WO2019102646A1 - Antenna device, antenna system, and instrumentation system - Google Patents

Antenna device, antenna system, and instrumentation system Download PDF

Info

Publication number
WO2019102646A1
WO2019102646A1 PCT/JP2018/026712 JP2018026712W WO2019102646A1 WO 2019102646 A1 WO2019102646 A1 WO 2019102646A1 JP 2018026712 W JP2018026712 W JP 2018026712W WO 2019102646 A1 WO2019102646 A1 WO 2019102646A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna device
internal space
connector
antenna
waveguide
Prior art date
Application number
PCT/JP2018/026712
Other languages
French (fr)
Japanese (ja)
Inventor
森田 治
明徳 佐伯
聰 小倉
Original Assignee
森田テック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018091195A external-priority patent/JP6835358B2/en
Application filed by 森田テック株式会社 filed Critical 森田テック株式会社
Priority to CN201880075925.9A priority Critical patent/CN111566872B/en
Priority to EP18881756.3A priority patent/EP3691034B1/en
Priority to KR1020207018069A priority patent/KR102305205B1/en
Priority to US16/763,336 priority patent/US11444383B2/en
Priority to FIEP18881756.3T priority patent/FI3691034T3/en
Publication of WO2019102646A1 publication Critical patent/WO2019102646A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/103Hollow-waveguide/coaxial-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns

Definitions

  • the present invention relates to an antenna device, an antenna system, and a measurement system suitable for measuring digital modulation equipment.
  • Coupler antennas are used to measure various characteristics.
  • a patch antenna in which a plurality of element patterns are formed on one surface of a flat dielectric substrate is employed.
  • FIGS. 27 (a) to (c) The results of three types of measurement performed on such a horn antenna are shown in FIGS. 27 (a) to (c).
  • FIG. 27A is a graph showing the return loss characteristic (return loss) when the horn antenna is disposed in free space.
  • FIG. 27B is a graph showing coupler coupling characteristics (pass amplitude characteristics) measured when one pair of horn antennas are opposed to each other and are coupled at a coupling distance of 0 mm.
  • FIG. 27 (c) is a graph showing the return loss characteristic (return loss) in total reflection, which was measured when the entire surface of the horn antenna was covered with a metal plate.
  • Patent Document 1 is disclosed for such a patch antenna.
  • a transmitting antenna and a plurality of receiving antennas are a substrate having dielectricity, a circularly polarized antenna element disposed on the main surface of the substrate, a ground layer formed on the back surface of the substrate, and an antenna
  • a plurality of through holes are formed to extend from the strip conductor disposed on the main surface of the substrate surrounding the element and the area where the strip conductor is formed on the main surface of the substrate to the back surface of the substrate and arranged at predetermined intervals.
  • a plurality of connection conductors electrically connecting the ground layer and the strip conductor through the respective through holes.
  • the configuration is disclosed in which the inner edge of the strip conductor protrudes toward the antenna element more than the inner wall of each through hole. With such a configuration, it is disclosed that generation of surface waves on the main surface of the substrate of the transmitting antenna and the receiving antenna can be suppressed, and radiation characteristics of each antenna can be made into a desired stable shape.
  • the conventional patch antenna has a structure in which a plurality of elements having a specific pattern matched to a target frequency are arranged on a substrate. For this reason, the characteristic variation of each element and mutual interference of each element occur, and the irregular disturbance of the passing amplitude characteristic in the band as shown in FIG. 28 (b) or the one shown in FIG. 28 (c) There has been a problem that such irregular disturbance of the return loss characteristic in the band due to total reflection occurs.
  • an element having a specific pattern is disposed on the substrate, it is difficult to exclude radio waves coming from the back surface of the substrate and the surroundings, and there is a problem that the required blocking performance is lowered.
  • the present invention has been made in view of the above, and as its object, it is possible to suppress the occurrence of the disturbance of the passing amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to total reflection. It is an object of the present invention to provide an antenna device capable of improving the blocking performance and obtaining a better EVM value.
  • the invention according to claim 1 is an internal space formed of a hexahedron made of a conductive material, which is formed to penetrate between the opposing first surface and the second surface, and the first space.
  • a coaxial waveguide conversion unit including a surface, and a connector mounting hole for inserting a coaxial connector formed between the third surface orthogonal to the second surface and the internal space; and the internal space
  • a waveguide main body comprising a conductive closing member closing the opening on the second surface side, and the connector mounting hole is mounted outward from the internal space, the inner end portion being in the internal space
  • a conductive connector body which does not project in the axial direction, and a central conductor which is disposed to penetrate the central portion of the connector body in the axial direction, and which has its tip projected from the inner end of the connector body into the internal space by a predetermined length
  • the tip of the central conductor protruding into the internal space A connector having a radiator for radiating radio waves from the central conductor in the inner space by matching the projection length of
  • the present invention it is possible to suppress the occurrence of the disturbance of the passing amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to the total reflection, and it is possible to improve the blocking performance. Good EVM values can also be obtained.
  • (A) is a front view showing the structure of an antenna device according to an embodiment of the present invention
  • (b) is a cross-sectional view taken along the line AA of (a)
  • (c) is a right side view
  • (d) is a top view
  • (E) is a bottom view
  • (f) is a rear view
  • (g) is a cross-sectional view taken along the line BB in (a).
  • (A) And (b) is a perspective view which shows the structure of the antenna apparatus based on one Embodiment of this invention.
  • (A) And (b) is a disassembled perspective view which shows the structure of the antenna apparatus based on one Embodiment of this invention.
  • (A), (b) and (c) are the bottom view of the connector based on one Embodiment of this invention, sectional drawing, and a top view.
  • (A), (b) and (c) are a front view, a top view, and a rear view of a circular polarization type polarization part concerning one embodiment of the present invention.
  • (A) And (b) is the front view and side view of the deflection
  • (A) (b) and (c) are cross-sectional views of CC, DD and EE in FIG. 5 (a), and (d) and (e) are F in FIG. 7 (b) It is a -F, GG sectional view.
  • (A) And (b) is a front appearance side perspective view of a circular polarization type polarization part, and an appearance perspective view in the back side.
  • (A) is an external appearance perspective view showing circular polarization type horn part 200B of the antenna device concerning other embodiments (16 mm horn) of the present invention
  • (b) is a front view
  • (c) is a side view
  • d) is a rear view
  • (e) and (g) are front and side views of a circular polarized horn unit 200B of the antenna device according to another embodiment (15 mm horn) of the present invention, And a rear view.
  • (A)-(d) is a side view which shows the modification of the antenna apparatus based on one Embodiment of this invention.
  • FIG. 1 is a block diagram which shows the antenna system using the antenna apparatus which concerns on one Embodiment of this invention, and a measurement system
  • FIG. 2 is a perspective view which shows the calibration kit used for the calibration of the said measurement system.
  • FIG. (A) and (b) are graphs showing representative characteristics immediately after assembly of the linear polarization coupler and representative characteristics after adjustment.
  • (A) to (d) are graphs showing measurement results of return loss characteristics and coupling characteristics performed in the measurement system.
  • It is a block diagram showing an antenna system concerning EVM measurement using an antenna device concerning one embodiment of the present invention, and a measurement system.
  • It is a flowchart which shows the calibration procedure performed in the measurement system shown in FIG.
  • It is a flowchart which shows the EVM measurement procedure performed in the measurement system shown in FIG.
  • It is a figure showing the monitor screen which shows the EVM value measured in the measurement system shown in FIG.
  • (A) is a graph which shows the measurement result of the return loss characteristic in the free space of the linear polarization coupler performed in the measurement system
  • (b) is a coupler coupling of the linear polarization coupler performed in the measurement system It is a graph which shows the measurement result of a characteristic (pass amplitude characteristic).
  • (A) is a graph which shows the measurement result of the return loss characteristic in the total reflection of the linear polarization coupler performed in the measurement system
  • (b) is an EVM value of the linear polarization coupler performed in the measurement system It is a graph which shows the measurement result of.
  • (A) is a graph which shows the measurement result of the return loss characteristic in the free space of the linear polarization high gain high isolation coupler performed in the measurement system
  • (b) is a linear polarization height performed in the measurement system It is a graph which shows the measurement result of the coupler coupling characteristic (pass amplitude characteristic) of a gain high isolation coupler.
  • (A) is a graph which shows the measurement result of the return loss characteristic in total reflection of the linear polarization high gain high isolation coupler performed in the measurement system
  • (b) is a linear polarization height performed in the measurement system It is a graph which shows the measurement result of the EVM value of a gain high isolation coupler.
  • (A) is a graph which shows the measurement result of the return loss characteristic in total reflection of the linear polarization high gain high isolation coupler performed in the measurement system after fine adjustment
  • (b) measurement after fine adjustment It is a graph which shows the measurement result of the VSWR characteristic of the linear polarization high gain high isolation coupler performed in the system
  • (c) is a coupler of the linear polarization high gain high isolation coupler performed in the measurement system after fine adjustment. It is a graph which shows the measurement result of a coupling
  • (A) is a graph showing the return loss characteristic (return loss) when the horn antenna is disposed in free space
  • (b) is a case where a pair of horn antennas are opposed to each other and are coupled at a coupling distance of 0 mm
  • (C) is a graph showing the coupler coupling characteristic (pass amplitude characteristic) measured in the case of (h), the return loss characteristic at total reflection, which was measured when the entire surface of the horn antenna was covered with a metal plate (return (Loss)).
  • the present invention can suppress the occurrence of the disturbance of the pass amplitude characteristic in the band and the disturbance of the return loss characteristic in the band due to the total reflection, and can improve the blocking performance, and is further preferable.
  • it has the following configuration.
  • the antenna device 1 of the present invention is composed of a hexahedron made of a conductive material, and an internal space formed to penetrate between the opposing first surface and the second surface, the first surface, and the second surface
  • a coaxial waveguide conversion unit having a coaxial connector insertion hole for coaxial connector insertion formed in communication between the orthogonal third surface and the internal space, and a conductor for closing the opening on the second surface side of the internal space
  • a conductive connector body which is attached to the connector mounting hole from the inner space to the outside and the inner end does not protrude into the inner space, and the connector body
  • a central conductor axially penetrating through the central portion of the connector and having a tip projecting from the inner end of the connector body into the inner space by a predetermined length, and a tip of the central conductor projecting into the inner space
  • Ri is a radiator for radiating the radio wave from the center conductor in the inner space, the connector and having a, comprising the
  • FIGS. 2A and 2B are perspective views showing the structure of an antenna device according to an embodiment of the present invention.
  • FIGS. 3A and 3B are exploded perspective views showing the structure of an antenna device according to an embodiment of the present invention.
  • FIG. 4 (a), (b) and (c) are a bottom view, a sectional view and a top view of a connector according to an embodiment of the present invention.
  • the front view shown in FIG. 1A is used as the basic coordinate system, the left direction to the right of the drawing is the x-axis direction, and the direction orthogonal to the x-axis direction is the y-axis direction in the drawing;
  • the z-axis direction will be described as a direction perpendicular to the y-axis direction (vertical direction).
  • This antenna device 1 has a waveguide main body 5 provided with an internal space 8 which is formed through the central portion of two opposing first and second surfaces M1 and M2 and whose second surface side opening is closed.
  • An internal space 8 is disposed in one end portion of a connector mounting hole 22 which is formed to penetrate from the outer peripheral surface (third surface M3) different from the surface forming the internal space 8 to the internal space 8
  • the connector 50 exposed inside, the linearly polarized horn unit 200A connected to the first surface M1 side (non-closed surface side) of the internal space 8 of the waveguide main body 5, and the linearly polarized horn unit 200A In place of the circular polarization type polarization unit 100 (FIG. 5), or a circular polarization type horn unit 200B connected to the non-blocking surface side of the inner space via the circular polarization type polarization unit 100; Roughly.
  • the waveguide main body 5 is a rectangular block-shaped coaxial waveguide conversion portion 6 having a predetermined uniform thickness, and a thin plate for closing one opening of the internal space 8 formed to penetrate the coaxial waveguide conversion portion 6. And an occlusive member 30.
  • Each of the coaxial waveguide conversion unit 6 and the closing member 30 is made of a conductive material such as copper, iron, aluminum, brass, a metamaterial, or plastic plated with metal.
  • the coaxial waveguide conversion unit 6 is made of a hexahedron made of a conductive material, and has a first surface M1 and a second surface M2 facing each other, a third surface M3 facing each other, and a fourth surface M4 and a fifth surface facing each other It has a surface M5 and a sixth surface M6.
  • the coaxial waveguide conversion unit 6 is detachably attached to one surface of the first waveguide member 10 provided on one surface 6 a with a recess 11 to be the internal space 8 and to one surface of the first waveguide member 10. And a second waveguide member 20 which closes the one surface side of the recess 11 to form the internal space 8.
  • round screw holes 13 are formed on the one surface 6a of the first waveguide member 10 at positions sandwiching the recess 11 between the second waveguides.
  • a long hole 24 extending parallel to the z-axis direction of the internal space 8 is formed at a position in alignment (correspondence) with each screw hole 13 of the member 20, and a screw 25 is screwed into each screw hole through each long hole 24.
  • each screw 25 is screwed into each screw hole 13
  • the second waveguide member 20 is attached to the second waveguide member 20 within the range of the longitudinal direction (z-axis direction) length of the long hole 24. Is displaceable.
  • the central portion in the longitudinal direction of the outer side surface (third surface M3) of the rectangular second waveguide member 20 is a recess
  • the connector mounting hole 22 is formed in the recess.
  • Each long hole 24 is formed in a convex on both sides of the recess.
  • the position of the second waveguide member 20 facing the one surface 6 a of the first waveguide member 10 can be finely adjustable within the length of the elongated hole 24, whereby the antenna device 1 can be mounted. Electrical characteristics can be finely adjusted. As a result, it is possible to suppress the occurrence of the disturbance of the passing amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to the total reflection.
  • the recessed portion 11 to be the internal space 8 is a groove formed of three surfaces whose inner surfaces formed at the longitudinal direction central portion of the rectangular one surface 6a of the first waveguide member 10 are orthogonal to each other.
  • an elongated plate-like second waveguide member 20 is configured to be removable by a screw 25.
  • An internal space 8 is formed by fixing the second waveguide member 20 to the one surface 6 a and closing the recess 11.
  • the coaxial waveguide conversion unit 6 formed by assembling the second waveguide member 20 to the first waveguide member 10 has six surfaces, ie, the first surface M1 to the first surface, as described above. It is a rectangular parallelepiped or cube formed of six faces M6.
  • the internal space 8 is formed to penetrate between the opposing first surface M1 and the second surface M2 of the coaxial waveguide conversion unit 6.
  • a connector mounting hole 22 for inserting a coaxial connector communicating with the internal space 8 is formed in a penetrating manner.
  • the connector mounting hole 22 is formed through the second waveguide member 20. In the internal space 8, only the first surface M1 side is opened by closing (welding) the second surface side opening with a conductive closing member.
  • the closing member 30 is formed with holes 30a corresponding to the screw holes 10a provided on the outer surface of the first waveguide member 10, and the screws 31 are made in a state in which the screw holes 10a and the holes 30a are communicated. By inserting and screwing, the closing member 30 is closely attached to the outer surface of the first waveguide member 10 and fixed without any gap.
  • the connector 50 is mounted in the connector mounting hole 22 outward from the internal space 8, and the conductive property is exposed and arranged in a state where the inner end 56 a does not protrude into the internal space 8.
  • a central conductor 60 disposed so as to penetrate the central portion of the connector main body in the y-axis direction and having the tip 60a project from the inner end 56a of the connector main body into the internal space 8 by a predetermined length L And the tip portion 60a of the central conductor projecting into the internal space 8, and by matching the projecting length L (FIG. 4) of the tip portion to a specific frequency band, the radio wave from the central conductor in the internal space 8 And a radiator 54b for emitting radiation.
  • a male screw is formed on the outer periphery of one end of the connector main body 51.
  • the relationship between the connector body and the central conductor is integrated via an insulating material.
  • the connector main body 51 of the connector 50 includes a hollow cylindrical connector socket 52 made of a conductor and an insulator, and a flange 53 integrated with one end of the connector socket 52.
  • a central conductor 60 axially penetrating the inside of the connector socket 52, a central conductor support 55 for fixedly supporting an appropriate position of the central conductor 60 on the inner periphery of the connector socket 52, and a central conductor And an insulator 56 filled to fill the space between the inner periphery 60 and the inner periphery of the connector socket 52.
  • a connector socket contact portion 54a is provided at the outer end of the central conductor 60, and a radiator 54b which is an element is provided at the inner end of the central conductor.
  • the radiator 54b is a portion where the tip of the central conductor 60 protrudes a predetermined length from the inner end face of the connector socket 52, and is tuned to a desired frequency band by adjusting the length L of the element.
  • the length L in the y-axis direction, in which the central conductor 60 of the connector 50 is protruded from the inner end 56a, is a length obtained by multiplying 1/4 of the wavelength of a specific frequency band by a predetermined reduction rate 0.79. It is.
  • the specific frequency band is 23 GHz to 29 GHz used for the fifth generation terminal (5G). This makes it possible to design a length L which can be tuned to be specific to a particular frequency band. As shown in FIG.
  • a recess 23 for fitting the flange portion 53 of the connector to the inner side surface (the opposite side surface of the third surface M3) of the second waveguide member 20 is provided. It is formed.
  • the antenna device 1 closes the second surface side opening of the internal space 8 of the coaxial waveguide conversion unit 6 made of a conductive material with the conductive closing member 30, and the inside of the internal space 8 of the radiator 54b.
  • the projection length of the tip portion 60a of the central conductor 60 protruding in the center is adapted to a specific frequency band, the pass amplitude characteristic in the band and the return loss characteristic can be tuned in the band, and the blocking performance It can be improved and even better EVM values can be obtained.
  • a circular polarization type polarization unit 100 that converts radio waves radiated from the radiator 54b into linear polarization or circular polarization;
  • one of the linearly polarized horn units 200A for improving gain and blocking radio waves coming from the outside is connected and disposed.
  • the circularly polarized horn unit 200B may be connected to the internal space 8 via the circularly polarized polarizer 100.
  • the circular polarization characteristic can be easily obtained by the circular polarization type polarization unit 100, or the horn unit 200 can block radio waves coming from the outside and improve the gain.
  • FIGS. 5 (a), (b) and (c) are a front view, a top view, and a rear view of a circular polarization type polarization unit according to one embodiment of the present invention
  • 7 (a), 7 (b) and 7 (c) are cross-sectional views taken along the lines CC, DD, and EE of FIG. 5 (a).
  • 7 (d) and 7 (e) are cross-sectional views taken along the line FF and G-G in FIG. 7 (b).
  • 8A and 8B are a front external perspective view of the circular polarization type polarization unit and an external perspective view on the back side.
  • the circular polarization type polarization unit 100 is connected to the opening on the first surface M 1 side of the internal space 8.
  • the circular polarization type polarization unit 100 is formed in a block 101 of a rectangular parallelepiped (or a cube) made of a conductive material such as copper, iron, aluminum, brass, metamaterial, or plastic metal plated.
  • the waveguide space 110 is formed through. That is, the waveguide space 110 is formed to penetrate the two opposing surfaces N1 and N2 of the block 101.
  • a block 101 having a depth L1 of 22 mm, a height L2 of 14 mm, and a width L3 of 24 mm will be described as an example.
  • the opening on the first surface N1 side is circular, while the opening on the second surface N2 side is a horizontally long rectangle. That is, the waveguide space 110 has a cylindrical shape with the same diameter ( ⁇ 8.24 mm) from the opening side of the first surface N1 to a portion 10 mm inside.
  • This cylindrical waveguide space portion is referred to as a circular waveguide portion 120.
  • a 0.5 mm thick rectangular deflection plate 140 made of Teflon (dielectric material) or the like is obliquely fixed through a circular central portion in an oblique posture. There is. That is, the length of the deflection plate 140 corresponds to the diameter of the circular waveguide portion 120.
  • the waveguide space 110 is a space having a substantially square pole shape from the opening side of the second surface N2 to a portion 12 mm inside, and this waveguide space portion is referred to as a rectangular waveguide portion 130.
  • the inner back side opening of the circular waveguide portion 120 and the inner back side opening of the rectangular waveguide portion 130 are in communication with each other in a state in which the central axes A1 and A2 are in line.
  • the circular opening (peripheral part 121 a) on the inner back part side of the circular waveguide part 120 is beyond the circular opening (peripheral parts 131 a, 132 a) on the inner back part side of the rectangular waveguide part 130.
  • the circular opening (peripheral part 121a) on the inner back part side of the circular waveguide part 120 and the circular opening (peripheral parts 131a, 132a) on the inner back part side of the rectangular waveguide part 130 are It has a circular shape that matches the shape.
  • the deflector plate 140 remains within the axial length of the circular waveguide portion 120 and does not extend beyond the inner back opening of the rectangular waveguide portion 130.
  • the opening on the second surface N2 (outside) of the rectangular waveguide portion 130 is rectangular, but the shape of the opening on the inner back side is the inner back opening (circular) of the circular waveguide portion 120 It is circular with the same shape and size. That is, although the two opposite short sides 131 (4.3 mm) of the outer opening of the rectangular waveguide portion 130 are straight at the outer opening, the inner back portion of the circular waveguide portion 120 at the inner back portion 131 a It has an arc shape so as to be aligned with the peripheral edge portion 121a of the side opening (circular shape: ⁇ 8.24 mm).
  • the arc-shaped inner back portion 131 a of each short side 131 is terminated at the periphery of the inner back portion opening (circular) of the circular waveguide portion 120.
  • the distance L4 (8.6 mm) between the short sides 131 is slightly smaller than the diameter (.phi. 8.24 mm) of the inner back side opening of the circular waveguide portion 120.
  • the distance between the short sides gradually decreases (reduces) toward the inner back part, and finally the inner back part 131a of the short side is the inner back opening (circular) of the circular waveguide portion 120 Aligned with the rim of the
  • the circular polarization type polarization section 100 formed as described above is connected to the non-closing surface side (opening surface side) of the internal space 8 of the first waveguide member 10, and is radiated from the radiator 54b. Convert the radio waves into circularly polarized waves.
  • the linearly polarized horn unit 200A is connected to the opening on the first surface M1 side of the internal space 8.
  • the linearly polarized horn unit 200A is made of a plate material such as copper, iron, aluminum, brass, metamaterial, or plastic plated with metal in a horn shape as illustrated.
  • the one end opening becomes a quadrangle having a small diameter and the other end opening is large. It is a square of diameter.
  • the linearly polarized horn unit 200A is linearly polarized by a truncated square pyramid horn.
  • truncated means the state and shape which cut
  • FIG.9 (a) is an external appearance perspective view which shows the circular polarization type horn part 200B of the antenna apparatus which concerns on other embodiment (16 mm horn) of this invention, (b) is a front view, (c) is a side view. , (D) is a rear view.
  • FIGS. 9 (e), (f) and (g) are a front view, a side view and a rear view of a circular polarized horn unit 200B of an antenna device according to another embodiment (15 mm horn) of the present invention.
  • the circularly polarized horn unit 200B has a frusto-conical shape, and the circularly polarized horn unit 200B is connected to the opening in a circular shape on the first surface N1 side of the circularly polarized polarizer 100.
  • the small-diameter circular opening of the circular polarization type horn section 200B has the same shape as the opening on the first surface N1 side of the circular polarization type polarization section 100, and is fixed by welding or the like.
  • the circularly polarized horn unit 200B is circularly polarized by a truncated conical horn.
  • truncated means the state and shape which cut
  • the horn portion 200 can obtain circular polarization characteristics with directivity characteristics easily by making it circularly polarized by the truncated conical circular polarization type horn portion 200B, and directivity It is possible to block radio waves coming from outside the direction and to improve the gain.
  • FIG. 10A shows the configuration of a linearly polarized light coupler 1A provided with a coaxial waveguide conversion unit 6 and a connector 50.
  • the coaxial waveguide conversion unit 6 includes the first waveguide member 10, the second waveguide member 20, and the closing member 30.
  • FIG. 10A shows the configuration of a linearly polarized light coupler 1A provided with a coaxial waveguide conversion unit 6 and a connector 50.
  • the coaxial waveguide conversion unit 6 includes the first waveguide member 10, the second waveguide member 20, and the closing member 30.
  • FIG. 10B shows the configuration of a circular polarization coupler 1B provided with a circular polarization type polarization unit 100 for converting into circular polarization, a coaxial waveguide conversion unit 6, and a connector 50.
  • FIG. 10C shows the configuration of a linearly polarized high gain high isolation coupler 1C provided with a linearly polarized horn unit 200A, a coaxial waveguide conversion unit 6, and a connector 50.
  • FIG. 10D shows a circularly polarized high gain high isolation coupler 1D including a circularly polarized horn unit 200B, a circularly polarized polarization unit 100, a coaxial waveguide conversion unit 6, and a connector 50. Shows the configuration of
  • the first waveguide member 10 is a rectangular waveguide satisfying a frequency band of 21.7 GHz to 33.0 GHz, an inner diameter dimension of the inner space 8 of 8.636 mm ⁇ 4.318 mm, and an EIA standard WR-34. use.
  • the linearly polarized light coupler 1A has a variation width of 5 dB or less over the specific frequency band, the passing amplitude characteristic of the radio wave emitted from the own antenna device has a good passing amplitude characteristic of the radio wave, EVM values can be obtained.
  • the reflection attenuation amount characteristic in total reflection of radio waves radiated from each coupler (antenna apparatus) has a fluctuation range of 10 dB or less over a specific frequency band, so that a good EVM value can be obtained.
  • the isolation property representing shielding of radio waves coming from the outside is good, and it is an object to be measured. Even if this antenna is placed at two places on a mobile phone and tested, interference between the two antennas can be prevented.
  • the material of the coaxial waveguide conversion unit 6, the circular polarization type polarization unit 100, and the horn unit 200 is copper, iron, aluminum, brass, metamaterial, plastic plated metal, plastic or resin By forming the metal coating, it is possible to suppress the occurrence of the disturbance of the pass amplitude characteristic in the band and the disturbance of the return loss characteristic in the band due to the total reflection, and have the directivity characteristic.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • metal wire spraying metal powder spraying, etc.
  • FIG.12 (a) is a block diagram which shows the antenna system which used the antenna apparatus which concerns on one Embodiment of this invention, and a measurement system
  • FIG.12 (b) is a perspective view which shows the calibration kit used for the calibration of the said measurement system. It is.
  • the antenna system 300 shown in FIG. 12A is any one of a linear polarization coupler 1A, a circular polarization coupler 1B, a linear polarization high gain high isolation coupler 1C, and a circular polarization high gain high isolation coupler 1D as an antenna device.
  • Each antenna device is provided as a first antenna device 301 and a second antenna device 303, and radio waves radiated from the first antenna device 301 are disposed to face each other in the radiation direction of the first antenna device 301.
  • the signal is received by the second antenna device 303.
  • the measurement system 310 includes a network analyzer 305 and a monitor 313.
  • the coaxial cable 307 is connected between the terminal P1 of the network analyzer 305 and the connector of the first antenna device 301, and the terminal P2 and the second antenna device 303 are connected.
  • a coaxial cable 309 is connected between the connector and the connector.
  • a monitor cable 311 is connected between the monitor terminal 305 m of the network analyzer 305 and the terminal 313 m of the monitor 313.
  • the network analyzer 305 for example, MS46322B manufactured by Anritsu Corporation is used.
  • the antenna device is disposed close to (in close contact with) the object to be measured, and is used, for example, to measure radio waves radiated from the object to be measured.
  • the object to be measured is a device that generates electromagnetic waves, such as a cellular phone, a mobile terminal, etc.
  • the object is a next-generation cellular phone (5G) using a frequency band of 23 GHz to 29 GHz.
  • the measurement system 310 is suitable for measuring the coupling characteristic between the first antenna device 301 and the second antenna device 303 provided in the antenna system 300 and the return loss characteristic.
  • the antenna device 1 is disposed at a desired position or in close proximity to the device under test, and receives radio waves emitted from the device under test. Since the disturbance of the pass amplitude characteristic in the band and the disturbance of the return loss characteristic in the band due to the total reflection are suppressed, it is possible to obtain a good EVM value.
  • the antenna device 1 is disposed at a desired position with respect to the object to be measured or used in close proximity, and radiates radio waves to the object to be measured. Since the disturbance of the passing amplitude characteristic in the band and the disturbance of the return loss characteristic in the band due to the total reflection are suppressed, it is possible to radiate a good radio wave to the object to be measured.
  • the radio wave radiated from the first antenna device 301 is received by the second antenna device 303 disposed opposite to the radiation direction of the first antenna device 301, so that the disturbance of the passing amplitude characteristic in the band or It is possible to suppress the occurrence of the disturbance of the return loss characteristic in the band due to the total reflection, and to obtain a good EVM value. Furthermore, by arranging the device under test between the first antenna device 301 and the second antenna device 303, it is possible to measure the radio wave emitted from the device under test or when it is received by the device under test, The degree of influence by objects can be measured.
  • a calibration kit 320 shown in FIG. 12B is used for calibration.
  • the calibration kit 320 includes four connectors: a connector 320S (SHORT), a connector 320o (OPEN), a connector 320L (LOAD), and a connector 320T (THRU).
  • SHORT a connector 320S
  • OPEN a connector 320o
  • LOAD connector 320L
  • THRU connector 320T
  • TOSLKF 50A-40 manufactured by Anritsu Corporation is used.
  • FIG. 13 is a flowchart showing a calibration procedure of the measurement system shown in FIG.
  • the calibration procedure of the measurement system 310 performed prior to the measurement of the return loss characteristic of the antenna device 1 and the coupling characteristic is shown.
  • a measurement frequency for example, 20 GHz to 30 GHz
  • the network analyzer 305 is set to the calibration CAL mode.
  • the connector 320S of the calibration kit is connected to the end of the coaxial cable 307 connected to the terminal P1 of the network analyzer 305 so that the end of the coaxial cable 307 is short circuited (SHORT).
  • step S20 the network analyzer 305 performs in-measuring-apparatus operation according to the user's operation.
  • step S25 the connector 320o of the calibration kit is connected to the end of the coaxial cable 307 connected to the terminal P1 of the network analyzer 305, and the end of the coaxial cable 307 is opened (OPEN).
  • step S30 the network analyzer 305 performs in-measuring-apparatus operation according to the user's operation.
  • step S35 the connector 320L of the calibration kit is connected to the end of the coaxial cable 307 connected to the terminal P1 of the network analyzer 305, and a load (for example, 50 ⁇ ) is connected to the end of the coaxial cable 307 Set to LOAD).
  • step S40 the network analyzer 305 performs in-measuring-apparatus operation according to the user's operation.
  • step S45 the connector 320S of the calibration kit is connected to the end of the coaxial cable 309 connected to the terminal P2 of the network analyzer 305 so that the end of the coaxial cable 309 is in a short circuit state (SHORT).
  • step S50 the network analyzer 305 performs in-measuring-machine operation according to the user's operation.
  • step S55 the connector 320o of the calibration kit is connected to the end of the coaxial cable 309 connected to the terminal P2 of the network analyzer 305, and the end of the coaxial cable 309 is opened (OPEN).
  • step S60 the network analyzer 305 performs in-measuring-apparatus operation according to the user's operation.
  • step S65 the connector 320L of the calibration kit is connected to the end of the coaxial cable 309 connected to the terminal P2 of the network analyzer 305, and a load (for example, 50 ⁇ ) is connected to the end of the coaxial cable 309 Set to LOAD).
  • step S70 the network analyzer 305 performs in-measuring-apparatus operation according to the user's operation.
  • step S75 the connector 320T of the calibration kit is connected to the ends of the coaxial cables 307 and 309 connected to the terminals P1 and P2 of the network analyzer 305, and the ends of the coaxial cables 307 and 309 pass each other (THRU) Make it
  • step S70 the network analyzer 305 performs in-measuring-apparatus operation according to the user's operation.
  • the measurement system including the network analyzer 305 and the coaxial cables 307 and 309, it is possible to calibrate the amplitude characteristic, the return loss characteristic, the phase characteristic and the like in a flat state in the set frequency band.
  • FIG. 14 is a flowchart showing a procedure of measuring the return loss amount performed in the measurement system shown in FIG.
  • the connector of the first antenna device 301 is connected to the end of the coaxial cable 307 connected to the terminal P1 of the network analyzer 305 to make it possible to perform measurement.
  • the network analyzer 305 performs in-measuring-machine operation according to the user's operation, and displays the return loss on the monitor 313. At this time, the power in the sweep of the frequency band output from the terminal P1 of the network analyzer 305 is reflected by the first antenna device 301, and the power returned from the first antenna device 301 is measured.
  • FIGS. 15 (a) and 15 (b) are graphs showing representative characteristics immediately after assembly of the linear polarization coupler 1A and representative characteristics after adjustment.
  • the return loss characteristic value is concentrated at a level near -10 dB within the frequency band of 25 GHz to 29 GHz, and around 23 GHz. A strong resonance of -35 dB or less is generated. Therefore, the tip portion 60 a of the central conductor 60 protruding into the internal space 8 is mounted by facing the one surface 6 a of the first waveguide member 10 so as to finely adjust the position of the second waveguide member 20. You can fine-tune the position of.
  • the level is improved to around -15 dB in the return loss characteristic value in the frequency band of 25 GHz to 29 GHz,
  • the strong resonance has also been improved to a level of -30 dB.
  • FIG. 16 is a flowchart showing the measurement procedure of the coupling loss characteristic performed in the measurement system shown in FIG.
  • step S155 the connector of the first antenna device 301 is connected to the end of the coaxial cable 307 connected to the terminal P1 of the network analyzer 305 to enable measurement.
  • step S160 the network analyzer 305 performs in-measurement operation, and displays the return loss of the first antenna device 301 on the monitor 313 (FIG. 17A).
  • the connector of the second antenna device 303 is connected to the end of the coaxial cable 309 connected to the terminal P2 of the network analyzer 305 to make it possible to perform measurement.
  • step S170 the network analyzer 305 performs in-measurement operation, and displays the return loss of the second antenna device 303 on the monitor 313 (FIG. 17D).
  • step S175 the first antenna device 301 and the second antenna device 303 face each other and approach (close).
  • step S180 the network analyzer 305 performs in-measurement operation, and the coupling characteristic between the first antenna device 301 and the second antenna device 303 (FIG. 17B), and the return loss (FIG. 17C). Is displayed on the monitor 313.
  • FIGS. 17 (a) to 17 (d) are graphs showing the measurement results of the return loss characteristic and the coupling characteristic performed in the measurement system.
  • a level of ⁇ 10 dB or less is generated in the frequency band of 23 GHz to 29 GHz.
  • a level of ⁇ 10 dB or less is generated in the frequency band of 23 GHz to 29 GHz.
  • a level of ⁇ 10 dB or less is generated in the frequency band of 23 GHz to 29 GHz.
  • the variation width is in the frequency band of 23 GHz to 29 GHz.
  • the level difference is suppressed to within 3 dB, showing extremely flat coupling characteristics.
  • the fluctuation range is about 3 dB or less in the frequency band of 23 GHz to 29 GHz. It is suppressed by the level difference, and shows a very flat return loss characteristic.
  • FIG. 18 is a block diagram showing an antenna system and measurement system related to EVM measurement using the antenna device according to one embodiment of the present invention.
  • the antenna system 300 shown in FIG. 18 includes any one of a linear polarization coupler 1A, a circular polarization coupler 1B, a linear polarization high gain high isolation coupler 1C, and a circular polarization high gain high isolation coupler 1D as an antenna device.
  • a second antenna apparatus including a first antenna apparatus 301 and a second antenna apparatus 303; and a radio wave radiated from the first antenna apparatus 301 disposed opposite to a radiation direction of the first antenna apparatus 301; The signal is received by the antenna device 303.
  • the measurement system 340 includes a vector signal generator 325, a pseudo transmitter 327, a signal analyzer 329, and a personal computer PC 331, and a coaxial cable between a terminal 325a of the vector signal generator 325 and a terminal 327 a of the pseudo transmitter 327.
  • the connection 335 is connected, and the coaxial cable 333 is connected between the terminal 325 b of the vector signal generator 325 and the terminal 327 b of the pseudo transmitter 327.
  • the vector signal generator 325 and the signal analyzer 329 for example, MG3710A and MS2850A manufactured by Anritsu Co., Ltd. are used, respectively.
  • a coaxial cable 321 is connected between the terminal 327 c of the pseudo transmitter 327 and the connector of the first antenna device 301.
  • a coaxial cable 323 is connected between the connector of the second antenna device 303 and the terminal 329 a of the signal analyzer 329. Furthermore, a USB cable 137 is connected between the USB terminal 329 m of the terminal 329 b of the signal analyzer 329 and the USB terminal 331 a of the personal computer PC 331.
  • the antenna device is disposed close to (in close contact with) the object to be measured, and is used, for example, to measure radio waves radiated from the object to be measured.
  • the object to be measured is a device that generates electromagnetic waves, such as a cellular phone, a mobile terminal, etc.
  • the object is a next-generation cellular phone (5G) using a frequency band of 23 GHz to 29 GHz.
  • the measurement system 340 is suitable for measuring EVM characteristics between the first antenna device 301 and the second antenna device 303 provided in the antenna system 300 and between the object to be measured and the second antenna device 303. ing.
  • FIG. 19 is a flow chart showing a calibration procedure performed in the measurement system shown in FIG.
  • step S205 the coaxial cable 321 connected to the terminal 327c of the pseudo transmitter 327 is connected to the first antenna device 301, and the coaxial cable 323 connected to the connector of the second antenna device 303 is a terminal of the signal analyzer 329. Connect to 329a.
  • step S210 as the setup of the vector signal generator 325, the frequency is set to 28.5 GHz, the bandwidth to 100 MHz, and the modulation to Pre-Standard CP-OFDM Downlink.
  • step S215 the output level of the vector signal generator 325 is adjusted.
  • step S220 the input level of the signal analyzer 329 is adjusted.
  • steps S215 and S220 adjustment is made so that the Total EVM (rms) value (FIG. 21) of the signal analyzer 329 displayed on the monitor of the personal computer PC 331 is minimized.
  • the EVM value In the EVM measurement based on the coupling between the antenna devices, the EVM value needs to be 1% or less (the closer to 0%, the better). In fact, it is to give reliability to the measured value when measuring the EVM value of the fifth generation terminal (5G), and it becomes unreliable if it exceeds 1%. For this reason, it is necessary to keep the waveform of the coupling characteristic between the antenna devices flat and to have an EVM value of 1% or less at the time of coupling, and to make the waveform at the time of total reflection of the antenna device free from disturbance.
  • FIG. 20 is a flowchart showing an EVM measurement procedure performed in the measurement system shown in FIG.
  • step S255 the coaxial cable 321 connected to the terminal 327c of the pseudo transmitter 327 is connected to the first antenna device 301.
  • step S260 the coaxial cable 323 connected to the connector of the second antenna device 303 is connected to the terminal 329a of the signal analyzer 329.
  • step S265 the first antenna device 301 and the second antenna device 303 face each other and approach (close).
  • the EVM value (FIG. 21) is displayed on the monitor of the signal analyzer 329.
  • FIG. 21 is a diagram showing a monitor screen showing EVM values measured in the measurement system shown in FIG.
  • EVM refers to modulation accuracy, which is calculated by calculating how much the symbol point of the actual signal deviates with respect to the ideal symbol point (not shown) and is represented by%.
  • modulation accuracy is calculated by calculating how much the symbol point of the actual signal deviates with respect to the ideal symbol point (not shown) and is represented by%.
  • FIG. 22A is a graph showing measurement results of return loss characteristics in free space of the linear polarization coupler performed in the measurement system.
  • the return loss characteristic in free space of the linear polarization coupler 1A shown in FIG. 22 (a) in the target frequency band of 23 GHz to 29 GHz, it becomes -10 dB or less and the execution power value becomes -15 dB or less ing.
  • FIG. 22 (b) is a graph showing the measurement results of the coupler coupling characteristic (pass amplitude characteristic) of the linear polarization coupler performed in the measurement system.
  • One pair of linear polarization couplers 1A are coupled at around -10 dB, and the pass amplitude characteristic is within the fluctuation range of about 5 dB in the target frequency band of 23 GHz to 29 GHz, as in the prior art.
  • FIG. 23 (a) is a graph showing measurement results of return loss characteristics at total reflection of a linear polarization coupler performed in the measurement system.
  • the return loss characteristic has a fluctuation range of about 10 dB in the target frequency band of 23 GHz to 29 GHz, and There is no such steep waveform disturbance (FIG. 23 (c)) and an extremely flat return loss characteristic is shown.
  • FIG.23 (b) is a graph which shows the measurement result of the EVM value of the linear polarization coupler performed in the measurement system.
  • a good EVM value of 1% or less of EVM (rms) is shown.
  • FIG. 24A is a graph showing measurement results of return loss characteristics in free space of the linear polarization high gain high isolation coupler performed in the measurement system.
  • the target power value is -10 dB or less in the target frequency band of 23 GHz to 29 GHz- It is less than 13 dB.
  • FIG.24 (b) is a graph which shows the measurement result of the coupler coupling characteristic (pass amplitude characteristic) of the linear polarization high gain high isolation coupler performed in the measurement system.
  • the linear polarization high gain high isolation coupler 1C and the linear polarization high gain high isolation coupler 1C are coupled at around -10 dB, and the pass amplitude characteristic is about 5 dB in the target frequency band of 23 GHz to 29 GHz.
  • the pass amplitude characteristic is about 5 dB in the target frequency band of 23 GHz to 29 GHz.
  • FIG. 27 (b) shows extremely flat coupling characteristics.
  • FIG. 25A is a graph showing measurement results of return loss characteristics at total reflection of a linearly polarized high gain high isolation coupler performed in a measurement system.
  • the fluctuation range of the return loss characteristic falls within the range of about 10 dB in the target frequency band of 23 GHz to 29 GHz.
  • FIG. 25B is a graph showing the measurement results of the EVM value of the linear polarization high gain high isolation coupler performed in the measurement system.
  • a good EVM value of 1% or less of EVM (rms) is shown.
  • FIG. 26A is a graph showing measurement results of return loss characteristics at total reflection of a linear polarization high gain high isolation coupler performed in a measurement system after fine adjustment.
  • the fluctuation range of the return loss characteristic falls within the range of about 15 dB in the frequency band of 23 GHz to 43 GHz.
  • Fig. 27 (c) There is no steep waveform disturbance (Fig. 27 (c)) such as, and a very flat return loss characteristic is shown.
  • FIG. 26 (b) is a graph showing the measurement results of the VSWR characteristics of the linearly polarized high gain high isolation coupler measured in the measurement system after fine adjustment.
  • the VSWR characteristic falls within the range of 1.8 or less in the frequency band of 23 GHz to 43 GHz, and shows extremely good VSWR characteristic. ing.
  • FIG. 26C is a graph showing the measurement results of the coupler coupling characteristic (pass amplitude characteristic) of the linear polarization high gain high isolation coupler performed in the measurement system after fine adjustment.
  • the linearly polarized high gain high isolation coupler 1C and the linearly polarized high gain high isolation coupler 1C are coupled at around -10 dB, and the pass amplitude characteristic is in the range of about 5 dB in the frequency band of 23 GHz to 43 GHz.
  • FIG. 27 there is no sharp waveform disturbance as in the prior art (FIG. 27 (b)), and it shows extremely flat coupling characteristics.
  • the antenna device 1 of the present embodiment is a hexahedron made of a conductive material, and is formed between the opposing first surface M1 and the second surface M2 to form an internal space 8, a first surface M1, and a second surface M1.
  • a coaxial waveguide conversion portion 6 having a coaxial connector insertion hole 22 for inserting a coaxial connector formed in communication (penetration) between a third surface M3 orthogonal to the surface M2 and the internal space 8;
  • a waveguide main body 5 provided with a conductive closing member 30 for closing the opening on the second surface side of the connector, and the connector mounting hole 22 from the internal space to the outside, the inner end being the internal space 8
  • a conductive connector main body 51 not projecting inward and a central portion of the connector main body 51 are axially penetrated, and a tip end portion is projected from the inner end of the connector main body 51 into the internal space 8 by a predetermined length
  • a central conductor 60 and a tip 6 of the central conductor 60 projecting into the internal space 8 and a connector 50 having a radiator 54b for radiating radio waves from the central conductor into the internal space 8 by adapting the projection length of the tip 60a to a specific frequency band.
  • the second surface side opening of the internal space 8 of the coaxial waveguide conversion unit 6 made of a conductive material is closed by the conductive closing member 30, and the radiator 54b protrudes into the internal space 8.
  • the projection length of the tip 60a of the central conductor 60 is adapted to a specific frequency band.
  • the antenna device 1 of this aspect is connected to the non-closed surface side (opening surface side) of the internal space 8 of the coaxial waveguide conversion unit 6 and is a circle that converts radio waves radiated from the radiator 54b into circularly polarized waves. It is connected directly to the non-blocking surface side (opening surface side) of the polarization type polarization unit 100 or the internal space 8 or via the circular polarization type polarization unit 100 to block radio waves coming from the outside.
  • a horn unit 200 is provided. According to this aspect, the radio wave radiated from the radiator 54 b by the circular polarization type polarization unit 100 is converted to circular polarization, or connected to the horn unit 200 via the circular polarization type polarization unit 100.
  • the circular polarization characteristic can be easily obtained by the circular polarization type polarization unit 100, or by having the directivity characteristic by the horn unit 200, the radio wave coming from outside the directivity direction is blocked and the gain Can be improved.
  • the horn unit 200 of this embodiment is characterized in that it is linearly polarized by the truncated square pyramid linear polarized horn unit 200A or circular polarized by the truncated conical circular polarized horn unit 200B.
  • the linear polarization characteristic or the circular polarization characteristic is easy by making it linearly polarized by the linear polarization type horn unit 200A or circularly polarized by the circular polarization type horn unit 200B. It is possible to improve the gain while blocking the radio wave coming from the outside of the pointing direction and having the directivity characteristic.
  • the coaxial waveguide conversion unit 6 of the present embodiment is attached to and detached from the first waveguide member 10 provided with the recess 11 serving as the internal space 8 on one surface 6 a and one surface of the first waveguide member 10.
  • a second waveguide member 20 which closes the one surface side of the recess 11 by being freely attached to form the internal space 8, and the recess 11 is formed on one surface of the first waveguide member 10.
  • a screw hole is formed at a position sandwiching the space between them, and a long hole 24 extending parallel to the axial direction of the internal space 8 at a position matching (correspondence) with each screw hole 13 of the second waveguide member 20. Are formed, and screws can be screwed into the respective screw holes 13 through the respective long holes 24.
  • each screw hole 13 for each long hole 24 can be screwed in such a manner that a screw can be screwed into each screw hole 13 via each long hole 24 extending parallel to the axial direction of the internal space 8. You can fine-tune the position of. As a result, it is possible to suppress the occurrence of the disturbance of the passing amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to the total reflection.
  • the coaxial waveguide conversion unit 6 of this embodiment is characterized in that the position of the second waveguide member 20 is finely adjustable so as to face the one surface 6 a of the first waveguide member 10.
  • the center conductor 60 protruding into the internal space 8 can be mounted by finely adjusting the position of the second waveguide member 20 so as to face the surface 6 a of the first waveguide member 10.
  • the position of the tip portion 60a of can be finely adjusted.
  • the axial length L of the center conductor 60 of the coaxial connector according to the present embodiment protruded from the inner end 56a is 1 ⁇ 4 of the wavelength of a specific frequency band multiplied by a predetermined reduction rate of 0.79. It is characterized in that it is a length. According to this aspect, it is possible to design a length L which can be tuned specifically to a specific frequency band.
  • the horn portion 200 of this embodiment includes a first internal space 8 having a vertical width of 4.3 mm and a horizontal width of 8.6 mm, and a second internal space 8 having a vertical width of 15 mm to 16 mm and a horizontal width of 15 mm to 16 mm. It is characterized by According to this aspect, by providing the first internal space 8 having a vertical width of 4.3 mm and a horizontal width of 8.6 mm, and a second internal space 8 having a vertical width of 15 mm to 16 mm and a horizontal width of 15 mm to 16 mm. It is possible to create a horn portion that can obtain a good gain by specializing in a specific frequency band of 23 GHz to 29 GHz.
  • the material of the coaxial waveguide conversion part 6, the circular polarization type polarization part 100, and the horn part 200 of this embodiment is copper, iron, aluminum, brass, metamaterial, plastic plated metal, or plastic And a resin coated with a metal coating.
  • the material of the coaxial waveguide conversion part 6, the circular polarization type polarization part 100, and the horn part 200 is metal plated on copper, iron, aluminum, brass, metamaterial, plastic
  • the linearly polarized light coupler 1A (antenna apparatus) of this aspect is characterized in that the pass amplitude characteristic of the radio wave radiated from the own antenna apparatus has a fluctuation range of 5 dB or less over a specific frequency band. According to this aspect, since the pass amplitude characteristic of the radio wave radiated from the own antenna device has a fluctuation width within 5 dB over the specific frequency band, it is possible to obtain a good pass amplitude characteristic of the radio wave.
  • the fluctuation range of the reflection attenuation amount characteristic in the total reflection of the radio wave radiated from the antenna device 1 of the present embodiment is characterized in that it has a gentle waveform within 10 dB over a specific frequency band.
  • the return loss characteristic of total reflection of the radio wave emitted from the antenna device 1 is 10 dB or less over a specific frequency band and has a gentle waveform, so that the return loss of the radio wave is good. Characteristics can be obtained.
  • the specific frequency band of this aspect is characterized by being 23 GHz to 29 GHz. According to this aspect, since the specific frequency band is 23 GHz to 29 GHz, the frequency band characteristic of the pass attenuation characteristic in the band or the return loss characteristic in the band due to total reflection is specialized for this frequency band. The occurrence of disturbance can be suppressed, the blocking performance can be improved, and a further favorable EVM value can be obtained.
  • the antenna device 1 is characterized in that the antenna device 1 is disposed at a desired position with respect to a device under test, and receives radio waves emitted from the device under test.
  • the antenna device 1 is disposed at a desired position with respect to the object to be measured, and generation of disturbance of the passing amplitude characteristic in the band and generation of disturbance of the return loss characteristic in the band due to total reflection. Being suppressed, it is possible to be in close contact with the object to be measured, to reliably receive radio waves emitted from the object to be measured, and to measure with a good EVM value. And by having directivity characteristics, it is possible to improve the blocking performance from the outside of the directivity direction, and it is also possible to obtain a good gain.
  • the antenna device 1 is characterized in that the antenna device 1 is disposed at a desired position with respect to an object to be measured and emits radio waves to the object to be measured.
  • the antenna device 1 is disposed at a desired position with respect to the object to be measured, and the disturbance of the passing amplitude characteristic in the band and the disturbance of the return loss characteristic in the band due to total reflection are generated. Therefore, good EVM values can be obtained, and radio waves can be emitted closely to the object to be measured. And by having directivity characteristics, radio waves can be emitted only in the directivity direction.
  • the antenna system 300 of this aspect includes one pair of the antenna devices 1 according to any one of the first to tenth aspects, wherein each of the antenna devices 1 is a first antenna device 301 and a second antenna device 303, A radio wave radiated from the one antenna device 301 is received by the second antenna device 303 disposed opposite to the radiation direction of the first antenna device 301.
  • the disturbance of the passing amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to total reflection are suppressed, and the radio wave emitted from the first antenna device 301 is A favorable EVM value can be obtained by receiving by the 2nd antenna apparatus 303 arrange
  • the measurement system 340 of this aspect is characterized in that an object to be measured is disposed between the first antenna device 301 and the second antenna device 303 provided in the antenna system 300 described in the eleventh aspect. According to this aspect, when the object to be measured is disposed between the first antenna device 301 and the second antenna device 303, the radio wave radiated from the object to be measured or the object to be measured is received. In addition, the degree of influence of the object to be measured can be measured.
  • Coaxial waveguide conversion unit 8 internal space 10 first waveguide member 10a screw hole 11 concave portion 13 screw hole 20 waveguide member 22 connector mounting hole Reference Signs List 23 recess, 24 long hole 25 screw 30 blocking member 30a hole 31 screw 50 connector 51 connector body 52 connector socket portion 53 flange portion 54a connector Socket contact portion 54b Radiator 55 Center conductor support portion 56 Insulator 56a Inner end portion 60 Center conductor 60a Tip portion 100 Circularly polarized wave polarization portion 110 Conductor Wave space, 120 ... circular waveguide part, 1 DESCRIPTION OF SYMBOLS 1a ... Peripheral part, 130 ... Rectangular waveguide part, 131 ... Short side, 131a ... Peripheral part, 132 ... Long side, 132a ... Inner back part, 133 ... Inner wall, 140 ... Deflection board, 200 ... Horn part, 200A ... Linear polarization type horn, 200B: circular polarization type horn, 201a ... plate material

Abstract

The purpose of the present invention is to reduce fluctuation in pass amplitude characteristics within a band, reduce fluctuation in return loss characteristics within the band due to total reflection, improve shielding performance, and achieve a good gain. The antenna device 1 is provided with: a waveguide body 5 comprising a closure member 30 and a coaxial waveguide transformation section 6 which has a hexahedron-shaped internal space 8 formed so as to penetrate between a first surface and a second surface and a connector attachment hole 22 for inserting a coaxial connector and for providing communication between the internal space and a third surface orthogonal to the first and second surfaces, the closure member 30 being for closing an opening on the second surface-side of the internal space; and a connector 50 comprising a connector body 51 attached to the connector attachment hole so as to orient outward from the internal space without an inner end part thereof protruding into the internal space, a center conductor 60 axially penetrating the center of the connector body with a tip part of the center conductor protruding into the internal space by a prescribed length from the inner end part of the connector body, and a passive radiator 54b composed of the tip part 60a of the center conductor and causing the protrusion length of the tip part to match a specific frequency band.

Description

アンテナ装置、アンテナシステム、及び計測システムAntenna device, antenna system, and measurement system
 本発明は、デジタル変調機器の測定に好適なアンテナ装置、アンテナシステム、及び計測システムに関する。 The present invention relates to an antenna device, an antenna system, and a measurement system suitable for measuring digital modulation equipment.
 近年、携帯電話機やスマートフォン等の移動体端末として、デジタル変調機器が普及しており、これらの被測定物に対して接近又は密着して、電波の送信又は受信を行い、被測定物の高周波に対する諸特性を測定するためにカプラアンテナが利用されている。
 このよう用途のカプラアンテナにあっては、測定対象となる周波数帯に対応するために、平板状の誘電体基板の一面にエレメントのパターンを複数形成したパッチアンテナを採用していた。
In recent years, digital modulation devices are widely used as mobile terminals such as mobile phones and smartphones, and radio waves are transmitted or received in close proximity to or in close contact with these objects to be measured, to the high frequency of the object to be measured. Coupler antennas are used to measure various characteristics.
In the coupler antenna for such an application, in order to correspond to the frequency band to be measured, a patch antenna in which a plurality of element patterns are formed on one surface of a flat dielectric substrate is employed.
 例えば、このような従来のパッチアンテナの前面にホーンを取り付けたホーンアンテナが知られている。このようなホーンアンテナに対して、3種類の測定を行った結果を図27(a)~(c)に示す。
 図27(a)はホーンアンテナを自由空間に配置した際の反射減衰量特性(リターンロス)を示すグラフ図である。
 図27(b)は1対のホーンアンテナ同士を対向させ、結合距離0mmで結合した場合に測定された、カプラ結合特性(通過振幅特性)を示すグラフ図である。
 カプラ結合特性(通過振幅特性)を測定した場合、目的とする周波数帯(23GHz~29GHz)において、急峻な波形の乱れとして、例えば-30db以上のレベル変動が不規則に発生している。
 図27(c)はホーンアンテナの全面を金属板で覆った場合に測定された、全反射での反射減衰量特性(リターンロス)を示すグラフ図である。
 反射減衰量特性(リターンロス)を測定した場合、全反射により帯域内において、急峻な波形の乱れが不規則に発生している。
For example, a horn antenna in which a horn is attached to the front of such a conventional patch antenna is known. The results of three types of measurement performed on such a horn antenna are shown in FIGS. 27 (a) to (c).
FIG. 27A is a graph showing the return loss characteristic (return loss) when the horn antenna is disposed in free space.
FIG. 27B is a graph showing coupler coupling characteristics (pass amplitude characteristics) measured when one pair of horn antennas are opposed to each other and are coupled at a coupling distance of 0 mm.
When the coupler coupling characteristic (pass amplitude characteristic) is measured, level fluctuation of, for example, −30 db or more occurs irregularly as abrupt waveform disturbance in the target frequency band (23 GHz to 29 GHz).
FIG. 27 (c) is a graph showing the return loss characteristic (return loss) in total reflection, which was measured when the entire surface of the horn antenna was covered with a metal plate.
When the return loss characteristic (return loss) is measured, abrupt waveform irregularities occur irregularly in the band due to total reflection.
 このようなパッチアンテナについては特許文献1が開示されている。
 特許文献1には、送信アンテナ及び複数の受信アンテナは、誘電性を有する基板と、基板の主面に配置される円偏波のアンテナ素子と、基板の裏面に形成されるグランド層と、アンテナ素子を取り囲み、基板の主面に配置されるストリップ導体と、基板の主面においてストリップ導体が形成される領域から、基板の裏面へと貫きかつ所定の間隔で並ぶ複数の貫通孔が形成されており、グランド層とストリップ導体とを各貫通孔を介して電気的に接続する複数の接続導体と含む。ストリップ導体の内縁は、各貫通孔の内壁よりもアンテナ素子側に突出するという構成が開示されている。このような構成により、送信アンテナ及び受信アンテナの基板主面上に表面波が発生することを抑圧でき、各アンテナの放射特性を所望の安定した形状にすることが開示されている。
Patent Document 1 is disclosed for such a patch antenna.
In Patent Document 1, a transmitting antenna and a plurality of receiving antennas are a substrate having dielectricity, a circularly polarized antenna element disposed on the main surface of the substrate, a ground layer formed on the back surface of the substrate, and an antenna A plurality of through holes are formed to extend from the strip conductor disposed on the main surface of the substrate surrounding the element and the area where the strip conductor is formed on the main surface of the substrate to the back surface of the substrate and arranged at predetermined intervals. And a plurality of connection conductors electrically connecting the ground layer and the strip conductor through the respective through holes. The configuration is disclosed in which the inner edge of the strip conductor protrudes toward the antenna element more than the inner wall of each through hole. With such a configuration, it is disclosed that generation of surface waves on the main surface of the substrate of the transmitting antenna and the receiving antenna can be suppressed, and radiation characteristics of each antenna can be made into a desired stable shape.
特開2006-258762公報JP, 2006-258762, A
 従来のパッチアンテナにあっては、目的の周波数に合わせた特定のパターンを有するエレメントを複数個だけ基板上に配置するという構造を有している。
 このため、各エレメントの特性バラツキや、各エレメント同士の相互干渉が発生し、図28(b)に示すような帯域内での通過振幅特性の不規則な乱れや、図28(c)に示すような全反射による帯域内での反射減衰量特性の不規則な乱れが発生するといった問題があった。
 また、特定のパターンを有するエレメントが基板上に配置されているため、基板の裏面や、周囲から飛来する電波を排除することが困難であり、所要の遮断性能が低下するといった問題があった。
 本発明は、上記に鑑みてなされたもので、その目的としては、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制することができ、且つ遮断性能を向上することができ、さらに良好なEVM値も得ることができるアンテナ装置を提供することにある。
The conventional patch antenna has a structure in which a plurality of elements having a specific pattern matched to a target frequency are arranged on a substrate.
For this reason, the characteristic variation of each element and mutual interference of each element occur, and the irregular disturbance of the passing amplitude characteristic in the band as shown in FIG. 28 (b) or the one shown in FIG. 28 (c) There has been a problem that such irregular disturbance of the return loss characteristic in the band due to total reflection occurs.
In addition, since an element having a specific pattern is disposed on the substrate, it is difficult to exclude radio waves coming from the back surface of the substrate and the surroundings, and there is a problem that the required blocking performance is lowered.
The present invention has been made in view of the above, and as its object, it is possible to suppress the occurrence of the disturbance of the passing amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to total reflection. It is an object of the present invention to provide an antenna device capable of improving the blocking performance and obtaining a better EVM value.
 上記課題を解決するたに、請求項1記載の発明は、導電材料から成る六面体からなり、対向する第1面と第2面との間を貫通して形成された内部空間と、前記第1面、及び前記第2面と直交する第3面と前記内部空間との間に連通形成された同軸コネクタ挿通用のコネクタ装着穴と、を備えた同軸導波管変換部と、前記内部空間の前記第2面側の開口を閉塞する導電性の閉塞部材と、を備えた導波管本体と、前記コネクタ装着穴に前記内部空間から外側に向けて装着され、内端部は前記内部空間内に突出しない導電性のコネクタ本体と、該コネクタ本体の中心部を軸方向に貫通して配置され、先端部を前記コネクタ本体の内端部から前記内部空間内に所定長突出させた中心導体と、前記内部空間内に突出した前記中心導体の先端部から構成され、該先端部の突出長を特定の周波数帯に適合させることにより前記内部空間内に前記中心導体からの電波を輻射する輻射器と、を備えたコネクタと、を備えたことを特徴とする。 In order to solve the above problems, the invention according to claim 1 is an internal space formed of a hexahedron made of a conductive material, which is formed to penetrate between the opposing first surface and the second surface, and the first space. A coaxial waveguide conversion unit including a surface, and a connector mounting hole for inserting a coaxial connector formed between the third surface orthogonal to the second surface and the internal space; and the internal space A waveguide main body comprising a conductive closing member closing the opening on the second surface side, and the connector mounting hole is mounted outward from the internal space, the inner end portion being in the internal space A conductive connector body which does not project in the axial direction, and a central conductor which is disposed to penetrate the central portion of the connector body in the axial direction, and which has its tip projected from the inner end of the connector body into the internal space by a predetermined length The tip of the central conductor protruding into the internal space A connector having a radiator for radiating radio waves from the central conductor in the inner space by matching the projection length of the tip to a specific frequency band. .
 本発明によれば、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制することができ、且つ遮断性能を向上することができ、さらに良好なEVM値も得ることができる。 According to the present invention, it is possible to suppress the occurrence of the disturbance of the passing amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to the total reflection, and it is possible to improve the blocking performance. Good EVM values can also be obtained.
(a)は本発明の一実施形態に係るアンテナ装置の構造を示す正面図、(b)は(a)のA-A断面図、(c)は右側面図、(d)は上面図、(e)は底面図、(f)は背面図、(g)は(a)のB-B断面図である。(A) is a front view showing the structure of an antenna device according to an embodiment of the present invention, (b) is a cross-sectional view taken along the line AA of (a), (c) is a right side view, (d) is a top view, (E) is a bottom view, (f) is a rear view, (g) is a cross-sectional view taken along the line BB in (a). (a)及び(b)は本発明の一実施形態に係るアンテナ装置の構造を示す斜視図である。(A) And (b) is a perspective view which shows the structure of the antenna apparatus based on one Embodiment of this invention. (a)及び(b)は本発明の一実施形態に係るアンテナ装置の構造を示す分解斜視図である。(A) And (b) is a disassembled perspective view which shows the structure of the antenna apparatus based on one Embodiment of this invention. (a)(b)及び(c)は本発明の一実施形態に係るコネクタの底面図、断面図、上面図である。(A), (b) and (c) are the bottom view of the connector based on one Embodiment of this invention, sectional drawing, and a top view. (a)(b)及び(c)は本発明の一つの実施形態に係る円偏波型偏波部の正面図、上面図、及び背面図である。(A), (b) and (c) are a front view, a top view, and a rear view of a circular polarization type polarization part concerning one embodiment of the present invention. (a)及び(b)は本発明の一つの実施形態に係る偏向板の正面図、及び側面図である。(A) And (b) is the front view and side view of the deflection | deviation plate which concern on one Embodiment of this invention. (a)(b)及び(c)は図5(a)のC-C、D-D、及びE―Eの断面図であり、(d)及び(e)は図7(b)のF-F、G-G断面図である。(A) (b) and (c) are cross-sectional views of CC, DD and EE in FIG. 5 (a), and (d) and (e) are F in FIG. 7 (b) It is a -F, GG sectional view. (a)及び(b)は円偏波型偏波部の正面側外観斜視図、及び背面側に外観斜視図である。(A) And (b) is a front appearance side perspective view of a circular polarization type polarization part, and an appearance perspective view in the back side. (a)は本発明の他の実施形態(16mmホーン)に係るアンテナ装置の円偏波型ホーン部200Bを示す外観斜視図であり、(b)は正面図、(c)は側面図、(d)は背面図であり、(e)(f)及び(g)は、本発明の他の実施形態(15mmホーン)に係るアンテナ装置の円偏波型ホーン部200Bの正面図、側面図、及び背面図である。(A) is an external appearance perspective view showing circular polarization type horn part 200B of the antenna device concerning other embodiments (16 mm horn) of the present invention, (b) is a front view, (c) is a side view, d) is a rear view, and (e), (f) and (g) are front and side views of a circular polarized horn unit 200B of the antenna device according to another embodiment (15 mm horn) of the present invention, And a rear view. (a)~(d)は本発明の一実施形態に係るアンテナ装置の変形例を示す側面図である。(A)-(d) is a side view which shows the modification of the antenna apparatus based on one Embodiment of this invention. 本発明の一実施形態に係るアンテナ装置の変形例の構成を表す図表を示す図である。It is a figure showing the chart showing the composition of the modification of the antenna system concerning one embodiment of the present invention. (a)は本発明の一実施形態に係るアンテナ装置を用いたアンテナシステム、及び計測システムを示すブロック図、(b)は当該計測システムの校正に用いるキャリブレーションキットを示す斜視図である。(A) is a block diagram which shows the antenna system using the antenna apparatus which concerns on one Embodiment of this invention, and a measurement system, (b) is a perspective view which shows the calibration kit used for the calibration of the said measurement system. 図12に示す測定システムのキャリブレーション手順を示すフローチャートである。It is a flowchart which shows the calibration procedure of the measurement system shown in FIG. 図12に示す計測システムにおいて行う反射減衰量測定手順を示すフローチャートである。It is a flowchart which shows the return loss amount measurement procedure performed in the measurement system shown in FIG. (a)(b)は直線偏波カプラの組立直後の代表特性、調整後の代表特性を示すグラフ図である。(A) and (b) are graphs showing representative characteristics immediately after assembly of the linear polarization coupler and representative characteristics after adjustment. 図12に示す計測システムにおいて行われる結合損失特性の測定手順を示すフローチャートである。It is a flowchart which shows the measurement procedure of the coupling loss characteristic performed in the measurement system shown in FIG. (a)~(d)は計測システムにおいて行われた反射減衰量特性、結合特性の測定結果を示すグラフ図である。(A) to (d) are graphs showing measurement results of return loss characteristics and coupling characteristics performed in the measurement system. 本発明の一実施形態に係るアンテナ装置を用いたEVM測定に係るアンテナシステム、及び計測システムを示すブロック図である。It is a block diagram showing an antenna system concerning EVM measurement using an antenna device concerning one embodiment of the present invention, and a measurement system. 図18に示す計測システムにおいて行われるキャリブレーション手順を示すフローチャートである。It is a flowchart which shows the calibration procedure performed in the measurement system shown in FIG. 図18に示す計測システムにおいて行われるEVM測定手順を示すフローチャートである。It is a flowchart which shows the EVM measurement procedure performed in the measurement system shown in FIG. 図18に示す計測システムにおいて測定されたEVM値を示すモニタ画面を示した図である。It is a figure showing the monitor screen which shows the EVM value measured in the measurement system shown in FIG. (a)は計測システムにおいて行われた直線偏波カプラの自由空間での反射減衰量特性の測定結果を示すグラフ図であり、(b)は計測システムにおいて行われた直線偏波カプラのカプラ結合特性(通過振幅特性)の測定結果を示すグラフ図である。(A) is a graph which shows the measurement result of the return loss characteristic in the free space of the linear polarization coupler performed in the measurement system, (b) is a coupler coupling of the linear polarization coupler performed in the measurement system It is a graph which shows the measurement result of a characteristic (pass amplitude characteristic). (a)は計測システムにおいて行われた直線偏波カプラの全反射での反射減衰量特性の測定結果を示すグラフ図であり、(b)は計測システムにおいて行われた直線偏波カプラのEVM値の測定結果を示すグラフ図である。(A) is a graph which shows the measurement result of the return loss characteristic in the total reflection of the linear polarization coupler performed in the measurement system, (b) is an EVM value of the linear polarization coupler performed in the measurement system It is a graph which shows the measurement result of. (a)は計測システムにおいて行われた直線偏波高利得高アイソレーションカプラの自由空間での反射減衰量特性の測定結果を示すグラフ図であり、(b)は計測システムにおいて行われた直線偏波高利得高アイソレーションカプラのカプラ結合特性(通過振幅特性)の測定結果を示すグラフ図である。(A) is a graph which shows the measurement result of the return loss characteristic in the free space of the linear polarization high gain high isolation coupler performed in the measurement system, (b) is a linear polarization height performed in the measurement system It is a graph which shows the measurement result of the coupler coupling characteristic (pass amplitude characteristic) of a gain high isolation coupler. (a)は計測システムにおいて行われた直線偏波高利得高アイソレーションカプラの全反射での反射減衰量特性の測定結果を示すグラフ図であり、(b)は計測システムにおいて行われた直線偏波高利得高アイソレーションカプラのEVM値の測定結果を示すグラフ図である。(A) is a graph which shows the measurement result of the return loss characteristic in total reflection of the linear polarization high gain high isolation coupler performed in the measurement system, (b) is a linear polarization height performed in the measurement system It is a graph which shows the measurement result of the EVM value of a gain high isolation coupler. (a)は微調整後、計測システムにおいて行われた直線偏波高利得高アイソレーションカプラの全反射での反射減衰量特性の測定結果を示すグラフ図であり、(b)は微調整後、計測システムにおいて行われた直線偏波高利得高アイソレーションカプラのVSWR特性の測定結果を示すグラフ図であり、(c)は微調整後、計測システムにおいて行われた直線偏波高利得高アイソレーションカプラのカプラ結合特性(通過振幅特性)の測定結果を示すグラフ図である。(A) is a graph which shows the measurement result of the return loss characteristic in total reflection of the linear polarization high gain high isolation coupler performed in the measurement system after fine adjustment, (b) measurement after fine adjustment It is a graph which shows the measurement result of the VSWR characteristic of the linear polarization high gain high isolation coupler performed in the system, and (c) is a coupler of the linear polarization high gain high isolation coupler performed in the measurement system after fine adjustment. It is a graph which shows the measurement result of a coupling | linkage characteristic (pass amplitude characteristic). (a)はホーンアンテナを自由空間に配置した際の反射減衰量特性(リターンロス)を示すグラフ図であり、(b)は1対のホーンアンテナ同士を対向させ、結合距離0mmで結合した場合に測定された、カプラ結合特性(通過振幅特性)を示すグラフ図であり、(c)はホーンアンテナの全面を金属板で覆った場合に測定された、全反射での反射減衰量特性(リターンロス)を示すグラフ図である。(A) is a graph showing the return loss characteristic (return loss) when the horn antenna is disposed in free space, and (b) is a case where a pair of horn antennas are opposed to each other and are coupled at a coupling distance of 0 mm (C) is a graph showing the coupler coupling characteristic (pass amplitude characteristic) measured in the case of (h), the return loss characteristic at total reflection, which was measured when the entire surface of the horn antenna was covered with a metal plate (return (Loss)).
 以下、本発明を図面に示した実施の形態により詳細に説明する。
 本発明は、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制することができ、且つ遮断性能を向上することができ、さらに良好な利得も得るために、以下の構成を有する。
 すなわち、本発明のアンテナ装置1は、導電材料から成る六面体からなり、対向する第1面と第2面との間を貫通して形成された内部空間と、第1面、及び第2面と直交する第3面と内部空間との間に連通形成された同軸コネクタ挿通用のコネクタ装着穴と、を備えた同軸導波管変換部と、内部空間の第2面側の開口を閉塞する導電性の閉塞部材30と、を備えた導波管本体と、コネクタ装着穴に内部空間から外側に向けて装着され、内端部は内部空間内に突出しない導電性のコネクタ本体と、該コネクタ本体の中心部を軸方向に貫通して配置され、先端部をコネクタ本体の内端部から内部空間内に所定長突出させた中心導体と、内部空間内に突出した中心導体の先端部から構成され、該先端部の突出長を特定の周波数帯に適合させることにより内部空間内に中心導体からの電波を輻射する輻射器と、を備えたコネクタと、を備えたことを特徴とする。
 以上の構成を備えることにより、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制することができ、且つ遮断性能を向上することができ、さらに良好なEVM値も得ることができる。
 上記記載の本発明の特徴について、以下の図面を用いて詳細に解説する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
 上記の本発明の特徴に関して、以下、図面を用いて詳細に説明する。
Hereinafter, the present invention will be described in detail by embodiments shown in the drawings.
The present invention can suppress the occurrence of the disturbance of the pass amplitude characteristic in the band and the disturbance of the return loss characteristic in the band due to the total reflection, and can improve the blocking performance, and is further preferable. In order to obtain a gain, it has the following configuration.
That is, the antenna device 1 of the present invention is composed of a hexahedron made of a conductive material, and an internal space formed to penetrate between the opposing first surface and the second surface, the first surface, and the second surface A coaxial waveguide conversion unit having a coaxial connector insertion hole for coaxial connector insertion formed in communication between the orthogonal third surface and the internal space, and a conductor for closing the opening on the second surface side of the internal space And a conductive connector body which is attached to the connector mounting hole from the inner space to the outside and the inner end does not protrude into the inner space, and the connector body A central conductor axially penetrating through the central portion of the connector and having a tip projecting from the inner end of the connector body into the inner space by a predetermined length, and a tip of the central conductor projecting into the inner space To adjust the projection length of the tip to a specific frequency band Ri is a radiator for radiating the radio wave from the center conductor in the inner space, the connector and having a, comprising the.
By providing the above configuration, it is possible to suppress the occurrence of the disturbance of the pass amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to the total reflection, and it is possible to improve the blocking performance. Even better EVM values can be obtained.
The features of the invention described above will be explained in detail using the following figures. However, the constituent elements, types, combinations, shapes, relative arrangements, and the like described in this embodiment are not intended to limit the scope of the present invention thereto alone, as long as they are not specifically described, and are merely illustrative examples. .
The above-mentioned features of the present invention will be described in detail below with reference to the drawings.
 次に、本発明の実施形態について、図面を参照して説明する。
<アンテナ装置の構造>
 図1(a)は本発明の一実施形態に係るアンテナ装置の構造を示す正面図、(b)は(a)のA-A断面図、(c)は右側面図、(d)は上面図、(e)は底面図、(f)は背面図、(g)は(a)のB-B断面図である。図2(a)及び(b)は本発明の一実施形態に係るアンテナ装置の構造を示す斜視図である。図3(a)及び(b)は本発明の一実施形態に係るアンテナ装置の構造を示す分解斜視図である。図4(a)(b)及び(c)は本発明の一実施形態に係るコネクタの底面図、断面図、上面図である。
 以下、図1(a)に示す正面図を基本となる座標系とし、紙面左から右方向をx軸方向とし、紙面内でx軸方向と直交する方向をy軸方向とし、x軸方向およびy軸方向に直交する(鉛直方向)をz軸方向として説明する。
Next, embodiments of the present invention will be described with reference to the drawings.
<Structure of Antenna Device>
1 (a) is a front view showing the structure of an antenna device according to an embodiment of the present invention, (b) is a cross-sectional view taken along the line AA of (a), (c) is a right side view, and (d) is an upper surface (E) is a bottom view, (f) is a rear view, (g) is a cross-sectional view taken along the line BB in (a). FIGS. 2A and 2B are perspective views showing the structure of an antenna device according to an embodiment of the present invention. FIGS. 3A and 3B are exploded perspective views showing the structure of an antenna device according to an embodiment of the present invention. FIGS. 4 (a), (b) and (c) are a bottom view, a sectional view and a top view of a connector according to an embodiment of the present invention.
Hereinafter, the front view shown in FIG. 1A is used as the basic coordinate system, the left direction to the right of the drawing is the x-axis direction, and the direction orthogonal to the x-axis direction is the y-axis direction in the drawing; The z-axis direction will be described as a direction perpendicular to the y-axis direction (vertical direction).
 このアンテナ装置1は、2つの対向する第1及び第2面M1、M2の中央部に貫通形成され、且つ第2面側開口を閉塞された内部空間8を備えた導波管本体5と、内部空間8を形成した面とは異なる外周面(第3面M3)から内部空間8との間に貫通形成されたコネクタ装着穴22内に配置されて一端部に設けた輻射器を内部空間8内に露出させたコネクタ50と、導波管本体5の内部空間8の第1面M1側(非閉塞面側)に接続される直線偏波型ホーン部200Aと、直線偏波型ホーン部200Aに代えて、円偏波型偏波部100(図5)と、或いは円偏波型偏波部100を介して内部空間の非閉塞面側に接続される円偏波型ホーン部200Bと、を概略有している。 This antenna device 1 has a waveguide main body 5 provided with an internal space 8 which is formed through the central portion of two opposing first and second surfaces M1 and M2 and whose second surface side opening is closed. An internal space 8 is disposed in one end portion of a connector mounting hole 22 which is formed to penetrate from the outer peripheral surface (third surface M3) different from the surface forming the internal space 8 to the internal space 8 The connector 50 exposed inside, the linearly polarized horn unit 200A connected to the first surface M1 side (non-closed surface side) of the internal space 8 of the waveguide main body 5, and the linearly polarized horn unit 200A In place of the circular polarization type polarization unit 100 (FIG. 5), or a circular polarization type horn unit 200B connected to the non-blocking surface side of the inner space via the circular polarization type polarization unit 100; Roughly.
 導波管本体5は、所定の均一厚みを有した四角いブロック状の同軸導波管変換部6と、同軸導波管変換部6に貫通形成された内部空間8の一方の開口を閉塞する薄板状の閉塞部材30と、から概略構成されている。
 同軸導波管変換部6、及び閉塞部材30は、何れも銅、鉄、アルミ、真鍮、メタマテリアル、又はプラスチックに金属メッキを施したもの等の導電性材料から構成されている。
 同軸導波管変換部6は、導電材料から成る六面体からなり、互いに対向する第1面M1、及び第2面M2、互いに対向する第3面M3、及び第4面M4、互いに対向する第5面M5、及び第6面M6を有している。
The waveguide main body 5 is a rectangular block-shaped coaxial waveguide conversion portion 6 having a predetermined uniform thickness, and a thin plate for closing one opening of the internal space 8 formed to penetrate the coaxial waveguide conversion portion 6. And an occlusive member 30.
Each of the coaxial waveguide conversion unit 6 and the closing member 30 is made of a conductive material such as copper, iron, aluminum, brass, a metamaterial, or plastic plated with metal.
The coaxial waveguide conversion unit 6 is made of a hexahedron made of a conductive material, and has a first surface M1 and a second surface M2 facing each other, a third surface M3 facing each other, and a fourth surface M4 and a fifth surface facing each other It has a surface M5 and a sixth surface M6.
 同軸導波管変換部6は、内部空間8となる凹陥部11を一面6aに備えた第1の導波管部材10と、第1の導波管部材10の一面に対して着脱自在に取付けられることにより凹陥部11の一面側を閉塞して内部空間8を形成する第2の導波管部材20と、を備える。
 図3(a)(b)において、第1の導波管部材10の一面6aには凹陥部11を間に挟んだ箇所に夫々丸いネジ穴13が形成されており、第2の導波管部材20の各ネジ穴13と整合(対応)する位置には、内部空間8のz軸方向と平行に延びる長穴24が形成され、各長穴24を介して各ネジ穴にビス25を螺着可能に構成されている。各ビス25を各ネジ穴13に螺着した状態では、第2の導波管部材20は長穴24の長手方向(z軸方向)長の範囲内で第2の導波管部材20に対して変位可能である。本例では、長方形状の第2の導波管部材20の外側面(第3面M3)の長手方向中央部は凹所となっており、この凹所内にコネクタ装着穴22が形成されている。各長穴24はこの凹所両側にある凸所に形成されている。
 第1の導波管部材10の一面6aに対向する第2の導波管部材20の位置を長穴24の長さの範囲内で微調整可能に取り付けることができ、これによりアンテナ装置1の電気的特性を微調整することができる。この結果、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制することができる。
The coaxial waveguide conversion unit 6 is detachably attached to one surface of the first waveguide member 10 provided on one surface 6 a with a recess 11 to be the internal space 8 and to one surface of the first waveguide member 10. And a second waveguide member 20 which closes the one surface side of the recess 11 to form the internal space 8.
In FIGS. 3 (a) and 3 (b), round screw holes 13 are formed on the one surface 6a of the first waveguide member 10 at positions sandwiching the recess 11 between the second waveguides. A long hole 24 extending parallel to the z-axis direction of the internal space 8 is formed at a position in alignment (correspondence) with each screw hole 13 of the member 20, and a screw 25 is screwed into each screw hole through each long hole 24. It is configured to be wearable. In a state in which each screw 25 is screwed into each screw hole 13, the second waveguide member 20 is attached to the second waveguide member 20 within the range of the longitudinal direction (z-axis direction) length of the long hole 24. Is displaceable. In this example, the central portion in the longitudinal direction of the outer side surface (third surface M3) of the rectangular second waveguide member 20 is a recess, and the connector mounting hole 22 is formed in the recess. . Each long hole 24 is formed in a convex on both sides of the recess.
The position of the second waveguide member 20 facing the one surface 6 a of the first waveguide member 10 can be finely adjustable within the length of the elongated hole 24, whereby the antenna device 1 can be mounted. Electrical characteristics can be finely adjusted. As a result, it is possible to suppress the occurrence of the disturbance of the passing amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to the total reflection.
 内部空間8となる凹陥部11は、第1の導波管部材10の長方形状の一面6aの長手方向中央部に形成された内面が互いに直交する三つの面から成る溝であり、一面6aに対して細長い板状の第2の導波管部材20をビス25により着脱自在に構成されている。一面6aに第2の導波管部材20を固定して凹陥部11を閉塞することにより内部空間8が形成される。
 第1の導波管部材10に対して第2の導波管部材20を組み付けることによって形成される同軸導波管変換部6は、前述のように六つの面、即ち第1面M1乃至第6面M6から構成される直方体、或いは立方体となっている。
 内部空間8は、同軸導波管変換部6の対向する第1面M1と第2面M2との間を貫通して形成されている。また、第1面、及び第2面と直交する第3面M3には、内部空間8と連通する同軸コネクタ挿通用のコネクタ装着穴22が貫通形成されている。本例では、コネクタ装着穴22は第2の導波管部材20に貫通形成されている。
 内部空間8は、第2面側開口が導電性の閉塞部材により閉塞(溶接)されることにより、第1面M1側のみが開放されている。
 閉塞部材30には、第1の導波管部材10の外面に設けたネジ穴10aと対応する穴30aが形成されており、各ネジ穴10aと各穴30aを連通させた状態でネジ31を挿通して螺着することにより、第1の導波管部材10の外面に対して閉塞部材30は密着して隙間なく固定される。
The recessed portion 11 to be the internal space 8 is a groove formed of three surfaces whose inner surfaces formed at the longitudinal direction central portion of the rectangular one surface 6a of the first waveguide member 10 are orthogonal to each other. On the other hand, an elongated plate-like second waveguide member 20 is configured to be removable by a screw 25. An internal space 8 is formed by fixing the second waveguide member 20 to the one surface 6 a and closing the recess 11.
The coaxial waveguide conversion unit 6 formed by assembling the second waveguide member 20 to the first waveguide member 10 has six surfaces, ie, the first surface M1 to the first surface, as described above. It is a rectangular parallelepiped or cube formed of six faces M6.
The internal space 8 is formed to penetrate between the opposing first surface M1 and the second surface M2 of the coaxial waveguide conversion unit 6. In addition, in the third surface M3 orthogonal to the first surface and the second surface, a connector mounting hole 22 for inserting a coaxial connector communicating with the internal space 8 is formed in a penetrating manner. In the present embodiment, the connector mounting hole 22 is formed through the second waveguide member 20.
In the internal space 8, only the first surface M1 side is opened by closing (welding) the second surface side opening with a conductive closing member.
The closing member 30 is formed with holes 30a corresponding to the screw holes 10a provided on the outer surface of the first waveguide member 10, and the screws 31 are made in a state in which the screw holes 10a and the holes 30a are communicated. By inserting and screwing, the closing member 30 is closely attached to the outer surface of the first waveguide member 10 and fixed without any gap.
<コネクタ>
 図1乃至図4に示すように、コネクタ50は、コネクタ装着穴22に内部空間8から外側に向けて装着され、内端部56aが内部空間8内に突出しない状態で露出配置された導電性のコネクタ本体51と、該コネクタ本体の中心部をy軸方向に貫通して配置され、先端部60aをコネクタ本体の内端部56aから内部空間8内に所定長Lだけ突出させた中心導体60と、内部空間8内に突出した中心導体の先端部60aから構成され、該先端部の突出長L(図4)を特定の周波数帯に適合させることにより内部空間8内に中心導体からの電波を輻射する輻射器54bと、を備えている。コネクタ本体51の一端外周には雄螺子が形成されている。コネクタ本体と中心導体との関係は、絶縁材料を介して一体化されている。
 なお、上述したように輻射器54bが電波を輻射することとして説明したが、これは送信時の作用であり、受信時には輻射器54bが電波を吸収(受電)することとする。
<Connector>
As shown in FIGS. 1 to 4, the connector 50 is mounted in the connector mounting hole 22 outward from the internal space 8, and the conductive property is exposed and arranged in a state where the inner end 56 a does not protrude into the internal space 8. And a central conductor 60 disposed so as to penetrate the central portion of the connector main body in the y-axis direction and having the tip 60a project from the inner end 56a of the connector main body into the internal space 8 by a predetermined length L And the tip portion 60a of the central conductor projecting into the internal space 8, and by matching the projecting length L (FIG. 4) of the tip portion to a specific frequency band, the radio wave from the central conductor in the internal space 8 And a radiator 54b for emitting radiation. A male screw is formed on the outer periphery of one end of the connector main body 51. The relationship between the connector body and the central conductor is integrated via an insulating material.
As described above, although it has been described that the radiator 54b radiates a radio wave, this is an operation at the time of transmission, and at the time of reception, the radiator 54b absorbs (receives) a radio wave.
 図4に示すように、本例に係るコネクタ50のコネクタ本体51は、導電体及び絶縁体からなる中空筒状のコネクタソケット部52と、コネクタソケット部52の一端に一体化されたフランジ部53と、コネクタソケット部52内を軸方向へ貫通して配置された中心導体60と、中心導体60の適所をコネクタソケット部52の内周に固定的に支持する中心導体支持部55と、中心導体60とコネクタソケット部52の内周との間の空間を埋めるために充填された絶縁体56と、を概略備えている。
 中心導体60の外側端部にはコネクタソケット接点部54aが設けられ、中心導体の内側端部にはエレメントである輻射器54bが設けられている。輻射器54bは、中心導体60の先端部をコネクタソケット部52の内側端面から所定長突出させた部位であり、エレメントの長さLを調整することにより、所望の周波数帯に同調させる。
 コネクタ50の中心導体60を内端部56aから突出させたy軸方向の長さLは、特定の周波数帯の波長の1/4に対して、所定の短縮率0.79を乗算した長さである。なお、特定の周波数帯は、第5世代端末(5G)に利用される23GHz~29GHzである。
 これにより、特定の周波数帯に特化して同調することができる長さLを設計することができる。
 図3(a)に示すように本例では、第2の導波管部材20の内側面(第3面M3の反対側面)にはコネクタのフランジ部53を嵌合させるための凹所23が形成されている。コネクタのコネクタソケット部52をコネクタ装着穴22に差し込むことによってフランジ部53が凹所23内に嵌合して着座した際には、フランジ部53の端面は第2の導波管部材20の内側面と面一になるように寸法設定されている。
 このように、アンテナ装置1は、導電材料から成る同軸導波管変換部6の内部空間8の第2面側開口を導電性の閉塞部材30で閉塞するとともに、輻射器54bにおいて内部空間8内に突出した中心導体60の先端部60aの突出長を特定の周波数帯に適合させるので、帯域内での通過振幅特性や、反射減衰量特性を帯域内に同調することができ、且つ遮断性能を向上することができ、さらに良好なEVM値も得ることができる。
As shown in FIG. 4, the connector main body 51 of the connector 50 according to this embodiment includes a hollow cylindrical connector socket 52 made of a conductor and an insulator, and a flange 53 integrated with one end of the connector socket 52. A central conductor 60 axially penetrating the inside of the connector socket 52, a central conductor support 55 for fixedly supporting an appropriate position of the central conductor 60 on the inner periphery of the connector socket 52, and a central conductor And an insulator 56 filled to fill the space between the inner periphery 60 and the inner periphery of the connector socket 52.
A connector socket contact portion 54a is provided at the outer end of the central conductor 60, and a radiator 54b which is an element is provided at the inner end of the central conductor. The radiator 54b is a portion where the tip of the central conductor 60 protrudes a predetermined length from the inner end face of the connector socket 52, and is tuned to a desired frequency band by adjusting the length L of the element.
The length L in the y-axis direction, in which the central conductor 60 of the connector 50 is protruded from the inner end 56a, is a length obtained by multiplying 1/4 of the wavelength of a specific frequency band by a predetermined reduction rate 0.79. It is. The specific frequency band is 23 GHz to 29 GHz used for the fifth generation terminal (5G).
This makes it possible to design a length L which can be tuned to be specific to a particular frequency band.
As shown in FIG. 3A, in the present embodiment, a recess 23 for fitting the flange portion 53 of the connector to the inner side surface (the opposite side surface of the third surface M3) of the second waveguide member 20 is provided. It is formed. When the flange portion 53 is fitted and seated in the recess 23 by inserting the connector socket portion 52 of the connector into the connector mounting hole 22, the end face of the flange portion 53 is the inside of the second waveguide member 20. It is dimensioned to be flush with the side.
Thus, the antenna device 1 closes the second surface side opening of the internal space 8 of the coaxial waveguide conversion unit 6 made of a conductive material with the conductive closing member 30, and the inside of the internal space 8 of the radiator 54b. Since the projection length of the tip portion 60a of the central conductor 60 protruding in the center is adapted to a specific frequency band, the pass amplitude characteristic in the band and the return loss characteristic can be tuned in the band, and the blocking performance It can be improved and even better EVM values can be obtained.
 内部空間8の第1面M1側の開口部、言い換えれば非閉塞面側には、輻射器54bから輻射された電波を直線偏波または円偏波に変換する円偏波型偏波部100、或いは、利得を向上するとともに外部から飛来する電波を遮断する直線偏波型ホーン部200Aの何れか一方が接続配置される。
 なお、図10(d)に示すように、円偏波型ホーン部200Bは円偏波型偏波部100を介して内部空間8に接続されることもある。
 これにより、円偏波型偏波部100により円偏波特性が容易に得ることができ、又は、ホーン部200により外部から到来する電波を遮断するとともに利得を向上することができる。
In the opening on the first surface M1 side of the internal space 8, in other words, on the non-blocking surface side, a circular polarization type polarization unit 100 that converts radio waves radiated from the radiator 54b into linear polarization or circular polarization; Alternatively, one of the linearly polarized horn units 200A for improving gain and blocking radio waves coming from the outside is connected and disposed.
As shown in FIG. 10D, the circularly polarized horn unit 200B may be connected to the internal space 8 via the circularly polarized polarizer 100.
Thereby, the circular polarization characteristic can be easily obtained by the circular polarization type polarization unit 100, or the horn unit 200 can block radio waves coming from the outside and improve the gain.
<円偏波型偏波部>
 図5(a)(b)及び(c)は本発明の一つの実施形態に係る円偏波型偏波部の正面図、上面図、及び背面図であり、図6(a)及び(b)は偏向板の正面図、及び側面図であり、図7(a)(b)及び(c)は図5(a)のC-C、D-D、及びE―Eの断面図であり、図7(d)及び(e)は図7(b)のF-F、G-G断面図である。また、図8(a)及び(b)は円偏波型偏波部の正面側外観斜視図、及び背面側に外観斜視図である。
<Circular polarization type polarization part>
FIGS. 5 (a), (b) and (c) are a front view, a top view, and a rear view of a circular polarization type polarization unit according to one embodiment of the present invention; 7 (a), 7 (b) and 7 (c) are cross-sectional views taken along the lines CC, DD, and EE of FIG. 5 (a). 7 (d) and 7 (e) are cross-sectional views taken along the line FF and G-G in FIG. 7 (b). 8A and 8B are a front external perspective view of the circular polarization type polarization unit and an external perspective view on the back side.
 円偏波型偏波部100は、内部空間8の第1面M1側の開口部に接続配置される。
 円偏波型偏波部100は、銅、鉄、アルミ、真鍮、メタマテリアル、又はプラスチックに金属メッキを施したものなどの導電材料から成る長方体(直方体、或いは立方体)のブロック101内に導波空間110を貫通形成したものである。即ち、このブロック101の対向する2つの面N1とN2を貫通するように導波空間110が形成されている。
 本例では、ブロック101の奥行き長L1を22mm、高さL2を14mm、横幅L3を24mmとしたものを一例として説明する。
 この導波空間110は、第1面N1側の開口が円形である一方で、第2面N2側の開口は横長の長方形である。
 即ち、導波空間110は第1面N1の開口部側から内部に10mm入り込んだ部位までが同一直径(φ8.24mm)の円筒状となっている。この円筒状の導波空間部分を円形導波管部位120と称する。円形導波管部位120内には、斜めの姿勢でテフロン(登録商標)(誘電体)などから成る0.5mm厚さで四角形の偏向板140が円形の中心部を通って斜めに固定されている。つまり、偏向板140の長さは円形導波管部位120の直径に相当している。
The circular polarization type polarization unit 100 is connected to the opening on the first surface M 1 side of the internal space 8.
The circular polarization type polarization unit 100 is formed in a block 101 of a rectangular parallelepiped (or a cube) made of a conductive material such as copper, iron, aluminum, brass, metamaterial, or plastic metal plated. The waveguide space 110 is formed through. That is, the waveguide space 110 is formed to penetrate the two opposing surfaces N1 and N2 of the block 101.
In this example, a block 101 having a depth L1 of 22 mm, a height L2 of 14 mm, and a width L3 of 24 mm will be described as an example.
In the waveguide space 110, the opening on the first surface N1 side is circular, while the opening on the second surface N2 side is a horizontally long rectangle.
That is, the waveguide space 110 has a cylindrical shape with the same diameter (φ 8.24 mm) from the opening side of the first surface N1 to a portion 10 mm inside. This cylindrical waveguide space portion is referred to as a circular waveguide portion 120. In the circular waveguide portion 120, a 0.5 mm thick rectangular deflection plate 140 made of Teflon (dielectric material) or the like is obliquely fixed through a circular central portion in an oblique posture. There is. That is, the length of the deflection plate 140 corresponds to the diameter of the circular waveguide portion 120.
 また、導波空間110は第2面N2の開口部側から内部に12mm入り込んだ部位までが略四角柱状の空間であり、この導波空間部分を方形導波管部位130と称する。
 円形導波管部位120の内奥部側開口と方形導波管部位130の内奥部側開口とは、夫々の中心軸A1、A2が直線状に一致した状態で連通している。
 また、円形導波管部位120の内奥部側の円形の開口部(周縁部121a)は方形導波管部位130の内奥部側の円形の開口部(周縁部131a、132a)を越えて延在しておらず、方形導波管部位130の内奥部側の開口部の位置で終端している。従って、円形導波管部位120の内奥部側の円形の開口部(周縁部121a)と、方形導波管部位130の内奥部側の円形の開口部(周縁部131a、132a)とは形状が一致した円形となっている。
 従って、偏向板140は円形導波管部位120の軸方向長内に留まり、方形導波管部位130の内奥部側の開口部を越えて延在していない。
The waveguide space 110 is a space having a substantially square pole shape from the opening side of the second surface N2 to a portion 12 mm inside, and this waveguide space portion is referred to as a rectangular waveguide portion 130.
The inner back side opening of the circular waveguide portion 120 and the inner back side opening of the rectangular waveguide portion 130 are in communication with each other in a state in which the central axes A1 and A2 are in line.
In addition, the circular opening (peripheral part 121 a) on the inner back part side of the circular waveguide part 120 is beyond the circular opening ( peripheral parts 131 a, 132 a) on the inner back part side of the rectangular waveguide part 130. It does not extend and ends at the position of the opening on the inner side of the rectangular waveguide portion 130. Therefore, the circular opening (peripheral part 121a) on the inner back part side of the circular waveguide part 120 and the circular opening ( peripheral parts 131a, 132a) on the inner back part side of the rectangular waveguide part 130 are It has a circular shape that matches the shape.
Thus, the deflector plate 140 remains within the axial length of the circular waveguide portion 120 and does not extend beyond the inner back opening of the rectangular waveguide portion 130.
 方形導波管部位130の第2面N2(外側)の開口部は長方形状であるが、その内奥部側の開口部形状は円形導波管部位120の内奥部側開口(円形)と同等の形状、寸法の円形となっている。即ち、方形導波管部位130の外側開口部の2つの対向する短辺131(4.3mm)は外側開口部では直線であるが、内奥部131aでは円形導波管部位120の内奥部側開口(円形:φ8.24mm)の周縁部121aと整合するように円弧状になっている。つまり、各短辺131の円弧状の内奥部131aは円形導波管部位120の内奥部側開口(円形)の周縁にて終端している。
 図5、図7、図8などに示すように各短辺131間の間隔L4(8.6mm)は、円形導波管部位120の内奥部側開口の直径(φ8.24mm)よりも若干大きいため、内奥部に向かう程短辺間の間隔がテーパー状に漸減(縮小)して最後には短辺の内奥部131aは円形導波管部位120の内奥部側開口(円形)の周縁と整合している。
The opening on the second surface N2 (outside) of the rectangular waveguide portion 130 is rectangular, but the shape of the opening on the inner back side is the inner back opening (circular) of the circular waveguide portion 120 It is circular with the same shape and size. That is, although the two opposite short sides 131 (4.3 mm) of the outer opening of the rectangular waveguide portion 130 are straight at the outer opening, the inner back portion of the circular waveguide portion 120 at the inner back portion 131 a It has an arc shape so as to be aligned with the peripheral edge portion 121a of the side opening (circular shape: φ 8.24 mm). That is, the arc-shaped inner back portion 131 a of each short side 131 is terminated at the periphery of the inner back portion opening (circular) of the circular waveguide portion 120.
As shown in FIG. 5, FIG. 7, FIG. 8, etc., the distance L4 (8.6 mm) between the short sides 131 is slightly smaller than the diameter (.phi. 8.24 mm) of the inner back side opening of the circular waveguide portion 120. As it is larger, the distance between the short sides gradually decreases (reduces) toward the inner back part, and finally the inner back part 131a of the short side is the inner back opening (circular) of the circular waveguide portion 120 Aligned with the rim of the
 一方、方形導波管部位130の外側開口部の2つの対向する長辺132間の間隔L5(4.3mm)は円形導波管部位120の内奥部側開口の直径よりも小さいため、内奥部に向かう程長辺間の間隔L5がテーパー状に漸増(拡開)して最後には長辺の内奥部132aは円形導波管部位120の内奥部側開口(円形)の周縁と整合している。
 各短辺131の内奥部131aと、各長辺132の内奥部132aが円形に連設されることにより、円形導波管部位120の内奥部側開口と合致した円形状を形成している。
 また、長方形の外側開口部を除いた方形導波管部位130の内部側の内壁133は、図7、図8等に示すように曲面状となっている。
 以上のように形成された円偏波型偏波部100は、第1の導波管部材10の内部空間8の非閉塞面側(開口面側)に接続されて、輻射器54bから輻射された電波を円偏波に変換する。
On the other hand, since the distance L5 (4.3 mm) between the two opposite long sides 132 of the outer opening of the rectangular waveguide portion 130 is smaller than the diameter of the inner opening of the circular waveguide portion 120, The distance L5 between the long sides gradually increases (spreads out) toward the back part, and the inner back part 132a of the long side is finally the periphery of the inner back side opening (circular) of the circular waveguide portion 120. It is consistent with.
An inner back portion 131a of each short side 131 and an inner back portion 132a of each long side 132 are connected in a circle, thereby forming a circular shape that matches the inner back side opening of the circular waveguide portion 120. ing.
Further, the inner wall 133 on the inner side of the rectangular waveguide portion 130 excluding the rectangular outer opening is curved as shown in FIGS.
The circular polarization type polarization section 100 formed as described above is connected to the non-closing surface side (opening surface side) of the internal space 8 of the first waveguide member 10, and is radiated from the radiator 54b. Convert the radio waves into circularly polarized waves.
<直線偏波型ホーン部200A>
 直線偏波型ホーン部200Aは、内部空間8の第1面M1側の開口部に接続配置される。
 図1~図3に示すように、直線偏波型ホーン部200Aは、銅、鉄、アルミ、真鍮、メタマテリアル、又はプラスチックに金属メッキを施したものなどの板材を図示のようなホーン形状に構成したものであり、本例では、台形状の4枚の板材201a~201d(図3)の側端辺同士を固定一体化することにより、一端開口が小径の四角形となり、他端開口が大径の四角形となっている。
 直線偏波型ホーン部200Aは、切頭四角錐状のホーンにより直線偏波とする。なお、切頭とは、四角錘の頂部から所定長の部位を中心軸A1、A2と直交する面で切断した状態、形状を意味する。
 このように、ホーン部200は、切頭四角錐状の直線偏波型ホーン部200Aにより直線偏波とすることで、指向特性を持った直線偏波特性が容易に得ることができ、且つ指向方向外から到来する電波を遮断するとともに利得を向上することができる。
<Linear polarization type horn unit 200A>
The linearly polarized horn unit 200A is connected to the opening on the first surface M1 side of the internal space 8.
As shown in FIG. 1 to FIG. 3, the linearly polarized horn unit 200A is made of a plate material such as copper, iron, aluminum, brass, metamaterial, or plastic plated with metal in a horn shape as illustrated. In this example, by fixing and integrating the side edges of the four trapezoidal plate materials 201a to 201d (FIG. 3), the one end opening becomes a quadrangle having a small diameter and the other end opening is large. It is a square of diameter.
The linearly polarized horn unit 200A is linearly polarized by a truncated square pyramid horn. In addition, truncated means the state and shape which cut | disconnected the site | part of predetermined length from the top part of a square weight by the surface orthogonal to central-axis A1, A2.
As described above, by setting the horn unit 200 to be linearly polarized by the truncated square pyramid-shaped linearly polarized horn unit 200A, it is possible to easily obtain linear polarization characteristics having directivity characteristics, and It is possible to block the radio wave coming from outside the pointing direction and to improve the gain.
<円偏波型ホーン部200B>
 図9(a)は本発明の他の実施形態(16mmホーン)に係るアンテナ装置の円偏波型ホーン部200Bを示す外観斜視図であり、(b)は正面図、(c)は側面図、(d)は背面図である。図9(e)(f)及び(g)は、本発明の他の実施形態(15mmホーン)に係るアンテナ装置の円偏波型ホーン部200Bの正面図、側面図、及び背面図である。
 円偏波型ホーン部200Bは切頭円錐状であり、円偏波型偏波部100の第1面N1側の円形に開口に接続配置される。
 円偏波型ホーン部200Bの小径の円形開口部は、円偏波型偏波部100の第1面N1側の開口と同形状とし、溶着などにより固定される。
 円偏波型ホーン部200Bは、切頭円錐状のホーンにより円偏波とする。なお、切頭とは、円錐の頂部から所定長の部位を中心軸A1、A2と直交する面で切断した状態、形状を意味する。
 このように、ホーン部200は、切頭円錐状の円偏波型ホーン部200Bにより円偏波とすることで、指向特性を持った円偏波特性が容易に得ることができ、且つ指向方向外から到来する電波を遮断するとともに利得を向上することができる。
<Circular polarized horn unit 200B>
Fig.9 (a) is an external appearance perspective view which shows the circular polarization type horn part 200B of the antenna apparatus which concerns on other embodiment (16 mm horn) of this invention, (b) is a front view, (c) is a side view. , (D) is a rear view. FIGS. 9 (e), (f) and (g) are a front view, a side view and a rear view of a circular polarized horn unit 200B of an antenna device according to another embodiment (15 mm horn) of the present invention.
The circularly polarized horn unit 200B has a frusto-conical shape, and the circularly polarized horn unit 200B is connected to the opening in a circular shape on the first surface N1 side of the circularly polarized polarizer 100.
The small-diameter circular opening of the circular polarization type horn section 200B has the same shape as the opening on the first surface N1 side of the circular polarization type polarization section 100, and is fixed by welding or the like.
The circularly polarized horn unit 200B is circularly polarized by a truncated conical horn. In addition, truncated means the state and shape which cut | disconnected the site | part of predetermined length from the top part of a cone by the surface orthogonal to central-axis A1, A2.
As described above, the horn portion 200 can obtain circular polarization characteristics with directivity characteristics easily by making it circularly polarized by the truncated conical circular polarization type horn portion 200B, and directivity It is possible to block radio waves coming from outside the direction and to improve the gain.
<アンテナ装置の変形例>
 図10(a)~(d)は本発明の一実施形態に係るアンテナ装置の変形例を示す側面図である。図11は、本発明の一実施形態に係るアンテナ装置の変形例の構成を表す図表を示す図である。
 図10(a)は、同軸導波管変換部6と、コネクタ50とを備えた直線偏波カプラ1Aの構成を示している。詳しくは、同軸導波管変換部6は、第1の導波管部材10と、第2の導波管部材20と、閉塞部材30とを備えている。
 図10(b)は、円偏波に変換する円偏波型偏波部100と、同軸導波管変換部6と、コネクタ50とを備えた円偏波カプラ1Bの構成を示している。
 図10(c)は、直線偏波型ホーン部200Aと、同軸導波管変換部6と、コネクタ50とを備えた直線偏波高利得高アイソレーションカプラ1Cの構成を示している。
 図10(d)は、円偏波型ホーン部200Bと、円偏波型偏波部100と、同軸導波管変換部6と、コネクタ50とを備えた円偏波高利得高アイソレーションカプラ1Dの構成を示している。
<Modification of Antenna Device>
10 (a) to 10 (d) are side views showing modifications of the antenna device according to the embodiment of the present invention. FIG. 11 is a diagram showing a chart representing the configuration of a modification of the antenna device according to an embodiment of the present invention.
FIG. 10A shows the configuration of a linearly polarized light coupler 1A provided with a coaxial waveguide conversion unit 6 and a connector 50. FIG. Specifically, the coaxial waveguide conversion unit 6 includes the first waveguide member 10, the second waveguide member 20, and the closing member 30.
FIG. 10B shows the configuration of a circular polarization coupler 1B provided with a circular polarization type polarization unit 100 for converting into circular polarization, a coaxial waveguide conversion unit 6, and a connector 50.
FIG. 10C shows the configuration of a linearly polarized high gain high isolation coupler 1C provided with a linearly polarized horn unit 200A, a coaxial waveguide conversion unit 6, and a connector 50.
FIG. 10D shows a circularly polarized high gain high isolation coupler 1D including a circularly polarized horn unit 200B, a circularly polarized polarization unit 100, a coaxial waveguide conversion unit 6, and a connector 50. Shows the configuration of
<アンテナ装置の各変形例の性能>
 アンテナ装置の各変形例における通過振幅特性、反射減衰量特性、EVM値、利得、VSWRを以下の表に示す。
<Performance of Each Modified Example of Antenna Device>
The pass amplitude characteristic, return loss characteristic, EVM value, gain, and VSWR in the respective modified examples of the antenna device are shown in the following table.
Figure JPOXMLDOC01-appb-T000001

 第1の導波管部材10には、周波数帯域が21.7GHz~33.0GHz、内部空間8の内径寸法が8.636mm×4.318mm、EIA規格のWR-34を満たす方形導波管を使用する。
 このように、直線偏波カプラ1Aは、自アンテナ装置から放射された電波の通過振幅特性は、特定の周波数帯に渡って変動幅が5dB以内であるので、良好な電波の通過振幅特性と、EVM値を得ることができる。
 また、各カプラ(アンテナ装置)から放射された電波の全反射における反射減衰量特性は、特定の周波数帯に渡って変動幅が10dB以内であるので、良好なEVM値を得ることができる。
Figure JPOXMLDOC01-appb-T000001

The first waveguide member 10 is a rectangular waveguide satisfying a frequency band of 21.7 GHz to 33.0 GHz, an inner diameter dimension of the inner space 8 of 8.636 mm × 4.318 mm, and an EIA standard WR-34. use.
As described above, since the linearly polarized light coupler 1A has a variation width of 5 dB or less over the specific frequency band, the passing amplitude characteristic of the radio wave emitted from the own antenna device has a good passing amplitude characteristic of the radio wave, EVM values can be obtained.
Further, the reflection attenuation amount characteristic in total reflection of radio waves radiated from each coupler (antenna apparatus) has a fluctuation range of 10 dB or less over a specific frequency band, so that a good EVM value can be obtained.
 直線偏波高利得高アイソレーションカプラ1C、円偏波高利得高アイソレーションカプラ1Dにあっては、実際の効果として、外部から飛来する電波を遮蔽することを表すアイソレーション性が良く、被測定物である携帯電話器上の2箇所に本アンテナを配置して試験を行っても、2つのアンテナ間の混信を防止することができる。
 同軸導波管変換部6、円偏波型偏波部100、及びホーン部200の材質は、銅、鉄、アルミ、真鍮、メタマテリアル、プラスチックに金属メッキを施したもの、又はプラスチックや樹脂に金属コーティングを施したもの、からなることで、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制することができ、且つ指向特性を持つことで指向方向外の遮断性能を向上することができ、さらに良好なEVM値と利得も得ることができる。
 なお、プラスチックや樹脂に金属コーティングを施す手法としては、CVD法(化学的蒸着法)、PVD法(物理的蒸着法)、金属ワイヤー溶射法、金属パウダー溶射法等が知られている。
In the linear polarization high gain high isolation coupler 1C and the circular polarization high gain high isolation coupler 1D, as an actual effect, the isolation property representing shielding of radio waves coming from the outside is good, and it is an object to be measured. Even if this antenna is placed at two places on a mobile phone and tested, interference between the two antennas can be prevented.
The material of the coaxial waveguide conversion unit 6, the circular polarization type polarization unit 100, and the horn unit 200 is copper, iron, aluminum, brass, metamaterial, plastic plated metal, plastic or resin By forming the metal coating, it is possible to suppress the occurrence of the disturbance of the pass amplitude characteristic in the band and the disturbance of the return loss characteristic in the band due to the total reflection, and have the directivity characteristic. This can improve the blocking performance outside the pointing direction, and can also obtain good EVM values and gains.
In addition, CVD (chemical vapor deposition), PVD (physical vapor deposition), metal wire spraying, metal powder spraying, etc. are known as a method of applying metal coating to plastics and resins.
<アンテナシステム、及び計測システム>
 図12(a)は本発明の一実施形態に係るアンテナ装置を用いたアンテナシステム、及び計測システムを示すブロック図、図12(b)は当該計測システムの校正に用いるキャリブレーションキットを示す斜視図である。
 図12(a)に示すアンテナシステム300は、アンテナ装置として、直線偏波カプラ1A、円偏波カプラ1B、直線偏波高利得高アイソレーションカプラ1C、円偏波高利得高アイソレーションカプラ1Dの何れか1つを1対備え、各アンテナ装置を第1アンテナ装置301及び第2アンテナ装置303とし、第1アンテナ装置301から放射された電波を、第1アンテナ装置301の放射方向に対向して配置された第2アンテナ装置303により受信する。
<Antenna system and measurement system>
Fig.12 (a) is a block diagram which shows the antenna system which used the antenna apparatus which concerns on one Embodiment of this invention, and a measurement system, FIG.12 (b) is a perspective view which shows the calibration kit used for the calibration of the said measurement system. It is.
The antenna system 300 shown in FIG. 12A is any one of a linear polarization coupler 1A, a circular polarization coupler 1B, a linear polarization high gain high isolation coupler 1C, and a circular polarization high gain high isolation coupler 1D as an antenna device. Each antenna device is provided as a first antenna device 301 and a second antenna device 303, and radio waves radiated from the first antenna device 301 are disposed to face each other in the radiation direction of the first antenna device 301. The signal is received by the second antenna device 303.
 計測システム310は、ネットワークアナライザ305、モニタ313を備えており、ネットワークアナライザ305の端子P1と第1アンテナ装置301のコネクタとの間に同軸ケーブル307を接続し、端子P2と第2アンテナ装置303のコネクタとの間に同軸ケーブル309を接続している。
 さらに、ネットワークアナライザ305のモニタ端子305mとモニタ313の端子313mとの間にモニタケーブル311を接続している。なお、ネットワークアナライザ305には、例えばアンリツ株式会社製のMS46322Bを用いている。
 アンテナ装置は、被測定物に対して近接(密着)して配置しておき、例えば被測定物から放射される電波を測定するために用いる。被測定物としては、携帯電話器、モバイル端末等の電磁波を発生するものを対象としており、例えば、23GHz~29GHzの周波数帯を利用する次世代携帯電話(5G)を対象としている。
 計測システム310は、アンテナシステム300に備えられた第1アンテナ装置301と第2アンテナ装置303との間の結合特性、反射減衰量特性を測定することに適している。
The measurement system 310 includes a network analyzer 305 and a monitor 313. The coaxial cable 307 is connected between the terminal P1 of the network analyzer 305 and the connector of the first antenna device 301, and the terminal P2 and the second antenna device 303 are connected. A coaxial cable 309 is connected between the connector and the connector.
Furthermore, a monitor cable 311 is connected between the monitor terminal 305 m of the network analyzer 305 and the terminal 313 m of the monitor 313. As the network analyzer 305, for example, MS46322B manufactured by Anritsu Corporation is used.
The antenna device is disposed close to (in close contact with) the object to be measured, and is used, for example, to measure radio waves radiated from the object to be measured. The object to be measured is a device that generates electromagnetic waves, such as a cellular phone, a mobile terminal, etc. For example, the object is a next-generation cellular phone (5G) using a frequency band of 23 GHz to 29 GHz.
The measurement system 310 is suitable for measuring the coupling characteristic between the first antenna device 301 and the second antenna device 303 provided in the antenna system 300 and the return loss characteristic.
 このように、アンテナ装置1は被測定物に対して所望の位置に配置、または密接配置され、被測定物から放射される電波を受信する。帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制されていることから、良好なEVM値を得ることができる。
 また、アンテナ装置1は、被測定物に対して所望の位置に配置、または密接して使用され、被測定物に電波を放射する。帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制せれていることから、被測定物に良好な電波を放射することができる。
 また、第1アンテナ装置301から放射された電波を、第1アンテナ装置301の放射方向に対向して配置された第2アンテナ装置303により受信することで、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制することができ、良好なEVM値も得ることができる。
 さらに、第1アンテナ装置301と第2アンテナ装置303との間に、被測定物を配置することで、被測定物から放射される電波、又は、被測定物で受信された場合に、被測定物による影響度合いを測定することができる。
As described above, the antenna device 1 is disposed at a desired position or in close proximity to the device under test, and receives radio waves emitted from the device under test. Since the disturbance of the pass amplitude characteristic in the band and the disturbance of the return loss characteristic in the band due to the total reflection are suppressed, it is possible to obtain a good EVM value.
In addition, the antenna device 1 is disposed at a desired position with respect to the object to be measured or used in close proximity, and radiates radio waves to the object to be measured. Since the disturbance of the passing amplitude characteristic in the band and the disturbance of the return loss characteristic in the band due to the total reflection are suppressed, it is possible to radiate a good radio wave to the object to be measured.
In addition, the radio wave radiated from the first antenna device 301 is received by the second antenna device 303 disposed opposite to the radiation direction of the first antenna device 301, so that the disturbance of the passing amplitude characteristic in the band or It is possible to suppress the occurrence of the disturbance of the return loss characteristic in the band due to the total reflection, and to obtain a good EVM value.
Furthermore, by arranging the device under test between the first antenna device 301 and the second antenna device 303, it is possible to measure the radio wave emitted from the device under test or when it is received by the device under test, The degree of influence by objects can be measured.
 図12(a)に示す計測システム310では、図12(b)に示すキャリブレーションキット320を校正に用いる。
 キャリブレーションキット320には、コネクタ320S(SHORT)、コネクタ320o(OPEN)、コネクタ320L(LOAD)、コネクタ320T(THRU)という4つのコネクタを備えている。なお、キャリブレーションキット320には、例えばアンリツ株式会社製のTOSLKF50A-40を用いている。
In a measurement system 310 shown in FIG. 12A, a calibration kit 320 shown in FIG. 12B is used for calibration.
The calibration kit 320 includes four connectors: a connector 320S (SHORT), a connector 320o (OPEN), a connector 320L (LOAD), and a connector 320T (THRU). As the calibration kit 320, for example, TOSLKF 50A-40 manufactured by Anritsu Corporation is used.
<測定システムのキャリブレーション手順>
 図13は、図12に示す測定システムのキャリブレーション手順を示すフローチャートである。詳しくは、アンテナ装置1の反射減衰量特性、結合特性の測定に先だって行う、測定システム310のキャリブレーション手順を示している。
 ステップS5では、ネットワークアナライザ305に対して測定周波数(例えば20GHz~30GHz)を入力する。
 ステップS10では、ネットワークアナライザ305に対してキャリブレーションCALモードに設定する。
 ステップS15では、ネットワークアナライザ305の端子P1に接続されている同軸ケーブル307の先端にキャリブレーションキットのコネクタ320Sを接続して、同軸ケーブル307の先端を短絡状態(SHORT)にする。
 ステップS20では、ユーザの操作に応じてネットワークアナライザ305が測定器内演算を行う。
 ステップS25では、ネットワークアナライザ305の端子P1に接続されている同軸ケーブル307の先端にキャリブレーションキットのコネクタ320oを接続して、同軸ケーブル307の先端を開放状態(OPEN)にする。
 ステップS30では、ユーザの操作に応じてネットワークアナライザ305が測定器内演算を行う。
 ステップS35では、ネットワークアナライザ305の端子P1に接続されている同軸ケーブル307の先端にキャリブレーションキットのコネクタ320Lを接続して、同軸ケーブル307の先端に負荷(例えば50Ω)が接続された負荷状態(LOAD)にする。
 ステップS40では、ユーザの操作に応じてネットワークアナライザ305が測定器内演算を行う。
<Calibration procedure of measurement system>
FIG. 13 is a flowchart showing a calibration procedure of the measurement system shown in FIG. In detail, the calibration procedure of the measurement system 310 performed prior to the measurement of the return loss characteristic of the antenna device 1 and the coupling characteristic is shown.
In step S5, a measurement frequency (for example, 20 GHz to 30 GHz) is input to the network analyzer 305.
In step S10, the network analyzer 305 is set to the calibration CAL mode.
In step S15, the connector 320S of the calibration kit is connected to the end of the coaxial cable 307 connected to the terminal P1 of the network analyzer 305 so that the end of the coaxial cable 307 is short circuited (SHORT).
In step S20, the network analyzer 305 performs in-measuring-apparatus operation according to the user's operation.
In step S25, the connector 320o of the calibration kit is connected to the end of the coaxial cable 307 connected to the terminal P1 of the network analyzer 305, and the end of the coaxial cable 307 is opened (OPEN).
In step S30, the network analyzer 305 performs in-measuring-apparatus operation according to the user's operation.
In step S35, the connector 320L of the calibration kit is connected to the end of the coaxial cable 307 connected to the terminal P1 of the network analyzer 305, and a load (for example, 50 Ω) is connected to the end of the coaxial cable 307 Set to LOAD).
In step S40, the network analyzer 305 performs in-measuring-apparatus operation according to the user's operation.
 ステップS45では、ネットワークアナライザ305の端子P2に接続されている同軸ケーブル309の先端にキャリブレーションキットのコネクタ320Sを接続して、同軸ケーブル309の先端を短絡状態(SHORT)にする。
 ステップS50では、ユーザの操作に応じてネットワークアナライザ305が測定器内演算を行う。
 ステップS55では、ネットワークアナライザ305の端子P2に接続されている同軸ケーブル309の先端にキャリブレーションキットのコネクタ320oを接続して、同軸ケーブル309の先端を開放状態(OPEN)にする。
 ステップS60では、ユーザの操作に応じてネットワークアナライザ305が測定器内演算を行う。
 ステップS65では、ネットワークアナライザ305の端子P2に接続されている同軸ケーブル309の先端にキャリブレーションキットのコネクタ320Lを接続して、同軸ケーブル309の先端に負荷(例えば50Ω)が接続された負荷状態(LOAD)にする。
 ステップS70では、ユーザの操作に応じてネットワークアナライザ305が測定器内演算を行う。
In step S45, the connector 320S of the calibration kit is connected to the end of the coaxial cable 309 connected to the terminal P2 of the network analyzer 305 so that the end of the coaxial cable 309 is in a short circuit state (SHORT).
In step S50, the network analyzer 305 performs in-measuring-machine operation according to the user's operation.
In step S55, the connector 320o of the calibration kit is connected to the end of the coaxial cable 309 connected to the terminal P2 of the network analyzer 305, and the end of the coaxial cable 309 is opened (OPEN).
In step S60, the network analyzer 305 performs in-measuring-apparatus operation according to the user's operation.
In step S65, the connector 320L of the calibration kit is connected to the end of the coaxial cable 309 connected to the terminal P2 of the network analyzer 305, and a load (for example, 50 Ω) is connected to the end of the coaxial cable 309 Set to LOAD).
In step S70, the network analyzer 305 performs in-measuring-apparatus operation according to the user's operation.
 ステップS75では、ネットワークアナライザ305の端子P1、P2に接続されている同軸ケーブル307、309の先端にキャリブレーションキットのコネクタ320Tを接続して、同軸ケーブル307、309の先端同士を通過状態(THRU)にする。
 ステップS70では、ユーザの操作に応じてネットワークアナライザ305が測定器内演算を行う。
 この結果、ネットワークアナライザ305、同軸ケーブル307、309を含む測定システムに対して、設定された周波数帯において振幅特性、反射減衰量特性、位相特性等をフラットな状態に校正することができる。
In step S75, the connector 320T of the calibration kit is connected to the ends of the coaxial cables 307 and 309 connected to the terminals P1 and P2 of the network analyzer 305, and the ends of the coaxial cables 307 and 309 pass each other (THRU) Make it
In step S70, the network analyzer 305 performs in-measuring-apparatus operation according to the user's operation.
As a result, with respect to the measurement system including the network analyzer 305 and the coaxial cables 307 and 309, it is possible to calibrate the amplitude characteristic, the return loss characteristic, the phase characteristic and the like in a flat state in the set frequency band.
<反射減衰量測定手順>
 図14は、図12に示す計測システムにおいて行う反射減衰量測定手順を示すフローチャートである。
 ステップS105では、ネットワークアナライザ305の端子P1に接続されている同軸ケーブル307の先端に第1アンテナ装置301のコネクタを接続して、測定可能状態にする。
 ステップS110では、ユーザの操作に応じてネットワークアナライザ305が測定器内演算を行い、モニタ313に反射減衰量を表示する。この際、ネットワークアナライザ305の端子P1から出力された周波数帯のスイープ中の電力が、第1アンテナ装置301で反射され、第1アンテナ装置301から帰ってきた電力を測定する。
<Return loss measurement procedure>
FIG. 14 is a flowchart showing a procedure of measuring the return loss amount performed in the measurement system shown in FIG.
In step S105, the connector of the first antenna device 301 is connected to the end of the coaxial cable 307 connected to the terminal P1 of the network analyzer 305 to make it possible to perform measurement.
In step S110, the network analyzer 305 performs in-measuring-machine operation according to the user's operation, and displays the return loss on the monitor 313. At this time, the power in the sweep of the frequency band output from the terminal P1 of the network analyzer 305 is reflected by the first antenna device 301, and the power returned from the first antenna device 301 is measured.
<組立直後の代表特性、調整後の代表特性>
 図15(a)(b)は直線偏波カプラ1Aの組立直後の代表特性、調整後の代表特性を示すグラフ図である。
 図15(a)に示す直線偏波カプラ1Aの組立直後の代表特性にあっては、25GHz~29GHzの周波数帯域内において、反射減衰量特性値が-10dB付近のレベルに集中し、23GHz付近に-35dB以下の強い共振を生じている。
 そこで、第1の導波管部材10の一面6aに対向して第2の導波管部材20の位置を微調整可能に取り付けることで、内部空間8内に突出した中心導体60の先端部60aの位置を微調整することができる。この結果、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制することができる。
 この結果、図15(b)に示す直線偏波カプラ1Aの調整後の代表特性にあっては、25GHz~29GHzの周波数帯域内において、反射減衰量特性値が-15dB付近にレベルが改善され、強い共振も-30dBのレベルに改善している。
<Typical characteristics immediately after assembly, Typical characteristics after adjustment>
FIGS. 15 (a) and 15 (b) are graphs showing representative characteristics immediately after assembly of the linear polarization coupler 1A and representative characteristics after adjustment.
In the representative characteristics immediately after assembly of the linear polarization coupler 1A shown in FIG. 15A, the return loss characteristic value is concentrated at a level near -10 dB within the frequency band of 25 GHz to 29 GHz, and around 23 GHz. A strong resonance of -35 dB or less is generated.
Therefore, the tip portion 60 a of the central conductor 60 protruding into the internal space 8 is mounted by facing the one surface 6 a of the first waveguide member 10 so as to finely adjust the position of the second waveguide member 20. You can fine-tune the position of. As a result, it is possible to suppress the occurrence of the disturbance of the passing amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to the total reflection.
As a result, in the representative characteristics after adjustment of the linear polarization coupler 1A shown in FIG. 15 (b), the level is improved to around -15 dB in the return loss characteristic value in the frequency band of 25 GHz to 29 GHz, The strong resonance has also been improved to a level of -30 dB.
<結合損失特性の測定手順>
 図16は、図12に示す計測システムにおいて行われる結合損失特性の測定手順を示すフローチャートである。
 ステップS155では、ネットワークアナライザ305の端子P1に接続されている同軸ケーブル307の先端に第1アンテナ装置301のコネクタを接続して、測定可能状態にする。
 ステップS160では、ネットワークアナライザ305が測定器内演算を行い、モニタ313に第1アンテナ装置301の反射減衰量を表示(図17(a))する。
 ステップS165では、ネットワークアナライザ305の端子P2に接続されている同軸ケーブル309の先端に第2アンテナ装置303のコネクタを接続して、測定可能状態にする。
 ステップS170では、ネットワークアナライザ305が測定器内演算を行い、モニタ313に第2アンテナ装置303の反射減衰量を表示(図17(d))する。
 ステップS175では、第1アンテナ装置301と第2アンテナ装置303とを対向して近接(密接)する。
 ステップS180では、ネットワークアナライザ305が測定器内演算を行い、第1アンテナ装置301と第2アンテナ装置303の間の結合特性(図17(b))、及び反射減衰量(図17(c))をモニタ313に表示する。
<Measurement procedure of coupling loss characteristics>
FIG. 16 is a flowchart showing the measurement procedure of the coupling loss characteristic performed in the measurement system shown in FIG.
In step S155, the connector of the first antenna device 301 is connected to the end of the coaxial cable 307 connected to the terminal P1 of the network analyzer 305 to enable measurement.
In step S160, the network analyzer 305 performs in-measurement operation, and displays the return loss of the first antenna device 301 on the monitor 313 (FIG. 17A).
In step S165, the connector of the second antenna device 303 is connected to the end of the coaxial cable 309 connected to the terminal P2 of the network analyzer 305 to make it possible to perform measurement.
In step S170, the network analyzer 305 performs in-measurement operation, and displays the return loss of the second antenna device 303 on the monitor 313 (FIG. 17D).
In step S175, the first antenna device 301 and the second antenna device 303 face each other and approach (close).
In step S180, the network analyzer 305 performs in-measurement operation, and the coupling characteristic between the first antenna device 301 and the second antenna device 303 (FIG. 17B), and the return loss (FIG. 17C). Is displayed on the monitor 313.
<反射減衰量特性、結合特性の測定結果>
 図17(a)~(d)は計測システムにおいて行われた反射減衰量特性、結合特性の測定結果を示すグラフ図である。
 図17(a)に示す第1アンテナ装置301の反射減衰量特性にあっては、23GHz~29GHzの周波数帯において、-10dB以下のレベルを生じている。
 図17(d)に示す第2アンテナ装置303の反射減衰量特性にあっては、23GHz~29GHzの周波数帯において、-10dB以下のレベルを生じている。
 これに対して、図17(b)に示す第1アンテナ装置301と第2アンテナ装置303の間の結合特性の第1アンテナ装置側にあっては、23GHz~29GHzの周波数帯において、変動幅が3dB以内程度のレベル差で抑えられており、極めてフラットな結合特性を示している。
 一方、図17(c)に示す第1アンテナ装置301と第2アンテナ装置303の間の結合特性の第2アンテナ装置側にあっては、23GHz~29GHzの周波数帯において、変動幅が3dB以内程度のレベル差で抑えられており、極めてフラットな反射減衰量特性を示している。
<Measurement results of return loss characteristics, coupling characteristics>
FIGS. 17 (a) to 17 (d) are graphs showing the measurement results of the return loss characteristic and the coupling characteristic performed in the measurement system.
In the return loss characteristic of the first antenna device 301 shown in FIG. 17A, a level of −10 dB or less is generated in the frequency band of 23 GHz to 29 GHz.
In the return loss characteristic of the second antenna unit 303 shown in FIG. 17D, a level of −10 dB or less is generated in the frequency band of 23 GHz to 29 GHz.
On the other hand, on the first antenna device side of the coupling characteristic between the first antenna device 301 and the second antenna device 303 shown in FIG. 17B, the variation width is in the frequency band of 23 GHz to 29 GHz. The level difference is suppressed to within 3 dB, showing extremely flat coupling characteristics.
On the other hand, on the second antenna device side of the coupling characteristic between the first antenna device 301 and the second antenna device 303 shown in FIG. 17C, the fluctuation range is about 3 dB or less in the frequency band of 23 GHz to 29 GHz. It is suppressed by the level difference, and shows a very flat return loss characteristic.
<EVM測定に係るアンテナシステム、及び計測システム>
 図18は本発明の一実施形態に係るアンテナ装置を用いたEVM測定に係るアンテナシステム、及び計測システムを示すブロック図である。
 図18に示すアンテナシステム300は、アンテナ装置として、直線偏波カプラ1A、円偏波カプラ1B、直線偏波高利得高アイソレーションカプラ1C、円偏波高利得高アイソレーションカプラ1Dの何れか1つを1対備え、各アンテナ装置を第1アンテナ装置301及び第2アンテナ装置303とし、第1アンテナ装置301から放射された電波を、第1アンテナ装置301の放射方向に対向して配置された第2アンテナ装置303により受信する。
<Antenna system and measurement system related to EVM measurement>
FIG. 18 is a block diagram showing an antenna system and measurement system related to EVM measurement using the antenna device according to one embodiment of the present invention.
The antenna system 300 shown in FIG. 18 includes any one of a linear polarization coupler 1A, a circular polarization coupler 1B, a linear polarization high gain high isolation coupler 1C, and a circular polarization high gain high isolation coupler 1D as an antenna device. A second antenna apparatus including a first antenna apparatus 301 and a second antenna apparatus 303; and a radio wave radiated from the first antenna apparatus 301 disposed opposite to a radiation direction of the first antenna apparatus 301; The signal is received by the antenna device 303.
 計測システム340は、ベクトル信号発生器325、疑似送信機327、シグナルアナライザ329、パーソナルコンピュータPC331を備えており、ベクトル信号発生器325の端子325aと疑似送信機327の端子327aとの間に同軸ケーブル335を接続し、ベクトル信号発生器325の端子325bと疑似送信機327の端子327bとの間に同軸ケーブル333を接続する。なお、ベクトル信号発生器325、シグナルアナライザ329には、それぞれ例えばアンリツ株式会社製のMG3710A、MS2850Aを用いている。
 疑似送信機327の端子327cと第1アンテナ装置301のコネクタとの間に同軸ケーブル321を接続している。
 第2アンテナ装置303のコネクタとシグナルアナライザ329の端子329aとの間に同軸ケーブル323を接続している。
 さらに、シグナルアナライザ329の端子329bのUSB端子329mとパーソナルコンピュータPC331のUSB端子331aとの間にUSBケーブル137を接続している。
 アンテナ装置は、被測定物に対して近接(密着)して配置しておき、例えば被測定物から放射される電波を測定するために用いる。被測定物としては、携帯電話器、モバイル端末等の電磁波を発生するものを対象としており、例えば、23GHz~29GHzの周波数帯を利用する次世代携帯電話(5G)を対象としている。
 計測システム340は、アンテナシステム300に備えられた第1アンテナ装置301と第2アンテナ装置303との間と、被測定物と第2アンテナ装置303との間でのEVM特性を測定することに適している。
The measurement system 340 includes a vector signal generator 325, a pseudo transmitter 327, a signal analyzer 329, and a personal computer PC 331, and a coaxial cable between a terminal 325a of the vector signal generator 325 and a terminal 327 a of the pseudo transmitter 327. The connection 335 is connected, and the coaxial cable 333 is connected between the terminal 325 b of the vector signal generator 325 and the terminal 327 b of the pseudo transmitter 327. For the vector signal generator 325 and the signal analyzer 329, for example, MG3710A and MS2850A manufactured by Anritsu Co., Ltd. are used, respectively.
A coaxial cable 321 is connected between the terminal 327 c of the pseudo transmitter 327 and the connector of the first antenna device 301.
A coaxial cable 323 is connected between the connector of the second antenna device 303 and the terminal 329 a of the signal analyzer 329.
Furthermore, a USB cable 137 is connected between the USB terminal 329 m of the terminal 329 b of the signal analyzer 329 and the USB terminal 331 a of the personal computer PC 331.
The antenna device is disposed close to (in close contact with) the object to be measured, and is used, for example, to measure radio waves radiated from the object to be measured. The object to be measured is a device that generates electromagnetic waves, such as a cellular phone, a mobile terminal, etc. For example, the object is a next-generation cellular phone (5G) using a frequency band of 23 GHz to 29 GHz.
The measurement system 340 is suitable for measuring EVM characteristics between the first antenna device 301 and the second antenna device 303 provided in the antenna system 300 and between the object to be measured and the second antenna device 303. ing.
<EVM測定のキャリブレーション手順>
 図19は、図18に示す計測システムにおいて行われるキャリブレーション手順を示すフローチャートである。
 ステップS205では、疑似送信機327の端子327cに接続されている同軸ケーブル321を第1アンテナ装置301に接続し、第2アンテナ装置303のコネクタに接続されている同軸ケーブル323をシグナルアナライザ329の端子329aに接続する。
 ステップS210では、ベクトル信号発生器325のセットアップとして、周波数を28.5GHz、帯域幅を100MHz、変調をPre-Standard CP-OFDM Downlinkにそれぞれ設定する。
 ステップS215では、ベクトル信号発生器325の出力レベルを調整する。
 ステップS220では、シグナルアナライザ329の入力レベルを調整する。
 なお、ステップS215、及びステップS220では、パーソナルコンピュータPC331のモニタに表示されたシグナルアナライザ329のTotal EVM(rms)値(図21)が最小になるように調整する。
 なお、このアンテナ装置同士での結合によるEVM測定においては、EVM値が1%以下(0%に近いほど良い)にしておく必要がる。実際に、第5世代端末(5G)のEVM値を測定した際の測定数値に信頼性を与えるためであり、1%を超えてしまうと信頼性が無くなるからである。
 このため、アンテナ装置同士の結合特性の波形がフラットであり、結合時のEVM値が1%以下であり、アンテナ装置の全反射時の波形に乱れが無い状態にしておく必要がある。
<Calibration procedure of EVM measurement>
FIG. 19 is a flow chart showing a calibration procedure performed in the measurement system shown in FIG.
In step S205, the coaxial cable 321 connected to the terminal 327c of the pseudo transmitter 327 is connected to the first antenna device 301, and the coaxial cable 323 connected to the connector of the second antenna device 303 is a terminal of the signal analyzer 329. Connect to 329a.
In step S210, as the setup of the vector signal generator 325, the frequency is set to 28.5 GHz, the bandwidth to 100 MHz, and the modulation to Pre-Standard CP-OFDM Downlink.
In step S215, the output level of the vector signal generator 325 is adjusted.
In step S220, the input level of the signal analyzer 329 is adjusted.
In steps S215 and S220, adjustment is made so that the Total EVM (rms) value (FIG. 21) of the signal analyzer 329 displayed on the monitor of the personal computer PC 331 is minimized.
In the EVM measurement based on the coupling between the antenna devices, the EVM value needs to be 1% or less (the closer to 0%, the better). In fact, it is to give reliability to the measured value when measuring the EVM value of the fifth generation terminal (5G), and it becomes unreliable if it exceeds 1%.
For this reason, it is necessary to keep the waveform of the coupling characteristic between the antenna devices flat and to have an EVM value of 1% or less at the time of coupling, and to make the waveform at the time of total reflection of the antenna device free from disturbance.
<EVM測定手順>
 図20は図18に示す計測システムにおいて行われるEVM測定手順を示すフローチャートである。
 ステップS255では、疑似送信機327の端子327cに接続されている同軸ケーブル321を第1アンテナ装置301に接続する。
 ステップS260では、第2アンテナ装置303のコネクタに接続されている同軸ケーブル323をシグナルアナライザ329の端子329aに接続する。
 ステップS265では、第1アンテナ装置301と第2アンテナ装置303とを対向して近接(密接)する。
 ステップS270では、シグナルアナライザ329のモニタにEVM値(図21)が表示される。
 ここで、図21は、図18に示す計測システムにおいて測定されたEVM値を示すモニタ画面を示した図である。
 ここで、EVMとは、変調精度を指し、理想シンボル点(図示しない)に対し、実際の信号のシンボル点がどのくらいズレが生じているかを計算して%で表したものである。デジタル通信で多ビット変調を行うとシンボル数が多くなり、変調精度の要求が厳しくなる。変調精度が悪い、すなわちEVM値が悪いとシンボル点(図21、符号340)が乱れてデジタル通信の通信品質が悪いことを指し、最悪の場合、通信不能となる。
<EVM measurement procedure>
FIG. 20 is a flowchart showing an EVM measurement procedure performed in the measurement system shown in FIG.
In step S255, the coaxial cable 321 connected to the terminal 327c of the pseudo transmitter 327 is connected to the first antenna device 301.
In step S260, the coaxial cable 323 connected to the connector of the second antenna device 303 is connected to the terminal 329a of the signal analyzer 329.
In step S265, the first antenna device 301 and the second antenna device 303 face each other and approach (close).
In step S270, the EVM value (FIG. 21) is displayed on the monitor of the signal analyzer 329.
Here, FIG. 21 is a diagram showing a monitor screen showing EVM values measured in the measurement system shown in FIG.
Here, EVM refers to modulation accuracy, which is calculated by calculating how much the symbol point of the actual signal deviates with respect to the ideal symbol point (not shown) and is represented by%. When multi-bit modulation is performed in digital communication, the number of symbols increases, and the requirement for modulation accuracy becomes severe. If the modulation accuracy is bad, that is, if the EVM value is bad, it means that the symbol quality (symbol 340 in FIG. 21) is disturbed and the communication quality of the digital communication is bad. In the worst case, communication becomes impossible.
<直線偏波カプラの自由空間での反射減衰量特性>
 図22(a)は計測システムにおいて行われた直線偏波カプラの自由空間での反射減衰量特性の測定結果を示すグラフ図である。
 図22(a)に示す直線偏波カプラ1Aの自由空間での反射減衰量特性にあっては、目的とする23GHz~29GHzの周波数帯において、-10dB以下、実行力値として-15dB以下になっている。
<Return loss characteristics in free space of linear polarization coupler>
FIG. 22A is a graph showing measurement results of return loss characteristics in free space of the linear polarization coupler performed in the measurement system.
In the return loss characteristic in free space of the linear polarization coupler 1A shown in FIG. 22 (a), in the target frequency band of 23 GHz to 29 GHz, it becomes -10 dB or less and the execution power value becomes -15 dB or less ing.
<直線偏波カプラのカプラ結合特性>
 図22(b)は計測システムにおいて行われた直線偏波カプラのカプラ結合特性(通過振幅特性)の測定結果を示すグラフ図である。
 1対の直線偏波カプラ1A同士は、-10dB前後で結合されており、通過振幅特性は、目的とする23GHz~29GHzの周波数帯において、5dB程度の変動範囲内に入っており、従来のような急峻な波形の乱れ(図27(b))がなく、極めてフラットな結合特性を示している。
<Coupler Coupling Characteristics of Linear Polarization Coupler>
FIG. 22 (b) is a graph showing the measurement results of the coupler coupling characteristic (pass amplitude characteristic) of the linear polarization coupler performed in the measurement system.
One pair of linear polarization couplers 1A are coupled at around -10 dB, and the pass amplitude characteristic is within the fluctuation range of about 5 dB in the target frequency band of 23 GHz to 29 GHz, as in the prior art. There is no steep waveform disturbance (FIG. 27 (b)), and it shows extremely flat coupling characteristics.
<直線偏波カプラの全反射での反射減衰量特性>
 図23(a)は計測システムにおいて行われた直線偏波カプラの全反射での反射減衰量特性の測定結果を示すグラフ図である。
 直線偏波カプラ1Aの開口部の全面を金属板で覆った場合に、目的とする23GHz~29GHzの周波数帯において、反射減衰量特性は変動幅が10dB程度の範囲内に入っており、従来のような急峻な波形の乱れ(図23(c))がなく、極めてフラットな反射減衰量特性を示している。
<Return loss characteristics at total reflection of linearly polarized coupler>
FIG. 23 (a) is a graph showing measurement results of return loss characteristics at total reflection of a linear polarization coupler performed in the measurement system.
When the entire surface of the opening of the linear polarization coupler 1A is covered with a metal plate, the return loss characteristic has a fluctuation range of about 10 dB in the target frequency band of 23 GHz to 29 GHz, and There is no such steep waveform disturbance (FIG. 23 (c)) and an extremely flat return loss characteristic is shown.
<直線偏波カプラのEVM値>
 図23(b)は計測システムにおいて行われた直線偏波カプラのEVM値の測定結果を示すグラフ図である。
 1対の直線偏波カプラ1A同士を結合距離0mmで結合した場合に、例えば28.5GHzの周波数において、EVM(rms)1%以下の良好なEVM値を示している。
<EVM value of linear polarization coupler>
FIG.23 (b) is a graph which shows the measurement result of the EVM value of the linear polarization coupler performed in the measurement system.
When one pair of linear polarization couplers 1A is coupled at a coupling distance of 0 mm, for example, at a frequency of 28.5 GHz, a good EVM value of 1% or less of EVM (rms) is shown.
<直線偏波高利得高アイソレーションカプラの自由空間での反射減衰量特性>
 図24(a)は計測システムにおいて行われた直線偏波高利得高アイソレーションカプラの自由空間での反射減衰量特性の測定結果を示すグラフ図である。
 図24(a)に示す直線偏波高利得高アイソレーションカプラ1Cの自由空間での反射減衰量特性にあっては、目的とする23GHz~29GHzの周波数帯において、-10dB以下、実行力値として-13dB以下になっている。
<Linear polarization high gain high isolation coupler return loss characteristics in free space>
FIG. 24A is a graph showing measurement results of return loss characteristics in free space of the linear polarization high gain high isolation coupler performed in the measurement system.
In the return loss characteristic of the linear polarization high gain high isolation coupler 1C shown in FIG. 24 (a) in free space, the target power value is -10 dB or less in the target frequency band of 23 GHz to 29 GHz- It is less than 13 dB.
<直線偏波高利得高アイソレーションカプラのカプラ結合特性>
 図24(b)は計測システムにおいて行われた直線偏波高利得高アイソレーションカプラのカプラ結合特性(通過振幅特性)の測定結果を示すグラフ図である。
 直線偏波高利得高アイソレーションカプラ1Cと直線偏波高利得高アイソレーションカプラ1Cの間は、-10dB前後で結合されており、通過振幅特性は、目的とする23GHz~29GHzの周波数帯において、5dB程度の範囲内に入っており、従来のような急峻な波形の乱れ(図27(b))がなく、極めてフラットな結合特性を示している。
Coupler Coupling Characteristics of Linearly Polarized High Gain High Isolation Coupler
FIG.24 (b) is a graph which shows the measurement result of the coupler coupling characteristic (pass amplitude characteristic) of the linear polarization high gain high isolation coupler performed in the measurement system.
The linear polarization high gain high isolation coupler 1C and the linear polarization high gain high isolation coupler 1C are coupled at around -10 dB, and the pass amplitude characteristic is about 5 dB in the target frequency band of 23 GHz to 29 GHz. , And there is no sharp waveform disturbance as in the prior art (FIG. 27 (b)), and it shows extremely flat coupling characteristics.
<直線偏波高利得高アイソレーションカプラの全反射での反射減衰量特性>
 図25(a)は計測システムにおいて行われた直線偏波高利得高アイソレーションカプラの全反射での反射減衰量特性の測定結果を示すグラフ図である。
 直線偏波高利得高アイソレーションカプラ1Cの開口部の全面を金属板で覆った場合に、目的とする23GHz~29GHzの周波数帯において、反射減衰量特性の変動幅は10dB程度の範囲内に入っており、従来のような急峻な波形の乱れ(図27(c))がなく、極めてフラットな反射減衰量特性を示している。
<Return Loss Attenuation on Total Reflection of Linearly Polarized High Gain High Isolation Coupler>
FIG. 25A is a graph showing measurement results of return loss characteristics at total reflection of a linearly polarized high gain high isolation coupler performed in a measurement system.
When the entire surface of the opening of the linear polarization high gain high isolation coupler 1C is covered with a metal plate, the fluctuation range of the return loss characteristic falls within the range of about 10 dB in the target frequency band of 23 GHz to 29 GHz. There is no steep waveform disturbance (FIG. 27 (c)) as in the prior art, and an extremely flat return loss characteristic is shown.
<直線偏波高利得高アイソレーションカプラのEVM値>
 図25(b)は計測システムにおいて行われた直線偏波高利得高アイソレーションカプラのEVM値の測定結果を示すグラフ図である。
 1対の直線偏波高利得高アイソレーションカプラ1C同士を結合距離0mmで結合した場合に、例えば28.5GHzの周波数において、EVM(rms)1%以下の良好なEVM値を示している。
<EVM value of linear polarization high gain high isolation coupler>
FIG. 25B is a graph showing the measurement results of the EVM value of the linear polarization high gain high isolation coupler performed in the measurement system.
When one pair of linear polarization high gain high isolation couplers 1C are coupled at a coupling distance of 0 mm, for example, at a frequency of 28.5 GHz, a good EVM value of 1% or less of EVM (rms) is shown.
<調整後の直線偏波高利得高アイソレーションカプラの全反射での反射減衰量特性>
 図26(a)は、微調整後、計測システムにおいて行われた直線偏波高利得高アイソレーションカプラの全反射での反射減衰量特性の測定結果を示すグラフ図である。
 直線偏波高利得高アイソレーションカプラ1Cの開口部の全面を金属板で覆った場合に、23GHz~43GHzの周波数帯において、反射減衰量特性の変動幅は15dB程度の範囲内に入っており、従来のような急峻な波形の乱れ(図27(c))がなく、極めてフラットな反射減衰量特性を示している。
<Return Attenuation Characteristic of Total Polarization High Gain High Isolation Coupler after Adjustment>
FIG. 26A is a graph showing measurement results of return loss characteristics at total reflection of a linear polarization high gain high isolation coupler performed in a measurement system after fine adjustment.
When the entire opening of the linearly polarized high gain high isolation coupler 1C is covered with a metal plate, the fluctuation range of the return loss characteristic falls within the range of about 15 dB in the frequency band of 23 GHz to 43 GHz. There is no steep waveform disturbance (Fig. 27 (c)) such as, and a very flat return loss characteristic is shown.
<調整後の直線偏波高利得高アイソレーションカプラのVSWR特性>
 図26(b)は、微調整後、計測システムにおいて行われた直線偏波高利得高アイソレーションカプラのVSWR特性の測定結果を示すグラフ図である。
 直線偏波高利得高アイソレーションカプラ1Cに0dBmのスイープ信号を入力した場合に、23GHz~43GHzの周波数帯において、VSWR特性は1.8以下の範囲内に入っており、極めて良好なVSWR特性を示している。
<VSWR characteristics of linearly polarized high gain high isolation coupler after adjustment>
FIG. 26 (b) is a graph showing the measurement results of the VSWR characteristics of the linearly polarized high gain high isolation coupler measured in the measurement system after fine adjustment.
When a sweep signal of 0 dBm is input to the linearly polarized high gain high isolation coupler 1C, the VSWR characteristic falls within the range of 1.8 or less in the frequency band of 23 GHz to 43 GHz, and shows extremely good VSWR characteristic. ing.
<調整後の直線偏波高利得高アイソレーションカプラのカプラ結合特性>
 図26(c)は、微調整後、計測システムにおいて行われた直線偏波高利得高アイソレーションカプラのカプラ結合特性(通過振幅特性)の測定結果を示すグラフ図である。
 直線偏波高利得高アイソレーションカプラ1Cと直線偏波高利得高アイソレーションカプラ1Cの間は、-10dB前後で結合されており、通過振幅特性は、23GHz~43GHzの周波数帯において、5dB程度の範囲内に入っており、従来のような急峻な波形の乱れ(図27(b))がなく、極めてフラットな結合特性を示している。
<Coupling characteristic of linearly polarized high gain high isolation coupler after adjustment>
FIG. 26C is a graph showing the measurement results of the coupler coupling characteristic (pass amplitude characteristic) of the linear polarization high gain high isolation coupler performed in the measurement system after fine adjustment.
The linearly polarized high gain high isolation coupler 1C and the linearly polarized high gain high isolation coupler 1C are coupled at around -10 dB, and the pass amplitude characteristic is in the range of about 5 dB in the frequency band of 23 GHz to 43 GHz. In FIG. 27, there is no sharp waveform disturbance as in the prior art (FIG. 27 (b)), and it shows extremely flat coupling characteristics.
<本実施形態の態様例の作用、効果のまとめ>
<第1態様>
 本態様のアンテナ装置1は、導電材料から成る六面体からなり、対向する第1面M1と第2面M2との間を貫通して形成された内部空間8と、第1面M1、及び第2面M2と直交する第3面M3と内部空間8との間に連通(貫通)形成された同軸コネクタ挿通用のコネクタ装着穴22と、を備えた同軸導波管変換部6と、内部空間8の第2面側の開口を閉塞する導電性の閉塞部材30と、を備えた導波管本体5と、コネクタ装着穴22に内部空間から外側に向けて装着され、内端部は内部空間8内に突出しない導電性のコネクタ本体51と、該コネクタ本体51の中心部を軸方向に貫通して配置され、先端部をコネクタ本体51の内端部から内部空間8内に所定長突出させた中心導体60と、内部空間8内に突出した中心導体60の先端部60aから構成され、該先端部60aの突出長を特定の周波数帯に適合させることにより内部空間8内に中心導体からの電波を輻射する輻射器54bと、を備えたコネクタ50と、を備えたことを特徴とする。
 本態様によれば、導電材料から成る同軸導波管変換部6の内部空間8の第2面側開口を導電性の閉塞部材30で閉塞するとともに、輻射器54bにおいて内部空間8内に突出した中心導体60の先端部60aの突出長を特定の周波数帯に適合させる。
 これにより、帯域内での通過振幅特性の乱れや、反射減衰量特性を帯域内に同調することができ、且つ遮断性能を向上することができ、さらに良好なEVM値も得ることができる。
<Summary of action and effect of aspect example of this embodiment>
<First aspect>
The antenna device 1 of the present embodiment is a hexahedron made of a conductive material, and is formed between the opposing first surface M1 and the second surface M2 to form an internal space 8, a first surface M1, and a second surface M1. A coaxial waveguide conversion portion 6 having a coaxial connector insertion hole 22 for inserting a coaxial connector formed in communication (penetration) between a third surface M3 orthogonal to the surface M2 and the internal space 8; A waveguide main body 5 provided with a conductive closing member 30 for closing the opening on the second surface side of the connector, and the connector mounting hole 22 from the internal space to the outside, the inner end being the internal space 8 A conductive connector main body 51 not projecting inward and a central portion of the connector main body 51 are axially penetrated, and a tip end portion is projected from the inner end of the connector main body 51 into the internal space 8 by a predetermined length A central conductor 60 and a tip 6 of the central conductor 60 projecting into the internal space 8 and a connector 50 having a radiator 54b for radiating radio waves from the central conductor into the internal space 8 by adapting the projection length of the tip 60a to a specific frequency band. It is characterized by
According to this aspect, the second surface side opening of the internal space 8 of the coaxial waveguide conversion unit 6 made of a conductive material is closed by the conductive closing member 30, and the radiator 54b protrudes into the internal space 8. The projection length of the tip 60a of the central conductor 60 is adapted to a specific frequency band.
As a result, the disturbance of the pass amplitude characteristic in the band and the return loss characteristic can be tuned in the band, the blocking performance can be improved, and a better EVM value can also be obtained.
<第2態様>
 本態様のアンテナ装置1は、同軸導波管変換部6の内部空間8の非閉塞面側(開口面側)に接続されて、輻射器54bから輻射された電波を円偏波に変換する円偏波型偏波部100、又は、内部空間8の非閉塞面側(開口面側)に直接、或いは円偏波型偏波部100を介して接続されて、外部から到来する電波を遮断するホーン部200と、を備えたことを特徴とする。
 本態様によれば、円偏波型偏波部100により輻射器54bから輻射された電波を円偏波に変換し、又は、円偏波型偏波部100を介してホーン部200に接続されて、指向特性を持つことで、指向方向外から到来する電波を遮断する。
 これにより、円偏波型偏波部100により円偏波特性が容易に得ることができ、又は、ホーン部200により指向特性を持つことで、指向方向外から到来する電波を遮断するとともに利得を向上することができる。
Second Embodiment
The antenna device 1 of this aspect is connected to the non-closed surface side (opening surface side) of the internal space 8 of the coaxial waveguide conversion unit 6 and is a circle that converts radio waves radiated from the radiator 54b into circularly polarized waves. It is connected directly to the non-blocking surface side (opening surface side) of the polarization type polarization unit 100 or the internal space 8 or via the circular polarization type polarization unit 100 to block radio waves coming from the outside. A horn unit 200 is provided.
According to this aspect, the radio wave radiated from the radiator 54 b by the circular polarization type polarization unit 100 is converted to circular polarization, or connected to the horn unit 200 via the circular polarization type polarization unit 100. By having directivity characteristics, radio waves coming from outside the directivity direction are blocked.
Thereby, the circular polarization characteristic can be easily obtained by the circular polarization type polarization unit 100, or by having the directivity characteristic by the horn unit 200, the radio wave coming from outside the directivity direction is blocked and the gain Can be improved.
<第3態様>
 本態様のホーン部200は、切頭四角錐状の直線偏波型ホーン部200Aにより直線偏波とし、又は切頭円錐状の円偏波型ホーン部200Bにより円偏波とすることを特徴とする。
 本態様によれば、直線偏波型ホーン部200Aにより直線偏波とし、又は円偏波型ホーン部200Bにより円偏波とすることで、直線偏波特性、又は円偏波特性が容易に得ることができ、且つ指向特性を持ち、指向方向外から到来する電波を遮断するとともに利得を向上することができる。
Third Embodiment
The horn unit 200 of this embodiment is characterized in that it is linearly polarized by the truncated square pyramid linear polarized horn unit 200A or circular polarized by the truncated conical circular polarized horn unit 200B. Do.
According to this aspect, the linear polarization characteristic or the circular polarization characteristic is easy by making it linearly polarized by the linear polarization type horn unit 200A or circularly polarized by the circular polarization type horn unit 200B. It is possible to improve the gain while blocking the radio wave coming from the outside of the pointing direction and having the directivity characteristic.
<第4態様>
 本態様の同軸導波管変換部6は、内部空間8となる凹陥部11を一面6aに備えた第1の導波管部材10と、第1の導波管部材10の一面に対して着脱自在に取付けられることにより凹陥部11の一面側を閉塞して内部空間8を形成する第2の導波管部材20と、を備え、第1の導波管部材10の一面には凹陥部11を間に挟んだ箇所に夫々ネジ穴が形成され、第2の導波管部材20の各ネジ穴13と整合(対応)する位置には、内部空間8の軸方向と平行に延びる長穴24が形成され、該各長穴24を介して各ネジ穴13にビスを螺着可能に構成されていることを特徴とする。
 本態様によれば、内部空間8の軸方向と平行に延びる各長穴24を介して各ネジ穴13にビスを螺着可能に構成されていることで、各長穴24に対する各ネジ穴13の位置を微調整することができる。この結果、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制することができる。
<Fourth aspect>
The coaxial waveguide conversion unit 6 of the present embodiment is attached to and detached from the first waveguide member 10 provided with the recess 11 serving as the internal space 8 on one surface 6 a and one surface of the first waveguide member 10. And a second waveguide member 20 which closes the one surface side of the recess 11 by being freely attached to form the internal space 8, and the recess 11 is formed on one surface of the first waveguide member 10. A screw hole is formed at a position sandwiching the space between them, and a long hole 24 extending parallel to the axial direction of the internal space 8 at a position matching (correspondence) with each screw hole 13 of the second waveguide member 20. Are formed, and screws can be screwed into the respective screw holes 13 through the respective long holes 24.
According to this aspect, each screw hole 13 for each long hole 24 can be screwed in such a manner that a screw can be screwed into each screw hole 13 via each long hole 24 extending parallel to the axial direction of the internal space 8. You can fine-tune the position of. As a result, it is possible to suppress the occurrence of the disturbance of the passing amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to the total reflection.
<第5態様>
 本態様の同軸導波管変換部6は、第1の導波管部材10の一面6aに対向して第2の導波管部材20の位置を微調整可能に取り付けることを特徴とする。
 本態様によれば、第1の導波管部材10の一面6aに対向して第2の導波管部材20の位置を微調整可能に取り付けることで、内部空間8内に突出した中心導体60の先端部60aの位置を微調整することができる。この結果、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制することができる。
<Fifth aspect>
The coaxial waveguide conversion unit 6 of this embodiment is characterized in that the position of the second waveguide member 20 is finely adjustable so as to face the one surface 6 a of the first waveguide member 10.
According to this aspect, the center conductor 60 protruding into the internal space 8 can be mounted by finely adjusting the position of the second waveguide member 20 so as to face the surface 6 a of the first waveguide member 10. The position of the tip portion 60a of can be finely adjusted. As a result, it is possible to suppress the occurrence of the disturbance of the passing amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to the total reflection.
<第6態様>
 本態様の同軸コネクタの中心導体60が内端部56aから突出させた軸方向の長さLは、特定の周波数帯の波長の1/4に対して、所定の短縮率0.79を乗算した長さであることを特徴とする。
 本態様によれば、特定の周波数帯に特化して同調することができる長さLを設計することができる。
<Sixth aspect>
The axial length L of the center conductor 60 of the coaxial connector according to the present embodiment protruded from the inner end 56a is 1⁄4 of the wavelength of a specific frequency band multiplied by a predetermined reduction rate of 0.79. It is characterized in that it is a length.
According to this aspect, it is possible to design a length L which can be tuned specifically to a specific frequency band.
<第7態様>
 本態様のホーン部200は、縦幅が4.3mm且つ横幅が8.6mmの第1内部空間8と、縦幅が15mm~16mm且つ横幅が15mm~16mmの第2内部空間8と、を備えることを特徴とする。
 本態様によれば、縦幅が4.3mm且つ横幅が8.6mmの第1内部空間8と、縦幅が15mm~16mm且つ横幅が15mm~16mmの第2内部空間8と、を備えることで、特定の周波数帯である23GHz~29GHzに特化して良好な利得を得ることができるホーン部を作成することができる。
<Seventh aspect>
The horn portion 200 of this embodiment includes a first internal space 8 having a vertical width of 4.3 mm and a horizontal width of 8.6 mm, and a second internal space 8 having a vertical width of 15 mm to 16 mm and a horizontal width of 15 mm to 16 mm. It is characterized by
According to this aspect, by providing the first internal space 8 having a vertical width of 4.3 mm and a horizontal width of 8.6 mm, and a second internal space 8 having a vertical width of 15 mm to 16 mm and a horizontal width of 15 mm to 16 mm. It is possible to create a horn portion that can obtain a good gain by specializing in a specific frequency band of 23 GHz to 29 GHz.
<第8態様>
 本態様の同軸導波管変換部6、円偏波型偏波部100、及びホーン部200の材質は、銅、鉄、アルミ、真鍮、メタマテリアル、プラスチックに金属メッキを施したもの、又はプラスチックや樹脂に金属コーティングを施したもの、からなることを特徴とする。
 本態様によれば、同軸導波管変換部6、円偏波型偏波部100、及びホーン部200の材質は、銅、鉄、アルミ、真鍮、メタマテリアル、プラスチックに金属メッキを施したもの、又はプラスチックや樹脂に金属コーティングを施したもの、からなることで、帯域内での通過振幅特性の乱れや、帯域内での反射減衰量特性の乱れの発生を抑制することができ、且つ遮断性能を向上することができ、さらに良好なEVM値も得ることができる。
Eighth Embodiment
The material of the coaxial waveguide conversion part 6, the circular polarization type polarization part 100, and the horn part 200 of this embodiment is copper, iron, aluminum, brass, metamaterial, plastic plated metal, or plastic And a resin coated with a metal coating.
According to this aspect, the material of the coaxial waveguide conversion part 6, the circular polarization type polarization part 100, and the horn part 200 is metal plated on copper, iron, aluminum, brass, metamaterial, plastic By forming the metal coating on the plastic or the resin, the disturbance of the passing amplitude characteristic in the zone and the disturbance of the reflection attenuation amount characteristic in the zone can be suppressed and shut off. Performance can be improved and even better EVM values can be obtained.
<第9態様>
 本態様の直線偏波カプラ1A(アンテナ装置)は、自アンテナ装置から放射された電波の通過振幅特性は、特定の周波数帯に渡って変動幅が5dB以内であることを特徴とする。
 本態様によれば、自アンテナ装置から放射された電波の通過振幅特性は、特定の周波数帯に渡って変動幅が5dB以内であるので、良好な電波の通過振幅特性を得ることができる。
<Ninth aspect>
The linearly polarized light coupler 1A (antenna apparatus) of this aspect is characterized in that the pass amplitude characteristic of the radio wave radiated from the own antenna apparatus has a fluctuation range of 5 dB or less over a specific frequency band.
According to this aspect, since the pass amplitude characteristic of the radio wave radiated from the own antenna device has a fluctuation width within 5 dB over the specific frequency band, it is possible to obtain a good pass amplitude characteristic of the radio wave.
<第10態様>
 本態様のアンテナ装置1から放射された電波の全反射における反射減衰量特性の変動幅は、特定の周波数帯に渡って10dB以内で、且つ緩やかな波形であることを特徴とする。
 本態様によれば、アンテナ装置1から放射された電波の全反射における反射減衰量特性は、特定の周波数帯に渡って10dB以内で、且つ緩やかな波形であるので、良好な電波の反射減衰量特性を得ることができる。
<10th aspect>
The fluctuation range of the reflection attenuation amount characteristic in the total reflection of the radio wave radiated from the antenna device 1 of the present embodiment is characterized in that it has a gentle waveform within 10 dB over a specific frequency band.
According to this aspect, the return loss characteristic of total reflection of the radio wave emitted from the antenna device 1 is 10 dB or less over a specific frequency band and has a gentle waveform, so that the return loss of the radio wave is good. Characteristics can be obtained.
<第11態様>
 本態様の特定の周波数帯は、23GHz~29GHzであることを特徴とする。
 本態様によれば、特定の周波数帯は、23GHz~29GHzであるので、この周波数帯に特化して、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制することができ、且つ遮断性能を向上することができ、さらに良好なEVM値を得ることができる。
<Eleventh embodiment>
The specific frequency band of this aspect is characterized by being 23 GHz to 29 GHz.
According to this aspect, since the specific frequency band is 23 GHz to 29 GHz, the frequency band characteristic of the pass attenuation characteristic in the band or the return loss characteristic in the band due to total reflection is specialized for this frequency band. The occurrence of disturbance can be suppressed, the blocking performance can be improved, and a further favorable EVM value can be obtained.
<第12態様>
 本態様のアンテナ装置1は、被測定物に対して所望の位置に配置され、被測定物から放射される電波を受信することを特徴とする。
 本態様によれば、アンテナ装置1は被測定物に対して所望の位置に配置され、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制されていることから被測定物に密接することができ、被測定物から放射される電波を確実に受信することができ、良好なEVM値で測定することができる。且つ指向特性を持つことで指向方向外からの遮断性能を向上することができ、さらに良好な利得も得ることができる。
<12th aspect>
The antenna device 1 according to this aspect is characterized in that the antenna device 1 is disposed at a desired position with respect to a device under test, and receives radio waves emitted from the device under test.
According to this aspect, the antenna device 1 is disposed at a desired position with respect to the object to be measured, and generation of disturbance of the passing amplitude characteristic in the band and generation of disturbance of the return loss characteristic in the band due to total reflection. Being suppressed, it is possible to be in close contact with the object to be measured, to reliably receive radio waves emitted from the object to be measured, and to measure with a good EVM value. And by having directivity characteristics, it is possible to improve the blocking performance from the outside of the directivity direction, and it is also possible to obtain a good gain.
<第13態様>
 本態様のアンテナ装置1は、被測定物に対して所望の位置に配置され、被測定物に電波を放射することを特徴とする。
 本態様によれば、アンテナ装置1は、被測定物に対して所望の位置に配置され、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制されていることから、良好なEVM値が得られ、被測定物に密接して電波を放射することができる。且つ、指向特性を持つことで指向方向のみに電波を放射することができる。
<13th aspect>
The antenna device 1 according to this aspect is characterized in that the antenna device 1 is disposed at a desired position with respect to an object to be measured and emits radio waves to the object to be measured.
According to this aspect, the antenna device 1 is disposed at a desired position with respect to the object to be measured, and the disturbance of the passing amplitude characteristic in the band and the disturbance of the return loss characteristic in the band due to total reflection are generated. Therefore, good EVM values can be obtained, and radio waves can be emitted closely to the object to be measured. And by having directivity characteristics, radio waves can be emitted only in the directivity direction.
<第14態様>
 本態様のアンテナシステム300は、第1態様乃至第10態様の何れか一項に記載のアンテナ装置1を1対備え、各アンテナ装置1を第1アンテナ装置301及び第2アンテナ装置303とし、第1アンテナ装置301から放射された電波を、第1アンテナ装置301の放射方向に対向して配置された第2アンテナ装置303により受信することを特徴とする。
 本態様によれば、帯域内での通過振幅特性の乱れや、全反射による帯域内での反射減衰量特性の乱れの発生を抑制されており、第1アンテナ装置301から放射された電波を、第1アンテナ装置301の放射方向に対向して配置された第2アンテナ装置303により受信することで、良好なEVM値を得ることができる。
<Fourteenth aspect>
The antenna system 300 of this aspect includes one pair of the antenna devices 1 according to any one of the first to tenth aspects, wherein each of the antenna devices 1 is a first antenna device 301 and a second antenna device 303, A radio wave radiated from the one antenna device 301 is received by the second antenna device 303 disposed opposite to the radiation direction of the first antenna device 301.
According to this aspect, the disturbance of the passing amplitude characteristic in the band and the disturbance of the reflection attenuation amount characteristic in the band due to total reflection are suppressed, and the radio wave emitted from the first antenna device 301 is A favorable EVM value can be obtained by receiving by the 2nd antenna apparatus 303 arrange | positioned facing the radiation direction of the 1st antenna apparatus 301. FIG.
<第15態様>
 本態様の計測システム340は、第11態様に記載のアンテナシステム300に備えられた第1アンテナ装置301と第2アンテナ装置303との間に、被測定物を配置することを特徴とする。
 本態様によれば、第1アンテナ装置301と第2アンテナ装置303との間に、被測定物を配置することで、被測定物から放射される電波、又は、被測定物で受信された場合に、被測定物による影響度合いを測定することができる。
<Fifteenth aspect>
The measurement system 340 of this aspect is characterized in that an object to be measured is disposed between the first antenna device 301 and the second antenna device 303 provided in the antenna system 300 described in the eleventh aspect.
According to this aspect, when the object to be measured is disposed between the first antenna device 301 and the second antenna device 303, the radio wave radiated from the object to be measured or the object to be measured is received. In addition, the degree of influence of the object to be measured can be measured.
1…アンテナ装置、1A…直線偏波カプラ、1B…円偏波カプラ、1C…直線偏波高利得高アイソレーションカプラ、1D…円偏波高利得高アイソレーションカプラ、5…導波管本体、6…同軸導波管変換部、8…内部空間、10…第1の導波管部材、10a…ネジ穴、11…凹陥部、13…ネジ穴、20…導波管部材、22…コネクタ装着穴、23…凹所、24…長穴、25…ビス、30…閉塞部材、30a…穴、31…ネジ、50…コネクタ、51…コネクタ本体、52…コネクタソケット部、53…フランジ部、54a…コネクタソケット接点部、54b…輻射器、55…中心導体支持部、56…絶縁体、56a…内端部、60…中心導体、60a…先端部、100…円偏波型偏波部、110…導波空間、120…円形導波管部位、121a…周縁部、130…方形導波管部位、131…短辺、131a…周縁部、132…長辺、132a…内奥部、133…内壁、140…偏向板、200…ホーン部、200A…直線偏波型ホーン部、200B…円偏波型ホーン部、201a…板材 DESCRIPTION OF SYMBOLS 1 ... Antenna apparatus, 1A ... Linear polarization coupler, 1B ... Circular polarization coupler, 1C ... Linear polarization high gain high isolation coupler, 1D ... Circular polarization high gain high isolation coupler, 5 ... Waveguide main body, 6 ... Coaxial waveguide conversion unit 8 internal space 10 first waveguide member 10a screw hole 11 concave portion 13 screw hole 20 waveguide member 22 connector mounting hole Reference Signs List 23 recess, 24 long hole 25 screw 30 blocking member 30a hole 31 screw 50 connector 51 connector body 52 connector socket portion 53 flange portion 54a connector Socket contact portion 54b Radiator 55 Center conductor support portion 56 Insulator 56a Inner end portion 60 Center conductor 60a Tip portion 100 Circularly polarized wave polarization portion 110 Conductor Wave space, 120 ... circular waveguide part, 1 DESCRIPTION OF SYMBOLS 1a ... Peripheral part, 130 ... Rectangular waveguide part, 131 ... Short side, 131a ... Peripheral part, 132 ... Long side, 132a ... Inner back part, 133 ... Inner wall, 140 ... Deflection board, 200 ... Horn part, 200A ... Linear polarization type horn, 200B: circular polarization type horn, 201a ... plate material

Claims (15)

  1.  導電材料から成る六面体からなり、対向する第1面と第2面との間を貫通して形成された内部空間と、前記第1面、及び前記第2面と直交する第3面と前記内部空間との間に連通形成された同軸コネクタ挿通用のコネクタ装着穴と、を備えた同軸導波管変換部と、
     前記内部空間の前記第2面側の開口を閉塞する導電性の閉塞部材と、
    を備えた導波管本体と、
     前記コネクタ装着穴に前記内部空間から外側に向けて装着され、内端部は前記内部空間内に突出しない導電性のコネクタ本体と、該コネクタ本体の中心部を軸方向に貫通して配置され、先端部を前記コネクタ本体の内端部から前記内部空間内に所定長突出させた中心導体と、前記内部空間内に突出した前記中心導体の先端部から構成され、該先端部の突出長を特定の周波数帯に適合させることにより前記内部空間内に前記中心導体からの電波を輻射する輻射器と、を備えたコネクタと、
    を備えたことを特徴とするアンテナ装置。
    An internal space formed of a hexahedron made of a conductive material and penetrating between the opposing first surface and the second surface, a third surface orthogonal to the first surface, and the second surface, and the interior A coaxial waveguide conversion part provided with a connector mounting hole for inserting a coaxial connector formed in communication with the space;
    A conductive closing member closing the opening on the second surface side of the inner space;
    A waveguide body provided with
    The connector mounting hole is mounted outward from the internal space, and the inner end portion is disposed axially penetrating the conductive connector main body which does not protrude into the internal space, and the central portion of the connector main body, It consists of a center conductor whose tip is projected from the inner end of the connector main body into the internal space by a predetermined length, and the tip of the center conductor which projects into the interior space, and the projection length of the tip is specified A radiation source for radiating radio waves from the central conductor in the internal space by adapting to a frequency band of
    An antenna device comprising:
  2.  前記同軸導波管変換部の前記内部空間の非閉塞面側に接続されて、前記輻射器から輻射された電波を円偏波に変換する偏波部、又は、前記内部空間の非閉塞面側に直接、或いは前記偏波部を介して接続されて、外部から到来する電波を遮断するホーン部と、を備えたことを特徴とする請求項1記載のアンテナ装置。 A polarization unit connected to the non-closed surface side of the internal space of the coaxial waveguide conversion unit to convert radio waves radiated from the radiator into circular polarization, or the non-closed surface side of the inner space 2. The antenna device according to claim 1, further comprising: a horn unit connected to the antenna unit directly or via the polarization unit to block radio waves coming from the outside.
  3.  前記ホーン部は、切頭四角錐状のホーンにより直線偏波とし、又は切頭円錐状のホーンにより円偏波とすることを特徴とする請求項1記載のアンテナ装置。 The antenna device according to claim 1, wherein the horn portion is linearly polarized by a truncated square pyramidal horn, or circularly polarized by a truncated conical horn.
  4.  前記同軸導波管変換部は、前記内部空間となる凹陥部を一面に備えた第1の導波管部材と、前記第1の導波管部材の一面に対して着脱自在に取付けられることにより前記凹陥部の一面側を閉塞して前記内部空間を形成する第2の導波管部材と、を備え、
     前記第1の導波管部材の前記一面には前記凹陥部を間に挟んだ箇所に夫々ネジ穴が形成され、
     前記第2の導波管部材の前記各ネジ穴と整合する位置には、前記内部空間の前記軸方向と平行に延びる長穴が形成され、該各長穴を介して前記各ネジ穴にビスを螺着可能に構成されていることを特徴とする請求項1記載のアンテナ装置。
    The coaxial waveguide conversion unit is detachably attached to one surface of the first waveguide member provided with the concave portion serving as the internal space on one surface and one surface of the first waveguide member. And a second waveguide member that closes the one surface side of the recessed portion to form the internal space.
    A screw hole is formed on the one surface of the first waveguide member at a location where the recess is interposed therebetween,
    An elongated hole extending in parallel with the axial direction of the inner space is formed at a position aligned with each screw hole of the second waveguide member, and a screw is inserted into each screw hole through the each elongated hole. The antenna device according to claim 1, wherein the antenna device can be screwed.
  5.  前記同軸導波管変換部は、
     前記第1の導波管部材の一面に対向して前記第2の導波管部材の位置を微調整可能に取り付けることを特徴とする請求項3記載のアンテナ装置。
    The coaxial waveguide conversion unit
    The antenna device according to claim 3, wherein the position of the second waveguide member is finely adjustable so as to face one surface of the first waveguide member.
  6.  前記同軸コネクタの中心導体が前記内端部から突出させた前記軸方向の長さは、前記特定の周波数帯の波長の1/4に対して、所定の短縮率を乗算した長さであることを特徴とする請求項1記載のアンテナ装置。 The axial length of the central connector of the coaxial connector protruding from the inner end is a length obtained by multiplying 1/4 of the wavelength of the specific frequency band by a predetermined reduction rate. The antenna device according to claim 1, characterized in that
  7.  前記ホーン部は、縦幅が4.3mm且つ横幅が8.6mmの第1内部空間と、縦幅が15mm~16mm且つ横幅が15mm~16mmの第2内部空間と、を備えることを特徴とする請求項1記載のアンテナ装置。 The horn portion includes a first internal space having a vertical width of 4.3 mm and a horizontal width of 8.6 mm, and a second internal space having a vertical width of 15 mm to 16 mm and a horizontal width of 15 mm to 16 mm. The antenna device according to claim 1.
  8.  前記同軸導波管変換部、前記偏波部、及び前記ホーン部の材質は、銅、鉄、アルミ、真鍮、メタマテリアル、プラスチックに金属メッキを施したもの、又はプラスチックや樹脂に金属コーティングを施したもの、からなることを特徴とする請求項2乃至6の何れか一項記載のアンテナ装置。 The material of the coaxial waveguide conversion part, the polarization part, and the horn part is copper, iron, aluminum, brass, metamaterial, metal plated plastic, or metal coated plastic or resin The antenna apparatus according to any one of claims 2 to 6, comprising:
  9.  自アンテナ装置から放射された電波の通過振幅特性は、前記特定の周波数帯に渡って0~3dbであることを特徴とする請求項1乃至7何れか一項記載のアンテナ装置。 The antenna device according to any one of claims 1 to 7, wherein a passing amplitude characteristic of a radio wave radiated from the self antenna device is 0 to 3 db over the specific frequency band.
  10.  自アンテナ装置から放射された電波の全反射における反射減衰量特性は、前記特定の周波数帯に渡って10dB以内の変動幅であることを特徴とする請求項1乃至8の何れか一項記載のアンテナ装置。 9. The reflection attenuation amount characteristic in total reflection of radio waves radiated from a self-antenna apparatus has a fluctuation range of 10 dB or less over the specific frequency band according to any one of claims 1 to 8. Antenna device.
  11.  前記特定の周波数帯は、23GHz~29GHzであることを特徴とする請求項1乃至8の何れか一項記載のアンテナ装置。 The antenna device according to any one of claims 1 to 8, wherein the specific frequency band is 23 GHz to 29 GHz.
  12.  被測定物に対して所望の位置に配置され、前記被測定物から放射される電波を受信することを特徴とする請求項1乃至8の何れか一項記載のアンテナ装置。 The antenna device according to any one of claims 1 to 8, wherein the antenna device is disposed at a desired position with respect to an object to be measured, and receives radio waves radiated from the object to be measured.
  13.  被測定物に対して所望の位置に配置され、前記被測定物に電波を放射することを特徴とする請求項1乃至8の何れか一項記載のアンテナ装置。 The antenna device according to any one of claims 1 to 8, which is disposed at a desired position with respect to an object to be measured, and emits radio waves to the object to be measured.
  14.  請求項1乃至10の何れか一項記載のアンテナ装置を1対備え、
     各アンテナ装置を第1アンテナ装置及び第2アンテナ装置とし、
     前記第1アンテナ装置から放射された電波を、前記第1アンテナ装置の放射方向に対向して配置された前記第2アンテナ装置により受信することを特徴とするアンテナシステム。
    A pair of antenna apparatuses according to any one of claims 1 to 10,
    Each antenna device is a first antenna device and a second antenna device,
    An antenna system characterized in that radio waves radiated from the first antenna device are received by the second antenna device disposed to face the radiation direction of the first antenna device.
  15.  請求項14記載のアンテナシステムに備えられた前記第1アンテナ装置と前記第2アンテナ装置との間に、被測定物を配置することを特徴とする計測システム。 A measurement system, wherein an object to be measured is disposed between the first antenna device and the second antenna device provided in the antenna system according to claim 14.
PCT/JP2018/026712 2017-11-24 2018-07-17 Antenna device, antenna system, and instrumentation system WO2019102646A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880075925.9A CN111566872B (en) 2017-11-24 2018-07-17 Antenna device, antenna system, and measurement system
EP18881756.3A EP3691034B1 (en) 2017-11-24 2018-07-17 Antenna device, antenna system, and instrumentation system
KR1020207018069A KR102305205B1 (en) 2017-11-24 2018-07-17 Antenna devices, antenna systems, and measurement systems
US16/763,336 US11444383B2 (en) 2017-11-24 2018-07-17 Antenna device, antenna system, and instrumentation system
FIEP18881756.3T FI3691034T3 (en) 2017-11-24 2018-07-17 Antenna device, antenna system, and instrumentation system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-225644 2017-11-24
JP2017225644 2017-11-24
JP2018-091195 2018-05-10
JP2018091195A JP6835358B2 (en) 2017-11-24 2018-05-10 Antenna device, antenna system, and measurement system

Publications (1)

Publication Number Publication Date
WO2019102646A1 true WO2019102646A1 (en) 2019-05-31

Family

ID=66630978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026712 WO2019102646A1 (en) 2017-11-24 2018-07-17 Antenna device, antenna system, and instrumentation system

Country Status (2)

Country Link
FI (1) FI3691034T3 (en)
WO (1) WO2019102646A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583437A (en) * 2020-11-18 2022-06-03 稜研科技股份有限公司 Ultra-wideband non-metal horn antenna

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129563A (en) * 1977-04-18 1978-11-11 Hitachi Ltd Coaxial waveguide converter
JPS647403U (en) * 1987-07-03 1989-01-17
JPH0522016A (en) * 1991-07-10 1993-01-29 Toshiba Corp Low side lobe reflection mirror antenna and horn antenna
JPH11330845A (en) * 1998-03-19 1999-11-30 Nec Corp Inverted f-type antenna using waveguide as element
JP2000049501A (en) * 1998-07-30 2000-02-18 Nec Eng Ltd Waveguide for transmission power moniroring
JP2006258762A (en) 2005-03-18 2006-09-28 Matsushita Electric Ind Co Ltd Radar device
JP2008282706A (en) * 2007-05-11 2008-11-20 Nippon Antenna Co Ltd Coaxial connector
JP2009085721A (en) * 2007-09-28 2009-04-23 Maspro Denkoh Corp Emc test radio wave radiation apparatus
WO2016016968A1 (en) * 2014-07-30 2016-02-04 富士通株式会社 Electronic device and electronic device manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129563A (en) * 1977-04-18 1978-11-11 Hitachi Ltd Coaxial waveguide converter
JPS647403U (en) * 1987-07-03 1989-01-17
JPH0522016A (en) * 1991-07-10 1993-01-29 Toshiba Corp Low side lobe reflection mirror antenna and horn antenna
JPH11330845A (en) * 1998-03-19 1999-11-30 Nec Corp Inverted f-type antenna using waveguide as element
JP2000049501A (en) * 1998-07-30 2000-02-18 Nec Eng Ltd Waveguide for transmission power moniroring
JP2006258762A (en) 2005-03-18 2006-09-28 Matsushita Electric Ind Co Ltd Radar device
JP2008282706A (en) * 2007-05-11 2008-11-20 Nippon Antenna Co Ltd Coaxial connector
JP2009085721A (en) * 2007-09-28 2009-04-23 Maspro Denkoh Corp Emc test radio wave radiation apparatus
WO2016016968A1 (en) * 2014-07-30 2016-02-04 富士通株式会社 Electronic device and electronic device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583437A (en) * 2020-11-18 2022-06-03 稜研科技股份有限公司 Ultra-wideband non-metal horn antenna
CN114583437B (en) * 2020-11-18 2024-02-06 稜研科技股份有限公司 Ultra-wideband nonmetal horn antenna

Also Published As

Publication number Publication date
FI3691034T3 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
JP6835358B2 (en) Antenna device, antenna system, and measurement system
Abbosh et al. Design of ultrawideband planar monopole antennas of circular and elliptical shape
Xia et al. Design of a full solid angle scanning cylindrical-and-conical phased array antennas
Kähkönen et al. Dual-polarized Ka-band Vivaldi antenna array
US20140035791A1 (en) Broadband Clover Leaf Dipole Panel Antenna
EP3301758A1 (en) Antenna element
JP2022531808A (en) Antenna unit and terminal equipment
US9466886B2 (en) Antenna device
Sethi et al. Demonstration of millimeter wave 5G setup employing high-gain Vivaldi array
CN108666750B (en) Substrate integrated waveguide circularly polarized antenna
Li et al. Design of distributed and robust millimeter-wave antennas for 5G communication terminals
Karthikeya et al. Compact bent-corner orthogonal beam switching antenna module for 5G mobile devices
WO2019102646A1 (en) Antenna device, antenna system, and instrumentation system
US20070229361A1 (en) Antenna apparatus
Koul et al. Antenna architectures for future wireless devices
US10333226B2 (en) Waveguide antenna with cavity
US11005185B2 (en) Millimeter wave conformal slot antenna
KR101001664B1 (en) Antenna capable of receiving and trransmitting vertical and horizontal polarization
WO2020031364A1 (en) Antenna device
Jadhav et al. Design of X-band conical horn antenna using coaxial feed and improved design technique for bandwidth enhancement
CN220652347U (en) Horizontal polarization antenna
Dorbath et al. Single-Fed Additively Manufactured Conical Horn Antenna with Circular Polarization for Millimeter-Wave Applications
US20230097476A1 (en) Antenna for Sending and/or Receiving Electromagnetic Signals
You et al. Fused deposition modeling for 1× 2 array of double ridge horn antenna
Lam Ultra-wideband antenna in coplanar technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018881756

Country of ref document: EP

Effective date: 20200428

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207018069

Country of ref document: KR

Kind code of ref document: A