WO2019102577A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2019102577A1
WO2019102577A1 PCT/JP2017/042169 JP2017042169W WO2019102577A1 WO 2019102577 A1 WO2019102577 A1 WO 2019102577A1 JP 2017042169 W JP2017042169 W JP 2017042169W WO 2019102577 A1 WO2019102577 A1 WO 2019102577A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
light source
end effector
optical axis
support
Prior art date
Application number
PCT/JP2017/042169
Other languages
French (fr)
Japanese (ja)
Inventor
識 西山
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2019556043A priority Critical patent/JP6840267B2/en
Priority to PCT/JP2017/042169 priority patent/WO2019102577A1/en
Publication of WO2019102577A1 publication Critical patent/WO2019102577A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/04Viewing devices

Definitions

  • a working machine is disclosed herein.
  • a working machine one having an articulated robot that holds a working head and moves the working head relative to a work target is known.
  • a working head provided with a working head having a nozzle, a lower camera and a side camera at the tip of an arm has been proposed (see Patent Document 1).
  • the lower camera captures the work object
  • the side camera captures a vertical panel surface.
  • the side camera is capable of axial rotation.
  • Patent Document 1 Although the work machine described in Patent Document 1 can image a wide area, it is necessary to attach two cameras to the tip of the arm.
  • the present disclosure has been made in view of such problems, and has as its main object to enable imaging of a wide area while having a simple configuration.
  • the working machine of the present disclosure is With the arm, A camera attached to the tip of the arm; A first light source for illuminating a first imaging target area in a direction along the optical axis of the camera; A half mirror disposed obliquely between the camera and the first light source so as to intersect the optical axis of the camera; A second light source that illuminates a second imaging target region in a direction in which the angle with respect to the normal is ⁇ when the angle formed by the optical axis of the camera with the normal to the inclined surface of the half mirror is + ⁇ ; A support that integrally supports the second light source and the half mirror; A support rotation drive unit configured to rotate the support around an optical axis of the camera; Is provided.
  • the support rotational drive unit rotates the support that integrally supports the second light source and the half mirror about the optical axis of the camera, thereby centering the second imaging target area on the optical axis of the camera. It can be extended to the surroundings. As described above, according to the work machine of the present disclosure, it is possible to image a wide area even with a simple configuration of one camera.
  • FIG. 2 is a front view of an articulated robot 10; FIG. 2 is an enlarged perspective view within the circle of FIG. 1; FIG. 2 is a longitudinal sectional view of the imaging device 30 and the like. Explanatory drawing which shows the electrical connection relation of the control apparatus 90.
  • FIG. 5 is a flowchart illustrating an example of an imaging processing routine. The longitudinal cross-sectional view of imaging device 30 grade
  • FIG. 1 is a front view of the articulated robot 10
  • FIG. 2 is an enlarged perspective view of the circle in FIG. 1
  • FIG. 3 is a longitudinal sectional view of the imaging device 30, etc.
  • FIG. 4 shows an electrical connection of the control device 90.
  • the articulated robot 10 is mounted so as to be capable of horizontal rotation on the vertical axis of a base 12 mounted on the table 11, as shown in FIG.
  • the articulated robot 10 is formed by connecting a plurality of arms 13 via joints (horizontal axis), and each arm 13 can rotate in a vertical plane.
  • the articulated robot 10 has a joint drive motor 14 (see FIG. 4) for driving a plurality of joints, and an encoder 16 (see FIG. 4) for detecting the angles of the plurality of joints. Note that FIG. 4 shows one joint drive motor 14 and one encoder 16 for the sake of convenience.
  • the articulated robot 10 has a wrist 18, a mechanical interface 26, and an imaging device 30.
  • the wrist 18 is attached to the end of the distal end arm 13 among the plurality of arms 13. As shown in FIG. 2, a vertically long support cover 22 is attached to the wrist 18 via a stay 20.
  • the support cover 22 supports a ⁇ -axis motor 24 that axially rotates the mechanical interface 26.
  • An encoder 25 (see FIG. 4) for detecting the rotational position of the ⁇ -axis motor 24 is attached to the ⁇ -axis motor 24.
  • the mechanical interface 26 is a member for detachably attaching various types of end effectors, including an end effector 70 provided with a nozzle 72.
  • a drive pulley 28 is provided above the mechanical interface 26 so as to rotate integrally with the mechanical interface 26.
  • the imaging device 30 is supported by a bracket 32 bolted to the side surface of the support cover 22.
  • the bracket 32 has a cylindrical hole penetrating in the vertical direction.
  • the imaging device 30 includes a cylindrical body 34, a camera 42, a half mirror 44, a first annular light source 51, and a second annular light source 52.
  • the cylindrical body 34 is rotatably supported on the inner peripheral surface of the bracket 32 via a bearing 36.
  • a lens (not shown) is attached to the inside of the cylindrical body 34.
  • the driven pulley 38 is integrated with the lower portion of the outer peripheral surface of the cylindrical body 34.
  • the driven pulley 38 is bridged by a drive pulley 28 and a looped belt 40. Therefore, when the mechanical interface 26 and the drive pulley 28 are rotated by the ⁇ -axis motor 24, the driven pulley 38 and the cylindrical body 34 also rotate via the belt 40 accordingly.
  • a mirror support 46 having a cylindrical hole 46 a is fixed to the lower surface of the cylindrical body 34.
  • the camera 42 is a so-called digital camera, and is fixed to the upper portion of the support cover 22. Therefore, even when the cylindrical body 34 is pivoted, the camera 42 is not rotated and remains fixed.
  • the camera 42 is mounted so as to face the hollow interior of the cylindrical body 34 from the top of the cylindrical body 34.
  • the optical axis 43 of the camera 42 is vertically downward and coincides with the axis of the cylindrical body 34.
  • An opening 46 b is provided at a position facing the second annular light source 51 on the side surface of the mirror support 46.
  • the first annular light source 51 is attached to the lower part of the outer surface of the mirror support 46 via a stay 48.
  • the axis of the first annular light source 51 coincides with the optical axis 43 of the camera 42.
  • the annular surface of the first annular light source 51 is a light emitting surface 53 in which a large number of LEDs are juxtaposed, and they are protected by a transparent cover 55.
  • the first annular light source 51 illuminates the first imaging target area A ⁇ b> 1 in the direction along the optical axis 43 of the camera 42.
  • the second annular light source 52 is attached to the side surface of the bracket 32 via a stay 50 (see FIG. 2).
  • the axis of the second annular light source 52 coincides with the horizontal direction.
  • the angle is - ⁇ .
  • the annular surface of the second annular light source 52 is a light emitting surface 54 in which a large number of LEDs are juxtaposed, and they are protected by a transparent cover 56.
  • the control device 90 is configured as a microprocessor centering on the CPU 91, and includes a storage unit 92 such as a ROM or an HDD in addition to the CPU 91.
  • Various signals from the encoders 16 and 25 are input to the control device 90.
  • the control device 90 outputs various control signals to the joint drive motor 14, the ⁇ -axis motor 24, the camera 42, the first annular light source 51, the second annular light source 52, and the like.
  • the articulated robot 10 carries a work at a work supply point on a horizontal surface to a work point and carries out a work of mounting the work at the work point.
  • the articulated robot 10 moves the nozzle 72 to the workpiece supply point and supplies a negative pressure to the nozzle 72 to adsorb the workpiece.
  • the articulated robot 10 carries the work sucked by the nozzle 72 to the work point, supplies a positive pressure to the nozzle 72 at the work point, and mounts the work at the work point.
  • the mechanical interface 26 is rotated by the ⁇ -axis motor 24 to turn the nozzle 72 into a desired orientation.
  • the articulated robot 10 captures an image of the workpiece supply point (first imaging target area A1) with the camera 42 from directly above, with the end effector 70 removed from the mechanical interface 26 before performing the work.
  • the peripheral wall (the second imaging target area A2) of the workpiece supply point may be imaged by the camera 42 or the like.
  • the peripheral wall of the workpiece supply point is imaged, for example, when it is necessary to search for a flaw on the peripheral wall.
  • FIG. 5 is a flowchart showing an example of the imaging processing routine.
  • the CPU 91 of the control device 90 reads out the program of the imaging processing routine from the storage unit 92 and executes the program when it is necessary to image the target point.
  • the imaging processing routine is executed with the end effector 70 removed from the mechanical interface 26 as described above.
  • the CPU 91 When the CPU 91 starts the imaging process routine, it first recognizes a target point (S100). For example, when the workpiece supply point is the target point, the CPU recognizes the target point by reading the coordinate position stored in advance in the storage unit 92 as the workpiece supply point.
  • the CPU 91 images a target point (S110). Specifically, the CPU 91 controls the joint drive motor 14 to move each arm 13 so that the target point enters the first imaging target area A1 of the imaging device 30, and the target point is imaged from directly above the target point. Control the imaging device 30.
  • the CPU 91 turns on the first annular light source 51 and extinguishes the second annular light source 52 so that the first imaging target area A1 illuminated by the first annular light source 51 is through the half mirror 44.
  • the imaging device 30 is controlled so that the camera 42 shoots. Images captured by the camera 42 are sequentially stored in the storage unit 92.
  • the CPU 91 captures an image of the surroundings of the target point (S120). Specifically, the CPU 91 turns off the first annular light source 51 and turns on the second annular light source 52 so that the second imaging target area A2 illuminated by the second annular light source 52 can be captured by the camera 42 via the half mirror 44. Controls the imaging device 30 to capture an image. Further, the CPU 91 rotates the cylindrical body 34 by a predetermined angle so that the second imaging target area A2 now imaged contacts with (or slightly overlaps) the second imaging target area A2 to be imaged next. The CPU 91 rotates the cylindrical body 34 by controlling the ⁇ -axis motor 24. That is, the cylindrical body 34 is rotated about the optical axis of the camera 42.
  • the CPU 91 controls the imaging device 30 such that the camera 42 captures a new second imaging target area A2 in the same manner as described above.
  • the CPU 91 images the periphery of the target point by sequentially updating the second imaging target area A2 in this manner. Images captured by the camera 42 are sequentially stored in the storage unit 92.
  • the mechanical interface 26, which is the end effector mounting surface, is provided at a position that interferes with the trajectory path when the imaging device 30 rotates 360 degrees. Therefore, the imaging device 30 is axially rotated within a range that does not interfere with the mechanical interface 26.
  • the CPU 91 determines whether there is another target point (S130). If there is another target point, the CPU 91 updates the target point (S140), and executes the processing of S100 and thereafter again. On the other hand, if there is no other target point at S130, the CPU 91 ends this routine.
  • the arm 13 of the articulated robot 10 of the present embodiment corresponds to the arm of the work machine of the present disclosure
  • the camera 42 corresponds to the camera
  • the first annular light source 51 corresponds to the first light source
  • the half mirror 44 corresponds to a half mirror
  • the cylindrical body 34 corresponds to a support
  • the ⁇ axis motor 24 corresponds to a support rotation driving unit.
  • the first annular light source 51 when imaging the first imaging target area A1, the first annular light source 51 is turned on, the second annular light source 52 is turned off, and the first annular light source 51 is illuminated.
  • the imaging target area A1 is photographed by the camera 42 through the half mirror 44.
  • the first annular light source 51 is turned off, the second annular light source 52 is turned on, and the second imaging target area A2 illuminated by the second annular light source 52 is a half mirror 44
  • the ⁇ -axis motor 24 rotates the cylindrical body 34 integrally supporting the second annular light source 52 and the half mirror 44 about the optical axis 43 of the camera 42 so that the second imaging target area A2 is the camera 42. It can be extended to the periphery centering on the optical axis 43 of. As described above, according to the present embodiment, it is possible to capture a wide range of area with a simple configuration of one camera.
  • the ⁇ -axis motor 24 which is the rotational drive unit of the end effector 70, also serves as the rotational drive unit of the cylindrical body 34, the configuration is simplified as compared to the case where both rotational drive units are separately provided. Can.
  • the end effector 70 is detachably attached to the mechanical interface 26 of the arm 13 provided with the camera 42, the first annular light source 51, the second annular light source 52, the cylindrical body 34 and the ⁇ axis motor 24.
  • the camera 42, the first annular light source 51, the second annular light source 52, the cylindrical body 34, and the ⁇ axis motor 24 can be made common to many types of end effectors that can be attached to the mechanical interface 26.
  • Each end effector can be made compact.
  • the mechanical interface 26 is provided at a position that interferes with the orbital path of the second annular light source 52 when the cylindrical body 34 makes one rotation. Therefore, although the second imaging target area A2 can not be continuous over the entire circumference centering on the optical axis 43 of the camera 42, the mechanical interface 26 does not have to be disposed at a position higher than the upper surface of the second annular light source 52 Therefore, the length in the vertical direction of the end effector 70 can be made relatively short.
  • the mechanical interface 26 is provided at a position that interferes with the path path of the second annular light source 52 when the cylindrical body 34 makes one rotation, but the present invention is not particularly limited thereto.
  • the mechanical interface 26 may be provided at a position that does not interfere with the orbital path of the second annular light source 52 when the cylindrical body 134 makes one rotation.
  • the mechanical interface 26 is made higher than the upper surface of the second annular light source 52.
  • the second imaging target area A2 can be continuous over the entire circumference around the optical axis 43 of the camera 42.
  • it is necessary to dispose the mechanical interface 26 at a position higher than the upper surface of the second annular light source 52 it is necessary to use the end effector 170 whose length in the vertical direction is longer than that of the end effector 70 described above. .
  • imaging is performed while axially rotating the imaging device 30 so that the second imaging target area A2 is continuous, but it is not particularly limited thereto .
  • the first imaging target area A may be imaged, or imaging may be performed while axially rotating the imaging device 30 such that the second imaging target area A2 is continuous.
  • imaging may be performed while the imaging device 30 is axially rotated so that the second imaging target area A2 becomes intermittent, or the imaging device 30 may not be rotated.
  • the imaging target area A2 may be imaged only once.
  • the rotation of the ⁇ -axis motor 24 is transmitted to the cylindrical body 34 via the drive pulley 28, the belt 40 and the driven pulley 38, but the present invention is not particularly limited thereto. Rotation may be transmitted to the cylindrical body 34 via a gear mechanism.
  • the ⁇ -axis motor 24 which is the rotational drive unit of the end effector 70 is configured to also serve as the rotational drive unit of the cylindrical body 34, but separately from the ⁇ -axis motor 24, the rotational drive unit of the cylindrical body 34 A motor may be provided as
  • the end effector 70 having the nozzle 72 is exemplified, but the invention is not particularly limited thereto.
  • a mechanical chuck or an electromagnet may be adopted instead of the nozzle 72, or an electric tool ( A driver or a drill may be employed.
  • the nozzle 72 of the end effector 70 has been illustrated as being vertically downward, it may be switchable to any posture of vertically downward and sideways (horizontal direction).
  • the imaging by the camera 42 is performed with the end effector 70 removed from the mechanical interface 26, but the imaging with the camera 42 may be performed with the end effector 70 attached to the mechanical interface 26.
  • the working machine of the present disclosure may be configured as follows.
  • the work machine of the present disclosure includes an end effector attached to the tip of the arm, and an end effector rotation drive unit configured to pivot the end effector, the end effector rotation drive unit including the support rotation drive unit. May be used as well. In this case, the configuration can be simplified as compared with the case where the end effector rotation drive unit and the support rotation drive unit are provided separately.
  • the end effector is detachably attachable to an end effector mounting surface of the arm including the camera, the first light source, the second light source, the support, and the end effector rotational drive unit. It may be attached.
  • the camera, the first light source, the second light source, the support, and the end effector rotation drive unit can be made common to various types of end effectors that can be attached to the end effector mounting surface, each end effector The effector can be made compact.
  • the end effector mounting surface may be provided at a position that interferes with the orbital path when the support rotates once, or a position that does not interfere with the orbital path when the support rotates once. May be provided.
  • the end effector mounting surface does not have to be arranged at a position higher than the orbital path. Can be relatively short.
  • the second imaging target area can be continuous over the entire circumference centered on the optical axis of the camera, but since the end effector mounting surface needs to be positioned higher than the orbital path, It is necessary to increase the length of the end effector.
  • the present invention is applicable to various industries using a working machine with a camera.

Abstract

This work machine is provided with: an arm; a camera (42) which is attached to a tip end of the arm; a first light source (51) which illuminates a first area (A1) to be imaged in a direction along an optical axis (43) of the camera; a half mirror (44) which is obliquely disposed between the camera and the first light source so as to intersect the optical axis of the camera; a second light source (52) which illuminates a second area (A2) to be imaged in a direction in which the angle with respect to a normal line of an inclined surface of the half mirror becomes -θ when the angle formed between the optical axis of the camera and the normal line is +θ; a support body (34) which integrally supports the second light source and the half mirror; and a support body rotation driving unit (24) which rotates the support body around the optical axis of the camera.

Description

作業機Work machine
 本明細書では、作業機を開示する。 A working machine is disclosed herein.
 従来、作業機としては、作業ヘッドを保持してその作業ヘッドを作業対象物に対して移動させる多関節ロボットを有するものが知られている。こうした作業機において、アーム先端に、ノズルを備えた作業ヘッドと下方カメラと側方カメラとを備えたものが提案されている(特許文献1参照)。下方カメラは作業対象物を撮像し、側方カメラは垂直なパネル面を撮像する。また、側方カメラは軸回転可能となっている。 Conventionally, as a working machine, one having an articulated robot that holds a working head and moves the working head relative to a work target is known. Among such working machines, a working head provided with a working head having a nozzle, a lower camera and a side camera at the tip of an arm has been proposed (see Patent Document 1). The lower camera captures the work object, and the side camera captures a vertical panel surface. Also, the side camera is capable of axial rotation.
国際公開第2014/20739号パンフレットInternational Publication No. 2014/20739 brochure
 特許文献1に記載された作業機は、広範囲な領域を撮像可能ではあるものの、アームの先端に2台のカメラを取り付ける必要があった。 Although the work machine described in Patent Document 1 can image a wide area, it is necessary to attach two cameras to the tip of the arm.
 本開示は、このような課題に鑑みなされたものであり、簡易な構成でありながら広範囲な領域を撮像可能にすることを主目的とする。 The present disclosure has been made in view of such problems, and has as its main object to enable imaging of a wide area while having a simple configuration.
 本開示の作業機は、
 アームと、
 前記アームの先端に取り付けられたカメラと、
 前記カメラの光軸に沿った方向の第1撮像対象領域を照らす第1光源と、
 前記カメラと前記第1光源との間で前記カメラの光軸と交差するように斜めに配置されたハーフミラーと、
 前記ハーフミラーの傾斜面の法線に対して前記カメラの光軸がなす角度を+θとしたときに前記法線に対する角度が-θとなる方向の第2撮像対象領域を照らす第2光源と、
 前記第2光源と前記ハーフミラーとを一体的に支持する支持体と、
 前記カメラの光軸を中心として前記支持体を回転させる支持体回転駆動部と、
 を備えたものである。
The working machine of the present disclosure is
With the arm,
A camera attached to the tip of the arm;
A first light source for illuminating a first imaging target area in a direction along the optical axis of the camera;
A half mirror disposed obliquely between the camera and the first light source so as to intersect the optical axis of the camera;
A second light source that illuminates a second imaging target region in a direction in which the angle with respect to the normal is −θ when the angle formed by the optical axis of the camera with the normal to the inclined surface of the half mirror is + θ;
A support that integrally supports the second light source and the half mirror;
A support rotation drive unit configured to rotate the support around an optical axis of the camera;
Is provided.
 この作業機では、第1撮像対象領域を撮像する場合には、第1光源を点灯し第2光源を消灯して、第1光源に照らされた第1撮像対象領域をハーフミラーを介してカメラで撮影する。第2撮像対象領域を撮像する場合には、第1光源を消灯し第2光源を点灯して、第2光源に照らされた第2撮像対象領域をハーフミラーを介してカメラで撮像する。また、第2光源とハーフミラーとを一体的に支持する支持体をカメラの光軸を中心として支持体回転駆動部が回転させることにより、第2撮像対象領域をカメラの光軸を中心とする周囲にまで広げることができる。このように、本開示の作業機によれば、カメラ1台という簡易な構成でありながら広範囲な領域を撮像することができる。 In this work machine, when imaging the first imaging target area, the first light source is turned on and the second light source is turned off, and the first imaging target area illuminated by the first light source is photographed via the half mirror. Shoot with When imaging the second imaging target area, the first light source is turned off and the second light source is turned on, and the second imaging target area illuminated by the second light source is imaged by the camera via the half mirror. In addition, the support rotational drive unit rotates the support that integrally supports the second light source and the half mirror about the optical axis of the camera, thereby centering the second imaging target area on the optical axis of the camera. It can be extended to the surroundings. As described above, according to the work machine of the present disclosure, it is possible to image a wide area even with a simple configuration of one camera.
多関節ロボット10の正面図。FIG. 2 is a front view of an articulated robot 10; 図1の円内の拡大斜視図。FIG. 2 is an enlarged perspective view within the circle of FIG. 1; 撮像機器30等の縦断面図。FIG. 2 is a longitudinal sectional view of the imaging device 30 and the like. 制御装置90の電気的な接続関係を示す説明図。Explanatory drawing which shows the electrical connection relation of the control apparatus 90. FIG. 撮像処理ルーチンの一例を示すフローチャート。5 is a flowchart illustrating an example of an imaging processing routine. 別例の撮像機器30等の縦断面図。The longitudinal cross-sectional view of imaging device 30 grade | etc., Of another example.
 次に、本開示の発明を実施するための形態について説明する。 Next, an embodiment of the present disclosure will be described.
 図1は多関節ロボット10の正面図、図2は図1の円内の拡大斜視図、図3は撮像機器30等の縦断面図、図4は制御装置90の電気的な接続関係を示す説明図である。 1 is a front view of the articulated robot 10, FIG. 2 is an enlarged perspective view of the circle in FIG. 1, FIG. 3 is a longitudinal sectional view of the imaging device 30, etc. FIG. 4 shows an electrical connection of the control device 90. FIG.
 多関節ロボット10は、図1に示すように、テーブル11の上に設置されたベース12の垂直軸に水平方向の回転が可能なように取り付けられている。多関節ロボット10は、複数のアーム13を関節(水平軸)を介して連結したものであり、各アーム13は垂直面内の回転が可能となっている。多関節ロボット10は、複数の関節をそれぞれ駆動する関節駆動モータ14(図4参照)と、複数の関節のそれぞれの角度を検出するエンコーダ16(図4参照)とを有する。なお、図4には、便宜上、関節駆動モータ14とエンコーダ16を1つずつ示した。 The articulated robot 10 is mounted so as to be capable of horizontal rotation on the vertical axis of a base 12 mounted on the table 11, as shown in FIG. The articulated robot 10 is formed by connecting a plurality of arms 13 via joints (horizontal axis), and each arm 13 can rotate in a vertical plane. The articulated robot 10 has a joint drive motor 14 (see FIG. 4) for driving a plurality of joints, and an encoder 16 (see FIG. 4) for detecting the angles of the plurality of joints. Note that FIG. 4 shows one joint drive motor 14 and one encoder 16 for the sake of convenience.
 多関節ロボット10は、リスト18と、メカニカルインタフェース26と、撮像機器30とを有している。 The articulated robot 10 has a wrist 18, a mechanical interface 26, and an imaging device 30.
 リスト18は、複数のアーム13のうち先端側のアーム13の端部に取り付けられている。リスト18には、図2に示すように、ステー20を介して縦長の支持カバー22が取り付けられている。支持カバー22は、メカニカルインタフェース26を軸回転させるθ軸モータ24を支持している。θ軸モータ24には、θ軸モータ24の回転位置を検出するエンコーダ25(図4参照)が取り付けられている。 The wrist 18 is attached to the end of the distal end arm 13 among the plurality of arms 13. As shown in FIG. 2, a vertically long support cover 22 is attached to the wrist 18 via a stay 20. The support cover 22 supports a θ-axis motor 24 that axially rotates the mechanical interface 26. An encoder 25 (see FIG. 4) for detecting the rotational position of the θ-axis motor 24 is attached to the θ-axis motor 24.
 メカニカルインタフェース26は、ノズル72を備えたエンドエフェクタ70などを含む多種類のエンドエフェクタを着脱可能に取り付ける部材である。メカニカルインタフェース26の上部には、駆動プーリ28がメカニカルインタフェース26と一体となって回転するように設けられている。 The mechanical interface 26 is a member for detachably attaching various types of end effectors, including an end effector 70 provided with a nozzle 72. A drive pulley 28 is provided above the mechanical interface 26 so as to rotate integrally with the mechanical interface 26.
 撮像機器30は、支持カバー22の側面にボルトで締結されたブラケット32に支持されている。ブラケット32は、上下方向に貫通する円筒穴を有してる。撮像機器30は、図3に示すように、円筒体34と、カメラ42と、ハーフミラー44と、第1環状光源51と、第2環状光源52とを備えている。 The imaging device 30 is supported by a bracket 32 bolted to the side surface of the support cover 22. The bracket 32 has a cylindrical hole penetrating in the vertical direction. As shown in FIG. 3, the imaging device 30 includes a cylindrical body 34, a camera 42, a half mirror 44, a first annular light source 51, and a second annular light source 52.
 円筒体34は、ブラケット32の内周面にベアリング36を介して軸回転可能に支持されている。円筒体34の内部には、図示しないレンズが取り付けられている。円筒体34の外周面の下部には、従動プーリ38が一体化されている。従動プーリ38は、駆動プーリ28とループ状のベルト40で架け渡されている。そのため、θ軸モータ24によってメカニカルインタフェース26及び駆動プーリ28が回転すると、それに伴ってベルト40を介して従動プーリ38及び円筒体34も回転する。円筒体34の下面には、円筒穴46aを備えたミラー支持体46が固定されている。 The cylindrical body 34 is rotatably supported on the inner peripheral surface of the bracket 32 via a bearing 36. A lens (not shown) is attached to the inside of the cylindrical body 34. The driven pulley 38 is integrated with the lower portion of the outer peripheral surface of the cylindrical body 34. The driven pulley 38 is bridged by a drive pulley 28 and a looped belt 40. Therefore, when the mechanical interface 26 and the drive pulley 28 are rotated by the θ-axis motor 24, the driven pulley 38 and the cylindrical body 34 also rotate via the belt 40 accordingly. A mirror support 46 having a cylindrical hole 46 a is fixed to the lower surface of the cylindrical body 34.
 カメラ42は、いわゆるデジタルカメラであり、支持カバー22の上部に固定されている。そのため、円筒体34が軸回転してもカメラ42は回転せず固定されたままである。カメラ42は、円筒体34の上部から円筒体34の中空内部を向くように取り付けられている。カメラ42の光軸43は鉛直下向きであり、円筒体34の軸線と一致している。 The camera 42 is a so-called digital camera, and is fixed to the upper portion of the support cover 22. Therefore, even when the cylindrical body 34 is pivoted, the camera 42 is not rotated and remains fixed. The camera 42 is mounted so as to face the hollow interior of the cylindrical body 34 from the top of the cylindrical body 34. The optical axis 43 of the camera 42 is vertically downward and coincides with the axis of the cylindrical body 34.
 ハーフミラー44は、カメラ42の光軸43と交差するように設けられ、水平面に対して角度θ(θ=45°)だけ傾斜した状態でミラー支持体46に支持されている。そのため、ハーフミラー44は、ミラー支持体46を介して円筒体34と一体になっている。ミラー支持体46の側面のうち第2環状光源51と対向する位置には開口46bが設けられている。 The half mirror 44 is provided to intersect the optical axis 43 of the camera 42, and is supported by the mirror support 46 in a state of being inclined by an angle θ (θ = 45 °) with respect to the horizontal plane. Therefore, the half mirror 44 is integrated with the cylindrical body 34 via the mirror support 46. An opening 46 b is provided at a position facing the second annular light source 51 on the side surface of the mirror support 46.
 第1環状光源51は、ミラー支持体46の外面の下部にステー48を介して取り付けられている。第1環状光源51の軸線は、カメラ42の光軸43と一致している。第1環状光源51の環状面は、多数のLEDが並設された発光面53であり、それらは透明カバー55によって保護されている。第1環状光源51は、カメラ42の光軸43に沿った方向の第1撮像対象領域A1を照らす。 The first annular light source 51 is attached to the lower part of the outer surface of the mirror support 46 via a stay 48. The axis of the first annular light source 51 coincides with the optical axis 43 of the camera 42. The annular surface of the first annular light source 51 is a light emitting surface 53 in which a large number of LEDs are juxtaposed, and they are protected by a transparent cover 55. The first annular light source 51 illuminates the first imaging target area A <b> 1 in the direction along the optical axis 43 of the camera 42.
 第2環状光源52は、ブラケット32の側面にステー50(図2参照)を介して取り付けられている。第2環状光源52の軸線は、水平方向と一致している。本実施形態では、ハーフミラー44の傾斜面の法線に対してカメラ42の光軸43のなす角度が+θ(θ=45°)であり、その法線に対する第2環状光源52の軸線のなす角度が-θとなっている。第2環状光源52の環状面は、多数のLEDが並設された発光面54であり、それらは透明カバー56によって保護されている。第2環状光源52は、ハーフミラー44の傾斜面の法線に対する角度が-θ(θ=45°)となる方向(ここでは水平方向)の第2撮像対象領域A2を照らす。 The second annular light source 52 is attached to the side surface of the bracket 32 via a stay 50 (see FIG. 2). The axis of the second annular light source 52 coincides with the horizontal direction. In the present embodiment, the angle formed by the optical axis 43 of the camera 42 with the normal to the inclined surface of the half mirror 44 is + θ (θ = 45 °), and the axis of the second annular light source 52 with respect to the normal. The angle is -θ. The annular surface of the second annular light source 52 is a light emitting surface 54 in which a large number of LEDs are juxtaposed, and they are protected by a transparent cover 56. The second annular light source 52 illuminates the second imaging target area A2 in the direction (here, the horizontal direction) in which the angle with respect to the normal to the inclined surface of the half mirror 44 is −θ (θ = 45 °).
 制御装置90は、図4に示すように、CPU91を中心としたマイクロプロセッサとして構成されており、CPU91の他に、ROMやHDDなどの記憶部92を備える。制御装置90には、エンコーダ16,25からの各種信号が入力される。制御装置90からは、関節駆動モータ14やθ軸モータ24、カメラ42、第1環状光源51、第2環状光源52などへの各種制御信号が出力される。 As shown in FIG. 4, the control device 90 is configured as a microprocessor centering on the CPU 91, and includes a storage unit 92 such as a ROM or an HDD in addition to the CPU 91. Various signals from the encoders 16 and 25 are input to the control device 90. The control device 90 outputs various control signals to the joint drive motor 14, the θ-axis motor 24, the camera 42, the first annular light source 51, the second annular light source 52, and the like.
 次に、エンドエフェクタ70を搭載した多関節ロボット10の動作について説明する。この多関節ロボット10は、例えば、水平面上のワーク供給地点にあるワークを作業地点まで運んでその作業地点でワークを装着する作業を行う。具体的には、多関節ロボット10は、ノズル72をワーク供給地点に移動させ、ノズル72に負圧を供給してワークを吸着させる。その後、多関節ロボット10は、ノズル72に吸着されたワークを作業地点まで運び、その作業地点でノズル72に正圧を供給してワークを作業地点に装着する。この作業中、ノズル72の向きを変える必要があれば、θ軸モータ24によってメカニカルインタフェース26を回転させることによりノズル72を所望の向きに変える。 Next, the operation of the articulated robot 10 on which the end effector 70 is mounted will be described. For example, the articulated robot 10 carries a work at a work supply point on a horizontal surface to a work point and carries out a work of mounting the work at the work point. Specifically, the articulated robot 10 moves the nozzle 72 to the workpiece supply point and supplies a negative pressure to the nozzle 72 to adsorb the workpiece. After that, the articulated robot 10 carries the work sucked by the nozzle 72 to the work point, supplies a positive pressure to the nozzle 72 at the work point, and mounts the work at the work point. During this operation, if it is necessary to change the orientation of the nozzle 72, the mechanical interface 26 is rotated by the θ-axis motor 24 to turn the nozzle 72 into a desired orientation.
 こうした多関節ロボット10は、作業を実行する前に、エンドエフェクタ70をメカニカルインタフェース26から取り外した状態で、ワーク供給地点(第1撮像対象領域A1)をその真上からカメラ42で撮像したり、ワーク供給地点の周壁(第2撮像対象領域A2)をカメラ42で撮像したりすることがある。ワーク供給地点の周壁を撮像するのは、例えば周壁の傷を探す必要があるときなどである。 The articulated robot 10 captures an image of the workpiece supply point (first imaging target area A1) with the camera 42 from directly above, with the end effector 70 removed from the mechanical interface 26 before performing the work. The peripheral wall (the second imaging target area A2) of the workpiece supply point may be imaged by the camera 42 or the like. The peripheral wall of the workpiece supply point is imaged, for example, when it is necessary to search for a flaw on the peripheral wall.
 多関節ロボット10がこうした撮像を実行する場合、制御装置90は、撮像処理ルーチン実行する。図5は撮像処理ルーチンの一例を示すフローチャートである。制御装置90のCPU91は、目標地点を撮像する必要が生じた際に、撮像処理ルーチンのプログラムを記憶部92から読み出して実行する。撮像処理ルーチンは、上述したようにエンドエフェクタ70をメカニカルインタフェース26から取り外した状態で実行される。 When the articulated robot 10 performs such imaging, the control device 90 executes an imaging processing routine. FIG. 5 is a flowchart showing an example of the imaging processing routine. The CPU 91 of the control device 90 reads out the program of the imaging processing routine from the storage unit 92 and executes the program when it is necessary to image the target point. The imaging processing routine is executed with the end effector 70 removed from the mechanical interface 26 as described above.
 CPU91は、撮像処理ルーチンを開始すると、まず、目標地点を認識する(S100)。例えば、ワーク供給地点が目標地点の場合、CPUは、ワーク供給地点として予め記憶部92に記憶されている座標位置を読み込むことにより目標地点を認識する。 When the CPU 91 starts the imaging process routine, it first recognizes a target point (S100). For example, when the workpiece supply point is the target point, the CPU recognizes the target point by reading the coordinate position stored in advance in the storage unit 92 as the workpiece supply point.
 次に、CPU91は、目標地点を撮像する(S110)。具体的には、CPU91は、目標地点が撮像機器30の第1撮像対象領域A1に入るよう関節駆動モータ14を制御して各アーム13を動かし、目標地点の真上から目標地点が撮像されるよう撮像機器30を制御する。目標地点を撮像する際、CPU91は、第1環状光源51を点灯し第2環状光源52を消灯して、第1環状光源51に照らされた第1撮像対象領域A1をハーフミラー44を介してカメラ42が撮影するよう撮像機器30を制御する。カメラ42が撮像した画像は記憶部92に順次記憶される。 Next, the CPU 91 images a target point (S110). Specifically, the CPU 91 controls the joint drive motor 14 to move each arm 13 so that the target point enters the first imaging target area A1 of the imaging device 30, and the target point is imaged from directly above the target point. Control the imaging device 30. When imaging the target point, the CPU 91 turns on the first annular light source 51 and extinguishes the second annular light source 52 so that the first imaging target area A1 illuminated by the first annular light source 51 is through the half mirror 44. The imaging device 30 is controlled so that the camera 42 shoots. Images captured by the camera 42 are sequentially stored in the storage unit 92.
 次に、CPU91は、目標地点の周囲を撮像する(S120)。具体的には、CPU91は、第1環状光源51を消灯し第2環状光源52を点灯して、第2環状光源52に照らされた第2撮像対象領域A2をハーフミラー44を介してカメラ42が撮像するよう撮像機器30を制御する。また、CPU91は、いま撮像した第2撮像対象領域A2が次に撮像する第2撮像対象領域A2と接するように(あるいはわずかに重複するように)円筒体34を所定角度だけ軸回転させる。CPU91は、θ軸モータ24を制御することにより、円筒体34を軸回転させる。つまり、円筒体34をカメラ42の光軸の回りに回転させる。その後、CPU91は、先ほどと同様にして新たな第2撮像対象領域A2をカメラ42が撮像するよう撮像機器30を制御する。CPU91は、このように第2撮像対象領域A2を順次更新していくことにより、目標地点の周囲を撮像する。カメラ42が撮像した画像は記憶部92に順次記憶される。 Next, the CPU 91 captures an image of the surroundings of the target point (S120). Specifically, the CPU 91 turns off the first annular light source 51 and turns on the second annular light source 52 so that the second imaging target area A2 illuminated by the second annular light source 52 can be captured by the camera 42 via the half mirror 44. Controls the imaging device 30 to capture an image. Further, the CPU 91 rotates the cylindrical body 34 by a predetermined angle so that the second imaging target area A2 now imaged contacts with (or slightly overlaps) the second imaging target area A2 to be imaged next. The CPU 91 rotates the cylindrical body 34 by controlling the θ-axis motor 24. That is, the cylindrical body 34 is rotated about the optical axis of the camera 42. After that, the CPU 91 controls the imaging device 30 such that the camera 42 captures a new second imaging target area A2 in the same manner as described above. The CPU 91 images the periphery of the target point by sequentially updating the second imaging target area A2 in this manner. Images captured by the camera 42 are sequentially stored in the storage unit 92.
 本実施形態では、エンドエフェクタ取付面であるメカニカルインタフェース26が、撮像機器30が360°軸回転するときの軌道経路と干渉する位置に設けられている。そのため、撮像機器30がメカニカルインタフェース26と干渉しない範囲で軸回転させる。 In the present embodiment, the mechanical interface 26, which is the end effector mounting surface, is provided at a position that interferes with the trajectory path when the imaging device 30 rotates 360 degrees. Therefore, the imaging device 30 is axially rotated within a range that does not interfere with the mechanical interface 26.
 その後、CPU91は、他に目標地点があるか否かを判定し(S130)、他に目標地点があったならば、目標地点を更新し(S140)、再びS100以降の処理を実行する。一方、S130で他に目標地点がなかったならば、CPU91は本ルーチンを終了する。 Thereafter, the CPU 91 determines whether there is another target point (S130). If there is another target point, the CPU 91 updates the target point (S140), and executes the processing of S100 and thereafter again. On the other hand, if there is no other target point at S130, the CPU 91 ends this routine.
 ここで、本実施形態の構成要素と本開示の作業機の構成要素との対応関係を明らかにする。本実施形態の多関節ロボット10のアーム13が本開示の作業機のアームに相当し、カメラ42がカメラに相当し、第1環状光源51が第1光源に相当し、第2環状光源52が第2光源に相当し、ハーフミラー44がハーフミラーに相当し、円筒体34が支持体に相当し、θ軸モータ24が支持体回転駆動部に相当する。 Here, the correspondence between the components of the present embodiment and the components of the work machine of the present disclosure will be clarified. The arm 13 of the articulated robot 10 of the present embodiment corresponds to the arm of the work machine of the present disclosure, the camera 42 corresponds to the camera, the first annular light source 51 corresponds to the first light source, and the second annular light source 52 The half mirror 44 corresponds to a half mirror, the cylindrical body 34 corresponds to a support, and the θ axis motor 24 corresponds to a support rotation driving unit.
 以上詳述した実施形態では、第1撮像対象領域A1を撮像する場合には、第1環状光源51を点灯し第2環状光源52を消灯して、第1環状光源51に照らされた第1撮像対象領域A1をハーフミラー44を介してカメラ42で撮影する。第2撮像対象領域A2を撮像する場合には、第1環状光源51を消灯し第2環状光源52を点灯して、第2環状光源52に照らされた第2撮像対象領域A2をハーフミラー44を介してカメラ42で撮像する。また、第2環状光源52とハーフミラー44とを一体的に支持する円筒体34をカメラ42の光軸43を中心としてθ軸モータ24が回転させることにより、第2撮像対象領域A2をカメラ42の光軸43を中心とする周囲にまで広げることができる。このように、本実施形態によれば、カメラ1台という簡易な構成でありながら広範囲な領域を撮像することができる。 In the embodiment described above, when imaging the first imaging target area A1, the first annular light source 51 is turned on, the second annular light source 52 is turned off, and the first annular light source 51 is illuminated. The imaging target area A1 is photographed by the camera 42 through the half mirror 44. When imaging the second imaging target area A2, the first annular light source 51 is turned off, the second annular light source 52 is turned on, and the second imaging target area A2 illuminated by the second annular light source 52 is a half mirror 44 Through the camera 42. In addition, the θ-axis motor 24 rotates the cylindrical body 34 integrally supporting the second annular light source 52 and the half mirror 44 about the optical axis 43 of the camera 42 so that the second imaging target area A2 is the camera 42. It can be extended to the periphery centering on the optical axis 43 of. As described above, according to the present embodiment, it is possible to capture a wide range of area with a simple configuration of one camera.
 また、エンドエフェクタ70の回転駆動部であるθ軸モータ24が円筒体34の回転駆動部を兼ねるように構成したため、両方の回転駆動部を別々に設ける場合に比べて、簡易な構成とすることができる。 In addition, since the θ-axis motor 24, which is the rotational drive unit of the end effector 70, also serves as the rotational drive unit of the cylindrical body 34, the configuration is simplified as compared to the case where both rotational drive units are separately provided. Can.
 更に、エンドエフェクタ70は、カメラ42、第1環状光源51、第2環状光源52、円筒体34及びθ軸モータ24を備えたアーム13のメカニカルインタフェース26に着脱可能に取り付けられる。これにより、メカニカルインタフェース26に取付可能な多種類のエンドエフェクタに対して、カメラ42、第1環状光源51、第2環状光源52、円筒体34及びθ軸モータ24を共通化することができるため、各エンドエフェクタをコンパクトにすることができる。 Furthermore, the end effector 70 is detachably attached to the mechanical interface 26 of the arm 13 provided with the camera 42, the first annular light source 51, the second annular light source 52, the cylindrical body 34 and the θ axis motor 24. Thereby, the camera 42, the first annular light source 51, the second annular light source 52, the cylindrical body 34, and the θ axis motor 24 can be made common to many types of end effectors that can be attached to the mechanical interface 26. , Each end effector can be made compact.
 更にまた、メカニカルインタフェース26は、円筒体34が1回転するときの第2環状光源52の軌道経路と干渉する位置に設けられている。そのため、第2撮像対象領域A2をカメラ42の光軸43を中心とする全周にわたって連続させることはできないが、メカニカルインタフェース26を第2環状光源52の上面よりも高い位置に配置する必要がないため、エンドエフェクタ70の上下方向の長さを比較的短くすることができる。 Furthermore, the mechanical interface 26 is provided at a position that interferes with the orbital path of the second annular light source 52 when the cylindrical body 34 makes one rotation. Therefore, although the second imaging target area A2 can not be continuous over the entire circumference centering on the optical axis 43 of the camera 42, the mechanical interface 26 does not have to be disposed at a position higher than the upper surface of the second annular light source 52 Therefore, the length in the vertical direction of the end effector 70 can be made relatively short.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It is needless to say that the present invention is not limited to the above-mentioned embodiment at all, and can be implemented in various modes within the technical scope of the present invention.
 例えば、上述した実施形態では、メカニカルインタフェース26を、円筒体34が1回転するときの第2環状光源52の軌道経路と干渉する位置に設けたが、特にこれに限定されるものではない。例えば、図6に示すように、メカニカルインタフェース26を、円筒体134が1回転するときの第2環状光源52の軌道経路と干渉しない位置に設けてもよい。図6では、円筒体134は、円筒体34と比べて下部を長くすることにより、第2環状光源52の上面よりもメカニカルインタフェース26が高くなるようにした。こうすれば、第2撮像対象領域A2をカメラ42の光軸43を中心とする全周にわたって連続させることができる。但し、メカニカルインタフェース26を第2環状光源52の上面よりも高い位置に配置する必要があるため、その分、上述したエンドエフェクタ70よりも上下方向の長さが長いエンドエフェクタ170を用いる必要がある。 For example, in the embodiment described above, the mechanical interface 26 is provided at a position that interferes with the path path of the second annular light source 52 when the cylindrical body 34 makes one rotation, but the present invention is not particularly limited thereto. For example, as shown in FIG. 6, the mechanical interface 26 may be provided at a position that does not interfere with the orbital path of the second annular light source 52 when the cylindrical body 134 makes one rotation. In FIG. 6, by making the lower part of the cylindrical body 134 longer than the cylindrical body 34, the mechanical interface 26 is made higher than the upper surface of the second annular light source 52. In this case, the second imaging target area A2 can be continuous over the entire circumference around the optical axis 43 of the camera 42. However, since it is necessary to dispose the mechanical interface 26 at a position higher than the upper surface of the second annular light source 52, it is necessary to use the end effector 170 whose length in the vertical direction is longer than that of the end effector 70 described above. .
 上述した実施形態では、撮像処理ルーチンにおいて、第1撮像対象領域A1を撮像したあと、第2撮像対象領域A2が連続するように撮像機器30を軸回転させながら撮像したが、特にこれに限定されない。例えば、第1撮像対象領域Aを撮像するだけでもよいし、第2撮像対象領域A2が連続するように撮像機器30を軸回転させながら撮像するだけでもよい。また、第2撮像対象領域A2を撮像する場合、第2撮像対象領域A2が断続的になるように撮像機器30を軸回転させながら撮像してもよいし、撮像機器30を回転させずに第2撮像対象領域A2を1度だけ撮像してもよい。 In the embodiment described above, after imaging the first imaging target area A1 in the imaging processing routine, imaging is performed while axially rotating the imaging device 30 so that the second imaging target area A2 is continuous, but it is not particularly limited thereto . For example, only the first imaging target area A may be imaged, or imaging may be performed while axially rotating the imaging device 30 such that the second imaging target area A2 is continuous. When imaging the second imaging target area A2, imaging may be performed while the imaging device 30 is axially rotated so that the second imaging target area A2 becomes intermittent, or the imaging device 30 may not be rotated. The imaging target area A2 may be imaged only once.
 上述した実施形態では、θ軸モータ24の回転を駆動プーリ28、ベルト40及び従動プーリ38を介して円筒体34に伝達させたが、特にこれに限定されるものではなく、例えばθ軸モータ24の回転をギヤ機構を介して円筒体34に伝達させてもよい。 In the embodiment described above, the rotation of the θ-axis motor 24 is transmitted to the cylindrical body 34 via the drive pulley 28, the belt 40 and the driven pulley 38, but the present invention is not particularly limited thereto. Rotation may be transmitted to the cylindrical body 34 via a gear mechanism.
 上述した実施形態では、エンドエフェクタ70の回転駆動部であるθ軸モータ24が円筒体34の回転駆動部を兼ねるように構成したが、θ軸モータ24とは別に、円筒体34の回転駆動部としてのモータを設けてもよい。 In the embodiment described above, the θ-axis motor 24 which is the rotational drive unit of the end effector 70 is configured to also serve as the rotational drive unit of the cylindrical body 34, but separately from the θ-axis motor 24, the rotational drive unit of the cylindrical body 34 A motor may be provided as
 上述した実施形態では、ノズル72を備えたエンドエフェクタ70を例示したが、特にこれに限定されるものではなく、例えばノズル72の代わりにメカチャックや電磁石を採用してもよいし、電動工具(ドライバやドリルなど)を採用してもよい。また、エンドエフェクタ70のノズル72は、鉛直下向きのものを例示したが、鉛直下向きと横向き(水平方向)のいずれかの姿勢に切替可能としてもよい。横向きのノズル72を用いてワークを垂直なパネル上の装着位置に装着する場合、その装着位置をカメラ42によって撮像した画像を用いてその装着位置の状況を確認することができる。 In the embodiment described above, the end effector 70 having the nozzle 72 is exemplified, but the invention is not particularly limited thereto. For example, a mechanical chuck or an electromagnet may be adopted instead of the nozzle 72, or an electric tool ( A driver or a drill may be employed. Also, although the nozzle 72 of the end effector 70 has been illustrated as being vertically downward, it may be switchable to any posture of vertically downward and sideways (horizontal direction). When the workpiece is mounted at the mounting position on the vertical panel using the horizontally oriented nozzle 72, the mounting position can be confirmed using an image captured by the camera 42.
 上述した実施形態では、エンドエフェクタ70をメカニカルインタフェース26から取り外した状態でカメラ42による撮像を行ったが、エンドエフェクタ70をメカニカルインタフェース26に取り付けた状態でカメラ42による撮像を行ってもよい。 In the embodiment described above, the imaging by the camera 42 is performed with the end effector 70 removed from the mechanical interface 26, but the imaging with the camera 42 may be performed with the end effector 70 attached to the mechanical interface 26.
 本開示の作業機は、以下のように構成してもよい。 The working machine of the present disclosure may be configured as follows.
 本開示の作業機は、前記アームの先端に取り付けられたエンドエフェクタと、前記エンドエフェクタを軸回転させるエンドエフェクタ回転駆動部と、を備え、前記エンドエフェクタ回転駆動部は、前記支持体回転駆動部を兼ねるようにしてもよい。こうすれば、エンドエフェクタ回転駆動部と支持体回転駆動部とを別々に設ける場合に比べて、簡易な構成とすることができる。 The work machine of the present disclosure includes an end effector attached to the tip of the arm, and an end effector rotation drive unit configured to pivot the end effector, the end effector rotation drive unit including the support rotation drive unit. May be used as well. In this case, the configuration can be simplified as compared with the case where the end effector rotation drive unit and the support rotation drive unit are provided separately.
 こうした本開示の作業機において、前記エンドエフェクタは、前記カメラ、前記第1光源、前記第2光源、前記支持体及び前記エンドエフェクタ回転駆動部を備えた前記アームのエンドエフェクタ取付面に着脱可能に取り付けられていてもよい。こうすれば、エンドエフェクタ取付面に取付可能な多種類のエンドエフェクタに対して、カメラ、第1光源、第2光源、支持体及びエンドエフェクタ回転駆動部を共通化することができるため、各エンドエフェクタをコンパクトにすることができる。 In the work machine of the present disclosure, the end effector is detachably attachable to an end effector mounting surface of the arm including the camera, the first light source, the second light source, the support, and the end effector rotational drive unit. It may be attached. In this way, since the camera, the first light source, the second light source, the support, and the end effector rotation drive unit can be made common to various types of end effectors that can be attached to the end effector mounting surface, each end effector The effector can be made compact.
 また、前記エンドエフェクタ取付面は、前記支持体が1回転するときの軌道経路と干渉する位置に設けられていてもよいし、あるいは、前記支持体が1回転するときの軌道経路と干渉しない位置に設けられていてもよい。前者の場合、第2撮像対象領域をカメラの光軸を中心とする全周にわたって連続させることはできないが、エンドエフェクタ取付面を軌道経路よりも高い位置に配置する必要がないためエンドエフェクタの長さを比較的短くすることができる。後者の場合、第2撮像対象領域をカメラの光軸を中心とする全周にわたって連続させることができるが、エンドエフェクタ取付面を軌道経路よりも高い位置に配置する必要があるため、その分、エンドエフェクタの長さを長くする必要がある。 In addition, the end effector mounting surface may be provided at a position that interferes with the orbital path when the support rotates once, or a position that does not interfere with the orbital path when the support rotates once. May be provided. In the former case, although the second imaging target area can not be continuous over the entire circumference centering on the optical axis of the camera, the end effector mounting surface does not have to be arranged at a position higher than the orbital path. Can be relatively short. In the latter case, the second imaging target area can be continuous over the entire circumference centered on the optical axis of the camera, but since the end effector mounting surface needs to be positioned higher than the orbital path, It is necessary to increase the length of the end effector.
 本発明は、カメラ付きの作業機を用いる各種産業に利用可能である。 The present invention is applicable to various industries using a working machine with a camera.
10 多関節ロボット、11 テーブル、12 ベース、13 アーム、14 関節駆動モータ、16 エンコーダ、18 リスト、20 ステー、22 支持カバー、24 θ軸モータ、25 エンコーダ、26 メカニカルインタフェース、28 駆動プーリ、30 撮像機器、32 ブラケット、34 円筒体、36 ベアリング、38 従動プーリ、40 ベルト、42 カメラ、43 光軸、44 ハーフミラー、46 ミラー支持体、46a 円筒穴、46b 開口、48 ステー、50 ステー、51 第1環状光源、52 第2環状光源、53,54 発光面、55,56 透明カバー、70 エンドエフェクタ、72 ノズル、90 制御装置、91 CPU、92 記憶部、A1 第1撮像対象領域、A2 第2撮像対象領域。 Reference Signs List 10 articulated robot, 11 tables, 12 bases, 13 arms, 14 articulated drive motors, 16 encoders, 18 lists, 20 stays, 22 support covers, 24 θ axis motors, 25 encoders, 26 mechanical interfaces, 28 drive pulleys, 30 imaging Equipment, 32 brackets, 34 cylinders, 36 bearings, 38 driven pulleys, 40 belts, 42 cameras, 43 optical axes, 44 half mirrors, 46 mirror supports, 46a cylindrical holes, 46b openings, 48 stays, 50 stays, 51 1 annular light source, 52 second annular light source, 53, 54 light emitting surface, 55, 56 transparent cover, 70 end effector, 72 nozzle, 90 controller, 91 CPU, 92 storage unit, A1 first imaging target area, A2 second Imaging pair Area.

Claims (5)

  1.  アームと、
     前記アームの先端に取り付けられたカメラと、
     前記カメラの光軸に沿った方向の第1撮像対象領域を照らす第1光源と、
     前記カメラと前記第1光源との間で前記カメラの光軸と交差するように斜めに配置されたハーフミラーと、
     前記ハーフミラーの傾斜面の法線に対して前記カメラの光軸がなす角度を+θとしたときに前記法線に対する角度が-θとなる方向の第2撮像対象領域を照らす第2光源と、
     前記第2光源と前記ハーフミラーとを一体的に支持する支持体と、
     前記カメラの光軸を中心として前記支持体を回転させる支持体回転駆動部と、
     を備えた作業機。
    With the arm,
    A camera attached to the tip of the arm;
    A first light source for illuminating a first imaging target area in a direction along the optical axis of the camera;
    A half mirror disposed obliquely between the camera and the first light source so as to intersect the optical axis of the camera;
    A second light source that illuminates a second imaging target region in a direction in which the angle with respect to the normal is −θ when the angle formed by the optical axis of the camera with the normal to the inclined surface of the half mirror is + θ;
    A support that integrally supports the second light source and the half mirror;
    A support rotation drive unit configured to rotate the support around an optical axis of the camera;
    Work machine equipped with
  2.  請求項1に記載の作業機であって、
     前記アームの先端に取り付けられたエンドエフェクタと、
     前記エンドエフェクタを軸回転させるエンドエフェクタ回転駆動部と、
     を備え、
     前記エンドエフェクタ回転駆動部は、前記支持体回転駆動部を兼ねる、
     作業機。
    The working machine according to claim 1, wherein
    An end effector attached to the tip of the arm;
    An end effector rotary drive for pivoting the end effector;
    Equipped with
    The end effector rotation drive unit doubles as the support rotation drive unit.
    Work machine.
  3.  前記エンドエフェクタは、前記カメラ、前記第1光源、前記第2光源、前記支持体及び前記エンドエフェクタ回転駆動部を備えた前記アームのエンドエフェクタ取付面に着脱可能に取り付けられている、
     請求項2に記載の作業機。
    The end effector is detachably attached to an end effector mounting surface of the arm including the camera, the first light source, the second light source, the support, and the end effector rotation drive unit.
    The work machine according to claim 2.
  4.  前記エンドエフェクタ取付面は、前記支持体が1回転するときの軌道経路と干渉する位置に設けられている、
     請求項3に記載の作業機。
    The end effector mounting surface is provided at a position that interferes with an orbital path when the support makes one rotation.
    The work machine according to claim 3.
  5.  前記エンドエフェクタ取付面は、前記支持体が1回転するときの軌道経路と干渉しない位置に設けられている、
     請求項3に記載の作業機。
    The end effector mounting surface is provided at a position that does not interfere with the path path when the support makes one rotation.
    The work machine according to claim 3.
PCT/JP2017/042169 2017-11-24 2017-11-24 Work machine WO2019102577A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019556043A JP6840267B2 (en) 2017-11-24 2017-11-24 Work machine
PCT/JP2017/042169 WO2019102577A1 (en) 2017-11-24 2017-11-24 Work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042169 WO2019102577A1 (en) 2017-11-24 2017-11-24 Work machine

Publications (1)

Publication Number Publication Date
WO2019102577A1 true WO2019102577A1 (en) 2019-05-31

Family

ID=66631901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042169 WO2019102577A1 (en) 2017-11-24 2017-11-24 Work machine

Country Status (2)

Country Link
JP (1) JP6840267B2 (en)
WO (1) WO2019102577A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115300A (en) * 1993-10-18 1995-05-02 M & M Prod Kk Electronic component positioning apparatus
JP2002214693A (en) * 2001-01-23 2002-07-31 Matsushita Electric Ind Co Ltd Method and device for picking up image of several objects and electronic part mounting device using the same
JP2003057008A (en) * 2001-08-10 2003-02-26 Ccs Inc Matter recognition apparatus
WO2014020739A1 (en) * 2012-08-02 2014-02-06 富士機械製造株式会社 Work machine provided with articulated robot and electric component mounting machine
WO2014147701A1 (en) * 2013-03-18 2014-09-25 富士機械製造株式会社 Component mounting device and method of calibration in component mounting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115300A (en) * 1993-10-18 1995-05-02 M & M Prod Kk Electronic component positioning apparatus
JP2002214693A (en) * 2001-01-23 2002-07-31 Matsushita Electric Ind Co Ltd Method and device for picking up image of several objects and electronic part mounting device using the same
JP2003057008A (en) * 2001-08-10 2003-02-26 Ccs Inc Matter recognition apparatus
WO2014020739A1 (en) * 2012-08-02 2014-02-06 富士機械製造株式会社 Work machine provided with articulated robot and electric component mounting machine
WO2014147701A1 (en) * 2013-03-18 2014-09-25 富士機械製造株式会社 Component mounting device and method of calibration in component mounting device

Also Published As

Publication number Publication date
JPWO2019102577A1 (en) 2020-10-22
JP6840267B2 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
JP4616514B2 (en) Electrical component mounting system and position error detection method therefor
JP2007527800A (en) Robot equipment equipped with tools, camera and light source
JP2009078312A (en) Articulated robot hand and articulated robot using the same
WO2021075031A1 (en) Multi-joint robot
WO2016002055A1 (en) Mounting head cleaning device and mounting head cleaning method
JP2015085486A (en) Parallel link robot
CN110966482A (en) Pipeline robot
WO2005123349A1 (en) Industrial robot
KR0168697B1 (en) Industrial robot
JP6057360B2 (en) Component mounter
CN105904143A (en) Intelligent welding equipment
WO2019102577A1 (en) Work machine
JP5951021B2 (en) Component mounter
JP6016940B2 (en) Component mounter
JP6825136B2 (en) End effector, articulated robot and work execution device
CN111508098A (en) Cable inspection device
WO2009093349A1 (en) Appearance inspection device
JP2000210889A (en) Industrial robot
KR920006519B1 (en) Rotary shaft device for industrial robot
JPH0970778A (en) Pendulum type robot
JPS60134671A (en) Video camera
JP2606786B2 (en) Automatic rotation positioning jig
JP4425400B2 (en) Work equipment
CN220498109U (en) Cutting device
JPH03224553A (en) Medical treatment drill and drill device with endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932883

Country of ref document: EP

Kind code of ref document: A1