量M2、及び、物体50の質量M3から、次式(2)の関係が成り立つ。
F+(α1+αg)・(M1+M2+M3)=Kt・Ir=Kt・(Irp+Irc)
(2)
なお、Ktはアクチュエータ1が発生する推力と駆動電流Iaとの比を表したトルク定数である。 Here, the drive current Ia of theactuator 1, the reaction force F received from the end effector 2 at the time of operation, the movement acceleration α1 in the linear movement direction component of the fixed portion 11, the gravitational acceleration αg in the linear movement direction component of the fixed portion 11 From the mass M1 of the above, the mass M2 of the end effector 2 and the mass M3 of the object 50, the following equation (2) holds.
F + (α1 + αg) · (M1 + M2 + M3) = Kt · Ir = Kt · (Irp + Irc)
(2)
Kt is a torque constant representing the ratio between the thrust generated by theactuator 1 and the drive current Ia.
F+(α1+αg)・(M1+M2+M3)=Kt・Ir=Kt・(Irp+Irc)
(2)
なお、Ktはアクチュエータ1が発生する推力と駆動電流Iaとの比を表したトルク定数である。 Here, the drive current Ia of the
F + (α1 + αg) · (M1 + M2 + M3) = Kt · Ir = Kt · (Irp + Irc)
(2)
Kt is a torque constant representing the ratio between the thrust generated by the
また、式(2)において外乱トルクを補正するための加速度補償値Ircを次式(3)のように設定する。
(α1+αg)・(M1+M2+M3)=Kt・Irc (3) Further, in the equation (2), an acceleration compensation value Irc for correcting the disturbance torque is set as in the following equation (3).
(Α1 + αg) · (M1 + M2 + M3) = Kt · Irc (3)
(α1+αg)・(M1+M2+M3)=Kt・Irc (3) Further, in the equation (2), an acceleration compensation value Irc for correcting the disturbance torque is set as in the following equation (3).
(Α1 + αg) · (M1 + M2 + M3) = Kt · Irc (3)
式(3)のように加速度補償値Ircを設定した場合、式(2)からα1,αg,M1,M2,M3の項が消え、次式(4)のように整理される。
F=Kt・Irp (4) When the acceleration compensation value Irc is set as in the equation (3), the terms α1, αg, M1, M2 and M3 disappear from the equation (2), and the terms are rearranged as in the following equation (4).
F = Kt · Irp (4)
F=Kt・Irp (4) When the acceleration compensation value Irc is set as in the equation (3), the terms α1, αg, M1, M2 and M3 disappear from the equation (2), and the terms are rearranged as in the following equation (4).
F = Kt · Irp (4)
このように、外乱トルクを補正するための加速度補償値Ircを式(3)のように設定すると、作業時にエンドエフェクタ2から受ける反力Fと電流指令値Irpは、比例関係になることがわかる。
As described above, when the acceleration compensation value Irc for correcting the disturbance torque is set as shown in equation (3), it is understood that the reaction force F received from the end effector 2 at the time of operation and the current command value Irp have a proportional relationship. .
これは、作業時にエンドエフェクタ2から受ける反力Fが零、つまり物体50が他の物体と接触していない場合、基準位置Prと実際の位置の差分に基づく電流指令値Irpも零、つまり位置が変位しないことを意味している。
そして、物体50が他の物体と接触した際に生じる反力Fは、電流指令値Irpを監視することで知ることができる。 This is because the reaction force F received from theend effector 2 at the time of work is zero, that is, when the object 50 is not in contact with another object, the current command value Irp based on the difference between the reference position Pr and the actual position is also zero, ie, the position Means not to be displaced.
The reaction force F generated when theobject 50 contacts another object can be known by monitoring the current command value Irp.
そして、物体50が他の物体と接触した際に生じる反力Fは、電流指令値Irpを監視することで知ることができる。 This is because the reaction force F received from the
The reaction force F generated when the
そして、式(4)には、固定部11の直動方向成分における移動加速度α1、固定部11の直動方向成分における重力加速度αg、可動部12の質量M1、エンドエフェクタ2の質量M2、物体50の質量M3の項目が含まれていない。
つまり、ロボットが急激に移動又は停止を行い移動加速度α1が発生した場合、及び、ロボットが連続して姿勢を変更し重力加速度αgが変化した場合でも、アクチュエータ1の可動部12はゆれることなく反力Fを正しく検出できる。
そして、コンプライアンスの値も自由に設定できる。 Then, in equation (4), the movement acceleration α1 in the linear movement direction component of the fixedpart 11, the gravitational acceleration αg in the linear movement direction component of the fixed part 11, the mass M1 of the movable part 12, the mass M2 of the end effector 2, the object The item of 50 mass M3 is not included.
That is, even if the robot moves or stops rapidly and movement acceleration α1 occurs, or even if the robot continuously changes its posture and gravity acceleration αg changes, themovable part 12 of the actuator 1 does not shake and the movement is reversed. Force F can be detected correctly.
And the value of compliance can also be set freely.
つまり、ロボットが急激に移動又は停止を行い移動加速度α1が発生した場合、及び、ロボットが連続して姿勢を変更し重力加速度αgが変化した場合でも、アクチュエータ1の可動部12はゆれることなく反力Fを正しく検出できる。
そして、コンプライアンスの値も自由に設定できる。 Then, in equation (4), the movement acceleration α1 in the linear movement direction component of the fixed
That is, even if the robot moves or stops rapidly and movement acceleration α1 occurs, or even if the robot continuously changes its posture and gravity acceleration αg changes, the
And the value of compliance can also be set freely.
なお、上述したように、物体50が他の物体と急激に衝突する等して発生する反力Fは、電流指令値Irpを監視することで知ることができる。また、アクチュエータ1には、反力Fと拮抗するように誘導電流が発生するため、駆動電流Iaから反力Fを検出することもできる。
しかしながら、位置制御ループにおいて、反力Fに対する電流指令値Irpの応答は一般的に速くない。一方、反力Fに対する駆動電流Iaの応答は、可動部12が移動することにより発生する誘導電流によるものであるため、比較的速い。そこで、電流指令値Irpを直接監視するのではなく、駆動電流Iaを監視することで反力Fの検出を行う。 As described above, the reaction force F generated when theobject 50 sharply collides with another object can be known by monitoring the current command value Irp. Further, since an induced current is generated in the actuator 1 so as to antagonize the reaction force F, the reaction force F can also be detected from the drive current Ia.
However, in the position control loop, the response of the current command value Irp to the reaction force F is generally not fast. On the other hand, the response of the drive current Ia to the reaction force F is relatively fast because it is due to the induced current generated by the movement of themovable portion 12. Therefore, instead of directly monitoring the current command value Irp, the reaction force F is detected by monitoring the drive current Ia.
しかしながら、位置制御ループにおいて、反力Fに対する電流指令値Irpの応答は一般的に速くない。一方、反力Fに対する駆動電流Iaの応答は、可動部12が移動することにより発生する誘導電流によるものであるため、比較的速い。そこで、電流指令値Irpを直接監視するのではなく、駆動電流Iaを監視することで反力Fの検出を行う。 As described above, the reaction force F generated when the
However, in the position control loop, the response of the current command value Irp to the reaction force F is generally not fast. On the other hand, the response of the drive current Ia to the reaction force F is relatively fast because it is due to the induced current generated by the movement of the
ここで、式(2)は以下の通りである。
F+(α1+αg)・(M1+M2+M3)=Kt・Ir=Kt・(Irp+Irc)
(2) Here, Formula (2) is as follows.
F + (α1 + αg) · (M1 + M2 + M3) = Kt · Ir = Kt · (Irp + Irc)
(2)
F+(α1+αg)・(M1+M2+M3)=Kt・Ir=Kt・(Irp+Irc)
(2) Here, Formula (2) is as follows.
F + (α1 + αg) · (M1 + M2 + M3) = Kt · Ir = Kt · (Irp + Irc)
(2)
一方、駆動電流Iaは次式(5)で表せる。
Ia=Ir=Irp+Irc (5) On the other hand, the drive current Ia can be expressed by the following equation (5).
Ia = Ir = Irp + Irc (5)
Ia=Ir=Irp+Irc (5) On the other hand, the drive current Ia can be expressed by the following equation (5).
Ia = Ir = Irp + Irc (5)
よって、式(2),(5)から下式(6)が得られる。
F+(α1+αg)・(M1+M2+M3)=Kt・Ia (6) Therefore, the following equation (6) is obtained from the equations (2) and (5).
F + (α1 + αg) · (M1 + M2 + M3) = Kt · Ia (6)
F+(α1+αg)・(M1+M2+M3)=Kt・Ia (6) Therefore, the following equation (6) is obtained from the equations (2) and (5).
F + (α1 + αg) · (M1 + M2 + M3) = Kt · Ia (6)
そして、式(6)の両辺から、式(3)の左辺である((α1+αg)・(M1+M2+M3))を減算して整理すると、下式(7)が得られる。
F=Kt・(Ia-(α1+αg)・(M1+M2+M3)/Kt) (7) Then, by subtracting ((α1 + αg) · (M1 + M2 + M3)) which is the left side of equation (3) from both sides of equation (6) and rearranging, the following equation (7) is obtained.
F = Kt · (Ia− (α1 + αg) · (M1 + M2 + M3) / Kt) (7)
F=Kt・(Ia-(α1+αg)・(M1+M2+M3)/Kt) (7) Then, by subtracting ((α1 + αg) · (M1 + M2 + M3)) which is the left side of equation (3) from both sides of equation (6) and rearranging, the following equation (7) is obtained.
F = Kt · (Ia− (α1 + αg) · (M1 + M2 + M3) / Kt) (7)
この式(7)に示されるように、駆動電流Iaから加速度補償値(α1+αg)・(M1+M2+M3)/Ktを差し引いてトルク定数Ktをかけることで、反力Fを求めることができる。
As shown in the equation (7), the reaction force F can be determined by subtracting the acceleration compensation value (α1 + αg) · (M1 + M2 + M3) / Kt from the drive current Ia and multiplying by the torque constant Kt.
次に、外力検出制御部6による効果について説明する。
ロボットの動作は、一般的に、位置制御によりコントロールされる。そのため、物体50の寸法誤差又は把持位置誤差等により、予めプログラムされた目標位置と実際の位置が異なる場合、物体50が他の物体と接触した際に大きな外力Fが発生し、物体50又は他の物体に傷又は破損が発生する恐れがある。 Next, the effect of the external force detection control unit 6 will be described.
The motion of the robot is generally controlled by position control. Therefore, when the pre-programmed target position and the actual position differ due to dimensional error or gripping position error of theobject 50, a large external force F is generated when the object 50 contacts another object, and the object 50 or the other Objects may be damaged or damaged.
ロボットの動作は、一般的に、位置制御によりコントロールされる。そのため、物体50の寸法誤差又は把持位置誤差等により、予めプログラムされた目標位置と実際の位置が異なる場合、物体50が他の物体と接触した際に大きな外力Fが発生し、物体50又は他の物体に傷又は破損が発生する恐れがある。 Next, the effect of the external force detection control unit 6 will be described.
The motion of the robot is generally controlled by position control. Therefore, when the pre-programmed target position and the actual position differ due to dimensional error or gripping position error of the
その対策として、ロボットとエンドエフェクタ2との間に力センサを設置し、物体50と他の物体との接触時に過大な外力Fが発生しそうになると力センサの検出結果をロボットにフィードバックし、過大な外力Fが発生しないようにする方法が考えられる。
As a countermeasure, a force sensor is installed between the robot and the end effector 2. When an excessive external force F is likely to occur when the object 50 contacts another object, the detection result of the force sensor is fed back to the robot. It is conceivable to prevent the generation of the external force F.
しかしながら、過大な外力Fが発生したことを検出して停止指令を出してもロボットは急には止まれないため、停止指令が出た時点から急激に減速しても接触位置からずれた位置で停止してしまい、物体50又は他の物体を押し潰してしまう。そして、位置の行き過ぎ量は移動速度に比例するため、物体50を他の物体に近付ける速度を遅くせざるを得ない。
However, the robot does not stop suddenly even if it detects that an excessive external force F has been generated and issues a stop command, so even if it decelerates rapidly from the time the stop command is issued, it stops at a position deviated from the contact position. And crush the object 50 or another object. Then, the amount of positional excess is proportional to the moving speed, so the speed at which the object 50 approaches other objects has to be reduced.
上記の理由により、物体50が他の物体と接触する可能性のある領域では、ロボットの移動速度を十分落とす必要がある。しかしながら、サイクルタイムを短くするため、物体50を移動する速度は速くする必要がある。その結果、接触領域の近傍で速度を急激に落とすことになる。
For the above reasons, it is necessary to reduce the moving speed of the robot sufficiently in the area where the object 50 may come in contact with another object. However, in order to shorten the cycle time, the moving speed of the object 50 needs to be increased. As a result, the speed drops rapidly near the contact area.
一方、実施の形態1では、ロボット(移動部3)の先端にアクチュエータ1を取付け、また、外力検出制御部6は、アクチュエータ1が急激に移動又は停止されて移動加速度α1が発生した場合、及び、アクチュエータ1の姿勢が変更されて重力加速度αgが変化した場合でも、可動部12に加わる反力Fを正しく検出でき、また、コンプライアンス値を任意に変えられる。そのため、ロボットが急に止まれない点は同じだが、位置の行き過ぎにより物体50又は他の物体を押し潰してしまうことはない。よって、物体50を他の物体に近づける速度を極端に遅くする必要がなく、また、安全に作業できる。
On the other hand, in the first embodiment, the actuator 1 is attached to the tip of the robot (moving unit 3), and the external force detection control unit 6 causes the movement acceleration α1 to occur when the actuator 1 is rapidly moved or stopped. Even when the posture of the actuator 1 is changed to change the gravitational acceleration αg, the reaction force F applied to the movable portion 12 can be correctly detected, and the compliance value can be arbitrarily changed. Therefore, although the point that the robot can not stop suddenly is the same, the overshoot of the position does not crush the object 50 or another object. Therefore, it is not necessary to extremely slow the speed at which the object 50 approaches other objects, and it is possible to work safely.
また、ロボットとエンドエフェクタ2との間に力センサを設置した場合、ロボットが急激に減速すると、エンドエフェクタ2の質量M2による影響で、力センサには負方向の加速度に比例した力が発生する。
ところが、上記加速度に比例した力と物体50の他の物体との接触により発生する外力Fとを区別することは難しく、区別するためにはロボットの減速時間を大幅に長くせざるを得ない。 Also, when a force sensor is installed between the robot and theend effector 2, when the robot decelerates rapidly, a force proportional to the negative acceleration is generated in the force sensor due to the mass M2 of the end effector 2 .
However, it is difficult to distinguish between the force proportional to the acceleration and the external force F generated due to the contact of theobject 50 with another object, and in order to make a distinction, the deceleration time of the robot must be made significantly longer.
ところが、上記加速度に比例した力と物体50の他の物体との接触により発生する外力Fとを区別することは難しく、区別するためにはロボットの減速時間を大幅に長くせざるを得ない。 Also, when a force sensor is installed between the robot and the
However, it is difficult to distinguish between the force proportional to the acceleration and the external force F generated due to the contact of the
一方、外力検出制御部6では、アクチュエータ1が急激に加減速された場合でも正しく外力Fを検出でき、接触時にのみ外力Fを検出するため、アクチュエータ1の減速時間を長くする必要はない。
On the other hand, the external force detection control unit 6 can correctly detect the external force F even when the actuator 1 is rapidly accelerated or decelerated, and the external force F is detected only at the time of contact.
また、力センサを用いた場合には、重力による影響をリアルタイムに補償し難いという課題もある。
すなわち、接着作業を行う場合にロボットが取りうる姿勢は常に一定ではなく、作業の状態に応じて変化させる場合が多い。
しかしながら、ロボットとエンドエフェクタ2との間に力センサを設置した場合には、ロボットの姿勢が水平ではないと、力センサには重力加速度αgによる影響でロボットの姿勢とエンドエフェクタ2の質量M2に応じた力が発生する。 In addition, when a force sensor is used, there is also a problem that it is difficult to compensate the influence of gravity in real time.
That is, the posture that the robot can take when performing the bonding operation is not always constant, and often changes according to the state of the operation.
However, when a force sensor is installed between the robot and theend effector 2, if the posture of the robot is not horizontal, the force sensor affects the robot posture and the mass M2 of the end effector 2 under the influence of the gravitational acceleration αg. A corresponding force is generated.
すなわち、接着作業を行う場合にロボットが取りうる姿勢は常に一定ではなく、作業の状態に応じて変化させる場合が多い。
しかしながら、ロボットとエンドエフェクタ2との間に力センサを設置した場合には、ロボットの姿勢が水平ではないと、力センサには重力加速度αgによる影響でロボットの姿勢とエンドエフェクタ2の質量M2に応じた力が発生する。 In addition, when a force sensor is used, there is also a problem that it is difficult to compensate the influence of gravity in real time.
That is, the posture that the robot can take when performing the bonding operation is not always constant, and often changes according to the state of the operation.
However, when a force sensor is installed between the robot and the
一方、外力検出制御部6では、アクチュエータ1の姿勢が変更されて重力加速度αgが変化した場合でも外力Fを正しく検出できるため、重力による影響をリアルタイムに補償できる。
On the other hand, in the external force detection control unit 6, even when the posture of the actuator 1 is changed and the gravitational acceleration αg is changed, the external force F can be detected correctly, so that the influence of gravity can be compensated in real time.
次に、作業制御部7の動作例について、図6~9を参照しながら説明する。以下では、アクチュエータ動作切替え装置が、コネクタ51をコネクタ52に嵌合する組立作業を行う場合を示す。なお、図6に示すように、コネクタ51は爪511を有し、コネクタ52は、コネクタ51が挿入される挿入穴521及びコネクタ51が挿入された際に爪511が係合する係合穴522を有している。また、コネクタ51はエンドエフェクタ2により保持され、コネクタ52は作業台等に固定されているものとする。
Next, an operation example of the work control unit 7 will be described with reference to FIGS. Below, the case where an actuator operation | movement switching device performs the assembly operation which fits the connector 51 to the connector 52 is shown. As shown in FIG. 6, the connector 51 has a claw 511, and the connector 52 has an insertion hole 521 into which the connector 51 is inserted and an engagement hole 522 into which the claw 511 is engaged when the connector 51 is inserted. have. The connector 51 is held by the end effector 2 and the connector 52 is fixed to a work table or the like.
そして、作業制御部7は、外力検出部62により検出された外力F等に基づいて、アクチュエータ制御部61、エンドエフェクタ2及び移動部3を制御することで、アクチュエータ動作切替え装置による組立作業を実現する。なお、作業制御部7は、基準位置Pr又はゲインの変更を行うことでアクチュエータ制御部61を制御する。ここで、ゲイン調整部65は位置偏差に基づいて電流指令値Irpを出力しているが、上記ゲインの変更とは、上記位置偏差と電流指令値Irpとの関係を示す関数の変更を意味している。また、上記関数の変更には、関数の傾きの変更も含まれる。また、作業制御部7は、アクチュエータ動作切替え装置によるアクチュエータ1を用いた作業を実現するための専用のコントローラであり、上記外力F等に基づいて、1kHz以上(1ms以下)の高速制御周期内でアクチュエータ1の動作を切替えることができる。
Then, the work control unit 7 realizes the assembly work by the actuator operation switching device by controlling the actuator control unit 61, the end effector 2 and the moving unit 3 based on the external force F or the like detected by the external force detection unit 62. Do. The work control unit 7 controls the actuator control unit 61 by changing the reference position Pr or the gain. Here, although the gain adjustment unit 65 outputs the current command value Irp based on the position deviation, the change of the gain means a change of a function indicating the relationship between the position deviation and the current command value Irp. ing. In addition, the change of the function includes the change of the slope of the function. The work control unit 7 is a dedicated controller for realizing work using the actuator 1 by the actuator operation switching device, and based on the external force F or the like, within a high speed control cycle of 1 kHz or more (1 ms or less). The operation of the actuator 1 can be switched.
また図9において、横軸は時間[s]を示し、縦軸は外力検出制御部6により検出された外力F(力信号[mV])を示している。また、図9における符号a~eは、図8A~図8Eでの状態をそれぞれ示している。
Further, in FIG. 9, the horizontal axis indicates time [s], and the vertical axis indicates the external force F (force signal [mV]) detected by the external force detection control unit 6. Also, reference symbols a to e in FIG. 9 indicate the states in FIG. 8A to FIG. 8E, respectively.
アクチュエータ動作切替え装置によるコネクタ51,52の組立作業では、まず、図7に示すように、モード切替え部71はモード制御部72の動作モードを位置速度制御部724に切替え、位置速度制御部724は、急激な加速度が発生しないように速度を制御しながらコネクタ51をコネクタ52に近づける(ステップST1)。
In assembling the connectors 51 and 52 by the actuator operation switching device, first, as shown in FIG. 7, the mode switching unit 71 switches the operation mode of the mode control unit 72 to the position speed control unit 724, and the position speed control unit 724 The connector 51 is brought close to the connector 52 while controlling the speed so as not to generate a rapid acceleration (step ST1).
次いで、図7、図8Aに示すように、モード切替え部71はモード制御部72の動作モードを力制御部727に切替え、移動部3は、コネクタ51がコネクタ52に力F1で接触するまで、エンドエフェクタ2をコネクタ52の方向へ移動させる(ステップST2)。図9に示すように、力F1は、コネクタ51がコネクタ52に当接したことを認識可能な力であり、コネクタ51とコネクタ52及び周辺機器を破損しない程度に十分に弱い力である。
Then, as shown in FIGS. 7 and 8A, the mode switching unit 71 switches the operation mode of the mode control unit 72 to the force control unit 727, and the moving unit 3 continues until the connector 51 contacts the connector 52 with the force F1. The end effector 2 is moved in the direction of the connector 52 (step ST2). As shown in FIG. 9, the force F1 is a force capable of recognizing that the connector 51 abuts on the connector 52, and is sufficiently weak not to damage the connector 51, the connector 52 and peripheral devices.
このステップST2では、最初、可動部12は、変位に対して推力が線形に変化するばねのような動作となる(ばねモード)。その後、コネクタ51がコネクタ52に接触することで、可動部12に加わる外力Fが変化し、その情報が外力検出部62からモード切替え部71に伝えられる。そして、モード切替え部71は、外力F(アクチュエータ1が発生する推力)が閾値を超えた場合には力一定モードとなるようにモード制御部72に指示を出す。これにより、コネクタ51,52に過大な力をかけることなく接触をさせることができる。
In this step ST2, initially, the movable portion 12 operates as a spring whose thrust changes linearly with respect to displacement (spring mode). Thereafter, when the connector 51 contacts the connector 52, the external force F applied to the movable portion 12 changes, and the information is transmitted from the external force detection unit 62 to the mode switching unit 71. Then, when the external force F (thrust generated by the actuator 1) exceeds the threshold, the mode switching unit 71 instructs the mode control unit 72 to be in the force constant mode. Thereby, the connectors 51 and 52 can be brought into contact without exerting an excessive force.
なお上記では、ステップST2において、移動部3によりコネクタ51をコネクタ52に力F1で接触させる場合を示した。しかしながら、これに限らず、ステップST2において、モード切替え部71はモード制御部72の動作モードを押引き制御部726に切替え、押引き制御部726が、コネクタ51がコネクタ52に力F1で接触するまで、エンドエフェクタ2をコネクタ52の方向へ押付けてもよい。
In the above, the case where the moving unit 3 causes the connector 51 to contact the connector 52 with the force F1 is shown in step ST2. However, the invention is not limited thereto. In step ST2, the mode switching unit 71 switches the operation mode of the mode control unit 72 to the push-pull control unit 726, and the push-pull control unit 726 causes the connector 51 to contact the connector 52 with a force F1. Alternatively, the end effector 2 may be pressed in the direction of the connector 52.
また、モード切替え部71は、ステップST2における処理が終了した段階で、モード制御部72の動作モードを力リセット部728に切替え、力リセット部728は、アクチュエータ1が発生している推力を零近くにリセットしてもよい。これにより、コネクタ51,52が接触している状態においてほとんど推力が発生しない状態とすることができる。
なお、ステップST2における処理が終了した段階で、可動部12のストロークに余裕があり、アクチュエータ1が発生している推力が低い場合には、力リセット部728による処理は不要である。図9では、力リセット部728による処理を行わない場合を示している。 In addition, at the stage when the processing in step ST2 ends, themode switching unit 71 switches the operation mode of the mode control unit 72 to the force reset unit 728, and the force reset unit 728 sets the thrust generated by the actuator 1 to near zero. It may be reset to As a result, in a state in which the connectors 51 and 52 are in contact with each other, almost no thrust can be generated.
When the process in step ST2 is finished, if the stroke of themovable portion 12 has a margin and the thrust generated by the actuator 1 is low, the process by the force reset unit 728 is unnecessary. In FIG. 9, the case where the process by the force reset part 728 is not performed is shown.
なお、ステップST2における処理が終了した段階で、可動部12のストロークに余裕があり、アクチュエータ1が発生している推力が低い場合には、力リセット部728による処理は不要である。図9では、力リセット部728による処理を行わない場合を示している。 In addition, at the stage when the processing in step ST2 ends, the
When the process in step ST2 is finished, if the stroke of the
次いで、図7、図8Bに示すように、移動部3は、コネクタ51のコネクタ52への接触を維持しつつ、エンドエフェクタ2をコネクタ51とコネクタ52とが嵌合する方向に移動させる(ステップST3)。この際、コネクタ51,52の接触時に過大な力がかかっていないため、コネクタ51,52の接触を維持したままコネクタ51,52同士の相対位置をずらす(滑らせる)ことが可能である。図8Bでは、図8Aにおいてコネクタ51がコネクタ52に対して高さ方向にずれており、コネクタ51を下方に移動させている場合を示している。実際には、高さ方向の他、横方向及び回転方向等、嵌合方向に対して垂直な方向における全ての自由度に対する位置合わせが必要となる。なお、図9に示すように、モード切替え部71は、力F1が無くなった場合に、コネクタ51がコネクタ52の挿入穴521に対向したと判定する。又は、モード切替え部71は、コネクタ51の位置から、コネクタ51がコネクタ52の挿入穴521に対向したかを判定する。そして、モード切替え部71は、コネクタ51がコネクタ52の挿入穴521に対向したと判定した場合には、エンドエフェクタ2の移動を停止させるようにモード制御部72に指示を出す。
Then, as shown in FIGS. 7 and 8B, the moving unit 3 moves the end effector 2 in the direction in which the connector 51 and the connector 52 are fitted while maintaining the contact of the connector 51 with the connector 52 (Step ST3). At this time, since an excessive force is not applied when the connectors 51 and 52 are in contact with each other, it is possible to shift (slide) the relative position of the connectors 51 and 52 while maintaining the contact between the connectors 51 and 52. FIG. 8B shows the case where the connector 51 is shifted in the height direction with respect to the connector 52 in FIG. 8A, and the connector 51 is moved downward. In practice, alignment is required for all degrees of freedom in the direction perpendicular to the fitting direction, such as the lateral direction and the rotational direction, in addition to the height direction. As shown in FIG. 9, the mode switching unit 71 determines that the connector 51 is opposed to the insertion hole 521 of the connector 52 when the force F1 is lost. Alternatively, the mode switching unit 71 determines, from the position of the connector 51, whether the connector 51 is opposed to the insertion hole 521 of the connector 52. When the mode switching unit 71 determines that the connector 51 is opposed to the insertion hole 521 of the connector 52, the mode switching unit 71 instructs the mode control unit 72 to stop the movement of the end effector 2.
なお、作業制御部7は、ステップST3における処理が終了した段階で、外力検出制御部6における基準位置Prの更新を行ってもよい。この際、作業制御部7は、基準位置Prとして、コネクタ51の挿入先の位置を設定する。これにより、コネクタ51の嵌合工程においてもコンプライアンス制御が可能となる。
The work control unit 7 may update the reference position Pr in the external force detection control unit 6 when the process in step ST3 is completed. At this time, the work control unit 7 sets the position of the insertion destination of the connector 51 as the reference position Pr. Thereby, compliance control can be performed also in the fitting process of the connector 51.
次いで、図7、図8C、図8Dに示すように、モード切替え部71はモード制御部72の動作モードを押引き制御部726に切替え、押引き制御部726は、外力Fが力F2となるまで、コネクタ51をコネクタ52の挿入穴521に挿入するように、エンドエフェクタ2を嵌合方向に押付ける(ステップST4)。これにより、適切な力でコネクタ51をコネクタ52に挿入できる。また、コネクタ51がコネクタ52の挿入穴521に挿入されることで、コネクタ51が有する爪511がコネクタ52が有する係合穴522に係合され、コネクタ51がコネクタ52に嵌合される。
Next, as shown in FIGS. 7, 8C, and 8D, the mode switching unit 71 switches the operation mode of the mode control unit 72 to the push-pull control unit 726, and the push-pull control unit 726 causes the external force F to be the force F2. The end effector 2 is pressed in the fitting direction so that the connector 51 is inserted into the insertion hole 521 of the connector 52 (step ST4). Thus, the connector 51 can be inserted into the connector 52 with an appropriate force. Further, by inserting the connector 51 into the insertion hole 521 of the connector 52, the claw 511 of the connector 51 is engaged with the engagement hole 522 of the connector 52, and the connector 51 is engaged with the connector 52.
次いで、図7、図8Eに示すように、押引き制御部726は、コネクタ51をコネクタ52から引抜くように、エンドエフェクタ2を嵌合方向とは逆方向に移動させ、モード切替え部71が外力Fが力Frefに達するかを判定する(ステップST5)。図9に示すように、力Frefは、コネクタ51がコネクタ52に正常に嵌合されたことを確認可能な力である。
Next, as shown in FIGS. 7 and 8E, the push-pull control unit 726 moves the end effector 2 in the direction opposite to the fitting direction so that the connector 51 is pulled out of the connector 52, and the mode switching unit 71 It is determined whether the external force F reaches the force Fref (step ST5). As shown in FIG. 9, the force Fref is a force that can confirm that the connector 51 is properly fitted to the connector 52.
ここで、外力Fが力Frefとなる前にコネクタ51がコネクタ52から引抜かれた場合には、コネクタ51,52の組立が失敗したと判定できる。なお図8E、図9では、力Frefよりも弱い力F3で、コネクタ51がコネクタ52から抜けた場合を示している。
一方、外力Fが力Frefに達した場合には、コネクタ51,52の組立が成功したと判定できる。その後、エンドエフェクタ2はコネクタ51の保持を解除し、コネクタ51,52の組立作業を終了する。 Here, when theconnector 51 is pulled out from the connector 52 before the external force F becomes the force Fref, it can be determined that the assembly of the connectors 51 and 52 has failed. FIGS. 8E and 9 show a case where the connector 51 is detached from the connector 52 by a force F3 which is weaker than the force Fref.
On the other hand, when the external force F reaches the force Fref, it can be determined that the assembly of the connectors 51 and 52 is successful. Thereafter, the end effector 2 releases the holding of the connector 51, and ends the assembly operation of the connectors 51 and 52.
一方、外力Fが力Frefに達した場合には、コネクタ51,52の組立が成功したと判定できる。その後、エンドエフェクタ2はコネクタ51の保持を解除し、コネクタ51,52の組立作業を終了する。 Here, when the
On the other hand, when the external force F reaches the force Fref, it can be determined that the assembly of the
このステップST4,5では、押引き制御部726は、アクチュエータ1が発生する推力を所定の推力まで徐々に変化させる(押引きモード)。そして、その間に可動部12に加わる外力Fが変化し、その情報が外力検出部62からモード切替え部71に伝えられる。そして、モード切替え部71は、外力F(アクチュエータ1が発生する推力)が閾値を超えた場合には、推力変化を停止させ、力一定モードとなるようにモード制御部72に指示を出す。
In steps ST4 and ST5, the push-pull control unit 726 gradually changes the thrust generated by the actuator 1 to a predetermined thrust (push-pull mode). Then, the external force F applied to the movable portion 12 changes in the meantime, and the information is transmitted from the external force detection unit 62 to the mode switching unit 71. Then, when the external force F (thrust generated by the actuator 1) exceeds the threshold value, the mode switching unit 71 stops the change in thrust and instructs the mode control unit 72 to be in the force constant mode.
なお上記では、ステップST4において、押引き制御部726によりコネクタ51をコネクタ52に嵌合させる場合を示した。しかしながら、これに限らず、ステップST4において、モード切替え部71はモード制御部72の動作モードを力制御部727に切替え、移動部3が、外力Fが力F2となるまで、コネクタ51をコネクタ52の挿入穴521に挿入するように、エンドエフェクタ2を嵌合方向に移動させてもよい。
In the above, the case where the connector 51 is fitted to the connector 52 by the push-pull control unit 726 is shown in step ST4. However, the present invention is not limited thereto. In step ST4, the mode switching unit 71 switches the operation mode of the mode control unit 72 to the force control unit 727, and the moving unit 3 performs the connector 51 as the connector 52 until the external force F becomes the force F2. The end effector 2 may be moved in the fitting direction so as to be inserted into the insertion hole 521 of
また上記では、ステップST5において、押引き制御部726によりコネクタ51をコネクタ52から脱着するように引抜く場合を示した。しかしながら、これに限らず、ステップST5において、モード切替え部71はモード制御部72の動作モードを力制御部727に切替え、移動部3が、コネクタ51をコネクタ52から脱着するように、エンドエフェクタ2を嵌合方向とは逆方向に移動させてもよい。
In the above, the case where the push-pull control unit 726 pulls out the connector 51 so as to be detached from the connector 52 in step ST5 is shown. However, the present invention is not limited thereto. In step ST5, the mode switching unit 71 switches the operation mode of the mode control unit 72 to the force control unit 727, and the moving unit 3 detaches the connector 51 from the connector 52. May be moved in the direction opposite to the fitting direction.
以上の動作により、コネクタ51,52又はアクチュエータ1を壊さず、且つ作業速度を落とさずに、コネクタ51,52に対する組立作業が実施できる。
By the above-described operation, the assembly work for the connectors 51 and 52 can be performed without breaking the connectors 51 and 52 or the actuator 1 and reducing the working speed.
なお上記では、可動部12を直動方向に変位可能とするアクチュエータ1を用いた場合を示した。しかしながら、これに限らず、加速度検出部5が角加速度を検出可能であれば、可動部12を回転方向に変位可能とするアクチュエータ1を用いることもできる。
In addition, in the above, the case where the actuator 1 which makes the movable part 12 displaceable in a linear motion direction was used was shown. However, the present invention is not limited to this, and it is also possible to use the actuator 1 capable of displacing the movable portion 12 in the rotational direction as long as the acceleration detection unit 5 can detect angular acceleration.
また上記では、移動部3がロボットである場合を示した。しかしながら、これに限らず、移動部3として、直動機構又は回転機構を用いてもよい。
Moreover, the case where the movement part 3 was a robot was shown above. However, not limited to this, a linear motion mechanism or a rotation mechanism may be used as the moving unit 3.
以上のように、この実施の形態1によれば、固定部11及び可動部12を有するアクチュエータ1と、固定部11に対する可動部12の位置を検出する位置検出部4と、固定部11の加速度を検出する加速度検出部5と、位置検出部4により検出された位置と基準位置Prとの差分に対してゲインを調整し、当該調整結果である電流指令値Irp及び加速度検出部5により検出された加速度に基づいてアクチュエータ1に対する駆動電流Iaを出力するアクチュエータ制御部61と、アクチュエータ制御部61において得られた電流指令値Irp、又は、加速度検出部5により検出された加速度及びアクチュエータ制御部61により出力された駆動電流Iaの電流値に基づいて、可動部12に加わる外力Fを検出する外力検出部62と、指示された動作モードでアクチュエータ制御部61を制御するモード制御部72と、外力検出部62により検出された外力Fに基づいてモード制御部72の動作モードを切替えるモード切替え部71とを備えたので、可動部12が急激に加減速された場合又は姿勢が変更された場合でも可動部12に加わる外力Fを正しく検出でき、当該外力Fに基づいてアクチュエータ1の動作を迅速に切替えることができる。
As described above, according to the first embodiment, the actuator 1 having the fixed portion 11 and the movable portion 12, the position detection portion 4 for detecting the position of the movable portion 12 with respect to the fixed portion 11, and the acceleration of the fixed portion 11 The gain is adjusted with respect to the difference between the position detected by the position detection unit 4 and the acceleration detection unit 5 that detects the current position, and the reference position Pr. The actuator control unit 61 outputs the drive current Ia to the actuator 1 based on the acceleration and the current command value Irp obtained by the actuator control unit 61 or the acceleration detected by the acceleration detection unit 5 and the actuator control unit 61 An external force detection unit 62 for detecting an external force F applied to the movable unit 12 based on the current value of the output drive current Ia, and a finger Since the mode control unit 72 that controls the actuator control unit 61 in the selected operation mode and the mode switching unit 71 that switches the operation mode of the mode control unit 72 based on the external force F detected by the external force detection unit 62, Even when the movable portion 12 is rapidly accelerated or decelerated or the posture is changed, the external force F applied to the movable portion 12 can be correctly detected, and the operation of the actuator 1 can be rapidly switched based on the external force F.
なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
In the present invention, within the scope of the invention, modifications of optional components of the embodiment or omission of optional components of the embodiment is possible.
本発明に係るアクチュエータ動作切替え装置は、可動部が急激に加減速された場合又は姿勢が変更された場合でも可動部に加わる外力を正しく検出でき、当該外力に基づいてアクチュエータの動作を切替えることができるので、アクチュエータの可動部に加わる外力に基づいて、アクチュエータの動作を切替えるアクチュエータ動作切替え装置で用いるのに適している。
The actuator operation switching device according to the present invention can correctly detect the external force applied to the movable portion even when the movable portion is rapidly accelerated or decelerated or the posture is changed, and may switch the operation of the actuator based on the external force. As it can, it is suitable for use in an actuator operation switching device that switches the operation of the actuator based on the external force applied to the movable portion of the actuator.
1 アクチュエータ
2 エンドエフェクタ
3 移動部
4 位置検出部
5 加速度検出部
6 外力検出制御部
7 作業制御部
11 固定部
12 可動部
50 物体
51,52 コネクタ
61 アクチュエータ制御部
62 外力検出部
63 位置速度変換部
64 減算器
65 ゲイン調整部
66 質量推定部
67 加速度補償部
68 加減算器
69 定電流制御部
71 モード切替え部
72 モード制御部
511 爪
521 挿入穴
522 係合穴
621 係数乗算部
622 減算器
623 係数乗算部
651 ループゲイン測定部
652 ゲイン交点制御部
653 可変ゲイン調整部
654 発振器
655 加算器
656 比較器
671 乗算器
672 係数乗算部
691 減算器
692 駆動ドライバ
693 電流検出部
721 イニシャライズ部
722 原点復帰部
723 ドライブオフ部
724 位置速度制御部
725 位置制御部
726 押引き制御部
727 力制御部
728 力リセット部(力変化制御)
729 オフセットキャンセル部Reference Signs List 1 actuator 2 end effector 3 moving unit 4 position detection unit 5 acceleration detection unit 6 external force detection control unit 7 work control unit 11 fixed unit 12 movable unit 50 object 51 52 connector 61 actuator control unit 62 external force detection unit 63 position speed conversion unit 64 subtractor 65 gain adjustment unit 66 mass estimation unit 67 acceleration compensation unit 68 addition / subtraction unit 69 constant current control unit 71 mode switching unit 72 mode control unit 511 claw 521 insertion hole 522 engagement hole 621 coefficient multiplication unit 622 subtractor 623 coefficient multiplication Unit 651 Loop gain measurement unit 652 Gain intersection control unit 653 Variable gain adjustment unit 654 Oscillator 655 Adder 656 Comparator 672 Multiplier 672 Coefficient multiplication unit 691 Subtractor 692 Drive driver 693 Current detection unit 721 Initialization unit 722 Home position return unit 723 Drive OFF part 724 position Speed control unit 725 Position control unit 726 Push / pull control unit 727 Force control unit 728 Force reset unit (force change control)
729 Offset cancellation part
2 エンドエフェクタ
3 移動部
4 位置検出部
5 加速度検出部
6 外力検出制御部
7 作業制御部
11 固定部
12 可動部
50 物体
51,52 コネクタ
61 アクチュエータ制御部
62 外力検出部
63 位置速度変換部
64 減算器
65 ゲイン調整部
66 質量推定部
67 加速度補償部
68 加減算器
69 定電流制御部
71 モード切替え部
72 モード制御部
511 爪
521 挿入穴
522 係合穴
621 係数乗算部
622 減算器
623 係数乗算部
651 ループゲイン測定部
652 ゲイン交点制御部
653 可変ゲイン調整部
654 発振器
655 加算器
656 比較器
671 乗算器
672 係数乗算部
691 減算器
692 駆動ドライバ
693 電流検出部
721 イニシャライズ部
722 原点復帰部
723 ドライブオフ部
724 位置速度制御部
725 位置制御部
726 押引き制御部
727 力制御部
728 力リセット部(力変化制御)
729 オフセットキャンセル部
729 Offset cancellation part
Claims (7)
- 固定部、及び当該固定部に対して変位可能な可動部を有するアクチュエータと、
前記固定部に対する前記可動部の位置を検出する位置検出部と、
前記固定部の加速度を検出する加速度検出部と、
前記位置検出部により検出された位置と基準位置との差分に対してゲインを調整し、当該調整結果である電流指令値及び前記加速度検出部により検出された加速度に基づいて前記アクチュエータに対する駆動電流を出力するアクチュエータ制御部と、
前記アクチュエータ制御部において得られた電流指令値、又は、前記加速度検出部により検出された加速度及び前記アクチュエータ制御部により出力された駆動電流の電流値に基づいて、前記可動部に加わる外力を検出する外力検出部と、
指示された動作モードで前記アクチュエータ制御部を制御するモード制御部と、
前記外力検出部により検出された外力に基づいて前記モード制御部の動作モードを切替えるモード切替え部と
を備えたアクチュエータ動作切替え装置。 An actuator having a fixed part and a movable part displaceable with respect to the fixed part;
A position detection unit that detects the position of the movable unit with respect to the fixed unit;
An acceleration detection unit that detects an acceleration of the fixed unit;
The gain is adjusted for the difference between the position detected by the position detection unit and the reference position, and the drive current to the actuator is calculated based on the current command value as the adjustment result and the acceleration detected by the acceleration detection unit. An actuator control unit that outputs
The external force applied to the movable portion is detected based on the current command value obtained by the actuator control unit or the current value of the acceleration detected by the acceleration detection unit and the drive current output by the actuator control unit. An external force detection unit,
A mode control unit that controls the actuator control unit in a designated operation mode;
And a mode switching unit configured to switch the operation mode of the mode control unit based on the external force detected by the external force detection unit. - 前記モード制御部は、
前記アクチュエータの位置を固定させた状態で、当該アクチュエータに正方向又は負方向の推力を発生させる押引き制御部を有する
ことを特徴とする請求項1記載のアクチュエータ動作切替え装置。 The mode control unit
The actuator operation switching device according to claim 1, further comprising: a push-pull control unit configured to generate a positive direction or a negative direction thrust on the actuator in a state in which the position of the actuator is fixed. - 前記押引き制御部は、前記アクチュエータが発生する推力が予め設定された閾値を超えた場合に、当該推力を維持させる
ことを特徴とする請求項2記載のアクチュエータ動作切替え装置。 The actuator operation switching device according to claim 2, wherein the push-pull control unit maintains the thrust when the thrust generated by the actuator exceeds a preset threshold. - 前記モード制御部は、
前記可動部に加わる外力に応じ、前記固定部に対する当該可動部の位置を変化可能とする力制御部を有する
ことを特徴とする請求項1から請求項3のうちの何れか1項記載のアクチュエータ動作切替え装置。 The mode control unit
The actuator according to any one of claims 1 to 3, further comprising a force control unit capable of changing the position of the movable unit relative to the fixed unit according to an external force applied to the movable unit. Operation switching device. - 前記力制御部は、前記アクチュエータが発生する推力が予め設定された閾値を超えた場合に、当該推力を維持させる
ことを特徴とする請求項4記載のアクチュエータ動作切替え装置。 The actuator operation switching device according to claim 4, wherein the force control unit maintains the thrust when the thrust generated by the actuator exceeds a preset threshold. - 前記モード制御部は、
前記アクチュエータが発生している推力を任意の値に変更する力変化制御部を有する
ことを特徴とする請求項4又は請求項5記載のアクチュエータ動作切替え装置。 The mode control unit
The actuator operation switching device according to claim 4 or 5, further comprising: a force change control unit configured to change the thrust generated by the actuator to an arbitrary value. - 前記モード制御部は、前記力制御部が動作している状態において、前記アクチュエータが発生する推力が予め設定された閾値を超えた場合に、前記力制御部に代えて前記力変化制御部を動作させる
ことを特徴とする請求項6記載のアクチュエータ動作切替え装置。 The mode control unit operates the force change control unit instead of the force control unit when the thrust generated by the actuator exceeds a preset threshold while the force control unit is operating. The actuator operation switching device according to claim 6, characterized in that:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017227222A JP7042594B2 (en) | 2017-11-27 | 2017-11-27 | Actuator operation switching device |
JP2017-227222 | 2017-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019102745A1 true WO2019102745A1 (en) | 2019-05-31 |
Family
ID=66631451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/038331 WO2019102745A1 (en) | 2017-11-27 | 2018-10-15 | Actuator operation switching device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7042594B2 (en) |
WO (1) | WO2019102745A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013240858A (en) * | 2012-05-21 | 2013-12-05 | Azbil Corp | Part assembling device |
JP2014176934A (en) * | 2013-03-15 | 2014-09-25 | Yaskawa Electric Corp | Robot system and method for controlling the same |
JP2016083742A (en) * | 2014-10-28 | 2016-05-19 | アズビル株式会社 | Contact controller |
JP2017164876A (en) * | 2016-03-18 | 2017-09-21 | セイコーエプソン株式会社 | Control device, robot and robot system |
-
2017
- 2017-11-27 JP JP2017227222A patent/JP7042594B2/en active Active
-
2018
- 2018-10-15 WO PCT/JP2018/038331 patent/WO2019102745A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013240858A (en) * | 2012-05-21 | 2013-12-05 | Azbil Corp | Part assembling device |
JP2014176934A (en) * | 2013-03-15 | 2014-09-25 | Yaskawa Electric Corp | Robot system and method for controlling the same |
JP2016083742A (en) * | 2014-10-28 | 2016-05-19 | アズビル株式会社 | Contact controller |
JP2017164876A (en) * | 2016-03-18 | 2017-09-21 | セイコーエプソン株式会社 | Control device, robot and robot system |
Also Published As
Publication number | Publication date |
---|---|
JP7042594B2 (en) | 2022-03-28 |
JP2019096234A (en) | 2019-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190275678A1 (en) | Robot control device, robot, robot system, and robot control method | |
JP5982774B2 (en) | Motor controller, robot hand | |
US10864632B2 (en) | Direct teaching method of robot | |
JP5338297B2 (en) | Robot control device | |
KR101947825B1 (en) | Robot and method for operating a robot | |
Stolt et al. | Robotic force estimation using dithering to decrease the low velocity friction uncertainties | |
Stolt et al. | Sensorless friction-compensated passive lead-through programming for industrial robots | |
WO2016067901A1 (en) | Contact control device | |
US20230063392A1 (en) | Robotic device | |
WO2019102745A1 (en) | Actuator operation switching device | |
JPH1177580A (en) | Robot controller | |
JP2018192535A (en) | Component fitting method and component fitting device | |
JP6088601B2 (en) | Robot controller that suppresses tool tip deflection in robot with traveling axis | |
JP6923273B2 (en) | Soldering equipment | |
JP6711536B2 (en) | External force detection method | |
WO2019102820A1 (en) | Positioning device | |
WO2018088199A1 (en) | Robot control device, robot, robotic system, and robotic control method | |
JP2019115951A (en) | Assembling device | |
JP2019025600A (en) | Tightening device and tightening method | |
JP6912149B2 (en) | Adhesive device | |
JP2019188517A (en) | Curve surface tracing device | |
JP2019188519A (en) | Pin insertion device | |
JP2024088431A (en) | Remote operation system | |
JP2019188518A (en) | Hardness measuring device | |
JP2013240858A (en) | Part assembling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18880515 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18880515 Country of ref document: EP Kind code of ref document: A1 |