WO2019101209A1 - 一种双通路发射功率切换检测电路、装置及移动终端 - Google Patents

一种双通路发射功率切换检测电路、装置及移动终端 Download PDF

Info

Publication number
WO2019101209A1
WO2019101209A1 PCT/CN2018/117599 CN2018117599W WO2019101209A1 WO 2019101209 A1 WO2019101209 A1 WO 2019101209A1 CN 2018117599 W CN2018117599 W CN 2018117599W WO 2019101209 A1 WO2019101209 A1 WO 2019101209A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
capacitor
inductor
dual
power switching
Prior art date
Application number
PCT/CN2018/117599
Other languages
English (en)
French (fr)
Inventor
张生
郑志豪
Original Assignee
捷开通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷开通讯(深圳)有限公司 filed Critical 捷开通讯(深圳)有限公司
Priority to US16/766,755 priority Critical patent/US10931385B2/en
Priority to EP18881305.9A priority patent/EP3720073A4/en
Publication of WO2019101209A1 publication Critical patent/WO2019101209A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0466Fault detection or indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1607Supply circuits
    • H04B1/1615Switching on; Switching off, e.g. remotely
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/16Test equipment located at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/24Arrangements for testing

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a dual-channel transmit power switching detection circuit, apparatus, and mobile terminal.
  • mobile terminal platforms support SWTP (Switching TX) both MTK and Qualcomm.
  • Power that is, transmit power switching function, which is mainly applied to all metal machine projects or simulated hand grips. These two conditions may deteriorate TRP ((total radiated power) loss power, we can use transmit power
  • TRP total radiated power
  • the switching function forcibly increases the radiated power of the antenna; however, after the prototype is calibrated to the target power, the power is basically stable, and the power variation is not large due to the change of the test environment, so additional compensation may be required only in the radiation environment. Power value.
  • a platform mechanism can be established. If the platform detects that the current prototype state is the conduction mode, the SWTP function can be turned off; and when the current radiation state is detected, the SWTP function is forcibly turned on. The problem of low antenna efficiency.
  • the current platform only supports one SWTP function. If the primary RF is two antennas, and each antenna needs to add SWTP function, one of the schemes is that the two SWTP detection paths are independent of each other, and one Vdet corresponds to one GPIO port, although
  • the schematic design can meet the functional requirements, but currently the MTK platform does not support two or more GPIOs to detect Vdet levels. So this method can not be applied to the actual project for the time being; the other can use SPDT to connect Vdet1 and Vdet2, so that only one GPIO port can be used to control two states, but the GPIO for controlling the RF module needs to work in BPI mode, and
  • the ports that can be used as the BPI mode are relatively few. For a relatively complex RF architecture, the BPI port is completely useless.
  • the embodiment of the invention provides a dual-channel transmit power switching detection circuit, device and mobile terminal, which can ensure that each antenna has SWTP function when the main radio frequency is two antennas, and can also make up for the platform not supporting multi-port detection. Disadvantages.
  • an embodiment of the present invention provides a dual-channel transmit power switching detection circuit, which is connected to a dual antenna path, and includes a first RF connector, a second RF connector, a first detection module, and a second detection module.
  • the first detection module is connected to the power supply, the first RF connector, and the second detection module, and the first detection module is further connected to the first antenna end, the first RF end, and the detection port of the dual antenna path;
  • the second detecting module is further connected to the second RF connector, and is further connected to the second antenna end and the second RF end of the dual antenna path; the first detecting module and the second detecting module are respectively connected according to the first radio frequency
  • the access state of the second RF connector controls the current path of the power supply, and then outputs a corresponding detection level signal through the first detection module, so that the first RF connector and/or the second RF connector are connected to the RF When connecting the line, turn off the transmit power switching function, otherwise turn on the transmit power switching function.
  • the first detecting module is specifically configured to output a high level when the first RF connector and/or the second RF connector are connected to the RF connection line, and then close the transmission. Power switching function; when neither the first RF connector nor the second RF connector is connected to the RF connection line, the output is low, and the transmission power switching function is enabled at this time.
  • the first detecting module includes a voltage dividing unit for dividing voltage, a filtering unit for filtering, and a blocking unit for blocking DC; the voltage dividing unit The first end is connected to the power supply through a filtering unit, and the second end of the voltage dividing unit is connected to the detecting port, and the third end of the voltage dividing unit is connected to the first RF connector and the blocking unit.
  • the voltage dividing unit includes a first resistor and a second resistor, and one end of the first resistor is connected to the blocking unit and the first end of the first RF connector, The other end of the first resistor is connected to one end of the second resistor, the filtering unit and the detecting port; and the other end of the second resistor is connected to the power supply through the filtering unit.
  • the blocking unit includes a first capacitor and a second capacitor
  • the first detecting module further includes a first inductor
  • a positive pole of the first capacitor is connected to the first resistor
  • One end of the first capacitor is connected to the first antenna end;
  • the cathode of the second capacitor is connected to the second end of the first RF connector and the second detecting module, and the anode of the second capacitor is connected to the The first RF terminal is also grounded through the first inductor.
  • the filtering unit includes a third capacitor, a fourth capacitor, and a second inductor; a cathode of the third capacitor is connected to the other end of the second resistor and one end of the second inductor, The other end of the second inductor is connected to the power supply; the negative pole of the fourth capacitor is connected to one end of the second resistor and the detection port; and the anode of the third capacitor and the anode of the fourth capacitor are both grounded.
  • the second detecting module includes a fifth capacitor, a sixth capacitor, a seventh capacitor, an eighth capacitor, a third inductor, a fourth inductor, and a fifth inductor;
  • One end of the third inductor is connected to the second end of the first RF connector and the negative end of the second capacitor, and the other end of the third inductor is connected to the positive pole of the sixth capacitor, the negative pole of the seventh capacitor, and one end of the fourth inductor;
  • the other end of the fourth inductor is connected to the first end of the second RF connector and the anode of the fifth capacitor;
  • the second end of the second RF connector is connected to the cathode of the eighth capacitor, and is also grounded through the fifth inductor;
  • a cathode of the fifth capacitor is connected to the second antenna end, and a cathode of the sixth capacitor and a cathode of the seventh capacitor are both grounded; and a cathode of the eighth capacitor is connected to the second RF terminal.
  • the inductance of the fifth inductor is 56 nH.
  • an embodiment of the present invention provides a dual-channel transmit power switching detection apparatus, including a PCB board, wherein the PCB board is provided with a dual-channel transmit power switching detection circuit; the dual-channel transmit power switching detection circuit and The dual-channel transmit power switching detection circuit includes a first RF connector, a second RF connector, a first detection module, and a second detection module, wherein the first detection module and the power supply are respectively.
  • the first detection module is further connected to the first antenna end, the first RF end, and the detection port of the dual antenna path; the second detection module is further connected to the second RF connector.
  • the first detecting module and the second detecting module are respectively controlled according to access states of the first RF connector and the second RF connector a current path of the power supply, and then outputting a corresponding detection level signal through the first detection module, so that the first RF connector and/or the second shot
  • the transmit power switching function is disabled, otherwise the transmit power switching function is enabled.
  • the first detecting module is specifically configured to output a high level when the first RF connector and/or the second RF connector are connected to the RF connection line, and then disable the transmit power switching function;
  • the first detecting module includes a voltage dividing unit for dividing voltage, a filtering unit for filtering, and a blocking unit for blocking DC; the first end of the voltage dividing unit is connected to a power supply through a filtering unit, The second end of the voltage dividing unit is connected to the detecting port, and the third end of the voltage dividing unit is connected to the first RF connector and the blocking unit.
  • the voltage dividing unit includes a first resistor and a second resistor, one end of the first resistor is connected to the blocking unit and the first end of the first RF connector, and the other end of the first resistor is connected to one end of the second resistor And a filtering unit and a detecting port; the other end of the second resistor is connected to the power supply through the filtering unit.
  • the blocking unit includes a first capacitor and a second capacitor
  • the first detecting module further includes a first inductor; a positive pole of the first capacitor is connected to one end of the first resistor, and a cathode of the first capacitor is connected to the cathode
  • the first antenna end is connected to the second end of the first RF connector and the second detecting module, and the anode of the second capacitor is connected to the first RF end and is also grounded through the first inductor.
  • the filter unit includes a third capacitor, a fourth capacitor, and a second inductor; a cathode of the third capacitor is connected to the other end of the second resistor and one end of the second inductor, and the other end of the second inductor is connected to the power supply; The cathode of the fourth capacitor is connected to one end of the second resistor and the detecting port; the anode of the third capacitor and the anode of the fourth capacitor are both grounded.
  • the second detecting module includes a fifth capacitor, a sixth capacitor, a seventh capacitor, an eighth capacitor, a third inductor, a fourth inductor, and a fifth inductor; one end of the third inductor is connected to the first RF connector a second terminal and a second capacitor, the other end of the third inductor is connected to the anode of the sixth capacitor, the cathode of the seventh capacitor, and one end of the fourth inductor; and the other end of the fourth inductor is connected to the second RF connector
  • the first end of the second and fifth capacitors; the second end of the second RF connector is connected to the cathode of the eighth capacitor, and is also grounded through the fifth inductor; the cathode of the fifth capacitor is connected to the second antenna
  • the anode of the sixth capacitor and the anode of the seventh capacitor are both grounded; the anode of the eighth capacitor is connected to the second RF terminal.
  • an embodiment of the present invention provides a mobile terminal, including a dual-channel transmit power switching detection apparatus, where the dual-channel transmit power switching detection apparatus includes a PCB board, and the dual-channel transmit power switching detection is disposed on the PCB board.
  • the dual-channel transmit power switching detection circuit is connected to the dual antenna path, and the dual-channel transmit power switching detection circuit includes a first RF connector, a second RF connector, a first detection module, and a second detection module.
  • the first detection module is connected to the power supply, the first RF connector, and the second detection module, and the first detection module is further connected to the first antenna end, the first RF end, and the detection port of the dual antenna path;
  • the second detecting module is further connected to the second RF connector, and is further connected to the second antenna end and the second RF end of the dual antenna path; the first detecting module and the second detecting module are respectively connected according to the first radio frequency
  • the access state of the second RF connector controls the current path of the power supply, and then outputs corresponding detection through the first detection module Level of the signal, such that when the first RF connectors and / or the second radio access RF connector cable, switching off the transmission power, the transmission power is turned on or switching function.
  • the first detecting module is specifically configured to output a high level when the first RF connector and/or the second RF connector are connected to the RF connection line, and then disable the transmit power switching function;
  • the first detecting module includes a voltage dividing unit for dividing voltage, a filtering unit for filtering, and a blocking unit for blocking DC; the first end of the voltage dividing unit is connected to a power supply through a filtering unit, The second end of the voltage dividing unit is connected to the detecting port, and the third end of the voltage dividing unit is connected to the first RF connector and the blocking unit.
  • the voltage dividing unit includes a first resistor and a second resistor, one end of the first resistor is connected to the blocking unit and the first end of the first RF connector, and the other end of the first resistor is connected to one end of the second resistor And a filtering unit and a detecting port; the other end of the second resistor is connected to the power supply through the filtering unit.
  • the blocking unit includes a first capacitor and a second capacitor
  • the first detecting module further includes a first inductor; a positive pole of the first capacitor is connected to one end of the first resistor, and a cathode of the first capacitor is connected to the cathode
  • the first antenna end is connected to the second end of the first RF connector and the second detecting module, and the anode of the second capacitor is connected to the first RF end and is also grounded through the first inductor.
  • the dual-channel transmit power switching detection circuit includes a first RF connector, a second RF connector, a first detection module, and a second detection module.
  • the first detecting module is respectively connected to the power supply, the first RF connector and the second connector, and the second detecting unit is further connected to the second RF connector, wherein the first detecting module and the second detecting module respectively Controlling a current path of the power supply according to an access state of the first RF connector and the second RF connector, and then outputting a corresponding detection level signal through the first detection module, and only one detection port outputs a detection level signal to satisfy
  • the primary radio is two antennas, each antenna has the SWTP function, and it can also compensate for the drawbacks that the platform does not support multi-port detection.
  • FIG. 1 is a structural block diagram of a dual-channel transmit power switching detection circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic circuit diagram of a dual-channel transmit power switching detection circuit according to an embodiment of the present invention.
  • the invention provides a dual-channel transmit power switching detection circuit, device and mobile terminal, which can ensure that each antenna has SWTP function when the main radio frequency is two antennas, and can also compensate for the disadvantage that the platform does not support multi-port detection.
  • the dual-channel transmit power switching detection circuit includes a first RF connector 10, a second RF connector 20, a first detection module 30, and a second detection module 40.
  • the first detection module 30 is respectively connected to a power supply.
  • the first RF module 10 is connected to the second detection module 40, and the second detection module 40 is further connected to the second RF connector 20.
  • the first detection module 30 and the second detection module 40 are respectively connected according to the first radio frequency.
  • the access states of the device 10 and the second RF connector 20 control the current path of the power supply, and then output corresponding detection level signals through the first detection module 30, such that the first RF connector 10 and/or the second RF connection
  • the transmission power switching function is turned off, otherwise the transmission power switching function is turned on.
  • the present invention controls the current path of the power supply by detecting the access states of the first RF connector 10 and the second RF connector 20, so that corresponding detection level signals can be output in different access states, according to the detection level.
  • the signal judges the current state of the mobile terminal to enable or disable the transmit power switching function, and only needs one detection port to satisfy the SWTP function detection and control requirement under the dual antenna path, which makes up for the drawback that the current platform does not support the multi-function detection.
  • the first detecting module 30 is specifically configured to output a high level when the first RF connector 10 and/or the second RF connector 20 are connected to the RF connection line, and then disable the transmission power switching function; When neither the RF connector 10 nor the second RF connector 20 is connected to the RF connection line, the output is low level.
  • the transmission power switching function is enabled, that is, as long as one RF connector is connected, it is determined to be a conduction state. It is not necessary to enable the transmit power switching function.
  • the coupling state is judged.
  • the transmit power switching function is enabled to compensate the lost power, thereby realizing the detection of the transmit power switching function in the case of dual antennas. And control.
  • the first RF connector 10 and the second RF connector 20 are simultaneously connected to the RF cable, that is, one end of the first RF connector 10 and one end of the second RF connector 20 are disconnected.
  • the current of the power supply cannot flow through the first RF connector 10 through the second detection module 40, and only the first detection module 30 is turned on.
  • the output of the first detection module 30 is at a high level, and the conduction state is determined. Turning off the transmit power switching function; similarly, when only the first RF connector 10 is accessed, that is, one end of the first RF connector 10 is disconnected, and the second RF connector 20 is connected.
  • the current of the power supply cannot pass the first An RF connector 10 flows through the second detecting module 40, and the first detecting module 30 outputs a high level signal, which is also determined to be a conductive state, and the transmitting power switching function is turned off; when only the second RF connector 20 is accessed, the first The RF connector 10 is in a connected state, but one end of the second RF connector 20 is disconnected, and the current cannot directly pass through the second detecting module 40 to the ground. Then, the first detecting module 30 still outputs a high level, and is determined to be Conducting state, switching off the transmission power.
  • the first antenna end and the second antenna end are both connected.
  • the state, at this time, the current of the power supply can pass through the second detecting module 40 to the ground.
  • the first detecting module 30 outputs a low level, and can determine that the path is in a coupled state, and then the transmitting power switching function is turned on.
  • the first detecting module 10 includes a voltage dividing unit 31 for voltage division, a filtering unit 32 for filtering, and a blocking unit for DC blocking (not labeled in the figure).
  • the first end of the voltage dividing unit 31 is connected to the power supply VIO18_PMU through the filtering unit 32, the second port of the voltage dividing unit 31 is connected to the detecting port Vdet, and the third end of the voltage dividing unit 31 is connected to the first radio frequency connection.
  • the first detecting module 30 cooperates with the first detecting module 30 to control the current path of the power supply according to the access state of the first RF connector 10.
  • the filtering unit 32 can effectively filter the clutter interference in the circuit and improve the detecting circuit. Stability, and when the first RF connector 10 and the second RF connector 20 are not connected to the RF connection line through the voltage dividing unit 31, the voltage of the power supply is divided, and then the low level is output, and the transmission power is controlled.
  • the switching function is turned on to implement the SWTP function of the dual antenna path.
  • the voltage dividing unit 31 includes a first resistor R1 and a second resistor R2, and one end of the first resistor R1 is connected to the blocking unit and the first end of the first RF connector 10, the first resistor The other end of the R1 is connected to one end of the second resistor R2, the filtering unit 32 and the detecting port Vdet, and the other end of the second resistor R2 is connected to the power supply VIO18_PMU through the filtering unit 32, when the first RF connector 10 and the second RF connection When the device 20 is connected, the two antenna paths are connected, and the current can smoothly pass through the second detecting module 40 to the ground.
  • the first resistor R1 and the second resistor R2 divide the power supply voltage and are connected to the first detecting module 30.
  • the voltage detected by the detection port Vdet is the divided value on the first resistor R1, so the output is low, indicating that it is in the coupled state at this time, and the SWTP function is turned on.
  • the blocking unit includes a first capacitor C1 and a second capacitor C2, and the first detecting module 30 further includes a first inductor L1; the anode of the first capacitor C1 is connected to one end of the first resistor R1.
  • the negative pole of the first capacitor C1 is connected to the first antenna end ANT1; the cathode of the second capacitor C2 is connected to the second end of the first RF connector 10 and the second detecting module 40, and the anode of the second capacitor C2 is connected.
  • An RF terminal TXM1 is also grounded through the first inductor L1; wherein the second capacitor C2 blocks the inflowing DC current when the first RF connector 10 is not connected, so that the current flows directly through the first RF connector 10
  • the second detection module 40 passes through the current path.
  • the filtering unit 32 includes a third capacitor C3, a fourth capacitor C4, and a second inductor L2.
  • the cathode of the third capacitor C3 is connected to the other end of the second resistor R2 and one end of the second inductor L2.
  • the second inductor The other end of the L2 is connected to the power supply VIO18_PMU;
  • the negative end of the fourth capacitor C4 is connected to one end of the second resistor R2 and the detection port Vdet, so that the detection terminal Vdet port can detect a stable level signal;
  • the third capacitor C3 The anodes of the positive electrode and the fourth capacitor C4 are both grounded, and the third capacitor C3, the fourth capacitor C4, and the second inductor L2 enable the entire two-channel transmit power switching circuit to obtain a stable and interference-free level signal.
  • the second detecting module 40 includes a fifth capacitor C5, a sixth capacitor C6, a seventh capacitor C7, an eighth capacitor C8, a third inductor L3, a fourth inductor L4, and a fifth inductor L5; One end is connected to the second end of the first RF connector 10 and the negative end of the second capacitor C2, and the other end of the third inductor L3 is connected to the anode of the sixth capacitor C6, the cathode of the seventh capacitor C7, and one end of the fourth inductor L4.
  • the other end of the fourth inductor L5 is connected to the first end of the second RF connector 20 and the anode of the fifth capacitor C5; the second end of the second RF connector 20 is connected to the cathode of the eighth capacitor C8,
  • the fifth inductor L5 is grounded; the cathode of the fifth capacitor C5 is connected to the second antenna terminal ANT2, the anode of the sixth capacitor C6 and the anode of the seventh capacitor C7 are both grounded; and the anode of the eighth capacitor C8 is connected.
  • the inductance of the fifth inductor L5 is 56 nH.
  • the current enters the second detection module 40 under the blocking action of the second capacitor C2, and then the current is controlled according to the access state of the second RF connector 20.
  • the fifth inductor L5 in the second detecting module 40 to the ground, specifically, when the second RF connector 20 is connected to the radio frequency connecting line, the first end of the second RF connector 20 is disconnected, and the current cannot pass.
  • the fifth inductor L5 to the ground, the first resistor R1 and the second resistor R2 in the voltage dividing unit 31 do not divide the power supply voltage, and the detection port Vdet outputs a high level, indicating that it is in a conducting state, and does not need to turn on the SWTP function;
  • the second RF connector 20 is not connected to the RF connection line, the two antenna paths are connected.
  • the current can smoothly pass from the power supply VIO10_PMU to the ground via the fifth inductor L5, and the first resistor R1 in the voltage dividing unit 31 and The second resistor R2 divides the power supply voltage.
  • the voltage on the detection port Vdet is the divided value on the first resistor R1, so the output is low, indicating that it is in the coupled state, and the SWTP function needs to be enabled. Therefore, the first detection module 30 and the second detection module 40 control the current path of the power supply according to the access states of the first RF connector 10 and the second RF connector 20, respectively, so that the detection port can be The path status is detected to control the opening and closing of the SWTP function, which makes up for the disadvantages of the platform not supporting multi-port detection, and also effectively saves the port.
  • the front ends of the first RF connector 10 and the second RF connector 20 are disconnected; when the first RF connector 10 and the second When the RF connector is not connected to the RF cable, the front ends of the first RF connector 10 and the second RF connector 20 are connected.
  • the first detecting module 30 outputs a high level signal, indicating that the antenna path is in a conducting state, and the transmitting power switching function is turned off.
  • the first RF connector 10 When the first RF connector 10 is not connected and the second RF connector 20 is connected, the current of the power supply can flow through the first RF connector 10 through the first detection module 30, and the isolation unit is interposed.
  • the second detection module 40 is connected to the second detection module 40, but the current cannot pass through the fifth inductor L5 to the ground due to the front end of the second RF connector 20.
  • the voltage of the detection port of the first detection module 30 is still 1.8. V, the first detecting module 30 outputs a high level signal, indicating that the antenna path is in a conducting state, and the transmitting power switching function is turned off.
  • the current of the power supply passes through the first resistor R1 and the second resistor R2 and then reaches the second detection module 40 via the first RF connector 10. And then flowing through the second RF connector 20 through the fifth inductor L5 to the ground, so the voltage of the detection port Vdet connected to the first detecting module 30 is the divided voltage on the first resistor R1, that is, 0.6V, the first detecting module 30 outputs a low level signal, indicating that the antenna path is in a coupled state, then the transmit power switching function is turned on.
  • both antennas satisfying the main radio frequency of the mobile phone detection platform have a transmission power switching function; at the same time, the entire circuit can obtain a stable and safe level signal under the auxiliary action of the filtering unit 32, thereby improving the safety of the detection circuit and Stability, further realize the effectiveness of detection, and can use the basis of the scheme to build more antenna channels with transmission power switching function, effectively making up for the drawbacks of the mobile terminal platform not supporting multi-port detection.
  • the present invention accordingly provides a dual-channel transmit power switching detection apparatus, including a PCB board, and the PCB board is provided with the dual-channel transmit power switching detection circuit as described above,
  • the dual-channel transmit power switching detection circuit has been described in detail above and will not be described in detail herein.
  • the present invention also provides a mobile terminal corresponding to the dual-channel transmit power switching detection apparatus as described above, since the dual-channel transmit power switching detection apparatus has been described in detail above and will not be described in detail herein.
  • the present invention provides a dual-channel transmit power switching detection circuit, apparatus, and mobile terminal, the detection circuit including a first RF connector, a second RF connector, a first detection module, and a second detection module.
  • the first detecting module is respectively connected to the power supply, the first RF connector and the second connector, and the second detecting unit is further connected to the second RF connector, wherein the first detecting module and the second detecting module are respectively configured according to The access states of the first RF connector and the second RF connector control the current path of the power supply, and then the first detection module outputs a corresponding detection level signal to determine whether to enable or disable the transmission power switching function.
  • the primary RF has two When the antenna is used, both antennas can realize the transmission power switching function, and can also make up for the drawback that the platform does not support multi-port detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

本发明公开了双通路发射功率切换检测电路,第一检测模块分别与供电电源、第一射频连接器和第二连接器连接,第二检测单元与第二射频连接器连接,第一检测模块和第二检测模块分别根据第一射频连接器和第二射频连接器的接入状态控制供电电源的电流路径,通过第一检测模块输出相应的检测电平信号,判断开启或关闭发射功率切换功能。

Description

一种双通路发射功率切换检测电路、装置及移动终端
本申请要求于2017年11月27日提交中国专利局、申请号为201711204194. 7、发明名称为“一种双通路发射功率切换检测电路、装置及移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及一种双通路发射功率切换检测电路、装置及移动终端。
背景技术
目前手机终端平台无论是MTK还是高通都支持SWTP(Switching TX Power)功能,即发射功率切换功能,该功能主要应用于全金属机项目或者模拟手握,这两种情况可能会恶化TRP((total radiated power,总辐射功率)损失功率,我们可以使用发射功率切换功能强制增大天线的辐射功率;但是在样机校准到目标功率后,功率基本都很稳定,不会因为测试环境改变而导致功率变化幅度很大,所以只有在辐射环境下可能需要额外的补偿功率值。对于这种情况,可以建立一种平台机制,如果平台检测到当前的样机状态是传导模式,则可以关闭SWTP功能;而检测到当前是辐射状态,则强制开启SWTP功能,以此解决天线效率低的问题。
但是,当前平台只支持一个SWTP功能,如果主射频是两根天线,而且每根天线都需要加SWTP功能,其中一个方案为,两个SWTP检测通路相互独立,一个Vdet对应着一个GPIO口,虽然原理图设计可以满足功能要求,但是目前MTK平台是不支持两个及两个以上的GPIO检测Vdet电平。所以这种方式暂时不能应用于实际项目当中;另外一种可以使用SPDT连接Vdet1和Vdet2,这样就仅用一个GPIO口控制两种状态,但是,对于控制射频模块的GPIO需要工作在BPI模式,并且对于MTK平台来说可以用作BPI mode的端口相对较少,对于射频架构相对复杂的设计来说,BPI端口是完全不够用的。
因而现有技术还有待改进和提高。
技术问题
本发明实施例提供一种双通路发射功率切换检测电路、装置及移动终端,能够满足当主射频为两根天线时,保证每根天线都具有SWTP功能,同时也能够弥补平台不支持多端口检测的弊端。
技术解决方案
第一方面,本发明实施例提供一种双通路发射功率切换检测电路,其与双天线通路连接,包括第一射频连接器、第二射频连接器、第一检测模块和第二检测模块,所述第一检测模块分别与供电电源、第一射频连接器和第二检测模块连接,所述第一检测模块还连接所述双天线通路的第一天线端、第一射频端以及检测端口;所述第二检测模块还与第二射频连接器连接,并且还连接所述双天线通路的第二天线端和第二射频端;所述第一检测模块和第二检测模块分别根据第一射频连接器和第二射频连接器的接入状态控制供电电源的电流路径,进而通过第一检测模块输出相应的检测电平信号,使得在第一射频连接器和/或第二射频连接器接入射频连接线时,关闭发射功率切换功能,否则开启发射功率切换功能。
所述的双通路发射功率切换检测电路中,所述第一检测模块具体用于当第一射频连接器和/或第二射频连接器接入射频连接线时输出高电平,此时关闭发射功率切换功能;当第一射频连接器和第二射频连接器均未接入射频连接线时,输出低电平,此时开启发射功率切换功能。
所述的双通路发射功率切换检测电路中,所述第一检测模块包括用于分压的分压单元、用于滤波的滤波单元以及用于隔直流的隔直单元;所述分压单元的第1端通过滤波单元连接供电电源,所述分压单元的第2端连接检测端口,所述分压单元的第3端连接所述第一射频连接器和隔直单元。
所述的双通路发射功率切换检测电路中,所述分压单元包括第一电阻和第二电阻,所述第一电阻的一端连接隔直单元和第一射频连接器的第1端,所述第一电阻的另一端连接第二电阻的一端、滤波单元和检测端口;所述第二电阻的另一端通过滤波单元连接供电电源。
所述的双通路发射功率切换检测电路中,所述隔直单元包括第一电容和第二电容,所述第一检测模块还包括第一电感;所述第一电容的正极连接第一电阻的一端,所述第一电容的负极连接所述第一天线端;所述第二电容的负极连接第一射频连接器的第2端和第二检测模块,所述第二电容的正极连接所述第一射频端、还通过第一电感接地。
所述的双通路发射功率切换检测电路中,所述滤波单元包括第三电容、第四电容和第二电感;所述第三电容的负极连接第二电阻的另一端和第二电感的一端,所述第二电感的另一端连接供电电源;所述第四电容的负极连接第二电阻的一端和检测端口;所述第三电容的正极和第四电容的正极均接地。
所述的双通路发射功率切换检测电路中,所述第二检测模块包括第五电容、第六电容、第七电容、第八电容、第三电感、第四电感和第五电感;所述第三电感的一端连接第一射频连接器的第2端和第二电容的负极,所述第三电感的另一端连接第六电容的正极、第七电容的负极和第四电感的一端;所述第四电感的另一端连接第二射频连接器的第1端和第五电容的正极;所述第二射频连接器的第2端连接第八电容的负极、还通过第五电感接地;所述第五电容的负极连接所述第二天线端,所述第六电容的负极和第七电容的正极均接地;所述第八电容的正极连接所述第二射频端。
所述的双通路发射功率切换检测电路中,所述第五电感的电感量为56nH。
第二方面,本发明实施例提供一种双通路发射功率切换检测装置,包括PCB板,其中,所述PCB板上设置有双通路发射功率切换检测电路;所述双通路发射功率切换检测电路与双天线通路连接,所述双通路发射功率切换检测电路包括第一射频连接器、第二射频连接器、第一检测模块和第二检测模块,所述第一检测模块分别与供电电源、第一射频连接器和第二检测模块连接,所述第一检测模块还连接所述双天线通路的第一天线端、第一射频端以及检测端口;所述第二检测模块还与第二射频连接器连接,并且还连接所述双天线通路的第二天线端和第二射频端;所述第一检测模块和第二检测模块分别根据第一射频连接器和第二射频连接器的接入状态控制供电电源的电流路径,进而通过第一检测模块输出相应的检测电平信号,使得在第一射频连接器和/或第二射频连接器接入射频连接线时,关闭发射功率切换功能,否则开启发射功率切换功能。
所述第一检测模块具体用于当第一射频连接器和/或第二射频连接器接入射频连接线时输出高电平,此时关闭发射功率切换功能;
当第一射频连接器和第二射频连接器均未接入射频连接线时,输出低电平,此时开启发射功率切换功能。
所述第一检测模块包括用于分压的分压单元、用于滤波的滤波单元以及用于隔直流的隔直单元;所述分压单元的第1端通过滤波单元连接供电电源,所述分压单元的第2端连接所述检测端口,所述分压单元的第3端连接第一射频连接器和隔直单元。
所述分压单元包括第一电阻和第二电阻,所述第一电阻的一端连接隔直单元和第一射频连接器的第1端,所述第一电阻的另一端连接第二电阻的一端、滤波单元和检测端口;所述第二电阻的另一端通过滤波单元连接供电电源。
所述隔直单元包括第一电容和第二电容,所述第一检测模块还包括第一电感;所述第一电容的正极连接第一电阻的一端,所述第一电容的负极连接所述第一天线端;所述第二电容的负极连接第一射频连接器的第2端和第二检测模块,所述第二电容的正极连接所述第一射频端、还通过第一电感接地。
所述滤波单元包括第三电容、第四电容和第二电感;所述第三电容的负极连接第二电阻的另一端和第二电感的一端,所述第二电感的另一端连接供电电源;所述第四电容的负极连接第二电阻的一端和检测端口;所述第三电容的正极和第四电容的正极均接地。
所述第二检测模块包括第五电容、第六电容、第七电容、第八电容、第三电感、第四电感和第五电感;所述第三电感的一端连接第一射频连接器的第2端和第二电容的负极,所述第三电感的另一端连接第六电容的正极、第七电容的负极和第四电感的一端;所述第四电感的另一端连接第二射频连接器的第1端和第五电容的正极;所述第二射频连接器的第2端连接第八电容的负极、还通过第五电感接地;所述第五电容的负极连接所述第二天线端,所述第六电容的负极和第七电容的正极均接地;所述第八电容的正极连接所述第二射频端。
第三方面,本发明实施例提供一种移动终端,包括双通路发射功率切换检测装置,所述双通路发射功率切换检测装置,包括PCB板,所述PCB板上设置有双通路发射功率切换检测电路;所述双通路发射功率切换检测电路与双天线通路连接,所述双通路发射功率切换检测电路包括第一射频连接器、第二射频连接器、第一检测模块和第二检测模块,所述第一检测模块分别与供电电源、第一射频连接器和第二检测模块连接,所述第一检测模块还连接所述双天线通路的第一天线端、第一射频端以及检测端口;所述第二检测模块还与第二射频连接器连接,并且还连接所述双天线通路的第二天线端和第二射频端;所述第一检测模块和第二检测模块分别根据第一射频连接器和第二射频连接器的接入状态控制供电电源的电流路径,进而通过第一检测模块输出相应的检测电平信号,使得在第一射频连接器和/或第二射频连接器接入射频连接线时,关闭发射功率切换功能,否则开启发射功率切换功能。
所述第一检测模块具体用于当第一射频连接器和/或第二射频连接器接入射频连接线时输出高电平,此时关闭发射功率切换功能;
当第一射频连接器和第二射频连接器均未接入射频连接线时,输出低电平,此时开启发射功率切换功能。
所述第一检测模块包括用于分压的分压单元、用于滤波的滤波单元以及用于隔直流的隔直单元;所述分压单元的第1端通过滤波单元连接供电电源,所述分压单元的第2端连接所述检测端口,所述分压单元的第3端连接第一射频连接器和隔直单元。
所述分压单元包括第一电阻和第二电阻,所述第一电阻的一端连接隔直单元和第一射频连接器的第1端,所述第一电阻的另一端连接第二电阻的一端、滤波单元和检测端口;所述第二电阻的另一端通过滤波单元连接供电电源。
所述隔直单元包括第一电容和第二电容,所述第一检测模块还包括第一电感;所述第一电容的正极连接第一电阻的一端,所述第一电容的负极连接所述第一天线端;所述第二电容的负极连接第一射频连接器的第2端和第二检测模块,所述第二电容的正极连接所述第一射频端、还通过第一电感接地。
有益效果
本发明提供的双通路发射功率切换检测电路、装置及移动终端中,所述双通路发射功率切换检测电路包括第一射频连接器、第二射频连接器、第一检测模块和第二检测模块,所述第一检测模块分别与供电电源、第一射频连接器和第二连接器连接,所述第二检测单元还与第二射频连接器连接,所述第一检测模块和第二检测模块分别根据第一射频连接器和第二射频连接器的接入状态控制供电电源的电流路径,进而通过第一检测模块输出相应的检测电平信号,仅需一个检测端口输出检测电平信号即可满足当主射频为两根天线时,每根天线都具有SWTP功能,同时也能够弥补平台不支持多端口检测的弊端。
附图说明
图1为本发明实施例提供的双通路发射功率切换检测电路的结构框图。
图2为本发明实施例提供的双通路发射功率切换检测电路的电路原理图。
本发明的实施方式
本发明提供一种双通路发射功率切换检测电路、装置及移动终端,能够满足当主射频为两根天线时,保证每根天线都具有SWTP功能,同时也能够弥补平台不支持多端口检测的弊端。
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明提供的双通路发射功率切换检测电路包括第一射频连接器10、第二射频连接器20、第一检测模块30和第二检测模块40,所述第一检测模块30分别与供电电源、第一射频连接器10和第二检测模块40连接,所述第二检测模块40还与第二射频连接器20连接,所述第一检测模块30和第二检测模块40分别根据第一射频连接器10和第二射频连接器20的接入状态控制供电电源的电流路径,进而通过第一检测模块30输出相应的检测电平信号,使得在第一射频连接器10和/或第二射频连接器20接入射频连接线时,关闭发射功率切换功能,否则开启发射功率切换功能。
本发明通过检测第一射频连接器10和第二射频连接器20的接入状态来控制供电电源的电流路径,使得在不同接入状态时能输出相应的检测电平信号,根据该检测电平信号判断当前移动终端的状态来开启或关闭发射功率切换功能,仅需一个检测端口即满足双天线通路下的SWTP功能检测和控制需求,弥补了当前平台不支持多功能检测的弊端。
进一步地,所述第一检测模块30具体用于当第一射频连接器10和/或第二射频连接器20接入射频连接线时输出高电平,此时关闭发射功率切换功能;当第一射频连接器10和第二射频连接器20均未接入射频连接线时,输出低电平,此时开启发射功率切换功能,即只要有一个射频连接器接入,均判断为传导状态,无需开启发射功率切换功能,当两个射频连接器均为接入时才判断为耦合状态,此时开启发射功率切换功能对损失功率进行补偿,从而实现了双天线情况下发射功率切换功能的检测以及控制。
具体来说,当所述第一射频连接器10和第二射频连接器20同时接入射频连接线时,即第一射频连接器10的一端和第二射频连接器20的一端均为断开状态,供电电源的电流无法通过第一射频连接器10流经第二检测模块40,仅有第一检测模块30导通,此时第一检测模块30输出为高电平,判断为传导状态,关闭发射功率切换功能;类似的,当仅接入第一射频连接器10时,即第一射频连接器10的一端断开,第二射频连接器20连通,同样,供电电源的电流无法通过第一射频连接器10流经第二检测模块40,第一检测模块30输出高电平信号,同样判断为传导状态,关闭发射功率切换功能;当仅接入第二射频连接器20时,第一射频连接器10为连通状态,但第二射频连接器20的一端断开,电流无法直接通过第二检测模块40到地,那么,此时第一检测模块30依然输出高电平,判断为传导状态,关闭发射功率切换功能。
当第一射频连接器10和第二射频连接器20都不接入时,即第一射频连接器10和第二射频连接器20通路连通,则第一天线端和第二天线端都保持连通状态,此时供电电源的电流可以通过第二检测模块40到地,此时第一检测模块30输出低电平,可判断通路为耦合状态,则开启发射功率切换功能。
具体的,请一并参阅图2,所述第一检测模块10包括用于分压的分压单元31、用于滤波的滤波单元32以及用于隔直流的隔直单元(图中未标号),所述分压单元31的第1端通过滤波单元32连接供电电源VIO18_PMU,所述分压单元31的第2端口连接检测端口Vdet,所述分压单元31的第3端连接第一射频连接器10和隔直单元。
通过所述隔直单元配合第一检测模块30根据第一射频连接器10的接入状态控制供电电源的电流路径,所述滤波单元32能有效滤除电路中的杂波干扰,提高检测电路的稳定性,并且通过分压单元31在第一射频连接器10和第二射频连接器20均未接入射频连接线时,对供电电源的电压进行分压,进而输出低电平,控制发送功率切换功能开启,从而实现双天线通路的SWTP功能。
具体实施时,所述分压单元31包括第一电阻R1和第二电阻R2,所述第一电阻R1的一端连接隔直单元和第一射频连接器10的第1端,所述第一电阻R1的另一端连接第二电阻R2的一端、滤波单元32和检测端口Vdet,所述第二电阻R2的另一端通过滤波单元32连接供电电源VIO18_PMU,当第一射频连接器10和第二射频连接器20都接入时,连通两个天线通路,电流能顺利经由第二检测模块40到地,此时,第一电阻R1和第二电阻R2对电源电压分压,与第一检测模块30连接的检测端口Vdet检测的电压为第一电阻R1上的分压值,因此输出低电平,表明此时处于耦合状态,开启SWTP功能。
进一步地,所述隔直单元包括第一电容C1和第二电容C2,所述第一检测模块30还包括第一电感L1;所述第一电容C1的正极连接第一电阻R1的一端,所述第一电容C1的负极连接第一天线端ANT1;所述第二电容C2的负极连接第一射频连接器10的第2端和第二检测模块40,所述第二电容C2的正极连接第一射频端TXM1、还通过第一电感L1接地;其中所述第二电容C2在第一射频连接器10未接入时,阻隔流入的直流电流,使得电流直接通过第一射频连接器10通路流经的第二检测模块40,有效控制电流路径。
所述滤波单元32包括第三电容C3、第四电容C4和第二电感L2;所述第三电容C3的负极连接第二电阻R2的另一端和第二电感L2的一端,所述第二电感L2的另一端连接供电电源VIO18_PMU;所述第四电容C4的负极连接第二电阻R2的一端和检测端口Vdet,使得检测端Vdet口能够检测到稳定的电平信号;所述第三电容C3的正极和第四电容C4的正极均接地,通过第三电容C3、第四电容C4和第二电感L2使得整个双通路发射功率切换电路获得稳定无干扰的电平信号。
所述第二检测模块40包括第五电容C5、第六电容C6、第七电容C7、第八电容C8、第三电感L3、第四电感L4和第五电感L5;所述第三电感L3的一端连接第一射频连接器10的第2端和第二电容C2的负极,所述第三电感L3的另一端连接第六电容C6的正极、第七电容C7的负极和第四电感L4的一端;所述第四电感L5的另一端连接第二射频连接器20的第1端和第五电容C5的正极;所述第二射频连接器20的第2端连接第八电容C8的负极、还通过第五电感L5接地;所述第五电容C5的负极连接第二天线端ANT2,所述第六电容C6的负极和第七电容C7的正极均接地;所述第八电容C8的正极连接第二射频端TXM2,本实施例中,所述第五电感L5的电感量为56nH。
当第一射频连接器10未接入射频连接线时,在第二电容C2的隔直作用下,电流进入第二检测模块40,进而根据第二射频连接器20的接入状态控制电流是否能通过第二检测模块40中的第五电感L5到地,具体地,当第二射频连接器20接入射频连接线时,第二射频连接器20的第1端断开,此时电流无法通过第五电感L5到地,分压单元31中的第一电阻R1和第二电阻R2并不对电源电压分压,此时检测端口Vdet输出高电平,表明处于传导状态,无需开启SWTP功能;而当第二射频连接器20也未接入射频连接线时,两个天线通路连通,此时电流可从供电电源VIO10_PMU顺利经由第五电感L5到地,分压单元31中的第一电阻R1和第二电阻R2对电源电压分压,此时检测端口Vdet上的电压为第一电阻R1上的分压值,因此输出低电平,表明处于耦合状态,需开启SWTP功能。因此本发明通过第一检测模块30和第二检测模块40分别根据第一射频连接器10和第二射频连接器20的接入状态控制供电电源的电流路径,实现了通过一个检测端口即可对通路状态进行检测进而控制SWTP功能的开启与关闭,弥补了平台不支持多端口检测的弊端,也有效节省了端口。
为了更好的理解本发明,以下结合图1和图2对本发明的双通路发射功率切换检测电路的工作原理进行详细说明:
首先当第一射频连接器10和第二射频连接器20接入射频连接线时,第一射频连接器10和第二射频连接器20的前端断开;当第一射频连接器10和第二射频连接器不接入射频连接线时,第一射频连接器10和第二射频连接器20的前端连通。
因此,当第一射频连接器10和第二射频连接器20均接入,或者当第一射频连接器10接入,第二射频连接器20未接入时,由于第一射频连接器10的前端断开,此时与第一检测模块30连接的检测端口Vdet的电压为电源电压1.8V,第一检测模块30输出高电平信号,表明天线通路处于传导状态,关闭发射功率切换功能。
当第一射频连接器10未接入,第二射频连接器20接入时,此时供电电源的电流能够通过第一检测模块30流经第一射频连接器10,在隔直单元的隔着作用下到达第二检测模块40,但由于第二射频连接器20前端接入,使得电流无法流经第五电感L5的到地,此时的第一检测模块30的检测端口的电压仍为1.8V,第一检测模块30输出高电平信号,表明天线通路处于传导状态,关闭发射功率切换功能。
当第一射频连接器10和第二射频连接器20都未接入时,此时供电电源的电流通过第一电阻R1和第二电阻R2后经第一射频连接器10到达第二检测模块40,之后流经第二射频连接器20通过第五电感L5到地,因此与第一检测模块30连接的检测端口Vdet的电压为第一电阻R1上的分压,即0.6V,第一检测模块30输出低电平信号,表明天线通路处于耦合状态,则开启发射功率切换功能。
因此,满足了手机检测平台主射频的两根天线都具有发射功率切换功能;同时,整个电路在滤波单元32的辅助作用下能够获得稳定、安全的电平信号,提高了检测电路的安全性和稳定性,进一步的实现检测的有效性,并且可以利用该方案的依据搭建更多天线通路具有发射功率切换功能,有效的弥补移动终端平台不支持多端口检测的弊端。
基于上述的双通路发射功率切换检测电路,本发明相应提供了一种双通路发射功率切换检测装置,包括PCB板,所述PCB板上设置有如上所述的双通路发射功率切换检测电路,由于上文已对所述双通路发射功率切换检测电路进行了详细描述,此处不作详述。
本发明还相应提供了一种移动终端,其包括如上所述的双通路发射功率切换检测装置,由于上文已对所述双通路发射功率切换检测装置进行了详细描述,此处不作详述。
综上所述,本发明提供的双通路发射功率切换检测电路、装置及移动终端,所述检测电路包括第一射频连接器、第二射频连接器、第一检测模块和第二检测模块,所述第一检测模块分别与供电电源、第一射频连接器和第二连接器连接,所述第二检测单元还与第二射频连接器连接,所述第一检测模块和第二检测模块分别根据第一射频连接器和第二射频连接器的接入状态控制供电电源的电流路径,进而通过第一检测模块输出相应的检测电平信号,判断开启或者关闭发射功率切换功能,当主射频存在两根天线时,使得两根天线都能够实现发射功率切换功能,同时也能够弥补平台不支持多端口检测的弊端。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (20)

  1. 一种双通路发射功率切换检测电路,其与双天线通路连接,其中,包括第一射频连接器、第二射频连接器、第一检测模块和第二检测模块,所述第一检测模块分别与供电电源、第一射频连接器和第二检测模块连接,所述第一检测模块还连接所述双天线通路的第一天线端、第一射频端以及检测端口;所述第二检测模块还与第二射频连接器连接,并且还连接所述双天线通路的第二天线端和第二射频端;所述第一检测模块和第二检测模块分别根据第一射频连接器和第二射频连接器的接入状态控制供电电源的电流路径,进而通过第一检测模块输出相应的检测电平信号,使得在第一射频连接器和/或第二射频连接器接入射频连接线时,关闭发射功率切换功能,否则开启发射功率切换功能。
  2. 根据权利要求1所述的双通路发射功率切换检测电路,其中,所述第一检测模块具体用于当第一射频连接器和/或第二射频连接器接入射频连接线时输出高电平,此时关闭发射功率切换功能;
    当第一射频连接器和第二射频连接器均未接入射频连接线时,输出低电平,此时开启发射功率切换功能。
  3. 根据权利要求1所述的双通路发射功率切换检测电路,其中,所述第一检测模块包括用于分压的分压单元、用于滤波的滤波单元以及用于隔直流的隔直单元;所述分压单元的第1端通过滤波单元连接供电电源,所述分压单元的第2端连接所述检测端口,所述分压单元的第3端连接第一射频连接器和隔直单元。
  4. 根据权利要求3所述的双通路发射功率切换检测电路,其中,所述分压单元包括第一电阻和第二电阻,所述第一电阻的一端连接隔直单元和第一射频连接器的第1端,所述第一电阻的另一端连接第二电阻的一端、滤波单元和检测端口;所述第二电阻的另一端通过滤波单元连接供电电源。
  5. 根据权利要求4所述的双通路发射功率切换检测电路,其中,所述隔直单元包括第一电容和第二电容,所述第一检测模块还包括第一电感;所述第一电容的正极连接第一电阻的一端,所述第一电容的负极连接所述第一天线端;所述第二电容的负极连接第一射频连接器的第2端和第二检测模块,所述第二电容的正极连接所述第一射频端、还通过第一电感接地。
  6. 根据权利要求5所述的双通路发射功率切换检测电路,其中,所述滤波单元包括第三电容、第四电容和第二电感;所述第三电容的负极连接第二电阻的另一端和第二电感的一端,所述第二电感的另一端连接供电电源;所述第四电容的负极连接第二电阻的一端和检测端口;所述第三电容的正极和第四电容的正极均接地。
  7. 根据权利要求5所述的双通路发射功率切换检测电路,其中,所述第二检测模块包括第五电容、第六电容、第七电容、第八电容、第三电感、第四电感和第五电感;所述第三电感的一端连接第一射频连接器的第2端和第二电容的负极,所述第三电感的另一端连接第六电容的正极、第七电容的负极和第四电感的一端;所述第四电感的另一端连接第二射频连接器的第1端和第五电容的正极;所述第二射频连接器的第2端连接第八电容的负极、还通过第五电感接地;所述第五电容的负极连接所述第二天线端,所述第六电容的负极和第七电容的正极均接地;所述第八电容的正极连接所述第二射频端。
  8. 根据权利要求7所述的双通路发射功率切换检测电路,其中,所述第五电感的电感量为56nH。
  9. 一种双通路发射功率切换检测装置,包括PCB板,其中,所述PCB板上设置有双通路发射功率切换检测电路;所述双通路发射功率切换检测电路与双天线通路连接,所述双通路发射功率切换检测电路包括第一射频连接器、第二射频连接器、第一检测模块和第二检测模块,所述第一检测模块分别与供电电源、第一射频连接器和第二检测模块连接,所述第一检测模块还连接所述双天线通路的第一天线端、第一射频端以及检测端口;所述第二检测模块还与第二射频连接器连接,并且还连接所述双天线通路的第二天线端和第二射频端;所述第一检测模块和第二检测模块分别根据第一射频连接器和第二射频连接器的接入状态控制供电电源的电流路径,进而通过第一检测模块输出相应的检测电平信号,使得在第一射频连接器和/或第二射频连接器接入射频连接线时,关闭发射功率切换功能,否则开启发射功率切换功能。
  10. 根据权利要求9所述的双通路发射功率切换检测装置,其中,所述第一检测模块具体用于当第一射频连接器和/或第二射频连接器接入射频连接线时输出高电平,此时关闭发射功率切换功能;
    当第一射频连接器和第二射频连接器均未接入射频连接线时,输出低电平,此时开启发射功率切换功能。
  11. 根据权利要求9所述的双通路发射功率切换检测装置,其中,所述第一检测模块包括用于分压的分压单元、用于滤波的滤波单元以及用于隔直流的隔直单元;所述分压单元的第1端通过滤波单元连接供电电源,所述分压单元的第2端连接所述检测端口,所述分压单元的第3端连接第一射频连接器和隔直单元。
  12. 根据权利要求11所述的双通路发射功率切换检测装置,其中,所述分压单元包括第一电阻和第二电阻,所述第一电阻的一端连接隔直单元和第一射频连接器的第1端,所述第一电阻的另一端连接第二电阻的一端、滤波单元和检测端口;所述第二电阻的另一端通过滤波单元连接供电电源。
  13. 根据权利要求12所述的双通路发射功率切换检测装置,其中,所述隔直单元包括第一电容和第二电容,所述第一检测模块还包括第一电感;所述第一电容的正极连接第一电阻的一端,所述第一电容的负极连接所述第一天线端;所述第二电容的负极连接第一射频连接器的第2端和第二检测模块,所述第二电容的正极连接所述第一射频端、还通过第一电感接地。
  14. 根据权利要求13所述的双通路发射功率切换检测装置,其中,所述滤波单元包括第三电容、第四电容和第二电感;所述第三电容的负极连接第二电阻的另一端和第二电感的一端,所述第二电感的另一端连接供电电源;所述第四电容的负极连接第二电阻的一端和检测端口;所述第三电容的正极和第四电容的正极均接地。
  15. 根据权利要求13所述的双通路发射功率切换检测装置,其中,所述第二检测模块包括第五电容、第六电容、第七电容、第八电容、第三电感、第四电感和第五电感;所述第三电感的一端连接第一射频连接器的第2端和第二电容的负极,所述第三电感的另一端连接第六电容的正极、第七电容的负极和第四电感的一端;所述第四电感的另一端连接第二射频连接器的第1端和第五电容的正极;所述第二射频连接器的第2端连接第八电容的负极、还通过第五电感接地;所述第五电容的负极连接所述第二天线端,所述第六电容的负极和第七电容的正极均接地;所述第八电容的正极连接所述第二射频端。
  16. 一种移动终端,其中,包括双通路发射功率切换检测装置,所述双通路发射功率切换检测装置,包括PCB板,所述PCB板上设置有双通路发射功率切换检测电路;所述双通路发射功率切换检测电路与双天线通路连接,所述双通路发射功率切换检测电路包括第一射频连接器、第二射频连接器、第一检测模块和第二检测模块,所述第一检测模块分别与供电电源、第一射频连接器和第二检测模块连接,所述第一检测模块还连接所述双天线通路的第一天线端、第一射频端以及检测端口;所述第二检测模块还与第二射频连接器连接,并且还连接所述双天线通路的第二天线端和第二射频端;所述第一检测模块和第二检测模块分别根据第一射频连接器和第二射频连接器的接入状态控制供电电源的电流路径,进而通过第一检测模块输出相应的检测电平信号,使得在第一射频连接器和/或第二射频连接器接入射频连接线时,关闭发射功率切换功能,否则开启发射功率切换功能。
  17. 根据权利要求16所述的移动终端,其中,所述第一检测模块具体用于当第一射频连接器和/或第二射频连接器接入射频连接线时输出高电平,此时关闭发射功率切换功能;
    当第一射频连接器和第二射频连接器均未接入射频连接线时,输出低电平,此时开启发射功率切换功能。
  18. 根据权利要求16所述的移动终端,其中,所述第一检测模块包括用于分压的分压单元、用于滤波的滤波单元以及用于隔直流的隔直单元;所述分压单元的第1端通过滤波单元连接供电电源,所述分压单元的第2端连接所述检测端口,所述分压单元的第3端连接第一射频连接器和隔直单元。
  19. 根据权利要求18所述的移动终端,其中,所述分压单元包括第一电阻和第二电阻,所述第一电阻的一端连接隔直单元和第一射频连接器的第1端,所述第一电阻的另一端连接第二电阻的一端、滤波单元和检测端口;所述第二电阻的另一端通过滤波单元连接供电电源。
  20. 根据权利要求19所述的移动终端,其中,所述隔直单元包括第一电容和第二电容,所述第一检测模块还包括第一电感;所述第一电容的正极连接第一电阻的一端,所述第一电容的负极连接所述第一天线端;所述第二电容的负极连接第一射频连接器的第2端和第二检测模块,所述第二电容的正极连接所述第一射频端、还通过第一电感接地。
PCT/CN2018/117599 2017-11-27 2018-11-27 一种双通路发射功率切换检测电路、装置及移动终端 WO2019101209A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/766,755 US10931385B2 (en) 2017-11-27 2018-11-27 Double-path switching TX power (SWTP) detection circuit and apparatus, and mobile terminal
EP18881305.9A EP3720073A4 (en) 2017-11-27 2018-11-27 CIRCUIT AND DEVICE FOR DETECTING TWO-WAY SWITCHING TX POWER (SWTP) AND MOBILE TERMINAL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711204194.7 2017-11-27
CN201711204194.7A CN107919919B (zh) 2017-11-27 2017-11-27 一种双通路发射功率切换检测电路、装置及移动终端

Publications (1)

Publication Number Publication Date
WO2019101209A1 true WO2019101209A1 (zh) 2019-05-31

Family

ID=61897833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117599 WO2019101209A1 (zh) 2017-11-27 2018-11-27 一种双通路发射功率切换检测电路、装置及移动终端

Country Status (4)

Country Link
US (1) US10931385B2 (zh)
EP (1) EP3720073A4 (zh)
CN (1) CN107919919B (zh)
WO (1) WO2019101209A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10931385B2 (en) 2017-11-27 2021-02-23 JRD Communication (Shenzhen) Ltd. Double-path switching TX power (SWTP) detection circuit and apparatus, and mobile terminal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109101853B (zh) * 2018-07-30 2021-07-27 成都九洲电子信息系统股份有限公司 一种射频识别读写器系统保护及天线端口检测系统
CN109526048A (zh) * 2018-11-29 2019-03-26 厦门美图移动科技有限公司 一种天线效率优化方法、装置、移动终端及存储介质
CN113296031B (zh) * 2020-02-21 2022-04-19 荣耀终端有限公司 射频线安装检测装置及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1993903A (zh) * 2004-08-06 2007-07-04 艾利森电话股份有限公司 无线电通信的方法及系统
WO2009083647A1 (en) * 2007-12-28 2009-07-09 Nokia Corporation Apparatus and method for switching from reception to transmission
US20140129425A1 (en) * 2012-11-06 2014-05-08 Songnan Yang Dynamic boost of near field communications (nfc) performance/coverage in devices
CN106877889A (zh) * 2017-02-08 2017-06-20 上海与德信息技术有限公司 一种工作状态检测电路及功率调整方法
CN107919919A (zh) * 2017-11-27 2018-04-17 Tcl移动通信科技(宁波)有限公司 一种双通路发射功率切换检测电路、装置及移动终端

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446507B1 (ko) * 2001-12-27 2004-09-04 삼성전자주식회사 이동통신 단말기의 다이버시티 장치 및 방법
US6924766B2 (en) * 2003-04-03 2005-08-02 Kyocera Wireless Corp. Wireless telephone antenna diversity system
JP2006238071A (ja) * 2005-02-25 2006-09-07 Fujitsu Ltd アンテナ接続検出回路
JP4412302B2 (ja) * 2005-06-01 2010-02-10 株式会社デンソー 統合アンテナの接続状態検出装置及びカーナビゲーション装置
US8831544B2 (en) * 2010-04-20 2014-09-09 Rf Micro Devices, Inc. Dynamic device switching (DDS) of an in-phase RF PA stage and a quadrature-phase RF PA stage
CN103384962B (zh) * 2012-03-05 2015-06-10 华为终端有限公司 天线切换电路和无线终端设备
US9444425B2 (en) * 2014-06-20 2016-09-13 Apple Inc. Electronic device with adjustable wireless circuitry
CN104270166B (zh) * 2014-10-17 2016-07-20 中磊电子(苏州)有限公司 收发异质射频信号的无线通讯装置
US9893820B2 (en) * 2016-04-22 2018-02-13 Blue Danube Systems, Inc. Antenna element self-test and monitoring
CN108111176B (zh) * 2017-12-08 2021-02-19 Tcl移动通信科技(宁波)有限公司 一种双天线射频功率检测电路、装置及移动终端
WO2019128620A1 (zh) * 2017-12-29 2019-07-04 Oppo广东移动通信有限公司 天线切换电路、天线切换方法以及电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1993903A (zh) * 2004-08-06 2007-07-04 艾利森电话股份有限公司 无线电通信的方法及系统
WO2009083647A1 (en) * 2007-12-28 2009-07-09 Nokia Corporation Apparatus and method for switching from reception to transmission
US20140129425A1 (en) * 2012-11-06 2014-05-08 Songnan Yang Dynamic boost of near field communications (nfc) performance/coverage in devices
CN106877889A (zh) * 2017-02-08 2017-06-20 上海与德信息技术有限公司 一种工作状态检测电路及功率调整方法
CN107919919A (zh) * 2017-11-27 2018-04-17 Tcl移动通信科技(宁波)有限公司 一种双通路发射功率切换检测电路、装置及移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3720073A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10931385B2 (en) 2017-11-27 2021-02-23 JRD Communication (Shenzhen) Ltd. Double-path switching TX power (SWTP) detection circuit and apparatus, and mobile terminal

Also Published As

Publication number Publication date
CN107919919A (zh) 2018-04-17
US20200374016A1 (en) 2020-11-26
EP3720073A1 (en) 2020-10-07
CN107919919B (zh) 2021-04-20
US10931385B2 (en) 2021-02-23
EP3720073A4 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
WO2019101209A1 (zh) 一种双通路发射功率切换检测电路、装置及移动终端
JP7319392B2 (ja) Sarを検出する装置、sarを低減する方法および移動端末
US9439151B2 (en) Method for intelligently switching on/off mobile terminal antenna and corresponding mobile terminal
WO2020019942A1 (zh) 射频系统及相关产品
AU2020248826B2 (en) Radio frequency front end circuit and mobile terminal
EP2704254B1 (en) Dual-feedpoint antenna system and method for feedpoint switchover of dual-feedpoint antenna system
CN103384962B (zh) 天线切换电路和无线终端设备
TWI653845B (zh) 電子裝置及其天線及用該電子裝置接收或發射信號的方法
WO2021031771A1 (zh) 射频前端电路及移动终端
CA3134404C (en) Radio frequency front-end circuit and mobile terminal
CN102761640A (zh) 一种优化天线指标的方法及移动终端
CN108833701B (zh) 一种天线控制方法、天线系统及终端
CN107592405A (zh) 一种天线调谐参数的处理方法及移动终端
CN111431634A (zh) 射频功率控制电路
CN111756396A (zh) 射频电路、电子设备和控制方法
CN203660044U (zh) 一种能复用高低频天线的智能终端
CN110658391A (zh) 电磁兼容性的辅助测试装置及测试方法
CN106100652A (zh) 杂散抑制装置及方法
CN108683427B (zh) 一种天线调节电路和天线调节方法
WO2019128620A1 (zh) 天线切换电路、天线切换方法以及电子装置
CN106921765B (zh) 降低sar值的天线系统及其控制方法、控制装置
CN203984414U (zh) 新型无线收发器
CN105871444A (zh) 一种手机天线复用方法及系统
CN107369922B (zh) Bd/gps双输出天线装置
CN204634058U (zh) 合/分路器及直流通路自适应选通电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018881305

Country of ref document: EP

Effective date: 20200629